WorldWideScience

Sample records for models systems devices

  1. Thermal modeling and design of electronic systems and devices

    International Nuclear Information System (INIS)

    Wirtz, R.A.; Lehmann, G.L.

    1990-01-01

    The thermal control electronic devices, particularly those in complex systems with high heat flux density, continues to be of interest to engineers involved in system cooling design and analysis. This volume contains papers presented at the 1990 ASME Winter Annual Meeting in two K-16 sponsored sessions: Empirical Modeling of Heat Transfer in Complex Electronic Systems and Design and Modeling of Heat Transfer Devices in High-Density Electronics. The first group deals with understanding the heat transfer processes in these complex systems. The second group focuses on the use of analysis techniques and empirically determined data in predicting device and system operating performance

  2. MODELING OF POWER SYSTEMS AND TESTING OF RELAY PROTECTION DEVICES IN REAL AND MODEL TIME

    Directory of Open Access Journals (Sweden)

    I. V. Novash

    2017-01-01

    Full Text Available The methods of modelling of power system modes and of testing of relay protection devices with the aid the simulation complexes in real time and with the help of computer software systems that enables the simulation of virtual time scale are considered. Information input protection signals in the simulation of the virtual model time are being obtained in the computational experiment, whereas the tests of protective devices are carried out with the help of hardware and software test systems with the use of estimated input signals. Study of power system stability when modes of generating and consuming electrical equipment and conditions of devices of relay protection are being changed requires testing with the use of digital simulators in a mode of a closed loop. Herewith feedbacks between a model of the power system operating in a real time and external devices or their models must be determined (modelled. Modelling in real time and the analysis of international experience in the use of digital simulation power systems for real-time simulation (RTDS simulator have been fulfilled. Examples are given of the use of RTDS systems by foreign energy companies to test relay protection systems and control, to test the equipment and devices of automatic control, analysis of cyber security and evaluation of the operation of energy systems under different scenarios of occurrence of emergency situations. Some quantitative data on the distribution of RTDS in different countries and Russia are presented. It is noted that the leading energy universities of Russia use the real-time simulation not only to solve scientific and technical problems, but also to conduct training and laboratory classes on modelling of electric networks and anti-emergency automatic equipment with the students. In order to check serviceability of devices of relay protection without taking into account the reaction of the power system tests can be performed in an open loop mode with the

  3. Compound semiconductor device modelling

    CERN Document Server

    Miles, Robert

    1993-01-01

    Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum­ mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at...

  4. A Model for Service Life Control of Selected Device Systems

    Directory of Open Access Journals (Sweden)

    Zieja Mariusz

    2014-04-01

    Full Text Available This paper presents a way of determining distribution of limit state exceedence time by a diagnostic parameter which determines accuracy of maintaining zero state. For calculations it was assumed that the diagnostic parameter is deviation from nominal value (zero state. Change of deviation value occurs as a result of destructive processes which occur during service. For estimation of deviation increasing rate in probabilistic sense, was used a difference equation from which, after transformation, Fokker-Planck differential equation was obtained [4, 11]. A particular solution of the equation is deviation increasing rate density function which was used for determining exceedance probability of limit state. The so-determined probability was then used to determine density function of limit state exceedance time, by increasing deviation. Having at disposal the density function of limit state exceedance time one determined service life of a system of maladjustment. In the end, a numerical example based on operational data of selected aircraft [weapon] sights was presented. The elaborated method can be also applied to determining residual life of shipboard devices whose technical state is determined on the basis of analysis of values of diagnostic parameters.

  5. Concepts and Models Regarding the Behavior of Antiseismic Devices for the Base Isolation System

    Directory of Open Access Journals (Sweden)

    Polidor BRATU

    2013-07-01

    Full Text Available The paper presents the main antiseismic devices, as component elements of the base isolation systems, in such a manner that the functional and constructive parameters are correlated with the inertial and stiffness characteristics of the dynamic isolated building. Also, each device will be characterized through a rheological model, which conditions the eigenvalues and eigenvectors spectrum, as well as the dynamic response to an exterior excitation of a seismic nature. In this context, antiseismic devices defined and characterized by the European Standard EN 15129 will be presented. Based on the requirements formulated in the norm, the devices can be identified and their laws of evolution established and checked as follows: antiseismic devices with permanent rigid connection; antiseismic devices with rigid connections with respect to the instantaneous displacement and antiseismic devices dependent on the velocity and on the velocity variation in time.

