WorldWideScience

Sample records for models wind velocity

  1. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  2. Extreme Velocity Wind Sensor

    Science.gov (United States)

    Perotti, Jose; Voska, Ned (Technical Monitor)

    2002-01-01

    This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.

  3. The Enhanced-model Ladar Wind Sensor and Its Application in Planetary Wind Velocity Measurements

    Science.gov (United States)

    Soreide, D. C.; Mcgann, R. L.; Erwin, L. L.; Morris, D. J.

    1993-01-01

    For several years we have been developing an optical air-speed sensor that has a clear application as a meteorological wind-speed sensor for the Mars landers. This sensor has been developed for aircraft use to replace the familiar, pressure-based Pitot probe. Our approach utilizes a new concept in the laser-based optical measurement of air velocity (the Enhanced-Mode Ladar), which allows us to make velocity measurements with significantly lower laser power than conventional methods. The application of the Enhanced-Mode Ladar to measuring wind speeds in the martian atmosphere is discussed.

  4. Two-dimensional airflow modeling underpredicts the wind velocity over dunes.

    Science.gov (United States)

    Michelsen, Britt; Strobl, Severin; Parteli, Eric J R; Pöschel, Thorsten

    2015-11-17

    We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune's symmetry axis - that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected.

  5. Two-dimensional airflow modeling underpredicts the wind velocity over dunes

    OpenAIRE

    Britt Michelsen; Severin Strobl; Parteli, Eric J. R.; Thorsten Pöschel

    2015-01-01

    We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune’s symmetry axis — that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barc...

  6. Comparison of solar wind velocity measurements with a theoretical acceleration model

    Energy Technology Data Exchange (ETDEWEB)

    Coles, W.A. (Univ. of California, La Jolla (United States)); Esser, R. (Univ. of Tromsoe (Norway)); Loevhaug, U.P. (EISCAT, Ramfjordbotn (Norway)); Markkanen, J. (Geophysical Observatory, Sodankyla (Finland))

    1991-08-01

    Interplanetary radio scintillation (IPS) measurements of the solar wind velocity were made using the receiving antennas of the European Incoherent Scatter Facility (EISCAT) radar system in northern Scandinavia from June through October 1990. The observations, which cover the distance range from 11 to 90 R{sub s} from Sun center, were taken with sufficient density to measure the same stream at two (or more) different distances. The deduced velocities are in the range 100 {approx lt} U {approx lt} 540 km s{sup {minus}1}. The authors selected from 192 observations, 16 examples of streams observed with good radial alignment, of which 12 were observed unchanged for several days. The measured velocities are compared with calculations based on a two-fluid solar wind model with Alfven waves. In eight cases the measurements are in good agreement with the model when a moderate amount of wave energy is added to the flow. In four cases the observed streams show low or moderate velocities below, say, 20 R{sub s} but then accelerate fast at larger distances from the Sun. This delayed acceleration is much steeper than the acceleration in the model at these distances. In the remaining four cases the streams seem to reach their final velocities much closer to the base than in other cases, and they are not observed to accelerate much between 10 and 90 R{sub s}. At these distances all related solar wind models they have seen give the same results; they all fit half the data, and none can fit the other half.

  7. Remote Sensing Data in Wind Velocity Field Modelling: a Case Study from the Sudetes (SW Poland)

    Science.gov (United States)

    Jancewicz, Kacper

    2014-06-01

    The phenomena of wind-field deformation above complex (mountainous) terrain is a popular subject of research related to numerical modelling using GIS techniques. This type of modelling requires, as input data, information on terrain roughness and a digital terrain/elevation model. This information may be provided by remote sensing data. Consequently, its accuracy and spatial resolution may affect the results of modelling. This paper represents an attempt to conduct wind-field modelling in the area of the Śnieżnik Massif (Eastern Sudetes). The modelling process was conducted in WindStation 2.0.10 software (using the computable fluid dynamics solver Canyon). Two different elevation models were used: the Global Land Survey Digital Elevation Model (GLS DEM) and Digital Terrain Elevation Data (DTED) Level 2. The terrain roughness raster was generated on the basis of Corine Land Cover 2006 (CLC 2006) data. The output data were post-processed in ArcInfo 9.3.1 software to achieve a high-quality cartographic presentation. Experimental modelling was conducted for situations from 26 November 2011, 25 May 2012, and 26 May 2012, based on a limited number of field measurements and using parameters of the atmosphere boundary layer derived from the aerological surveys provided by the closest meteorological stations. The model was run in a 100-m and 250-m spatial resolution. In order to verify the model's performance, leave-one-out cross-validation was used. The calculated indices allowed for a comparison with results of former studies pertaining to WindStation's performance. The experiment demonstrated very subtle differences between results in using DTED or GLS DEM elevation data. Additionally, CLC 2006 roughness data provided more noticeable improvements in the model's performance, but only in the resolution corresponding to the original roughness data. The best input data configuration resulted in the following mean values of error measure: root mean squared error of velocity

  8. Revised Model of the Steady-state Solar Wind Halo Electron Velocity Distribution Function

    Science.gov (United States)

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S.; moon, Y.-J.

    2016-08-01

    A recent study discussed the steady-state model for solar wind electrons during quiet time conditions. The electrons emanating from the Sun are treated in a composite three-population model—the low-energy Maxwellian core with an energy range of tens of eV, the intermediate ˜102-103 eV energy-range (“halo”) electrons, and the high ˜103-105 eV energy-range (“super-halo”) electrons. In the model, the intermediate energy halo electrons are assumed to be in resonance with transverse EM fluctuations in the whistler frequency range (˜102 Hz), while the high-energy super-halo electrons are presumed to be in steady-state wave-particle resonance with higher-frequency electrostatic fluctuations in the Langmuir frequency range (˜105 Hz). A comparison with STEREO and WIND spacecraft data was also made. However, ignoring the influence of Langmuir fluctuations on the halo population turns out to be an unjustifiable assumption. The present paper rectifies the previous approach by including both Langmuir and whistler fluctuations in the construction of the steady-state velocity distribution function for the halo population, and demonstrates that the role of whistler-range fluctuation is minimal unless the fluctuation intensity is arbitrarily raised. This implies that the Langmuir-range fluctuations, known as the quasi thermal noise, are important for both halo and super-halo electron velocity distribution.

  9. GPC-Based Gust Response Alleviation for Aircraft Model Adapting to Various Flow Velocities in the Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Yuting Dai

    2015-01-01

    Full Text Available A unified autoregressive (AR model is identified, based on the wind tunnel test data of open-loop gust response for an aircraft model. The identified AR model can be adapted to various flow velocities in the wind tunnel test. Due to the lack of discrete gust input measurement, a second-order polynomial function is used to approximate the gust input amplitude by flow velocity. Afterwards, with the identified online aeroelastic model, the modified generalized predictive control (GPC theory is applied to alleviate wing tip acceleration induced by sinusoidal gust. Finally, the alleviation effects of gust response at different flow velocities are estimated based on the comparison of simulated closed-loop acceleration with experimental open-loop one. The comparison indicates that, after gust response alleviation, the wing tip acceleration can be reduced up to 20% at the tested velocities ranging from 12 m/s to 24 m/s. Demonstratively, the unified control law can be adapted to varying wind tunnel velocities and gust frequencies. It does not need to be altered at different test conditions, which will save the idle time.

  10. Temperature Field-Wind Velocity Field Optimum Control of Greenhouse Environment Based on CFD Model

    Directory of Open Access Journals (Sweden)

    Yongbo Li

    2014-01-01

    Full Text Available The computational fluid dynamics technology is applied as the environmental control model, which can include the greenhouse space. Basic environmental factors are set to be the control objects, the field information is achieved via the division of layers by height, and numerical characteristics of each layer are used to describe the field information. Under the natural ventilation condition, real-time requirements, energy consumption, and distribution difference are selected as index functions. The optimization algorithm of adaptive simulated annealing is used to obtain optimal control outputs. A comparison with full-open ventilation shows that the whole index can be reduced at 44.21% and found that a certain mutual exclusiveness exists between the temperature and velocity field in the optimal course. All the results indicate that the application of CFD model has great advantages to improve the control accuracy of greenhouse.

  11. Horizontal wind velocity retrieval using a Levenberg-Marquardt algorithm for an airborne wind lidar

    Science.gov (United States)

    Zhu, Jinshan; Li, Zhigang; Liu, Zhishen

    2016-04-01

    We established a model for an airborne wind lidar. Numerical optimization algorithms should be used to solve this nonlinear model. We designed a Levenberg-Marquardt (L-M) algorithm and tested it with the modeled data. The retrieved velocity and the true velocity agree very well, and the adjusted R2 is 0.99947. We have carried out an airborne coherent wind lidar experiment in January 2015, and we used the model and the L-M algorithm to process the wind lidar experiment data, and compared the retrieved results with the radiosonde wind profile. The consistency is very good, especially at an altitude above 1.8 km. We may speculate that when the atmosphere flows are not so dramatic, the lidar and the radiosonde measurements are strictly synchronous, it is possible to retrieve horizontal wind speeds and directions consistently with the radiosonde using our wind lidar model and the L-M algorithm.

  12. A parabolic velocity-decomposition method for wind turbines

    Science.gov (United States)

    Mittal, Anshul; Briley, W. Roger; Sreenivas, Kidambi; Taylor, Lafayette K.

    2017-02-01

    An economical parabolized Navier-Stokes approximation for steady incompressible flow is combined with a compatible wind turbine model to simulate wind turbine flows, both upstream of the turbine and in downstream wake regions. The inviscid parabolizing approximation is based on a Helmholtz decomposition of the secondary velocity vector and physical order-of-magnitude estimates, rather than an axial pressure gradient approximation. The wind turbine is modeled by distributed source-term forces incorporating time-averaged aerodynamic forces generated by a blade-element momentum turbine model. A solution algorithm is given whose dependent variables are streamwise velocity, streamwise vorticity, and pressure, with secondary velocity determined by two-dimensional scalar and vector potentials. In addition to laminar and turbulent boundary-layer test cases, solutions for a streamwise vortex-convection test problem are assessed by mesh refinement and comparison with Navier-Stokes solutions using the same grid. Computed results for a single turbine and a three-turbine array are presented using the NREL offshore 5-MW baseline wind turbine. These are also compared with an unsteady Reynolds-averaged Navier-Stokes solution computed with full rotor resolution. On balance, the agreement in turbine wake predictions for these test cases is very encouraging given the substantial differences in physical modeling fidelity and computer resources required.

  13. WIND VELOCITIES AND SAND FLUXES IN MESQUITE DUNE-LANDS IN THE NORTHERN CHIHUAHUAN DESERT: A COMPARISON BETWEEN FIELD MEASUREMENTS AND THE QUIC (QUICK URBAN AND INDUSTRIAL COMPLEX) MODEL

    Science.gov (United States)

    The poster shows comparisons of wind velocities and sand fluxes between field measurements and a computer model, called QUIC (Quick Urban & Industrial Complex). The comparisons were made for a small desert region in New Mexico.

  14. Design of a wind turbine-generator system considering the conformability to wind velocity fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Tetsuya; Hashizume, Takumi; Outa, Eisuke

    1999-07-01

    The conformability of the rated power output of the wind turbine-generator system and of the wind turbine type to wind velocity fluctuations are investigated with a simulation model. The authors examine three types of wind turbines: the Darrieus-Savonius hybrid, the Darrieus proper and the Propeller. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient points. As a computed result of the net extracting power, the Darrieus turbine proper has little conformability to wind velocity fluctuations because of its output characteristics. As for the other turbines, large-scale systems do not always have an advantage over small-scale systems as the effect of its dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine, under wind direction fluctuation, is much reduced when compared with the hybrid wind turbine. Thus, the authors conclude that the appropriate rated power output of the system exists with relation to the wind turbine type for each wind condition.

  15. Effects of increasing tip velocity on wind turbine rotor design.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Brian Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richards, Phillip William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  16. Modulation of the Solar Wind Velocity by Mercury

    CERN Document Server

    Nikulin, Igor F

    2013-01-01

    To study the variations in the solar wind velocity during inferior conjunctions of Mercury and Earth, we analyzed 54 events in the period 1995 to 2012 by the superimposed epoch method. We have found a noticeable increase in the velocity both before and after the conjunctions as well as decrease in the velocity within 3-4 days after them, which seems to be associated with Mercury's "shadow". The results obtained might be used to improve a forecast of the solar wind velocity.

  17. Velocity anticipation in the optimal velocity model

    Institute of Scientific and Technical Information of China (English)

    DONG Li-yun; WENG Xu-dan; LI Qing-ding

    2009-01-01

    In this paper,the velocity anticipation in the optimal velocity model (OVM) is investigated.The driver adjusts the velocity of his vehicle by the desired headway,which depends on both instantaneous headway and relative velocity.The effect of relative velocity is measured by a sensitivity function.A specific form of the sensitivity function is supposed and the involved parameters are determined by the both numerical simulation and empirical data.It is shown that inclusion of velocity anticipation enhances the stability of traffic flow.Numerical simulations show a good agreement with empirical data.This model provides a better description of real traffic,including the acceleration process from standing states and the deceleration process approaching a stopped car.

  18. Calibration of Instruments for Measuring Wind Velocity and Direction

    Science.gov (United States)

    Vogler, Raymond D.; Pilny, Miroslav J.

    1950-01-01

    Signal Corps wind equipment AN/GMQ-1 consisting of a 3-cup anemometer and wind vane was calibrated for wind velocities from 1 to 200 miles per hour. Cup-shaft failure prevented calibration at higher wind velocities. The action of the wind vane was checked and found to have very poor directional accuracy below a velocity of 8 miles per hour. After shaft failure was reported to the Signal Corps, the cup rotors were redesigned by strengthening the shafts for better operation at high velocities. The anemometer with the redesigned cup rotors was recalibrated, but cup-shaft failure occurred again at a wind velocity of approximately 220 miles per hour. In the course of this calibration two standard generators were checked for signal output variation, and a wind-speed meter was calibrated for use with each of the redesigned cup rotors. The variation of pressure coefficient with air-flow direction at four orifices on a disk-shaped pitot head was obtained for wind velocities of 37.79 53.6, and 98.9 miles per hour. A pitot-static tube mounted in the nose of a vane was calibrated up to a dynamic pressure of 155 pounds per square foot, or approximately 256 miles per hour,

  19. Modeling Terminal Velocity

    Science.gov (United States)

    Brand, Neal; Quintanilla, John A.

    2013-01-01

    Using a simultaneously falling softball as a stopwatch, the terminal velocity of a whiffle ball can be obtained to surprisingly high accuracy with only common household equipment. This classroom activity engages students in an apparently daunting task that nevertheless is tractable, using a simple model and mathematical techniques at their…

  20. Wind Velocity Decreasing Effects of Windbreak Fence for Snowfall Measurement

    Directory of Open Access Journals (Sweden)

    Ki-Pyo You

    2014-01-01

    Full Text Available Meteorological observatories use measuring boards on even ground in open areas to measure the amount of snowfall. In order to measure the amount of snowfall, areas unaffected by wind should be found. This study tried to determine the internal wind flow inside a windbreak fence, identifying an area unaffected by wind in order to measure the snowfall. We performed a computational fluid dynamics analysis and wind tunnel test, conducted field measurements of the type and height of the windbreak fence, and analyzed the wind flow inside the fence. The results showed that a double windbreak fence was better than a single windbreak fence for decreasing wind velocity. The double fence (width 4 m, height 60 cm, and fixed on the bottom has the greatest wind velocity decrease rate at the central part of octagonal windbreak.

  1. Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud

    2017-07-01

    Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.

  2. MEASUREMENT OF MOTION CORRECTED WIND VELOCITY USING AN AEROSTAT LOFTED SONIC ANEMOMETER

    Science.gov (United States)

    An aerostat-lofted, sonic anemometer was used to determine instantaneous 3 dimensional wind velocities at altitudes relevant to fire plume dispersion modeling. An integrated GPS, inertial measurement unit, and attitude heading and reference system corrected the wind data for th...

  3. Lower limit for the velocity fluctuation level in wind tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Michel, U.; Froebel, E.

    1988-01-01

    The origins of the velocity fluctuations in the test section of a wind tunnel are discussed. Vorticity (turbulence convected from upstream) can be reduced by a careful design of the settling chamber to almost any desired level. The amplitudes of pressure waves propagating round the tunnel circuit can also be reduced considerably. The lowest level of the velocity fluctuations in wind tunnels are determined by those pressure fields that are created on the outer boundaries of the test section. These boundaries are the free shear layers in the case of free jet facilities and the turbulent boundary layers in the case of closed wall test sections. The lower limit for the rms velocity level is achieved in many open jet wind tunnels (typically 0.15%). The corresponding limit for low speed tunnels with closed test sections is smaller by a factor of at least twenty but not yet known.

  4. Constraints on galactic wind models

    Science.gov (United States)

    Meiksin, Avery

    2016-09-01

    Observational implications are derived for two standard models of supernovae-driven galactic winds: a freely expanding steady-state wind and a wind sourced by a self-similarly expanding superbubble including thermal heat conduction. It is shown that, for the steady-state wind, matching the measured correlation between the soft X-ray luminosity and star formation rate of starburst galaxies is equivalent to producing a scaled wind mass-loading factor relative to the star formation rate of 0.5-3, in agreement with the amount inferred from metal absorption line measurements. The match requires the asymptotic wind velocity v∞ to scale with the star formation rate dot{M}_{ast } (in M⊙ yr-1) approximately as v_∞ ≃ (700-1000) {{km s^{-1}}} {dot{M}_{ast }}^{1/6}. The implied mass injection rate is close to the amount naturally provided by thermal evaporation from the wall of a superbubble in a galactic disc, suggesting that thermal evaporation may be a major source of mass loading. The predicted mass-loading factors from thermal evaporation within the galactic disc alone, however, are somewhat smaller, 0.2-2, so that a further contribution from cloud ablation or evaporation within the wind may be required. Both models may account for the 1.4 GHz luminosity of unresolved radio sources within starburst galaxies for plausible parameters describing the distribution of relativistic electrons. Further observational tests to distinguish the models are suggested.

  5. Stellar Winds on the Main-Sequence I: Wind Model

    CERN Document Server

    Johnstone, C P; Lüftinger, T; Toth, G; Brott, I

    2015-01-01

    Aims: We develop a method for estimating the properties of stellar winds for low-mass main-sequence stars between masses of 0.4 and 1.1 solar masses at a range of distances from the star. Methods: We use 1D thermal pressure driven hydrodynamic wind models run using the Versatile Advection Code. Using in situ measurements of the solar wind, we produce models for the slow and fast components of the solar wind. We consider two radically different methods for scaling the base temperature of the wind to other stars: in Model A, we assume that wind temperatures are fundamentally linked to coronal temperatures, and in Model B, we assume that the sound speed at the base of the wind is a fixed fraction of the escape velocity. In Paper II of this series, we use observationally constrained rotational evolution models to derive wind mass loss rates. Results: Our model for the solar wind provides an excellent description of the real solar wind far from the solar surface, but is unrealistic within the solar corona. We run ...

  6. Wind power prediction models

    Science.gov (United States)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  7. Mechanism of proton anisotropic velocity distribution in the solar wind

    Institute of Scientific and Technical Information of China (English)

    AO; Xianzhi(敖先志); SHEN; Ji(沈迹); TU; Chuanyi(涂传诒)

    2003-01-01

    Although it has been long that spacecraft observed the anisotropy of velocity protons in the solar wind, there is still not a reasonable explanation. In this paper we try to give an explanation from the diffusion plateau of protoncyclotron resonance predicted by the quasi-linear theory for the resonance between the protons and the parallel propagating waves. We consider the effect of dispersion relation on diffusion plateau and notice that the diffusion plateau we have got by using cold plasma dispersion relation accords with the density contours in the velocity phase space detected at 0.3 AU in fast solar wind. For explaining proton distributions obtained in the fast solar wind from 0.7 AU to 1 AU hot plasma dispersion relation should be considered. We also give a theoretical relation of proton thermal anisotropy A and plasma parameter β.

  8. The Relevance of Surface Roughness Data Qualities in Diagnostic Modeling of Wind Velocity in Complex Terrain: A Case Study from the Śnieżnik Massif (SW Poland)

    Science.gov (United States)

    Jancewicz, Kacper; Szymanowski, Mariusz

    2017-02-01

    Numerical modeling of wind velocity above complex terrain has become a subject of numerous contemporary studies. Regardless of the methodical approach (dynamic or diagnostic), it can be observed that information about surface roughness is indispensable to achieve realistic results. In this context, the current state of GIS and remote sensing development allows access to a number of datasets providing information about various properties of land coverage in a broad spectrum of spatial resolution. Hence, the quality of roughness information may vary depending on the properties of primary land coverage data. As a consequence, the results of the wind velocity modeling are affected by the accuracy and spatial resolution of roughness data. This paper describes further attempts to model wind velocity using the following sources of roughness information: LiDAR data (Digital Surface Model and Digital Terrain Model), database of topographical objects (BDOT10k) and both raster and vector versions of Corine Land Cover 2006 (CLC). The modeling was conducted in WindStation 4.0.2 software which is based on the computational fluid dynamics (CFD) diagnostic solver Canyon. Presented experiment concerns three episodes of relatively strong and constant synoptic forcing: 26 November 2011, 25 May 2012 and 26 May 2012. The modeling was performed in the spatial resolution of 50 and 100 m. Input anemological data were collected during field measurements while the atmosphere boundary layer parameters were derived from the meteorological stations closest to the study area. The model's performance was verified using leave-one-out cross-validation and calculation of error indices such as bias error, root mean square error and index of wind speed. Thus, it was possible to compare results of using roughness datasets of different type and resolution. The study demonstrates that the use of LiDAR-based roughness data may result in an improvement of the model's performance in 100 and 50 m resolution

  9. Prediction of extreme wind velocity at the site of the Runyang Suspension Bridge

    Institute of Scientific and Technical Information of China (English)

    Yang DENG; You-liang DING; Ai-qun LI; Guang-dong ZHOU

    2011-01-01

    This paper presents a distribution free method for predicting the extreme wind velocity from wind monitoring data at the site of the Runyang Suspension Bridge (RSB),China using the maximum entropy theory.The maximum entropy theory is a rational approach for choosing the most unbiased probability distribution from a small sample,which is consistent with available data and contains a minimum of spurious information.In this paper,the theory is used for estimating a joint probability density function considering the combined action of wind speed and direction based on statistical analysis of wind monitoring data at the site of the RSB.The joint probability distribution model is further used to estimate the extreme wind velocity at the deck level of the RSB.The results of the analysis reveal that the probability density function of the maximum entropy method achieves a result that fits well with the monitoring data.Hypothesis testing shows that the distributions of the wind velocity data collected during the past three years do not obey the Gumbel distribution.Finally,our comparison shows that the wind predictions of the maximum entropy method are higher than that of the Gumbel distribution,but much lower than the design wind speed.

  10. Effect of operating methods of wind turbine generator system on net power extraction under wind velocity fluctuations in fields

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Tetsuya; Yamaguchi, Kazuya; Hashizume, Takumi [Waseda Univ., Advanced Research Inst. for Science and Engineering, Tokyo (Japan); Outa, Eisuke [Waseda Univ., Mechanical Engineering Dept., Tokyo (Japan); Tanzawa, Yoshiaki [Nippon Inst. of Technology, Mechanical Engineering Dept., Saitama (Japan)

    1999-01-01

    The effect of how a wind turbine generator system is operated is discussed from the viewpoint of net power extraction with wind velocity fluctuation in relation to the scale and the dynamic behaviour of the system. On a wind turbine generator system consisting of a Darrieus-Savonius hybrid wind turbine, a load generator and a battery, we took up two operating methods: constant tip speed ratio operation for a stand-alone system (Scheme 1) and synchronous operation by connecting a grid (Scheme 2). With our simulation model, using the result of the net extracting power, we clarified that Scheme 1 is more effective than Scheme 2 for small-scale systems. Furthermore, in Scheme 1, the appropriate rated power output of the system under each wind condition can be confirmed. (Author)

  11. A transport-rate model of wind-blown sand

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Sand transport by wind plays an important role in environmental problems.Formulating the sand-transport rate model has been of continuing significance,because the majority of the existing models relate sand-transport rate to the wind-shear velocity.However,the wind-shear velocity readapted to blown sand is difficult to determine from the measured wind profiles when sand movement occurs,especially at high wind velocity.Detailed wind tunnel tests were carried out to reformulate the sand-transport rate model,followed by attempts to relate sand-transport rate to parameters of wind velocity,threshold shear-velocity,and grain size.Finally,we validated the model based on the data from field observations.

  12. Constraints on galactic wind models

    CERN Document Server

    Meiksin, Avery

    2016-01-01

    Observational implications are derived for two standard models of supernovae-driven galactic winds: a freely expanding steady-state wind and a wind sourced by a self-similarly expanding superbubble including thermal heat conduction. It is shown that, for the steady-state wind, matching the measured correlation between the soft x-ray luminosity and star formation rate of starburst galaxies is equivalent to producing a scaled wind mass-loading factor relative to the star-formation rate of 0.5 - 3, in agreement with the amount inferred from metal absorption line measurements. The match requires the asymptotic wind velocity v_inf to scale with the star formation rate SFR (in solar masses per year) approximately as v_inf ~ (700 - 1000) km/s SFR^{1/6}. The corresponding mass injection rate is close to the amount naturally provided by thermal evaporation from the wall of a superbubble in a galactic disc, suggesting thermal evaporation may be a major source of mass-loading. The predicted mass-loading factors from the...

  13. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    DEFF Research Database (Denmark)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben Krogh;

    2016-01-01

    , installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean...... deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models....

  14. Type IV Wind Turbine Model

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Margaris, Ioannis D.

    project to be incorporated in the wind power plant level. This document describes the Type 4 wind turbine simulation model, implemented in the EaseWind project. The implemented wind turbine model is one of the initial necessary steps toward integrating new control services in the wind power plant level....... In the project, this wind turbine model will be further incorporated in a wind power plant model together with the implementation in the wind power control level of the new control functionalities (inertial response, synchronising power and power system damping). For this purpose an aggregate wind power plant...... (WPP) will be considered. The aggregate WPP model, which will be based on the upscaling of the individual wind turbine model on the electrical part, will make use of an equivalent wind speed. The implemented model follows the basic structure of the generic standard Type 4 wind turbine model proposed...

  15. Wind Shear Target Echo Modeling and Simulation

    Directory of Open Access Journals (Sweden)

    Xiaoyang Liu

    2015-01-01

    Full Text Available Wind shear is a dangerous atmospheric phenomenon in aviation. Wind shear is defined as a sudden change of speed or direction of the wind. In order to analyze the influence of wind shear on the efficiency of the airplane, this paper proposes a mathematical model of point target rain echo and weather target signal echo based on Doppler effect. The wind field model is developed in this paper, and the antenna model is also studied by using Bessel function. The spectrum distribution of symmetric and asymmetric wind fields is researched by using the mathematical model proposed in this paper. The simulation results are in accordance with radial velocity component, and the simulation results also confirm the correctness of the established model of antenna.

  16. Velocity and abundance of silicon ions in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Bochsler, P.

    1989-03-01

    Using data from the ISEE-3 ion composition instrument (ICI), velocities and abundances of silicon ions in the solar wind have been determined. The period of investigation covers the maximum of solar cycle 21, beginning with launch of ISEE-3 in August 1978 and ending at the removal of the spacecraft from the Lagrangian Point L1 in June 1982. The results generally confirm previous ICI observations of iron, the other heavy element with a low first ionization potential measured with the ICI. Silicon ions (and other ions in the same M/Q range) tend to stream at the bulk velocity of /sup 4/He/sup + +/ in low-speed solar wind. At high-speed solar wind. Si lags by up to or about 20 km/s after /sup 4/He/sup + +/. By means of a minimum variance estimation technique, fluxes (and densities) of silicon in the solar wind have been obtained free of bias. An average Si/O flux ratio of 0.19 +- 0.04 is derived. This value is larger by a factor of 3 or 4 than the Si/O abundance ratio at the solar surface. copyright American Geophysical Union 1989

  17. Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator

    Science.gov (United States)

    Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki

    Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.

  18. Wind Farms: Modeling and Control

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam

    2012-01-01

    provides the state space form of the dynamic wind farm model. The model provides an approximation of the behavior of the flow in wind farms, and obtains the wind speed in the vicinity of each wind turbine. The control algorithms in this work are mostly on the basis of the developed wind farm model......The primary purpose of this work is to develop control algorithms for wind farms to optimize the power production and augment the lifetime of wind turbines in wind farms. In this regard, a dynamical model for wind farms was required to be the basis of the controller design. In the first stage......, a dynamical model has been developed for the wind flow in wind farms. The model is based on the spatial discretization of the linearized Navier-Stokes equation combined with the vortex cylinder theory. The spatial discretization of the model is performed using the Finite Difference Method (FDM), which...

  19. Mean velocity, turbulence intensity and turbulence convection velocity measurements for a convergent nozzle in a free jet wind tunnel

    Science.gov (United States)

    Mccolgan, C. J.; Larson, R. S.

    1978-01-01

    The effect of light on the mean flow and turbulence properties of a 0.056 m circular jet were determined in a free jet wind tunnel. The nozzle exit velocity was 122 m/sec, and the wind tunnel velocity was set at 0, 12, 37, and 61 m/sec. Measurements of flow properties including mean velocity, turbulence intensity and spectra, and eddy convection velocity were carried out using two linearized hot wire anemometers. Normalization factors were determined for the mean velocity and turbulence convection velocity.

  20. Spatial modelling of wind speed around windbreaks

    NARCIS (Netherlands)

    Vigiak, O.; Sterk, G.; Warren, A.; Hagen, L.J.

    2003-01-01

    This paper presents a model to integrate windbreak shelter effects into a Geographic Information System (GIS). The GIS procedure incorporates the 1999 version windbreak sub-model of the Wind Erosion Prediction System (WEPS). Windbreak shelter is modeled in terms of friction velocity reduction, which

  1. Wind velocity measurements under turbulent conditions using a sphere anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Heisselmann, Hendrik; Hoelling, Michael; Schulte, Bianca; Peinke, Joachim [Institute of Physics, University of Oldenburg (Germany)

    2008-07-01

    A well known problem of cup anemometry is the so-called overspeeding due to its momentum of inertia. As in nature turbulent flow conditions are predominant, cup anemometry leads to a wrong estimation of wind speeds. While cup anemometers do not provide the necessary time resolution to measure high frequency wind fluctuations, hot-wire anemometers are easily damaged under rough weather conditions. Therefore a robust, fast responding sphere anemometer was developed. The anemometer uses the thrust generated by the drag force on a sphere mounted on a flexible rod to detect wind velocities in two dimensions. The deflection of the rod is proportional to the drag force and can be measured either by means of a light pointer or by use of strain gauges. The two different measurement techniques were compared. The dynamic behaviour of the thrust anemometer was studied under laboratory conditions using a wind gust generator. The characteristics of different sphere-types and different rod materials were evaluated in order to optimize the setup. Results of open air measurements with hot-wire anemometer, sonic anemometer and sphere anemometer were compared by statistical methods.

  2. Characteristics of wind velocity and temperature change near an escarpment-shaped road embankment.

    Science.gov (United States)

    Kim, Young-Moon; You, Ki-Pyo; You, Jang-Youl

    2014-01-01

    Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

  3. Characteristics of Wind Velocity and Temperature Change Near an Escarpment-Shaped Road Embankment

    Directory of Open Access Journals (Sweden)

    Young-Moon Kim

    2014-01-01

    Full Text Available Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

  4. Solar wind collimation of the Jupiter high velocity dust streams

    Science.gov (United States)

    Flandes, A.; Krueger, H.

    2006-12-01

    The dust bursts discovered by the Ulysses dust sensor when approaching Jupiter in 1992 were later confirmed as collimated streams of high velocity (~200 km/s) charged (~5V) dust grains escaping from Jupiter and dominated by the interplanetary Magnetic field (IMF). With Cassini, a similar phenomenon was observed in Saturn. It was demonstrated that the Jovian dust streams are closely related to the solar wind compressed regions, either Corotating interaction regions (CIRs) or Coronal mass ejections (CMEs) ¨Cto a minor extent-. Actually the dust streams seem ultimately to be generated by such events. This can be explained considering that dust grains are accelerated as they gain substantial energy while compressed at the forward and reverse shocks that bound or precede these solar wind regions.

  5. The Wind Profile in the Coastal Boundary Layer: Wind Lidar Measurements and Numerical Modelling

    DEFF Research Database (Denmark)

    Floors, Rogier; Vincent, Claire Louise; Gryning, Sven-Erik;

    2013-01-01

    . By replacing the roughness value for the land-use category in the model with a more representative mesoscale roughness, the observed bias in friction velocity was reduced. A higher-order PBL scheme simulated the wind profile from the west with a lower wind-speed bias at the top of the PBL. For easterly winds...

  6. Observations of the velocity distribution of solar wind ions

    Science.gov (United States)

    Ogilvie, K. W.; Bochsler, P.; Geiss, J.; Coplan, M. A.

    1980-01-01

    Measurements made by the Isee 3 ion composition experiment have been used to determine the kinetic temperatures of 3He(++), 4He(++), 16O(6+), and 16O(7+) in the solar wind. It is found that these temperatures generally obey the relation that T(i)/m(i) equals const, but fluctuations, some of which are caused by dynamical effects in the flow, are observed. The temperature of oxygen sometimes rises above 10 K, which is very strong evidence for heating outside the collisional region of the corona. The tendency toward equal temperatures per nucleon occurs everywhere where collisions are unimportant, suggesting that the temperatures are set up close to the sun rather than elsewhere in the interplanetary medium. The velocity distribution function of helium is observed to be non-Maxwellian, with a pronounced high velocity tail.

  7. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    We analyse high-frequency wind velocity measurements from two test stations over a period of several years and at heights ranging from 60 to 200 m, with the objective to validate wind shear predictions as used in load simulations for wind turbine design. A validated wind shear model is thereby...... is most pronounced on the blade flap loads. It is further shown that under moderate wind turbulence, the wind shear exponents may be over-specified in the design standards, and a reduction of wind shear exponent based on the present measurements can contribute to reduced fatigue damage equivalent loads...

  8. A Computational Model for Velocity Separation in Shallow Sea

    Institute of Scientific and Technical Information of China (English)

    宋志尧; 严以新; 沈红艳; 孔俊

    2002-01-01

    Based on the hydrodynamical feature and the theoretical velocity profiles of tidal flow and wind-induced flow in shal-low sea, a computational model is established for the first time, which can separate observed velocity into tidal velocityand wind-induced velocity by use of the least square method. With the model, not only the surface velocities of tidal flowand wind-induced flow are obtained, but also the bed roughness height is determined and the wind velocity above the wa-ter surface is estimated. For verification of the model, the observed velocity in the Yellow River Estuary and the laborato-ry test is separated, then it is applied to the Yangtze River Estuary. All the results are satisfactory. The research resultsshow that the model is simple in method, feasible in process and reasonable in result. The model is a valid approach toanalysis and computation of field data, and can be applied to separate the observed velocity in shallow sea; at the sametime, reasonable boundary conditions of the surface and bottom can be obtained for two- and three-dimensional numericalsimulation.

  9. Vertical Profiles of the 3-D Wind Velocity Retrieved from Multiple Wind Lidars Performing Triple Range-Height-Indicator Scans

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; Brewer, W. Alan; Choukulkar, Aditya; Delgado, Ruben; Lundquist, Julie K.; Shaw, William J.; Wilczak, James M.; Wolfe, Daniel

    2017-02-06

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved with good accuracy. However, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.

  10. Stellar wind models of subluminous hot stars

    CERN Document Server

    Krticka, J; Krtickova, I

    2016-01-01

    Mass-loss rate is one of the most important stellar parameters. We aim to provide mass-loss rates as a function of subdwarf parameters and to apply the formula for individual subdwarfs, to predict the wind terminal velocities, to estimate the influence of the magnetic field and X-ray ionization on the stellar wind, and to study the interaction of subdwarf wind with mass loss from Be and cool companions. We used our kinetic equilibrium (NLTE) wind models with the radiative force determined from the radiative transfer equation in the comoving frame (CMF) to predict the wind structure of subluminous hot stars. Our models solve stationary hydrodynamical equations, that is the equation of continuity, equation of motion, and energy equation and predict basic wind parameters. We predicted the wind mass-loss rate as a function of stellar parameters, namely the stellar luminosity, effective temperature, and metallicity. The derived wind parameters (mass-loss rates and terminal velocities) agree with the values derived...

  11. The efficiency of lidar measurements of wind velocity by a correlation lidar

    Energy Technology Data Exchange (ETDEWEB)

    Astafurov, V.G.; Ignatova, E.Yu.; Matvienko, G.G. (Institute of Atmospheric Optics, Tomsk (Russian Federation))

    1992-05-01

    A suboptimal estimate of the wind velocity based on the spectral processing of lidar signals is constructed. The error of this estimate is calculated and its calculations are performed for different atmospheric conditions and instrumental parameters for the experimentally confirmed models of the correlation functions of lidar signals. Some recommendations are given on the choice of parameters of a two-path method of sounding with an account of evolution time of the aerosol inhomogeneities. 10 refs., 4 figs., 1 tab.

  12. Semiconductor Laser Lidar Wind Velocity Sensor for Turbine Control

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian

    2014-01-01

    A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines .......A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines ....

  13. The Simulation and Characteristic Study of Wind Velocity for Long-Span Structures

    Institute of Scientific and Technical Information of China (English)

    周岱; 马骏; 吴筑海; 陈思

    2004-01-01

    The new technique that combines wave superposition with the fast Fourier transformation was introduced to simulate the nodal three-dimension relevant wind velocity time series of spatial structures. The wind velocity field where the spatial structure is located is assumed to be homogeneous. The wind's power spectral density is divided into frequency spectral function and coherency function and the spectral functions are transformed as the superposition coefficients. The wavelet analysis has excellent localized characters in both time and frequency domains, which not only makes wind velocity time series analysis more accurate, but also can focus on any detail of the objective signal series. The discrete wavelet transformation was adopted to decompose and reconstruct the discrete wind velocity time series. The stability of wavelet analysis for the wind velocity time series was also proved.

  14. Influence of Rigid Body Motions on Rotor Induced Velocities and Aerodynamic Loads of a Floating Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    de Vaal, Jacobus B.; Hansen, Martin Otto Laver; Moan, Torgeir

    2014-01-01

    This paper discusses the influence of rigid body motions on rotor induced velocities and aerodynamic loads of a floating horizontal axis wind turbine. Analyses are performed with a simplified free wake vortex model specifically aimed at capturing the unsteady and non-uniform inflow typically...... experienced by a floating wind turbine. After discussing the simplified model in detail, comparisons are made to a state of the art free wake vortex code, using test cases with prescribed platform motion. It is found that the simplified model compares favourably with a more advanced numerical model......, and captures the essential influences of rigid body motions on the rotor loads, induced velocities and wake influence....

  15. Simultaneous PIV and PTV measurements of wind and sand particle velocities

    Science.gov (United States)

    Zhang, Wei; Wang, Yuan; Lee, Sang Joon

    2008-08-01

    Wind-blown sand is a typical example of two-phase particle-laden flows. Owing to lack of simultaneous measured data of the wind and wind-blown sand, interactions between them have not yet been fully understood. In this study, natural sand of 100-125 μm taken from Taklimakan Desert was tested at the freestream wind speed of 8.3 m/s in an atmospheric boundary layer wind tunnel. The captured flow images containing both saltating sand and small wind tracer particles, were separated by using a digital phase mask technique. The 2-D PIV (particle imaging velocimetry) and PTV (particle tracking velocimetry) techniques were employed to extract simultaneously the wind velocity field and the velocity field of dispersed sand particles, respectively. Comparison of the mean streamwise wind velocity profile and the turbulence statistics with and without sand transportation reveal a significant influence of sand movement on the wind field, especially in the dense saltating sand layer ( y/ δ < 0.1). The ensemble-averaged streamwise velocity profile of sand particles was also evaluated to investigate the velocity lag between the sand and the wind. This study would be helpful in improving the understanding of interactions between the wind and the wind-blown sand.

  16. High altitude wind velocity at Sierra Negra and San Pedro M\\'artir

    CERN Document Server

    Carrasco, E; Carramiñana, A; Carrasco, Esperanza; Avila, Remy; Carrami\\~nana, Alberto

    2004-01-01

    It has been proposed that the global circulation of the atmosphere winds at 200 mb can be used as a criteria to establish the suitability of a site for the development of adaptive optics techniques such as slow wavefront corrugation correction. By using the NOAA NCEP/NCAR Reanalysis data base we analyze the monthly average wind velocity at 200 mb for a 16 year period, for two sites in Mexico: Sierra Negra and San Pedro M\\'artir. We compare the results with those obtained for Mauna Kea, Paranal and La Silla, with Maidanak in Uzbekistan, and with Gamsberg in Namibia. We show that for all the sites under study there is a yearly wind speed modulation and we model that modulation. Our results show that Sierra Negra and San Pedro M\\'artir are comparable with the best observatory sites as Mauna Kea and are amongst the most advantageous sites to apply adaptive optics techniques.

  17. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    Science.gov (United States)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben; José Trujillo, Juan

    2016-09-01

    The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine, installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean values of the three wind components reveal detailed information regarding the wake properties while propagating downwind over flat terrain. Furthermore, the wake centre is tracked from the measurements and its meander is investigated as function of yaw misalignment of the turbine. The centre-line wake deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models.

  18. Noise reduction in LOS wind velocity of Doppler lidar using discrete wavelet analysis

    Science.gov (United States)

    Wu, Songhua; Liu, Zhishen; Sun, Dapeng

    2003-12-01

    The line of sight (LOS) wind velocity can be determined from the incoherent Doppler lidar backscattering signals. Noise and interference in the measurement greatly degrade the inversion accuracy. In this paper, we apply the discrete wavelet denoising method by using biorthogonal wavelets and adopt a distancedependent thresholds algorithm to improve the accuracy of wind velocity measurement by incoherent Doppler lidar. The noisy simulation data are processed and compared with the true LOS wind velocity. The results are compared by the evaluation of both the standard deviation and correlation coefficient.The results suggest that wavelet denoising with distance-dependent thresholds can considerably reduce the noise and interfering turbulence for wind lidar measurement.

  19. A hybrid wind farm parameterization for mesoscale and climate models

    Science.gov (United States)

    Pan, Y.; Archer, C. L.

    2016-12-01

    To better understand the potential impacts of wind farms on weather and climate at the local to regional scale, a new hybrid wind farm parameterization is proposed here for mesoscale models, such as the Weather Research and Forecasting Model (WRF), or climate models, such as the Community Atmosphere Model (CAM). All previous wind farm parameterizations treat all the wind turbines in the same grid cell as identical (i.e., they all share the same upstream wind velocity) and ignore the effect of wind direction. By contrast, the new hybrid model considers each individual wind turbine, based on its position in the layout and on wind direction. The new parameterization is developed starting from large eddy simulations (LES) of existing wind farms, in which the local flow around each wind turbine is directly simulated at high spatial ( 3.5 m) and temporal ( 0.1 s) resolutions and the effects of subgrid-scale processes are modeled. Based on analytic and statistical relationships between the LES results and several geometric properties of the wind farm layout (such as blockage ratio and blocking distance), the new hybrid parameterization predicts the local upstream wind speed of each individual wind turbine in the same grid cell, and thus successfully account for the effects of layout and wind direction with little computational cost. With the newly predicted upstream velocity, the turbine-induced forces and added turbulence kinetic energy (TKE) in the atmosphere are derived analytically. The wind speed, wind speed deficit, and TKE profiles and power production obtained with the hybrid parameterization for the test case (the 48-turbine Lillgrund wind farm in Sweden) are in better agreement with the LES results than previous parameterizations. Future work includes the insertion of the hybrid parameterization into the WRF code to assess impacts on near-surface properties, such as temperature and heat and momentum fluxes, in the region surrounding the wind farm.

  20. Pulsar Wind Nebulae Modeling

    CERN Document Server

    Bucciantini, N

    2013-01-01

    Pulsar Wind Nebulae (PWNe) are ideal astrophysical laboratories where high energy relativistic phenomena can be investigated. They are close, well resolved in our observations, and the knowledge derived in their study has a strong impact in many other fields, from AGNs to GRBs. Yet there are still unresolved issues, that prevent us from a full clear understanding of these objects. The lucky combination of high resolution X-ray imaging and numerical codes to handle the outflow and dynamical properties of relativistic MHD, has opened a new avenue of investigation that has lead to interesting progresses in the last years. Despite all of this, we do not understand yet how particles are accelerated, and the functioning of the pulsar wind and pulsar magnetosphere, that power PWNe. I will review what is now commonly known as the MHD paradigm, and in particular I will focus on various approaches that have been and are currently used to model these systems. For each I will highlight its advantages, limitations, and de...

  1. Survey of Uniformity of Velocity Profile in Wind Tunnel by Using Hot Wire Annometer Systems

    Directory of Open Access Journals (Sweden)

    S.N. Ch. Dattu. V

    2014-03-01

    Full Text Available The purpose of this research work is to investigate experimentally and computationally the uniformity of velocity profile in wind tunnel. A wind tunnel is an instrument used to examine the stream lines and forces that are induced as the fluid flows past a fully submerged body. The uni-insta’s wind tunnel (300 mm*300 mm has been designed to give a large working section for the purpose of being able to layout substantial site models. The tunnel has a built in boundary layer simulation system that allows good simulation of the atmospheric velocity gradients. The tunnel is built around a sectionalized wooden frame work incorporating exterior grade plywood panels in the settling length and working section, clad in laminate on the side elevation for ease of maintenance. A bell mount entry incorporated is followed by a smooth settling length chamber comprising of well graded honey comb network fine mesh. The side panels of the working section are transparent acrylic cover, to gives a large viewing area .Additional matt back side panels gives photographic construct to smoke trails. The top panel of the working section is removable in order to fix the models.

  2. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distribu......Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint...... quite well in terms of the coefficient of determination R-2. Then, the best of these joint distributions is used in the layout optimization of the Horns Rev 1 wind farm and the choice of bin sizes for wind speed and wind direction is also investigated. It is found that the choice of bin size for wind...... direction is especially critical for layout optimization and the recommended choice of bin sizes for wind speed and wind direction is finally presented....

  3. A comparative analysis of two wind velocity retrieval techniques by using a single Doppler radar

    Directory of Open Access Journals (Sweden)

    H.-C. Lim

    2009-05-01

    Full Text Available This study compares the theoretical basis of the two wind velocity retrieval methods, Velocity Azimuth Display (VAD and Velocity Area Display (VARD by using data obtained by a single Doppler radar. Two pre-assumed shapes of the wind velocity distribution with altitude are considered, uniform and parabolic. The former presents an approximation of the non-sheared or low-sheared wind flow in the upper troposphere, while the latter is a simplified representation of the Atmospheric Boundary Layer (ABL in lower troposphere or high-sheared wind flow at the edges of the tropospheric jet streams. Both techniques for the wind velocity retrieval considered in this study are reformulated in order to get more precise information on the wind velocity components. An algorithm is proposed to decrease the uncertainty in retrieving by evaluating the coefficients of the polynomial equation and applying a transfer function with respect to the angle formed between the wind flow direction and direction of radar beam. It is concluded that, provided the formulated transformation functions are used, the application of the VAD and VARD techniques to the single-Doppler data may be an invaluable tool for solving various climate and wind engineering problems.

  4. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... the actions should be made and the type of actions requires knowledge on the accumulated damage or degradation state of the wind turbine components. For offshore wind turbines, the action times could be extended due to weather restrictions and result in damage or degradation increase of the remaining...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...

  5. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    Directory of Open Access Journals (Sweden)

    Ju Feng

    2015-04-01

    Full Text Available Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data at Horns Rev and three different joint distributions are obtained, which all fit the measurement data quite well in terms of the coefficient of determination . Then, the best of these joint distributions is used in the layout optimization of the Horns Rev 1 wind farm and the choice of bin sizes for wind speed and wind direction is also investigated. It is found that the choice of bin size for wind direction is especially critical for layout optimization and the recommended choice of bin sizes for wind speed and wind direction is finally presented.

  6. Velocity Data in a Fully Developed Wind Turbine Array Boundary Layer

    Science.gov (United States)

    Turner, John; Wosnik, Martin

    2016-11-01

    Results are reported from an experimental study of an array of porous disks simulating offshore wind turbines. The disks mimic power extraction of similarly scaled wind turbines via drag matching, and the array consists of 19x5 disks of 0.25 m diameter. The study was conducted in the UNH Flow Physics Facility (FPF), which has test section dimensions of 6.0 m wide, 2.7 m high and 72.0 m long. The FPF can achieve a boundary layer height on the order of 1 m at the entrance of the wind turbine array which puts the model turbines in the bottom third of the boundary layer, which is typical of field application. Careful consideration was given to an expanded uncertainty analysis, to determine possible measurements in this type of flow. For a given configuration (spacing, initial conditions, etc.), the velocity levels out and the wind farm approaches fully developed behavior, even within the maintained growth of the simulated atmospheric boundary layer. Benchmark pitot tube data was acquired in vertical profiles progressing streamwise behind the centered column at every row in the array.

  7. A VERSATILE FAMILY OF GALACTIC WIND MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, Chad; Zweibel, Ellen G. [Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706 (United States); D’Onghia, Elena, E-mail: bustard@wisc.edu [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States)

    2016-03-01

    We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass, and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses, we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass loading and high energy loading are the most efficient. Our model also produces low-temperature, high-velocity winds that could explain the prevalence of low-temperature material in observed outflows. Finally, we show that our model, unlike the well-known Chevalier and Clegg model, can reproduce the observed linear relationship between wind X-ray luminosity and star formation rate (SFR) over a large range of SFR from 1–1000 M{sub ⊙} yr{sup −1} assuming the wind mass-loading factor is higher for low-mass, and hence, low-SFR galaxies. We also constrain the allowed mass-loading factors that can fit the observed X-ray luminosity versus SFR trend, further suggesting an inverse relationship between mass loading and SFR as explored in advanced numerical simulations.

  8. Wind Tunnel Experiments with Active Control of Bridge Section Model

    DEFF Research Database (Denmark)

    Hansen, Henriette I.; Thoft-Christensen, Palle

    the flutter wind velocity for future ultra-long span suspension bridges. The purpose of the wind tunnel experiments is to investigate the principle to use this active flap control system. The bridge section model used in the experiments is therefore not a model of a specific bridge but it is realistic......This paper describes results of wind tunnel experiments with a bridge section model where movable flaps are integrated in the bridge girder so each flap is the streamlined part of the edge of the girder. This active control flap system is patented by COWIconsult and may be used to increase...... compared with a real bridge. Five flap configurations are investigated during the wind tunnel experiments and depending on the actual flap configuration it is possible to decrease or increase the flutter wind velocity for the model....

  9. Pulsatory characteristics of wind velocity in sand flow over typical underlying surfaces

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pulsatory characteristics of wind velocity in sand flow over Gobi and mobile sand surface have been investigated experimentally in the wind tunnel. The primary goal of this paper is to reveal the relation- ship between pulsatory characteristics of instantaneous wind speed in sand flow and the motion state of sand grains. For a given underlying surface, pulsation of wind velocities in sand flow on different heights has a good correlation. As the space distance among different heights increases, fluctuation of instantaneous wind speed presents a decreasing trend and its amplitude is closely related to the mo- tion state of sand grains and their transport. Pulsatory intensity increases with the indicated wind speed, but its relative value does not depend on it, only agrees with height.

  10. Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae.

    Science.gov (United States)

    Fuller, Sawyer Buckminster; Straw, Andrew D; Peek, Martin Y; Murray, Richard M; Dickinson, Michael H

    2014-04-01

    Flies and other insects use vision to regulate their groundspeed in flight, enabling them to fly in varying wind conditions. Compared with mechanosensory modalities, however, vision requires a long processing delay (~100 ms) that might introduce instability if operated at high gain. Flies also sense air motion with their antennae, but how this is used in flight control is unknown. We manipulated the antennal function of fruit flies by ablating their aristae, forcing them to rely on vision alone to regulate groundspeed. Arista-ablated flies in flight exhibited significantly greater groundspeed variability than intact flies. We then subjected them to a series of controlled impulsive wind gusts delivered by an air piston and experimentally manipulated antennae and visual feedback. The results show that an antenna-mediated response alters wing motion to cause flies to accelerate in the same direction as the gust. This response opposes flying into a headwind, but flies regularly fly upwind. To resolve this discrepancy, we obtained a dynamic model of the fly's velocity regulator by fitting parameters of candidate models to our experimental data. The model suggests that the groundspeed variability of arista-ablated flies is the result of unstable feedback oscillations caused by the delay and high gain of visual feedback. The antenna response drives active damping with a shorter delay (~20 ms) to stabilize this regulator, in exchange for increasing the effect of rapid wind disturbances. This provides insight into flies' multimodal sensory feedback architecture and constitutes a previously unknown role for the antennae.