  6. System Testability Analysis for Complex Electronic Devices Based on Multisignal Model

    International Nuclear Information System (INIS)

    Long, B; Tian, S L; Huang, J G

    2006-01-01

    It is necessary to consider the system testability problems for electronic devices during their early design phase because modern electronic devices become smaller and more compositive while their function and structure are more complex. Multisignal model, combining advantage of structure model and dependency model, is used to describe the fault dependency relationship for the complex electronic devices, and the main testability indexes (including optimal test program, fault detection rate, fault isolation rate, etc.) to evaluate testability and corresponding algorithms are given. The system testability analysis process is illustrated for USB-GPIB interface circuit with TEAMS toolbox. The experiment results show that the modelling method is simple, the computation speed is rapid and this method has important significance to improve diagnostic capability for complex electronic devices

  7. Improving hemodynamics of cardiovascular system under a novel intraventricular assist device support via modeling and simulations.

    Science.gov (United States)

    Zhu, Shidong; Luo, Lin; Yang, Bibo; Li, Xinghui; Wang, Xiaohao

    2017-12-01

    Ventricular assist devices (LVADs) are increasingly recognized for supporting blood circulation in heart failure patients who are non-transplant eligible. Because of its volume, the traditional pulsatile device is not easy to implant intracorporeally. Continuous flow LVADs (CF-LVADs) reduce arterial pulsatility and only offer continuous flow, which is different from physiological flow, and may cause long-term complications in the cardiovascular system. The aim of this study was to design a new pulsatile assist device that overcomes this disadvantage, and to test this device in the cardiovascular system. Firstly, the input and output characteristics of the new device were tested in a simple cardiovascular mock system. A detailed mathematical model was established by fitting the experimental data. Secondly, the model was tested in four pathological cases, and was simulated and coupled with a fifth-order cardiovascular system and a new device model using Matlab software. Using assistance of the new device, we demonstrated that the left ventricle pressure, aortic pressure, and aortic flow of heart failure patients improved to the levels of a healthy individual. Especially, in state IV level heart failure patients, the systolic blood pressure increased from 81.34 mmHg to 132.1 mmHg, whereas the diastolic blood pressure increased from 54.28 mmHg to 78.7 mmHg. Cardiac output increased from 3.21 L/min to 5.16 L/min. The newly-developed assist device not only provided a physiological flow that was similar to healthy individuals, but also effectively improved the ability of the pathological ventricular volume. Finally, the effects of the new device on other hemodynamic parameters are discussed.

  8. Design, modeling and utilization of thermoelectrical materials and devices in energy systems

    DEFF Research Database (Denmark)

    Chen, Min

    Thermoelectric generators can convert waste heat that abounds in modern societies into electricity in an environmentally-friendly and reliable manner, and many applications of thermoelectric devices can be envisaged. The research of this PhD dissertation focuses thermoelectric generator modeling...... at a device level as well as its applications in energy systems. The purpose is to introduce the use of thermoelectric generator into energy systems, and to indicate the impact of implementing thermoelectric generator on the design and operation of energy systems. For this purpose, this dissertation produces...... numerical models as versatile simulation tools to identify speci c optimum design criteria for thermoelectric generators used in various associated thermal and electrical systems, so that the generation performance can be improved due to the optimum system design....

  9. Formal Analysis of Security Models for Mobile Devices, Virtualization Platforms, and Domain Name Systems

    Directory of Open Access Journals (Sweden)

    Gustavo Betarte

    2015-12-01

    Full Text Available In this work we investigate the security of security-critical applications, i.e. applications in which a failure may produce consequences that are unacceptable. We consider three areas: mobile devices, virtualization platforms, and domain name systems. The Java Micro Edition platform defines the Mobile Information Device Profile (MIDP to facilitate the development of applications for mobile devices, like cell phones and PDAs. We first study and compare formally several variants of the security model specified by MIDP to access sensitive resources of a mobile device. Hypervisors allow multiple guest operating systems to run on shared hardware, and offer a compelling means of improving the security and the flexibility of software systems. In this work we present a formalization of an idealized model of a hypervisor. We establish (formally that the hypervisor ensures strong isolation properties between the different operating systems, and guarantees that requests from guest operating systems are eventually attended. We show also that virtualized platforms are transparent, i.e. a guest operating system cannot distinguish whether it executes alone or together with other guest operating systems on the platform. The Domain Name System Security Extensions (DNSSEC is a suite of specifications that provides origin authentication and integrity assurance services for DNS data. We finally introduce a minimalistic specification of a DNSSEC model which provides the grounds needed to formally state and verify security properties concerning the chain of trust of the DNSSEC tree. We develop all our formalizations in the Calculus of Inductive Constructions --formal language that combines a higher-order logic and a richly-typed functional programming language-- using the Coq proof assistant.

  10. Mobile Device Encryption Systems

    OpenAIRE

    Teufl , Peter; Zefferer , Thomas; Stromberger , Christof

    2013-01-01

    Part 4: Software Security; International audience; The initially consumer oriented iOS and Android platforms, and the newly available Windows Phone 8 platform start to play an important role within business related areas. Within the business context, the devices are typically deployed via mobile device management (MDM) solutions, or within the bring-your-own-device (BYOD) context. In both scenarios, the security depends on many platform security functions, such as permission systems, manageme...

  11. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  12. EXPERIMENTAL VERIFICATION OF COMPUTER MODEL OF COOLING SYSTEM FOR POWERFUL SEMI- CONDUCTOR DEVICE

    Directory of Open Access Journals (Sweden)

    I. A. Khorunzhii

    2007-01-01

    Full Text Available A cooling system for powerful semi-conductor device (power -1 kW consisting of a pin-type radiator and a body is considered in the paper. Cooling is carried out by forced convection of a coolant. Calculated values of temperatures on the radiator surface and experimentally measured values of temperatures in the same surface points have been compared in the paper. It has been shown that the difference between calculated and experimentally measured temperatures does not exceed 0,1-0,2 °C and it is comparable with experimental error value. The given results confirm correctness of a computer model.

  13. MATHEMATICAL MODELING OF THE UNPUT DEVICES IN AUTOMATIC LOCOMOTIVE SIGNALING SYSTEM

    Directory of Open Access Journals (Sweden)

    O. O. Gololobova

    2014-03-01

    Full Text Available Purpose. To examine the operation of the automatic locomotive signaling system (ALS, to find out the influence of external factors on the devices operation and the quality of the code information derived from track circuit information, as well as to enable modeling of failure occurrences that may appear during operation. Methodology. To achieve this purpose, the main obstacles in ALS operation and the reasons for their occurrence were considered and the system structure principle was researched. The mathematical model for input equipment of the continuous automatic locomotive signaling system (ALS with the number coding was developed. It was designed taking into account all the types of code signals “R”, “Y”, “RY” and equivalent scheme of replacing the filter with a frequency of 50 Hz. Findings. The operation of ALSN with a signal current frequency of 50 Hz was examined. The adequate mathematical model of input equipment of ALS with a frequency of 50 Hz was developed. Originality. The computer model of input equipment of ALS system in the environment of MATLAB+Simulink was developed. The results of the computer modeling on the outlet of the filter during delivering every type of code combination were given in the article. Practical value. With the use of developed mathematical model of ALS system operation we have an opportunity to study, research and determine behavior of the circuit during the normal operation mode and failure occurrences. Also there is a possibility to develop and apply different scheme decisions in modeling environment MATLAB+Simulink for reducing the influence of obstacles on the functional capability of ALS and to model the occurrence of possible difficulties.

  14. A Novel Mean-Value Model of the Cardiovascular System Including a Left Ventricular Assist Device.

    Science.gov (United States)

    Ochsner, Gregor; Amacher, Raffael; Schmid Daners, Marianne

    2017-06-01

    Time-varying elastance models (TVEMs) are often used for simulation studies of the cardiovascular system with a left ventricular assist device (LVAD). Because these models are computationally expensive, they cannot be used for long-term simulation studies. In addition, their equilibria are periodic solutions, which prevent the extraction of a linear time-invariant model that could be used e.g. for the design of a physiological controller. In the current paper, we present a new type of model to overcome these problems: the mean-value model (MVM). The MVM captures the behavior of the cardiovascular system by representative mean values that do not change within the cardiac cycle. For this purpose, each time-varying element is manually converted to its mean-value counterpart. We compare the derived MVM to a similar TVEM in two simulation experiments. In both cases, the MVM is able to fully capture the inter-cycle dynamics of the TVEM. We hope that the new MVM will become a useful tool for researchers working on physiological control algorithms. This paper provides a plant model that enables for the first time the use of tools from classical control theory in the field of physiological LVAD control.

  15. WaveSAX device: design optimization through scale modelling and a PTO strategical control system

    Science.gov (United States)

    Peviani, Maximo; Danelli, Andrea; Dadone, Gianluca; Dalmasso, Alberto

    2017-04-01

    WaveSAX is an innovative OWC (Oscillating Water Column) device for the generation of electricity from wave power, conceived to be installed in coastal marine structures, such as ports and harbours. The device - especially designed for the typical wave climate of Mediterranean Sea - is characterized by two important aspects: flexibility to fit in different structural configurations and replication in a large number of units. A model of the WaveSAX device on a scale 1:5 has been built and tested in the ocean tank at Ecole Centrale de Nantes (France). The study aimed to analyse the behaviour of the device, including two Wells turbine configurations (with three and four blades), with regular and irregular wave conditions in the ocean wave tank. The model and the wave basin were equipped with a series of sensors which allowed to measure the following parameters during the tests: pressure in different points inside the device, the free water surface displacement inside and outside the device, the rotational velocity and the torque at the top of the axis. The tests had the objective to optimize the device design, especially as far as the characteristics of the rotor of the turbine is concern. Although the performance of the WaveSAX has been satisfactory for regular wave conditions, the behaviour of the Wells turbines for irregular wave climate has shown limitations in terms of maintaining the capacity to transform hydraulics energy into mechanical power. To optimize the efficiency of the turbine, an electronical system has been built on the basis of the ocean tank tests. It allows to continuously monitor and command the rotational speed and the torque of the rotor connected with the turbine, and to control in real time the electrical flow of a motor-generator, either absorbing energy as a generator, or providing power to the turbine working as an engine. Two strategies - based on the velocity and the torque control - have been investigate in the electronic test bench