  11. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  12. Design of a Non-scanning Lidar for Wind Velocity and Direction Measurement

    Science.gov (United States)

    Liu, Bo; Peng, Zhangxian

    2016-06-01

    A Doppler lidar system for wind velocity and direction measurement is presented. The lidar use a wide field of view (FOV) objective lens as an optical antenna for both beam transmitting and signal receiving. By four fibers coupled on different position on the focal plane, the lidar can implement wind vector measurement without any scanning movement.

  13. Design of a Non-scanning Lidar for Wind Velocity and Direction Measurement

    Directory of Open Access Journals (Sweden)

    Liu Bo

    2016-01-01

    Full Text Available A Doppler lidar system for wind velocity and direction measurement is presented. The lidar use a wide field of view (FOV objective lens as an optical antenna for both beam transmitting and signal receiving. By four fibers coupled on different position on the focal plane, the lidar can implement wind vector measurement without any scanning movement.

  14. Wind speed dynamical model in a wind farm

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Wisniewski, Rafal

    2010-01-01

    , the dynamic model for wind flow will be established. The state space variables are determined based on a fine mesh defined for the farm. The end goal of this method is to assist the development of a dynamical model of a wind farm that can be engaged for better wind farm control strategies....

  15. Wind tunnel measurements of wake structure and wind farm power for actuator disk model wind turbines in yaw

    Science.gov (United States)

    Howland, Michael; Bossuyt, Juliaan; Kang, Justin; Meyers, Johan; Meneveau, Charles

    2016-11-01

    Reducing wake losses in wind farms by deflecting the wakes through turbine yawing has been shown to be a feasible wind farm control approach. In this work, the deflection and morphology of wakes behind a wind turbine operating in yawed conditions are studied using wind tunnel experiments of a wind turbine modeled as a porous disk in a uniform inflow. First, by measuring velocity distributions at various downstream positions and comparing with prior studies, we confirm that the nonrotating wind turbine model in yaw generates realistic wake deflections. Second, we characterize the wake shape and make observations of what is termed a "curled wake," displaying significant spanwise asymmetry. Through the use of a 100 porous disk micro-wind farm, total wind farm power output is studied for a variety of yaw configurations. Strain gages on the tower of the porous disk models are used to measure the thrust force as a substitute for turbine power. The frequency response of these measurements goes up to the natural frequency of the model and allows studying the spatiotemporal characteristics of the power output under the effects of yawing. This work has been funded by the National Science Foundation (Grants CBET-113380 and IIA-1243482, the WINDINSPIRE project). JB and JM are supported by ERC (ActiveWindFarms, Grant No. 306471).

  16. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  17. A probability density function of liftoff velocities in mixed-size wind sand flux

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With the discrete element method(DEM) ,employing the diameter distribution of natural sands sampled from the Tengger Desert,a mixed-size sand bed was produced and the particle-bed collision was simulated in the mixed-size wind sand movement. In the simulation,the shear wind velocity,particle diameter,incident velocity and incident angle of the impact sand particle were given the same values as the experimental results. After the particle-bed collision,we collected all the initial velocities of rising sand particles,including the liftoff angular velocities,liftoff linear velocities and their horizontal and vertical components. By the statistical analysis on the velocity sample for each velocity component,its probability density functions were obtained,and they are the functions of the shear wind velocity. The liftoff velocities and their horizontal and vertical components are distributed as an exponential density function,while the angular velocities are distributed as a normal density function.

  18. Density, Velocity and Ionization Structure in Accretion-Disc Winds

    Science.gov (United States)

    Sonneborn, George (Technical Monitor); Long, Knox

    2004-01-01

    This was a project to exploit the unique capabilities of FUSE to monitor variations in the wind- formed spectral lines of the luminous, low-inclination, cataclysmic variables(CV) -- RW Sex. (The original proposal contained two additional objects but these were not approved.) These observations were intended to allow us to determine the relative roles of density and ionization state changes in the outflow and to search for spectroscopic signatures of stochastic small-scale structure and shocked gas. By monitoring the temporal behavior of blue-ward extended absorption lines with a wide range of ionization potentials and excitation energies, we proposed to track the changing physical conditions in the outflow. We planned to use a new Monte Carlo code to calculate the ionization structure of and radiative transfer through the CV wind. The analysis therefore was intended to establish the wind geometry, kinematics and ionization state, both in a time-averaged sense and as a function of time.

  19. Noise reduction in LOS wind velocity of Doppler lidar using discrete wavelet analysis

    Institute of Scientific and Technical Information of China (English)

    Songhua Wu(吴松华); Zhishen Liu(刘智深); Dapeng Sun(孙大鹏)

    2003-01-01

    The line of sight (LOS) wind velocity can be determined from the incoherent Doppler lidar backscattering signals. Noise and interference in the measurement greatly degrade the inversion accuracy. In this paper,we apply the discrete wavelet denoising method by using biorthogonal wavelets and adopt a distancedependent thresholds algorithm to improve the accuracy of wind velocity measurement by incoherent Doppler lidar. The noisy simulation data are processed and compared with the true LOS wind velocity.The results are compared by the evaluation of both the standard deviation and correlation coefficient.The results suggest that wavelet denoising with distance-dependent thresholds can considerably reduce the noise and interfering turbulence for wind lidar measurement.

  20. Combined vertical-velocity observations with Doppler lidar, cloud radar and wind profiler

    Directory of Open Access Journals (Sweden)

    J. Bühl

    2015-01-01

    Full Text Available Case studies of combined vertical-velocity measurements of Doppler lidar, cloud radar and wind profiler are presented. The measurements were taken at the Meteorological Observatory Lindenberg, Germany. Synergistic products are presented that are derived from the vertical-velocity measurements of the three instruments: A comprehensive classification mask of vertically moving atmospheric targets and the terminal fall velocity of water droplets and ice crystals corrected for vertical air motion. It is shown that the measurements of the Doppler lidar can extent the view of the cloud radar and the wind profiler, especially when observing clouds.

  1. Fourier Simulation of a Non-Isotropic Wind Field Model

    DEFF Research Database (Denmark)

    Mann, J.; Krenk, S.

    Realistic modelling of three dimensional wind fields has become important in calculation of dynamic loads on same spatially extended structures, such as large bridges, towers and wind turbines. For some structures the along wind component of the of the turbulent flow is important while for others...... the vertical velocity fluctuations give rise to loads. There may even be structures where combinations of velocity fluctuations in different direction are of importance. Most methods that have been developed to simulate the turbulent wind field are based on one-point (cross-)spectra and two-point cross......-spectra. In this paper a method is described which builds on a recently developed model of a spectral tensor for atmospheric surface layer turbulence at high wind speeds. Although the tensor does not in principle contain more information than the cross-spectra, it leads to a more natural and direct representation...

  2. Simultaneous measurements of air-sea gas transfer velocity and near surface turbulence at low to moderate winds (Invited)

    Science.gov (United States)

    Wang, B.; Liao, Q.; Fillingham, J. H.; Bootsma, H. A.

    2013-12-01

    Parameterization of air-sea gas transfer velocity was routinely made with wind speed. Near surface turbulent dissipation rate has been shown to have better correlation with the gas transfer velocity in a variety of aquatic environments (i.e., the small eddy model) while wind speed is low to moderate. Wind speed model may underestimate gas transfer velocity at low to moderate winds when the near surface turbulence is produced by other environmental forcing. We performed a series of field experiments to measure the CO2 transfer velocity, and the statistics of turbulence immediately below the air-water interface using a novel floating PIV and chamber system. The small eddy model was evaluated and the model coefficient was found to be a non-constant, and it varies with the local turbulent level (figure 1). Measure results also suggested an appropriate scaling of the vertical dissipation profile immediately below the interface under non-breaking conditions, which can be parameterized by the wind shear, wave height and wave age (figure 2). Figure 1. Relation between the coefficient of the small eddy model and dissipation rate. The data also include Chu & Jirka (2003) and Vachon et al. (2010). The solid regression line: α = 0.188log(ɛ)+1.158 Figure 2. Non-dimensional dissipation profiles. Symbols: measured data with the floating PIV. Solid line: regression of measured data with a -0.79 decaying rate. Dash line with -2 slope: Terray et al. (1996) relation. Dash line with two layer structure: Siddiqui & Loewen (2007) relation.

  3. Uncertainties in wind speed dependent CO2 transfer velocities due to airflow distortion at anemometer sites on ships

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2010-06-01

    Full Text Available Data from platforms, research vessels and merchant ships are used to estimate ocean CO2 uptake via parameterisations of the gas transfer velocity (k and measurements of the difference between the partial pressures of CO2 in the ocean (pCO2 sw and atmosphere (pCO2 atm and of wind speed. Gas transfer velocities estimated using wind speed dependent parameterisations may be in error due to air flow distortion by the ship's hull and superstructure introducing biases into the measured wind speed. The effect of airflow distortion on estimates of the transfer velocity was examined by modelling the airflow around the three-dimensional geometries of the research vessels Hakuho Maru and Mirai, using the Large Eddy Simulation code GERRIS. For airflows within ±45° of the bow the maximum bias was +16%. For wind speed of 10 m s−1 to 15 m s−1, a +16% bias in wind speed would cause an overestimate in the calculated value of k of 30% to 50%, depending on which k parameterisation is used. This is due to the propagation of errors when using quadratic or cubic parameterisations. Recommendations for suitable anemometer locations on research vessels are given. The errors in transfer velocity may be much larger for typical merchant ships, as the anemometers are generally not as well-exposed as those on research vessels. Flow distortion may also introduce biases in the wind speed dependent k parameterisations themselves, since these are obtained by relating measurements of the CO2 flux to measurements of the wind speed and the CO2 concentration difference. To investigate this, flow distortion effects were estimated for three different platforms from which wind speed dependent parameterisations are published. The estimates ranged from −4% to +14% and showed that flow distortion may have a significant impact on wind speed dependent parameterisations. However, the wind biases are not large enough to explain the differences at high wind speeds in parameterisations

  4. Electron Velocity Distribution Function in Magnetic Clouds in the Solar Wind

    Science.gov (United States)

    Nieves-Chinchil, Teresa; Vinas, Adolfo F.; Bale, Stuart D.

    2006-01-01

    We present a study of the kinetic properties of the electron velocity distribution functions within magnetic clouds, since they are the dominant thermal component. The study is based on high time resolution data from the GSFC WIND/SWE electron spectrometer and the Berkeley 3DP electron plasma instruments. Recent studies on magnetic clouds have shown observational evidence of anti-correlation between the total electron density and electron temperature, which suggest a polytrope law P(sub e) = alpha(Nu(sub e) (sup gamma)) for electrons with the constant gamma approximates 0.5 non-Maxwellian electron distributions (i.e. non-thermal) within magnetic clouds. These works suggested that the non-thermal electrons can contribute as much as 50% of the total electron pressure within magnetic clouds. We have revisited some of the magnetic cloud events previously studied and attempted to quantify the nature of the non-thermal electrons by modeling the electron velocity distribution function using a kappa distribution function to characterize the kinetic non-thermal effects. If non-thermal tail effects are the source for the anti-correlation between the moment electron temperature and density and if the kappa distribution is a reasonable representative model of non-thermal effects, then the electron velocity distribution within magnetic clouds should show indication for small K-values when gamma < 1.

  5. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model...... validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending,a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models...

  6. A Computational Model for Pedestrian Level Wind Environment Around Tall Buildings

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A computational model has been developed for the simulation of pedestrian level wind environment around tall buildings by coupling the numerical simulation of the full-scale site and meteorological station materials. In the first step, the hybrid/mixed finite element method is employed to solve the two dimensional Navier-Stokes equation for the flow field around tall buildings, in view of the influence of fluctuating wind, the flow field is revised with the effective wind velocity. The velocity ratio is defined in order to relate numerical wind velocity to oncoming reference wind velocity. In the second step, the frequency occurred discomfort wind velocity as a suitable criterion is calculated by use of the coupling between the numerical wind velocity and the wind velocity at the nearest meteorological station. The prediction accuracy of the wind environment simulation by use of the computation model will be discussed. Using the available wind data at the nearest meteorological station as well as the established criteria of wind discomfort, the frequency of wind discomfort can be predicted. A numerical example is given to illustrate the application of the proposed method.

  7. Airflow energy harvesting with high wind velocities for industrial applications

    Science.gov (United States)

    Chew, Z. J.; Tuddenham, S. B.; Zhu, M.

    2016-11-01

    An airflow energy harvester capable of harvesting energy from vortices at high speed is presented in this paper. The airflow energy harvester is implemented using a modified helical Savonius turbine and an electromagnetic generator. A power management module with maximum power point finding capability is used to manage the harvested energy and convert the low voltage magnitude from the generator to a usable level for wireless sensors. The airflow energy harvester is characterized using vortex generated by air hitting a plate in a wind tunnel. By using an aircraft environment with wind speed of 17 m/s as case study, the output power of the airflow energy harvester is measured to be 126 mW. The overall efficiency of the power management module is 45.76 to 61.2%, with maximum power point tracking efficiency of 94.21 to 99.72% for wind speed of 10 to 18 m/s, and has a quiescent current of 790 nA for the maximum power point tracking circuit.

  8. A comprehensive numerical model of wind-blown sand

    CERN Document Server

    Kok, Jasper F

    2009-01-01

    Wind-blown sand, or "saltation", ejects dust aerosols into the atmosphere, creates sand dunes, and erodes geological features. We present a comprehensive numerical model of steady-state saltation that, in contrast to most previous studies, can simulate saltation over mixed soils. Our model simulates the motion of saltating particles due to gravity, fluid drag, particle spin, fluid shear, and turbulence. Moreover, the model explicitly accounts for the retardation of the wind due to drag from saltating particles. We also developed a physically-based parameterization of the ejection of surface particles by impacting saltating particles which matches experimental results. Our numerical model is the first to reproduce measurements of the wind shear velocity at the impact threshold (i.e., the lowest shear velocity for which saltation is possible) and of the aerodynamic roughness length in saltation. It also correctly predicts a wide range of other saltation processes, including profiles of the wind speed and partic...

  9. Measurements of dust deposition velocity in a wind-tunnel experiment

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2014-04-01

    Full Text Available In this study, we present the results of a wind-tunnel experiment on dust deposition. A new method is proposed to derive dust deposition velocity from the PDA (Particle Dynamics Analysis particle-velocity and particle-size measurements. This method has the advantage that the motions of individual dust particles are directly observed and all relevant data for computing dust deposition velocity is collected using a single instrument, and therefore the measurement uncertainties are reduced. The method is used in the wind-tunnel experiment to measure the dust deposition velocities for different particle sizes, wind speeds and surface conditions. For a sticky-smooth wood surface and a water surface, the observed dust deposition velocities are compared with the predictions using a dust deposition scheme, and the entire dataset is compared with the data found in the literature. From the wind-tunnel experiments, a relatively reliable dataset of dust deposition velocity is obtained, which is of considerable value for the development and validation of dust deposition schemes.

  10. Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model

    Science.gov (United States)

    Patricia L. Andrews

    2012-01-01

    Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...

  11. Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars

    DEFF Research Database (Denmark)

    Simley, Eric; Angelou, Nikolas; Mikkelsen, Torben Krogh;

    2016-01-01

    an estimated axial induction factor of 0.25. The velocity reductions relative to the freestream velocity become smaller when the turbine’s coefficient of power decreases; for a low CP of 0.16 resulting in an estimated induction factor of 0.04, the velocity deficits are 1% of the freestream value 1 D upstream......As a wind turbine generates power, induced velocities, lower than the freestream velocity, will be present upstream of the turbine due to perturbation of the flow by the rotor. In this study, the upstream induction zone of a 225kW horizontal axis Vestas V27 wind turbine located at the Danish....... Velocity deficits of 1%–3% of the freestream value were observed 1 D upstream of the rotor, increasing at the rotor plane to 7.4% near the edge of the rotor and 18% near the center of the rotor while the turbine was operating with a high estimated mechanical coefficient of power (CP) of 0.56 yielding...

  12. Solar wind velocity at solar maximum: A search for latitudinal effects

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2004-11-01

    Full Text Available Observations by Ulysses during its second out-of-ecliptic orbit have shown that near the solar activity maximum the solar wind appears as a highly variable flow at all heliolatitudes. In the present study Ulysses data from polar latitudes are compared to contemporary ACE data in the ecliptic plane to search for the presence of latitudinal effects in the large-scale structure of the solar wind velocity. The investigated period roughly covers the Sun's magnetic polarity reversal. The Ulysses-ACE comparison is performed through a multi-scale statistical analysis of the velocity fluctuations at scales from 1 to 64 days. The results indicate that, from a statistical point of view, the character of the wind velocity structure does not appear to change remarkably with latitude. It is likely that this result is characteristic of the particular phase of the solar magnetic cycle.

  13. Estimating wind velocity standard deviation values in the inertial sublayer from observations in the roughness sublayer

    Science.gov (United States)

    Falabino, Simona; Trini Castelli, Silvia

    2017-02-01

    In air quality practice, observed data are often input to air pollution models to simulate the pollutants dispersion and to estimate their concentration. When the area of interest includes urban sites, observed data collected at urban or suburban stations can be available, and it can happen to use them for estimating surface layer parameters given in input to the models. In such case, roughness sublayer quantities may enter the parameterizations of the turbulence variables as if they were representative of the inertial sublayer, possibly leading to a not appropriate application of the Monin-Obukhov similarity theory. We investigate whether it is possible to derive suitable values of the wind velocity standard deviations for the inertial sublayer using the friction velocity and stability parameter observed in the roughness sublayer, inside a similarity-like analytical function. For this purpose, an analysis of sonic anemometer data sets collected in suburban and urban sites is proposed. The values derived through this approach are compared to actual observations in the inertial sublayer. The transferability of the empirical coefficients estimated for the similarity functions between different sites, characterized by similar or different morphologies, is also addressed. The derived functions proved to be a reasonable approximation of the actual data. This method was found to be feasible and generally reliable, and can be a reference to keep using, in air pollution models, the similarity theory parameterizations when measurements are available only in the roughness sublayer.

  14. VLTI-AMBER velocity-resolved aperture-synthesis imaging of η Carinae with a spectral resolution of 12 000. Studies of the primary star wind and innermost wind-wind collision zone

    Science.gov (United States)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; Gull, T.; Heininger, M.; Hillier, D. J.; Hummel, C. A.; Kraus, S.; Madura, T.; Mehner, A.; Mérand, A.; Millour, F.; Moffat, A. F. J.; Ohnaka, K.; Patru, F.; Petrov, R. G.; Rengaswamy, S.; Richardson, N. D.; Rivinius, T.; Schöller, M.; Teodoro, M.; Wittkowski, M.

    2016-10-01

    Context. The mass loss from massive stars is not understood well. η Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims: We want to investigate the structure and kinematics of η Car's primary star wind and wind-wind collision zone with a high spatial resolution of ~6 mas (~14 au) and high spectral resolution of R = 12 000. Methods: Observations of η Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results: We present velocity-resolved aperture-synthesis images reconstructed in more than 100 different spectral channels distributed across the Brγ 2.166 μm emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to - 376 km s-1 measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of - 277 km s-1, the position angle of the symmetry axis of the fan is ~126°. The fan-shaped structure extends approximately 8.0 mas (~18.8 au) to the southeast and 5.8 mas (~13.6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  15. Fabrication of four-path remote outdoor wind velocity measurement system and its performance evaluation

    Science.gov (United States)

    Yamada, Akira; Oba, Kensyo; Shimizu, Masato

    2017-01-01

    A method is proposed for the remote measurement of the outdoor ground-surface two-dimensional (2D) vector wind velocity field averaged over a region of 10-50 m size. To this end, four-channel (4ch) sound wave transmitters and receivers were placed at the corners of a rectangular monitoring site. From the four-path travel time data, the wind velocity and direction averaged over the region were estimated under the uniform-wind-field assumption. By this method, misestimation due to the local turbulence wind field, which is encountered in conventional in situ-type anemometers, can be avoided. To achieve a satisfying speed data collection that keeps up with the rapid changes in real wind field, coded modulation signals were transmitted and received simultaneously between all the 4ch speaker/microphone pairs. Test experiments demonstrated that time variations of vector wind velocities spatially averaged over the area were successively measured with satisfying speed and accuracy.

  16. Imbalanced magnetohydrodynamic turbulence modified by velocity shear in the solar wind

    CERN Document Server

    Gogoberidze, Grigol

    2016-01-01

    We study incompressible imbalanced magnetohydrodynamic turbulence in the presence of background velocity shears. Using scaling arguments, we show that the turbulent cascade is significantly accelerated when the background velocity shear is stronger than the velocity shears in the subdominant Alfv% \\'{e}n waves at the injection scale. The spectral transport is then controlled by the background shear rather than the turbulent shears and the Tchen spectrum with spectral index $-1$ is formed. This spectrum extends from the injection scale to the scale of the spectral break where the subdominant wave shear becomes equal to the background shear. The estimated spectral breaks and power spectra are in good agreement with those observed in the fast solar wind. The proposed mechanism can contribute to enhanced turbulent cascades and modified $-1$ spectra observed in the fast solar wind with strong velocity shears. This mechanism can also operate in many other astrophysical environments where turbulence develops on top ...

  17. Imbalanced magnetohydrodynamic turbulence modified by velocity shear in the solar wind

    Science.gov (United States)

    Gogoberidze, G.; Voitenko, Y. M.

    2016-11-01

    We study incompressible imbalanced magnetohydrodynamic turbulence in the presence of background velocity shears. Using scaling arguments, we show that the turbulent cascade is significantly accelerated when the background velocity shear is stronger than the velocity shears in the subdominant Alfvén waves at the injection scale. The spectral transport is then controlled by the background shear rather than the turbulent shears and the Tchen spectrum with spectral index -1 is formed. This spectrum extends from the injection scale to the scale of the spectral break where the subdominant wave shear becomes equal to the background shear. The estimated spectral breaks and power spectra are in good agreement with those observed in the fast solar wind. The proposed mechanism can contribute to enhanced turbulent cascades and modified -1 spectra observed in the fast solar wind with strong velocity shears. This mechanism can also operate in many other astrophysical environments where turbulence develops on top of non-uniform plasma flows.

  18. Gust modelling for wind loading

    NARCIS (Netherlands)

    Verheij, F.J.; Cleijne, J.W.; Leene, J.A.

    1992-01-01

    In this paper the TNO gust analysis method and the resulting TNO gust model are described. The method has been applied to a set of 700 hours of stationary wind speed time series measured at the meteorological mast at Cabauw, The Netherlands. The results are discussed in this paper. The TNO gust mode

  19. Gust modelling for wind loading

    NARCIS (Netherlands)

    Verheij, F.J.; Cleijne, J.W.; Leene, J.A.

    1992-01-01

    In this paper the TNO gust analysis method and the resulting TNO gust model are described. The method has been applied to a set of 700 hours of stationary wind speed time series measured at the meteorological mast at Cabauw, The Netherlands. The results are discussed in this paper. The TNO gust

  20. A comparison of vertical velocity variance measurements from wind profiling radars and sonic anemometers

    Science.gov (United States)

    McCaffrey, Katherine; Bianco, Laura; Johnston, Paul; Wilczak, James M.

    2017-03-01

    Observations of turbulence in the planetary boundary layer are critical for developing and evaluating boundary layer parameterizations in mesoscale numerical weather prediction models. These observations, however, are expensive and rarely profile the entire boundary layer. Using optimized configurations for 449 and 915 MHz wind profiling radars during the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA), improvements have been made to the historical methods of measuring vertical velocity variance through the time series of vertical velocity, as well as the Doppler spectral width. Using six heights of sonic anemometers mounted on a 300 m tower, correlations of up to R2 = 0. 74 are seen in measurements of the large-scale variances from the radar time series and R2 = 0. 79 in measurements of small-scale variance from radar spectral widths. The total variance, measured as the sum of the small and large scales, agrees well with sonic anemometers, with R2 = 0. 79. Correlation is higher in daytime convective boundary layers than nighttime stable conditions when turbulence levels are smaller. With the good agreement with the in situ measurements, highly resolved profiles up to 2 km can be accurately observed from the 449 MHz radar and 1 km from the 915 MHz radar. This optimized configuration will provide unique observations for the verification and improvement to boundary layer parameterizations in mesoscale models.

  1. Solar Wind Driving of Magnetospheric ULF Waves: Pulsations Driven by Velocity Shear at the Magnetopause

    CERN Document Server

    Claudepierre, S G; Wiltberger, M; 10.1029/2007JA012890

    2010-01-01

    We present results from global, three-dimensional magnetohydrodynamic (MHD) simulations of the solar wind/magnetosphere interaction. These MHD simulations are used to study ultra low frequency (ULF) pulsations in the Earth's magnetosphere driven by shear instabilities at the flanks of the magnetopause. We drive the simulations with idealized, constant solar wind input parameters, ensuring that any discrete ULF pulsations generated in the simulation magnetosphere are not due to fluctuations in the solar wind. The simulations presented in this study are driven by purely southward interplanetary magnetic field (IMF) conditions, changing only the solar wind driving velocity while holding all of the other solar wind input parameters constant. We find surface waves near the dawn and dusk flank magnetopause and show that these waves are generated by the Kelvin-Helmholtz (KH) instability. We also find that two KH modes are generated near the magnetopause boundary. One mode, the magnetopause KH mode, propagates tailwa...

  2. Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas, E. [Facultad de Ingenieria Mecanica, Universidad Michoacana de San Nicolas de Hidalgo, Santiago Tapia No. 403, Centro (Mexico); Jaramillo, O.A.; Rivera, W. [Centro de Ivestigacion en Energia, Universidad Nacional Autonoma de Mexico, Apartado Postal 34, Temixco 62580, Morelos (Mexico)

    2010-05-15

    In this paper the analysis and forecasting of wind velocities in Chetumal, Quintana Roo, Mexico is presented. Measurements were made by the Instituto de Investigaciones Electricas (IIE) during two years, from 2004 to 2005. This location exemplifies the wind energy generation potential in the Caribbean coast of Mexico that could be employed in the hotel industry in the next decade. The wind speed and wind direction were measured at 10 m above ground level. Sensors with high accuracy and a low starting threshold were used. The wind velocity was recorded using a data acquisition system supplied by a 10 W photovoltaic panel. The wind speed values were measured with a frequency of 1 Hz and the average wind speed was recorded considering regular intervals of 10 min. First a statistical analysis of the time series was made in the first part of the paper through conventional and robust measures. Also the forecasting of the last day of measurements was made utilizing the single exponential smoothing method (SES). The results showed a very good accuracy of the data with this technique for an {alpha} value of 0.9. Finally the SES method was compared with the artificial neural network (ANN) method showing the former better results. (author)

  3. Critical wind velocity for arresting upwind gas and smoke dispersion induced by near-wall fire in a road tunnel.

    Science.gov (United States)

    Hu, L H; Peng, W; Huo, R

    2008-01-15

    In case of a tunnel fire, toxic gas and smoke particles released are the most fatal contaminations. It is important to supply fresh air from the upwind side to provide a clean and safe environment upstream from the fire source for people evacuation. Thus, the critical longitudinal wind velocity for arresting fire induced upwind gas and smoke dispersion is a key criteria for tunnel safety design. Former studies and thus, the models built for estimating the critical wind velocity are all arbitrarily assuming that the fire takes place at the centre of the tunnel. However, in many real cases in road tunnels, the fire originates near the sidewall. The critical velocity of a near-wall fire should be different with that of a free-standing central fire due to their different plume entrainment process. Theoretical analysis and CFD simulation were performed in this paper to estimate the critical velocity for the fire near the sidewall. Results showed that when fire originates near the sidewall, it needs larger critical velocity to arrest the upwind gas and smoke dispersion than when fire at the centre. The ratio of critical velocity of a near-wall fire to that of a central fire was ideally estimated to be 1.26 by theoretical analysis. Results by CFD modelling showed that the ratio decreased with the increase of the fire size till near to unity. The ratio by CFD modelling was about 1.18 for a 500kW small fire, being near to and a bit lower than the theoretically estimated value of 1.26. However, the former models, including those of Thomas (1958, 1968), Dangizer and Kenndey (1982), Oka and Atkinson (1995), Wu and Barker (2000) and Kunsch (1999, 2002), underestimated the critical velocity needed for a fire near the tunnel sidewall.

  4. 3-D Radiative Transfer Modeling of Structured Winds in Massive Hot Stars with Wind3D

    CERN Document Server

    Lobel, A; Blomme, R

    2010-01-01

    We develop 3-D models of the structured winds of massive hot stars with the Wind3D radiative transfer (RT) code. We investigate the physical properties of large-scale structures observed in the wind of the B-type supergiant HD 64760 with detailed line profile fits to Discrete Absorption Components (DACs) and rotational modulations observed with IUE in Si IV {\\lambda}1395. We develop parameterized input models Wind3D with large-scale equatorial wind density- and velocity-structures, or so-called `Co-rotating Interaction Regions' (CIRs) and `Rotational Modulation Regions' (RMRs). The parameterized models offer important advantages for high-performance RT calculations over ab-initio hydrodynamic input models. The acceleration of the input model calculations permits us to simulate and investigate a wide variety of physical conditions in the extended winds of massive hot stars. The new modeling method is very flexible for constraining the dynamic and geometric wind properties of RMRs in HD 64760. We compute that t...

  5. Wind mass transfer in S-type symbiotic binaries I. Focusing by the wind compression model

    CERN Document Server

    Skopal, Augustin

    2014-01-01

    Context: Luminosities of hot components in symbiotic binaries require accretion rates that are higher than those that can be achieved via a standard Bondi-Hoyle accretion. This implies that the wind mass transfer in symbiotic binaries has to be more efficient. Aims: We suggest that the accretion rate onto the white dwarfs (WDs) in S-type symbiotic binaries can be enhanced sufficiently by focusing the wind from their slowly rotating normal giants towards the binary orbital plane. Methods: We applied the wind compression model to the stellar wind of slowly rotating red giants in S-type symbiotic binaries. Results: Our analysis reveals that for typical terminal velocities of the giant wind, 20 to 50 km/s, and measured rotational velocities between 6 and 10 km/s, the densities of the compressed wind at a typical distance of the accretor from its donor correspond to the mass-loss rate, which can be a factor of $\\sim$10 higher than for the spherically symmetric wind. This allows the WD to accrete at rates of $10^{-...

  6. The effect of humidity on ionic wind velocity in ambient air

    Science.gov (United States)

    Chen, She; Nobelen, J. C. P. Y.; Nijdam, S.

    2016-09-01

    Due to the evolution of portable electronics and LED lightning system, advances in air cooling technologies must also keep pace. Active cooling by ionic wind, which is usually generated by corona discharge, can greatly reduce the noise and lifetime issues compared to the mechanical fans. The wind is induced when a gas discharge is formed, and neutral molecules gain their energy by the momentum transfer of ion-neutral collisions. However, there is few discussion about the effect of gas composition such as humidity on the wind generation and the physical mechanism is not clear. In the experiment, a positive 5-20 kV DC voltage is applied to the needle-cylinder electrodes with separation of 20 mm. The ionic wind velocity is measured by hot wire anemometry. As the relative humidity (RH) in the ambient air increases, the velocity is found to be severely inhibited. The current is also measured between the cylinder electrode and earth. The results show that the DC component of corona current decreases when RH increases. Since both the discharge current and the ion mobility are reduced when RH increases, their combined effects determine the ionic wind velocity. This work is supported by STW project 13651.

  7. A Study of DC Surface Plasma Discharge in Absence of Free Airflow: Ionic Wind Velocity Profile

    Directory of Open Access Journals (Sweden)

    M. Rafika

    2009-01-01

    Full Text Available In our study we are interested with the DC (Direct Current electric corona discharge created between two wire electrodes. We present experimental results related to some electroaerodynamic actuators based on the DC corona discharge at the surface of a dielectric material. We used different geometrical forms of dielectric surface such as a plate, a cylinder and a wing of aircraft of type NACA 0015. We present the current density-electric filed characteristics for different cases in order to determine the discharge regimes. The corona discharge produces non-thermal plasma so that it is called plasma discharge. Plasma discharge creates a tangential ionic wind above the surface at the vicinity of the wall. We have measured the ionic wind induced by the corona discharge in absence of free external airflow, we give the ionic wind velocity profiles for different surface forms and we compare the actuators effect based on the span of the ionic wind velocity values. We notice that the maximum ionic wind velocity is obtained with the NACA profile, which shows the effectiveness of this actuator for the airflow control.

  8. An experimental study of a plasma actuator in absence of free airflow: Ionic wind velocity profile

    Science.gov (United States)

    Mestiri, R.; Hadaji, R.; Ben Nasrallah, S.

    2010-08-01

    In this study, we are interested in the direct current electrical corona discharge created between two wire electrodes. The experimental results are related to some electroaerodynamic actuators based on the direct current corona discharge at the surface of a dielectric material. Several geometrical forms are selected for the dielectric surface, such as a plate, a cylinder, and a NACA 0015 aircraft wing. The current density-electric field characteristics are presented for different cases in order to determine the discharge regimes. The corona discharge produces nonthermal plasma, so it is called plasma discharge. Plasma discharge creates a tangential ionic wind above the surface at the vicinity of the wall. The ionic wind induced by the corona discharge is measured in absence of free external airflow. The ionic wind velocity profiles and the maximum induced tangential force are given for different surface forms, so it is possible to compare the actuators effect based on the span of the ionic wind velocity and thrust values. The higher ionic wind velocity is obtained with the NACA profile, which shows the effectiveness of this actuator for the airflow control.

  9. Thermal creep assisted dust lifting on Mars: Wind tunnel experiments for the entrainment threshold velocity

    CERN Document Server

    Küpper, Markus

    2015-01-01

    In this work we present laboratory measurements on the reduction of the threshold friction velocity necessary for lifting dust if the dust bed is illuminated. Insolation of a porous soil establishes a temperature gradient. At low ambient pressure this gradient leads to thermal creep gas flow within the soil. This flow leads to a sub-surface overpressure which supports lift imposed by wind. The wind tunnel was run with Mojave Mars Simulant and air at 3, 6 and 9 mbar, to cover most of the pressure range at martian surface levels. Our first measurements imply that the insolation of the martian surface can reduce the entrainment threshold velocity between 4 % and 19 % for the conditions sampled with our experiments. An insolation activated soil might therefore provide additional support for aeolian particle transport at low wind speeds.

  10. Model county ordinance for wind projects

    Energy Technology Data Exchange (ETDEWEB)

    Bain, D.A. [Oregon Office of Energy, Portland, OR (United States)

    1997-12-31

    Permitting is a crucial step in the development cycle of a wind project and permits affect the timing, cost, location, feasibility, layout, and impacts of wind projects. Counties often have the lead responsibility for permitting yet few have appropriate siting regulations for wind projects. A model ordinance allows a county to quickly adopt appropriate permitting procedures. The model county wind ordinance developed for use by northwest states is generally applicable across the country and counties seeking to adopt siting or zoning regulations for wind will find it a good starting place. The model includes permitting procedures for wind measurement devices and two types of wind systems. Both discretionary and nondiscretionary standards apply to wind systems and a conditional use permit would be issued. The standards, criteria, conditions for approval, and process procedures are defined for each. Adaptation examples for the four northwest states are provided along with a model Wind Resource Overlay Zone.

  11. Velocity bias in a LCDM model

    CERN Document Server

    Colin, Pierre; Kravtsov, A V; Colin, Pedro; Klypin, Anatoly; Kravtsov, Andrey V.

    2000-01-01

    We use N-body simulations to study the velocity bias of dark matter halos, the difference in the velocity fields of dark matter and halos, in a flat low- density LCDM model. The high force, 2kpc/h, and mass, 10^9Msun/h, resolution allows dark matter halos to survive in very dense environments of groups and clusters making it possible to use halos as galaxy tracers. We find that the velocity bias pvb measured as a ratio of pairwise velocities of the halos to that of the dark matter evolves with time and depends on scale. At high redshifts (z ~5) halos move generally faster than the dark matter almost on all scales: pvb(r)~1.2, r>0.5Mpc/h. At later moments the bias decreases and gets below unity on scales less than r=5Mpc/h: pvb(r)~(0.6-0.8) at z=0. We find that the evolution of the pairwise velocity bias follows and probably is defined by the spatial antibias of the dark matter halos at small scales. One-point velocity bias b_v, defined as the ratio of the rms velocities of halos and dark matter, provides a mo...

  12. Wind Farm Decentralized Dynamic Modeling With Parameters

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran;

    2010-01-01

    Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...

  13. Mean Velocity, Turbulence Intensity and Turbulence Convection Velocity Measurements for a Convergent Nozzle in a Free Jet Wind Tunnel. Comprehensive Data Report

    Science.gov (United States)

    Mccolgan, C. J.; Larson, R. S.

    1977-01-01

    The effect of flight on the mean flow and turbulence properties of a 0.056m circular jet were determined in a free jet wind tunnel. The nozzle exit velocity was 122 m/sec, and the wind tunnel velocity was set at 0, 12, 37, and 61 m/sec. Measurements of flow properties including mean velocity, turbulence intensity and spectra, and eddy convection velocity were carried out using two linearized hot wire anemometers. This report contains the raw data and graphical presentations. The final technical report includes a description of the test facilities, test hardware, along with significant test results and conclusions.

  14. NLTE wind models of hot subdwarf stars

    CERN Document Server

    Krticka, Jiri; 10.1007/s10509-010-0385-z

    2010-01-01

    We calculate NLTE models of stellar winds of hot compact stars (central stars of planetary nebulae and subdwarf stars). The studied range of subdwarf parameters is selected to cover a large part of these stars. The models predict the wind hydrodynamical structure and provide mass-loss rates for different abundances. Our models show that CNO elements are important drivers of subdwarf winds, especially for low-luminosity stars. We study the effect of X-rays and instabilities on these winds. Due to the line-driven wind instability, a significant part of the wind could be very hot.

  15. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  16. The impact of Surface Wind Velocity Data Assimilation on the Predictability of Plume Advection in the Lower Troposphere

    Science.gov (United States)

    Sekiyama, Thomas; Kajino, Mizuo; Kunii, Masaru

    2017-04-01

    The authors investigated the impact of surface wind velocity data assimilation on the predictability of plume advection in the lower troposphere exploiting the radioactive cesium emitted by the Fukushima nuclear accident in March 2011 as an atmospheric tracer. It was because the radioactive cesium plume was dispersed from the sole point source exactly placed at the Fukushima Daiichi Nuclear Power Plant and its surface concentration was measured at many locations with a high frequency and high accuracy. We used a non-hydrostatic regional weather prediction model with a horizontal resolution of 3 km, which was coupled with an ensemble Kalman filter data assimilation system in this study, to simulate the wind velocity and plume advection. The main module of this weather prediction model has been developed and used operationally by the Japan Meteorological Agency (JMA) since before March 2011. The weather observation data assimilated into the model simulation were provided from two data resources; [#1] the JMA observation archives collected for numerical weather predictions (NWPs) and [#2] the land-surface wind velocity data archived by the JMA surface weather observation network. The former dataset [#1] does not contain land-surface wind velocity observations because their spatial representativeness is relatively small and therefore the land-surface wind velocity data assimilation normally deteriorates the more than one day NWP performance. The latter dataset [#2] is usually used for real-time weather monitoring and never used for the data assimilation of more than one day NWPs. We conducted two experiments (STD and TEST) to reproduce the radioactive cesium plume behavior for 48 hours from 12UTC 14 March to 12UTC 16 March 2011 over the land area of western Japan. The STD experiment was performed to replicate the operational NWP using only the #1 dataset, not assimilating land-surface wind observations. In contrast, the TEST experiment was performed assimilating both

  17. Modeling of Wind Energy on Isolated Area

    Directory of Open Access Journals (Sweden)

    Hachemi Glaoui

    2014-03-01

    Full Text Available In this paper, a model of the wind turbine (WT with permanent magnet generator (PMSG and its associated controllers is presented, The increase of wind power penetration in power systems has meant that conventional power plants are gradually being replaced by wind farms. In fact, today wind farms are required to actively participate in power system operation in the same way as conventional power plants. In fact, power system operators have revised the grid connection requirements for wind turbines and wind farms, and now demand that these installations be able to carry out more or less the same control tasks as conventional power plants. For dynamic power system simulations, the PMSG wind turbine model includes an aerodynamic rotor model, a lumped mass representation of the drive train system and generator model. In this paper we propose a model with an implementation in MATLAB / Simulink, each of the system components off-grid small wind turbines.

  18. Dynamic Models for Wind Turbines and Wind Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  19. WAsP engineering flow model for wind over land and sea

    DEFF Research Database (Denmark)

    Astrup, P.; Larsen, Søren Ejling

    1999-01-01

    This report presents the basic wind flow model of WAsP Engineering. The model consists in principle of three parts: the LINCOM model for neutrally stable flow over terrain with hills and varying surface roughness, a sea surface roughness model, and anobstacle model. To better predict flow over...... or close to water bodies, the model for the sea surface roughness has been developed and interfaced with the existing LINCOM model. As the water roughness depends on the wind velocity, and the wind velocity onthe roughness, the coupling is iterative. The water rougness model is based on a fit to lots...... of literature data for the Charnock parameter as function of the so called wave age, the ratio between wave velocity and friction velocity, plus a correlation ofwave age to the geometrically obtainable water fetch. A model for the influence on the wind of multiple, finite size, interacting obstacles with any...

  20. Scaling forecast models for wind turbulence and wind turbine power intermittency

    Science.gov (United States)

    Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy

    2017-04-01

    The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.

  1. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    Directory of Open Access Journals (Sweden)

    Rajesh Karki

    2013-02-01

    Full Text Available Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant research and development over the past decade. As a result, many modern power systems include a significant portion of power generation from wind energy sources. The impact of wind generation on the overall system performance increases substantially as wind penetration in power systems continues to increase to relatively high levels. It becomes increasingly important to accurately model the wind behavior, the interaction with other wind sources and conventional sources, and incorporate the characteristics of the energy demand in order to carry out a realistic evaluation of system reliability. Power systems with high wind penetrations are often connected to multiple wind farms at different geographic locations. Wind speed correlations between the different wind farms largely affect the total wind power generation characteristics of such systems, and therefore should be an important parameter in the wind modeling process. This paper evaluates the effect of the correlation between multiple wind farms on the adequacy indices of wind-integrated systems. The paper also proposes a simple and appropriate probabilistic analytical model that incorporates wind correlations, and can be used for adequacy evaluation of multiple wind-integrated systems.

  2. Wind tunnel measurements of the power output variability and unsteady loading in a micro wind farm model

    Science.gov (United States)

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2015-11-01

    To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).

  3. Unresolved wind-driven shells and the supersonic velocity dispersion in giant HII regions

    CERN Document Server

    Tenorio-Tagle, G; Fernandes, R C; Fernandes, R Cid

    1995-01-01

    The presence of giant shells or loops in giant HII regions are clear witness of the mechanical energy input from massive stars. Here we evaluate the impact that winds may have on the structure of giant nebulae and on their supersonic velocity dispersion. We follow the suggestion from Chu \\& Kennicutt (1994) to see if a combination of a large number of unresolved wind-driven shells caused by massive stars could produce the integrated broad Gaussian profiles typical of giant HII regions. The results, accounting for a wide range of energies, densities and velocity or age of the expanding shells, show that supersonic Gaussian profiles may arise only from a collection of unresolved wind-driven shells if the shells present a peculiar velocity distribution which implies a strongly peaked age distribution leading to an awkward star formation history. On the other hand, a uniform distribution of ages originates profiles with a flat-topped core defined by the terminal shell velocity and a steep decay as v^{-6} up t...

  4. Wind waves in tropical cyclones: satellite altimeter observations and modeling

    Science.gov (United States)

    Golubkin, Pavel; Kudryavtsev, Vladimir; Chapron, Bertrand

    2016-04-01

    Results of investigation of wind-wave generation by tropical cyclones using satellite altimeter data are presented. Tropical cyclones are generally relatively small rapidly moving low pressure systems that are capable of generating severe wave conditions. Translation of a tropical cyclone leads to a prolonged period of time surface waves in the right sector remain under high wind forcing conditions. This effect has been termed extended fetch, trapped fetch or group velocity quasi-resonance. A tropical cyclone wave field is thus likely more asymmetrical than the corresponding wind field: wind waves in the tropical cyclone right sector are more developed with larger heights than waves in the left one. A dataset of satellite altimeter intersections of the Western Pacific tropical cyclones was created for 2010-2013. Data from four missions were considered, i.e., Jason-1, Jason-2, CryoSat-2, SARAL/AltiKa. Measurements in the rear-left and front-right sectors of tropical cyclones were examined for the presence of significant wave asymmetry. An analytical model is then derived to efficiently describe the wave energy distribution in a moving tropical cyclone. The model essentially builds on a generalization of the self-similar wave growth model and the assumption of a strongly dominant single spectral mode in a given quadrant of the storm. The model provides a criterion to anticipate wave enhancement with the generation of trapped abnormal waves. If forced during a sufficient timescale interval, also defined from this generalized self-similar wave growth model, waves can be trapped and large amplification of the wave energy will occur in the front-right storm quadrant. Remarkably, the group velocity and corresponding wavelength of outrunning wave systems will become wind speed independent and solely relate to the translating velocity. The resulting significant wave height also only weakly depends on wind speed, and more strongly on the translation velocity. Satellite

  5. The Evolution of the Spectrum of Velocity Fluctuations in the Solar Wind

    Science.gov (United States)

    Roberts, D. Aaron

    2010-01-01

    Recent work has shown that at 1AU from the Sun the power spectrum of the solar wind magnetic field has the -5/3 spectral slope expected for Kolmogorov turbulence, but that the velocity has closer to a -3/2 spectrum. This paper traces the changes in solar wind velocity spectra from 0.3 to 5 AU using data from the Helios and Ulysses spacecraft to show that this is a transient stage in the evolution. The spectrum of the velocity is found to be flatter than that of the magnetic field for the higher frequencies examined for all cases until the slopes become equal (at -5/3) well past 1 AU when the wind is relatively nonAlfvenic. In some respects, in particular in the evolution of the frequency at which the spectrum changes from flatter at larger scales to a traditionally turbulent spectrum at smaller scales, the velocity field evolves more rapidly that the magnetic, and this is associated with the dominance of the magnetic energy over the kinetic at "inertial range" scales. The Alfvenicity of the fluctuations, not the speed of the flow, is shown to control the rate of the spectral evolution. This study shows that, for the solar wind ., the idea of a simple "inertial range" with uniform spectral properties is not realistic, and new phenomenologies will be needed to capture the true situation. In addition a flattening of the velocity spectrum persists at times for small scales, which may provide a clue to the nature of the small-scale interactions.

  6. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    and uncertainties are quantified. Further, estimation of annual failure probability for structural components taking into account possible faults in electrical or mechanical systems is considered. For a representative structural failure mode, a probabilistic model is developed that incorporates grid loss failures...... components. Thus, models of reliability should be developed and applied in order to quantify the residual life of the components. Damage models based on physics of failure combined with stochastic models describing the uncertain parameters are imperative for development of cost-optimal decision tools...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...

  7. Estimation of wind velocity over a complex terrain using the Generalized Mapping Regressor

    Energy Technology Data Exchange (ETDEWEB)

    Beccali, M.; Marvuglia, A. [Dipartimento di Ricerche Energetiche ed Ambientali (DREAM), Universita degli Studi di Palermo, Viale delle Scienze - edificio 9, 90128 Palermo (Italy); Cirrincione, G. [Department de Genie Electrique, Universite de Picardie Jules Verne, 33, Rue Saint Leu, 80039 Amiens (France); Serporta, C. [ISSIA-CNR (Institute on Intelligent Systems for the Automation), Section of Palermo, Via Dante12, Palermo (Italy)

    2010-03-15

    Wind energy evaluation is an important goal in the conversion of energy systems to more environmentally friendly solutions. In this paper, we present a novel approach to wind speed spatial estimation on the isle of Sicily (Italy): an incremental self-organizing neural network (Generalized Mapping Regressor - GMR) is coupled with exploratory data analysis techniques in order to obtain a map of the spatial distribution of the average wind speed over the entire region. First, the topographic surface of the island was modelled using two different neural techniques and by exploiting the information extracted from a digital elevation model of the region. Then, GMR was used for automatic modelling of the terrain roughness. Afterwards, a statistical analysis of the wind data allowed for the estimation of the parameters of the Weibull wind probability distribution function. In the last sections of the paper, the expected values of the Weibull distributions were regionalized using the GMR neural network. (author)

  8. Hydrodynamic Models of Line-Driven Accretion Disk Winds II Adiabatic Winds from Nonisothermal Disks

    CERN Document Server

    Pereyra, N A; Blondin, J M; Pereyra, Nicolas Antonio; Kallman, Timothy R.; Blondin, John M.

    2000-01-01

    We present here numerical hydrodynamic simulations of line-driven accretion disk winds in cataclysmic variable systems. We calculate wind mass-loss rate, terminal velocities, and line profiles for CIV (1550 A) for various viewing angles. The models are 2.5-dimensional, include an energy balance condition, and calculate the radiation field as a function of position near an optically thick accretion disk. The model results show that centrifugal forces produce collisions of streamlines in the disk wind which in turn generate an enhanced density region, underlining the necessity of two dimensional calculations where these forces may be represented. For disk luminosity Ldisk = Lsun, white dwarf mass Mwd = 0.6 Msun, and white dwarf radii Rwd = 0.01 Rsun, we obtain a wind mass-loss rate of dMwind/dt = 8.0E-12 Msun/yr, and a terminal velocity of ~3000 km/s. The line profiles we obtain are consistent with observations in their general form, in particular in the maximum absorption at roughly half the terminal velocity ...

  9. Estimation of Wind Turbulence Using Spectral Models

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Knudsen, Torben; Bak, Thomas

    2011-01-01

    The production and loading of wind farms are significantly influenced by the turbulence of the flowing wind field. Estimation of turbulence allows us to optimize the performance of the wind farm. Turbulence estimation is; however, highly challenging due to the chaotic behavior of the wind....... In this paper, a method is presented for estimation of the turbulence. The spectral model of the wind is used in order to provide the estimations. The suggested estimation approach is applied to a case study in which the objective is to estimate wind turbulence at desired points using the measurements of wind...... speed outside the wind field. The results show that the method is able to provide estimations which explain more than 50% of the wind turbulence from the distance of about 300 meters....

  10. Wind farm models and control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Hansen, Anca D.; Iov, F.; Blaabjerg, F.; Donovan, M.H.

    2005-08-01

    This report describes models and control strategies for 3 different concepts of wind farms. Initially, the potential in improvement of grid integration, structural loads and energy production is investigated in a survey of opportunities. Then simulation models are described, including wind turbine models for a fixed speed wind turbine with active stall control and a variable speed wind turbine with doubly-fed induction generator. After that, the 3 wind farm concepts and control strategies are described. The 3 concepts are AC connected doubly fed turbines, AC connected active stall turbines and DC connected active stall turbines. Finally, some simulation examples and conclusions are presented. (au)

  11. Effects of windbreak width in wind direction on wind velocity reduction%迎风向防风林带宽对风速减弱的作用

    Institute of Scientific and Technical Information of China (English)

    Mulati Yusaiyin; Norio Tanaka

    2009-01-01

    通过在日本扎晃人学水压力工程实验室开展的埃菲尔型非循环风洞试验,研究了防风林阻尼变化及不同林带宽的整体阻力系数,阐明在迎风向上防风林带宽对风速减弱的作用.以二维雷诺时均N-S方程-k-ε吨扰动闭合模型数字地研究了不同防风林带宽的流量场变化.结果表明,防风林对风的阻力随林带宽增加而增加,但是整体阻尼系数略微降低.整体阻尼系数Cd、防风林带宽W和林高H之间满足方程Cd=kd(W/H)-b(kd,b:常数).数字模拟结果表明,防风林带宽度明显影响最小风速值及其位置.随着防风林带宽度的增加,风速下降15%-22%.%The variations of drag force acting on the windbreak and the bulk drag coefficients for different windbreak widths were studied experimentally in the Eiffel-type non-circulating wind tunnel at the Hydraulic Engineering Laboratory, Saitama University, Japan, to eluci-date the effects of windbreak width in the wind direction on wind velocity reduction behind a windbreak. The variations of flow field for different windbreak widths were studied numerically by using the two-dimensional Reynolds-averaged Navier-Stokes (RANS) equation with a k-ε turbulence closure model. Results show that the total drag force to wind increased with increasing windbreak width, but the bulk drag coefficient decreased slightly. The relationship between the bulk drag coefficient Cd and the windbreak width W and height H can be presented by the equation of Cd=kd (W/H)-b (kd,b: constants). The result of the numerical simulation shows that the windbreak width greatly affects the location and the value of the minimum wind velocity. The wind velocity decreased by 15%-22% as the windbreak width in-creased.