  16. Modeling DNP3 Traffic Characteristics of Field Devices in SCADA Systems of the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan [Lehigh Univ., Bethlehem, PA (United States); Cheng, Liang [Lehigh Univ., Bethlehem, PA (United States); Chuah, Mooi Choo [Lehigh Univ., Bethlehem, PA (United States)

    2017-03-08

    In the generation, transmission, and distribution sectors of the smart grid, intelligence of field devices is realized by programmable logic controllers (PLCs). Many smart-grid subsystems are essentially cyber-physical energy systems (CPES): For instance, the power system process (i.e., the physical part) within a substation is monitored and controlled by a SCADA network with hosts running miscellaneous applications (i.e., the cyber part). To study the interactions between the cyber and physical components of a CPES, several co-simulation platforms have been proposed. However, the network simulators/emulators of these platforms do not include a detailed traffic model that takes into account the impacts of the execution model of PLCs on traffic characteristics. As a result, network traces generated by co-simulation only reveal the impacts of the physical process on the contents of the traffic generated by SCADA hosts, whereas the distinction between PLCs and computing nodes (e.g., a hardened computer running a process visualization application) has been overlooked. To generate realistic network traces using co-simulation for the design and evaluation of applications relying on accurate traffic profiles, it is necessary to establish a traffic model for PLCs. In this work, we propose a parameterized model for PLCs that can be incorporated into existing co-simulation platforms. We focus on the DNP3 subsystem of slave PLCs, which automates the processing of packets from the DNP3 master. To validate our approach, we extract model parameters from both the configuration and network traces of real PLCs. Simulated network traces are generated and compared against those from PLCs. Our evaluation shows that our proposed model captures the essential traffic characteristics of DNP3 slave PLCs, which can be used to extend existing co-simulation platforms and gain further insights into the behaviors of CPES.

  17. Medical chilling device designed for hypothermic hydration graft storage system: Design, thermohydrodynamic modeling, and preliminary testing

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung Hwan [Hongik University, Seoul (Korea, Republic of)

    2015-02-15

    Hypothermic hydration graft storage is essential to reduce the metabolic demand of cells in vitro. The alleviated metabolic demands reduce the emergence rate of anaerobic metabolism generating adenosine triphosphate (ATP) energy that creates free radicals. The cessive free radicals can damage cells and tissues due to their highly oxidative power with molecules. Current cooling systems such as a conventional air cooling system and an ice pack system are inappropriate for chilling cell tissues in vitro because of inconvenience in use and inconsistent temperature sustainability caused by large size and progressive melting, respectively. Here, we develop a medical chilling device (MCD) for hypothermic hydration graft storage based on thermo-hydrodynamic modeling and thermal electric cooling technology. Our analysis of obtained hydrodynamic thermal behavior of the MCD revealed that the hypothermic condition of 4 .deg. C was continuously maintained, which increased the survival rates of cells in vitro test by reduced free radicals. The validated performance of the MCD promises future development of an optimal hypothermic hydration graft storage system designed for clinical use.

  18. Biomedical devices and systems security.

    Science.gov (United States)

    Arney, David; Venkatasubramanian, Krishna K; Sokolsky, Oleg; Lee, Insup

    2011-01-01

    Medical devices have been changing in revolutionary ways in recent years. One is in their form-factor. Increasing miniaturization of medical devices has made them wearable, light-weight, and ubiquitous; they are available for continuous care and not restricted to clinical settings. Further, devices are increasingly becoming connected to external entities through both wired and wireless channels. These two developments have tremendous potential to make healthcare accessible to everyone and reduce costs. However, they also provide increased opportunity for technology savvy criminals to exploit them for fun and profit. Consequently, it is essential to consider medical device security issues. In this paper, we focused on the challenges involved in securing networked medical devices. We provide an overview of a generic networked medical device system model, a comprehensive attack and adversary model, and describe some of the challenges present in building security solutions to manage the attacks. Finally, we provide an overview of two areas of research that we believe will be crucial for making medical device system security solutions more viable in the long run: forensic data logging, and building security assurance cases.