  12. High altitude wind velocity at San Pedro Martir and Mauna Kea

    OpenAIRE

    Carrasco, Esperanza; Sarazin, Marc

    2003-01-01

    We analyze the monthly average wind velocity at about 12 km above sea level, between 1980 to 1995, for San Pedro Martir, Mauna Kea, another existing observatorie and some sites of interest. We compare the results obtained from two different data sets, the GGUAS and NCEP. Our results show that San Pedro Martir and Mauna Kea are comparable and are amongst the most suitable sites to apply slow wavefront corrugation correction techniques

  13. Monostatic Doppler lidar using an Nd:YAG laser for wind-velocity measurement

    Science.gov (United States)

    Bersenev, V. I.; Kaptsov, L. N.; Priezzhev, A. V.

    1987-10-01

    A monostatic Doppler lidar using a CW Nd:YAG laser has been developed for measurements of wind velocity. A series of atmospheric measurements using this lidar was carried out. At medium turbulence levels, the limiting lidar range is 200 m. As compared with a CO2 Doppler lidar, the Nd:YAG lidar has a better spatial resolution, is more convenient to use, and does not require a cooled photodetector.

  14. Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5: VERTICAL VELOCITY GOAMAZON2014/5

    Energy Technology Data Exchange (ETDEWEB)

    Giangrande, Scott E. [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Toto, Tami [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Jensen, Michael P. [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Bartholomew, Mary Jane [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Feng, Zhe [Pacific Northwest National Laboratory, Richland Washington USA; Protat, Alain [Centre for Australian Weather and Climate Research, Melbourne Victoria Australia; Williams, Christopher R. [University of Colorado Boulder and NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder Colorado USA; Schumacher, Courtney [Texas A& M University, College Station Texas USA; Machado, Luiz [National Institute for Space Research, Sao Jose dos Campos Brazil

    2016-11-15

    A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, and mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. During this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.

  15. Wind Speed Estimation and Wake model Re-calibration for Downregulated Offshore Wind Farms

    Science.gov (United States)

    Göçmen Bozkurt, Tuhfe; Giebel, Gregor; Kjølstad Poulsen, Niels; Réthoré, Pierre-Elouan; Mirzaei, Mahmood

    2014-05-01

    In recent years, the wind farm sizes have increased tremendously and with increasing installed capacity, the wind farms are requested to downregulate from their maximum possible power more frequently, especially in the offshore environment. Determination of the possible (or available) power is crucial not only because the reserve power has considerable market value but also for wind farm developers to be properly compensated for the loss during downregulation. While the available power calculation is straightforward for a single turbine, it gets rather complicated for the whole wind farm due to the change in the wake characteristics. In fact, the wake losses generated by the upstream turbine(s) decrease during downregulation and the downstream turbines therefore see more wind compared to the normal operation case. Currently, the Transmission System Operators (TSOs) have no real way to determine exactly the available power of a whole wind farm which is downregulated. Therefore, the PossPOW project aims to develop a verified and internationally accepted way to determine the possible power of a down-regulated offshore wind farm. The first phase of the project is to estimate the rotor effective wind speed. Since the nacelle anemometers are not readily available and are known to have reliability issues, the proposed method is to use power, pitch angle and rotational speed as inputs and combine it with a generic Cp model to estimate the wind speed. The performance of the model has been evaluated for both normal operation and downregulation periods using two different case studies: Horns Rev-I wind farm and NREL 5MW single turbine. During downregulation, the wake losses are not as severe and the velocity deficits at the downstream turbines are smaller as if also the wake is "downregulated". On the other hand, in order to calculate the available power, the wakes that would have been produced normally (if the turbines were not curtailed) are of importance, not the

  16. The Kinematics of Quasar Broad Emission Line Regions Using a Disk-Wind Model

    Science.gov (United States)

    Yong, Suk Yee; Webster, Rachel L.; King, Anthea L.; Bate, Nicholas F.; O'Dowd, Matthew J.; Labrie, Kathleen

    2017-09-01

    The structure and kinematics of the broad line region in quasars are still unknown. One popular model is the disk-wind model that offers a geometric unification of a quasar based on the viewing angle. We construct a simple kinematical disk-wind model with a narrow outflowing wind angle. The model is combined with radiative transfer in the Sobolev, or high velocity, limit. We examine how angle of viewing affects the observed characteristics of the emission line. The line profiles were found to exhibit distinct properties depending on the orientation, wind opening angle, and region of the wind where the emission arises.

  17. Electron velocity distribution functions from the solar wind to the corona

    Science.gov (United States)

    Maksimovic, M.; Pierrard, V.; Lemaire, J.; Larson, D.

    1999-06-01

    Typical electron velocity distribution functions observed at 1 AU from the Sun by the instrument 3DP aboard of WIND are used as boundary conditions to determine the electron velocity distribution function at 4 solar radii in the corona. The velocity distribution functions (VDF) at low altitude are obtained by solving the Fokker-Planck equation, using two different sets of boundary conditions. The first set typically corresponds to a VDF observed in a low speed solar wind flow (i.e., characterized by ``core'' and ``halo'' electrons); the second one corresponds to high speed solar wind (i.e. characterized by ``core,'' ``halo'' and ``strahl'' populations). We use the observed electron VDFs as test particles which are submitted to external forces and Coulomb collisions with a background plasma. Closer to the Sun, the relative density of the core electrons is found to increase compared to the densities of the halo population. Nevertheless, we find that in order to match the observed distributions at 1 AU, suprathermal tails have to be present in the VDF of the test electron at low altitudes in the corona. Note that the present work has been submitted to Journal of Geophysical Research [6]. This is the reason why we present here only an extended summary.

  18. WIND TURBINE SIMULATION FOR TIME-DEPENDENT ANGULAR VELOCITY, TORQUE, AND POWER

    Directory of Open Access Journals (Sweden)

    YONGHO LEE

    2013-02-01

    Full Text Available Albeit the prediction of time-dependent properties of wind turbines is not required for common applications, such time-varying properties may play an important role during transient operations occurring due to various reasons. Unlike the conventional numerical simulations of wind turbine rotations that fix the angular velocity to an assumed value, the present work numerically simulates the time-varying turbine rotation in both unsteady and quasi-steady operation regimes, without specifying the angular velocity of the turbine a priori, but by calculating the actual time-dependent angular velocity and aerodynamic torque along with other properties in the course of simulation. In the present work, successful results obtained by an efficient computational fluid dynamics technique are shown, as a demonstration, for a vertical-axis wind turbine with a two-dimensionalSavonius rotor, and the cycle-averaged output powers are compared with experimental power curves and a theory developed on the basis of experimental observations.

  19. Wind tunnel measurements of a large wind farm model approaching the infinite wind farm regime

    Science.gov (United States)

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2016-11-01

    A scaled wind farm, with 100 porous disk models of wind turbines, is used to study the effect of wind farm layout on the wind farm power output and its variability, in a wind tunnel study. The wind farm consists of 20 rows and 5 columns. The porous disk models have a diameter of 0 . 03 m and are instrumented with strain gages to measure the thrust force, as a surrogate for wind turbine power output. The frequency response of the measurements goes up to the natural frequency of the models and allows studying the spatio-temporal characteristics of the power output for different layouts. A variety of layouts are considered by shifting the individual rows in the spanwise direction. The reference layout has a regular streamwise spacing of Sx / D = 7 and a spanwise spacing of Sy / D = 5 . The parameter space is further expanded by considering layouts with an uneven streamwise spacing: Sx / D = 3 . 5 & 10 . 5 and Sx / D = 1 . 5 & 12 . 5 . We study how the mean row power changes as a function of wind farm layout and investigate the appearance of an asymptotic limiting behavior as previously described in the literature by application of the top-down model for the spatially averaged wind farm - boundary layer interaction. Work supported by ERC (Grant No. 306471, the ActiveWindFarms project) and by NSF (OISE-1243482, the WINDINSPIRE project).

  20. Wind farm models and control strategies

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Hansen, Anca Daniela; Iov, F.;

    2005-01-01

    models for a fixed speed wind turbine with active stall control and a variable speed wind turbine with doubly-fed induction generator. After that, the 3 wind farm concepts and control strategies are described.The 3 concepts are AC connected doubly fed turbines, AC connected active stall turbines and DC......This report describes models and control strategies for 3 different concepts of wind farms. Initially, the potential in improvement of grid integration, structural loads and energy production is investigated in a survey of opportunities. Then simulationmodels are described, including wind turbine...

  1. Rational Characterization Complex Geology Model——Macro Velocity Model

    Institute of Scientific and Technical Information of China (English)

    SongWei

    2004-01-01

    The accuracy of migration velocity construction is always a key problem of the image quality of pre-stack depth migration. The velocity model construction process is a process from an unknown to unknown iteration procedure and involves three important steps -- model building, migration and model modification. It is necessary to rationally describe the velocity model, according to the complexity of the problem. Taking the Marmousi model as a study object, We established some standards for a rational description of the velocity model on the basis of different velocity space scales, analysis varieties of travel time, and image quality. It is considered that for any given seismic data gathered in the migration velocity model the space wavelength of velocity, which should be expressed in variation of space wavelength of various frequency contents, appears in the seismic data. Some space wavelengths, which are necessary for a description of the model velocity field, are also varying with the layer complexity. For a simple layer velocity structure it is sufficient to apply a simple velocity model (the space wavelength is large enough), whereas, for a complicated layer velocity structure it is necessary to take a velocity model of a more precise scale. In fact, when we establish a velocity model, it is difficult to describe the velocity model at a full space scale, so it is important to limit the space scale of the velocity model according to the complexity of a layer structure and establish a rational macro velocity model.

  2. Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    the need for maintenance of the wind turbine. Either way, better total-cost-of-ownership for wind turbine operators can be achieved by improved control of the wind turbines. Wind turbine control can be improved in two ways, by improving the model on which the controller bases its design or by improving......Wind turbines play a major role in the transformation from a fossil fuel based energy production to a more sustainable production of energy. Total-cost-of-ownership is an important parameter when investors decide in which energy technology they should place their capital. Modern wind turbines...... are controlled by pitching the blades and by controlling the electro-magnetic torque of the generator, thus slowing the rotation of the blades. Improved control of wind turbines, leading to reduced fatigue loads, can be exploited by using less materials in the construction of the wind turbine or by reducing...

  3. Analysis of sand particles' lift-off and incident velocities in wind-blown sand flux

    Institute of Scientific and Technical Information of China (English)

    Tian-Li Bo; Xiao-Jing Zheng; Shao-Zhen Duan; Yi-Rui Liang

    2013-01-01

    In the research of windblown sand movement,the lift-off and incident velocities of saltating sand particles play a significant role in bridging the spatial and temporal scales from single sand particle's motion to windblown sand flux.In this paper,we achieved wind tunnel measurements of the movement of sand particles near sand bed through improving the wind tunnel experimental scheme of paticle image velocimetry (PIV) and data processing method.And then the influence of observation height on the probability distributions of lift-off and incident velocities of sand particles was analyzed.The results demonstrate that the observation height has no obvious influence on the distribution pattern of the lift-off and incident velocities of sand particles,i.e.,the probability distribution of horizontal and vertical velocities of lift-off and incident sand particles follow a Gaussian distribution and a negative exponential distribution,respectively.However,it influences the center of the Gaussian distribution,the decay constant and the amplitude of the negative exponential distribution.

  4. A method of calibrating wind velocity sensors with a modified gas flow calibrator

    Science.gov (United States)

    Stump, H. P.

    1978-01-01

    A procedure was described for calibrating air velocity sensors in the exhaust flow of a gas flow calibrator. The average velocity in the test section located at the calibrator exhaust was verified from the mass flow rate accurately measured by the calibrator's precision sonic nozzles. Air at elevated pressures flowed through a series of screens, diameter changes, and flow straighteners, resulting in a smooth flow through the open test section. The modified system generated air velocities of 2 to 90 meters per second with an uncertainty of about two percent for speeds below 15 meters per second and four percent for the higher speeds. Wind tunnel data correlated well with that taken in the flow calibrator.

  5. Solvable Optimal Velocity Models and Asymptotic Trajectory

    CERN Document Server

    Nakanishi, K; Igarashi, Y; Bando, M

    1996-01-01

    In the Optimal Velocity Model proposed as a new version of Car Following Model, it has been found that a congested flow is generated spontaneously from a homogeneous flow for a certain range of the traffic density. A well-established congested flow obtained in a numerical simulation shows a remarkable repetitive property such that the velocity of a vehicle evolves exactly in the same way as that of its preceding one except a time delay $T$. This leads to a global pattern formation in time development of vehicles' motion, and gives rise to a closed trajectory on $\\Delta x$-$v$ (headway-velocity) plane connecting congested and free flow points. To obtain the closed trajectory analytically, we propose a new approach to the pattern formation, which makes it possible to reduce the coupled car following equations to a single difference-differential equation (Rondo equation). To demonstrate our approach, we employ a class of linear models which are exactly solvable. We also introduce the concept of ``asymptotic traj...

  6. An analytical canopy-type model for wind farm-atmosphere interaction

    Science.gov (United States)

    Markfort, C. D.; Zhang, W.; Porte-Agel, F.

    2013-12-01

    We present a new model for the interactions between large-scale wind farms and the atmospheric boundary layer (ABL) based on similarity to canopy flows. Wind farms capture momentum from the atmospheric boundary layer both at the leading edge and from above. Based on our recent findings that turbulent flow in and above wind farms is similar to canopy-type flows, we examine this further with an analytical model that can predict the development length of the wind farm flow as well as vertical momentum absorption. Within the region of flow development, momentum is advected into the wind farm and wake turbulence draws excess momentum in from between turbines. This is characterized by large dispersive fluxes of momentum. Once the flow within the farm is developed, the area-averaged velocity profile exhibits an inflection point, characteristic of canopy-type flows. The inflected velocity profile is associated with the presence of a dominant characteristic turbulence scale, which may be responsible for a significant portion of the vertical momentum flux. Prediction of this scale is useful for determining the amount of available power for harvesting. The new model is tested with results from wind tunnel experiments, which characterize the turbulent flow in and above model wind farms. The model is useful for representing wind farms in meteorological and wind resource assessment models, for optimizing wind turbine spacing and layout, and for assessing the impacts of wind farms on nearby wind resources and the environment.

  7. nowCOAST's Map Service for NOAA NWS NDFD Gridded Forecasts of Surface Wind Velocity Barb (knots) (Time Offsets)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Map Information: This nowCOAST time-offsets map service provides maps depicting the NWS surface wind velocity forecasts from the National Digital Forecast Database...

  8. Aggregated wind power plant models consisting of IEC wind turbine models

    DEFF Research Database (Denmark)

    Altin, Müfit; Göksu, Ömer; Hansen, Anca Daniela

    2015-01-01

    turbines, parameters and models to represent each individual wind turbine in detail makes it necessary to develop aggregated wind power plant models considering the simulation time for power system stability studies. In this paper, aggregated wind power plant models consisting of the IEC 61400-27 variable...

  9. Migration velocity modeling based on common reflection surface gather

    Institute of Scientific and Technical Information of China (English)

    李振春; 姚云霞; 马在田; 王华忠

    2003-01-01

    The common-reflection-surface (CRS) stacking is a new seismic imaging method, which only depends on seismic three parameters and near-surface velocity instead of macro-velocity model. According to optimized three parameters obtained by CRS stacking, we derived an analytical relationship between three parameters and migration velocity field, and put forward CRS gather migration velocity modeling method, which realize velocity estimation by optimizing three parameters in CRS gather. The test of a sag model proved that this method is more effective and adaptable for velocity modeling of a complex geological body, and the accuracy of velocity analysis depends on the precision of optimized three parameters.

  10. Time scales for formation and spreading of velocity shells of pickup ions in the solar wind

    Science.gov (United States)

    Gaffey, J. D., Jr.; Wu, C. S.; Winske, D.

    1988-01-01

    This paper discusses the process of assimilation (pickup) by the solar wind of newly ionized atoms and molecules. Generally, the pickup process is considered to evolve in three stages: (1) the initial interaction of newly created ions with the interplanetary magnetic field to form the ring-beam distribution; (2) pitch angle scattering of the ring beam to form a hollow shell; and (3) slower velocity diffusion to form a partially filled-in shell distribution. Using numerical simulations of turbulence such as would occur naturally in the solar wind and such as would be encountered near cometary bow shocks, the processes of shell formation and evolution are studied, and the results are used to estimate the time scales for shell formation and diffusion in several situations of recent observational interest, the interstellar He data obtained by AMPTE and cometary ion pickup distributions obtained by various spacecraft at comets Giacobini-Zinner and Halley.

  11. A review on solar wind modeling: kinetic and fluid aspects

    CERN Document Server

    Echim, Marius; Lie-Svendsen, Oystein

    2013-01-01

    We review the main advantages and limitations of the kinetic exospheric and fluid models of the solar wind (SW). We discuss the hydrostatic model imagined by Chapman, the first supersonic hydrodynamic models published by Parker and the first generation subsonic kinetic model proposed by Chamberlain. It is shown that a correct estimation of the electric field as in the second generation kinetic exospheric models developed by Lemaire and Scherer, provides a supersonic expansion of the corona, reconciling the hydrodynamic and the kinetic approach. The third generation kinetic exospheric models considers kappa velocity distribution function (VDF) instead of a Maxwellian at the exobase and in addition they treat a non-monotonic variation of the electric potential with the radial distance; the fourth generation exospheric models include Coulomb collisions based on the Fokker--Planck collision term. Multi-fluid models of the solar wind provide a coarse grained description and reproduce with success the spatio-tempor...

  12. The applicability of the wind compression model

    CERN Document Server

    Cariková, Zuzana

    2014-01-01

    Compression of the stellar winds from rapidly rotating hot stars is described by the wind compression model. However, it was also shown that rapid rotation leads to rotational distortion of the stellar surface, resulting in the appearance of non-radial forces acting against the wind compression. In this note we justify the wind compression model for moderately rotating white dwarfs and slowly rotating giants. The former could be conducive to understanding density/ionization structure of the mass outflow from symbiotic stars and novae, while the latter can represent an effective mass-transfer mode in the wide interacting binaries.

  13. Modelling wave-boundary layer interaction for wind power applications

    Science.gov (United States)

    Jenkins, A. D.; Barstad, I.; Gupta, A.; Adakudlu, M.

    2012-04-01

    Marine wind power production facilities are subjected to direct and indirect effects of ocean waves. Direct effects include forces due to wave orbital motions and slamming of the water surface under breaking wave conditions, corrosion and icing due to sea spray, and the effects of wave-generated air bubbles. Indirect effects include include the influence of waves on the aerodynamic sea-surface roughness, air turbulence, the wind velocity profile, and air velocity oscillations, wave-induced currents and sediment transport. Field observations within the boundary layers from floating measurement may have to be corrected to account for biases induced as a result of wave-induced platform motions. To estimate the effect of waves on the atmospheric boundary layer we employ the WRF non-hydrostatic mesoscale atmosphere model, using the default YSU planetary boundary layer (PBL) scheme and the WAM spectral wave model, running simultaneously and coupled using the open-source coupler MCEL which can interpolate between different model grids and timesteps. The model is driven by the WRF wind velocity at 10 m above the surface. The WRF model receives from WAM updated air-sea stress fields computed from the wind input source term, and computes new fields for the Charnock parameter and marine surface aerodynamic roughness. Results from a North Atlantic and Nordic Seas simulation indicate that the two-way coupling scheme alters the 10 metre wind predicted by WRF by up to 10 per cent in comparison with a simulation using a constant Charnock parameter. The changes are greatest in developing situations with passages of fronts, moving depressions and squalls. This may be directly due to roughness length changes, or may be due to changes in the timing of front/depression/squall passages. Ongoing work includes investigating the effect of grid refinement/nesting, employing different PBL schemes, and allowing the wave field to change the direction of the total air-sea stress.

  14. Detailed signal model of coherent wind measurement lidar

    Science.gov (United States)

    Ma, Yuechao; Li, Sining; Lu, Wei

    2016-11-01

    Lidar is short for light detection and ranging, which is a tool to help measuring some useful information of atmosphere. In the recent years, more and more attention was paid to the research of wind measurement by lidar. Because the accurate wind information can be used not only in weather report, but also the safety guarantee of the airplanes. In this paper, a more detailed signal model of wind measurement lidar is proposed. It includes the laser transmitting part which describes the broadening of the spectral, the laser attenuation in the atmosphere, the backscattering signal and the detected signal. A Voigt profile is used to describe the broadening of the transmitting laser spectral, which is the most common situation that is the convolution of different broadening line shapes. The laser attenuation includes scattering and absorption. We use a Rayleigh scattering model and partially-Correlated quadratic-Velocity-Dependent Hard-Collision (pCqSDHC) model to describe the molecule scattering and absorption. When calculate the particles scattering and absorption, the Gaussian particles model is used to describe the shape of particles. Because of the Doppler Effect occurred between the laser and atmosphere, the wind velocity can be calculated by the backscattering signal. Then, a two parameter Weibull distribution is used to describe the wind filed, so that we can use it to do the future work. After all the description, the signal model of coherent wind measurement lidar is decided. And some of the simulation is given by MATLAB. This signal model can describe the system more accurate and more detailed, so that the following work will be easier and more efficient.

  15. THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Che, H.; Goldstein, M. L. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-11-10

    The formation of the observed core-halo feature in the solar wind electron velocity distribution function is a long-time puzzle. In this Letter, based on the current knowledge of nanoflares, we show that the nanoflare-accelerated electron beams are likely to trigger a strong electron two-stream instability that generates kinetic Alfvén wave and whistler wave turbulence, as we demonstrated in a previous paper. We further show that the core-halo feature produced during the origin of kinetic turbulence is likely to originate in the inner corona and can be preserved as the solar wind escapes to space along open field lines. We formulate a set of equations to describe the heating processes observed in the simulation and show that the core-halo temperature ratio of the solar wind is insensitive to the initial conditions in the corona and is related to the core-halo density ratio of the solar wind and to the quasi-saturation property of the two-stream instability at the time when the exponential decay ends. This relation can be extended to the more general core-halo-strahl feature in the solar wind. The temperature ratio between the core and hot components is nearly independent of the heliospheric distance to the Sun. We show that the core-halo relative drift previously reported is a relic of the fully saturated two-stream instability. Our theoretical results are consistent with the observations while new tests for this model are provided.

  16. Acceleration of the solar wind in a spherical coordinate kinetic model

    Science.gov (United States)

    Dyadechkin, Sergey; Kallio, Esa; Alho, Markku; Semenov, Vladimir; Erkaev, Nikolay

    2015-04-01

    We have studied the acceleration of the solar wind protons by using a spherical coordinate kinetic hybrid model (HYBs). The model treats ions as particles while electrons form a massless, charge neutralizing fluid. The model includes the gravitation, the electron pressure and the jxB forces. We have studied a magnetized and a non-magnetized solar wind cases and performed simulations for different isothermal electron temperatures by using the same initial Maxwellian velocity distribution function for protons. We show in the presentation of how the bulk velocity, the plasma density, the electric potential and the velocity distribution function of protons depend on the radial distance from the Sun to several Astronomical Units. The derived velocity and density profiles are compared with those of the Parker's solar wind model. Finally, extensions of the model and its applicability for a space weather modelling are discussed.

  17. A Comparison of Wind Flow Models for Wind Resource Assessment in Wind Energy Applications

    Directory of Open Access Journals (Sweden)

    Mathieu Landry

    2012-10-01

    Full Text Available The objective of this work was to assess the accuracy of various coupled mesoscale-microscale wind flow modeling methodologies for wind energy applications. This is achieved by examining and comparing mean wind speeds from several wind flow modeling methodologies with observational measurements from several 50 m met towers distributed across the study area. At the mesoscale level, with a 5 km resolution, two scenarios are examined based on the Mesoscale Compressible Community Model (MC2 model: the Canadian Wind Energy Atlas (CWEA scenario, which is based on standard input data, and the CWEA High Definition (CWEAHD scenario where high resolution land cover input data is used. A downscaling of the obtained mesoscale wind climate to the microscale level is then performed, where two linear microscale models, i.e., MsMicro and the Wind Atlas Analysis and Application Program (WAsP, are evaluated following three downscaling scenarios: CWEA-WAsP, CWEA-MsMicro and CWEAHD-MsMicro. Results show that, for the territory studied, with a modeling approach based on the MC2 and MsMicro models, also known as Wind Energy Simulation Toolkit (WEST, the use of high resolution land cover and topography data at the mesoscale level helps reduce modeling errors for both the mesoscale and microscale models, albeit only marginally. At the microscale level, results show that the MC2-WAsP modeling approach gave substantially better results than both MC2 and MsMicro modeling approaches due to tweaked meso-micro coupling.

  18. An Analytic Model of Galactic Winds and Mass Outflows

    Institute of Scientific and Technical Information of China (English)

    Cheng-Gang Shu; Hou-Jun Mo; Shu-De Mao

    2005-01-01

    Galactic winds and mass outflows are observed both in nearby starburst galaxies and in high-redshift star-forming galaxies. We develop a simple analytic model to understand the observed superwind phenomenon with a discussion of the model uncertainties. Our model is built upon the model of McKee & Ostriker for the interstellar medium. It allows one to predict how properties of a superwind,such as wind velocity and mass outflow rate, are related to properties of its star forming host galaxy, such as size, gas density and star formation rate. The model predicts a threshold of star formation rate density for the generation of observable galactic winds. Galaxies with more concentrated star formation activities produce superwinds with higher velocities. The predicted mass outflow rates are compara ble to (or slightly larger than) the corresponding star formation rates. We apply our model to both local starburst galaxies and high-redshift Lyman break galaxies, and find its predictions to be in good agreement with current observations. Our model is simple and so can be easily incorporated into numerical simulations and semi-analytical models of galaxy formation.

  19. Analytical Modeling of Wind Farms: A New Approach for Power Prediction

    Directory of Open Access Journals (Sweden)

    Amin Niayifar

    2016-09-01

    Full Text Available Wind farm power production is known to be strongly affected by turbine wake effects. The purpose of this study is to develop and test a new analytical model for the prediction of wind turbine wakes and the associated power losses in wind farms. The new model is an extension of the one recently proposed by Bastankhah and Porté-Agel for the wake of stand-alone wind turbines. It satisfies the conservation of mass and momentum and assumes a self-similar Gaussian shape of the velocity deficit. The local wake growth rate is estimated based on the local streamwise turbulence intensity. Superposition of velocity deficits is used to model the interaction of the multiple wakes. Furthermore, the power production from the wind turbines is calculated using the power curve. The performance of the new analytical wind farm model is validated against power measurements and large-eddy simulation (LES data from the Horns Rev wind farm for a wide range of wind directions, corresponding to a variety of full-wake and partial-wake conditions. A reasonable agreement is found between the proposed analytical model, LES data, and power measurements. Compared with a commonly used wind farm wake model, the new model shows a significant improvement in the prediction of wind farm power.

  20. Modeling Sensitivities to the 20% Wind Scenario Report with the WinDS Model

    Energy Technology Data Exchange (ETDEWEB)

    Blair, N.; Hand, M.; Short, W.; Sullivan, P.

    2008-06-01

    In May 2008, DOE published '20% Wind Energy by 2030', a report which describes the costs and benefits of producing 20% of the nation's projected electricity demand in 2030 from wind technology. The total electricity system cost resulting from this scenario was modestly higher than a scenario in which no additional wind was installed after 2006. NREL's Wind Deployment System (WinDS) model was used to support this analysis. With its 358 regions, explicit treatment of transmission expansion, onshore siting considerations, shallow- and deep-water wind resources, 2030 outlook, explicit financing assumptions, endogenous learning, and stochastic treatment of wind resource variability, WinDS is unique in the level of detail it can bring to this analysis. For the 20% Wind Energy by 2030 analysis, the group chose various model structures (such as the ability to wheel power within an interconnect), and the wind industry agreed on a variety of model inputs (such as the cost of transmission or new wind turbines). For this paper, the analysis examined the sensitivity of the results to variations in those input values and model structure choices. These included wind cost and performance improvements over time, seasonal/diurnal wind resource variations, transmission access and costs, siting costs, conventional fuel cost trajectories, and conventional capital costs.

  1. Advancements in Wind Integration Study Input Data Modeling: The Wind Integration National Dataset (WIND) Toolkit

    Science.gov (United States)

    Hodge, B.; Orwig, K.; McCaa, J. R.; Harrold, S.; Draxl, C.; Jones, W.; Searight, K.; Getman, D.

    2013-12-01

    Regional wind integration studies in the United States, such as the Western Wind and Solar Integration Study (WWSIS), Eastern Wind Integration and Transmission Study (EWITS), and Eastern Renewable Generation Integration Study (ERGIS), perform detailed simulations of the power system to determine the impact of high wind and solar energy penetrations on power systems operations. Some of the specific aspects examined include: infrastructure requirements, impacts on grid operations and conventional generators, ancillary service requirements, as well as the benefits of geographic diversity and forecasting. These studies require geographically broad and temporally consistent wind and solar power production input datasets that realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of wind and solar power plant production, and are time-synchronous with load profiles. The original western and eastern wind datasets were generated independently for 2004-2006 using numerical weather prediction (NWP) models run on a ~2 km grid with 10-minute resolution. Each utilized its own site selection process to augment existing wind plants with simulated sites of high development potential. The original dataset also included day-ahead simulated forecasts. These datasets were the first of their kind and many lessons were learned from their development. For example, the modeling approach used generated periodic false ramps that later had to be removed due to unrealistic impacts on ancillary service requirements. For several years, stakeholders have been requesting an updated dataset that: 1) covers more recent years; 2) spans four or more years to better evaluate interannual variability; 3) uses improved methods to minimize false ramps and spatial seams; 4) better incorporates solar power production inputs; and 5) is more easily accessible. To address these needs, the U.S. Department of Energy (DOE) Wind and Solar Programs have funded two

  2. A neural network based wake model for small wind turbine siting near obstacles

    Science.gov (United States)

    Brunskill, Andrew William

    Many potential small wind turbine locations are near obstacles such as buildings and shelterbelts, which can have a significant, detrimental effect on the local wind climate. This thesis describes the creation of a new model which can predict the wind speed, turbulence intensity, and wind power density at any point in an obstacle's region of influence, relative to unsheltered conditions. Artificial neural networks were used to learn the relationship between an obstacle's characteristics and its effects on the local wind. The neural network was trained using measurements collected in the wakes of scale models exposed to a simulated atmospheric boundary layer in a wind tunnel. A field experiment was conducted to validate the wind tunnel measurements. Model predictions are most accurate in the far wake region. The estimated mean uncertainties associated with model predictions of velocity deficit, power density deficit, and turbulence intensity excess are 5.0%, 15%, and 12.8%, respectively.

  3. Tracing Slow Winds from T Tauri Stars via Low Velocity Forbidden Line Emission

    CERN Document Server

    Simon, M N; Edwards, S; Feng, W; Gorti, U; Hollenbach, D; Rigliaco, E; Keane, J T

    2016-01-01

    Using Keck/HIRES spectra {\\Delta}v ~ 7 km/s, we analyze forbidden lines of [O I] 6300 {\\AA}, [O I] 5577 {\\AA} and [S II] 6731 {\\AA} from 33 T Tauri stars covering a range of disk evolutionary stages. After removing a high velocity component (HVC) associated with microjets, we study the properties of the low velocity component (LVC). The LVC can be attributed to slow disk winds that could be magnetically (MHD) or thermally (photoevaporative) driven. Both of these winds play an important role in the evolution and dispersal of protoplanetary material. LVC emission is seen in all 30 stars with detected [O I] but only in 2 out of eight with detected [S II] , so our analysis is largely based on the properties of the [O I] LVC. The LVC itself is resolved into broad (BC) and narrow (NC) kinematic components. Both components are found over a wide range of accretion rates and their luminosity is correlated with the accretion luminosity, but the NC is proportionately stronger than the BC in transition disks. The FWHM of...

  4. Modeling Atmospheric Turbulence via Rapid Distortion Theory: Spectral Tensor of Velocity and Buoyancy

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2017-01-01

    A spectral tensor model is presented for turbulent fluctuations of wind velocity components and temperature, assuming uniform vertical gradients in mean temperature and mean wind speed. The model is built upon rapid distortion theory (RDT) following studies by Mann and by Hanazaki and Hunt, using...... the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate epsilon, length scale of energy-containing eddies L, a turbulence anisotropy parameter Gamma, gradient Richardson number (Ri) representing...... separation. Finally, it is shown that the RDT output can deviate from Monin-Obukhov similarity theory....

  5. Modelling the wind climate of Ireland

    DEFF Research Database (Denmark)

    Frank, H.P.; Landberg, L.

    1997-01-01

    The wind climate of Ireland has been calculated using the Karlsruhe Atmospheric Mesoscale Model KAMM. The climatology is represented by 65 frequency classes of geostrophic wind that were selected as equiangular direction sectors and speed intervals with equal frequency in a sector. The results...

  6. Using albedo to reform wind erosion modelling, mapping and monitoring

    Science.gov (United States)

    Chappell, Adrian; Webb, Nicholas P.

    2016-12-01

    Wind erosion and dust emission models are used to assess the impacts of dust on radiative forcing in the atmosphere, cloud formation, nutrient fertilisation and human health. The models are underpinned by a two-dimensional geometric property (lateral cover; L) used to characterise the three-dimensional aerodynamic roughness (sheltered area or wakes) of the Earth's surface and calibrate the momentum it extracts from the wind. We reveal a fundamental weakness in L and demonstrate that values are an order of magnitude too small and significant aerodynamic interactions between roughness elements and their sheltered areas have been omitted, particularly under sparse surface roughness. We describe a solution which develops published work to establish a relation between sheltered area and the proportion of shadow over a given area; the inverse of direct beam directional hemispherical reflectance (black sky albedo; BSA). We show direct relations between shadow and wind tunnel measurements and thereby provide direct calibrations of key aerodynamic properties. Estimation of the aerodynamic parameters from albedo enables wind erosion assessments over areas, across platforms from the field to airborne and readily available satellite data. Our new approach demonstrated redundancy in existing wind erosion models and thereby reduced model complexity and improved fidelity. We found that the use of albedo enabled an adequate description of aerodynamic sheltering to characterise fluid dynamics and predict sediment transport without the use of a drag partition scheme (Rt) or threshold friction velocity (u∗t). We applied the calibrations to produce global maps of aerodynamic properties which showed very similar spatial patterns to each other and confirmed the redundancy in the traditional parameters of wind erosion modelling. We evaluated temporal patterns of predicted horizontal mass flux at locations across Australia which revealed variation between land cover types that would not

  7. A New Car Following Model: Comprehensive Optimal Velocity Model

    Institute of Scientific and Technical Information of China (English)

    TIAN Jun-Fang; JIA Bin; LI Xing-Gang

    2011-01-01

    In this paper, we present a new car-following model, i.e.comprehensive optimal velocity model (COVM),whose optimal velocity function not only depends on the following distance of the preceding vehicle, but also depends on the velocity difference with preceding vehicle.Simulation results show that COVM is an improvement over the previous ones theoretically.Then, the stability condition of the model is obtained by the linear stability analysis, which has shorwn that the model could obtain a bigger stable region than previous models in the phase diagram.Through the nonlinear analysis, the Burgers, Korteweg-de Vries (KdV) and modified KdV (mKdV) equations are derived for the triangular shock wave, the soliton wave, and the kink-antikink soliton wave.At the same time, numerical simulations are edso carried out to show that the model could simulate these density waves.

  8. A discrete force allocation algorithm for modelling wind turbines in computational fluid dynamics

    DEFF Research Database (Denmark)

    Réthoré, Pierre-Elouan; Sørensen, Niels N.

    2012-01-01

    This paper describes an algorithm for allocating discrete forces in computational fluid dynamics (CFD). Discrete forces are useful in wind energy CFD. They are used as an approximation of the wind turbine blades’ action on the wind (actuator disc/line), to model forests and to model turbulent......, this algorithm does not address the specific cases where discrete forces are present. The velocities and pressure exhibit some significant numerical fluctuations at the position where the body forces are applied. While this issue is limited in space, it is usually critical to accurately estimate the velocity...

  9. A Hydrodynamical Model of a Rotating Wind Source and Its Effects on the Collapse of a Rotating Core

    Directory of Open Access Journals (Sweden)

    Guillermo Arreaga-Garcia

    2015-01-01

    Full Text Available This work presents three-dimensional hydrodynamical simulations with the fully parallel GAGDET2 code, to model a rotating source that emits wind in order to study the subsequent dynamics of the wind in three independent scenarios. In the first scenario we consider several models of the wind source, which is characterized by a rotation velocity Vrot and an escape velocity Vesc, so that the models have a radially outward wind velocity magnitude Vrad given by 1, 2, 4, 6, and 8 times Vrot. In the second scenario, we study the interaction of winds emitted from a binary system in two kinds of models: one in which the source remains during the wind emission and a second one in which all the source itself becomes wind. In the third scenario we consider the interaction of a rotating source that emits wind within a collapsing and rotating core. In this scenario we consider only wind models of the second kind built over a new initial radial mesh, such that the angular velocity of the wind Ωw is 1, 100, and 1000 times the angular velocity of the core Ωc.

  10. Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Hansen, Kurt Schaldemose; Frandsen, Sten Tronæs

    2009-01-01

    power losses due to wakes and loads. The research presented is part of the EC-funded UpWind project, which aims to radically improve wind turbine and wind farm models in order to continue to improve the costs of wind energy. Reducing wake losses, or even reduce uncertainties in predicting power losses...... of models from computational fluid dynamics (CFD) to wind form models in terms of how accurately they represent wake losses when compared with measurements from offshore wind forms. The ultimate objective is to improve modelling of flow for large wind forms in order to optimize wind form layouts to reduce...... from wakes, contributes to the overall goal of reduced costs. Here, we assess the state of the art in wake and flow modelling for offshore wind forms, the focus so for has been cases at the Horns Rev wind form, which indicate that wind form models require modification to reduce under-prediction of wake...

  11. Modeling and robust control of wind turbine

    Science.gov (United States)

    Gilev, Bogdan

    2016-12-01

    In this paper a model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. This model is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model and robust control theory is developed a robust controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and robust controller

  12. Extreme gust wind estimation using mesoscale modeling

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kruger, Andries

    2014-01-01

    through turbulent eddies. This process is modeled using the mesoscale Weather Forecasting and Research (WRF) model. The gust at the surface is calculated as the largest winds over a layer where the averaged turbulence kinetic energy is greater than the averaged buoyancy force. The experiments have been......Currently, the existing estimation of the extreme gust wind, e.g. the 50-year winds of 3 s values, in the IEC standard, is based on a statistical model to convert the 1:50-year wind values from the 10 min resolution. This statistical model assumes a Gaussian process that satisfies the classical...... done for Denmark and two areas in South Africa. For South Africa, the extreme gust atlases from South Africa were created from the output of the mesoscale modelling using Climate Forecasting System Reanalysis (CFSR) forcing for the period 1998 – 2010. The extensive measurements including turbulence...

  13. Modelling the failure behaviour of wind turbines

    Science.gov (United States)

    Faulstich, S.; Berkhout, V.; Mayer, J.; Siebenlist, D.

    2016-09-01

    Modelling the failure behaviour of wind turbines is an essential part of offshore wind farm simulation software as it leads to optimized decision making when specifying the necessary resources for the operation and maintenance of wind farms. In order to optimize O&M strategies, a thorough understanding of a wind turbine's failure behaviour is vital and is therefore being developed at Fraunhofer IWES. Within this article, first the failure models of existing offshore O&M tools are presented to show the state of the art and strengths and weaknesses of the respective models are briefly discussed. Then a conceptual framework for modelling different failure mechanisms of wind turbines is being presented. This framework takes into account the different wind turbine subsystems and structures as well as the failure modes of a component by applying several influencing factors representing wear and break failure mechanisms. A failure function is being set up for the rotor blade as exemplary component and simulation results have been compared to a constant failure rate and to empirical wind turbine fleet data as a reference. The comparison and the breakdown of specific failure categories demonstrate the overall plausibility of the model.

  14. A Predictive Model for Wind Farms Using Dynamic Mode Decomposition

    Science.gov (United States)

    Thomas, Vaughan; Meneveau, Charles; Gayme, Dennice

    2016-11-01

    In this work we extend traditional dynamic mode decomposition (DMD) to develop a linear predictive model for the time evolution of the velocity field for a multiple-turbine wind farm. Traditional DMD identifies a set of DMD modes which can be used to produce a linear system that approximates the dynamics of the original system. Typically, these DMD modes consist of those that both grow and decay, but in order to develop a predictive model we need a system that evolves along a manifold that neither grows nor decays. Here we modify the DMD calculation to build such a model. We then apply this method to three dimensional large eddy simulations (LES) of a multi-turbine wind farm. Our predictive wind farm model is initialized with a small time series of data independent of the original data used to create the system. When initialized in this manner our DMD based model can reproduce the subsequent time evolution of the velocity field over ten inter-turbine convective timescales with a gradual falloff in performance. This work is supported by the National Science Foundation (Grants ECCS-1230788 and OISE-1243482, the WINDINSPIRE project).

  15. Modeling of the dynamics of wind to power conversion including high wind speed behavior

    DEFF Research Database (Denmark)

    Litong-Palima, Marisciel; Bjerge, Martin Huus; Cutululis, Nicolaos Antonio

    2016-01-01

    of power system studies, but the idea of the proposed wind turbine model is to include the main dynamic effects in order to have a better representation of the fluctuations in the output power and of the fast power ramping especially because of high wind speed shutdowns of the wind turbine. The high wind......This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series...... for power system studies. This paper focuses on describing and validating the single wind turbine model, and is therefore neither describing wind speed modeling nor aggregation of contributions from a whole wind farm or a power system area. The state-of-the-art is to use static power curves for the purpose...

  16. Effect of a magnetic field on massive-star winds - I. Mass-loss and velocity for a dipole field

    Science.gov (United States)

    Bard, Christopher; Townsend, Richard H. D.

    2016-11-01

    We generalize the Rigid-Field Hydrodynamic equations to accommodate arbitrary magnetic field topologies, resulting in a new Arbitrary Rigid-Field Hydrodynamic (ARFHD) formalism. We undertake a critical point calculation of the steady-state ARFHD equations with a CAK-type radiative acceleration and determine the effects of a dipole magnetic field on the usual CAK mass-loss rate and velocity structure. Enforcing the proper optically thin limit for the radiative line-acceleration is found to decrease both the mass-loss and wind acceleration, while rotation boosts both properties. We define optically thin correction and rotation parameters to quantify these effects on the global mass-loss rate and develop scaling laws for the surface mass-flux as a function of surface colatitude. These scaling laws are found to agree with previous laws derived from magnetohydrodynamic simulations of magnetospheres. The dipole magnetosphere velocity structure is found to differ from a global beta-velocity law, which contradicts a central assumption of the previously developed XADM model of X-ray emission from magnetospheres.

  17. Validation of the Eddy Viscosity and Lange Wake Models using Measured Wake Flow Characteristics Behind a Large Wind Turbine Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hyeon; Kim, Bum Suk; Huh, Jong Chul [Jeju National Univ., Jeju (Korea, Republic of); Go, Young Jun [Hanjin Ind, Co., Ltd., Yangsan (Korea, Republic of)

    2016-01-15

    The wake effects behind wind turbines were investigated by using data from a Met Mast tower and the SCADA (Supervisory Control and Data Acquisition) system for a wind turbine. The results of the wake investigations and predicted values for the velocity deficit based on the eddy viscosity model were compared with the turbulence intensity from the Lange model. As a result, the velocity deficit and turbulence intensity of the wake increased as the free stream wind speed decreased. In addition, the magnitude of the velocity deficit for the center of the wake using the eddy viscosity model was overestimated while the turbulence intensity from the Lange model showed similarities with measured values.

  18. Turbulence Impact on Wind Turbines: Experimental Investigations on a Wind Turbine Model

    Science.gov (United States)

    Al-Abadi, A.; Kim, Y. J.; Ertunç, Ö.; Delgado, A.

    2016-09-01

    Experimental investigations have been conducted by exposing an efficient wind turbine model to different turbulence levels in a wind tunnel. Nearly isotropic turbulence is generated by using two static squared grids: fine and coarse one. In addition, the distance between the wind-turbine and the grid is adjusted. Hence, as the turbulence decays in the flow direction, the wind-turbine is exposed to turbulence with various energy and length scale content. The developments of turbulence scales in the flow direction at various Reynolds numbers and the grid mesh size are measured. Those measurements are conducted with hot-wire anemometry in the absence of the wind-turbine. Detailed measurements and analysis of the upstream and downstream velocities, turbulence intensity and spectrum distributions are done. Performance measurements are conducted with and without turbulence grids and the results are compared. Performance measurements are conducted with an experimental setup that allow measuring of torque, rotational speed from the electrical parameters. The study shows the higher the turbulence level, the higher the power coefficient. This is due to many reasons. First, is the interaction of turbulence scales with the blade surface boundary layer, which in turn delay the stall. Thus, suppressing the boundary layer and preventing it from separation and hence enhancing the aerodynamics characteristics of the blade. In addition, higher turbulence helps in damping the tip vortices. Thus, reduces the tip losses. Adding winglets to the blade tip will reduce the tip vortex. Further investigations of the near and far wake-surrounding intersection are performed to understand the energy exchange and the free stream entrainment that help in retrieving the velocity.

  19. Velocity field measurements in the wake of a propeller model

    Science.gov (United States)

    Mukund, R.; Kumar, A. Chandan

    2016-10-01

    Turboprop configurations are being revisited for the modern-day regional transport aircrafts for their fuel efficiency. The use of laminar flow wings is an effort in this direction. One way to further improve their efficiency is by optimizing the flow over the wing in the propeller wake. Previous studies have focused on improving the gross aerodynamic characteristics of the wing. It is known that the propeller slipstream causes early transition of the boundary layer on the wing. However, an optimized design of the propeller and wing combination could delay this transition and decrease the skin friction drag. Such a wing design would require the detailed knowledge of the development of the slipstream in isolated conditions. There are very few studies in the literature addressing the requirements of transport aircraft having six-bladed propeller and cruising at a high propeller advance ratio. Low-speed wind tunnel experiments have been conducted on a powered propeller model in isolated conditions, measuring the velocity field in the vertical plane behind the propeller using two-component hot-wire anemometry. The data obtained clearly resolved the mean velocity, the turbulence, the ensemble phase averages and the structure and development of the tip vortex. The turbulence in the slipstream showed that transition could be close to the leading edge of the wing, making it a fine case for optimization. The development of the wake with distance shows some interesting flow features, and the data are valuable for flow computation and optimization.

  20. Wind direction/velocity and current direction/velocity data from current meter casts in a world wide distribution from 1970-12-06 to 1991-10-01 (NODC Accession 9700218)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction/velocity and current direction/velocity data were collected using current meter casts in a world wide distribution from December 6, 1970 to October...

  1. Wave Modeling of the Solar Wind.

    Science.gov (United States)

    Ofman, Leon

    The acceleration and heating of the solar wind have been studied for decades using satellite observations and models. However, the exact mechanism that leads to solar wind heating and acceleration is poorly understood. In order to improve the understanding of the physical mechanisms that are involved in these processes a combination of modeling and observational analysis is required. Recent models constrained by satellite observations show that wave heating in the low-frequency (MHD), and high-frequency (ion-cyclotron) range may provide the necessary momentum and heat input to coronal plasma and produce the solar wind. This review is focused on the results of several recent solar modeling studies that include waves explicitly in the MHD and the kinetic regime. The current status of the understanding of the solar wind acceleration and heating by waves is reviewed.

  2. Modeling Innovations Advance Wind Energy Industry

    Science.gov (United States)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  3. Spectral coherence model for power fluctuations in a wind farm

    DEFF Research Database (Denmark)

    Vigueras-Rodriguez, A.; Sørensen, Poul Ejnar; Viedma, A.;

    2012-01-01

    This paper provides a model for the coherence between wind speeds located in a horizontal plane corresponding to hub height of wind turbines in a large wind farm. The model has been developed using wind speed and power measurements from the 72 Wind Turbines and two of the meteorological masts from...

  4. Time Series Model of Wind Speed for Multi Wind Turbines based on Mixed Copula

    Directory of Open Access Journals (Sweden)

    Nie Dan

    2016-01-01

    Full Text Available Because wind power is intermittent, random and so on, large scale grid will directly affect the safe and stable operation of power grid. In order to make a quantitative study on the characteristics of the wind speed of wind turbine, the wind speed time series model of the multi wind turbine generator is constructed by using the mixed Copula-ARMA function in this paper, and a numerical example is also given. The research results show that the model can effectively predict the wind speed, ensure the efficient operation of the wind turbine, and provide theoretical basis for the stability of wind power grid connected operation.

  5. MHD Wind Models in X-Ray Binaries and AGN

    Science.gov (United States)

    Behar, Ehud; Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Contopoulos, Ioannis

    2017-08-01

    Self-similar magnetohydrodynamic (MHD) wind models that can explain both the kinematics and the ionization structure of outflows from accretion sources will be presented.The X-ray absorption-line properties of these outflows are diverse, their velocity ranging from 0.001c to 0.1c, and their ionization ranging from neutral to fully ionized.We will show how the velocity structure and density profile of the wind can be tightly constrained, by finding the scaling of the magnetic flux with the distance from the center that best matches observations, and with no other priors.It will be demonstrated that the same basic MHD wind structure that successfully accounts for the X-ray absorber properties of outflows from supermassive black holes, also reproduces the high-resolution X-ray spectrum of the accreting stellar-mass black hole GRO J1655-40 for a series of ions between ~1A and ~12A.These results support both the magnetic nature of these winds, as well as the universal nature of magnetic outflows across all black hole sizes.

  6. Diode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steering

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Iversen, Theis Faber Quist; Hu, Qi;

    2014-01-01

    We extend the functionality of a low-cost CW diode lasercoherent lidar from radial wind speed (scalar) sensing to wind velocity(vector) measurements. Both speed and horizontal direction of the wind at~80 m remote distance are derived from two successive radial speedestimates by alternately steering...... the lidar probe beam in two different lines-of-sight (LOS) with a 60° angular separation. Dual-LOS beam-steering isimplemented optically with no moving parts by means of a controllableliquid-crystal retarder (LCR). The LCR switches the polarization betweentwo orthogonal linear states of the lidar beam so...... steered fromone LOS to the other every half a second is experimentally demonstrated –resulting in 1 Hz rate estimates of wind velocity magnitude and direction atbetter than 0.1 m/s and 1° resolution, respectively...

  7. Intensity of the Fe XV emission line corona, the level of geomagnetic activity, and the velocity of the solar wind

    Science.gov (United States)

    Bell, B.; Noci, G.

    1976-01-01

    The method of superposed epochs is used to determine the average solar wind velocity and the Kp index following central meridian passage of coronal weak and bright features identified from OSO 7 isophotograms of the Fe XV (284 A) emission line. It is found that bright coronal regions possess magnetic fields of closed configuration, thus reducing particle escape, while coronal holes possess open magnetic field lines favorable to particle escape or enhanced outflow of the solar wind.

  8. A Statistical Model for the Prediction of Wind-Speed Probabilities in the Atmospheric Surface Layer

    Science.gov (United States)

    Efthimiou, G. C.; Hertwig, D.; Andronopoulos, S.; Bartzis, J. G.; Coceal, O.

    2016-11-01

    Wind fields in the atmospheric surface layer (ASL) are highly three-dimensional and characterized by strong spatial and temporal variability. For various applications such as wind-comfort assessments and structural design, an understanding of potentially hazardous wind extremes is important. Statistical models are designed to facilitate conclusions about the occurrence probability of wind speeds based on the knowledge of low-order flow statistics. Being particularly interested in the upper tail regions we show that the statistical behaviour of near-surface wind speeds is adequately represented by the Beta distribution. By using the properties of the Beta probability density function in combination with a model for estimating extreme values based on readily available turbulence statistics, it is demonstrated that this novel modelling approach reliably predicts the upper margins of encountered wind speeds. The model's basic parameter is derived from three substantially different calibrating datasets of flow in the ASL originating from boundary-layer wind-tunnel measurements and direct numerical simulation. Evaluating the model based on independent field observations of near-surface wind speeds shows a high level of agreement between the statistically modelled horizontal wind speeds and measurements. The results show that, based on knowledge of only a few simple flow statistics (mean wind speed, wind-speed fluctuations and integral time scales), the occurrence probability of velocity magnitudes at arbitrary flow locations in the ASL can be estimated with a high degree of confidence.

  9. Experimental analysis of sand particles' lift-off and incident velocities in wind-blown sand flux

    Institute of Scientific and Technical Information of China (English)

    Li Xie; Zhibao Dong; Xiaojing Zheng

    2005-01-01

    The probability distributions of sand particles' lift-off and incident velocities in a wind-blown sand flux play very important roles in the simulation of the wind-blown sand movement. In this paper, the vertical and the horizontal speeds of sand particles located at 1.0 mm above a sand-bed in a wind-blown sand flux are observed with the aid of Phase Doppler Anemometry (PDA) in a wind tunnel. Based on the experimental data, the probability distributions of not only the vertical lift-off speed but also the lift-off velocity as well as its horizontal component and the incident velocity as well as its vertical and horizontal components can be obtained by the equal distance histogram method. It is found, according to the results of the χ2-test for these probability distributions, that the probability density functions (pdf's) of the sand particles' lift-off and incident velocities as well as their vertical components are described by the Gamma density function with different peak values and shapes and the downwind incident and lift-off horizontal speeds, respectively, can be described by the lognormal and the Gamma density functions. These pdf's depend on not only the sand particle diameter but also the wind speed.

  10. Parker's Model for Stellar Wind and Magnetohydrodynamic Extensions

    CERN Document Server

    Shivamoggi, B K

    2016-01-01

    In this paper, we first revisit Parker's hydrodynamic model for a stellar wind and make further analytic considerations. We show that the visualization of an effective de Laval type nozzle associated with Parker's model is valid only in a superficial sense and not on the dynamical level. We then make an analytic considerations on the Weber-Davis magnetohydrodynamic (MHD) extension of Parker's model with a view to provide a qualitative understanding of the coupling between the magnetic field and the plasma motion in the stellar wind. We find that, *the MHD azimuthal velocity profile actually resembles that for hydrodynamic Lamb-Oseen vortex; *Keplerian-orbit conditions prevail near a strong rotator even in a magnetized situation; *Parker's hydrodynamic scenario \\cite{Par} seems to reappear in the strong magnetization regime.\\end{itemize}

  11. CFD Wake Modelling with a BEM Wind Turbine Sub-Model

    Directory of Open Access Journals (Sweden)

    Anders Hallanger

    2013-01-01

    Full Text Available Modelling of wind farms using computational fluid dynamics (CFD resolving the flow field around each wind turbine's blades on a moving computational grid is still too costly and time consuming in terms of computational capacity and effort. One strategy is to use sub-models for the wind turbines, and sub-grid models for turbulence production and dissipation to model the turbulent viscosity accurately enough to handle interaction of wakes in wind farms. A wind turbine sub-model, based on the Blade Momentum Theory, see Hansen (2008, has been implemented in an in-house CFD code, see Hallanger et al. (2002. The tangential and normal reaction forces from the wind turbine blades are distributed on the control volumes (CVs at the wind turbine rotor location as sources in the conservation equations of momentum. The classical k-epsilon turbulence model of Launder and Spalding (1972 is implemented with sub-grid turbulence (SGT model, see Sha and Launder (1979 and Sand and Salvesen (1994. Steady state CFD simulations were compared with flow and turbulence measurements in the wake of a model scale wind turbine, see Krogstad and Eriksen (2011. The simulated results compared best with experiments when stalling (boundary layer separation on the wind turbine blades did not occur. The SGT model did improve turbulence level in the wake but seems to smear the wake flow structure. It should be noted that the simulations are carried out steady state not including flow oscillations caused by vortex shedding from tower and blades as they were in the experiments. Further improvement of the simulated velocity defect and turbulence level seems to rely on better parameter estimation to the SGT model, improvements to the SGT model, and possibly transient- instead of steady state simulations.

  12. The effect of the nonlinear velocity and history dependencies of the aerodynamic force on the dynamic response of a rotating wind turbine blade

    Science.gov (United States)

    van der Male, Pim; van Dalen, Karel N.; Metrikine, Andrei V.

    2016-11-01

    Existing models for the analysis of offshore wind turbines account for the aerodynamic action on the turbine rotor in detail, requiring a high computational price. When considering the foundation of an offshore wind turbine, however, a reduced rotor model may be sufficient. To define such a model, the significance of the nonlinear velocity and history dependency of the aerodynamic force on a rotating blade should be known. Aerodynamic interaction renders the dynamics of a rotating blade in an ambient wind field nonlinear in terms of the dependency on the wind velocity relative to the structural motion. Moreover, the development in time of the aerodynamic force does not follow the flow velocity instantaneously, implying a history dependency. In addition, both the non-uniform blade geometry and the aerodynamic interaction couple the blade motions in and out of the rotational plane. Therefore, this study presents the Euler-Bernoulli formulation of a twisted rotating blade connected to a rigid hub, excited by either instantaneous or history-dependent aerodynamic forces. On this basis, the importance of the history dependency is determined. Moreover, to assess the nonlinear contributions, both models are linearized. The structural response is computed for a stand-still and a rotating blade, based on the NREL 5-MW turbine. To this end, the model is reduced on the basis of its first three free-vibration mode shapes. Blade tip response predictions, computed from turbulent excitation, correctly account for both modal and directional couplings, and the added damping resulting from the dependency of the aerodynamic force on the structural motion. Considering the deflection of the blade tip, the history-dependent and the instantaneous force models perform equally well, providing a basis for the potential use of the instantaneous model for the rotor reduction. The linearized instantaneous model provides similar results for the rotating blade, indicating its potential

  13. Physical model tests for floating wind turbines

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Mikkelsen, Robert Flemming; Borg, Michael

    Floating offshore wind turbines are relevant at sites where the depth is too large for the installation of a bottom fixed substructure. While 3200 bottom fixed offshore turbines has been installed in Europe (EWEA 2016), only a handful of floating wind turbines exist worldwide and it is still...... an open question which floater concept is the most economically feasible. The design of the floaters for the floating turbines relies heavily on numerical modelling. While several coupled models exist, data sets for their validation are scarce. Validation, however, is important since the turbine behaviour...... is complex due to the combined actions of aero- and hydrodynamic loads, mooring loads and blade pitch control. The present talk outlines two recent test campaigns with a floating wind turbine in waves and wind. Two floater were tested, a compact TLP floater designed at DTU (Bredmose et al 2015, Pegalajar...

  14. Numerical simulations of stellar winds polytropic models

    CERN Document Server

    Keppens, R

    1999-01-01

    We discuss steady-state transonic outflows obtained by direct numerical solution of the hydrodynamic and magnetohydrodynamic equations. We make use of the Versatile Advection Code, a software package for solving systems of (hyperbolic) partial differential equations. We proceed stepwise from a spherically symmetric, isothermal, unmagnetized, non-rotating Parker wind to arrive at axisymmetric, polytropic, magnetized, rotating models. These represent 2D generalisations of the analytical 1D Weber-Davis wind solution, which we obtain in the process. Axisymmetric wind solutions containing both a `wind' and a `dead' zone are presented. Since we are solving for steady-state solutions, we efficiently exploit fully implicit time stepping. The method allows us to model thermally and/or magneto-centrifugally driven stellar outflows. We particularly emphasize the boundary conditions imposed at the stellar surface. For these axisymmetric, steady-state solutions, we can use the knowledge of the flux functions to verify the...

  15. Coupled wake boundary layer model of wind-farms

    CERN Document Server

    Stevens, Richard J A M; Meneveau, Charles

    2014-01-01

    We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall wind-farm boundary layer structure. The wake expansion/superposition model captures the effect of turbine positioning, while the top-down portion adds the interaction between the wind-turbine wakes and the atmospheric boundary layer. Each portion of the model requires specification of a parameter that is not known a-priori. For the wake model the wake expansion coefficient is required, while the top-down model requires an effective span-wise turbine spacing within which the model's momentum balance is relevant. The wake expansion coefficient is obtained by matching the predicted mean velocity at the turbine from both approaches, while the effective span-wise turbine spacing depends on turbine positioning and thus can be determined from the wake expansion...

  16. A new car-following model considering velocity anticipation

    Science.gov (United States)

    Tian, Jun-Fang; Jia, Bin; Li, Xin-Gang; Gao, Zi-You

    2010-01-01

    The full velocity difference model proposed by Jiang et al. [2001 Phys. Rev. E 64 017101] has been improved by introducing velocity anticipation. Velocity anticipation means the follower estimates the future velocity of the leader. The stability condition of the new model is obtained by using the linear stability theory. Theoretical results show that the stability region increases when we increase the anticipation time interval. The mKdV equation is derived to describe the kink-antikink soliton wave and obtain the coexisting stability line. The delay time of car motion and kinematic wave speed at jam density are obtained in this model. Numerical simulations exhibit that when we increase the anticipation time interval enough, the new model could avoid accidents under urgent braking cases. Also, the traffic jam could be suppressed by considering the anticipation velocity. All results demonstrate that this model is an improvement on the full velocity difference model.

  17. An analytical model for wind-driven Arctic summer sea ice drift

    Directory of Open Access Journals (Sweden)

    H.-S. Park

    2015-03-01

    Full Text Available The authors present an approximate analytical model for wind-induced sea-ice drift that includes an ice–ocean boundary layer with an Ekman spiral in the ocean velocity. This model provides an analytically tractable solution that is most applicable to the marginal ice zone, where sea-ice concentration is substantially below 100%. The model closely reproduces the ice and upper-ocean velocities observed recently by the first ice-tethered profiler equipped with a velocity sensor (ITPV. The analytical tractability of our model allows efficient calculation of the sea-ice velocity provided that the surface wind field is known and that the ocean surface geostrophic velocity is relatively weak. The model is applied to estimate intraseasonal variations in Arctic sea ice cover due to short-timescale (around 1 week intensification of the southerly winds. Utilizing 10 m surface winds from ERA-Interim reanalysis, the wind-induced sea-ice velocity and the associated changes in sea-ice concentration are calculated and compared with satellite observations. The analytical model captures the observed reduction of Arctic sea-ice concentration associated with the strengthening of southerlies on intraseasonal time scales. Further analysis indicates that the wind-induced surface Ekman flow in the ocean increases the sea-ice drift speed by 50% in the Arctic summer. It is proposed that the southerly wind-induced sea-ice drift, enhanced by the ocean's surface Ekman transport, can lead to substantial reduction in sea-ice concentration over a timescale of one week.

  18. Wake interaction and power production of variable height model wind farms

    DEFF Research Database (Denmark)

    Vested, Malene Hovgaard; Hamilton, N.; Sørensen, Jens Nørkær;

    2014-01-01

    of comparison. It was found that downstream of the exit row wind turbine, the power was increased by 25% in the case of a staggered height configuration. This is partly due to the fact that the taller turbines reach into a flow area with a softened velocity gradient. Another aspect is that the wake downstream......Understanding wake dynamics is an ongoing research topic in wind energy, since wakes have considerable effects on the power production when wind turbines are placed in a wind farm. Wind tunnel experiments have been conducted to study the wake to wake interaction in a model wind farm in tandem...... with measurements of the extracted power. The aim is to investigate how alternating mast height influences the interaction of the wakes and the power production. Via the use of stereo-particle image velocimetry, the flow field was obtained in the first and last rows of the wind turbine array as a basis...

  19. Assessment of synthetic winds through spectral modeling and validation using FAST

    Science.gov (United States)

    Chougule, A.; Kandukuri, S. T.; Beyer, H. G.

    2016-09-01

    In this paper, we analyse the simulated and measured wind data with respect to their spectral characteristics and their effect on wind turbine loads. The synthetic data is generated from a stochastic full-field turbulent wind simulator - TurbSim for neutral stability conditions. We first investigate a model for velocity spectra and, a coherence model, by comparing the model results with the measurements. In the second part we analyse the synthetic data via spectra and coherence for two cases; without and with adding coherent events. Finally, we compare wind turbine loads calculated by using FAST simulation of 5 MW reference wind turbine on the basis of simulated and measured data for the given mean wind speed.

  20. Measuring and modelling of the wind on the scale of tall wind turbines

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph

    and the negative wind speed bias at larger heights were not improved when a different synoptic forcing and a different vertical resolution were used in the model. The effect of baroclinity was explored for the two sites. The surface geostrophic wind, the gradient wind and the thermal wind were derived from...... simulations with a mesoscale model. In both locations the thermal wind up to 970 m was approximately Gaussianly distributed with a standard deviation of three m s−1 and the thermal wind vector varied seasonally due to temperature differences between sea and land. The wind veer was particularly sensitive...

  1. Wind deficit model in a wind farm using finite volume method

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Wisniewski, Rafal

    2010-01-01

    A wind deficit model for wind farms is developed in this work using finite volume method. The main question addressed here is to calculate approximately the wind speed in the vicinity of each wind turbine of a farm. The procedure followed is to solve the governing equations of flow for the whole ...

  2. A non-hydrodynamical model for acceleration of line-driven winds in Active Galactic Nuclei

    CERN Document Server

    Risaliti, G

    2009-01-01

    We present a study of the acceleration phase of line-driven winds in AGNs, in order to examine the physical conditions for the existence of such winds for a wide variety of initial conditions. We built a simple and fast non-hydrodynamic model, QWIND, where we assume that a wind is launched from the accretion disc at supersonic velocities of the order of a few 10^2 km/s and we concentrate on the subsequent supersonic phase. We show that this model can produce a wind with terminal velocities of the order of 10^4 km/s. There are three zones in the wind, only the middle one of which can launch a wind: in the inner zone the wind is too ionized and so experiences only the Compton radiation force which is not effective in accelerating gas. This inner failed wind however plays an important role in shielding the next zone, lowering the ionization parameter there. In the middle zone the lower ionization of the gas leads to a much larger radiation force and the gas achieves escape velocity This middle zone is quite thin...

  3. LES of wind farm response to transient scenarios using a high fidelity actuator disk model

    Science.gov (United States)

    Moens, M.; Duponcheel, M.; Winckelmans, G.; Chatelain, P.

    2016-09-01

    Large eddy simulations coupled to Actuator Disks are used to investigate wake effects in wind farms. An effort is made on the wind turbine model: it uses the prevailing velocities at each point of the disk to estimate the aerodynamic loads and is improved using a tip-loss correction and realistic control schemes. This accurate and efficient tool is used to study the wind farm response in terms of flow and power production during an unsteady scenario: this work focuses on an emergency shutdown of one rotor inside a wind farm.

  4. Wind and Diffusion Modeling for Complex Terrain.

    Science.gov (United States)

    Cox, Robert M.; Sontowski, John; Fry, Richard N., Jr.; Dougherty, Catherine M.; Smith, Thomas J.

    1998-10-01

    Atmospheric transport and dispersion over complex terrain were investigated. Meteorological and sulfur hexafluoride (SF6) concentration data were collected and used to evaluate the performance of a transport and diffusion model coupled with a mass consistency wind field model. Meteorological data were collected throughout April 1995. Both meteorological and plume location and concentration data were measured in December 1995. The meteorological data included measurements taken at 11-15 surface stations, one to three upper-air stations, and one mobile profiler. A range of conditions was encountered, including inversion and postinversion breakup, light to strong winds, and a broad distribution of wind directions.The models used were the MINERVE mass consistency wind model and the SCIPUFF (Second-Order Closure Integrated Puff) transport and diffusion model. These models were expected to provide and use high-resolution three-dimensional wind fields. An objective of the experiment was to determine if these models could provide emergency personnel with high-resolution hazardous plume information for quick response operations.Evaluation of the models focused primarily on their effectiveness as a short-term (1-4 h) predictive tool. These studies showed how they could be used to help direct emergency response following a hazardous material release. For purposes of the experiments, the models were used to direct the deployment of mobile sensors intended to intercept and measure tracer clouds.The April test was conducted to evaluate the performance of the MINERVE wind field generation model. It was evaluated during the early morning radiation inversion, inversion dissipation, and afternoon mixed atmosphere. The average deviations in wind speed and wind direction as compared to observations were within 0.4 m s1 and less than 10° for up to 2 h after data time. These deviations increased as time from data time increased. It was also found that deviations were greatest during

  5. Foundation stiffness in the linear modeling of wind turbines

    Science.gov (United States)

    Chiang, Chih-Hung; Yu, Chih-Peng; Chen, Yan-Hao; Lai, Jiunnren; Hsu, Keng-Tsang; Cheng, Chia-Chi

    2017-04-01

    Effects of foundation stiffness on the linear vibrations of wind turbine systems are of concerns for both planning and construction of wind turbine systems. Current study performed numerical modeling for such a problem using linear spectral finite elements. The effects of foundation stiffness were investigated for various combinations of shear wave velocity of soil, size of tower base plate, and pile length. Multiple piles are also included in the models such that the foundation stiffness can be analyzed more realistically. The results indicate that the shear wave velocity of soil and the size of tower base plate have notable effects on the dominant frequency of the turbine-tower system. The larger the lateral dimension, the stiffer the foundation. Large pile cap and multiple spaced piles result in higher stiffness than small pile cap and a mono-pile. The lateral stiffness of a mono-pile mainly depends on the shear wave velocity of soil with the exception for a very short pile that the end constraints may affect the lateral vibration of the superstructure. Effective pile length may be determined by comparing the simulation results of the frictional pile to those of the end-bearing pile.

  6. Modeling of Wind Turbine Gearbox Mounting

    Directory of Open Access Journals (Sweden)

    Morten K. Ebbesen

    2011-10-01

    Full Text Available In this paper three bushing models are evaluated to find a best practice in modeling the mounting of wind turbine gearboxes. Parameter identification on measurements has been used to determine the bushing parameters for dynamic simulation of a gearbox including main shaft. The stiffness of the main components of the gearbox has been calculated. The torsional stiffness of the main shaft, gearbox and the mounting of the gearbox are of same order of magnitude, and eigenfrequency analysis clearly reveals that the stiffness of the gearbox mounting is of importance when modeling full wind turbine drivetrains.

  7. Filament winding cylinders. I - Process model

    Science.gov (United States)

    Lee, Soo-Yong; Springer, George S.

    1990-01-01

    A model was developed which describes the filament winding process of composite cylinders. The model relates the significant process variables such as winding speed, fiber tension, and applied temperature to the thermal, chemical and mechanical behavior of the composite cylinder and the mandrel. Based on the model, a user friendly code was written which can be used to calculate (1) the temperature in the cylinder and the mandrel, (2) the degree of cure and viscosity in the cylinder, (3) the fiber tensions and fiber positions, (4) the stresses and strains in the cylinder and in the mandrel, and (5) the void diameters in the cylinder.

  8. An Estimate of Solar Wind Velocity Profiles in a Coronal Hole and Coronal Streamer Area (6-40R)

    Science.gov (United States)

    Patzold, M.; Tsurutani, B. T.; Bird, M. K.

    1995-01-01

    Using the total electron content data obtained by the Ulysses Solar Corona Experiment during the first solar conjunction in summer 1991 (Bird et al., 1994), an estimate is presented of solar wind velocity profiles in a coronal hole and a coronal streamer area in the range between 6 and 40 solar radii.

  9. Aeroelastic instability stoppers for wind tunnel models

    Science.gov (United States)

    Doggett, R. V., Jr.; Ricketts, R. H. (Inventor)

    1981-01-01

    A mechanism for constraining models or sections thereof, was wind tunnel tested, deployed at the onset of aeroelastic instability, to forestall destructive vibrations in the model is described. The mechanism includes a pair of arms pivoted to the tunnel wall and straddling the model. Rollers on the ends of the arms contact the model, and are pulled together against the model by a spring stretched between the arms. An actuator mechanism swings the arms into place and back as desired.

  10. The Limit Deposit Velocity model, a new approach

    Directory of Open Access Journals (Sweden)

    Miedema Sape A.

    2015-12-01

    Full Text Available In slurry transport of settling slurries in Newtonian fluids, it is often stated that one should apply a line speed above a critical velocity, because blow this critical velocity there is the danger of plugging the line. There are many definitions and names for this critical velocity. It is referred to as the velocity where a bed starts sliding or the velocity above which there is no stationary bed or sliding bed. Others use the velocity where the hydraulic gradient is at a minimum, because of the minimum energy consumption. Most models from literature are one term one equation models, based on the idea that the critical velocity can be explained that way.

  11. A Control-Oriented Dynamic Model for Wakes in Wind Plants

    NARCIS (Netherlands)

    Gebraad, P.M.O.; Van Wingerden, J.W.

    2014-01-01

    In this paper, we present a novel control-oriented model for predicting wake effects in wind plants, called the FLOw Redirection and Induction Dynamics (FLORIDyn) model. The model predicts the wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical

  12. Wind models for the NSTS ascent trajectory biasing for wind load alleviation

    Science.gov (United States)

    Smith, O. E.; Adelfang, S. I.; Batts, G. W.

    1990-01-01

    New concepts are presented for aerospace vehicle ascent wind profile biasing. The purpose for wind biasing the ascent trajectory is to provide ascent wind loads relief and thus decrease the probability for launch delays due to wind loads exceeding critical limits. Wind biasing trajectories to the the profile of monthly mean winds have been widely used for this purpose. The wind profile models presented give additional alternatives for wind biased trajectories. They are derived from the properties of the bivariate normal probability function using the available wind statistical parameters for the launch site. The analytical expressions are presented to permit generalizations. Specific examples are given to illustrate the procedures. The wind profile models can be used to establish the ascent trajectory steering commands to guide the vehicle through the first stage. For the National Space Transportation System (NSTS) program these steering commands are called I-loads.

  13. Some challenges of wind modelling for modern wind turbines: The Weibull distribution

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekatarina; Floors, Rogier;

    2012-01-01

    Wind power assessments, as well as forecast of wind energy production, are key issues in wind energy and grid related studies. However the hub height of today’s wind turbines is well above the surface layer. Wind profiles studies based on mast data show that the wind profile above the surface layer...... depends on the planetary boundary layer (PBL) structure and height, thus parameters that are not accounted for in today’s traditional applied flow simulation models and parameterizations. Here we report on one year of measurements of the wind profile performed by use of a long range wind lidar (WSL 70) up...... to a height of 600 meters with 50 meters resolution. The lidar is located at a flat coastal site. The applicability of the WRF model to predict some of the important parameters for wind energy has been investigated. In this presentation, some general results on the ability of WRF to predict the wind profile...

  14. Modelling wind turbine wakes using the turbulent entrainment hypothesis

    Science.gov (United States)

    Luzzatto-Fegiz, Paolo

    2015-11-01

    Simple models for turbine wakes have been used extensively in the wind energy community, both as independent tools, as well as to complement more refined and computationally-intensive techniques. Jensen (1983; see also Katić et al. 1986) developed a model assuming that the wake radius grows linearly with distance x, approximating the velocity deficit with a top-hat profile. While this model has been widely implemented in the wind energy community, recently Bastankhah & Porté-Agel (2014) showed that it does not conserve momentum. They proposed a momentum-conserving theory, which assumed a Gaussian velocity deficit and retained the linear-spreading assumption, significantly improving agreement with experiments and LES. While the linear spreading assumption facilitates conceptual modeling, it requires empirical estimates of the spreading rate, and does not readily enable generalizations to other turbine designs. Furthermore, field measurements show sub-linear wake growth with x in the far-wake, consistently with results from fundamental turbulence studies. We develop a model by relying on a simple and general turbulence parameterization, namely the entrainment hypothesis, which has been used extensively in other areas of geophysical fluid dynamics. Without assuming similarity, we derive an analytical solution for a circular turbine wake, which predicts a far-wake radius increasing with x 1 / 3, and is consistent with field measurements and fundamental turbulence studies. Finally, we discuss developments accounting for effects of stratification, as well as generalizations to other turbine designs.

  15. Non Axisymmetric Relativistic Wind Accretion with Velocity Gradients onto a Rotating Black Hole

    CERN Document Server

    Cruz-Osorio, A

    2016-01-01

    We model, for the first time, the Bondi-Hoyle accretion of a fluid with velocity gradients onto a Kerr black hole, by numerically solving the fully relativistic hydrodynamics equations. Specifically, we consider a supersonic ideal gas, which has velocity gradients perpendicular to the relative motion. We measure the mass and specific angular accretion rates to illustrate whether the fluid presents unstable patterns or not. The initial parameters, we consider in this work, are the velocity gradient $\\epsilon_{v}$, the black hole spin $a$, the asymptotic Mach number ${\\cal M}_{\\infty}$ and adiabatic index $\\Gamma$. We show that the flow accretion reaches a fairly stationary regime, unlike in the Newtonian case, where significant fluctuations of the mass and angular momentum accretion rates are found. On the other hand, we consider a special case where both density and velocity gradients of the fluid are taken into account. The spin of the black hole and the asymptotic Newtonian Mach number, for this case, are $...

  16. A modified full velocity difference model with the consideration of velocity deviation

    Science.gov (United States)

    Zhou, Jie; Shi, Zhong-Ke

    2016-01-01

    In this paper, a modified full velocity difference model (FVDM) based on car-following theory is proposed with the consideration of velocity deviation which represents the inexact judgement of velocity. The stability condition is obtained by the use of linear stability analysis. It is shown that the stability of traffic flow varies with the deviation extent of velocity. The Burgers, Korteweg-de Vries (KdV) and modified K-dV (MKdV) equations are derived to describe the triangular shock waves, soliton waves and kink-antikink waves in the stable, metastable and unstable region, respectively. The numerical simulations show a good agreement with the analytical results, such as density wave, hysteresis loop, acceleration, deceleration and so on. The results show that traffic congestion can be suppressed by taking the positive effect of velocity deviation into account. By taking the positive effect of high estimate of velocity into account, the unrealistic high deceleration and negative velocity which occur in FVDM will be eliminated in the proposed model.

  17. Statistical Modelling of Wind Proles - Data Analysis and Modelling

    DEFF Research Database (Denmark)

    Jónsson, Tryggvi; Pinson, Pierre

    The aim of the analysis presented in this document is to investigate whether statistical models can be used to make very short-term predictions of wind profiles.......The aim of the analysis presented in this document is to investigate whether statistical models can be used to make very short-term predictions of wind profiles....

  18. Wind and diffusion modeling for complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    Cox, R.M.; Sontowski, J.; Fry, R.N. Jr. [and others

    1996-12-31

    Atmospheric transport and dispersion over complex terrain were investigated. Meteorological and sulfur hexafluoride (SF{sub 6}) concentration data were collected and used to evaluate the performance of a transport and diffusion model coupled with a mass consistency wind field model. Meteorological data were collected throughout April 1995. Both meteorological and concentration data were measured in December 1995. The data included 11 to 15 surface stations, 1 to 3 upper air stations, and 1 mobile profiler. A range of conditions was encountered, including inversion and post-inversion breakup, light to strong winds, and a broad distribution of wind directions. The models used included the SCIPUFF (Second-order Closure Integrated Puff) transport and diffusion model and the MINERVE mass consistency wind model. Evaluation of the models was focused primarily on their effectiveness as a short term (one to four hours) predictive tool. These studies showed how they can be used to help direct emergency response following a hazardous material release. For purposes of the experiments, the models were used to direct the deployment of mobile sensors intended to intercept and measure tracer clouds.

  19. Numerical modelling of wind effects on breaking waves in the surf zone

    Science.gov (United States)

    Xie, Zhihua

    2017-10-01

    Wind effects on periodic breaking waves in the surf zone have been investigated in this study using a two-phase flow model. The model solves the Reynolds-averaged Navier-Stokes equations with the k - 𝜖 turbulence model simultaneously for the flows both in the air and water. Both spilling and plunging breakers over a 1:35 sloping beach have been studied under the influence of wind, with a focus during wave breaking. Detailed information of the distribution of wave amplitudes and mean water level, wave-height-to-water-depth ratio, the water surface profiles, velocity, vorticity, and turbulence fields have been presented and discussed. The inclusion of wind alters the air flow structure above water waves, increases the generation of vorticity, and affects the wave shoaling, breaking, overturning, and splash-up processes. Wind increases the water particle velocities and causes water waves to break earlier and seaward, which agrees with the previous experiment.

  20. Wake effects and wind farm modelling

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, A.; Gomez-Elvira, R. [Univ. Politecnica de Madrid, Dept. of Energy and Fluid Mechanic (Spain)

    1999-07-01

    A model has been developed to treat simultaneously the changes in wind characteristics due to the transition from land to sea, and the wake effects in offshore wind farms. There are beneficial effects both in an increase of power production and in a reduction of turbulence loads when the distance from the farm to the land coast is increased, however, particularly for the turbulence loads, this effect reaches a limit beyond a certain distance of the order of 1 to 2 km. A method has been proposed to estimate the performance of offshore wind farms, that has been applied to places of interest to the project. As it was observed in the project East Coast of the UK, wake effects are important and significant increases can be obtained in power production by increasing the distance between machines and a better disposition of them, i.e. alternating positions in contiguous rows normal to the prevailing wind direction. The most efficient wind farms from the point of view of wake interference are Gedser and Omo with an efficiency of 89% and 86% respectively. A large wind farm like Rodsand has lower efficiency because of the cumulative effect of the wakes of many turbines. The calculated value of the capacity factor of the three Danish wind farms is larger than 36%. The value of the added turbulence intensity, averaged over rows normal to the incident wind, increases suddenly in the first rows and then reaches an almost constant value in the downstream rows, that is of the order of 10%. A method to calculate the performance of very large wind farms, such that they can change the planetary boundary layer is presented. This method has been applied to the wind farms of interest in the project, and small reductions of the order of 5% or less in power production may occur. However, for very large wind farms (with a of the order of 100 km), that may perturb the whole planetary boundary layer, much more drastic reductions, of the order of 50%, may appear, particularly in the

  1. Scale Adaptive Simulation Model for the Darrieus Wind Turbine

    Science.gov (United States)

    Rogowski, K.; Hansen, M. O. L.; Maroński, R.; Lichota, P.

    2016-09-01

    Accurate prediction of aerodynamic loads for the Darrieus wind turbine using more or less complex aerodynamic models is still a challenge. One of the problems is the small amount of experimental data available to validate the numerical codes. The major objective of the present study is to examine the scale adaptive simulation (SAS) approach for performance analysis of a one-bladed Darrieus wind turbine working at a tip speed ratio of 5 and at a blade Reynolds number of 40 000. The three-dimensional incompressible unsteady Navier-Stokes equations are used. Numerical results of aerodynamic loads and wake velocity profiles behind the rotor are compared with experimental data taken from literature. The level of agreement between CFD and experimental results is reasonable.

  2. An improved car-following model considering relative velocity fluctuation

    Science.gov (United States)

    Yu, Shaowei; Shi, Zhongke

    2016-07-01

    To explore and evaluate the impacts of relative velocity fluctuation on the dynamic characteristics and fuel consumptions of traffic flow, we present an improved car-following model considering relative velocity fluctuation based on the full velocity difference model, then we carry out several numerical simulations to determine the optimal time window length and to explore how relative velocity fluctuation affects cars' velocity and its fluctuation as well as fuel consumptions. It can be found that the improved car-following model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion, and that taking relative velocity fluctuation into account in designing the advanced adaptive cruise control strategy can improve the traffic flow stability and reduce fuel consumptions.

  3. Simulation analysis of a wind farm with different aggregated models

    DEFF Research Database (Denmark)

    Li, H.; Wang, H.; Zhao, B.

    2011-01-01

    Based on a wind farm including wind turbines with squirrel cage induction generators (SCIGs), different aggregated models of a wind farm, such as a single weighted average model, a reduced-order re-scaled model, a parameter transformed model and a single weighted arithmetic model were presented......, as well as the detailed SCIG wind turbine model. Regarding for the two cases of a wind farm including SCIGs with identical parameters and different parameters, the dynamic characteristics and transient performances of the presented wind farm using different aggregated models were studied and compared...

  4. Multivariable Wind Modeling in State Space

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Pedersen, B. J.

    2011-01-01

    Turbulence of the incoming wind field is of paramount importance to the dynamic response of wind turbines. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical...... cross-spectral density function for the along-wind turbulence component over the rotor plane is taken as the starting point. The spectrum is spatially discretized in terms of a Hermitian cross-spectral density matrix for the turbulence state vector which turns out not to be positive definite. Since...... the succeeding state space and ARMA modeling of the turbulence rely on the positive definiteness of the cross-spectral density matrix, the problem with the non-positive definiteness of such matrices is at first addressed and suitable treatments regarding it are proposed. From the adjusted positive definite cross...

  5. Validation of the filament winding process model

    Science.gov (United States)

    Calius, Emilo P.; Springer, George S.; Wilson, Brian A.; Hanson, R. Scott

    1987-01-01

    Tests were performed toward validating the WIND model developed previously for simulating the filament winding of composite cylinders. In these tests two 24 in. long, 8 in. diam and 0.285 in. thick cylinders, made of IM-6G fibers and HBRF-55 resin, were wound at + or - 45 deg angle on steel mandrels. The temperatures on the inner and outer surfaces and inside the composite cylinders were recorded during oven cure. The temperatures inside the cylinders were also calculated by the WIND model. The measured and calculated temperatures were then compared. In addition, the degree of cure and resin viscosity distributions inside the cylinders were calculated for the conditions which existed in the tests.

  6. The role of ocean velocity in chlorophyll variability. A modelling study in the Alboran Sea

    OpenAIRE

    Solé, Jordi; Ballabrera-Poy, Joaquim; Macías, Diego; Catalán, Ignacio A.

    2016-01-01

    In this work we focus on the Alboran Sea (western Mediterranean) to relate wind field and ocean velocity variability with chlorophyll a (Chl a) behaviour, using a 2-km resolution, coupled 3D ocean circulation-NPZD model (ROMS). The analysis is done in three steps. First, we split the seasonal and residual contribution for the fields under study. Second, we calculate the corresponding empirical orthogonal functions (EOFs) for the seasonal and residual parts. Finally, we relate each pair of var...

  7. The stability analysis of the full velocity and acceleration velocity model

    Science.gov (United States)

    Xiaomei, Zhao; Ziyou, Gao

    2007-03-01

    The stability analysis is one of the important problems in the traffic flow theory, since the congestion phenomena can be regarded as the instability and the phase transition of a dynamical system. Theoretically, we analyze the stable conditions of the full velocity and acceleration difference model (FVADM), which is proposed by introducing the acceleration difference term based on the previous car-following models (the optimal velocity model and the full velocity difference model, OVM and FVDM). By numerical simulations, it is found that when the traffic flow is unstable, the traffic jam in the FVADM is weaker than that in the FVDM. Also it is observed that the spreading speed of the jam is slower in the FVADM than that in the FVDM and the fluctuations of vehicles in the FVADM are smaller than those in the FVDM. Therefore, the acceleration difference term has strong effects on traffic dynamics and plays an important role in stabilizing the traffic flow.

  8. IEA Wind Task 37: Systems Modeling Framework and Ontology for Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zahle, Frederik [Technical University of Denmark; Merz, Karl [SINTEF Energy Research; McWilliam, Mike [Technical University of Denmark; Bortolotti, Pietro [Technical University Munich

    2017-08-14

    This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common conceptual architecture for wind turbines and plants so that practitioners can more easily share descriptions of wind turbines and plants across multiple parties and reduce the effort for translating descriptions between models; integrate different models together and collaborate on model development; and translate models among different levels of fidelity in the system.

  9. Multiplicative Inhibitory Velocity Detector and Multi-Velocity Motion Detection Neural Network Model

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Motion perception is one of the most important aspects of the biological visual system,from which people get a lot of information of the natural world.In this paper,trying to simulate the neurons in MT(motion area in visual cortex)which respond selectively both in direction and speed,the authors propose a novel multiplicative inhibitory velocity detector(MIVD)model,whose spatiotemporal joint parameter K determines its optimal velocity.Based on the Response Amplitude Disparity(RAD) property of MIVD,two multi-velocity fusion neural networks(a simple one and an active one)are built to detect the velocity of 1-Dimension motion.The experiments show that the active MIVD Neural Network with a feedback fusion method has a relatively better result.

  10. Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelson interferometer.

    Science.gov (United States)

    Zhang, Chunmin; Li, Ying

    2012-09-20

    The principles of a polarizing atmospheric Michelson interferometer are outlined. The tilt of its reflection mirror results in deflection of the reflected beam and affects the intensities of the observed inteferogram. This effect is systematically analyzed. Both rectangular and circular apertures are considered. The theoretical expression of the modulation depth and phase of the interferogram are derived. These parameters vary with the inclination angle of the mirror and the distance between the deflection center and the optical axis and significantly influence the retrieved temperature and wind speed. If the wind and temperature errors are required to be less than 3 m/s and 5 K, the deflection angle must be less than 0.5°. The errors are also dependent on the shape of aperture. If the reflection mirror is deflected in one direction, the temperature error is smaller for a circular aperture (1.3 K) than for a rectangular one (2.6 K), but the wind velocity errors are almost the same (less than 3 m/s). If the deflection center and incident light beam are coincident, the temperature errors are 3 × 10(-4) K and 0.45 K for circular and rectangular apertures, respectively. The wind velocity errors are 1.2 × 10(-3) m/s and 0.06 m/s. Both are small. The result would be helpful for theoretical research and development of the static polarization wind imaging interferometer.

  11. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.

    Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.

    In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.

    Actuator disk model of wind farms based on the rotor average wind speed

    DEFF Research Database (Denmark)

    Han, Xing Xing; Xu, Chang; Liu, De You;

    2016-01-01

    Due to difficulty of estimating the reference wind speed for wake modeling in wind farm, this paper proposes a new method to calculate the momentum source based on the rotor average wind speed. The proposed model applies volume correction factor to reduce the influence of the mesh recognition...

  12. Mathematical model for the analysis of wind-turbine wakes

    Science.gov (United States)

    Liu, M.-K.; Yocke, M. A.; Myers, T. C.

    1983-02-01

    The concept of wind farms with clustered wind turbines at a given site seems to offer an attractive means for extracting wind power on a large scale. Techniques for minimizing the effect of upstream wind-turbine wakes on downstream wind turbines are needed to optimize overall performance of the wind-turbine array. A numerical model for prediction of the interaction of the wind turbine with the prevailing wind flow is described. The model is based on a numerical solution of the three-dimensional Navier-Stokes equations for the planetary boundary layer with the hydrostatic approximation. Three different hypothetical wind-turbine configurations are analyzed to demonstrate the utility of this model. Model predictions from the present study compare favorably with the basic characteristics of measured wind-turbine wakes.

  13. a Revised Stochastic Optimal Velocity Model Considering the Velocity Gap with a Preceding Vehicle

    Science.gov (United States)

    Shigaki, Keizo; Tanimoto, Jun; Hagishima, Aya

    The stochastic optimal velocity (SOV) model, which is a cellular automata model, has been widely used because of its good reproducibility of the fundamental diagram, despite its simplicity. However, it has a drawback: in SOV, a vehicle that is temporarily stopped takes a long time to restart. This study proposes a revised SOV model that suppresses this particular defect; the basic concept of this model is derived from the car-following model, which considers the velocity gap between a particular vehicle and the preceding vehicle. A series of simulations identifies the model parameters and clarifies that the proposed model can reproduce the three traffic phases: free, jam, and even synchronized phases, which cannot be achieved by the conventional SOV model.

  14. Comparative Validation of Realtime Solar Wind Forecasting Using the UCSD Heliospheric Tomography Model

    Science.gov (United States)

    MacNeice, Peter; Taktakishvili, Alexandra; Jackson, Bernard; Clover, John; Bisi, Mario; Odstrcil, Dusan

    2011-01-01

    The University of California, San Diego 3D Heliospheric Tomography Model reconstructs the evolution of heliospheric structures, and can make forecasts of solar wind density and velocity up to 72 hours in the future. The latest model version, installed and running in realtime at the Community Coordinated Modeling Center(CCMC), analyzes scintillations of meter wavelength radio point sources recorded by the Solar-Terrestrial Environment Laboratory(STELab) together with realtime measurements of solar wind speed and density recorded by the Advanced Composition Explorer(ACE) Solar Wind Electron Proton Alpha Monitor(SWEPAM).The solution is reconstructed using tomographic techniques and a simple kinematic wind model. Since installation, the CCMC has been recording the model forecasts and comparing them with ACE measurements, and with forecasts made using other heliospheric models hosted by the CCMC. We report the preliminary results of this validation work and comparison with alternative models.

  15. Short term forecasting of surface layer wind speed using a continuous cascade model

    CERN Document Server

    Baile, Rachel; Poggi, Philippe

    2010-01-01

    This paper describes a statistical method for short-term forecasting of surface layer wind velocity amplitude relying on the notion of continuous cascades. Inspired by recent empirical findings that suggest the existence of some cascading process in the mesoscale range, we consider that wind speed can be described by a seasonal component and a fluctuating part represented by a "multifractal noise" associated with a random cascade. Performances of our model are tested on hourly wind speed series gathered at various locations in Corsica (France) and Netherlands. The obtained results show a systematic improvement of the prediction as compared to reference models like persistence or Artificial Neural Networks.

  16. Wind stress, curl and vertical velocity in the Bay of Bengal during southwest monsoon, 1984

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, M.T.; Heblekar, A.K.; Murty, C.S.

    Wind distribution observed during southwest monsoon of 1984 has used to derive the mean wind stress for the season at every 1 degree square grid and curl over the Bay of Bengal. Two regions of maximum wind stress are present over the Bay of Bengal...

  17. A Versatile Family of Galactic Wind Models

    CERN Document Server

    Bustard, Chad; D'Onghia, Elena

    2015-01-01

    We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses, we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass-loading and high energy-loading are the most efficient. Our model also produces low-temperature, high-...

  18. Comparing satellite SAR and wind farm wake models

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Vincent, P.; Husson, R.

    2015-01-01

    The aim of the paper is to present offshore wind farm wake observed from satellite Synthetic Aperture Radar (SAR) wind fields from RADARSAT-1/-2 and Envisat and to compare these wakes qualitatively to wind farm wake model results. From some satellite SAR wind maps very long wakes are observed. Th...

  19. Unsteady aerodynamic modelling of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Coton, F.N.; Galbraith, R.A. [Univ. og Glasgow, Dept. of Aerospace Engineering, Glasgow (United Kingdom)

    1997-08-01

    The following current and future work is discussed: Collaborative wind tunnel based PIV project to study wind turbine wake structures in head-on and yawed flow. Prescribed wake model has been embedded in a source panel representation of the wind tunnel walls to allow comparison with experiment; Modelling of tower shadow using high resolution but efficient vortex model in tower shadow domain; Extension of model to yawing flow; Upgrading and tuning of unsteady aerodynamic model for low speed, thick airfoil flows. Glasgow has a considerable collection of low speed dynamic stall data. Currently, the Leishman - Beddoes model is not ideally suited to such flows. For example: Range of stall onset criteria used for dynamic stall prediction including Beddoes. Wide variation of stall onset prediction. Beddoes representation was developed primarily with reference to compressible flows. Analyses of low speed data from Glasgow indicate deficiencies in the current model; Predicted versus measured response during ramp down motion. Modification of the Beddoes representation is required to obtain a fit with the measured data. (EG)

  1. Spatiotemporal patterns in methane flux and gas transfer velocity at low wind speeds: Implications for upscaling studies on small lakes

    Science.gov (United States)

    Schilder, J.; Bastviken, D.; Hardenbroek, M.; Heiri, O.

    2016-06-01

    Lakes contribute significantly to the global natural emissions of methane (CH4) and carbon dioxide. However, to accurately incorporate them into the continental carbon balance more detailed surveys of lacustrine greenhouse gas emissions are needed, especially in respect to spatiotemporal variability and to how this affects the upscaling of results. We investigated CH4 flux from a small, wind-shielded lake during 10 field trips over a 14 month period. We show that floating chambers may be used to calibrate the relationship between gas transfer velocity (k) and wind speed at 10 m height (U10) to the local system, in order to obtain more accurate estimates of diffusive CH4 flux than by applying general models predicting k based on U10. We confirm earlier studies indicating strong within-lake spatial variation in this relationship and in ebullitive CH4 flux within the lake basin. However, in contrast to the pattern reported in other studies, ebullitive CH4 flux was highest in the central parts of the lake. Our results indicate positive relationships between k and U10 at very low U10 (0-3 m s-1), which disagrees with earlier suggestions that this relationship may be negligible at low U10 values. We estimate annually averaged open water CH4 emission from Lake Gerzensee to be 3.6-5.8 mmol m-2 d-1. Our data suggest that estimates of greenhouse gas emissions from aquatic systems to the atmosphere based on the upscaling of short-term and small-scale measurements can be improved if both spatial and temporal variabilities of emissions are taken into account.

  2. Wind farm electrical power production model for load flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Segura-Heras, Isidoro; Escriva-Escriva, Guillermo; Alcazar-Ortega, Manuel [Institute for Energy Engineering, Universidad Politecnica de Valencia, Camino de Vera, s/n, edificio 8E, escalera F, 2a planta, 46022 Valencia (Spain)

    2011-03-15

    The importance of renewable energy increases in activities relating to new forms of managing and operating electrical power: especially wind power. Wind generation is increasing its share in the electricity generation portfolios of many countries. Wind power production in Spain has doubled over the past four years and has reached 20 GW. One of the greatest problems facing wind farms is that the electrical power generated depends on the variable characteristics of the wind. To become competitive in a liberalized market, the reliability of wind energy must be guaranteed. Good local wind forecasts are therefore essential for the accurate prediction of generation levels for each moment of the day. This paper proposes an electrical power production model for wind farms based on a new method that produces correlated wind speeds for various wind farms. This method enables a reliable evaluation of the impact of new wind farms on the high-voltage distribution grid. (author)

  3. Some challenges of wind modelling for modern wind turbines: The Weibull distribution

    OpenAIRE

    Gryning, Sven-Erik; Batchvarova, Ekatarina; Floors, Rogier; Pena Diaz, Alfredo

    2012-01-01

    Wind power assessments, as well as forecast of wind energy production, are key issues in wind energy and grid related studies. However the hub height of today’s wind turbines is well above the surface layer. Wind profiles studies based on mast data show that the wind profile above the surface layer depends on the planetary boundary layer (PBL) structure and height, thus parameters that are not accounted for in today’s traditional applied flow simulation models and parameterizations. Here we r...

  4. Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model

    Directory of Open Access Journals (Sweden)

    Shuting Wan

    2015-06-01

    Full Text Available Natural wind is stochastic, being characterized by its speed and direction which change randomly and frequently. Because of the certain lag in control systems and the yaw body itself, wind turbines cannot be accurately aligned toward the wind direction when the wind speed and wind direction change frequently. Thus, wind turbines often suffer from a series of engineering issues during operation, including frequent yaw, vibration overruns and downtime. This paper aims to study the effects of yaw error on wind turbine running characteristics at different wind speeds and control stages by establishing a wind turbine model, yaw error model and the equivalent wind speed model that includes the wind shear and tower shadow effects. Formulas for the relevant effect coefficients Tc, Sc and Pc were derived. The simulation results indicate that the effects of the aerodynamic torque, rotor speed and power output due to yaw error at different running stages are different and that the effect rules for each coefficient are not identical when the yaw error varies. These results may provide theoretical support for optimizing the yaw control strategies for each stage to increase the running stability of wind turbines and the utilization rate of wind energy.

  5. Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel

    Science.gov (United States)

    Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan

    2017-01-01

    Unsteady loading and spatiotemporal characteristics of power output are measured in a wind tunnel experiment of a microscale wind farm model with 100 porous disk models. The model wind farm is placed in a scaled turbulent boundary layer, and six different layouts, varied from aligned to staggered, are considered. The measurements are done by making use of a specially designed small-scale porous disk model, instrumented with strain gages. The frequency response of the measurements goes up to the natural frequency of the model, which corresponds to a reduced frequency of 0.6 when normalized by the diameter and the mean hub height velocity. The equivalent range of timescales, scaled to field-scale values, is 15 s and longer. The accuracy and limitations of the acquisition technique are documented and verified with hot-wire measurements. The spatiotemporal measurement capabilities of the experimental setup are used to study the cross-correlation in the power output of various porous disk models of wind turbines. A significant correlation is confirmed between streamwise aligned models, while staggered models show an anti-correlation.

  6. Contribution to a dynamic wind turbine model validation from a wind farm islanding experiment

    DEFF Research Database (Denmark)

    Pedersen, Jørgen Kaas; Pedersen, Knud Ole Helgesen; Poulsen, Niels Kjølstad;

    2003-01-01

    and possible discrepancies are explained. The work with the wind turbine model validation relates to the dynamic stability investigations on incorporation of large amount of wind power in the Danish power grid, where the dynamic wind turbine model is applied.......Measurements from an islanding experiment on the Rejsby Hede wind farm, Denmark, are used for the validation of the dynamic model of grid-connected, stall-controlled wind turbines equipped with induction generators. The simulated results are found to be in good agreement with the measurements...

  7. A Vs30-derived Near-surface Seismic Velocity Model

    Science.gov (United States)

    Ely, G. P.; Jordan, T. H.; Small, P.; Maechling, P. J.

    2010-12-01

    Shallow material properties, S-wave velocity in particular, strongly influence ground motions, so must be accurately characterized for ground-motion simulations. Available near-surface velocity information generally exceeds that which is accommodated by crustal velocity models, such as current versions of the SCEC Community Velocity Model (CVM-S4) or the Harvard model (CVM-H6). The elevation-referenced CVM-H voxel model introduces rasterization artifacts in the near-surface due to course sample spacing, and sample depth dependence on local topographic elevation. To address these issues, we propose a method to supplement crustal velocity models, in the upper few hundred meters, with a model derived from available maps of Vs30 (the average S-wave velocity down to 30 meters). The method is universally applicable to regions without direct measures of Vs30 by using Vs30 estimates from topographic slope (Wald, et al. 2007). In our current implementation for Southern California, the geology-based Vs30 map of Wills and Clahan (2006) is used within California, and topography-estimated Vs30 is used outside of California. Various formulations for S-wave velocity depth dependence, such as linear spline and polynomial interpolation, are evaluated against the following priorities: (a) capability to represent a wide range of soil and rock velocity profile types; (b) smooth transition to the crustal velocity model; (c) ability to reasonably handle poor spatial correlation of Vs30 and crustal velocity data; (d) simplicity and minimal parameterization; and (e) computational efficiency. The favored model includes cubic and square-root depth dependence, with the model extending to a depth of 350 meters. Model parameters are fit to Boore and Joyner's (1997) generic rock profile as well as CVM-4 soil profiles for the NEHRP soil classification types. P-wave velocity and density are derived from S-wave velocity by the scaling laws of Brocher (2005). Preliminary assessment of the new model

  8. Wind flow conditions in offshore wind farms. Validation and application of a CFD wake model

    Energy Technology Data Exchange (ETDEWEB)

    Westerhellweg, Annette; Canadillas, Beatriz; Kinder, Friederike; Neumann, Thomas [Deutsches Windenergie-Institut GmbH (DEWI), Wilhelmshaven (Germany)

    2013-04-01

    Since August 2009, the first German offshore wind farm 'alpha ventus' is operating close to the wind measurement platform FINO1. Within the research project RAVE-OWEA the wind flow conditions in 'alpha ventus' were assessed in detail, simulated with a CFD wake model and compared with the measurements. Wind data measured at FINO1 have been evaluated for wind speed reduction and turbulence increase in the wake. Additionally operational data were evaluated for the farm efficiency. The atmospheric stability has been evaluated by temperature measurements of air and water and the impact of atmospheric stability on the wind conditions in the wake has been assessed. As an application of CFD models the generation of power matrices is introduced. Power matrices can be used for the continual monitoring of the single wind turbines in the wind farm. A power matrix based on CFD simulations has been created for 'alpha ventus' and tested against the measured data. (orig.)

  9. A combinatorial wind field model

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Wisniewski, Rafal; Sloth, Christoffer

    2010-01-01

    of ordinary dierential equations (ODE). Considering some assumptions on the ow model (e.g. steadiness), the sys- tem can be approximated by a linear n dimensional system. Partitioning the state space into cells is performed by dening Lyapunov function sets, such that each cell is the region between two...... neighboring level surfaces of Lyapunov functions. The resulting discrete system facilitates a supervisory approach to the control....

  10. A combinatorial wind field model

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Wisniewski, Rafal; Sloth, Christoffer

    2010-01-01

    of ordinary dierential equations (ODE). Considering some assumptions on the ow model (e.g. steadiness), the sys- tem can be approximated by a linear n dimensional system. Partitioning the state space into cells is performed by dening Lyapunov function sets, such that each cell is the region between two...... neighboring level surfaces of Lyapunov functions. The resulting discrete system facilitates a supervisory approach to the control....

  11. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    Science.gov (United States)

    van Dooren, M. F.; Kühn, M.; PetroviĆ, V.; Bottasso, C. L.; Campagnolo, F.; Sjöholm, M.; Angelou, N.; Mikkelsen, T.; Croce, A.; Zasso, A.

    2016-09-01

    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dual- Lidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar for accurately measuring small scale flow structures in a wind tunnel.