  19. Physics-based mathematical models for quantum devices via experimental system identification

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, S G; Oi, D K L; Devitt, S J [Department of Applied Maths and Theoretical Physics, University of Cambridge, Wilberforce Rd, Cambridge, CB3 0WA (United Kingdom); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 (Japan)], E-mail: sgs29@cam.ac.uk

    2008-03-15

    We consider the task of intrinsic control system identification for quantum devices. The problem of experimental determination of subspace confinement is considered, and simple general strategies for full Hamiltonian identification and decoherence characterization of a controlled two-level system are presented.

  20. Device configuration-management system

    International Nuclear Information System (INIS)

    Nowell, D.M.

    1981-01-01

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information

  1. Atomistic materials modeling of complex systems: Carbynes, carbon nanotube devices and bulk metallic glasses

    Science.gov (United States)

    Luo, Weiqi

    The key to understanding and predicting the behavior of materials is the knowledge of their structures. Many properties of materials samples are not solely determined by their average chemical compositions which one may easily control. Instead, they are profoundly influenced by structural features of different characteristic length scales. Starting in the last century, metallurgical engineering has mostly been microstructure engineering. With the further evolution of materials science, structural features of smaller length scales down to the atomic structure, have become of interest for the purpose of properties engineering and functionalizing materials and are, therefore, subjected to study. As computer modeling is becoming more powerful due to the dramatic increase of computational resources and software over the recent decades, there is an increasing demand for atomistic simulations with the goal of better understanding materials behavior on the atomic scale. Density functional theory (DFT) is a quantum mechanics based approach to calculate electron distribution, total energy and interatomic forces with high accuracy. From these, atomic structures and thermal effects can be predicted. However, DFT is mostly applied to relatively simple systems because it is computationally very demanding. In this thesis, the current limits of DFT applications are explored by studying relatively complex systems, namely, carbynes, carbon nanotube (CNT) devices and bulk metallic glasses (BMGs). Special care is taken to overcome the limitations set by small system sizes and time scales that often prohibit DFT from being applied to realistic systems under realistic external conditions. In the first study, we examine the possible existence of a third solid phase of carbon with linear bonding called carbyne, which has been suggested in the literature and whose formation has been suggested to be detrimental to high-temperature carbon materials. We have suggested potential structures for

  2. A reliability model of the Angra 1 power system by the device of stages optimized by genetic algorithms

    International Nuclear Information System (INIS)

    Crossetti, Patricia Guimaraes

    2006-01-01

    This thesis proposes a probabilistic model to perform the reliability analysis of nuclear power plant systems under aging. This work analyses the Angra 1 power system. Systems subject to aging consist of components whose failure rates are not all constant, thus generating Non-Markovian models. Genetic algorithms were used for optimizing the application of the device of stages. Two approaches were used in the optimization, MCEF and MCEV. The results obtained for the Angra 1 power system show that the probability of a station blackout is negligible. (author)

  3. System Identification of a Heaving Point Absorber: Design of Experiment and Device Modeling

    Directory of Open Access Journals (Sweden)

    Giorgio Bacelli

    2017-04-01

    Full Text Available Empirically based modeling is an essential aspect of design for a wave energy converter. Empirically based models are used in structural, mechanical and control design processes, as well as for performance prediction. Both the design of experiments and methods used in system identification have a strong impact on the quality of the resulting model. This study considers the system identification and model validation process based on data collected from a wave tank test of a model-scale wave energy converter. Experimental design and data processing techniques based on general system identification procedures are discussed and compared with the practices often followed for wave tank testing. The general system identification processes are shown to have a number of advantages, including an increased signal-to-noise ratio, reduced experimental time and higher frequency resolution. The experimental wave tank data is used to produce multiple models using different formulations to represent the dynamics of the wave energy converter. These models are validated and their performance is compared against one another. While most models of wave energy converters use a formulation with surface elevation as an input, this study shows that a model using a hull pressure measurement to incorporate the wave excitation phenomenon has better accuracy.

  4. Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices

    Science.gov (United States)

    Gering, Kevin L

    2013-08-27

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

  5. Systems, methods and computer-readable media to model kinetic performance of rechargeable electrochemical devices

    Science.gov (United States)

    Gering, Kevin L.

    2013-01-01

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.

  6. Coupled Cryogenic Thermal and Electrical Models for Transient Analysis of Superconducting Power Devices with Integrated Cryogenic Systems

    Science.gov (United States)

    Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.

    2017-12-01

    Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.

  7. MODELING QUEUING SYSTEM OF INTERACTION BETWEEN TERMINAL DEVICES AND SERVICES PROVIDERS IN THE BANK

    Directory of Open Access Journals (Sweden)

    Ivan A. Mnatsakanyan

    2014-01-01

    Full Text Available The article focuses on the development of mathematical models and tools to optimize the system of queuing at the bank. The article discusses the mathematical aspects that will achieve redistribution of transaction flow, reduce the time of the request in the queue, increase the bank’s profit and gain competitive advantage.