  12. Ground and space based cloud-top wind velocities using CFHT/ESPaDOnS (Doppler velocimetry) and VEx/VIRTIS (cloud tracking) coordinated measurements

    Science.gov (United States)

    Machado, Pedro; Widemann, Thomas; Peralta, Javier; Gonçalves, Rúben; Donati, Jean-François; Luz, David

    2016-04-01

    We will present wind velocity results based in the measurements of the horizontal wind field at the cloud top level of the atmosphere of Venus, near 70 km altitude. Our aim is contribute to the characterisation of the zonal and meridional wind latitudinal profiles on hour and day-timescales. This will be done by tracking Doppler shift of solar and CO2 lines over the dayside hemisphere in coordination with ESA's Venus Express orbiter. Our observations measured winds at cloud tops at latitudes 60°S-60°N, while Vex/VIRTIS privileged southern latitudes poleward of 45°S. This coordination effort intended to provide a combined monitoring of short-term changes of wind amplitude and directions with extensive spatial coverage. We present results based on inter comparison of ground-based Doppler velocimetry of cloud-top winds and cloud tracking measurements from the Venus Express spacecraft. Doppler wind velocimetry obtained with the 3.60 m Canada-France-Hawaii telescope (CFHT) and the Visible Spectrograph ESPaDOnS in April 2014 consisted of high-resolution spectra of Fraunhofer lines in the visible range (0.37-1.05 μm) to measure the wind velocity using the Doppler shift of solar radiation scattered by cloud top particles in the observer's direction. The complete optical spectrum was collected at a phase angle Φ = (76 ± 0.3)°, at a resolution of about 80000. Both ground-based and Venus Express measurements show considerable day-to-day variability revealing wave propagation and angular momentum transport in latitude which needs to be carefully assessed. ESPaDOnS and the sequential technique of visible Doppler velocimetry has proven a reference technique to measure instantaneous winds. These measurements are necessary to help validating Global Circulation Models (GCMs), to extend the temporal coverage of available datasets. The ground-based observations in the base of this project are critical in their complementarity with Venus Express, which was recently

  13. An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior

    Science.gov (United States)

    W. J. Massman; J. M. Forthofer; M. A. Finney

    2017-01-01

    The ability to rapidly estimate wind speed beneath a forest canopy or near the ground surface in any vegetation is critical to practical wildland fire behavior models. The common metric of this wind speed is the "mid-flame" wind speed, UMF. However, the existing approach for estimating UMF has some significant shortcomings. These include the assumptions that...

  14. Interval forecasts of a novelty hybrid model for wind speeds

    OpenAIRE

    Shanshan Qin; Feng Liu; Jianzhou Wang; Yiliao Song

    2015-01-01

    The utilization of wind energy, as a booming technology in the field of renewable energies, has been highly regarded around the world. Quantification of uncertainties associated with accurate wind speed forecasts is essential for regulating wind power generation and integration. However, it remains difficult work primarily due to the stochastic and nonlinear characteristics of wind speed series. Traditional models for wind speed forecasting mostly focus on generating certain predictive values...

  15. Validation of the actuator disc approach in PHOENICS using small scale model wind turbines

    Science.gov (United States)

    Simisiroglou, N.; Sarmast, S.; Breton, S.-P.; Ivanell, S.

    2016-09-01

    In this study two wind turbine setups are investigated numerically: (a) the flow around a single model wind turbine and (b) the wake interaction between two in-line model wind turbines. This is done by using Reynolds averaged Navier-Stokes (RANS) and an actuator disc (ACD) technique in the computational fluid dynamics code PHOENICS. The computations are conducted for the design condition of the rotors using four different turbulence closure models. The computed axial velocity field as well as the turbulent kinetic energy are compared with PIV measurements. For the two model wind turbine setup, the thrust and power coefficient are also computed and compared with measurements. The results show that this RANS ACD method is able to predict the overall behaviour of the flow with low computational effort and that the turbulence closure model has a direct effect on the predicted wake development.

  16. Nonspherical Radiation Driven Wind Models Applied to Be Stars

    Science.gov (United States)

    Arauxo, F. X.

    1990-11-01

    ABSTRACT. In this work we present a model for the structure of a radiatively driven wind in the meridional plane of a hot star. Rotation effects and simulation of viscous forces were included in the motion equations. The line radiation force is considered with the inclusion of the finite disk correction in self-consistent computations which also contain gravity darkening as well as distortion of the star by rotation. An application to a typical BlV star leads to mass-flux ratios between equator and pole of the order of 10 and mass loss rates in the range 5.l0 to Mo/yr. Our envelope models are flattened towards the equator and the wind terminal velocities in that region are rather high (1000 Km/s). However, in the region near the star the equatorial velocity field is dominated by rotation. RESUMEN. Se presenta un modelo de la estructura de un viento empujado radiativamente en el plano meridional de una estrella caliente. Se incluyeron en las ecuaciones de movimiento los efectos de rotaci6n y la simulaci6n de fuerzas viscosas. Se consider6 la fuerza de las lineas de radiaci6n incluyendo la correcci6n de disco finito en calculos autoconsistentes los cuales incluyen oscurecimiento gravitacional asi como distorsi6n de la estrella por rotaci6n. La aplicaci6n a una estrella tipica BlV lleva a cocientes de flujo de masa entre el ecuador y el polo del orden de 10 de perdida de masa en el intervalo 5.l0 a 10 Mo/ano. Nuestros modelos de envolvente estan achatados hacia el ecuador y las velocidads terminales del viento en esa regi6n son bastante altas (1000 Km/s). Sin embargo, en la regi6n cercana a la estrella el campo de velocidad ecuatorial esta dominado por la rotaci6n. Key words: STARS-BE -- STARS-WINDS

  17. Velocity dispersion of M87 using a population model

    Science.gov (United States)

    Angione, R. J.; Junkkarinen, V.; Talbert, F. D.; Brandt, J. C.

    1980-01-01

    The velocity dispersion of M 87 (NGC 4486) is determined using (1) a single star of class K0 III and (2) two different population models to represent the spectral region of the G-band. Although the models fit the overall spectrum better than the single-star, there is only a small difference in the derived velocity dispersion. This work revises the earlier velocity dispersion result of Brandt and Roosen (1969) down to 350 km/sec, in agreement with Faber and Jackson (1976) and Sargent et al. (1978).

  18. Dynamic stall model for wind turbine airfoils

    DEFF Research Database (Denmark)

    Larsen, J.W.; Nielsen, S.R.K.; Krenk, Steen

    2007-01-01

    A model is presented for aerodynamic lift of wind turbine profiles under dynamic stall. The model combines memory delay effects under attached flow with reduced lift due to flow separation under dynamic stall conditions. The model is based on a backbone curve in the form of the static lift...... conditions, nonstationary effects are included by three mechanisms: a delay of the lift coefficient of fully attached flow via a second-order filter, a delay of the development of separation represented via a first-order filter, and a lift contribution due to leading edge separation also represented via...... during dynamic stall conditions. The proposed model is compared with five other dynamic stall models including, among others, the Beddoes-Leishman model and the ONERA model. It is demonstrated that the proposed model performs equally well or even better than more complicated models and that the included...

  19. Effects of Freestream Turbulence in a Model Wind Turbine Wake

    Directory of Open Access Journals (Sweden)

    Yaqing Jin

    2016-10-01

    Full Text Available The flow structure in the wake of a model wind turbine is explored under negligible and high turbulence in the freestream region of a wind tunnel at R e ∼ 7 × 10 4 . Attention is placed on the evolution of the integral scale and the contribution of the large-scale motions from the background flow. Hotwire anemometry was used to obtain the streamwise velocity at various streamwise and spanwise locations. The pre-multiplied spectral difference of the velocity fluctuations between the two cases shows a significant energy contribution from the background turbulence on scales larger than the rotor diameter. The integral scale along the rotor axis is found to grow linearly with distance, independent of the incoming turbulence levels. This scale appears to reach that of the incoming flow in the high turbulence case at x / d ∼ 35–40. The energy contribution from the turbine to the large-scale flow structures in the low turbulence case increases monotonically with distance. Its growth rate is reduced past x / d ∼ 6–7. There, motions larger than the rotor contribute ∼ 50 % of the total energy, suggesting that the population of large-scale motions is more intense in the intermediate field. In contrast, the wake in the high incoming turbulence is quickly populated with large-scale motions and plateau at x / d ∼ 3 .

  20. Actuator Line Modeling of Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels

    2009-01-01

    This thesis contains a comprehensive 3D Navier-Stokes computational study of the characteristics of wakes of wind turbines operating in various flow conditions including interacting wakes between a row of turbines. The computations were carried out using the actuator line technique combined...... and it is shown that the turbines are subject to rather severe yaw moments, even in situations where the mean wind is oriented along the row. This observation is indicative of large scale dynamics of the wakes....... with the 3D Navier Stokes solver EllipSys3D and a LES turbulence model. Simple models, based on applying body forces in the computational domain, are developed for imposing sheared and turbulent infow and their validity is discussed. A few computations on stand alone turbines are compared to measurements...

  1. The Explicit Wake Parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF

    DEFF Research Database (Denmark)

    Volker, P. H. J.; Badger, Jake; Hahmann, Andrea N.;

    2015-01-01

    Parametrisation (EWP), uses classical wake theory to describe the unresolved wake expansion. The EWP scheme is validated against filtered in situ measurements from two meteorological masts situated a few kilometres away from the Danish oshore wind farm Horns Rev I. The simulated velocity deficit in the wake...... of the wind farm compares well to that observed in the measurements and the velocity profile is qualitatively similar to that simulated with large eddy simulation models and from wind tunnel studies. At the same time, the validation process highlights the challenges in verifying such models with real...... observations....

  2. Fundamental time-domain wind turbine models for wind power studies

    Energy Technology Data Exchange (ETDEWEB)

    Santoso, Surya; Le, Ha Thu [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712 (United States)

    2007-11-15

    One critical task in any wind power interconnection study involves the modelling of wind turbines. This paper provides the most basic yet comprehensive time-domain wind turbine model upon which more sophisticated models along with their power and speed control mechanisms, can be developed. For this reason, this paper concentrates on the modelling of a fixed-speed wind turbine. The model includes turbine's aerodynamic, mechanical, and electrical components. Data for the rotor, drive-train, and electrical generator are given to allow replication of the model in its entirety. Each of the component-blocks of the wind turbine is modelled separately so that one can easily expand the model to simulate variable-speed wind turbines or customise the model to suit their needs. Then, an aggregate wind turbine model, or wind farm, is developed. This is followed by four case studies to demonstrate how the models can be used to study wind turbine operation and power grid integration issues. Results obtained from the case studies show that the models perform as expected. (author)

  3. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.D. [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1995-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  4. Velocity model optimization for surface microseismic monitoring via amplitude stacking

    Science.gov (United States)

    Jiang, Haiyu; Wang, Zhongren; Zeng, Xiaoxian; Lü, Hao; Zhou, Xiaohua; Chen, Zubin

    2016-12-01

    A usable velocity model in microseismic projects plays a crucial role in achieving statistically reliable microseismic event locations. Existing methods for velocity model optimization rely mainly on picking arrival times at individual receivers. However, for microseismic monitoring with surface stations, seismograms of perforation shots have such low signal-to-noise ratios (S/N) that they do not yield sufficiently reliable picks. In this study, we develop a framework for constructing a 1-D flat-layered a priori velocity model using a non-linear optimization technique based on amplitude stacking. The energy focusing of the perforation shot is improved thanks to very fast simulated annealing (VFSA), and the accuracies of shot relocations are used to evaluate whether the resultant velocity model can be used for microseismic event location. Our method also includes a conventional migration-based location technique that utilizes successive grid subdivisions to improve computational efficiency and source location accuracy. Because unreasonable a priori velocity model information and interference due to additive noise are the major contributors to inaccuracies in perforation shot locations, we use velocity model optimization as a compensation scheme. Using synthetic tests, we show that accurate locations of perforation shots can be recovered to within 2 m, even with pre-stack S/N ratios as low as 0.1 at individual receivers. By applying the technique to a coal-bed gas reservoir in Western China, we demonstrate that perforation shot location can be recovered to within the tolerance of the well tip location.

  5. STEADY-STATE MODEL OF SOLAR WIND ELECTRONS REVISITED

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S., E-mail: yoonp@umd.edu [School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2015-10-20

    In a recent paper, Kim et al. put forth a steady-state model for the solar wind electrons. The model assumed local equilibrium between the halo electrons, characterized by an intermediate energy range, and the whistler-range fluctuations. The basic wave–particle interaction is assumed to be the cyclotron resonance. Similarly, it was assumed that a dynamical steady state is established between the highly energetic superhalo electrons and high-frequency Langmuir fluctuations. Comparisons with the measured solar wind electron velocity distribution function (VDF) during quiet times were also made, and reasonable agreements were obtained. In such a model, however, only the steady-state solution for the Fokker–Planck type of electron particle kinetic equation was considered. The present paper complements the previous analysis by considering both the steady-state particle and wave kinetic equations. It is shown that the model halo and superhalo electron VDFs, as well as the assumed wave intensity spectra for the whistler and Langmuir fluctuations, approximately satisfy the quasi-linear wave kinetic equations in an approximate sense, thus further validating the local equilibrium model constructed in the paper by Kim et al.

  6. A Total Generalized Optimal Velocity Model and Its Numerical Tests

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen-xing; LIU Yun-cai

    2008-01-01

    A car-following model named total generalized optimal velocity model (TGOVM) was developed with a consideration of an arbitrary number of preceding vehicles before current one based on analyzing the previous models such as optimal velocity model (OVM), generalized OVM (GOVM) and improved GOVM (IGOVM). This model describes the physical phenomena of traffic flow more exactly and realistically than previous models. Also the performance of this model was checked out by simulating the acceleration and de- celeration process for a small delay time. On a single circular lane, the evolution of the traffic congestion was studied for a different number of headways and relative velocities of the preceding vehicles being taken into account. The simulation results show that TGOVM is reasonable and correct.

  7. Flood Water Crossing: Laboratory Model Investigations for Water Velocity Reductions

    Directory of Open Access Journals (Sweden)

    Kasnon N.

    2014-01-01

    Full Text Available The occurrence of floods may give a negative impact towards road traffic in terms of difficulties in mobilizing traffic as well as causing damage to the vehicles, which later cause them to be stuck in the traffic and trigger traffic problems. The high velocity of water flows occur when there is no existence of objects capable of diffusing the water velocity on the road surface. The shape, orientation and size of the object to be placed beside the road as a diffuser are important for the effective flow attenuation of water. In order to investigate the water flow, a laboratory experiment was set up and models were constructed to study the flow velocity reduction. The velocity of water before and after passing through the diffuser objects was investigated. This paper focuses on laboratory experiments to determine the flow velocity of the water using sensors before and after passing through two best diffuser objects chosen from a previous flow pattern experiment.

  8. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    Science.gov (United States)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  9. Forecasting wind power production from a wind farm using the RAMS model

    DEFF Research Database (Denmark)

    Tiriolo, L.; Torcasio, R. C.; Montesanti, S.;

    2015-01-01

    The importance of wind power forecast is commonly recognized because it represents a useful tool for grid integration and facilitates the energy trading. This work considers an example of power forecast for a wind farm in the Apennines in Central Italy. The orography around the site is complex...... and the horizontal resolution of the wind forecast has an important role. To explore this point we compared the performance of two 48 h wind power forecasts using the winds predicted by the Regional Atmospheric Modeling System (RAMS) for the year 2011. The two forecasts differ only for the horizontal resolution...... of the ECMWF Integrated Forecasting System (IFS), whose horizontal resolution over Central Italy is about 25 km at the time considered in this paper. Because wind observations were not available for the site, the power curve for the whole wind farm was derived from the ECMWF wind operational analyses available...

  10. Effect of wind turbine surge motion on rotor thrust and induced velocity

    DEFF Research Database (Denmark)

    Vaal, J.B., de; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    Offshore wind turbines on floating platforms will experience larger motions than comparable bottom fixed wind turbines—for which the majority of industry standard design codes have been developed and validated. In this paper, the effect of a periodic surge motion on the integrated loads and induc...

  11. A model to predict the power output from wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Landberg, L. [Riso National Lab., Roskilde (Denmark)

    1997-12-31

    This paper will describe a model that can predict the power output from wind farms. To give examples of input the model is applied to a wind farm in Texas. The predictions are generated from forecasts from the NGM model of NCEP. These predictions are made valid at individual sites (wind farms) by applying a matrix calculated by the sub-models of WASP (Wind Atlas Application and Analysis Program). The actual wind farm production is calculated using the Riso PARK model. Because of the preliminary nature of the results, they will not be given. However, similar results from Europe will be given.

  12. Crustal Velocity Model of the Altai-Sayan Region

    Science.gov (United States)

    Behrend, M. J.; Mackey, K. G.

    2016-12-01

    We have developed a crustal velocity model for the the region encompassed by the Altai-Sayan Seismic Network of South-Central Russia (45o-55o N. X 79o-98o E.). Geographically, the study area includes the Altai and Sayan Mountain Ranges, Western Mongolia, Eastern Kazakhstan, and Northwest China. To develop our model we used phase arrival data from approximately 175 larger earthquakes recorded by the Altai-Sayan Seismic Network between 1977 and 1981 and reported in the bulletin Materialy po Seismichnosti Sibiri. To develop our model, we divided the region into 1o N-S x 2o E-W cells. Events within each cell, plus a small surrounding area, were relocated multiple times using a grid-search routine, in effort to determine the best fitting Pg and Sg velocities. Pg and Sg phase arrivals are generally from the 100-1000 km range and represent secondary arriving phases. These arrivals are dominant in this region and we consider the time picks and phase identifications to be reliable. Velocities tested range from 5.650 to 6.350 km/s for Pg and from 3.310 to 3.710 km/s for Sg. The best fitting velocities for each cell were then assigned to the geographic coordinates of the cell's center point. The standard Jeffreys-Bullen model was used for Pn velocities. The best fitting Pg and Sg velocities are those that minimize the average event residuals in a cell. High residual arrivals were omitted from the location process. In our model, Pg velocities range from 5.975-6.325 km/s, while Sg velocities range from 3.510-3.630 km/s, though the higher velocity extremes are constrained by one event and are not statistically significant. The average Pg velocity of the study area was, 6.147 km/s, and average Sg, 3.576 km/s. Geologically, these velocities are associated with the Central Asiatic Foldbelt and are consistent with regional crustal velocities along the southern edge of the Siberian Craton to the East as determined by previous studies.

  13. Average velocity field of the air flow over the water surface in a laboratory modeling of storm and hurricane conditions in the ocean

    Science.gov (United States)

    Kandaurov, A. A.; Troitskaya, Yu. I.; Sergeev, D. A.; Vdovin, M. I.; Baidakov, G. A.

    2014-07-01

    Laboratory experiments on studying the structure of the turbulent air boundary layer over waves were carried out at the Wind-Wave Channel of the Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), in conditions modeling the near-water boundary layer of the atmosphere under strong and hurricane winds and the equivalent wind velocities from 10 to 48 m/s at the standard height of 10 m. A modified technique of Particle Image Velocimetry (PIV) was used to obtain turbulent pulsation averaged velocity fields of the air flow over the water surface curved by a wave and average profiles of the wind velocity. The measurements showed that the logarithmic part of the velocity profile of the air flow in the channel was observed in the immediate vicinity from the water surface (at a distance of 30 mm) and could be detected only using remote methods (PIV). According to the measured velocity profiles, dependences of aerodynamic drag factors of the water surface on the wind velocity at a height of 10 m were retrieved; they were compared with results of contact measurements carried out earlier on the same setup. It is shown that they agree with an accuracy of up to 20%; at moderate and strong wind velocities the coincidence falls within the experimental accuracy.

  14. Fatigue Reliability and Effective Turbulence Models in Wind Farms

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Frandsen, S.; Tarp-Johansen, N.J.

    2007-01-01

    behind wind turbines can imply a significant reduction in the fatigue lifetime of wind turbines placed in wakes. In this paper the design code model in the wind turbine code IEC 61400-1 (2005) is evaluated from a probabilistic point of view, including the importance of modeling the SN-curve by linear...

  15. Simulation analysis of a wind farm with different aggregated models

    DEFF Research Database (Denmark)

    Li, H.; Wang, H.; Zhao, B.

    2011-01-01

    , as well as the detailed SCIG wind turbine model. Regarding for the two cases of a wind farm including SCIGs with identical parameters and different parameters, the dynamic characteristics and transient performances of the presented wind farm using different aggregated models were studied and compared...

  16. A new settling velocity model to describe secondary sedimentation

    DEFF Research Database (Denmark)

    Ramin, Elham; Wágner, Dorottya Sarolta; Yde, Lars

    2014-01-01

    distribution in SSTs can be predicted using computational fluid dynamics (CFD) tools. Despite extensive studies on the compression settling behaviour of activated sludge and the development of advanced settling velocity models for use in SST simulations, these models are not often used, due to the challenges...... associated with their calibration. In this study, we developed a new settling velocity model, including hindered, transient and compression settling, and showed that it can be calibrated to data from a simple, novel settling column experimental set-up using the Bayesian optimization method DREAM......(ZS). In addition, correlations between the Herschel-Bulkley rheological model parameters and sludge concentration were identified with data from batch rheological experiments. A 2-D axisymmetric CFD model of a circular SST containing the new settling velocity and rheological model was validated with full...

  17. Density Models for Velocity Analysis of Jet Impinged CEDM Missile

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Won Ho; Kang, Tae Kyo; Cho, Yeon Ho; Chang, Sang Gyoon; Lee, Dae Hee [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-05-15

    A control element drive mechanism (CEDM) can be a potential missile in the reactor head area during one of the postulated accidents. The CEDM is propelled by the high speed water jet discharged from a broken upper head nozzle. The jet expansion models to predict the missile velocity have been investigated by Kang et al. The previous work of Kang et al. showed a continuous increase in missile velocity as the CEDM missile travels. But it is not natural in that two phase flow from the nozzle break exit tends to disperse and the thrust force on the missile decreases along the distance of the travel. The jet flow also interacts with the air surrounding itself. Therefore, the density change has to be included in the estimation of the missile velocity. In this paper, two density change models of the water jet are introduced for the jet expansion models along with the distance from the nozzle break location. The first one is the direct approximation model. Two density approximation models are introduced to predict the CEDM missile velocity. For each model, the effects of the expanded jet area were included as the area ratio to the exit nozzle area. In direct approximation model, the results have showed rapid decrease in both density and missile velocity. In pressure approach model, the density change is assumed perfectly proportional to the pressure change, and the results showed relatively smooth change in both density and missile velocity comparing to the direct approximation model. Using the model developed by Kang et al.., the maximum missile velocity is about 4 times greater comparing to the pressure approach model since the density is constant as the jet density at the nozzle exit in their model. Pressure approach model has benefits in that this model adopted neither curve fitting nor extrapolation unlike the direct approximation model, and included the effects of density change which are not considered in the model developed by Kang et al. So, this model is

  18. Lorenz Wind Disturbance Model Based on Grey Generated Components

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2014-11-01

    Full Text Available In order to meet the needs of wind speed prediction in wind farms, we consider the influence of random atmospheric disturbances on wind variations. Considering a simplified fluid convection mode, a Lorenz system can be employed as an atmospheric disturbance model. Here Lorenz disturbance is defined as the European norm of the solutions of the Lorenz equation. Grey generating and accumulated generating models are employed to explore the relationship between wind speed and its related disturbance series. We conclude that a linear or quadric polynomial generating model are optimal through the verification of short-term wind speed prediction in the Sotavento wind farm. The new proposed model not only greatly improves the precision of short-term wind speed prediction, but also has great significance for the maintenance and stability of wind power system operation.

  19. Electric solar wind sail mass budget model

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2013-02-01

    Full Text Available The electric solar wind sail (E-sail is a new type of propellantless propulsion system for Solar System transportation, which uses the natural solar wind to produce spacecraft propulsion. The E-sail consists of thin centrifugally stretched tethers that are kept charged by an onboard electron gun and, as such, experience Coulomb drag through the high-speed solar wind plasma stream. This paper discusses a mass breakdown and a performance model for an E-sail spacecraft that hosts a mission-specific payload of prescribed mass. In particular, the model is able to estimate the total spacecraft mass and its propulsive acceleration as a function of various design parameters such as the number of tethers and their length. A number of subsystem masses are calculated assuming existing or near-term E-sail technology. In light of the obtained performance estimates, an E-sail represents a promising propulsion system for a variety of transportation needs in the Solar System.

  20. Lorenz Wind Disturbance Model Based on Grey Generated Components

    OpenAIRE

    Yagang Zhang; Jingyun Yang; Kangcheng Wang; Yinding Wang

    2014-01-01

    In order to meet the needs of wind speed prediction in wind farms, we consider the influence of random atmospheric disturbances on wind variations. Considering a simplified fluid convection mode, a Lorenz system can be employed as an atmospheric disturbance model. Here Lorenz disturbance is defined as the European norm of the solutions of the Lorenz equation. Grey generating and accumulated generating models are employed to explore the relationship between wind speed and its related disturban...

  1. Wind resource modelling for micro-siting - Validation at a 60-MW wind farm site

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J.C.; Gylling Mortensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Said, U.S. [New and Renewable Energy Authority, Cairo (Egypt)

    1999-03-01

    This paper investigates and validates the applicability of the WAsP-model for layout optimization and micro-siting of wind turbines at a given site for a 60-MW wind farm at Zafarana at the Gulf of Suez in Egypt. Previous investigations show large gradients in the wind climate within the area. For the design and optimization of the wind farm it was found necessary to verify the WAsP extrapolation of wind atlas results from 2 existing meteorological masts located 5 and 10 km, respectively, from the wind farm site. On-site measurements at the 3.5 x 3.5 km{sup 2} wind farm site in combination with 7 years of near-site wind atlas measurements offer significant amounts of data for verification of wind conditions for micro-siting. Wind speeds, wind directions, turbulence intensities and guests in 47.5 m a.g.l. have been measured at 9 locations across the site. Additionally, one of the site masts is equipped as a reference mast, measuring both vertical profiles of wind speed and temperature as well as air pressure and temperature. The exercise is further facilitated by the fact that winds are highly uni-directional; the north direction accounting for 80-90% of the wind resource. The paper presents comparisons of 5 months of on-site measurements and modeled predictions from 2 existing meteorological masts located at distances of 5 and 10 km, respectively, from the wind farm site. Predictions based on terrain descriptions of the Wind Atlas for the Gulf of Suez 1991-95 showed over-predictions of wind speeds of 4-10%. With calibrated terrain descriptions, made based on measured data and a re-visit to critical parts of the terrain, the average prediction error of wind speeds was reduced to about 1%. These deviations are smaller than generally expected for such wind resource modeling, clearly documenting the validity of using WAsP modeling for micro-siting and layout optimization of the wind farm. (au)

  2. Fluctuations of offshore wind generation: Statistical modelling

    DEFF Research Database (Denmark)

    Pinson, Pierre; Christensen, Lasse E.A.; Madsen, Henrik

    2007-01-01

    The magnitude of power fluctuations at large offshore wind farms has a significant impact on the control and management strategies of their power output. If focusing on the minute scale, one observes successive periods with smaller and larger power fluctuations. It seems that different regimes...... production averaged at a 1, 5, and 10-minute rate. The exercise consists in one-step ahead forecasting of these time-series with the various regime-switching models. It is shown that the MSAR model, for which the succession of regimes is represented by a hidden Markov chain, significantly outperforms...

  3. Wind farms providing secondary frequency regulation: Evaluating the performance of model-based receding horizon control

    Science.gov (United States)

    Shapiro, Carl R.; Meyers, Johan; Meneveau, Charles; Gayme, Dennice F.

    2016-09-01

    We investigate the use of wind farms to provide secondary frequency regulation for a power grid. Our approach uses model-based receding horizon control of a wind farm that is tested using a large eddy simulation (LES) framework. In order to enable real-time implementation, the control actions are computed based on a time-varying one-dimensional wake model. This model describes wake advection and interactions, both of which play an important role in wind farm power production. This controller is implemented in an LES model of an 84-turbine wind farm represented by actuator disk turbine models. Differences between the velocities at each turbine predicted by the wake model and measured in LES are used for closed-loop feedback. The controller is tested on two types of regulation signals, “RegA” and “RegD”, obtained from PJM, an independent system operator in the eastern United States. Composite performance scores, which are used by PJM to qualify plants for regulation, are used to evaluate the performance of the controlled wind farm. Our results demonstrate that the controlled wind farm consistently performs well, passing the qualification threshold for all fastacting RegD signals. For the RegA signal, which changes over slower time scales, the controlled wind farm's average performance surpasses the threshold, but further work is needed to enable the controlled system to achieve qualifying performance all of the time.

  4. Simulation of rotor aerodynamics : use of the actuator surface method to model the MEXICO wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Breton, S.P.; Watters, C.S.; Masson, C. [Ecole de Technologie Superieure, Montreal, PQ (Canada)

    2010-07-01

    This presentation discussed the model rotor experiments under controlled conditions (MEXICO) project. The experiments are being conducted in the largest wind tunnel in Europe in order to determine optimal yaw and pitch angles for wind turbines as well as to test the performance of blade aerodynamic profiles and rotor instrumentation. Data obtained during the experiments are used to determine velocity component points in order to develop a greater understanding of wind turbine aerodynamics and improve calculation methods. Blade element momentum (BEM) computational fluid dynamics (CFD) and vortex wake codes are used in the program, which includes an actuator surface method embedded in a customized CFD finite element method. To date, the project has validated various models with experimental data, and mapped the induced velocities upwind and downwind from rotors. Further research is being conducted to compare experimental results with other results in the literature related to blade loading, root bending moments, and detailed flow characteristics. Charts of experimental results were included. tabs., figs.

  5. Test of the Louis scheme and COARE algorithm for friction velocity in different wind-sea/swell regimes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The Louis scheme and the COARE algorithm (version 3.0) are tested against eddy covariance and inertial dissipation methods for friction velocity estimates in different wind-sea/swell regimes. Atmospheric forcing data, tabulated by Donelan et al. (1997.J Phys Oceanog, 27:2 087~2 099), were collected from a mast on the foredeck ofa SWATH (small water-plane area, twin hull) ship in deep sea off the State of Virginia during the surface wave dynamics experiment. These data are representative of low to moderate wind regimes.The aerodynamic roughness length is determined by using the Charnock relationship. The intercomparison shows that the Louis scheme and the COARE algorithm underestimate the friction velocity by 6% and 3% respectively under pure wind sea conditions, 15% and 13% respectively under cross swell conditions, and 21% and 17% respectively under counter swell conditions. The analysis shows that these underestimations were caused by the method chosen to determine the aerodynamic roughness length because it significantly underestimates the aerodynamic roughness length. It is especially true under the cross swell and counter swell conditions.

  6. Estimation of Wind Turbulence Using Spectral Models

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Knudsen, Torben; Bak, Thomas

    2011-01-01

    The production and loading of wind farms are significantly influenced by the turbulence of the flowing wind field. Estimation of turbulence allows us to optimize the performance of the wind farm. Turbulence estimation is; however, highly challenging due to the chaotic behavior of the wind. In thi...

  7. Verification of high-speed solar wind stream forecasts using operational solar wind models

    OpenAIRE

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.; Nikolic, Ljubomir; Vennerstrom, Susanne; Schoengassner, Florian; Hofmeister, Stefan J.

    2016-01-01

    High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate high-speed stream forecasts made by the empirical solar wind forecast (ESWF) and the semiempirical Wang-Sheeley-Arge (WSA) model based on the in situ plasma measurements from the ACE spacecraft for ...

  8. Model for vortex turbulence with discontinuities in the solar wind

    Directory of Open Access Journals (Sweden)

    O. P. Verkhoglyadova

    2003-01-01

    Full Text Available A model of vortex with embedded discontinuities in plasma flow is developed in the framework of ideal MHD in a low b plasma. Vortex structures are considered as a result of 2-D evolution of nonlinear shear Alfvén waves in the heliosphere. Physical properties of the solutions and vector fields are analyzed and the observational aspects of the model are discussed. The ratio of normal components to the discontinuity Br /Vr can be close to -2. The alignment between velocity and magnetic field vectors takes place. Spacecraft crossing such vortices will typically observe a pair of discontinuities, but with dissimilar properties. Occurrence rate for different discontinuity types is estimated and agrees with observations in high-speed solar wind stream. Discontinuity crossing provides a backward rotation of magnetic field vector and can be observed as part of a backward arc. The Ulysses magnetometer data obtained in the fast solar wind are compared with the results of theoretical modelling.

  9. Three dimensional reflection velocity analysis based on velocity model scan; Model scan ni yoru sanjigen hanshaha sokudo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, M.; Tsuru, T. [Japan National Oil Corp., Tokyo (Japan); Matsuoka, T. [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1996-05-01

    Introduced herein is a reflection wave velocity analysis method using model scanning as a method for velocity estimation across a section, the estimation being useful in the construction of a velocity structure model in seismic exploration. In this method, a stripping type analysis is carried out, wherein optimum structure parameters are determined for reflection waves one after the other beginning with those from shallower parts. During this process, the velocity structures previously determined for the shallower parts are fixed and only the lowest of the layers undergoing analysis at the time is subjected to model scanning. To consider the bending of ray paths at each velocity boundaries involving shallower parts, the ray path tracing method is utilized for the calculation of the reflection travel time curve for the reflection surface being analyzed. Out of the reflection wave travel time curves calculated using various velocity structure models, one that suits best the actual reflection travel time is detected. The degree of matching between the calculated result and actual result is measured by use of data semblance in a time window provided centering about the calculated reflective wave travel time. The structure parameter is estimated on the basis of conditions for the maximum semblance. 1 ref., 4 figs.

  10. VLTI-AMBER velocity-resolved aperture-synthesis imaging of Eta Carinae with a spectral resolution of 12000. Studies of the primary star wind and innermost wind-wind collision

    CERN Document Server

    Weigelt, G; Schertl, D; Clementel, N; Corcoran, M F; Damineli, A; de Wit, W -J; Grellmann, R; Groh, J; Guieu, S; Gull, T; Heininger, M; Hillier, D J; Hummel, C A; Kraus, S; Madura, T; Mehner, A; Mérand, A; Millour, F; Moffat, A F J; Ohnaka, K; Patru, F; Petrov, R G; Rengaswamy, S; Richardson, N D; Rivinius, T; Schöller, M; Teodoro, M; Wittkowski, M

    2016-01-01

    Context. The mass loss from massive stars is not understood well. Eta Car is a unique object for studying the massive stellar wind during the LBV phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Methods. Observations of Eta Car were carried out with the ESO VLTI and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 different spectral channels distributed across the Br Gamma 2.166 micrometer emission line. The intensity distribution of the images strongly depends on wavelength....

  11. Uncovering wind turbine properties through two-dimensional stochastic modeling of wind dynamics.

    Science.gov (United States)

    Raischel, Frank; Scholz, Teresa; Lopes, Vitor V; Lind, Pedro G

    2013-10-01

    Using a method for stochastic data analysis borrowed from statistical physics, we analyze synthetic data from a Markov chain model that reproduces measurements of wind speed and power production in a wind park in Portugal. We show that our analysis retrieves indeed the power performance curve, which yields the relationship between wind speed and power production, and we discuss how this procedure can be extended for extracting unknown functional relationships between pairs of physical variables in general. We also show how specific features, such as the rated speed of the wind turbine or the descriptive wind speed statistics, can be related to the equations describing the evolution of power production and wind speed at single wind turbines.

  12. An improved k-ε model applied to a wind turbine wake in atmospheric turbulence

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2015-01-01

    turbine wake. The modified k-ε model is compared with the original k-ε eddy viscosity model, Large-Eddy Simulations and field measurements using eight test cases. The comparison shows that the velocity wake deficits, predicted by the proposed model are much closer to the ones calculated by the Large......An improved k-ε turbulence model is developed and applied to a single wind turbine wake in a neutral atmospheric boundary layer using a Reynolds averaged Navier–Stokes solver. The proposed model includes a flow-dependent Cμ that is sensitive to high velocity gradients, e.g., at the edge of a wind......-Eddy Simulation and those observed in the measurements, than predicted by the original k-ε model. Copyright © 2014 John Wiley & Sons, Ltd....

  13. A New Axisymmetric MHD Model of the Interaction of the Solar Wind with Venus

    Science.gov (United States)

    DeZeeuw, Darren L.; Nagy, Andrew F.; Gombosi, Tamas I.; Powell, Kenneth G.; Luhmann, Janet G.

    1996-01-01

    A new two-dimensional axisymmetric MHD model is used to study the interaction of the solar wind with Venus under conditions where the interplanetary field is approximately aligned with the solar wind velocity. This numerical model solves the MHD transport equations for density, velocity, pressure, and magnetic field on an adaptively refined, unstructured grid system. This use of an adaptive grid allows high spatial resolution in regions of large density/velocity gradients and yet can be run on a workstation. The actual grid sizes vary from about 0.06 R(sub v) near the bowshock to 2 R(sub v) in the unperturbed solar wind. The results of the calculations are compared with observed magnetic field values obtained from the magnetometer on the Pioneer Venus Orbiter, at a time when the angle between the solar wind velocity vector and the interplanetary magnetic field (IMF) was only 7.6 deg. Good qualitative agreement between the observed and calculated field behavior is found. The overall results suggest that the induced magnetotail disappears when the IMF is radial for an extended time period and implies that it weakens when the field rotated through a near-radial orientation.

  14. The Origin of Non-Maxwellian Solar Wind Electron Velocity Distribution Function: Connection to Nanoflares in the Solar Corona

    CERN Document Server

    Che, H

    2014-01-01

    The formation of the observed core-halo feature in the solar wind electron velocity distribution function is a long-time puzzle. In this letter based on the current knowledge of nanoflares we show that the nanoflare-accelerated electron beams are likely to trigger a strong electron two-stream instability that generates kinetic Alfv\\'en wave and whistler wave turbulence, as we demonstrated in a previous paper. We further show that the core-halo feature produced during the origin of kinetic turbulence is likely to originate in the inner corona and can be preserved as the solar wind escapes to space along open field lines. We formulate a set of equations to describe the heating processes observed in the simulation and show that the core-halo temperature ratio of the solar wind is insensitive to the initial conditions in the corona and is related to the core-halo density ratio of the solar wind and to the quasi-saturation property of the two-stream instability at the time when the exponential decay ends. This rel...

  15. Behaviour of ion velocity distributions for a simple collision model

    Science.gov (United States)

    St-Maurice, J.-P.; Schunk, R. W.

    1974-01-01

    Calculation of the ion velocity distributions for a weakly ionized plasma subjected to crossed electric and magnetic fields. An exact solution to Boltzmann's equation has been obtained by replacing the Boltzmann collision integral with a simple relaxation model. At altitudes above about 150 km, where the ion collision frequency is much less than the ion cyclotron frequency, the ion distribution takes the shape of a torus in velocity space for electric fields greater than 40 mV/m. This shape persists for one to two hours after application of the electric field. At altitudes where the ion collision and cyclotron frequencies are approximately equal (about 120 km), the ion velocity distribution is shaped like a bean for large electric field strengths. This bean-shaped distribution persists throughout the lifetime of ionospheric electric fields. These highly non-Maxwellian ion velocity distributions may have an appreciable affect on the interpretation of ion temperature measurements.

  16. A 3-mode, Variable Velocity Jet Model for HH 34

    Science.gov (United States)

    Raga, A.; Noriega-Crespo, A.

    1998-01-01

    Variable ejection velocity jet models can qualitatively explain the appearance of successive working surfaces in Herbig-Haro (HH) jets. This paper presents an attempt to explore which features of the HH 34 jet can indeed be reproduced by such a model.

  17. Mesoscale to microscale wind farm flow modeling and evaluation

    DEFF Research Database (Denmark)

    Sanz Rodrigo, Javier; Chávez Arroyo, Roberto Aurelio; Moriarty, Patrick

    2017-01-01

    of meteorological and wind engineering flow models and the definition of a formal model evaluation methodology, is a strong area of research for the next generation of wind conditions assessment and wind farm and wind turbine design tools. Some fundamental challenges are identified in order to guide future research...... design tools and meteorological models. The challenge is how to build the bridge between atmospheric and wind engineering model communities and how to establish a comprehensive evaluation process that identifies relevant physical phenomena for wind energy applications with modeling and experimental...... requirements. A framework for model verification, validation, and uncertainty quantification is established to guide this process by a systematic evaluation of the modeling system at increasing levels of complexity. In terms of atmospheric physics, 'building the bridge' means developing models for the so...

  18. Verification of high-speed solar wind stream forecasts using operational solar wind models

    Science.gov (United States)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.; Nikolic, Ljubomir; Vennerstrom, Susanne; Schöngassner, Florian; Hofmeister, Stefan J.

    2016-07-01

    High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate high-speed stream forecasts made by the empirical solar wind forecast (ESWF) and the semiempirical Wang-Sheeley-Arge (WSA) model based on the in situ plasma measurements from the Advanced Composition Explorer (ACE) spacecraft for the years 2011 to 2014. While the ESWF makes use of an empirical relation between the coronal hole area observed in Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images and solar wind properties at the near-Earth environment, the WSA model establishes a link between properties of the open magnetic field lines extending from the photosphere to the corona and the background solar wind conditions. We found that both solar wind models are capable of predicting the large-scale features of the observed solar wind speed (root-mean-square error, RMSE ≈100 km/s) but tend to either overestimate (ESWF) or underestimate (WSA) the number of high-speed solar wind streams (threat score, TS ≈ 0.37). The predicted high-speed streams show typical uncertainties in the arrival time of about 1 day and uncertainties in the speed of about 100 km/s. General advantages and disadvantages of the investigated solar wind models are diagnosed and outlined.

  19. Modeling and identification of harmonic instability problems in wind farms

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei;

    2016-01-01

    to identify harmonic instability problems in wind farms, where many wind turbines, cables, transformers, capacitor banks, shunt reactors, etc, typically are located. This methodology introduces the wind farm as a Multi-Input Multi-Outpur (MIMO) control system, where the linearized models of fast inner control...

  20. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas, Erasmo [Facultad de Ingenieria Mecanica, Universidad Michoacana de San Nicolas de Hidalgo, Santiago Tapia No. 403, Centro (Mexico); Rivera, Wilfrido [Centro de Ivestigacion en Energia, Universidad Nacional Autonoma de Mexico, Apartado Postal 34, Temixco 62580, Morelos (Mexico)

    2010-12-15

    In this paper the wind speed forecasting in the Isla de Cedros in Baja California, in the Cerro de la Virgen in Zacatecas and in Holbox in Quintana Roo is presented. The time series utilized are average hourly wind speed data obtained directly from the measurements realized in the different sites during about one month. In order to do wind speed forecasting Hybrid models consisting of Autoregressive Integrated Moving Average (ARIMA) models and Artificial Neural Network (ANN) models were developed. The ARIMA models were first used to do the wind speed forecasting of the time series and then with the obtained errors ANN were built taking into account the nonlinear tendencies that the ARIMA technique could not identify, reducing with this the final errors. Once the Hybrid models were developed 48 data out of sample for each one of the sites were used to do the wind speed forecasting and the results were compared with the ARIMA and the ANN models working separately. Statistical error measures such as the mean error (ME), the mean square error (MSE) and the mean absolute error (MAE) were calculated to compare the three methods. The results showed that the Hybrid models predict the wind velocities with a higher accuracy than the ARIMA and ANN models in the three examined sites. (author)

  1. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  2. Pitchcontrol of wind turbines using model free adaptivecontrol based on wind turbine code

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Cheng, Ming;

    2011-01-01

    As the wind turbine is a nonlinear high-order system, to achieve good pitch control performance, model free adaptive control (MFAC) approach which doesn't need the mathematical model of the wind turbine is adopted in the pitch control system in this paper. A pseudo gradient vector whose estimation...

  3. Mechanistic models of plant seed dispersal by wind in heterogeneous landscapes

    Science.gov (United States)

    Trakhtenbrot, A.; Katul, G. G.; Nathan, R.

    2010-12-01

    Seed dispersal, and especially long-distance dispersal (LDD), is a key process in plant population survival, colonization, and gene flow. Its importance is amplified by the man-induced habitat fragmentation, climate change and invasions of exotic species. Mechanistic seed dispersal models are central to quantitative prediction of dispersal patterns and understanding their underlying mechanisms. For wind dispersal, most current mechanistic models assume homogenous environment. Although both topography and sharp transitions in vegetation stature profoundly affect wind flow, accounting for these effects via simplified models remains a vexing research problem. Such simplified models are needed to inform ecosystem managers about consequences of landscape fragmentation. We modified the Coupled Eulerian-Lagrangian closure (CELC) mechanistic dispersal model to represent scenarios of wind flow over a sharp transition from short to tall vegetation or over forested hilly terrain, and predicted the resulting dispersal distances and direction. We parameterized the wind and vegetation factors using measurements taken on a hill with short height Mediterranean shrubland and pine forest vegetation at Mt. Pithulim, Israel. For the short-to-tall vegetation transition scenario, the main feature of the modeled wind field is an exponential decay of the mean horizontal wind velocity, assuming that the mean momentum equation simplifies to a balance between the advective acceleration and the drag force terms. As a consequence of the incompressibility condition, this exponential decay leads to strong upward mean vertical velocity component. We found that for seed release downwind of the edge, the simulated median (short) and 99-th percentile (long) distances were longer than those for the homogeneous tall vegetation scenario. For seed release upwind of the edge the effect on dispersal distance was more complex and depended on the release height and he seed terminal velocity of the seeds

  4. Offshore Wind Energy Cost Modeling Installation and Decommissioning

    CERN Document Server

    Kaiser, Mark J

    2012-01-01

    Offshore wind energy is one of the most promising and fastest growing alternative energy sources in the world. Offshore Wind Energy Cost Modeling provides a methodological framework to assess installation and decommissioning costs, and using examples from the European experience, provides a broad review of existing processes and systems used in the offshore wind industry. Offshore Wind Energy Cost Modeling provides a step-by-step guide to modeling costs over four sections. These sections cover: ·Background and introductory material, ·Installation processes and vessel requirements, ·Installation cost estimation, and ·Decommissioning methods and cost estimation.  This self-contained and detailed treatment of the key principles in offshore wind development is supported throughout by visual aids and data tables. Offshore Wind Energy Cost Modeling is a key resource for anyone interested in the offshore wind industry, particularly those interested in the technical and economic aspects of installation and decom...

  5. A Goldilocks principle for modeling radial velocity noise

    CERN Document Server

    Feng, Fabo; Jones, H R A; Butler, R P; Vogt, S

    2016-01-01

    The doppler measurements of stars are diluted and distorted by stellar activity noise. Different choices of noise models and statistical methods have led to much controversy in the confirmation of exoplanet candidates obtained through analysing radial velocity data. To quantify the limitation of various models and methods, we compare different noise models and signal detection criteria for various simulated and real data sets in the Bayesian framework. According to our analyses, the white noise model tend to interpret noise as signal, leading to false positives. On the other hand, the red noise models are likely to interprete signal as noise, resulting in false negatives. We find that the Bayesian information criterion combined with a Bayes factor threshold of 150 can efficiently rule out false positives and confirm true detections. We further propose a Goldilocks principle aimed at modeling radial velocity noise to avoid too many false positives and too many false negatives. We propose that the noise model w...

  6. Spectral tensor parameters for wind turbine load modeling from forested and agricultural landscapes

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Segalini, A.

    2015-01-01

    over a forested and an agricultural landscape were used to calculate the model parameters for neutral, slightly stable and slightly unstable atmospheric conditions for a selected wind speed interval. The dissipation rate above the forest was nine times that at the agricultural site. No significant......A velocity spectral tensor model was evaluated from the single-point measurements of wind speed. The model contains three parameters representing the dissipation rate of specific turbulent kinetic energy, a turbulence length scale and the turbulence anisotropy. Sonic anemometer measurements taken...... constant with height at the forest site, whereas the turbulence became more isotropic with height for the agricultural site. Using the three parameters as inputs, we quantified the performance of the model in coherence predictions for vertical separations. The model coherence of all the three velocity...

  7. High-velocity, multistage, nozzled, ion driven wind generator and method of operation of the same adaptable to mesoscale realization

    Science.gov (United States)

    Dunn-Rankin, Derek (Inventor); Rickard, Matthew J. A. (Inventor)

    2011-01-01

    Gas flows of modest velocities are generated when an organized ion flux in an electric field initiates an ion-driven wind of neutral molecules. When a needle in ambient air is electrically charged to a potential sufficient to produce a corona discharge near its tip, such a gas flow can be utilized downstream of a ring-shaped or other permeable earthed electrode. In view of the potential practical applications of such devices, as they represent blowers with no moving parts, a methodology for increasing their flow velocities includes exploitation of the divergence of electric field lines, avoidance of regions of high curvature on the second electrode, control of atmospheric humidity, and the use of linear arrays of stages, terminating in a converging nozzle. The design becomes particularly advantageous when implemented in mesoscale domains.

  8. Velocity selection in the symmetric model of dendritic crystal growth

    Science.gov (United States)

    Barbieri, Angelo; Hong, Daniel C.; Langer, J. S.

    1987-01-01

    An analytic solution of the problem of velocity selection in a fully nonlocal model of dendritic crystal growth is presented. The analysis uses a WKB technique to derive and evaluate a solvability condition for the existence of steady-state needle-like solidification fronts in the limit of small under-cooling Delta. For the two-dimensional symmetric model with a capillary anisotropy of strength alpha, it is found that the velocity is proportional to (Delta to the 4th) times (alpha exp 7/4). The application of the method in three dimensions is also described.

  9. Is flow velocity a significant parameter in flood damage modelling?

    Directory of Open Access Journals (Sweden)

    H. Kreibich

    2009-10-01

    Full Text Available Flow velocity is generally presumed to influence flood damage. However, this influence is hardly quantified and virtually no damage models take it into account. Therefore, the influences of flow velocity, water depth and combinations of these two impact parameters on various types of flood damage were investigated in five communities affected by the Elbe catchment flood in Germany in 2002. 2-D hydraulic models with high to medium spatial resolutions were used to calculate the impact parameters at the sites in which damage occurred. A significant influence of flow velocity on structural damage, particularly on roads, could be shown in contrast to a minor influence on monetary losses and business interruption. Forecasts of structural damage to road infrastructure should be based on flow velocity alone. The energy head is suggested as a suitable flood impact parameter for reliable forecasting of structural damage to residential buildings above a critical impact level of 2 m of energy head or water depth. However, general consideration of flow velocity in flood damage modelling, particularly for estimating monetary loss, cannot be recommended.

  10. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are

  11. Modeling of wind turbines with doubly fed generator system

    CERN Document Server

    Fortmann, Jens

    2014-01-01

    Jens Fortmann describes the deduction of models for the grid integration of variable speed wind turbines and the reactive power control design of wind plants. The modeling part is intended as background to understand the theory, capabilities and limitations of the generic doubly fed generator and full converter wind turbine models described in the IEC 61400-27-1 and as 2nd generation WECC models that are used as standard library models of wind turbines for grid simulation software. Focus of the reactive power control part is a deduction of the origin and theory behind the reactive current requ

  12. Effective turbulence models and fatigue reliability in wind farms

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Frandsen, Sten Tronæs; Tarp-Johansen, N.J.

    2008-01-01

    intensity in wakes behind wind turbines can imply a significant reduction in the fatigue lifetime of wind turbines placed in wakes. Ill this paper the design code model ill the wind turbine code [IEC 61400-1, Wind turbine generator systems - Part 1: Safety requirements. 2005] is evaluated from...... a probabilistic point of view, including the importance of modeling the SN-curve by a bi-linear model. Fatigue models relevant for welded, cast steel and fiber reinforced details are considered. Further, the influence on the fatigue reliability is investigated from modeling the fatigue response by a stochastic...

  13. Discovery of very high velocity outflow in V Hydra - Wind from an accretion disk in a binary?

    Science.gov (United States)

    Sahai, R.; Wannier, P. G.

    1988-01-01

    High-resolution observations of lines from the CO v = 1-0 vibration-rotation band at 4.6 microns, taken with the FTS/KPNO 4-m telescope, are reported for the carbon-rich red giant V Hydra, which is surrounded by an extended expanding molecular envelope resulting from extensive mass loss. The spectrum shows, in addition to the expected absorption at the outflow velocity of the envelope, absorption extending up to 120 km/s bluewards of the stellar velocity. A comparison of the spectrum observed at two epochs shows that the high-velocity absorption features change with time. It is suggested that the observed high-velocity features in V Hydra arise in a high-velocity polar outflow from an accretion disk in a binary system, as proposed in the mass-loss model for bipolar envelopes by Morris (1988).

  14. Frequency weighted model predictive control of wind turbine

    DEFF Research Database (Denmark)

    Klauco, Martin; Poulsen, Niels Kjølstad; Mirzaei, Mahmood;

    2013-01-01

    This work is focused on applying frequency weighted model predictive control (FMPC) on three blade horizontal axis wind turbine (HAWT). A wind turbine is a very complex, non-linear system influenced by a stochastic wind speed variation. The reduced dynamics considered in this work...... are the rotational degree of freedom of the rotor and the tower for-aft movement. The MPC design is based on a receding horizon policy and a linearised model of the wind turbine. Due to the change of dynamics according to wind speed, several linearisation points must be considered and the control design adjusted...... accordingly. In practice is very hard to measure the effective wind speed, this quantity will be estimated using measurements from the turbine itself. For this purpose stationary predictive Kalman filter has been used. Stochastic simulations of the wind turbine behaviour with applied frequency weighted model...