  8. A semiconductor device thermal model taking into account non-linearity and multhipathing of the cooling system

    International Nuclear Information System (INIS)

    Górecki, K; Zarȩbski, J

    2014-01-01

    The paper is devoted to modelling thermal properties of semiconductor devices at the steady state. The dc thermal model of a semiconductor device taking into account the multipath heat flow is proposed. Some results of calculations and measurements of thermal resistance of a power MOSFET operating at different cooling conditions are presented. The obtained results of calculations fit the results of measurements, which proves the correctness of the proposed model.

  9. Modeling of Optoelectronic Devices

    Science.gov (United States)

    Li, Jian-Zhong; Woo, Alex C. (Technical Monitor)

    2000-01-01

    Ultrafast modulation of semiconductor quantum well (QW) laser is of technological importance for information technology. Improvement by order(s) of magnitude in data transfer rate is possible as terahertz (THz) radiation is available for heating the laser at picosecond time scale. Optical gain modulation in the QW is achieved via temperature modulation of electron-hole plasma (EHP). Applications include free-space THz communication, optical switching, and pulse generation. The EHP in the semiconductor QW is described with a two-band model. Semiconductor Bloch equations with many-body effects are used to derive a hydrodynamical model for the active QW region. Because of ultrafast carrier-carrier scatterings in the order of 50 fs, EHP follows quasiequilibrium Fermi-Dirac distributions and THz field interacts incoherently with it. Carrier-longitudinal optical (LO) phonon scatterings and coherent laser-EHP interaction are treated microscopically in our physical model. A set of hydrodynamical equations for plasma density, temperature, and laser envelop amplitude are derived and Runge-Kutta method is adopted for numerical simulation. A typical 8 nm GaAs/Al(0.3)Ga(0.7) As single QW at 300 K is used. Additional information is contained in the original extended abstract.

  10. Advances in memristors, memristive devices and systems

    CERN Document Server

    Volos, Christos

    2017-01-01

    This book reports on the latest advances in and applications of memristors, memristive devices and systems. It gathers 20 contributed chapters by subject experts, including pioneers in the field such as Leon Chua (UC Berkeley, USA) and R.S. Williams (HP Labs, USA), who are specialized in the various topics addressed in this book, and covers broad areas of memristors and memristive devices such as: memristor emulators, oscillators, chaotic and hyperchaotic memristive systems, control of memristive systems, memristor-based min-max circuits, canonic memristors, memristive-based neuromorphic applications, implementation of memristor-based chaotic oscillators, inverse memristors, linear memristor devices, delayed memristive systems, flux-controlled memristive emulators, etc. Throughout the book, special emphasis is given to papers offering practical solutions and design, modeling, and implementation insights to address current research problems in memristors, memristive devices and systems. As such, it offers a va...

  11. Electromechanical systems and devices

    CERN Document Server

    Lyshevski, Sergey Edward

    2008-01-01

    ""The book begins with a good, well-written review of some of the basic equations used for electromechanical designs . . . There is very good technical depth to each of the sections in this book, giving the reader the ability to design real systems using the equations and examples from this book . . . aimed at electrical engineering students because it contains homework problems at the end of each chapter and is very instructive for power and electromechanical engineers."" - John J. Shea, in IEEE Electrical Insulation Magazine, March-April 2009, Vol. 25, No. 2

  12. Effective modelling of acoustofluidic devices

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld

    , and 3) acoustic streaming patterns in the devices considered in model 2). 1) We derive an effective model for numerical studies of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic channel and influenced......, and of the momentum transfer between the particles and the suspension. 2) We derive a full 3D numerical model for the coupled acoustic fields in mm-sized water-filled glass capillaries, calculating pressure field in the liquid coupled to the displacement field of the glass channel, taking into account mixed standing...... for the acoustic field in glass capillary devices derived in 2), we make an effective model for calculating the acoustic streaming velocity in 3D. To do this, we use recent analytical results that allows calculation of the acoustic streaming field resulting from channel-wall oscillations in any direction...

  13. Control System for Prosthetic Devices

    Science.gov (United States)

    Bozeman, Richard J. (Inventor)

    1996-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that of movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the moveable body part through the full-shrg position of the moveable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the moveable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable prosthesis device and its sub-prosthesis.

  14. Dynamic Modeling of GAIT System Reveals Transcriptome Expansion and Translational Trickle Control Device

    Science.gov (United States)

    Yao, Peng; Potdar, Alka A.; Arif, Abul; Ray, Partho Sarothi; Mukhopadhyay, Rupak; Willard, Belinda; Xu, Yichi; Yan, Jun; Saidel, Gerald M.; Fox, Paul L.