  15. Global empirical wind model for the upper mesosphere/lower thermosphere. I. Prevailing wind

    Directory of Open Access Journals (Sweden)

    Y. I. Portnyagin

    Full Text Available An updated empirical climatic zonally averaged prevailing wind model for the upper mesosphere/lower thermosphere (70-110 km, extending from 80°N to 80°S is presented. The model is constructed from the fitting of monthly mean winds from meteor radar and MF radar measurements at more than 40 stations, well distributed over the globe. The height-latitude contour plots of monthly mean zonal and meridional winds for all months of the year, and of annual mean wind, amplitudes and phases of annual and semiannual harmonics of wind variations are analyzed to reveal the main features of the seasonal variation of the global wind structures in the Northern and Southern Hemispheres. Some results of comparison between the ground-based wind models and the space-based models are presented. It is shown that, with the exception of annual mean systematic bias between the zonal winds provided by the ground-based and space-based models, a good agreement between the models is observed. The possible origin of this bias is discussed.

    Key words: Meteorology and Atmospheric dynamics (general circulation; middle atmosphere dynamics; thermospheric dynamics

  16. Two velocity difference model for a car following theory

    Science.gov (United States)

    Ge, H. X.; Cheng, R. J.; Li, Z. P.

    2008-09-01

    In the light of the optimal velocity model, a two velocity difference model for a car-following theory is put forward considering navigation in modern traffic. To our knowledge, the model is an improvement over the previous ones theoretically, because it considers more aspects in the car-following process than others. Then we investigate the property of the model using linear and nonlinear analyses. The Korteweg-de Vries equation (for short, the KdV equation) near the neutral stability line and the modified Korteweg-de Vries equation (for short, the mKdV equation) around the critical point are derived by applying the reductive perturbation method. The traffic jam could be thus described by the KdV soliton and the kink-anti-kink soliton for the KdV equation and mKdV equation, respectively. Numerical simulations are made to verify the model, and good results are obtained with the new model.

  17. Detection of high-velocity material from the wind-wind collision zone of Eta Carinae across the 2009.0 periastron passage

    CERN Document Server

    Groh, Jose H; Damineli, Augusto; Gull, Theodore R; Madura, Thomas I; Hillier, D J; Teodoro, Mairan; Driebe, Thomas; Weigelt, Gerd; Hartman, Henrik; Kerber, Florian; Okazaki, Atsuo T; Owocki, Stan P; Millour, Florentin; Murakawa, Koji; Kraus, Stefan; Hofmann, Karl-Heinz; Schertl, Dieter

    2010-01-01

    We report near-IR spectroscopic observations of the Eta Carinae massive binary system during 2008-2009 using VLT/CRIRES. We detect a strong, broad absorption wing in He I 10833 extending up to -1900 km/s across the 2009.0 spectroscopic event. Archival HST/STIS ultraviolet and optical data shows a similar high-velocity absorption (up to -2100 km/s) in the UV resonance lines of Si IV 1394, 1403 across the 2003.5 event. UV lines from low-ionization species, such as Si II 1527, 1533 and C II 1334, 1335, show absorption up to -1200 km/s, indicating that the absorption with v from -1200 to -2100 km/s originates in a region markedly faster and more ionized than the nominal wind of the primary star. Observations obtained at the OPD/LNA during the last 4 spectroscopic cycles (1989-2009) also display high-velocity absorption in He I 10833 during periastron. Based on the OPD/LNA dataset, we determine that material with v 1.049. Therefore, we constrain the duration of the high-velocity absorption to be 95 to 206 days (o...

  18. A nonlinear inversion for the velocity background and perturbation models

    KAUST Repository

    Wu, Zedong

    2015-08-19

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the single scattered wavefield obtained using an image. However, current RWI methods usually neglect diving waves, which is an important source of information for extracting the long wavelength components of the velocity model. Thus, we propose a new optimization problem through breaking the velocity model into the background and the perturbation in the wave equation directly. In this case, the perturbed model is no longer the single scattering model, but includes all scattering. We optimize both components simultaneously, and thus, the objective function is nonlinear with respect to both the background and perturbation. The new introduced w can absorb the non-smooth update of background naturally. Application to the Marmousi model with frequencies that start at 5 Hz shows that this method can converge to the accurate velocity starting from a linearly increasing initial velocity. Application to the SEG2014 demonstrates the versatility of the approach.

  19. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements

  20. Differential Velocity between Solar Wind Protons and Alpha Particles in Pressure Balance Structures

    Science.gov (United States)

    Yamauchi, Yohei; Suess, Steven T.; Steinberg, John T.; Sakurai, Takashi

    2004-01-01

    Pressure balance structures (PBSs) are a common high-plasma beta feature in high-latitude, high-speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high-speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high-speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large-amplitude Alfven wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high-latitude, high-speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high-speed, high-latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained.

  1. Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

    DEFF Research Database (Denmark)

    Draxl, Caroline; Hahmann, Andrea N.; Pena Diaz, Alfredo

    2014-01-01

    The existence of vertical wind shear in the atmosphere close to the ground requires that wind resource assessment and prediction with numerical weather prediction (NWP) models use wind forecasts at levels within the full rotor span of modern large wind turbines. The performance of NWP models...... regarding wind energy at these levels partly depends on the formulation and implementation of planetary boundary layer (PBL) parameterizations in these models. This study evaluates wind speeds and vertical wind shears simulated by theWeather Research and Forecasting model using seven sets of simulations...

  2. Models for wind turbines - a collection

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, M.H. (eds.); Baumgart, A.

    2002-02-01

    This report is a collection of notes which were intended to be short communications. Main target of the work presented is to supply new approaches to stability investigations of wind turbines. The authors opinion is that an efficient, systematic stability analysis can not be performed for large systems of differential equations (i.e. the order of the differential equations > 100), because numerical 'effects' in the solution of the equations of motion as initial value problem, eigenvalue problem or whatsoever become predominant. It is therefore necessary to find models which are reduced to the elementary coordinates but which can still describe the physical processes under consideration with sufficiently good accuracy. Such models are presented. (au)

  3. A phenomenological model for the dynamic response of wind turbines to turbulent wind

    Energy Technology Data Exchange (ETDEWEB)

    Rauh, Alexander; Peinke, Joachim [Institut fur Physik, Universitat Oldenburg, D-26111 Oldenburg (Germany)

    2004-02-01

    To predict the average power output of a wind turbine, a response model is proposed which takes into account: (1) the delayed response to the longitudinal wind speed fluctuations; (2) a response function of the turbine with arbitrary frequency dependence; and (3) wind fields of arbitrary turbulence intensity. In the limit of low turbulence intensity, the dynamical ansatz as proposed in 1992 by Rosen and Sheinman is reproduced. It is shown, how the response function of the turbine can be obtained from simulation experiments of a specific wind turbine. For two idealized situations the dynamic effect of fluctuating wind is estimated at turbulence intensities 0{<=}I{sub u}{<=}0.5. At the special mean wind speed V=8m/s, the turbine response function is determined from simulation data published by Sheinman and Rosen in 1992 and 1994.

  4. 矿用无线风速传感器的研究%Study on Mining Wireless Wind Velocity Sensors

    Institute of Scientific and Technical Information of China (English)

    李长青; 李迎杰

    2012-01-01

    本文提出了一种基于Zigbee技术的超声波旋涡式无线风速传感器的研究方案.论述了无线传感器的基本构成和工作原理,对硬件电路和软件进行了设计,解决了采用放炮的工作面掘进方式带来的传感器的线路容易被炸断的问题.实现了风速传感器和工作分站之间的无线通信,降低了布线工作量,提高了工作效率,延长了风速传感器的寿命。%This paper presents a kind of wireless supersonic vortex sensor based on Zigbee study program, discusses the construction and working principle of this sensor, designs its hardware and sofeware, resolves the problem of using blasting tunneling operation lead to frequent occurrence of fractured lines in the workplace's heading face, realizes wireless communication between wind velocity sensors and workstations, reduces wiring workload,chances work efficiency,extends wind velocity sensors' life expectancy.

  5. Finite Element Modelling of Electrical Overhead Line Cables under Turbulent Wind Load

    Directory of Open Access Journals (Sweden)

    Dominik Stengel

    2014-01-01

    Full Text Available This paper presents a finite element model of an overhead transmission line using so called cable elements which allow reproducing the cable’s nonlinear characteristics accurately employing only a few elements. Aerodynamic damping is considered in the equation of motion by taking into account the relative velocity between the flow of the wind and the moving structure. The wind flow itself is simulated by wave superposition making necessary assumptions on the lateral correlation between the wind velocities along the cable length. As result from the simulation, the following conclusions can be drawn. The first natural frequency of generally used wide spanning cables lies well below 1 Hz where also most of the energy content of the wind excitation is to be expected. Aerodynamic damping is significant for the moving cables holding very low structural damping which leads to a suppression of resonant amplification. This is particularly of interest regarding the support reaction which is dominated by the mean value and the so called background response. The latter is mostly influenced by the randomness of the wind flow, especially lateral to the main wind direction.

  6. THE THEORETICAL MODEL FOR PREDICTING CIRCULATION VELOCITY OF HYDRAULIC BRAKE

    Institute of Scientific and Technical Information of China (English)

    刘英林; 侯春生

    1997-01-01

    By rational hypothesis of fluid flow pattern, applied the law of conservation of energy and integrated the laboratory test results, finished the prediction by the theoretical model of circulation velocity of hydraulic brake which is important parameter. Thus provide the theoritical basis for hydraulic brake of belt conveyor whose research has just been started.

  7. A non-parametric model for the cosmic velocity field

    NARCIS (Netherlands)

    Branchini, E; Teodoro, L; Frenk, CS; Schmoldt, [No Value; Efstathiou, G; White, SDM; Saunders, W; Sutherland, W; Rowan-Robinson, M; Keeble, O; Tadros, H; Maddox, S; Oliver, S

    1999-01-01

    We present a self-consistent non-parametric model of the local cosmic velocity field derived from the distribution of IRAS galaxies in the PSCz redshift survey. The survey has been analysed using two independent methods, both based on the assumptions of gravitational instability and linear biasing.

  8. Calculus and design of discrete velocity models using computer algebra

    Science.gov (United States)

    Babovsky, Hans; Grabmeier, Johannes

    2016-11-01

    In [2, 3], a framework for a calculus with Discrete Velocity Models (DVM) has been derived. The rotatonal symmetry of the discrete velocities can be modelled algebraically by the action of the cyclic group C4 - or including reflections of the dihedral group D4. Taking this point of view, the linearized collision operator can be represented in a compact form as a matrix of elements in the group algebra. Or in other words, by choosing a special numbering it exhibits a certain block structure which lets it appear as a matrix with entries in a certain polynomial ring. A convenient way for approaching such a structure is the use of a computer algebra system able to treat these (predefined) algebraic structures. We used the computer algebra system FriCAS/AXIOM [4, 5] for the generation of the velocity and the collision sets and for the analysis of the structure of the collision operator. Concerning the fluid dynamic limit, the system provides the characterization of sets of collisions and their contribution to the flow parameters. It allows the design of rotationally invariant symmetric models for prescribed Prandtl numbers. The implementation in FriCAS/AXIOM is explained and its results for a 25-velocity model are presented.

  9. Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies

    DEFF Research Database (Denmark)

    Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer;

    2014-01-01

    turbine model which is developed for the short-term voltage stability studies can be inaccurate and sufficient for the frequency stability studies. Accordingly, a complete and detailed wind power plant model for every kind of study is not feasible in terms of the computational time and also...... is not reasonable regarding the focus of the study. Therefore the power system operators should be aware of the modelling aspects of the wind power considering the related stability study and implement the required model in the appropriate power system toolbox. In this paper, the modelling aspects of wind turbines...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system....

  10. Condition Parameter Modeling for Anomaly Detection in Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yonglong Yan

    2014-05-01

    Full Text Available Data collected from the supervisory control and data acquisition (SCADA system, used widely in wind farms to obtain operational and condition information about wind turbines (WTs, is of important significance for anomaly detection in wind turbines. The paper presents a novel model for wind turbine anomaly detection mainly based on SCADA data and a back-propagation neural network (BPNN for automatic selection of the condition parameters. The SCADA data sets are determined through analysis of the cumulative probability distribution of wind speed and the relationship between output power and wind speed. The automatic BPNN-based parameter selection is for reduction of redundant parameters for anomaly detection in wind turbines. Through investigation of cases of WT faults, the validity of the automatic parameter selection-based model for WT anomaly detection is verified.

  11. Modelling studies of wind field on urban environment

    Directory of Open Access Journals (Sweden)

    K. Radics

    2002-11-01

    Full Text Available Increasing load of air pollution in urban environment emphasises the need for detailed evaluation of wind characteristics that significantly affect the air quality of urban areas, especially, in large agglomerations. This paper includes analysis of urban wind climatology and estimation of wind profiles based on measurements of the new urban climate station located at the Eötvös University, observations of the meteorological station network of the Budapest agglomeration area, and multi-level wind measurements near Hegyhátsál. Furthermore, wind field modelling (using the WAsP linear spectral wind flow model is presented over selected representative complex areas that demonstrates strong dependence between wind, height, topography, and roughness.

  12. Empirical models for predicting wind potential for wind energy applications in rural locations of Nigeria

    Directory of Open Access Journals (Sweden)

    F. C. Odo, G. U. Akubue, S. U. Offiah, P. E. Ugwuoke

    2013-01-01

    Full Text Available In this paper, we use the correlation between the average wind speed and ambient temperature to develop models for predicting wind potentials for two Nigerian locations. Assuming that the troposphere is a typical heterogeneous mixture of ideal gases, we find that for the studied locations, wind speed clearly correlates with ambient temperature in a simple polynomial of 3rd degree. The coefficient of determination and root-mean-square error of the models are 0.81; 0.0024 and 0.56; 0.0041, respectively, for Enugu (6.40N; 7.50E and Owerri (5.50N; 7.00E. These results suggest that the temperature-based model can be used, with acceptable accuracy, in predicting wind potentials needed for preliminary design assessment of wind energy conversion devices for the locations and others with similar meteorological conditions.

  13. Modelling of offshore wind turbine wakes with the wind farm program FLaP

    DEFF Research Database (Denmark)

    Lange, B.; Waldl, H.P.; Guerrero, A.G.

    2003-01-01

    The wind farm layout program FLaP estimates the wind speed at any point in a wind farm and the power output of the turbines. The ambient flow conditions and the properties of the turbines and the farm are used as input. The core of the program is an axisymmetric wake model describing the wake...... been extended to improve the description of wake development in offshore conditions, especially the low ambient turbulence and the effect of atmospheric stability. Model results are compared with measurements from the Danish offshore wind farm Vindeby. Vertical wake profiles and mean turbulence...... intensities in the wake are compared for single-, double- and quintuple-wake cases with different mean wind speed, turbulence intensity and atmospheric stability. It is found that within the measurement uncertainties the results of the wake model compare well with the measurements for the most important...

  14. Empirical models for predicting wind potential for wind energy applications in rural locations of Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Odo, F.C. [National Centre for Energy Research and Development, University of Nigeria, Nsukka (Nigeria); Department of Physics and Astronomy, University of Nigeria, Nsukka (Nigeria); Akubue, G.U.; Offiah, S.U.; Ugwuoke, P.E. [National Centre for Energy Research and Development, University of Nigeria, Nsukka (Nigeria)

    2013-07-01

    In this paper, we use the correlation between the average wind speed and ambient temperature to develop models for predicting wind potentials for two Nigerian locations. Assuming that the troposphere is a typical heterogeneous mixture of ideal gases, we find that for the studied locations, wind speed clearly correlates with ambient temperature in a simple polynomial of 3rd degree. The coefficient of determination and root-mean-square error of the models are 0.81; 0.0024 and 0.56; 0.0041, respectively, for Enugu (6.40N; 7.50E) and Owerri (5.50N; 7.00E). These results suggest that the temperature-based model can be used, with acceptable accuracy, in predicting wind potentials needed for preliminary design assessment of wind energy conversion devices for the locations and others with similar meteorological conditions.

  15. Glide back booster wind tunnel model testing

    Science.gov (United States)

    Pricop, M. V.; Cojocaru, M. G.; Stoica, C. I.; Niculescu, M. L.; Neculaescu, A. M.; Persinaru, A. G.; Boscoianu, M.

    2017-07-01

    Affordable space access requires partial or ideally full launch vehicle reuse, which is in line with clean environment requirement. Although the idea is old, the practical use is difficult, requiring very large technology investment for qualification. Rocket gliders like Space Shuttle have been successfullyoperated but the price and correspondingly the energy footprint were found not sustainable. For medium launchers, finally there is a very promising platform as Falcon 9. For very small launchers the situation is more complex, because the performance index (payload to start mass) is already small, versus medium and heavy launchers. For partial reusable micro launchers this index is even smaller. However the challenge has to be taken because it is likely that in a multiyear effort, technology is going to enable the performance recovery to make such a system economically and environmentally feasible. The current paper is devoted to a small unitary glide back booster which is foreseen to be assembled in a number of possible configurations. Although the level of analysis is not deep, the solution is analyzed from the aerodynamic point of view. A wind tunnel model is designed, with an active canard, to enablea more efficient wind tunnel campaign, as a national level premiere.

  16. Probabilistic Modeling of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei

    Wind energy is one of several energy sources in the world and a rapidly growing industry in the energy sector. When placed in offshore or onshore locations, wind turbines are exposed to wave excitations, highly dynamic wind loads and/or the wakes from other wind turbines. Therefore, most components....../nodules on fatigue life of cast iron samples. The cast iron samples scanned by 3D tomography equipment at the DTU Wind Energy (Risø campus), and the distribution of nodules are used to estimate the fatigue life....

  17. Stochastic model for joint wave and wind loads on offshore structures

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2002-01-01

    The stochastic wave load environment of offshore structures is of such a complicated nature that any engineering analysis requires extensive simplifications. This concerns both the transformation of the wave field velocities and accelerations to forces on the structure and the probabilistic...... and by integration over all sea states given $Q>q_0$, the distribution is obtained that is relevant for the free space design. However, for the forces on the members of the structure also the wave period is essential. Within the linear wave theory (Airy waves) the drag term in the Morison force formula increases...... and is therefore very difficult if not impossible to obtain by analytical mathematical reasoning. Keywords: Extreme wind driven sea waves, Local maxima and period properties of Gaussian process, Nataf model for wave and wind data, Offshore structure loads, Sea wave stochastics during wind storm, Wave and wind...

  18. LINCOM wind flow model: Application to complex terrain with thermal stratification

    DEFF Research Database (Denmark)

    Dunkerley, F.; Moreno, J.; Mikkelsen, T.

    2001-01-01

    to provide reasonably robust results over a range of stability conditions. The results predicted for idealised terrain only are presented here. Meteorological data used to initialise the model are normally obtained from measurements or from outputs from larger scale numerical models. These standard data...... types have therefore been used to calculate the meteorological parameters required by LINCOM-T. The effect of the formulation of these parameters on the perturbed velocity field has been investigated in detail. (C) 2001 Elsevier Science Ltd. All rights reserved.......LINCOM is a fast linearised and spectral wind flow model for use over hilly terrain. It is designed to rapidly generate mean wind field predictions which provide input to atmospheric dispersion models and wind engineering applications. The thermal module, LINCOM-T, has recently been improved...

  19. Inclusion of a simple dynamic inflow model in the blade element momentum theory for wind turbine application

    Directory of Open Access Journals (Sweden)

    Xiaomin Chen, Ramesh K. Agarwal

    2014-01-01

    Full Text Available It is well established that the power generated by a Horizontal-Axis Wind Turbine (HAWT is a function of the number of blades B, the tip speed ratio (blade tip speed/wind free-stream velocity and the lift to drag ratio (CL /CD of the airfoil sections of the blade. The previous studies have shown that Blade Element Momentum (BEM theory is capable of evaluating the steady-state performance of wind turbines, in particular it can provide a reasonably good estimate of generated power at a given wind speed. However in more realistic applications, wind turbine operating conditions change from time to time due to variations in wind velocity and the aerodynamic forces change to new steady-state values after the wake settles to a new equilibrium whenever changes in operating conditions occur. The goal of this paper is to modify the quasi-steady BEM theory by including a simple dynamic inflow model to capture the unsteady behavior of wind turbines on a larger time scale. The output power of the wind turbines is calculated using the improved BEM method incorporating the inflow model. The computations are performed for the original NREL Phase II and Phase III turbines and the Risoe turbine all employing the S809 airfoil section for the turbine blades. It is shown by a simple example that the improved BEM theory is capable of evaluating the wind turbine performance in practical situations where operating conditions often vary in time.

  20. The Explicit Wake Parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF

    Directory of Open Access Journals (Sweden)

    P. J. H. Volker

    2015-11-01

    Full Text Available We describe the theoretical basis, implementation, and validation of a new parametrisation that accounts for the effect of large offshore wind farms on the atmosphere and can be used in mesoscale and large-scale atmospheric models. This new parametrisation, referred to as the Explicit Wake Parametrisation (EWP, uses classical wake theory to describe the unresolved wake expansion. The EWP scheme is validated for a neutral atmospheric boundary layer against filtered in situ measurements from two meteorological masts situated a few kilometres away from the Danish offshore wind farm Horns Rev I. The simulated velocity deficit in the wake of the wind farm compares well to that observed in the measurements, and the velocity profile is qualitatively similar to that simulated with large eddy simulation models and from wind tunnel studies. At the same time, the validation process highlights the challenges in verifying such models with real observations.

  1. Modeling and comparative study of fluid velocities in heterogeneous rocks

    Science.gov (United States)

    Hingerl, Ferdinand F.; Romanenko, Konstantin; Pini, Ronny; Balcom, Bruce; Benson, Sally

    2013-04-01

    Detailed knowledge of the distribution of effective porosity and fluid velocities in heterogeneous rock samples is crucial for understanding and predicting spatially resolved fluid residence times and kinetic reaction rates of fluid-rock interactions. The applicability of conventional MRI techniques to sedimentary rocks is limited by internal magnetic field gradients and short spin relaxation times. The approach developed at the UNB MRI Centre combines the 13-interval Alternating-Pulsed-Gradient Stimulated-Echo (APGSTE) scheme and three-dimensional Single Point Ramped Imaging with T1 Enhancement (SPRITE). These methods were designed to reduce the errors due to effects of background gradients and fast transverse relaxation. SPRITE is largely immune to time-evolution effects resulting from background gradients, paramagnetic impurities and chemical shift. Using these techniques quantitative 3D porosity maps as well as single-phase fluid velocity fields in sandstone core samples were measured. Using a new Magnetic Resonance Imaging technique developed at the MRI Centre at UNB, we created 3D maps of porosity distributions as well as single-phase fluid velocity distributions of sandstone rock samples. Then, we evaluated the applicability of the Kozeny-Carman relationship for modeling measured fluid velocity distributions in sandstones samples showing meso-scale heterogeneities using two different modeling approaches. The MRI maps were used as reference points for the modeling approaches. For the first modeling approach, we applied the Kozeny-Carman relationship to the porosity distributions and computed respective permeability maps, which in turn provided input for a CFD simulation - using the Stanford CFD code GPRS - to compute averaged velocity maps. The latter were then compared to the measured velocity maps. For the second approach, the measured velocity distributions were used as input for inversely computing permeabilities using the GPRS CFD code. The computed

  2. The Velocity of Money in a Life-Cycle Model

    CERN Document Server

    Wang, Y; Wang, Yougui; Qiu, Hanqing

    2005-01-01

    The determinants of the velocity of money have been examined based on life-cycle hypothesis. The velocity of money can be expressed by reciprocal of the average value of holding time which is defined as interval between participating exchanges for one unit of money. This expression indicates that the velocity is governed by behavior patterns of economic agents and open a way to constructing micro-foundation of it. It is found that time pattern of income and expense for a representative individual can be obtained from a simple version of life-cycle model, and average holding time of money resulted from the individual's optimal choice depends on the expected length of relevant planning periods.

  3. A new settling velocity model to describe secondary sedimentation.

    Science.gov (United States)

    Ramin, Elham; Wágner, Dorottya S; Yde, Lars; Binning, Philip J; Rasmussen, Michael R; Mikkelsen, Peter Steen; Plósz, Benedek Gy

    2014-12-01

    Secondary settling tanks (SSTs) are the most hydraulically sensitive unit operations in biological wastewater treatment plants. The maximum permissible inflow to the plant depends on the efficiency of SSTs in separating and thickening the activated sludge. The flow conditions and solids distribution in SSTs can be predicted using computational fluid dynamics (CFD) tools. Despite extensive studies on the compression settling behaviour of activated sludge and the development of advanced settling velocity models for use in SST simulations, these models are not often used, due to the challenges associated with their calibration. In this study, we developed a new settling velocity model, including hindered, transient and compression settling, and showed that it can be calibrated to data from a simple, novel settling column experimental set-up using the Bayesian optimization method DREAM(ZS). In addition, correlations between the Herschel-Bulkley rheological model parameters and sludge concentration were identified with data from batch rheological experiments. A 2-D axisymmetric CFD model of a circular SST containing the new settling velocity and rheological model was validated with full-scale measurements. Finally, it was shown that the representation of compression settling in the CFD model can significantly influence the prediction of sludge distribution in the SSTs under dry- and wet-weather flow conditions.

  4. An integrated dynamic model of a flexible wind turbine

    Science.gov (United States)

    Bongers, Peter M. M.; Bierbooms, Wim A. A.; Dijkstra, Sjoerd; Vanholten, Theo

    1990-06-01

    A model to study the dynamic behavior of flexible wind turbines was developed. The different subsystems of the wind turbine are individually modeled with about the same degree of accuracy. The aerodynamic part describes wind shear, gravity effects, unsteady effects, and dynamic inflow. The rotor blades are provided with degrees of freedom in lag and flap directions. The tower construction is modeled including the first bending mode. The first torsional mode of the transmission is included in the model. The model of synchronous generator with dc link consists of a nonlinear fourth order model, including saturation effects. The different models of the subsystems are coupled into one integrated dynamic model which is implemented as simulation code in the DUWECS (Delf University Wind Energy Converter Simulation Package) program. The DUWECS program is developed in such a manner that it is an easy to handle tool for the study of the dynamic features of wind turbine systems.

  5. Pairwise velocities in the Halo Model: Luminosity and Scale Dependence

    CERN Document Server

    Slosar, A; Tasitsiomi, A; Slosar, Anze; Seljak, Uros; Tasitsiomi, Argyro

    2006-01-01

    We investigate the properties of the pairwise velocity dispersion as a function of galaxy luminosity in the context of a halo model. We derive the distribution of velocities of pairs at a given separation taking into account both one-halo and two-halo contributions. We show that pairwise velocity distribution in real space is a complicated mixture of host-satellite, satellite-satellite and two-halo pairs. The peak value is reached at around 1 Mpc/h and does not reflect the velocity dispersion of a typical halo hosting these galaxies, but is instead dominated by the satellite-satellite pairs in high mass clusters. This is true even for cross-correlations between bins separated in luminosity. As a consequence the velocity dispersion at a given separation can decrease with luminosity, even if the underlying typical halo host mass is increasing, in agreement with some recent observations. We compare our findings to numerical simulations and find a good agreement. Numerical simulations also suggest a luminosity de...

  6. A computational fluid dynamics model for wind simulation:model implementation and experimental validation

    Institute of Scientific and Technical Information of China (English)

    Zhuo-dong ZHANG; Ralf WIELAND; Matthias REICHE; Roger FUNK; Carsten HOFFMANN; Yong LI; Michael SOMMER

    2012-01-01

    To provide physically based wind modelling for wind erosion research at regional scale,a 3D computational fluid dynamics (CFD) wind model was developed.The model was programmed in C language based on the Navier-Stokes equations,and it is freely available as open source.Integrated with the spatial analysis and modelling tool (SAMT),the wind model has convenient input preparation and powerful output visualization.To validate the wind model,a series of experiments was conducted in a wind tunnel.A blocking inflow experiment was designed to test the performance of the model on simulation of basic fluid processes.A round obstacle experiment was designed to check if the model could simulate the influences of the obstacle on wind field.Results show that measured and simulated wind fields have high correlations,and the wind model can simulate both the basic processes of the wind and the influences of the obstacle on the wind field.These results show the high reliability of the wind model.A digital elevation model (DEM) of an area (3800 m long and 1700 m wide) in the Xilingele grassland in Inner Mongolia (autonomous region,China) was applied to the model,and a 3D wind field has been successfully generated.The clear implementation of the model and the adequate validation by wind tunnel experiments laid a solid foundation for the prediction and assessment of wind erosion at regional scale.

  7. Stereo PIV Experiments on Horizontal Axis Wind Turbine Rotor Model

    NARCIS (Netherlands)

    Akay, B.; Micallef, D.; Ferreira, C.S.; Van Bussel, G.J.W.

    2011-01-01

    This paper sets out to describe the measurements and computations to construct three components of velocity field around the blade. The primary aim of the measurements was to gain insight into the physics of the flow field produced by a horizontal axis wind turbine-HAWT blade. Stereo Particle Image

  8. Stereo PIV Experiments on Horizontal Axis Wind Turbine Rotor Model

    NARCIS (Netherlands)

    Akay, B.; Micallef, D.; Ferreira, C.S.; Van Bussel, G.J.W.

    2011-01-01

    This paper sets out to describe the measurements and computations to construct three components of velocity field around the blade. The primary aim of the measurements was to gain insight into the physics of the flow field produced by a horizontal axis wind turbine-HAWT blade. Stereo Particle Image

  9. NEAR WAKE OF A MODEL HORIZONTAL-AXIS WIND TURBINE

    Institute of Scientific and Technical Information of China (English)

    HU Dan-mei; DU Zhao-hui

    2009-01-01

    An experimental investigation on the properties of the near wake behind the rotor of a Horizontal-Axis Wind Turbine (HAWT) was carried out at model scale. Measurements were made with a stationary slanted hot-wire anemometer using the technique of phase-locked averaging. The primary aim is to study the formation and development of the three-dimensional wake. Five axial locations were chosen within four chord lengths of the blades over a range of tip speed ratios. The results show that during the downstream development of the wake, the wake centre traces a helical curve with its rotation direction opposite to that of the rotor. The distribution of mean velocity behind the HAWT rotor reveals an expansion and a decay of the three-dimensional wake. The shapes of the mean velocity distribution are similar along the blades span at the same downstream axial location. It is shown that the turbulence levels in the wake are higher than those in the non-wake region. The circumferential component and the radial component of the turbulence intensity are higher than the axial component. Our study offers some food of thought for better understanding of the physical features of the flow field as well as the performance of HAWT.

  10. Effects of non-Maxwellian electron velocity distribution functions and nonspherical geometry on minor ions in the solar wind

    Science.gov (United States)

    Burgi, A.

    1987-01-01

    A previous model has shown that in order to account for the charge state distribution in the low-speed solar wind, a high coronal temperature is necessary and that this temperature peak goes together with a peak of nx/np in the corona. In the present paper, one of the assumptions made previously, i.e., that coronal electrons are Maxwellian, is relaxed, and a much cooler model is presented, which could account for the same oxygen charge states in the solar wind due to the inclusion of non-Maxwellian electrons. Also, due to a different choice of the coronal magnetic field geometry, this model would show no enhancement of the coronal nx/np. Results of the two models are then compared, and observational tests to distinguish between the two scenarios are proposed: comparison of directly measured coronal Te to charge state measurements in the solar wind, determination of the coronal nx/np measurement of ion speeds in the acceleration region of the solar wind, and measurement of the frozen-in silicon charge state distribution.

  11. SimWIND: A Geospatial Infrastructure Model for Wind Energy Production and Transmission

    Science.gov (United States)

    Middleton, R. S.; Phillips, B. R.; Bielicki, J. M.

    2009-12-01

    Wind is a clean, enduring energy resource with a capacity to satisfy 20% or more of the electricity needs in the United States. A chief obstacle to realizing this potential is the general paucity of electrical transmission lines between promising wind resources and primary load centers. Successful exploitation of this resource will therefore require carefully planned enhancements to the electric grid. To this end, we present the model SimWIND for self-consistent optimization of the geospatial arrangement and cost of wind energy production and transmission infrastructure. Given a set of wind farm sites that satisfy meteorological viability and stakeholder interest, our model simultaneously determines where and how much electricity to produce, where to build new transmission infrastructure and with what capacity, and where to use existing infrastructure in order to minimize the cost for delivering a given amount of electricity to key markets. Costs and routing of transmission line construction take into account geographic and social factors, as well as connection and delivery expenses (transformers, substations, etc.). We apply our model to Texas and consider how findings complement the 2008 Electric Reliability Council of Texas (ERCOT) Competitive Renewable Energy Zones (CREZ) Transmission Optimization Study. Results suggest that integrated optimization of wind energy infrastructure and cost using SimWIND could play a critical role in wind energy planning efforts.

  12. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, Anca D.; Iov, Florin; Sørensen, Poul

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... strategies have different goals e.g. fast response over disturbances, optimum power efficiency over a wider range of wind speeds, voltage ride-through capability including grid support. A dynamic model of a DC connection for active stall wind farms to the grid including the control is also implemented...

  13. Wall Correction Model for Wind Tunnels with Open Test Section

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2004-01-01

    In th paper we present a correction model for wall interference on rotors of wind turbines or propellers in wind tunnels. The model, that is based on a onedimensional momentum approach, is validated against results from CFD computations using a generalized actuator disc principle. Generally......, the corrections from the model are in very good agreement with the CFD computaions, demonstrating that one-dimensional momentum theory is a reliable way of predicting corrections for wall interference in wind tunnels with closed as well as open cross sections. Keywords: Wind tunnel correction, momentum theory...

  14. Stochastic wind turbine modeling for individual pitch control

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2009-01-01

    By pitching the blades of a wind turbine individually it is possible to attenuate the asymmetric loads caused by a non-uniform wind field - this is denoted individual pitch control. In this work we investigate how to set up a simplified stochastic and deterministic description of the wind...... and a simplified description of the aerodynamics with sufficient detail to design model-based individual pitch controllers. Combined with a simplified model of the wind turbine, we exemplify how to use the model elements to systematically design an individual pitch controller. The design is investigated...

  15. Velocity Profile Characterization for the 5-CM Agent Fate Wind Tunnels

    Science.gov (United States)

    2008-01-01

    tunnel validation) and the HD on sand test phases of the Agent Fate Program. 15. SUBJECT TERMS Hot wire anemometry Boundary layer Evaporation Agent...TSI Hot Wire Probe ........................................................................ 31 21. TSI IFA 300 Thermal Anemometry Systems...Characterization Instrumentation 5.2.1 Hot Wire Anemometers 5.2.1.1 Overview Hot Wire Anemometry Several techniques were considered to measure the velocity

  16. Alignment of stress, mean wind, and vertical gradient of the velocity vector

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, E.G.

    2012-01-01

    In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible...

  17. Wind Resource Assessment in Complex Terrain with a High-Resolution Numerical Weather Prediction Model

    Science.gov (United States)

    Gruber, Karin; Serafin, Stefano; Grubišić, Vanda; Dorninger, Manfred; Zauner, Rudolf; Fink, Martin

    2014-05-01

    , considering the frequency of wind speed between cut-in and cut-out speed and of winds with a low vertical velocity component only. Wind turbines do not turn on at wind speeds below cut-in speed. Wind turbines are taken off from the generator in the case of wind speeds higher than cut-out speed and inclination angles of the wind vector greater than 8o. All of these parameters were computed at each model grid point in the innermost domain in order to map their spatial variability. The results show that in complex terrain the annual mean wind speed at hub height is not sufficient to predict the capacity factor of a turbine; vertical wind speed and the frequency of horizontal wind speed out of the range of cut-in and cut-out speed contribute substantially to a reduction of the energy harvest and locally high turbulence may considerably raise the building costs.

  18. RANS turbulence model form uncertainty quantification for wind engineering flows

    Science.gov (United States)

    Gorle, Catherine; Zeoli, Stephanie; Bricteux, Laurent

    2016-11-01

    Reynolds-averaged Navier-Stokes simulations with linear eddy-viscosity turbulence models are commonly used for modeling wind engineering flows, but the use of the results for critical design decisions is hindered by the limited capability of the models to correctly predict bluff body flows. A turbulence model form uncertainty quantification (UQ) method to define confidence intervals for the results could remove this limitation, and promising results were obtained in a previous study of the flow in downtown Oklahoma City. The objective of the present study is to further investigate the validity of these results by considering the simplified test case of the flow around a wall-mounted cube. DNS data is used to determine: 1. whether the marker, which identifies regions that deviate from parallel shear flow, is a good indicator for the regions where the turbulence model fails, and 2. which Reynolds stress perturbations, in terms of the tensor magnitude and the eigenvalues and eigenvectors of the normalized anisotropy tensor, can capture the uncertainty in the flow field. A comparison of confidence intervals obtained with the UQ method and the DNS solution indicates that the uncertainty in the velocity field can be captured correctly in a large portion of the flow field.

  19. Modelling wind flow and vehicle-induced turbulence in urban streets

    Science.gov (United States)

    Solazzo, Efisio; Cai, Xiaoming; Vardoulakis, Sotiris

    Mechanically generated wind flow and turbulence in urban street canyons are the results of combined processes of atmospheric wind and vehicular traffic, both of which contribute to the transport and dilution of pollutants emitted by vehicles at street level. A good understanding of these processes is thus essential for predicting the spatial distribution of pollutants, and especially for deriving useful parameterisations to be included in urban air-quality models. In this study, a computational fluid dynamics (CFD) modelling methodology for the simulation of the flow and turbulence induced by wind and vehicle motion within an idealised street canyon is presented. Initially, a CFD methodology for analysing the contribution of vehicle's movement to the production of flow and turbulence near street level is introduced. The effects of vehicle's motion are characterised in terms of mean wind flow and turbulence. The results obtained from this analysis are then used for the modelling of the combined effects of wind and vehicular traffic in the street canyon. The CFD methodology is tested by comparing the model results against wind tunnel data of mean velocity and turbulence. Evaluation of the results shows the capability of the methodology to reproduce measured flow field and turbulence patterns. This methodology can be used to gain insights into the mechanically driven turbulence for the dispersion of pollutants within urban streets.

  20. Effect of a magnetic field on massive star winds I: mass-loss and velocity for a dipole field

    CERN Document Server

    Bard, Christopher

    2016-01-01

    We generalize the Rigid-Field Hydrodynamic equations to accommodate arbitrary magnetic field topologies, resulting in a new Arbitrary Rigid-Field hydrodynamic (ARFHD) formalism. We undertake a critical point calculation of the steady-state ARFHD equations with a CAK-type radiative acceleration and determine the effects of a dipole magnetic field on the usual CAK mass-loss rate and velocity structure. Enforcing the proper optically-thin limit for the radiative line-acceleration is found to decrease both the mass-loss and wind acceleration, while rotation boosts both properties. We define optically-thin-correction and rotation parameters to quantify these effects on the global mass-loss rate and develop scaling laws for the surface mass-flux as a function of surface colatitude. These scaling laws are found to agree with previous laws derived from magnetohydrodynamic simulations of magnetospheres. The dipole magnetosphere velocity structure is found to differ from a global beta-velocity law, which contradicts a ...

  1. Accurate wind farm development and operation. Advanced wake modelling

    Energy Technology Data Exchange (ETDEWEB)

    Brand, A.; Bot, E.; Ozdemir, H. [ECN Unit Wind Energy, P.O. Box 1, NL 1755 ZG Petten (Netherlands); Steinfeld, G.; Drueke, S.; Schmidt, M. [ForWind, Center for Wind Energy Research, Carl von Ossietzky Universitaet Oldenburg, D-26129 Oldenburg (Germany); Mittelmeier, N. REpower Systems SE, D-22297 Hamburg (Germany))

    2013-11-15

    The ability is demonstrated to calculate wind farm wakes on the basis of ambient conditions that were calculated with an atmospheric model. Specifically, comparisons are described between predicted and observed ambient conditions, and between power predictions from three wind farm wake models and power measurements, for a single and a double wake situation. The comparisons are based on performance indicators and test criteria, with the objective to determine the percentage of predictions that fall within a given range about the observed value. The Alpha Ventus site is considered, which consists of a wind farm with the same name and the met mast FINO1. Data from the 6 REpower wind turbines and the FINO1 met mast were employed. The atmospheric model WRF predicted the ambient conditions at the location and the measurement heights of the FINO1 mast. May the predictability of the wind speed and the wind direction be reasonable if sufficiently sized tolerances are employed, it is fairly impossible to predict the ambient turbulence intensity and vertical shear. Three wind farm wake models predicted the individual turbine powers: FLaP-Jensen and FLaP-Ainslie from ForWind Oldenburg, and FarmFlow from ECN. The reliabilities of the FLaP-Ainslie and the FarmFlow wind farm wake models are of equal order, and higher than FLaP-Jensen. Any difference between the predictions from these models is most clear in the double wake situation. Here FarmFlow slightly outperforms FLaP-Ainslie.

  2. A Reliability Based Model for Wind Turbine Selection

    Directory of Open Access Journals (Sweden)

    A.K. Rajeevan

    2013-06-01

    Full Text Available A wind turbine generator output at a specific site depends on many factors, particularly cut- in, rated and cut-out wind speed parameters. Hence power output varies from turbine to turbine. The objective of this paper is to develop a mathematical relationship between reliability and wind power generation. The analytical computation of monthly wind power is obtained from weibull statistical model using cubic mean cube root of wind speed. Reliability calculation is based on failure probability analysis. There are many different types of wind turbinescommercially available in the market. From reliability point of view, to get optimum reliability in power generation, it is desirable to select a wind turbine generator which is best suited for a site. The mathematical relationship developed in this paper can be used for site-matching turbine selection in reliability point of view.

  3. A Method for Modeling of Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Wang, Kai; Hansen, Martin Otto Laver; Moan, Torgeir

    2013-01-01

    . In order to assess the technical and economic feasibility of this novel concept, a comprehensive simulation tool for modeling of the floating vertical axis wind turbine is needed. This work presents the development of a coupled method for modeling of the dynamics of a floating vertical axis wind turbine......It is of interest to investigate the potential advantages of floating vertical axis wind turbine (FVAWT) due to its economical installation and maintenance. A novel 5MW vertical axis wind turbine concept with a Darrieus rotor mounted on a semi-submersible support structure is proposed in this paper....... This integrated dynamic model takes into account the wind inflow, aerodynamics, hydrodynamics, structural dynamics (wind turbine, floating platform and the mooring lines) and a generator control. This approach calculates dynamic equilibrium at each time step and takes account of the interaction between the rotor...

  4. Model Predictive Control of Wind Turbines using Uncertain LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2013-01-01

    The problem of Model predictive control (MPC) of wind turbines using uncertain LIDAR (LIght Detection And Ranging) measurements is considered. A nonlinear dynamical model of the wind turbine is obtained. We linearize the obtained nonlinear model for different operating points, which are determined...... by the effective wind speed on the rotor disc. We take the wind speed as a scheduling variable. The wind speed is measurable ahead of the turbine using LIDARs, therefore, the scheduling variable is known for the entire prediction horizon. By taking the advantage of having future values of the scheduling variable...... on wind speed estimation and measurements from the LIDAR is devised to find an estimate of the delay and compensate for it before it is used in the controller. Comparisons between the MPC with error compensation, the MPC without error compensation and an MPC with re-linearization at each sample point...

  5. Intraglottal velocity and pressure measurements in a hemilarynx model.

    Science.gov (United States)

    Oren, Liran; Gutmark, Ephraim; Khosla, Sid

    2015-02-01

    Determining the mechanisms of self-sustained oscillation of the vocal folds requires characterization of the pressures produced by intraglottal aerodynamics. Because most of the intraglottal aerodynamic forces cannot be measured in a tissue model of the larynx, current understanding of vocal fold vibration mechanism is derived from mechanical, analytical, and computational models. Previous studies have computed intraglottal pressures from measured intraglottal velocity fields and intraglottal geometry; however, this technique for determining pressures is not yet validated. In this study, intraglottal pressure measurements taken in a hemilarynx model are compared with pressure values that are computed from simultaneous velocity measurements. The results showed that significant negative pressure formed near the superior aspect of the folds during closing, which agrees with previous measurements in other hemilarynx models. Intraglottal velocity measurements show that the flow near the superior aspect separates from the glottal wall during closing and may develop into a vortex, which further augments the magnitude of negative pressure. Intraglottal pressure distributions, computed by solving the pressure Poisson equation, showed good agreement with pressure measurements. The match between the pressure computations and its measurements validates the current technique, which was previously used to estimate intraglottal pressure distribution in a full larynx model.

  6. Dynamic modelling and robust control of a wind energy conversion system

    NARCIS (Netherlands)

    Steinbuch, M.

    1989-01-01

    The application of wind energy conversion systems for the production of electrical energy requires a cheap and reliable operation. Especially at high wind velocities fluctuations from the wind field result in large mechanical loads of the wind turbine. Also fluctuations in the grid voltage may yield

  7. GPS/INS Sensor Fusion Using GPS Wind up Model

    Science.gov (United States)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  8. Wind farm density and harvested power in very large wind farms: A low-order model

    Science.gov (United States)

    Cortina, G.; Sharma, V.; Calaf, M.

    2017-07-01

    In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.

  9. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  10. Comparison of induced velocity models for helicopter flight mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.E.; Houston, S.S.

    2002-07-01

    Modeling of rotor-induced velocity receives continued attention in the literature as the rotorcraft community addresses limitations in the fidelity of simulations of helicopter stability, control, and handling qualities. A comparison is presented of results obtained using a rigid-blade rotor-fuselage model configured with two induced velocity models: a conventional, first-order, finite state, dynamic inflow model and a wake model that solves a vorticity transport equation on a computational mesh enclosing the rotorcraft. Differences between the two models are quantified by comparing predictions of trimmed rotor blade flap, lag and feather angles, airframe pitch and roll attitudes, cross-coupling derivatives, response to control inputs, and airframe vibration. Results are presented in the context of measurements taken on a Puma aircraft in steady flight from hover to high speed. More accurate predictions of the cross-coupling derivatives, response to control, and airframe vibration obtained using the vorticity transport model suggest that incorporation of real flowfield effects is important to extending the bandwidth of applicability of helicopter simulation models. Unexpectedly small differences in some of the trim predictions obtained using the two wake models suggest that an overall improvement in simulation fidelity may not be achieved without equivalent attention to the rotor dynamic model. (Author)

  11. Modelling and measurements of wakes in large wind farms

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Rathmann, Ole; Frandsen, Sten Tronæs;

    2007-01-01

    The paper presents research conducted in the Flow workpackage of the EU funded UPWIND project which focuses on improving models of flow within and downwind of large wind farms in complex terrain and offshore. The main activity is modelling the behaviour of wind turbine wakes in order to improve...

  12. Modelling and measurements of wakes in large wind farms

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Rathmann, Ole; Frandsen, Sten Tronæs

    2007-01-01

    The paper presents research conducted in the Flow workpackage of the EU funded UPWIND project which focuses on improving models of flow within and downwind of large wind farms in complex terrain and offshore. The main activity is modelling the behaviour of wind turbine wakes in order to improve p...

  13. A Reduced Wind Power Grid Model for Research and Education

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Lund, Torsten; Hansen, Anca Daniela;

    2007-01-01

    A reduced grid model of a transmission system with a number of central power plants, consumption centers, local wind turbines and a large offshore wind farm is developed and implemented in the simulation tool PowerFactory (DIgSILENT). The reduced grid model is given by Energinet.dk, Transmission ...

  14. Optimization of wind speed on dispersion of pollutants using coupled receptor and dispersion model

    Indian Academy of Sciences (India)

    N Anu; S Rangabhashiyam; Rahul Antony; N Selvaraju

    2015-08-01

    Air pollutants emission from various source categories can be quantified through mass balance (receptor model) techniques, multivariate data analysis and dispersion model. The composition of particulate matter from various emission points (emission inventory) and the massive analysis of the composition in the collected samples from various locations (receptor) are used to estimate quantitative source contribution through receptor models. In dispersion model, on the other hand the emission rates (g/m3) from various sources together with particle size, stack height, topography, meteorological conditions (temperature, humidity, wind speed and directions, etc.) will affect the pollutant concentration at a point or in a region. The parameters used in dispersion model are not considering in receptor models but have been affecting indirectly as difference concentration at various receptor locations. These differences are attributed and possible erroneous results can be viewed through coupled receptor-dispersion model analysis. The current research work proposed a coupled receptor-dispersion model to reduce the difference between predicted concentrations through optimized wind velocity used in dispersion model. The converged wind velocities for various error percentages (10%, 40%, 60% and 80%) in receptor concentration have been obtained with corresponding increase in the error. The proposed combined approaches help to reconcile the differences arise when the two models used in an individual mode.

  15. PROBABILITY MODEL AND SOLUTION ON EARTHQUAKE EFFECTS COMBINATION IN ALONG WIND RESISTANT DESIGN OF TALL-FLEXIBLE BUILDINGS

    Institute of Scientific and Technical Information of China (English)

    HONG Xiao-jian; GU Ming

    2006-01-01

    A model on the earthquake effects combination in wind resistant design of high-rise flexible structures is proposed in accordance with the probability method. Based on the Turkstra criteria, the stochastic characters of wind velocity, earthquake ground acceleration and excitations occurrence probability are taken into account and then the combination of the earthquake effects in structure wind resistant design is analyzed with the convolution approach. The results indicate that as for the tall flexible buildings whose lateral force is governed by wind loading, the maximum lateral loads verification with respect to the wind resistant design combined with earthquake effects may be more unfavorable compared with that in terms of the earthquake resistant design involving wind effects.

  16. A Goldilocks principle for modelling radial velocity noise

    Science.gov (United States)

    Feng, F.; Tuomi, M.; Jones, H. R. A.; Butler, R. P.; Vogt, S.

    2016-09-01

    The Doppler measurements of stars are diluted and distorted by stellar activity noise. Different choices of noise models and statistical methods have led to much controversy in the confirmation of exoplanet candidates obtained through analysing radial velocity data. To quantify the limitation of various models and methods, we compare different noise models and signal detection criteria for various simulated and real data sets in the Bayesian framework. According to our analyses, the white noise model tend to interpret noise as signal, leading to false positives. On the other hand, the red noise models are likely to interpret signal as noise, resulting in false negatives. We find that the Bayesian information criterion combined with a Bayes factor threshold of 150 can efficiently rule out false positives and confirm true detections. We further propose a Goldilocks principle aimed at modelling radial velocity noise to avoid too many false positives and too many false negatives. We propose that the noise model with RHK-dependent jitter is used in combination with the moving average model to detect planetary signals for M dwarfs. Our work may also shed light on the noise modelling for hotter stars, and provide a valid approach for finding similar principles in other disciplines.

  17. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  18. Modelling Accretion Disk and Stellar Wind Interactions: the Case of Sgr A*

    CERN Document Server

    Christie, I M; Mimica, P; Giannios, D

    2016-01-01

    Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disk, the ram and thermal pressures of the disk terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in $\\sim10^{8}$ cm s$^{-1}$ range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericenter passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly ...

  19. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    OpenAIRE

    Rajesh Karki; Dinesh Dhungana; Roy Billinton

    2013-01-01

    Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant researc...

  20. A Wind Accretion Model for HLX-1

    CERN Document Server

    Miller, M Coleman; Maccarone, Thomas J

    2014-01-01

    The brightest ultraluminous X-ray source currently known, HLX-1, has been observed to undergo five outburst cycles. The periodicity of these outbursts, and their high inferred maximum accretion rates of $\\sim{\\rm few}\\times 10^{-4} M_\\odot {\\rm yr}^{-1}$, naturally suggest Roche lobe overflow at the pericenter of an eccentric orbit. It is, however, difficult for the Roche lobe overflow model to explain the apparent trend of decreasing decay times over the different outbursts while the integrated luminosity also drops. Thus if the trend is real rather than simply being a reflection of the complex physics of accretion disks, a different scenario may be necessary. We present a speculative model in which, within the last decade, a high-mass giant star had most of its envelope tidally stripped by the $\\sim 10^{4-5} M_\\odot$ black hole in HLX-1, and the remaining core plus low-mass hydrogen envelope now feeds the hole with a strong wind. This model can explain the short decay time of the disk, and could explain the...

  1. Two-dimensional hybrid models of H+-He++ expanding solar wind plasma heating

    Science.gov (United States)

    Ofman, L.; Viñas, A. F.; Maneva, Y.