    2012-01-01

    SUMMARY Post-transcriptional regulatory mechanisms superimpose “fine-tuning” control upon “on-off” switches characteristic of gene transcription. We have exploited computational modeling with experimental validation to resolve an anomalous relationship between mRNA expression and protein synthesis. Differential GAIT (Gamma-interferon Activated Inhibitor of Translation) complex activation repressed VEGF-A synthesis to a low, constant rate despite high, variable VEGFA mRNA expression. Dynamic model simulations indicated the presence of an unidentified, inhibitory GAIT element-interacting factor. We discovered a truncated form of glutamyl-prolyl tRNA synthetase (EPRS), the GAIT constituent that binds the 3’-UTR GAIT element in target transcripts. The truncated protein, EPRSN1, prevents binding of functional GAIT complex. EPRSN1 mRNA is generated by a remarkable polyadenylation-directed conversion of a Tyr codon in the EPRS coding sequence to a stop codon (PAY*). By low-level protection of GAIT element-bearing transcripts, EPRSN1 imposes a robust “translational trickle” of target protein expression. Genome-wide analysis shows PAY* generates multiple truncated transcripts thereby contributing to transcriptome expansion. PMID:22386318

  15. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    Science.gov (United States)

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  16. Model of a thermal energy storage device integrated into a solar assisted heat pump system for space heating

    International Nuclear Information System (INIS)

    Badescu, Viorel

    2003-01-01

    Details about modelling a sensible heat thermal energy storage (TES) device integrated into a space heating system are given. The two main operating modes are described. Solar air heaters provide thermal energy for driving a vapor compression heat pump. The TES unit ensures a more efficient usage of the collected solar energy. The TES operation is modeled by using two non-linear coupled partial differential equations for the temperature of the storage medium and heat transfer fluid, respectively. Preliminary results show that smaller TES units provide a higher heat flux to the heat pump vaporiser. This makes the small TES unit discharge more rapidly during time periods with higher thermal loads. The larger TES units provide heat during longer time periods, even if the heat flux they supply is generally smaller. The maximum heat flux is extracted from the TES unit during the morning. Both the heat pump COP and exergy efficiency decrease when the TES unit length increases. Also, the monthly thermal energy stored by the TES unit and the monthly energy necessary to drive the heat pump compressor are increased by increasing the TES unit length

  17. Dynamic Circuit Model for Spintronic Devices

    KAUST Repository

    Alawein, Meshal

    2017-01-09

    In this work we propose a finite-difference scheme based circuit model of a general spintronic device and benchmark it with other models proposed for spintronic switching devices. Our model is based on the four-component spin circuit theory and utilizes the widely used coupled stochastic magnetization dynamics/spin transport framework. In addition to the steady-state analysis, this work offers a transient analysis of carrier transport. By discretizing the temporal and spatial derivatives to generate a linear system of equations, we derive new and simple finite-difference conductance matrices that can, to the first order, capture both static and dynamic behaviors of a spintronic device. We also discuss an extension of the spin modified nodal analysis (SMNA) for time-dependent situations based on the proposed scheme.

  18. Dynamic Circuit Model for Spintronic Devices

    KAUST Repository

    Alawein, Meshal; Fariborzi, Hossein

    2017-01-01

    In this work we propose a finite-difference scheme based circuit model of a general spintronic device and benchmark it with other models proposed for spintronic switching devices. Our model is based on the four-component spin circuit theory and utilizes the widely used coupled stochastic magnetization dynamics/spin transport framework. In addition to the steady-state analysis, this work offers a transient analysis of carrier transport. By discretizing the temporal and spatial derivatives to generate a linear system of equations, we derive new and simple finite-difference conductance matrices that can, to the first order, capture both static and dynamic behaviors of a spintronic device. We also discuss an extension of the spin modified nodal analysis (SMNA) for time-dependent situations based on the proposed scheme.

  19. Renewable Energy Devices and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ionel, Dan M.

    2015-01-01

    In this paper, essential statistics demonstrating the increasing role of renewable energy generation are firstly discussed. A state of the art review section covers fundamentals of wind turbines and PV systems. Included are schematic diagrams illustrating the main components and system topologies...... and the fundamental and increasing role of power electronics as an enabler for renewable energy integration, and for the future power system and smart grid. Recent examples of research and development, including new devices and system installations for utility power plants, as well for as residential and commercial......, fuel cells, and storage with batteries and hydrogen, respectively. Recommended further readings on topics of electric power engineering for renewable energy are included in a final section. This paper also represents an editorial introduction for two special issues of the Electric Power Component...

  20. Modeling liquid crystal polymeric devices

    Science.gov (United States)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  1. New thinking on modeling of thermoelectric devices

    International Nuclear Information System (INIS)

    Zhang, T.