    2014-06-01

    Preferential heating and acceleration of the solar wind He++ ions compared to protons in fast solar wind streams have been known for decades, thanks to in situ spacecraft measurements at 0.29-5 AU. Turbulent magnetic field fluctuations with approximate power law spectra have been observed as well. However, the exact causes of these processes are still not known due to the lack of detailed information on the magnetic field fluctuations and ion velocity distributions in the acceleration region of the solar wind. Here the collisionless heating processes in expanding solar wind plasma are investigated using 2-D hybrid modeling with parameters appropriate to the heliocentric distance of 10 RS. In this study the ion dynamics is described kinetically, while electrons are treated as a background massless fluid in an expanding solar wind model. The source of free energy for the heating is introduced through an initial nonequilibrium state of the plasma with large He++ ion temperature anisotropy or with super-Alfvénic relative ion drift. We also employ an externally imposed spectrum of magnetic fluctuations in the frequency range below the proton gyroresonant frequency to heat the He++ ions. We investigate the effects of solar wind radial expansion by modeling several values of the expansion rate in a parametric study. We find that the preferential ion heating is attained in both nonexpanding and expanding solar wind models. Thus, the expansion has little effect on the preferential He++ ion heating by the processes considered here. Moreover, the expansion leads to faster evolution of the magnetosonic drift instability, reducing the drift velocity to lower values sooner, and the corresponding generation of the magnetic fluctuations that heat the ions, compared to the nonexpanding case. This is due to the reduction of the perpendicular particle velocities in the expanding (inflated) frame. For cases with little proton perpendicular heating, the solar wind expansion leads to

  2. Experimental studies on power transformer model winding provided with MOVs

    Directory of Open Access Journals (Sweden)

    G.H. Kusumadevi

    2017-05-01

    Full Text Available Surge voltage distribution across a HV transformer winding due to appearance of very fast rise time (rise time of order 1 μs transient voltages is highly non-uniform along the length of the winding for initial time instant of occurrence of surge. In order to achieve nearly uniform initial time instant voltage distribution along the length of the HV winding, investigations have been carried out on transformer model winding. By connecting similar type of metal oxide varistors across sections of HV transformer model winding, it is possible to improve initial time instant surge voltage distribution across length of the HV transformer winding. Transformer windings with α values 5.3, 9.5 and 19 have been analyzed. The experimental studies have been carried out using high speed oscilloscope of good accuracy. The initial time instant voltage distribution across sections of winding with MOV remains nearly uniform along length of the winding. Also results of fault diagnostics carried out with and without connection of MOVs across sections of winding are reported.

  3. Meridional Winds derived from ionosonde measurements: comparison of different models

    Science.gov (United States)

    Katamzi, Zama; Bosco Habarulema, John; Aruliah, Anasuya

    2016-07-01

    Thermospheric meridional winds are derived from ionospheric F2 region peak parameters (i.e. F2 maximum density, NmF2, and F2 peak height, hmF2) obtained using South African ionosonde for solar maximum (2001 and 2014) and solar minimum (2009). The study uses several different techniques and models to investigate the climatology behaviour of the winds in order to understand wind variability over South Africa. Detailed solar cycle, seasonal and diurnal trends will help establish how the winds influence ionospheric behaviour at this latitude. Comparisons of ionosonde derived neutral winds with empirical and numerical models such as the Coupled Middle Atmosphere Thermosphere Model (CMAT2) and Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) are important to understand the validity of theoretical and empirical models.

  4. Velocity profiles in idealized model of human respiratory tract

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available This article deals with numerical simulation focused on velocity profiles in idealized model of human upper airways during steady inspiration. Three r gimes of breathing were investigated: Resting condition, Deep breathing and Light activity which correspond to most common regimes used for experiments and simulations. Calculation was validated with experimental data given by Phase Doppler Anemometry performed on the model with same geometry. This comparison was made in multiple points which form one cross-section in trachea near first bifurcation of bronchial tree. Development of velocity profile in trachea during steady inspiration was discussed with respect for common phenomenon formed in trachea and for future research of transport of aerosol particles in human respiratory tract.

  5. Velocity and Celerity Characteristics in the MIPs model

    Science.gov (United States)

    Beven, K.

    2015-12-01

    The Multiple Interacting Pathways (MIPs) model has been shown to give good reproduction of both flows (controlled by celerities) and residence times (controlled by velocities) in comparisons with data from a small catchment. In this contribution we look at the difference in responses and basins of attraction for flow and transport inferred from the model with a view to determining the functional form of larger scale, computationally efficient, parameterisations that more properly represent the scale-dependent hysteresis that is expected as a result of velocity-celerity differences. It is hoped that this might lead to new scale-dependent formulations of runoff and water quality responses that can be applied at hillslope and catchment scales.

  6. Limited Area Forecasting and Statistical Modelling for Wind Energy Scheduling

    DEFF Research Database (Denmark)

    Rosgaard, Martin Haubjerg

    forecast accuracy for operational wind power scheduling. Numerical weather prediction history and scales of atmospheric motion are summarised, followed by a literature review of limited area wind speed forecasting. Hereafter, the original contribution to research on the topic is outlined. The quality...... control of wind farm data used as forecast reference is described in detail, and a preliminary limited area forecasting study illustrates the aggravation of issues related to numerical orography representation and accurate reference coordinates at ne weather model resolutions. For the o shore and coastal...... sites studied limited area forecasting is found to deteriorate wind speed prediction accuracy, while inland results exhibit a steady forecast performance increase with weather model resolution. Temporal smoothing of wind speed forecasts is shown to improve wind power forecast performance by up to almost...

  7. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model.

    In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented.

    The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.

    Key words. Magnetospheric physics

  8. Joint analysis of the seismic data and velocity gravity model

    Science.gov (United States)

    Belyakov, A. S.; Lavrov, V. S.; Muchamedov, V. A.; Nikolaev, A. V.

    2016-03-01

    We performed joint analysis of the seismic noises recorded at the Japanese Ogasawara station located on Titijima Island in the Philippine Sea using the STS-2 seismograph at the OSW station in the winter period of January 1-15, 2015, over the background of a velocity gravity model. The graphs prove the existence of a cause-and-effect relation between the seismic noise and gravity and allow us to consider it as a desired signal.

  9. Reference Manual for the System Advisor Model's Wind Power Performance Model

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.; Jorgenson, J.; Gilman, P.; Ferguson, T.

    2014-08-01

    This manual describes the National Renewable Energy Laboratory's System Advisor Model (SAM) wind power performance model. The model calculates the hourly electrical output of a single wind turbine or of a wind farm. The wind power performance model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs. In SAM, the performance model can be coupled to one of the financial models to calculate economic metrics for residential, commercial, or utility-scale wind projects. This manual describes the algorithms used by the wind power performance model, which is available in the SAM user interface and as part of the SAM Simulation Core (SSC) library, and is intended to supplement the user documentation that comes with the software.

  10. Modelling of the urban wind profile

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina

    2008-01-01

    Analysis of meteorological measurements from tall masts in rural and urban areas show that the height of the boundary layer influences the wind profile even in the lowest hundreds of meters. A parameterization of the wind profile for the entire boundary layer is formulated with emphasis on the lo...

  11. Experimental Investigation of Very Large Model Wind Turbine Arrays

    Science.gov (United States)

    Charmanski, Kyle; Wosnik, Martin

    2013-11-01

    The decrease in energy yield in large wind farms (array losses) and associated revenue losses can be significant. When arrays are sufficiently large they can reach what is known as a fully developed wind turbine array boundary layer, or fully developed wind farm condition. This occurs when the turbulence statistics and the structure of the turbulence, within and above a wind farm, as well as the performance of the turbines remain the same from one row to the next. The study of this condition and how it is affected by parameters such as turbine spacing, power extraction, tip speed ratio, etc. is important for the optimization of large wind farms. An experimental investigation of the fully developed wind farm condition was conducted using a large array of porous disks (upstream) and realistically scaled 3-bladed wind turbines with a diameter of 0.25m. The turbines and porous disks were placed inside a naturally grown turbulent boundary layer in the 6m × 2.5m × 72m test section of the UNH Flow Physics Facility which can achieve test section velocities of up to 14 m/s and Reynolds numbers δ+ = δuτ / ν ~ 20 , 000 . Power, rate of rotation and rotor thrust were measured for select turbines, and hot-wire anemometry was used for flow measurements.

  12. Modelling of a PMSG Wind Turbine with Autonomous Control

    OpenAIRE

    Chia-Nan Wang; Wen-Chang Lin; Xuan-Khoa Le

    2014-01-01

    The aim of this research is to model an autonomous control wind turbine driven permanent magnetic synchronous generator (PMSG) which feeds alternating current (AC) power to the utility grid. Furthermore, this research also demonstrates the effects and the efficiency of PMSG wind turbine which is integrated by autonomous controllers. In order for well autonomous control, two voltage source inverters are used to control wind turbine connecting with the grid. The generator-side inverter is used ...

  13. Offshore Wind Balance-of-System Cost Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Maness, Michael; Stehly, Tyler; Maples, Ben; Mone, Christopher

    2015-09-29

    Offshore wind balance-of-system (BOS) costs contribute up to 70% of installed capital costs. Thus, it is imperative to understand the impact of these costs on project economics as well as potential cost trends for new offshore wind technology developments. As a result, the National Renewable Energy Laboratory (NREL) developed and recently updated a BOS techno-economic model using project cost estimates created from wind energy industry sources.

  14. Pairwise velocities in the "Running FLRW" cosmological model

    Science.gov (United States)

    Bibiano, Antonio; Croton, Darren J.

    2017-01-01

    We present an analysis of the pairwise velocity statistics from a suite of cosmological N-body simulations describing the "Running Friedmann-Lemaître-Robertson-Walker" (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends ΛCDM with a time-evolving vacuum energy density, ρ _Λ. To enforce local conservation of matter a time-evolving gravitational coupling is also included. Our results constitute the first study of velocities in the R-FLRW cosmology, and we also compare with other dark energy simulations suites, repeating the same analysis. We find a strong degeneracy between the pairwise velocity and σ8 at z = 0 for almost all scenarios considered, which remains even when we look back to epochs as early as z = 2. We also investigate various Coupled Dark Energy models, some of which show minimal degeneracy, and reveal interesting deviations from ΛCDM which could be readily exploited by future cosmological observations to test and further constrain our understanding of dark energy.

  15. Traveling solar-wind bulk-velocity fluctuations and their effects on electron heating in the inner heliosphere

    CERN Document Server

    Fahr, Hans J; Verscharen, Daniel

    2014-01-01

    Ambient plasma electrons undergo strong heating in regions associated with compressive traveling interplanetary solar-wind bulk-velocity jumps due to their specific interactions with the jump-inherent electric fields. After thermalization of this energy gain per shock passage through the operation of the Buneman instability, strong electron heating occurs that substantially influences the radial electron temperature profile. We describe the reduction of the jump amplitude due to energy expended by the traveling jump structure. We consider three effects; namely energy loss due to heating of electrons, energy loss due to work done against the pick-up-ion pressure gradient, and an energy gain due to nonlinear jump steepening. Taking these effects into account, we show that the decrease in jump amplitude with solar distance is more pronounced when the initial jump amplitude is higher in the inner solar system. Independent of the initial jump amplitude, it eventually decreases with increasing distance to a value o...

  16. A multi-ion generalized transport model of the polar wind

    Science.gov (United States)

    Demars, H. G.; Schunk, R. W.

    1994-01-01

    The higher-order generalizations of the equations of standard hydrodynamics, known collectively as generalized transport theories, have been used since the early 1980s to describe the terrestrial polar wind. Inherent in the structure of generalized transport theories is the ability to describe not only interparticle collisions but also certain non-Maxwellian processes, such as heat flow and viscous stress, that are characteristic of any plasma flow that is not collision dominated. Because the polar wind exhibits a transition from collision-dominated to collisionless flow, generalized transport theories possess advantages for polar wind modeling not shared by either collision-dominated models (such as standard hydrodynamics) or collisionless models (such as those based on solving the collisionless Boltzmann equation). In general, previous polar wind models have used generalized transport equations to describe electrons and only one species of ion (H(+)). If other ion species were included in the models at all, it was in a simplified or semiempirical manner. The model described in this paper is the first polar wind model that uses a generalized transport theory (bi-Maxwellian-based 16-moment theory) to describe all of the species, both major and minor, in the polar wind plasma. In the model, electrons and three ion species (H(+), He(+), O(+)) are assumed to be major and several ion species are assumed to be minor (NO(+), Fe(+), O(++)). For all species, a complete 16-moment transport formulation is used, so that profiles of density, drift velocity, parallel and perpendicular temperatures, and the field-aligned parallel and perpendicular energy flows are obtained. In the results presented here, emphasis is placed on describing those constituents of the polar wind that have received little attention in past studies. In particular, characteristic solutions are presented for supersonic H(+) outflow and for both supersonic and subsonic outflows of the major ion He

  17. Numerical modeling of the wind flow over a transverse dune

    Science.gov (United States)

    Araújo, Ascânio D.; Parteli, Eric J. R.; Pöschel, Thorsten; Andrade, José S.; Herrmann, Hans J.

    2013-01-01

    Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee — the separation bubble — displays a surprisingly strong dependence on the wind shear velocity, u*: it is nearly independent of u* for shear velocities within the range between 0.2 m/s and 0.8 m/s but increases linearly with u* for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if u* is larger than approximately 0.39 m/s, whereas a larger value of u* (about 0.49 m/s) is required to initiate this reverse transport. PMID:24091456

  18. Numerical modeling of the wind flow over a transverse dune.

    Science.gov (United States)

    Araújo, Ascânio D; Parteli, Eric J R; Pöschel, Thorsten; Andrade, José S; Herrmann, Hans J

    2013-10-04

    Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee - the separation bubble - displays a surprisingly strong dependence on the wind shear velocity, u: it is nearly independent of u for shear velocities within the range between 0.2 m/s and 0.8 m/s but increases linearly with u for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if u is larger than approximately 0.39 m/s, whereas a larger value of u (about 0.49 m/s) is required to initiate this reverse transport.

  19. Verification of high-speed solar wind stream forecasts using operational solar wind models

    DEFF Research Database (Denmark)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.

    2016-01-01

    High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate...... high-speed stream forecasts made by the empirical solar wind forecast (ESWF) and the semiempirical Wang-Sheeley-Arge (WSA) model based on the in situ plasma measurements from the Advanced Composition Explorer (ACE) spacecraft for the years 2011 to 2014. While the ESWF makes use of an empirical relation...... between the coronal hole area observed in Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images and solar wind properties at the near-Earth environment, the WSA model establishes a link between properties of the open magnetic field lines extending from the photosphere to the corona...

  20. Wind modeling of Chihuahuan Desert dust outbreaks

    Science.gov (United States)

    Rivera Rivera, Nancy I.; Gill, Thomas E.; Gebhart, Kristi A.; Hand, Jennifer L.; Bleiweiss, Max P.; Fitzgerald, Rosa M.

    The Chihuahuan Desert region of North America is a significant source of mineral aerosols in the Western Hemisphere, and Chihuahuan Desert dust storms frequently impact the Paso del Norte (El Paso, USA/Ciudad Juarez, Mexico) metropolitan area. A statistical analysis of HYSPLIT back trajectory residence times evaluated airflow into El Paso on all days and on days with synoptic (non-convective) dust events in 2001-2005. The incremental probability—a measure of the areas most likely to have been traversed by air masses arriving at El Paso during dusty days—was only strongly positively associated with the region west-southwest of the city, a zone of known dust source areas. Focused case studies were made of major dust events on 15 April and 15 December 2003. Trajectories approached the surface and MM5 (NCAR/Penn State Mesoscale Model) wind speeds increased at locations consistent with dust sources observed in satellite imagery on those dates. Back trajectory and model analyses suggested that surface cyclones adjacent to the Chihuahuan Desert were associated with the extreme dust events, consistent with previous studies of dust storms in the Southern High Plains to the northeast. The recognition of these meteorological patterns serves as a forecast aid for prediction of dust events likely to impact the Paso del Norte.

  1. Winds in collision. III - Modeling the interaction nebulae of eruptive symbiotics

    Science.gov (United States)

    Girard, T.; Willson, L. A.

    1987-09-01

    Observations of HM Sge and V1016 Cyg have been interpreted (Wallerstein et al., 1984; Wilson et al., 1984) in terms of two colliding stellar winds in an interacting binary. Here, a simplified model for the structure of the nebula which forms at the interface of the colliding winds is developed, based on momentum conservation. From this model, the geometry, mass distribution, and velocity distribution of the nebula can be found as a function of the parameters of the colliding stellar winds which sustain it. Under the assumption of negligible orbital motion, the nebular shell reaches a steady-state configuration. Its shape is roughly conical, with the cone apex angle determined by a single parameter. The time development of a cross-section of the nebula which forms in a system with nonnegligible orbital motion is also calculated, under the assumption that the nebular shell is thin relative to its overall dimensions.

  2. On the lack of any statistically significant effect of Mercury on the solar wind velocity near the orbit of the Earth

    Science.gov (United States)

    Veselovsky, I. S.; Shugay, Yu. S.

    2016-11-01

    The notion that Mercury modulates considerably the solar wind velocity at the orbit of the Earth (Nikulin, 2014) is erroneous. It is not grounded in experimental data. Quantitative estimates also suggest that this effect should be negligible at such large distances from a planet that small. The assertion that this effect may be used in practice to improve the accuracy of prediction of the solar wind velocity (Nikulin, 2014) is unfounded as well: no credible observational and theoretical evidence in favor of it has been offered.

  3. 海滩湿润沙面起动摩阻风速的风洞实验%Wind Tunnel Experiment of the Threshold Friction Wind Velocity on Wet Beach Sand Surface

    Institute of Scientific and Technical Information of China (English)

    韩庆杰; 屈建军; 张克存; 俎瑞平; 廖空太; 牛清河

    2011-01-01

    Wind erosion is one kind of important geomorphology processes and geological disasters,which has significant impacts on dune growth and desertification,and causes damages to architecture on sea coasts.The moisture of sand surface layer greatly affects the threshold wind velocity and sand stability,thus,it is also one of the important influence factors on wind erosion.In this study,we investigated the influence of surface moisture content at 1-mm depth on sand erosion in tropical humid coast of southern China,and established a new predicting model.The modeling results indicated that the threshold friction velocity increased linearly with increasing of ln100M(M is gravimetric moisture content) in condition of given sand diameters.Evaluation was given to seven popular models for predicting the threshold friction velocity on moisture sediments,and found that there were significant differences among their predicted results.At a surface sand moisture content of 0.0124(M1.5),the predicted threshold friction velocity predicted by the seven models were 34% to 195% larger than the observed threshold friction velocity on dry sands;at a surface sand moisture content of lower than 0.0062(0.5 M1.5),the predicted values by models of Chepil and Saleh well matched the experimental data;but when surface sand moisture content of more than 0.0062(0.5 M1.5),the data simulated by the Belly's empirical model were seem same as the experimental data.%风蚀是一种重要的地貌过程和地质灾害,它影响海岸沙丘的增长,加速土地沙漠化并危害沿岸建筑。沙面湿度强烈影响沙粒的临界起动风速和沙面稳定性,因此,也是影响风蚀过程的一个重要因子。本项风洞实验使用华南热带湿润海岸的海滩沙,研究了表面湿度(1mm深)对海滩沙风蚀起动的影响,建立了一个新的预测热带湿润海滩湿沙起动摩阻风速的模型,该模型指明给定粒径下,湿沙的起动摩阻风速随ln100 M

  4. Sensitivities of phase-velocity dispersion curves of surface waves due to high-velocity-layer and low-velocity-layer models

    Science.gov (United States)

    Shen, Chao; Xu, Yixian; Pan, Yudi; Wang, Ao; Gao, Lingli

    2016-12-01

    High-velocity-layer (HVL) and low-velocity-layer (LVL) models are two kinds of the most common irregular layered models in near-surface geophysical applications. When calculating dispersion curves of some extreme irregular models, current algorithms (e.g., Knopoff transfer matrix algorithm) should be modified. We computed the correct dispersion curves and analyzed their sensitivities due to several synthetic HVL and LVL models. The results show that phase-velocity dispersion curves of both Rayleigh and Love waves are sensitive to variations in S-wave velocity of an LVL, but insensitive to that of an HVL. In addition, they are both insensitive to those of layers beneath the HVL or LVL. With an increase in velocity contrast between the irregular layer and its neighboring layers, the sensitivity effects (high sensitivity for the LVL and low sensitivity for the HVL) will amplify. These characteristics may significantly influence the inversion stability, leading to an inverted result with a low level of confidence. To invert surface-wave phase velocities for a more accurate S-wave model with an HVL or LVL, priori knowledge may be required and an inversion algorithm should be treated with extra caution.

  5. A Multidirectional Wind Erosion Model for Western Saxony

    Science.gov (United States)

    Schmidt, Simon; Meusburger, Katrin; de Figueiredo, Tomás; Alewell, Christine

    2016-04-01

    Wind erosion can trigger a non-visible loss of fine soil up to 40 t ha-1 per single event and is as such a major soil threat and environmental concern in areas susceptible to wind erosion. Western Saxony was assessed to be among the most susceptible landscapes not only within Germany but even within Europe (Borelli et al., 2015; Borelli et al., 2014). Moreover, wind erosion events in eastern Germany cause very severe off-site effects with impacts on road traffic. So far the wind erosion model that is normally applied in Germany is based on the norm DIN standard 19706. The DIN standard 19706 was revised by new controlling factors and fuzzy logic to consider the multi-directionality of wind and make it more realistic to wind erosion processes. The new factors are based on different datasets like (i) wind and temperature data (1hr resolution) for 9 gauging stations and interpolated long-term wind speed (1981-2000, 200m resolution) provided by the German Weather Service, (ii) soil erodibility extracted from the digital soil map 1:50,000, (iii) landscape components from different data sources (ATKIS, OpenStreetMap and others), and (iv) a DEM (20m resolution) for local orographic modeling. For a risky sub-region, local wind speeds and directions were modelled based on the Wind Atlas Analysis and Application Programs (WAsP) orography-model to assess road bodies for priority actions. Major improvements of the proposed model are the consideration of changing wind directions and the implementation of factors on soil cover and field length. An estimation of the long-term spatiotemporal variability under changing climate is possible with the model conception. The revised model assesses 3.6% of western Saxonies agricultural fields under very high risk to wind erosion. Larger fields (greater than 116 ha) are connected to a higher frequency (51.7%) of very high risk. Only a small proportion (5.2%) of the high risk class was found in small fields (smaller than 21 ha). Fields under

  6. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...... provides a description of the wind turbine modelling, both at a component level and at a system level....

  7. Small velocity and finite temperature variations in kinetic relaxation models

    KAUST Repository

    Markowich, Peter

    2010-01-01

    A small Knuden number analysis of a kinetic equation in the diffusive scaling is performed. The collision kernel is of BGK type with a general local Gibbs state. Assuming that the flow velocity is of the order of the Knudsen number, a Hilbert expansion yields a macroscopic model with finite temperature variations, whose complexity lies in between the hydrodynamic and the energy-transport equations. Its mathematical structure is explored and macroscopic models for specific examples of the global Gibbs state are presented. © American Institute of Mathematical Sciences.

  8. Modelling colliding wind binaries with RAMSES, extension to special relativity

    CERN Document Server

    Lamberts, Astrid; Dubus, Guillaume; Lesur, Geoffroy

    2012-01-01

    We present high resolution simulations with RAMSES of supersonic colliding stellar winds. The collision results in a double shock structure which is subject to different instabilities. The Kelvin-Helmholtz instability (KHI) introduces some mixing and variability. For isothermal winds, the Non-linear Thin Shell Instability violently affects the interaction region. Properly modelling these instabilities requires a high enough resolution and an adapted numerical method, especially when one of the winds strongly dominates the other one. At large scale, orbital motion is expected to turn the shocked zone into a spiral but we find that in some configurations the KHI may disrupt the spiral. A colliding wind structure is also expected in gamma-ray binaries composed of a massive star and a young pulsar which emits a highly relativistic wind. Numerical simulations are necessary to understand the geometry of such systems and should take into account the relativistic nature of the pulsar wind. We implemented a second ord...

  9. Verification of high-speed solar wind stream forecasts using operational solar wind models

    CERN Document Server

    Reiss, Martin A; Veronig, Astrid M; Nikolic, Ljubomir; Vennerstrom, Susanne; Schoengassner, Florian; Hofmeister, Stefan J

    2016-01-01

    High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate high-speed stream forecasts made by the empirical solar wind forecast (ESWF) and the semiempirical Wang-Sheeley-Arge (WSA) model based on the in situ plasma measurements from the ACE spacecraft for the years 2011 to 2014. While the ESWF makes use of an empirical relation between the coronal hole area observed in Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images and solar wind properties at the near-Earth environment, the WSA model establishes a link between properties of the open magnetic field lines extending from the photosphere to the corona and the background solar wind conditions. We found that both solar wind models are capable of predicting the large-scale features of the observed sol...

  10. Stochastic model for aerodynamic force dynamics on wind turbine blades in unsteady wind inflow

    CERN Document Server

    Luhur, Muhammad Ramzan; Kühn, Martin; Wächter, Matthias

    2015-01-01

    The paper presents a stochastic approach to estimate the aerodynamic forces with local dynamics on wind turbine blades in unsteady wind inflow. This is done by integrating a stochastic model of lift and drag dynamics for an airfoil into the aerodynamic simulation software AeroDyn. The model is added as an alternative to the static table lookup approach in blade element momentum (BEM) wake model used by AeroDyn. The stochastic forces are obtained for a rotor blade element using full field turbulence simulated wind data input and compared with the classical BEM and dynamic stall models for identical conditions. The comparison shows that the stochastic model generates additional extended dynamic response in terms of local force fluctuations. Further, the comparison of statistics between the classical BEM, dynamic stall and stochastic models' results in terms of their increment probability density functions gives consistent results.

  11. A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines

    Science.gov (United States)

    Spera, David A.

    1995-01-01

    Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.

  12. Statistical Modeling for Wind-Temperature Meteorological Elements in Troposphere

    CERN Document Server

    Virtser, A; Golbraikh, E

    2010-01-01

    A comprehensive statistical model for vertical profiles of the horizontal wind and temperature throughout the troposphere is presented. The model is based on radiosonde measurements of wind and temperature during several years. The profiles measured under quite different atmospheric conditions exhibit qualitative similarity, and a proper choice of the reference scales for the wind, temperature and altitude levels allows to consider the measurement data as realizations of a random process with universal characteristics: means, the basic functions and parameters of standard distributions for transform coefficients of the Principal Component Analysis. The features of the atmospheric conditions are described by statistical characteristics of the wind-temperature ensemble of dimensional reference scales. The high effectiveness of the proposed approach is provided by a similarity of wind - temperature vertical profiles, which allow to carry out the statistical modeling in the low-dimension space of the dimensional ...

  13. On the prediction of threshold friction velocity of wind erosion using soil reflectance spectroscopy

    Science.gov (United States)

    Li, Junran; Flagg, Cody B.; Okin, Gregory S.; Painter, Thomas H.; Dintwe, Kebonye; Belnap, Jayne

    2015-01-01

    Current approaches to estimate threshold friction velocity (TFV) of soil particle movement, including both experimental and empirical methods, suffer from various disadvantages, and they are particularly not effective to estimate TFVs at regional to global scales. Reflectance spectroscopy has been widely used to obtain TFV-related soil properties (e.g., moisture, texture, crust, etc.), however, no studies have attempted to directly relate soil TFV to their spectral reflectance. The objective of this study was to investigate the relationship between soil TFV and soil reflectance in the visible and near infrared (VIS–NIR, 350–2500 nm) spectral region, and to identify the best range of wavelengths or combinations of wavelengths to predict TFV. Threshold friction velocity of 31 soils, along with their reflectance spectra and texture were measured in the Mojave Desert, California and Moab, Utah. A correlation analysis between TFV and soil reflectance identified a number of isolated, narrow spectral domains that largely fell into two spectral regions, the VIS area (400–700 nm) and the short-wavelength infrared (SWIR) area (1100–2500 nm). A partial least squares regression analysis (PLSR) confirmed the significant bands that were identified by correlation analysis. The PLSR further identified the strong relationship between the first-difference transformation and TFV at several narrow regions around 1400, 1900, and 2200 nm. The use of PLSR allowed us to identify a total of 17 key wavelengths in the investigated spectrum range, which may be used as the optimal spectral settings for estimating TFV in the laboratory and field, or mapping of TFV using airborne/satellite sensors.

  14. Importance of Dynamic Inflow Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Knudsen, Torben; Overgaard, Anders;

    2015-01-01

    The efficiency of including dynamic inflow in the model based design of wind turbine controller has been discussed for many years in the wind energy community with out getting to a safe conclusion. This paper delivers a good argument in favor of including dynamic inflow. The main contributions...

  15. Modelling of a chaotic load of wind turbines drivetrain

    Science.gov (United States)

    Bielecki, Andrzej; Barszcz, Tomasz; Wójcik, Mateusz

    2015-03-01

    The purpose of this paper is to present a model of the load of the wind turbine gears for simulation of real, varying operational conditions for modelling of wind turbine vibration. The characteristics of the wind, which generates chaotically varying loads on the drivetrain components generating load in teeth and bearings of gears during torque transfer, are discussed. A generator of variable load of wind turbines drivetrain is proposed. Firstly, the module for generation of wind speed is designed. It is based on the approach in which the wind speed was considered as a time series approximated by the Weierstrass function. Secondly, the rotational speed of the main shaft is proposed as a function of the wind speed value. The function depends on a few parameters that are fitted by using a genetic algorithm. Finally, the model of torque of the main shaft is introduced. This model has been created by using a multi-layer artificial neural network. The results show that the proposed approach yields a very good fit for the experimental data. The fit brings about the proper reproducing of all the aspects of the load that are crucial for causing fatigue and, as a consequence, damaging of gears of the wind turbines.

  16. Wind climate from the regional climate model REMO

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, Jakob; Berg, Jacob

    2010-01-01

    Selected outputs from simulations with the regional climate model REMO from the Max Planck Institute, Hamburg, Germany were studied in connection with wind energy resource assessment. It was found that the mean wind characteristics based on observations from six mid-latitude stations are well...

  17. Wind Power Curve Modeling in Simple and Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Bulaevskaya, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wharton, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Irons, Z. [Enel Green Power North America, Andover, MA (United States); Qualley, G. [Pentalum, Colleyville, TX (United States)

    2015-02-09

    Our previous work on wind power curve modeling using statistical models focused on a location with a moderately complex terrain in the Altamont Pass region in northern California (CA). The work described here is the follow-up to that work, but at a location with a simple terrain in northern Oklahoma (OK). The goal of the present analysis was to determine the gain in predictive ability afforded by adding information beyond the hub-height wind speed, such as wind speeds at other heights, as well as other atmospheric variables, to the power prediction model at this new location and compare the results to those obtained at the CA site in the previous study. While we reach some of the same conclusions at both sites, many results reported for the CA site do not hold at the OK site. In particular, using the entire vertical profile of wind speeds improves the accuracy of wind power prediction relative to using the hub-height wind speed alone at both sites. However, in contrast to the CA site, the rotor equivalent wind speed (REWS) performs almost as well as the entire profile at the OK site. Another difference is that at the CA site, adding wind veer as a predictor significantly improved the power prediction accuracy. The same was true for that site when air density was added to the model separately instead of using the standard air density adjustment. At the OK site, these additional variables result in no significant benefit for the prediction accuracy.

  18. Model based active power control of a wind turbine

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad;

    2014-01-01

    in the electricity market that selling the reserve power is more profitable than producing with the full capacity. Therefore wind turbines can be down-regulated and sell the differential capacity as the reserve power. In this paper we suggest a model based approach to control wind turbines for active power reference...

  19. Simple Model for Describing and Estimating Wind Turbine Dynamic Inflow

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas

    2013-01-01

    Wind turbines operate with sudden change in pitch angle, rotor or wind speed. In such cases the wake behind the turbine, achieve steady state conditions only after a certain delay. This phenomenon is commonly called dynamic inflow. There are many models for dynamic inflow. The most accurate use a...

  20. Selection of References in Wind Turbine Model Predictive Control Design

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Hovgaard, Tobias

    2015-01-01

    Lowering the cost of energy is one of the major focus areas in the wind turbine industry. Recent research has indicated that wind turbine controllers based on model predictive control methods can be useful in obtaining this objective. A number of design considerations have to be made when designi...

  1. Interval forecasts of a novelty hybrid model for wind speeds

    Directory of Open Access Journals (Sweden)

    Shanshan Qin

    2015-11-01

    Full Text Available The utilization of wind energy, as a booming technology in the field of renewable energies, has been highly regarded around the world. Quantification of uncertainties associated with accurate wind speed forecasts is essential for regulating wind power generation and integration. However, it remains difficult work primarily due to the stochastic and nonlinear characteristics of wind speed series. Traditional models for wind speed forecasting mostly focus on generating certain predictive values, which cannot properly handle uncertainties. For quantifying potential uncertainties, a hybrid model constructed by the Cuckoo Search Optimization (CSO-based Back Propagation Neural Network (BPNN is proposed to establish wind speed interval forecasts (IFs by estimating the lower and upper bounds. The quality of IFs is assessed quantitatively using IFs coverage probability (IFCP and IFs normalized average width (IFNAW. Moreover, to assess the overall quality of IFs comprehensively, a tradeoff between informativeness (IFNAW and validity (IFCP of IFs is examined by coverage width-based criteria (CWC. As an applicative study, wind speeds from the Xinjiang Region in China are used to validate the proposed hybrid model. The results demonstrate that the proposed model can construct higher quality IFs for short-term wind speed forecasts.

  2. A new ensemble model for short term wind power prediction

    DEFF Research Database (Denmark)

    Madsen, Henrik; Albu, Razvan-Daniel; Felea, Ioan

    2012-01-01

    As the objective of this study, a non-linear ensemble system is used to develop a new model for predicting wind speed in short-term time scale. Short-term wind power prediction becomes an extremely important field of research for the energy sector. Regardless of the recent advancements in the re-search...

  3. Magnetosonic Waveguide Model of Solar Wind Flow Tubes

    Indian Academy of Sciences (India)

    A. K. Srivastava; B. N. Dwivedi

    2006-06-01

    We consider solar wind flow tubes as a magnetosonic wave-guide. Assuming a symmetric expansion in edges of slab-modelled wave-guide, we study the propagation characteristics of magnetosonic wave in the solar wind flow tubes. We present the preliminary results and discuss their implications.

  4. X-RAY HIGH-RESOLUTION SPECTROSCOPY REVEALS FEEDBACK IN A SEYFERT GALAXY FROM AN ULTRA-FAST WIND WITH COMPLEX IONIZATION AND VELOCITY STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Longinotti, A. L. [Catedrática CONACYT—Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, Tonantzintla, Puebla, C.P. 72840, México (Mexico); Krongold, Y. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70264, 04510 Mexico D.F. (Mexico); Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P. [ESAC, P.O. Box, 78 E-28691 Villanueva de la Cañada, Madrid (Spain); Giroletti, M. [INAF Osservatorio di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Panessa, F. [INAF—Istituto di Astrofisica e Planetologia Spaziali di Roma (IAPS), Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Costantini, E. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands)

    2015-11-10

    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s{sup −1}, detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase.

  5. Robust Model Predictive Control of a Wind Turbine

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2012-01-01

    In this work the problem of robust model predictive control (robust MPC) of a wind turbine in the full load region is considered. A minimax robust MPC approach is used to tackle the problem. Nonlinear dynamics of the wind turbine are derived by combining blade element momentum (BEM) theory...... and first principle modeling of the turbine flexible structure. Thereafter the nonlinear model is linearized using Taylor series expansion around system operating points. Operating points are determined by effective wind speed and an extended Kalman filter (EKF) is employed to estimate this. In addition...... of the uncertain system is employed and a norm-bounded uncertainty model is used to formulate a minimax model predictive control. The resulting optimization problem is simplified by semidefinite relaxation and the controller obtained is applied on a full complexity, high fidelity wind turbine model. Finally...

  6. Pressure and velocity profiles in a static mechanical hemilarynx model.

    Science.gov (United States)

    Alipour, Fariborz; Scherer, Ronald C

    2002-12-01

    This study examined pressure and velocity profiles in a hemilarynx mechanical model of phonation. The glottal section had parallel walls and was fabricated from hard plastic. Twelve pressure taps were created in the vocal fold surface and connected to a differential pressure transducer through a pressure switch. The glottal gap was measured with feeler gauges and the uniform glottal duct was verified by use of a laser system. Eight pressure transducers were placed in the flat wall opposite the vocal fold. Hot-wire anemometry was used to obtain velocity profiles upstream and downstream of the glottis. The results indicate that the pressure distribution on the vocal fold surface was consistent with pressure change along a parallel duct, whereas the pressures on the opposite flat wall typically were lower (by 8%-40% of the transglottal pressure just past mid-glottis). The upstream velocity profiles were symmetric regardless of the constriction shape and size. The jet flow downstream of the glottis was turbulent even for laminar upstream conditions. The front of the jet was consistently approximately 1.5 mm from the flat wall for glottal gaps of 0.4, 0.8 and 1.2 mm. The turbulence intensity also remained approximately at the same location of about 4 mm from the flat wall for the two larger gaps.

  7. A new settling velocity model to describe secondary sedimentation

    DEFF Research Database (Denmark)

    Ramin, Elham; Wágner, Dorottya Sarolta; Yde, Lars

    2014-01-01

    Secondary settling tanks (SSTs) are the most hydraulically sensitive unit operations in biological wastewater treatment plants. The maximum permissible inflow to the plant depends on the efficiency of SSTs in separating and thickening the activated sludge. The flow conditions and solids distribut......Secondary settling tanks (SSTs) are the most hydraulically sensitive unit operations in biological wastewater treatment plants. The maximum permissible inflow to the plant depends on the efficiency of SSTs in separating and thickening the activated sludge. The flow conditions and solids...... associated with their calibration. In this study, we developed a new settling velocity model, including hindered, transient and compression settling, and showed that it can be calibrated to data from a simple, novel settling column experimental set-up using the Bayesian optimization method DREAM......(ZS). In addition, correlations between the Herschel-Bulkley rheological model parameters and sludge concentration were identified with data from batch rheological experiments. A 2-D axisymmetric CFD model of a circular SST containing the new settling velocity and rheological model was validated with full...

  8. A high wind geophysical model fuction for QuikSCAT wind retrievals and application to Typhoon IOKE

    Institute of Scientific and Technical Information of China (English)

    ZOU Juhong; ZENG Tao; CUI Songxue

    2015-01-01

    The geophysical model function (GMF) describes the relationship between a backscattering and a sea surface wind, and enables a wind vector retrieval from backscattering measurements. It is clear that the GMF plays an important role in an ocean wind vector retrieval. The performance of the existing Ku-band model function QSCAT-1 is considered to be effective at low and moderate wind speed ranges. However, in the conditions of higher wind speeds, the existing algorithms diverge alarmingly. owing to the lack ofin situ data required for developing the GMF for the high wind conditions, the QSCAT-1 appears to overestimate thes0, which results in underestimating the wind speeds. Several match-up QuikSCAT and special sensor microwave/imager (SSM/I) wind speed measurements of the typhoons occurring in the west Pacific Ocean are analyzed. The results show that the SSM/I wind exhibits better agreement with the “best track” analysis wind speed than the QuikSCAT wind retrieved using QSCAT-1. On the basis of this evaluation, a correction of the QSCAT-1 model function for wind speed above 16 m/s is proposed, which uses the collocated SSM/I and QuikSCAT measurements as a training set, and a neural network approach as a multiple nonlinear regression technologytechnology.In order to validate the revised GMF for high winds, the modified GMF was applied to the QuikSCAT observations of Hurricane IOKE. The wind estimated by the QuikSCAT for Typhoon IOKE in 2006 was improved with the maximum wind speed reaching 55 m/s. An error analysis was performed using the wind fields from the Holland model as the surface truth. The results show an improved agreement with the Holland model wind when compared with the wind estimated using the QSCAT-1. However, large bias still existed, indicating that the effects of rain must be considered for further improvement.

  9. Calculation of extreme wind atlases using mesoscale modeling. Final report

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Badger, Jake

    This is the final report of the project PSO-10240 "Calculation of extreme wind atlases using mesoscale modeling". The overall objective is to improve the estimation of extreme winds by developing and applying new methodologies to confront the many weaknesses in the current methodologies...... as explained in Section 2. The focus has been put on developing a number of new methodologies through numerical modeling and statistical modeling....

  10. A noise generation and propagation model for large wind farms

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2016-01-01

    A wind turbine noise calculation model is combined with a ray tracing method in order to estimate wind farm noise in its surrounding assuming an arbitrary topography. The wind turbine noise model is used to generate noise spectra for which each turbine is approximated as a point source. However......, the detailed three-dimensional directivity features are taken into account for the further calculation of noise propagation over the surrounding terrain. An arbitrary number of turbines constituting a wind farm can be spatially distributed. The noise from each individual turbine is propagated into the far......-field using the ray tracing method. These results are added up assuming the noise from each turbine is uncorrelated. The methodology permits to estimate a wind farm noise map over the surrounding terrain in a reasonable amount of computational time on a personal computer....

  11. Hydrodynamic Modeling of the Interaction of Winds within a Collapsing Turbulent Gas Cloud

    Directory of Open Access Journals (Sweden)

    Guillermo Arreaga-García

    2015-01-01

    a velocity according to a turbulent spectrum built in a Fourier space of 643 grid elements. The level of turbulence and the temperature of the cloud are both adjusted so that a gravitational collapse of the cloud is initially induced. All the winds are activated in a very early stage of evolution of the cloud. We consider only two kinds of winds, namely, one with spherical symmetry and the second one of a bipolar collimated jet. In order to assess the dynamical change in the cloud due to interactions with the winds, we show isovelocity and isodensity plots for all our simulations. We also report on the accretion centers detected at the last simulation time available for each model.

  12. Validation of the Actuator Line Model for Simulating Flows past Yawed Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zhu, Wei Jun; Yang, Hua

    2015-01-01

    The Actuator Line/Navier-Stokes model is validated against wind tunnel measurements for flows past the yawed MEXICO rotor and past the yawed NREL Phase VI rotor. The MEXICO rotor is operated at a rotational speed of 424 rpm, a pitch angle of −2.3˚, wind speeds of 10, 15, 24 m/s and yaw angles of 15......˚, 30˚ and 45˚. The computed loads as well as the velocity field behind the yawed MEXICO rotor are compared to the detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project. For the NREL Phase VI rotor, computations were carried out at a rotational speed of 90.2 rpm......, a pitch angle of 3˚, a wind speed of 5 m/s and yaw angles of 10˚ and 30˚. The computed loads are compared to the loads measured from pressure measurement....

  13. IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models

    DEFF Research Database (Denmark)

    Moriarty, Patrick; Rodrigo, Javier Sanz; Gancarski, Pawel;

    2014-01-01

    .windbench.net). This paper provides an overview of the building-block validation approach applied to wind farm wake models, including best practices for the benchmarking and data processing procedures for validation datasets from wind farm SCADA and meteorological databases. A hierarchy of test cases has been proposed...

  14. Wind-Climate Estimation Based on Mesoscale and Microscale Modeling: Statistical-Dynamical Downscaling for Wind Energy Applications

    DEFF Research Database (Denmark)

    Badger, Jake; Frank, Helmut; Hahmann, Andrea N.

    2014-01-01

    This paper demonstrates that a statistical dynamical method can be used to accurately estimate the wind climate at a wind farm site. In particular, postprocessing of mesoscale model output allows an efficient calculation of the local wind climate required for wind resource estimation at a wind...... turbine site. The method is divided into two parts: 1) preprocessing, in which the configurations for the mesoscale model simulations are determined, and 2) postprocessing, in which the data from the mesoscale simulations are prepared for wind energy application. Results from idealized mesoscale modeling...... experiments for a challenging wind farm site in northern Spain are presented to support the preprocessing method. Comparisons of modeling results with measurements from the same wind farm site are presented to support the postprocessing method. The crucial element in postprocessing is the bridging...

  15. Wall correction model for wind tunnels with open test section

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2006-01-01

    In the paper we present a correction model for wall interference on rotors of wind turbines or propellers in wind tunnels. The model, which is based on a one-dimensional momentum approach, is validated against results from CFD computations using a generalized actuator disc principle. In the model...... the exchange of axial momentum between the tunnel and the ambient room is represented by a simple formula, derived from actuator disc computations. The correction model is validated against Navier-Stokes computations of the flow about a wind turbine rotor. Generally, the corrections from the model are in very...... good agreement with the CFD computations, demonstrating that one-dimensional momentum theory is a reliable way of predicting corrections for wall interference in wind tunnels with closed as well as open cross sections....

  16. Model predictive control of wind energy conversion systems

    CERN Document Server

    Yaramasu, Venkata Narasimha R

    2017-01-01

    The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS.

  17. Developments of the offshore wind turbine wake model Fuga

    DEFF Research Database (Denmark)

    Ott, Søren; Nielsen, Morten

    's Offshore Wind Accelerator Stage 1 project called Linearized CFD Wake models. The earlier project resulted in the development, implementation and validation of the Fuga model. Fuga is a linearized CFD model that can predict wake effects for offshore wind farms. The main purpose of Stage 2 is to add more...... with the modified equations. - Meandering. Meandering has been included in the form of a post processing of the model results that bend and twist the wake centreline. The meandering centrelines are calculated using a Gaussian process developed on the basis of measured spectra. An analysis of meteorological data......This is the final report of the project entitled Risø DTU Modelling Services carried out by DTU Wind Energy (formerly known as Risø National Laboratory) as part of the Carbon Trust's Offshore Wind Accelerator Stage 2 under a contract with Carbon Trust. The project is a follow-up to a Carbon Trust...

  18. Comparative Study of MHD Modeling of the Background Solar Wind

    CERN Document Server

    Gressl, C; Temmer, M; Odstrcil, D; Linker, J A; Mikic, Z; Riley, P

    2013-01-01

    Knowledge about the background solar wind plays a crucial role in the framework of space weather forecasting. In-situ measurements of the background solar wind are only available for a few points in the heliosphere where spacecraft are located, therefore we have to rely on heliospheric models to derive the distribution of solar wind parameters in interplanetary space. We test the performance of different solar wind models, namely Magnetohydrodynamic Algorithm outside a Sphere/ENLIL (MAS/ENLIL), Wang-Sheeley-Arge/ENLIL (WSA/ENLIL), and MAS/MAS, by comparing model results with in-situ measurements from spacecraft located at 1 AU distance to the Sun (ACE, Wind). To exclude the influence of interplanetary coronal mass ejections (ICMEs), we chose the year 2007 as a time period with low solar activity for our comparison. We found that the general structure of the background solar wind is well reproduced by all models. The best model results were obtained for the parameter solar wind speed. However, the predicted ar...

  19. Velocity potential formulations of highly accurate Boussinesq-type models

    DEFF Research Database (Denmark)

    Bingham, Harry B.; Madsen, Per A.; Fuhrman, David R.

    2009-01-01

    processes on the weather side of reflective structures. Coast. Eng. 53, 929-945). An exact infinite series solution for the potential is obtained via a Taylor expansion about an arbitrary vertical position z=(z) over cap. For practical implementation however, the solution is expanded based on a slow...... variation of (z) over cap and terms are retained to first-order. With shoaling enhancement, the new models obtain a comparable accuracy in linear shoaling to the original velocity formulation. General consistency relations are also derived which are convenient for verifying that the differential operators...

  20. An Estimate of Solar Wind Velocity Profiles in a Coronal Hole and a Coronal Streamer Area (6-40 R(radius symbol)

    Science.gov (United States)

    Patzold, M.; Tsurutani, B. T.; Bird, M. K.

    1995-01-01

    Total electron content data obtained from the Ulysses Solar Corona Experiment (SCE) in 1991 were used to select two data sets, one associated with a coronal hole and the other with coronal streamer crossings. (This is largely equatorial data shortly after solar maximum.) The solar wind velocity profile is estimated for these areas.

  1. The effect of wind velocity, air temperature and humidity on NH 3 and SO 2 transfer into bean leaves ( phaseolus vulgaris L.)

    Science.gov (United States)

    van Hove, L. W. A.; Vredenberg, W. J.; Adema, E. H.

    The influence of wind velocity, air temperature and vapour pressure deficit of the air (VPD) on NH 3 and SO 2 transfer into bean leaves ( Phaseolus vulgaris L.) was examined using a leaf chamber. The measurements suggested a transition in the properties of the leaf boundary layer at a wind velocity of 0.3-0.4 ms -1 which corresponds to a Recrit value of about 2000. At higher wind velocities the leaf boundary layer resistance ( rb) was 1.5-2 times lower than can be calculated from the theory. Nevertheless, the assessed relationships between rb and wind velocity appeared to be similar to the theoretical derived relationship for rb. The NH 3 flux and in particular the SO 2 flux into the leaf strongly increased at a VPD decline. The increase of the NH 3 flux could be attributed to an increase of the stomatal conductance ( gs). However, the increase of the SO 2 flux could only partly be explained by an increase of gs. An apparent additional uptake was also observed for the NH 3 uptake at a low temperature and VPD. The SO 2 flux was also influenced by air temperature which could be explained by a temperature effect on gs. The results suggest that calculation of the NH 3 and SO 2 flux using data of gs gives a serious understimation of the real flux of these gases into leaves at a low temperature and VPD.

  2. Beyond pressureless gas dynamics : Quadrature-based velocity moment models

    CERN Document Server

    Chalons, Christophe; Massot, Marc

    2010-01-01

    Following the seminal work of F. Bouchut on zero pressure gas dynamics which has been extensively used for gas particle-flows, the present contribution investigates quadrature-based velocity moments models for kinetic equations in the framework of the infinite Knudsen number limit, that is, for dilute clouds of small particles where the collision or coalescence probability asymptotically approaches zero. Such models define a hierarchy based on the number of moments and associated quadrature nodes, the first level of which leads to pressureless gas dynamics. We focus in particular on the four moment model where the flux closure is provided by a two-node quadrature in the velocity phase space and provide the right framework for studying both smooth and singular solutions. The link with both the kinetic underlying equation as well as with zero pressure gas dynamics is provided and we define the notion of measure solutions as well as the mathematical structure of the resulting system of four PDEs. We exhibit a fa...

  3. Nondissipative Velocity and Pressure Regularizations for the ICON Model

    Science.gov (United States)

    Restelli, M.; Giorgetta, M.; Hundertmark, T.; Korn, P.; Reich, S.

    2009-04-01

    A challenging aspect in the numerical simulation of atmospheric and oceanic flows is the multiscale character of the problem both in space and time. The small spacial scales are generated by the turbulent energy and enstrophy cascades, and are usually dealt with by means of turbulence parametrizations, while the small temporal scales are governed by the propagation of acoustic and gravity waves, which are of little importance for the large scale dynamics and are often eliminated by means of a semi-implicit time discretization. We propose to treat both phenomena of subgrid turbulence and temporal scale separation in a unified way by means of nondissipative regularizations of the underlying model equations. More precisely, we discuss the use of two regularized equation sets: the velocity regularization, also know as Lagrangian averaged Navier-Stokes system, and the pressure regularization. Both regularizations are nondissipative since they do not enhance the dissipation of energy and enstrophy of the flow. The velocity regularization models the effects of the subgrid velocity fluctuations on the mean flow, it has thus been proposed as a turbulence parametrization and it has been found to yield promising results in ocean modeling [HHPW08]. In particular, the velocity regularization results in a higher variability of the numerical solution. The pressure regularization, discussed in [RWS07], modifies the propagation of acoustic and gravity waves so that the resulting system can be discretized explicitly in time with time steps analogous to those allowed by a semi-implicit method. Compared to semi-implicit time integrators, however, the pressure regularization takes fully into account the geostrophic balance of the flow. We discuss here the implementation of the velocity and pressure regularizations within the numerical framework of the ICON general circulation model (GCM) [BR05] for the case of the rotating shallow water system, showing how the original numerical

  4. Method for Estimating Evaporative Potential (IM/CLO) from ASTM Standard Single Wind Velocity Measures

    Science.gov (United States)

    2016-08-10

    collected data, American Society of Testing and Materials International (ASTM) method, for modeling purposes that previously required additional testing...their guidance and discussions related to this work and Julio Gonzalez and Anthony Karis for providing data to support this analysis. 1...collected data, according to American Society of Testing and Materials International (ASTM), for modeling purposes that previously required additional

  5. Experimental Study on Influence of Pitch Motion on the Wake of a Floating Wind Turbine Model

    Directory of Open Access Journals (Sweden)

    Stanislav Rockel

    2014-03-01

    Full Text Available Wind tunnel experiments were performed, where the development of the wake of a model wind turbine was measured using stereo Particle Image Velocimetry to observe the influence of platform pitch motion. The wakes of a classical bottom fixed turbine and a streamwise oscillating turbine are compared. Results indicate that platform pitch creates an upward shift in all components of the flow and their fluctuations. The vertical flow created by the pitch motion as well as the reduced entrainment of kinetic energy from undisturbed flows above the turbine result in potentially higher loads and less available kinetic energy for a downwind turbine. Experimental results are compared with four wake models. The wake models employed are consistent with experimental results in describing the shapes and magnitudes of the streamwise velocity component of the wake for a fixed turbine. Inconsistencies between the model predictions and experimental results arise in the floating case particularly regarding the vertical displacement of the velocity components of the flow. Furthermore, it is found that the additional degrees of freedom of a floating wind turbine add to the complexity of the wake aerodynamics and improved wake models are needed, considering vertical flows and displacements due to pitch motion.

  6. Wind driven general circulation of the Mediterranean Sea simulated with a Spectral Element Ocean Model

    Science.gov (United States)

    Molcard, A.; Pinardi, N.; Iskandarani, M.; Haidvogel, D. B.

    2002-05-01

    This work is an attempt to simulate the Mediterranean Sea general circulation with a Spectral Finite Element Model. This numerical technique associates the geometrical flexibility of the finite elements for the proper coastline definition with the precision offered by spectral methods. The model is reduced gravity and we study the wind-driven ocean response in order to explain the large scale sub-basin gyres and their variability. The study period goes from January 1987 to December 1993 and two forcing data sets are used. The effect of wind variability in space and time is analyzed and the relationship between wind stress curl and ocean response is stressed. Some of the main permanent structures of the general circulation (Gulf of Lions cyclonic gyre, Rhodes gyre, Gulf of Syrte anticylone) are shown to be induced by permanent wind stress curl structures. The magnitude and spatial variability of the wind is important in determining the appearance or disappearance of some gyres (Tyrrhenian anticyclonic gyre, Balearic anticyclonic gyre, Ionian cyclonic gyre). An EOF analysis of the seasonal variability indicates that the weakening and strengthening of the Levantine basin boundary currents is a major component of the seasonal cycle in the basin. The important discovery is that seasonal and interannual variability peak at the same spatial scales in the ocean response and that the interannual variability includes the change in amplitude and phase of the seasonal cycle in the sub-basin scale gyres and boundary currents. The Coriolis term in the vorticity balance seems to be responsible for the weakening of anticyclonic structures and their total disappearance when they are close to a boundary. The process of adjustment to winds produces a train of coastally trapped gravity waves which travel around the eastern and western basins, respectively in approximately 6 months. This corresponds to a phase velocity for the wave of about 1 m/s, comparable to an average velocity of

  7. Mean velocity and moments of turbulent velocity fluctuations in the wake of a model ship propulsor

    Energy Technology Data Exchange (ETDEWEB)

    Pego, J.P. [Universitaet Erlangen-Nuernberg, LSTM, Erlangen, Lehrstuhl fuer Stroemungsmechanik, Erlangen (Germany); Faculdade de Engenharia da Universidade do Porto, Porto (Portugal); Lienhart, H.; Durst, F. [Universitaet Erlangen-Nuernberg, LSTM, Erlangen, Lehrstuhl fuer Stroemungsmechanik, Erlangen (Germany)

    2007-08-15

    Pod drives are modern outboard ship propulsion systems with a motor encapsulated in a watertight pod, whose shaft is connected directly to one or two propellers. The whole unit hangs from the stern of the ship and rotates azimuthally, thus providing thrust and steering without the need of a rudder. Force/momentum and phase-resolved laser Doppler anemometry (LDA) measurements were performed for in line co-rotating and contra-rotating propellers pod drive models. The measurements permitted to characterize these ship propulsion systems in terms of their hydrodynamic characteristics. The torque delivered to the propellers and the thrust of the system were measured for different operation conditions of the propellers. These measurements lead to the hydrodynamic optimization of the ship propulsion system. The parameters under focus revealed the influence of distance between propeller planes, propeller frequency of rotation ratio and type of propellers (co- or contra-rotating) on the overall efficiency of the system. Two of the ship propulsion systems under consideration were chosen, based on their hydrodynamic characteristics, for a detailed study of the swirling wake flow by means of laser Doppler anemometry. A two-component laser Doppler system was employed for the velocity measurements. A light barrier mounted on the axle of the rear propeller motor supplied a TTL signal to mark the beginning of each period, thus providing angle information for the LDA measurements. Measurements were conducted for four axial positions in the slipstream of the pod drive models. The results show that the wake of contra-rotating propeller is more homogeneous than when they co-rotate. In agreement with the results of the force/momentum measurements and with hypotheses put forward in the literature (see e.g. Poehls in Entwurfsgrundlagen fuer Schraubenpropeller, 1984; Schneekluth in Hydromechanik zum Schiffsentwurf, 1988; Breslin and Andersen in Hydrodynamics of ship propellers, 1996

  8. Mean velocity and moments of turbulent velocity fluctuations in the wake of a model ship propulsor

    Science.gov (United States)

    Pêgo, J. P.; Lienhart, H.; Durst, F.

    2007-08-01

    Pod drives are modern outboard ship propulsion systems with a motor encapsulated in a watertight pod, whose shaft is connected directly to one or two propellers. The whole unit hangs from the stern of the ship and rotates azimuthally, thus providing thrust and steering without the need of a rudder. Force/momentum and phase-resolved laser Doppler anemometry (LDA) measurements were performed for in line co-rotating and contra-rotating propellers pod drive models. The measurements permitted to characterize these ship propulsion systems in terms of their hydrodynamic characteristics. The torque delivered to the propellers and the thrust of the system were measured for different operation conditions of the propellers. These measurements lead to the hydrodynamic optimization of the ship propulsion system. The parameters under focus revealed the influence of distance between propeller planes, propeller frequency of rotation ratio and type of propellers (co- or contra-rotating) on the overall efficiency of the system. Two of the ship propulsion systems under consideration were chosen, based on their hydrodynamic characteristics, for a detailed study of the swirling wake flow by means of laser Doppler anemometry. A two-component laser Doppler system was employed for the velocity measurements. A light barrier mounted on the axle of the rear propeller motor supplied a TTL signal to mark the beginning of each period, thus providing angle information for the LDA measurements. Measurements were conducted for four axial positions in the slipstream of the pod drive models. The results show that the wake of contra-rotating propeller is more homogeneous than when they co-rotate. In agreement with the results of the force/momentum measurements and with hypotheses put forward in the literature (see e.g. Poehls in Entwurfsgrundlagen für Schraubenpropeller, 1984; Schneekluth in Hydromechanik zum Schiffsentwurf, 1988; Breslin and Andersen in Hydrodynamics of ship propellers, 1996

  9. Modelling seabird collision risk with off-shore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, Maria; Arroyo, Gonzalo Munoz; Rosario, Jose Juan Alonso del

    2011-07-01

    Full text: Recent concern about the adverse effects of collision mortality of avian migrants at wind farms has highlighted the need to understand bird-wind turbine interactions. Here, a stochastic collision model, based on data of seabird behaviour collected on- site, is presented, as a flexible and easy to take tool to assess the collisions probabilities of off-shore wind farms in a pre-construction phase. The collision prediction model considering the wind farm area as a risk window has been constructed as a stochastic model for avian migrants, based on Monte Carlo simulation. The model calculates the probable number of birds collided per time unit. Migration volume, wind farm dimensions, vertical and horizontal distribution of the migratory passage, flight direction and avoidance rates, between other variables, are taken into account in different steps of the model as the input variables. In order to assess the weighted importance of these factors on collision probability predictions, collision probabilities obtained from the set of scenarios resulting from the different combinations of the input variables were modelled by using Generalised Additive Models. The application of this model to a hypothetical project for erecting a wind farm at the Strait of Gibraltar showed that collision probability, and consequently mortality rates, strongly depend on the values of the avoidance rates taken into account, and the distribution of birds into the different altitude layers. These parameters should be considered as priorities to be addressed in post-construction studies. (Author)

  10. Impact of surface wind biases on the Antarctic sea ice concentration budget in climate models

    Science.gov (United States)

    Lecomte, O.; Goosse, H.; Fichefet, T.; Holland, P. R.; Uotila, P.; Zunz, V.; Kimura, N.

    2016-09-01

    We derive the terms in the Antarctic sea ice concentration budget from the output of three models, and compare them to observations of the same terms. Those models include two climate models from the 5th Coupled Model Intercomparison Project (CMIP5) and one ocean-sea ice coupled model with prescribed atmospheric forcing. Sea ice drift and wind fields from those models, in average over April-October 1992-2005, all exhibit large differences with the available observational or reanalysis datasets. However, the discrepancies between the two distinct ice drift products or the two wind reanalyses used here are sometimes even greater than those differences. Two major findings stand out from the analysis. Firstly, large biases in sea ice drift speed and direction in exterior sectors of the sea ice covered region tend to be systematic and consistent with those in winds. This suggests that sea ice errors in these areas are most likely wind-driven, so as errors in the simulated ice motion vectors. The systematic nature of these biases is less prominent in interior sectors, nearer the coast, where sea ice is mechanically constrained and its motion in response to the wind forcing more depending on the model rheology. Second, the intimate relationship between winds, sea ice drift and the sea ice concentration budget gives insight on ways to categorize models with regard to errors in their ice dynamics. In exterior regions, models with seemingly too weak winds and slow ice drift consistently yield a lack of ice velocity divergence and hence a wrong wintertime sea ice growth rate. In interior sectors, too slow ice drift, presumably originating from issues in the physical representation of sea ice dynamics as much as from errors in surface winds, leads to wrong timing of the late winter ice retreat. Those results illustrate that the applied methodology provides a valuable tool for prioritizing model improvements based on the ice concentration budget-ice drift biases-wind biases

  11. A stochastic wind turbine wake model based on new metrics for wake characterization: A stochastic wind turbine wake model based on new metrics for wake characterization

    Energy Technology Data Exchange (ETDEWEB)

    Doubrawa, Paula [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Upson Hall Ithaca 14850 New York USA; Barthelmie, Rebecca J. [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Upson Hall Ithaca 14850 New York USA; Wang, Hui [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Upson Hall Ithaca 14850 New York USA; Churchfield, Matthew J. [National Renewable Energy Laboratory, Golden 80401 Colorado USA

    2016-08-04

    Understanding the detailed dynamics of wind turbine wakes is critical to predicting the performance and maximizing the efficiency of wind farms. This knowledge requires atmospheric data at a high spatial and temporal resolution, which are not easily obtained from direct measurements. Therefore, research is often based on numerical models, which vary in fidelity and computational cost. The simplest models produce axisymmetric wakes and are only valid beyond the near wake. Higher-fidelity results can be obtained by solving the filtered Navier-Stokes equations at a resolution that is sufficient to resolve the relevant turbulence scales. This work addresses the gap between these two extremes by proposing a stochastic model that produces an unsteady asymmetric wake. The model is developed based on a large-eddy simulation (LES) of an offshore wind farm. Because there are several ways of characterizing wakes, the first part of this work explores different approaches to defining global wake characteristics. From these, a model is developed that captures essential features of a LES-generated wake at a small fraction of the cost. The synthetic wake successfully reproduces the mean characteristics of the original LES wake, including its area and stretching patterns, and statistics of the mean azimuthal radius. The mean and standard deviation of the wake width and height are also reproduced. This preliminary study focuses on reproducing the wake shape, while future work will incorporate velocity deficit and meandering, as well as different stability scenarios.

  12. Modeling the Asymmetric Wind of Massive LBV Binary MWC 314

    CERN Document Server

    Lobel, A; Dozinel, K Torres; Gorlova, N; Martayan, C; Raskin, G; Van Winckel, H; Prins, S; Pessemier, W; Waelkens, C; Frémat, Y; Hensberge, H; Dummortier, L; Jorissen, A; Van Eck, S; Lehmann, H

    2011-01-01

    Spectroscopic monitoring with Mercator-HERMES over the past two years reveals that MWC 314 is a massive binary system composed of an early B-type primary LBV star and a less-luminous supergiant companion. We determine an orbital period Porb of 60.85 d from optical S II and Ne I absorption lines observed in this single-lined spectroscopic binary. We find an orbital eccentricity of e=0.26, and a large amplitude of the radial velocity curve of 80.6 km/s. The ASAS V light-curve during our spectroscopic monitoring reveals two brightness minima (\\Delta V~0.1 mag.) over the orbital period due to partial eclipses at an orbital inclination angle of ~70 degrees. We find a clear correlation between the orbital phases and the detailed shapes of optical and near-IR P Cygni-type line profiles of He I, Si II, and double- or triple-peaked stationary cores of prominent Fe II emission lines. A preliminary 3-D radiative transfer model computed with Wind3D shows that the periodic P Cygni line profile variability results from an ...

  13. Stochastic modeling and performance monitoring of wind farm power production

    CERN Document Server

    Milan, Patrick; Peinke, Joachim

    2015-01-01

    We present a new stochastic approach to describe and remodel the conversion process of a wind farm at a sampling frequency of 1Hz. When conditioning on various wind direction sectors, the dynamics of the conversion process appear as a fluctuating trajectory around an average IEC-like power curve, see section II. Our approach is to consider the wind farm as a dynamical system that can be described as a stochastic drift/diffusion model, where a drift coefficient describes the attraction towards the power curve and a diffusion coefficient quantifies additional turbulent fluctuations. These stochastic coefficients are inserted into a Langevin equation that, once properly adapted to our particular system, models a synthetic signal of power output for any given wind speed/direction signals, see section III. When combined with a pre-model for turbulent wind fluctuations, the stochastic approach models the power output of the wind farm at a sampling frequency of 1Hz using only ten-minute average values of wind speed ...

  14. Wind farms model aggregation using probabilistic clustering

    Science.gov (United States)

    Fernandes, Paula Odete; Ferreira, Ángela Paula

    2013-10-01

    The main objective of this research is the identification of homogeneous groups within wind farms of a major operator playing in the energy sector in Portugal, based on two multivariate analyses: Hierarchical Cluster Analysis and Discriminant Analysis, by using two independent variables: annual liquid hours and net production. From the produced outputs there were identified three homogenous groups of wind farms: (1) medium Installed Capacity and Induction Generator based Technology, (2) high Installed Capacity and Synchronous Generator based Technology and (3) medium Installed Capacity and Synchronous Generator based Technology, which includes the wind farms with the higher annual liquid hours. It has been found that the results obtained by cluster analysis are well classified, with a total percentage of correct classification of 97,1%, which can be considered excellent.

  15. Global analysis of ocean surface wind and wind stress using a general circulation model and Seasat scatterometer winds

    Science.gov (United States)

    Kalnay, E.; Atlas, R.

    1986-01-01

    Instantaneous and 15-day time-averaged fields of surface wind, wind stress, curl of the wind stress, and wind divergence are presented. These fields are derived from the Goddard Laboratory for Atmospheres four-dimensional analysis/forecast cycle, for the period September 6-30, 1978, using conventional data, satellite temperature soundings, cloud-track winds, and subjectively dealiased Seasat scatterometer winds.

  16. Stabilization and Riesz basis property for an overhead crane model with feedback in velocity and rotating velocity

    Directory of Open Access Journals (Sweden)

    Toure K. Augustin

    2014-06-01

    Full Text Available This paper studies a variant of an overhead crane model's problem, with a control force in velocity and rotating velocity on the platform. We obtain under certain conditions the well-posedness and the strong stabilization of the closed-loop system. We then analyze the spectrum of the system. Using a method due to Shkalikov, we prove the existence of a sequence of generalized eigenvectors of the system, which forms a Riesz basis for the state energy Hilbert space.

  17. Wind Plant Models in IEC 61400-27-2 and WECC - latest developments in international standards on wind turbine and wind plant modeling

    DEFF Research Database (Denmark)

    Fortmann, Jens; Miller, Nicholas; Kazachkov, Yuri

    This paper describes the latest developments in the standardization of wind plant and wind plant controller models. As a first step IEC TC88 WG 27 and WECC jointly developed generic wind turbine models which have been published by WECC in 2014 and IEC in 2015 as IEC 61400-27-1, which also included...... a draft plant controller model in an informative annex. In a second step, parallel activities have been going on in WECC and IEC TC88 WG 27 to create plant models that can include a number of wind turbines, a plant controller and optional equipment. The WECC models are intended to be finalized in 2015......, the IEC models are expected to be published in 2017....

  18. Review of the dWind Model Conceptual Results

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, Ian; Gleason, Michael; Preus, Robert; Sigrin, Ben

    2015-09-16

    This presentation provides an overview of the dWind model, including its purpose, background, and current status. Baring-Gould presented this material as part of the September 2015 WINDExchange webinar.

  19. Wind power electric systems modeling, simulation and control

    CERN Document Server

    Rekioua, Djamila

    2014-01-01

    The book helps readers understand key concepts in standalone and grid connected wind energy systems and features analysis into the modeling and optimization of commonly used configurations through the implementation of different control strategies.Utilizing several electrical machinery control approaches, such as vector control and direct torque control 'Wind Power Electric Systems' equips readers with the means to understand, assess and develop their own wind energy systems and to evaluate the performance of such systems.Mathematical models are provided for each system and a corresponding MAT

  20. A Numerical Model for a Floating TLP Wind Turbine

    DEFF Research Database (Denmark)

    Kumari Ramachandran, Gireesh Kumar Vasanta

    A numerical model is developed for a TLP configuration of a floating offshore wind turbine. The platform dynamics and hydrodynamic forces are derived and implemented in an advanced aero-elastic code, Flex5, to compute the hydro-aero-servo-elastic loads and responses on the floater and the wind...... irregular waves. In addition, the effect of wind-wave misalignment is investigated. Further, in the third step, the 3D platform dynamics and wave loading are implemented into Flex5, resulting in a fully coupled hydro-aero-servo-elastic code. The implementation is tested to make the model reliable and robust...

  1. Velocity Structure Determination Through Seismic Waveform Modeling and Time Deviations

    Science.gov (United States)

    Savage, B.; Zhu, L.; Tan, Y.; Helmberger, D. V.

    2001-12-01

    Through the use of seismic waveforms recorded by TriNet, a dataset of earthquake focal mechanisms and deviations (time shifts) relative to a standard model facilitates the investigation of the crust and uppermost mantle of southern California. The CAP method of focal mechanism determination, in use by TriNet on a routine basis, provides time shifts for surface waves and Pnl arrivals independently relative to the reference model. These shifts serve as initial data for calibration of local and regional seismic paths. Time shifts from the CAP method are derived by splitting the Pnl section of the waveform, the first arriving Pn to just before the arrival of the S wave, from the much slower surface waves then cross-correlating the data with synthetic waveforms computed from a standard model. Surface waves interact with the entire crust, but the upper crust causes the greatest effect. Whereas, Pnl arrivals sample the deeper crust, upper mantle, and source region. This natural division separates the upper from lower crust for regional calibration and structural modeling and allows 3-D velocity maps to be created using the resulting time shifts. Further examination of Pnl and other arrivals which interact with the Moho illuminate the complex nature of this boundary. Initial attempts at using the first 10 seconds of the Pnl section to determine upper most mantle structure have proven insightful. Two large earthquakes north of southern California in Nevada and Mammoth Lakes, CA allow the creation of record sections from 200 to 600 km. As the paths swing from east to west across southern California, simple 1-D models turn into complex structure, dramatically changing the waveform character. Using finite difference models to explain the structure, we determine that a low velocity zone is present at the base of the crust and extends to 100 km in depth. Velocity variations of 5 percent of the mantle in combination with steeply sloping edges produces complex waveform variations

  2. WRF Model Methodology for Offshore Wind Energy Applications

    Directory of Open Access Journals (Sweden)

    Evangelia-Maria Giannakopoulou

    2014-01-01

    Full Text Available Among the parameters that must be considered for an offshore wind farm development, the stability conditions of the marine atmospheric boundary layer (MABL are of significant importance. Atmospheric stability is a vital parameter in wind resource assessment (WRA due to its direct relation to wind and turbulence profiles. A better understanding of the stability conditions occurring offshore and of the interaction between MABL and wind turbines is needed. Accurate simulations of the offshore wind and stability conditions using mesoscale modelling techniques can lead to a more precise WRA. However, the use of any mesoscale model for wind energy applications requires a proper validation process to understand the accuracy and limitations of the model. For this validation process, the weather research and forecasting (WRF model has been applied over the North Sea during March 2005. The sensitivity of the WRF model performance to the use of different horizontal resolutions, input datasets, PBL parameterisations, and nesting options was examined. Comparison of the model results with other modelling studies and with high quality observations recorded at the offshore measurement platform FINO1 showed that the ERA-Interim reanalysis data in combination with the 2.5-level MYNN PBL scheme satisfactorily simulate the MABL over the North Sea.

  3. A numerical method for three-dimensional vortical structure of spiral vortex in wind turbine with two-dimensional velocity data at plural azimuthal angles

    Science.gov (United States)

    Nakayama, Katsuyuki; Mizushima, Lucas Dias; Murata, Junsuke; Maeda, Takao

    2016-06-01

    A numerical method is presented to extract three-dimensional vortical structure of a spiral vortex (wing tip vortex) in a wind turbine, from two-dimensional velocity data at several azimuthal angles. This numerical method contributes to analyze a vortex observed in experiment where three-dimensional velocity field is difficult to be measured. This analysis needs two-dimensional velocity data in parallel planes at different azimuthal angles of a rotating blade, which facilitates the experiment since the angle of the plane does not change. The vortical structure is specified in terms of the invariant flow topology derived from eigenvalues and eigenvectors of three-dimensional velocity gradient tensor and corresponding physical properties. In addition, this analysis enables to investigate not only vortical flow topology but also important vortical features such as pressure minimum and vortex stretching that are derived from the three-dimensional velocity gradient tensor.

  4. Model simplification and optimization of a passive wind turbine generator

    OpenAIRE

    Sareni, Bruno; Abdelli, Abdenour; Roboam, Xavier; Tran, Duc-Hoan

    2009-01-01

    International audience; In this paper, the design of a "low cost full passive structure" of wind turbine system without active electronic part (power and control) is investigated. The efficiency of such device can be obtained only if the design parameters are mutually adapted through an optimization design approach. For this purpose, sizing and simulating models are developed to characterize the behavior and the efficiency of the wind turbine system. A model simplification approach is present...

  5. Traveling waves in an optimal velocity model of freeway traffic

    Science.gov (United States)

    Berg, Peter; Woods, Andrew

    2001-03-01

    Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].

  6. Modeling and Identification of Harmonic Instability Problems In Wind Farms

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2016-01-01

    to identify harmonic instability problems in wind farms, where many wind turbines, cables, transformers, capacitor banks, shunt reactors, etc, typically are located. This methodology introduces the wind farm as a Multi-Input Multi-Outpur (MIMO) control system, where the linearized models of fast inner control......In power electronics based power systems like wind farms, the interactions between the inner control systems of the power converters and the passive components may lead to high frequency oscillations, which can be called harmonic instability. In this paper, a simple methodology is presented...... loops of the grid-side converters are considered. Therefore, instability problems of the whole wind farm are predicted based on the poles of the introduced MIMO system. In order to confirm the effectiveness of the proposed analytical approach, time-domain simulations are performed in the PSCAD...

  7. Application of a three-dimensional aeroelastic model to study the wind-induced response of bridge stay cables in unsteady wind conditions

    Science.gov (United States)

    Raeesi, Arash; Cheng, Shaohong; Ting, David S.-K.

    2016-08-01

    The possibility of bridge stay cables experiencing violent dry inclined cable galloping raises great concern in the engineering community. Numerous experimental and analytical studies have been conducted to investigate this phenomenon, most of which were in the context of steady wind past a rigid cylindrical body. Real stay cables however, are generally long and flexible. They are exposed to more "broad" range of atmospheric boundary layer type of wind velocity profile which is also unsteady and turbulent by nature. To better understand the physics underlying this type of wind-induced cable vibration and to elucidate various contributing factors, a more realistic analytical model which is capable of addressing the above elements is imperative. In the current paper, a three-dimensional aeroelastic model is proposed to study the aerodynamic response of an inclined and/or yawed slender flexible cylindrical body subjected to unsteady mean wind, with practical application to wind-induced vibrations of bridge stay cables under no precipitation condition. The non-linear aerodynamic forces derived in the present study are combined with the cable free vibration equations available in literature to obtain the equations of motion for the wind-induced vibration of stay cables, which are solved numerically by an explicit finite difference scheme. The proposed three-dimensional aeroelastic model and numerical solution technique are validated by comparing the predicted cable free vibration responses with existing data in the literature. The mechanism which triggers dry inclined cable galloping and the required conditions for its growth are explored. In addition, the impact of different initial conditions and various unsteady mean wind scenarios on this violent cable motion are investigated. Results show that the occurrence of dry inclined cable galloping is associated with an opposite-phase relation between the relative wind speed and the aerodynamic force along the direction of

  8. Testing Disk-Wind Models with Quasar CIV 1549Å Associated Absorption Lines

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2012-01-01

    Narrow associated C IV 1549Å absorption lines (NALs) with a rest equivalent width EW =3 Å detected in z ˜ 2 radio-loud and radio-quiet quasars, (a) exhibit evidence of an origin in radiatively accelerated gas, and (b) may be closely related to broad absorption line (BAL) outflows. These NALs...... and the few BALs detected in this quasar sample obey key predictions of models of radiatively driven disk-winds in which (1) the local disk luminosity launches the wind, (2) the central UV radiation drives it outwards, and (3) the wind acceleration (i.e., terminal velocity) depends on the strength of the X......-ray to UV emission ratio, i.e., aOX. The latter means that quasars with flat aOX (like radio-louds) should not have strong, high-velocity (BAL-like) outflows. These results are of interest not only to studies of disk wind scenarios and quasar structure, but also to studies of quasar feedback: NALs...

  9. Testing Disk-Wind Models with Quasar CIV 1549Å Associated Absorption Lines

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2012-01-01

    Narrow associated C IV 1549Å absorption lines (NALs) with a rest equivalent width EW =3 Å detected in z ˜ 2 radio-loud and radio-quiet quasars, (a) exhibit evidence of an origin in radiatively accelerated gas, and (b) may be closely related to broad absorption line (BAL) outflows. These NALs...... and the few BALs detected in this quasar sample obey key predictions of models of radiatively driven disk-winds in which (1) the local disk luminosity launches the wind, (2) the central UV radiation drives it outwards, and (3) the wind acceleration (i.e., terminal velocity) depends on the strength of the X......-ray to UV emission ratio, i.e., aOX. The latter means that quasars with flat aOX (like radio-louds) should not have strong, high-velocity (BAL-like) outflows. These results are of interest not only to studies of disk wind scenarios and quasar structure, but also to studies of quasar feedback: NALs...

  10. Modelling the asymmetric wind of the luminous blue variable binary MWC 314

    CERN Document Server

    Lobel, A; Martayan, C; Frémat, Y; Dozinel, K Torres; Raskin, G; Van Winckel, H; Prins, S; Pessemier, W; Waelkens, C; Hensberge, H; Dummortier, L; Jorissen, A; Van Eck, S; Lehmann, H

    2013-01-01

    We present a spectroscopic analysis of MWC 314, a luminous blue variable (LBV) candidate with an extended bipolar nebula. The detailed spectroscopic variability is investigated to determine if MWC 314 is a massive binary system with a supersonically accelerating wind or a low-mass B[e] star. We compare the spectrum and spectral energy distribution to other LBVs (such as P Cyg) and find very similar physical wind properties, indicating strong kinship. We combined long-term high-resolution optical spectroscopic monitoring and V-band photometric observations to determine the orbital elements and stellar parameters and to investigate the spectral variability with the orbital phases. We developed an advanced model of the large-scale wind-velocity and wind-density structure with 3-D radiative transfer calculations that fit the orbitally modulated P Cyg profile of He I lam5876, showing outflow velocities above 1000 km/s. We find that MWC 314 is a massive semi-detached binary system of ~1.22 AU, observed at an inclin...

  11. Simulation platform to model, optimize and design wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Iov, F.; Hansen, A.D.; Soerensen, P.; Blaabjerg, F.

    2004-03-01

    This report is a general overview of the results obtained in the project 'Electrical Design and Control. Simulation Platform to Model, Optimize and Design Wind Turbines'. The motivation for this research project is the ever-increasing wind energy penetration into the power network. Therefore, the project has the main goal to create a model database in different simulation tools for a system optimization of the wind turbine systems. Using this model database a simultaneous optimization of the aerodynamic, mechanical, electrical and control systems over the whole range of wind speeds and grid characteristics can be achieved. The report is structured in six chapters. First, the background of this project and the main goals as well as the structure of the simulation platform is given. The main topologies for wind turbines, which have been taken into account during the project, are briefly presented. Then, the considered simulation tools namely: HAWC, DIgSILENT, Saber and Matlab/Simulink have been used in this simulation platform are described. The focus here is on the modelling and simulation time scale aspects. The abilities of these tools are complementary and they can together cover all the modelling aspects of the wind turbines e.g. mechanical loads, power quality, switching, control and grid faults. However, other simulation packages e.g PSCAD/EMTDC can easily be added in the simulation platform. New models and new control algorithms for wind turbine systems have been developed and tested in these tools. All these models are collected in dedicated libraries in Matlab/Simulink as well as in Saber. Some simulation results from the considered tools are presented for MW wind turbines. These simulation results focuses on fixed-speed and variable speed/pitch wind turbines. A good agreement with the real behaviour of these systems is obtained for each simulation tool. These models can easily be extended to model different kinds of wind turbines or large wind

  12. Three-model ensemble wind prediction in southern Italy

    Science.gov (United States)

    Torcasio, Rosa Claudia; Federico, Stefano; Calidonna, Claudia Roberta; Avolio, Elenio; Drofa, Oxana; Landi, Tony Christian; Malguzzi, Piero; Buzzi, Andrea; Bonasoni, Paolo

    2016-03-01

    Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market. Here, a 1-year (1 December 2012 to 30 November 2013) three-model ensemble (TME) experiment for wind prediction is considered. The models employed, run operationally at National Research Council - Institute of Atmospheric Sciences and Climate (CNR-ISAC), are RAMS (Regional Atmospheric Modelling System), BOLAM (BOlogna Limited Area Model), and MOLOCH (MOdello LOCale in H coordinates). The area considered for the study is southern Italy and the measurements used for the forecast verification are those of the GTS (Global Telecommunication System). Comparison with observations is made every 3 h up to 48 h of forecast lead time. Results show that the three-model ensemble outperforms the forecast of each individual model. The RMSE improvement compared to the best model is between 22 and 30 %, depending on the season. It is also shown that the three-model ensemble outperforms the IFS (Integrated Forecasting System) of the ECMWF (European Centre for Medium-Range Weather Forecast) for the surface wind forecasts. Notably, the three-model ensemble forecast performs better than each unbiased model, showing the added value of the ensemble technique. Finally, the sensitivity of the three-model ensemble RMSE to the length of the training period is analysed.

  13. Investigation of solar wind source regions using Ulysses composition data and a PFSS model

    Science.gov (United States)

    Peleikis, Thies; Kruse, Martin; Berger, Lars; Drews, Christian; Wimmer-Schweingruber, Robert F.

    2016-03-01

    In this work we study the source regions for different solar wind types. While it is well known that the fast solar wind originates from inside Coronal Holes, the source regions for the slow solar wind are still under debate. For our study we use Ulysses compositional and plasma measurements and map them back to the solar corona. Here we use a potential field source surface model to model the coronal magnetic field. On the source surface we assign individual open field lines to the ballistic foot points of Ulysses. We do not only consider the photospheric origin of these field lines, but rather attempt to trace them across several height levels through the corona. We calculate the proximity of the field lines to the coronal hole border for every height level. The results are height profiles of these field lines. By applying velocity and charge state ratio filters to the height profiles, we can demonstrate that slow wind is produced close to the coronal hole border. In particular, we find that not only the proximity to the border matters, but also that the bending of the field lines with respect to the coronal hole border plays a crucial role in determining the solar wind type.

  14. Modeling the Circulation of Manila Bay: Assessing the Relative Magnitudes of Wind and Tide Forcing

    Directory of Open Access Journals (Sweden)

    Cesar Villanoy

    1997-12-01

    Full Text Available A two-dimensional circulation model of Manila Bay was used to determine the relative importance of wind and tide forcing. Tidal forcing was prescribed using tidal curves based on two diurnal (O1 and K1 and two semidiurnal (M2 and S2 components on both sides of the bay mouth. A slight amplitude increase towards the head of the bay was obtained, presumably due to shoaling effects. The high correlation between sea level variations at selected coastal tide stations and model results suggests the dependence on tidal forcing at the mouth. Strongest tidal velocities were found at the mouth and decreased towards the head of the bay. The wind-driven component of the flow using mean September 1995 wind forcing shows the presence of two asymmetrical, counter-rotating gyres. Comparison of wind and tidal kinetic energies indicates the dominance of the wind-driven component of the flow only in selected shallow areas adjacent to the coast.

  15. A prediction model for wind speed ratios at pedestrian level with simplified urban canopies

    Science.gov (United States)

    Ikegaya, N.; Ikeda, Y.; Hagishima, A.; Razak, A. A.; Tanimoto, J.

    2017-02-01

    The purpose of this study is to review and improve prediction models for wind speed ratios at pedestrian level with simplified urban canopies. We adopted an extensive database of velocity fields under various conditions for arrays consisting of cubes, slender or flattened rectangles, and rectangles with varying roughness heights. Conclusions are summarized as follows: first, a new geometric parameter is introduced as a function of the plan area index and the aspect ratio so as to express the increase in virtual density that causes wind speed reduction. Second, the estimated wind speed ratios in the range 0.05 database to within an error of ±25%. Lastly, the effects of the spatial distribution of the flow were investigated by classifying the regions near building models into areas in front of, to the side of, or behind the building. The correlation coefficients between the wind speeds averaged over the entire region, and the front or side region values are larger than 0.8. In contrast, in areas where the influence of roughness elements is significant, such as behind a building, the wind speeds are weakly correlated.

  16. Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study

    Science.gov (United States)

    Englberger, Antonia; Dörnbrack, Andreas

    2017-03-01

    The wake characteristics of a wind turbine in a turbulent boundary layer under neutral stratification are investigated systematically by means of large-eddy simulations. A methodology to maintain the turbulence of the background flow for simulations with open horizontal boundaries, without the necessity of the permanent import of turbulence data from a precursor simulation, was implemented in the geophysical flow solver EULAG. These requirements are fulfilled by applying the spectral energy distribution of a neutral boundary layer in the wind-turbine simulations. A detailed analysis of the wake response towards different turbulence levels of the background flow results in a more rapid recovery of the wake for a higher level of turbulence. A modified version of the Rankine-Froude actuator disc model and the blade element momentum method are tested as wind-turbine parametrizations resulting in a strong dependence of the near-wake wind field on the parametrization, whereas the far-wake flow is fairly insensitive to it. The wake characteristics are influenced by the two considered airfoils in the blade element momentum method up to a streamwise distance of 14 D ( D = rotor diameter). In addition, the swirl induced by the rotation has an impact on the velocity field of the wind turbine even in the far wake. Further, a wake response study reveals a considerable effect of different subgrid-scale closure models on the streamwise turbulent intensity.

  17. Demonstration of the Ability of RCAS to Model Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J.; Cotrell, J.

    2003-08-01

    In recent years, the wind industry has sponsored the development, verification, and validation of comprehensive aeroelastic simulators, which are used for wind turbine design, certification, and research. Unfortunately, as wind turbines continue to grow in size and sometimes exhibit unconventional design characteristics, the existing codes do not always support the additional analysis features required for proper design. The development history, functionality, and advanced nature of RCAS (Rotorcraft Comprehensive Analysis System) make this code a sensible option. RCAS is an aeroelastic simulator developed over a 4-year cooperative effort amongst the U.S. Army's Aeroflightdynamics Directorate, Advanced Rotorcraft Technology (ART), Inc., and the helicopter industry. As its name suggests, RCAS was created for the rotorcraft industry but developed as a general purpose code for modeling the aerodynamic and structural response of any system with rotating and nonrotating subsystems (such as wind turbines). To demonstrate that RCAS can analyze wind turbines, models of a conventional, 1.5-MW, 3-bladed, upwind, horizontal axis wind turbine (HAWT) are created in RCAS and wind turbine analysis codes FAST (Fatigue, Aerodynamics, Structures, and Turbulence) and ADAMS (Automatic Dynamic Analysis of Mechanical Systems). Using these models, a side-by-side comparison of structural response predictions is performed under several test scenarios.

  18. Empirical wind retrieval model based on SAR spectrum measurements

    Science.gov (United States)

    Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad

    The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction

  19. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    Science.gov (United States)

    Lee, Gwang-Se; Cheong, Cheolung

    2014-12-01

    Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson's acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson's analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  20. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    Directory of Open Access Journals (Sweden)

    Gwang-Se Lee

    2014-12-01

    Full Text Available Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs, few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  1. Wildfire simulation using LES with synthetic-velocity SGS models

    Science.gov (United States)

    McDonough, J. M.; Tang, Tingting

    2016-11-01

    Wildland fires are becoming more prevalent and intense worldwide as climate change leads to warmer, drier conditions; and large-eddy simulation (LES) is receiving increasing attention for fire spread predictions as computing power continues to improve (see, e.g.,). We report results from wildfire simulations over general terrain employing implicit LES for solution of the incompressible Navier-Stokes (N.-S.) and thermal energy equations with Boussinesq approximation, altered with Darcy, Forchheimer and Brinkman extensions, to represent forested regions as porous media with varying (in both space and time) porosity and permeability. We focus on subgrid-scale (SGS) behaviors computed with a synthetic-velocity model, a discrete dynamical system, based on the poor man's N.-S. equations and investigate the ability of this model to produce fire whirls (tornadoes of fire) at the (unresolved) SGS level. Professor, Mechanical Engineering and Mathematics.

  2. Wind Turbine Control: Robust Model Based Approach

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood

    In the 1970s the oil price crisis encouraged investigation of non-petroleum energy sources of which wind energy was the most promising one. Lately global warming concerns have even intensified the demand for green and sustainable energy resources and opened up several lines of research in this area...

  3. Models for wind turbines - a collection

    DEFF Research Database (Denmark)

    2002-01-01

    This report is a collection of notes which were intended to be short communications. Main target of the work presented is to supply new approaches to stability investigations of wind turbines. The author's opinion is that an efficient, systematicstability analysis can not be performed for large...

  4. Elements of extreme wind modeling for hurricanes

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ejsing Jørgensen, Hans; Kelly, Mark C.;

    The report summarizes characteristics of the winds associated with Tropical Cyclones (Hurricanes, Typhoons). It has been conducted by the authors across several years, from 2012-2015, to identify the processes and aspects that one should consider when building at useful computer support system...

  5. Offshore Wind Turbine Foundation Model Validation with Wind Farm Measurements and Uncertainty Quantification

    DEFF Research Database (Denmark)

    Koukoura, Christina; Natarajan, Anand; Krogh, Thomas

    2013-01-01

    The variation in simulated monopile substructure loads is quantified by validating an aero-hydro-servo-elastic design tool with offshore foundation load measurements. A three bladed 3.6MW pitch controlled variable speed wind turbine for offshore monopile foundations is modeled in the HAWC2...... simulation code. A flexible soil model is included in the analysis. Fatigue loads analysis is performed for both the dynamic simulations and on-site foundation strain measurements. The wind farm wake effects on the monopile fatigue loads is also examined and compared with load measurements. Potential...

  6. Wind climate estimation using WRF model output: method and model sensitivities over the sea

    DEFF Research Database (Denmark)

    Hahmann, Andrea N.; Vincent, Claire Louise; Peña, Alfredo

    2015-01-01

    setup parameters. The results of the year-long sensitivity simulations show that the long-term mean wind speed simulated by the WRF model offshore in the region studied is quite insensitive to the global reanalysis, the number of vertical levels, and the horizontal resolution of the sea surface......High-quality tall mast and wind lidar measurements over the North and Baltic Seas are used to validate the wind climatology produced from winds simulated by the Weather, Research and Forecasting (WRF) model in analysis mode. Biases in annual mean wind speed between model and observations at heights...... around 100m are smaller than 3.2% at offshore sites, except for those that are affected by the wake of a wind farm or the coastline. These biases are smaller than those obtained by using winds directly from the reanalysis. We study the sensitivity of the WRF-simulated wind climatology to various model...

  7. Modelling and transient stability of large wind farms

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Knudsen, Hans; Nielsen, Arne Hejde

    2003-01-01

    The paper is dealing-with modelling and short-term Voltage stability considerations of large wind farms. A physical model of a large offshore wind farm consisting of a large number of windmills is implemented in the dynamic simulation tool PSS/E. Each windmill in the wind farm is represented...... by a physical model of grid-connected windmills. The windmill generators ate conventional induction generators and the wind farm is ac-connected to the power system. Improvements-of short-term voltage stability in case of failure events in the external power system are treated with use of conventional generator...... of dynamic reactive compensation demands. In case of blade angle control applied at failure events, dynamic reactive compensation is not necessary for maintaining the voltage stability....

  8. Wind Turbine Noise and Natural Sounds: Masking, Propagation and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolin, Karl

    2009-05-15

    Wind turbines are an environmentally friendly and sustainable power source. Unfortunately, the noise impact can cause deteriorated living conditions for nearby residents. The audibility of wind turbine sound is influenced by ambient sound. This thesis deals with some aspects of noise from wind turbines. Ambient sounds influence the audibility of wind turbine noise. Models for assessing two commonly occurring natural ambient sounds namely vegetation sound and sound from breaking waves are presented in paper A and B. A sound propagation algorithm has been compared to long range measurements of sound propagation in paper C. Psycho-acoustic tests evaluating the threshold and partial loudness of wind turbine noise when mixed with natural ambient sounds have been performed. These are accounted for in paper D. The main scientific contributions are the following.Paper A: A semi-empiric prediction model for vegetation sound is proposed. This model uses up-to-date simulations of wind profiles and turbulent wind fields to estimate sound from vegetation. The fluctuations due to turbulence are satisfactory estimated by the model. Predictions of vegetation sound also show good agreement to measured spectra. Paper B: A set of measurements of air-borne sound from breaking waves are reported. From these measurements a prediction method of sound from breaking waves is proposed. Third octave spectra from breaking waves are shown to depend on breaker type. Satisfactory agreement between predictions and measurements has been achieved. Paper C: Long range sound propagation over a sea surface was investigated. Measurements of sound transmission were coordinated with local meteorological measurements. A sound propagation algorithm has been compared to the measured sound transmission. Satisfactory agreement between measurements and predictions were achieved when turbulence were taken into consideration in the computations. Paper D: The paper investigates the interaction between wind

  9. The Limit Deposit Velocity model: a new approach

    NARCIS (Netherlands)

    Miedema, S.A.; Ramsdell, R.C.

    2015-01-01

    In slurry transport of settling slurries in Newtonian fluids, it is often stated that one should apply a line speed above a critical velocity, because blow this critical velocity there is the danger of plugging the line. There are many definitions and names for this critical velocity. It is referred

  10. Independent scattering model and velocity dispersion in trabecular bone: comparison with a multiple scattering model.

    Science.gov (United States)

    Haïat, G; Naili, S

    2011-02-01

    Speed of sound measurements are used clinically to assess bone strength. Trabecular bone is an attenuating composite material in which negative values of velocity dispersion have been measured; this behavior remaining poorly explained physically. The aim of this work is to describe the ultrasonic propagation in trabecular bone modeled by infinite cylinders immersed in a saturating matrix and to derive the physical determinants of velocity dispersion. An original homogenization model accounting for the coupling of independent scattering and absorption phenomena allows the computation of phase velocity and of dispersion while varying bone properties. The first step of the model consists in the computation of the attenuation coefficient at all frequencies. The second step of the model corresponds to the application of the general Kramers-Krönig relationship to derive the frequency dependence of phase velocity. The model predicts negative values of velocity dispersion in agreement with experimental results obtained in phantoms mimicking trabecular bone. In trabecular bone, only negative values of velocity dispersion are predicted by the model, which span within the range of values measured experimentally. However, the comparison of the present results with results obtained in Haiat et al. (J Acoust Soc Am 124:4047-4058, 2008) assuming multiple scattering indicates that accounting for multiple scattering phenomena leads to a better prediction of velocity dispersion in trabecular bone.

  11. Measurements on and modelling of offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, S. [ed.

    1996-11-01

    The primary project component was measurement on the Vindeby Offshore Wind Farm. Also included are analyses of fatigue loading on the turbines, sea climate, performance of the wind farm and modelling of flow characteristics inside the wind farm. These individual analyses were made to meet the overall objective, which was to devise an adequate design tool to take into account the increased dynamic loading in wind farms. Measurements have been conducted for several years on the wind farm at Vindeby 2-3 km off the coast of the island of Lolland in the South Baltic Sea. The Vindeby Wind Farm consists of 11 Bonus machines with installed capacities of 450 kW, hub height 38 m and rotor diameter 35 m. The separations of the machines in the rows are 300 m (8.6D), and the distance between the rows is equally 300 m. Two machines, 4W and 5E are instrumented for structural measurements; tower base bending, yaw and tilt and edge and flapwise blade root bending moments are measured and statistics for 1/2 hourly consecutive time periods are stored. The statistics include minimum, maximum, mean, standard deviation and the so-called equivalent load widths. The equivalent load width is popularly speaking the amplitude of a sinusoidal load with frequency equal - in this case - to rotational frequency of the wind turbine rotor that would consume the same fatigue life as the actual load sequence. Modelling of fatigue loading in offshore wind farms and the offshore wind climate was carried out with good results. Also, computational flow modelling was performed. (au) 40 tabs., 130 ills., 114 refs.

  12. Model improvements for evaluating the effect of tower tilting on the aerodynamics of a vertical axis wind turbine

    DEFF Research Database (Denmark)

    Wang, K.; Hansen, Martin Otto Laver; Moan, T.

    2015-01-01

    is quantified with respect to power, rotor torque, thrust force and the normal force and tangential force coefficients on the blades. Additionally, applications of Glauert momentum theory and pure axial momentum theory are compared to evaluate the effect of the velocity component parallel to the rotor shaft...... be investigated to more accurately predict the aerodynamic loads. This paper proposes certain modifications to the double multiple-streamtube (DMS) model to include the component of wind speed parallel to the rotating shaft. The model is validated against experimental data collected on an H-Darrieus wind turbine...... in skewed flow conditions. Three different dynamic stall models are also integrated into the DMS model: Gormont's model with the adaptation of Strickland, Gormont's model with the modification of Berg and the Beddoes-Leishman dynamic stall model. Both the small Sandia 17m wind turbine and the large Deep...

  13. A new barotropic model of the wind-driven circulation

    Institute of Scientific and Technical Information of China (English)

    张庆华; 曲媛媛; 李坚克

    1999-01-01

    Rationalized by the observational circulation pattern in the upper ocean of the North Pacific, meridional friction term is first incorporated in a barotropic theoretical model of the wind-driven circulation. The governing potential vortieity equation thence has β term and wind stress curl term (the two of the Sverdrup balance), zonal friction term and meridional friction term. The analytical solution satisfactorily captures many important features of the wind-driven circulation in the North Pacific: Kuroshio, Oyashio, Kuroshio extension, North Equatorial Current, and especially the eastern boundary currents in the North Pacific, i.e. California current and Alaska current.

  14. Multicriteria GIS modeling of wind and solar farms in Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Jason R. [Metropolitan State College of Denver, Department of Earth and Atmospheric Sciences, CB 22 P.O. Box 173362-22, Denver, CO 80217-3362 (United States)

    2010-10-15

    The majority of electricity and heat in Colorado comes from coal and natural gas; however, renewable energy sources will play an integral role in the state's energy future. Colorado is the 11th windiest state and has more than 250 sunny days per year. The objectives of this research are to: 1) determine which landcover classes are affiliated with high wind and solar potential; and 2) identify areas that are suitable for wind and solar farms using multicriteria GIS modelling techniques. Renewable potential (NREL wind speed measurements at 50 m above the ground and NREL annual insolation data), landcover, population density, federal lands, and distance to roads, transmission lines, and cities were reclassified according to their suitability. Each was assigned weights based on their relative importance to one another. Superb wind classes are located in high alpine areas. Unfortunately, these areas are not suitable for large-scale wind farm development due to their inaccessibility and location within a sensitive ecosystem. Federal lands have low wind potential. According to the GIS model, ideal areas for wind farm development are located in northeastern Colorado. About 41 850 km{sup 2} of the state has model scores that are in the 90-100% range. Although annual solar radiation varies slightly, inter-mountain areas receive the most insolation. As far as federal lands, Indian reservations have the greatest solar input. The GIS model indicates that ideal areas for solar development are located in northwestern Colorado and east of Denver. Only 191 km{sup 2} of the state had model scores that were in the 90-100% range. These results suggest that the variables used in this analysis have more of an effect at eliminating non-suitable areas for large-scale solar farms; a greater area exists for suitable wind farms. However, given the statewide high insolation values with minimal variance, solar projects may be better suited for small-scale residential or commercial

  15. IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models

    Science.gov (United States)

    Moriarty, Patrick; Sanz Rodrigo, Javier; Gancarski, Pawel; Chuchfield, Matthew; Naughton, Jonathan W.; Hansen, Kurt S.; Machefaux, Ewan; Maguire, Eoghan; Castellani, Francesco; Terzi, Ludovico; Breton, Simon-Philippe; Ueda, Yuko

    2014-06-01

    Researchers within the International Energy Agency (IEA) Task 31: Wakebench have created a framework for the evaluation of wind farm flow models operating at the microscale level. The framework consists of a model evaluation protocol integrated with a web-based portal for model benchmarking (www.windbench.net). This paper provides an overview of the building-block validation approach applied to wind farm wake models, including best practices for the benchmarking and data processing procedures for validation datasets from wind farm SCADA and meteorological databases. A hierarchy of test cases has been proposed for wake model evaluation, from similarity theory of the axisymmetric wake and idealized infinite wind farm, to single-wake wind tunnel (UMN-EPFL) and field experiments (Sexbierum), to wind farm arrays in offshore (Horns Rev, Lillgrund) and complex terrain conditions (San Gregorio). A summary of results from the axisymmetric wake, Sexbierum, Horns Rev and Lillgrund benchmarks are used to discuss the state-of-the-art of wake model validation and highlight the most relevant issues for future development.

  16. CFD modelling approaches against single wind turbine wake measurements using RANS

    Science.gov (United States)

    Stergiannis, N.; Lacor, C.; Beeck, J. V.; Donnelly, R.

    2016-09-01

    Numerical simulations of two wind turbine generators including the exact geometry of their blades and hub are compared against a simplified actuator disk model (ADM). The wake expansion of the upstream rotor is investigated and compared with measurements. Computational Fluid Dynamics (CFD) simulations have been performed using the open-source platform OpenFOAM [1]. The multiple reference frame (MRF) approach was used to model the inner rotating reference frames in a stationary computational mesh and outer reference frame for the full wind turbine rotor simulations. The standard k — ε and k — ω turbulence closure schemes have been used to solve the steady state, three dimensional Reynolds Averaged Navier- Stokes (RANS) equations. Results of near and far wake regions are compared with wind tunnel measurements along three horizontal lines downstream. The ADM under-predicted the velocity deficit at the wake for both turbulence models. Full wind turbine rotor simulations showed good agreement against the experimental data at the near wake, amplifying the differences between the simplified models.

  17. Model predictive control for wind power gradients

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Boyd, Stephen; Jørgensen, John Bagterp

    2015-01-01

    ranges. The system dynamics are quite non-linear, and the constraints and objectives are not convex functions of the control inputs, so the resulting optimal control problem is difficult to solve globally. In this paper, we show that by a novel change of variables, which focuses on power flows, we can......We consider the operation of a wind turbine and a connected local battery or other electrical storage device, taking into account varying wind speed, with the goal of maximizing the total energy generated while respecting limits on the time derivative (gradient) of power delivered to the grid. We...... transform the problem to one with linear dynamics and convex constraints. Thus, the problem can be globally solved, using robust, fast solvers tailored for embedded control applications. We implement the optimal control problem in a receding horizon manner and provide extensive closed-loop tests with real...

  18. Impacts of Wake Effect and Time Delay on the Dynamic Analysis of Wind Farms Models

    Science.gov (United States)

    El-Fouly, Tarek H. M.; El-Saadany, Ehab F.; Salama, Magdy M. A.

    2008-01-01

    This article investigates the impacts of proper modeling of the wake effects and wind speed delays, between different wind turbines' rows, on the dynamic performance accuracy of the wind farms models. Three different modeling scenarios were compared to highlight the impacts of wake effects and wind speed time-delay models. In the first scenario,…

  19. Preliminary modelling study of ice accretion on wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Marie Cecilie; Yin, Chungen

    2014-01-01

    One of the main challenges associated with cold-climate wind energy is icing on wind turbines and a series of icing-induced problems such as production loss, blade fatigue and safety issues. Because of the difficulties with on-site measurements, simulations are often used to understand and predict...... icing events. In this paper, a new methodology for prediction of icing-induced production loss is proposed, from which the fundamentals of ice accretion on wind turbines can be better understood and the operational production losses can be more reliably predicted. Computational fluid dynamics (CFD......) modelling of ice accretion on wind turbines is also performed for different ice events, resulting in a reliable framework for CFD-based ice accretion modelling which is one of the key elements in the new methodology....

  20. Optimization model for rotor blades of horizontal axis wind turbines

    Institute of Scientific and Technical Information of China (English)

    LIU Xiong; CHEN Yan; YE Zhiquan

    2007-01-01

    This paper presents an optimization model for rotor blades of horizontal axis wind turbines. The model refers to the wind speed distribution function on the specific wind site, with an objective to satisfy the maximum annual energy output. To speed up the search process and guarantee a global optimal result, the extended compact genetic algorithm (ECGA) is used to carry out the search process.Compared with the simple genetic algorithm, ECGA runs much faster and can get more accurate results with a much smaller population size and fewer function evaluations. Using the developed optimization program, blades of a 1.3 MW stall-regulated wind turbine are designed. Compared with the existing blades, the designed blades have obviously better aerodynamic performance.