    2016-01-01

    Highlights: • New model was developed for performance calculation of thermoelectric devices. • The model takes into account the temperature-dependent material properties. • It takes into account the spatial-dependent heat flow rate in thermoelement. • It can take into account the heat and electricity losses at the junctions. • It can probe a broad range of parameters for module performance optimization. - Abstract: The performance of a thermoelectric power generation (TEPG) module and a device designed to convert engine exhaust heat directly into electricity was studied under different operating conditions using a proposed thermoelectric (TE) model in this work. The proposed model was obtained from the first law of thermodynamics, Ohm’s law, nonlinear analytical solution of thermoelectric transport equation, and a control volume that represents a typical TEPG module or device such that the temperature-dependent material properties of, the spatial-dependent heat flow rate through the TE element, and the interfacial electrical and thermal losses can be taken into account in the performance calculation. The performance of a typical TEPG module under a broad range of cold-side temperatures and the temperature differences between its hot-side and cold-side was calculated by the proposed model and the results agree very well with the existing model predictions. Comparison between the model predictions and the experimental results confirmed that reducing the interfacial electric resistance can enhance the module performance. The inter-dependence of the key thermal and TEPG system design and optimization parameters was examined for a real TEPG device using the proposed model and an optimal module fill factor of 0.35 was found within the given mass flow rates between 0.0154 and 0.052 kg/s of exhaust stream.

  2. Initiation devices, initiation systems including initiation devices and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Condit, Reston A.; Rasmussen, Nikki; Wallace, Ronald S.

    2018-04-10

    Initiation devices may include at least one substrate, an initiation element positioned on a first side of the at least one substrate, and a spark gap electrically coupled to the initiation element and positioned on a second side of the at least one substrate. Initiation devices may include a plurality of substrates where at least one substrate of the plurality of substrates is electrically connected to at least one adjacent substrate of the plurality of substrates with at least one via extending through the at least one substrate. Initiation systems may include such initiation devices. Methods of igniting energetic materials include passing a current through a spark gap formed on at least one substrate of the initiation device, passing the current through at least one via formed through the at least one substrate, and passing the current through an explosive bridge wire of the initiation device.

  3. Igloo containment system for improvised explosive devices

    International Nuclear Information System (INIS)

    Dyckes, G.W.

    1980-09-01

    A method for containing or partially containing the blast and dispersal of radioactive particulate from improvised explosive devices is described. The containment system is restricted to devices located in fairly open areas at ground level, e.g., devices concealed in trucks, vans, transportainers, or small buildings which are accessible from all sides

  4. Generic device controller for accelerator control systems

    International Nuclear Information System (INIS)

    Mariotti, R.; Buxton, W.; Frankel, R.; Hoff, L.

    1987-01-01

    A new distributed intelligence control system has become operational at the AGS for transport, injection, and acceleration of heavy ions. A brief description of the functionality of the physical devices making up the system is given. An attempt has been made to integrate the devices for accelerator specific interfacing into a standard microprocessor system, namely, the Universal Device Controller (UDC). The main goals for such a generic device controller are to provide: local computing power; flexibility to configure; and real time event handling. The UDC assemblies and software are described

  5. System for remote control of underground device

    International Nuclear Information System (INIS)

    Brumleve, T.D.; Hicks, M.G.; Jones, M.O.

    1975-01-01

    A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics

  6. System for remote control of underground device

    Science.gov (United States)

    Brumleve, T.D.; Hicks, M.G.; Jones, M.O.

    1975-10-21

    A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics.

  7. Semiempirical model for nanoscale device simulations

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Petersen, Dan Erik; Smidstrup, Søren

    2010-01-01

    We present a semiempirical model for calculating electron transport in atomic-scale devices. The model is an extension of the extended Hückel method with a self-consistent Hartree potential that models the effect of an external bias and corresponding charge rearrangements in the device. It is also...... possible to include the effect of external gate potentials and continuum dielectric regions in the device. The model is used to study the electron transport through an organic molecule between gold surfaces, and it is demonstrated that the results are in closer agreement with experiments than ab initio...

  8. Modelling dynamic human-device interaction in healthcare

    OpenAIRE

    Niezen, Gerrit

    2013-01-01

    Errors are typically blamed on human factors, forgetting that the system should have been designed to take them into account and minimise these problems. In our research we are developing tools to design interactive medical devices using human-in-the-loop modelling. Manual control theory is used to describe and analyse the dynamic aspects of human-device interaction.

  9. Personalized biomedical devices & systems for healthcare applications

    Science.gov (United States)

    Chen, I.-Ming; Phee, Soo Jay; Luo, Zhiqiang; Lim, Chee Kian

    2011-03-01

    With the advancement in micro- and nanotechnology, electromechanical components and systems are getting smaller and smaller and gradually can be applied to the human as portable, mobile and even wearable devices. Healthcare industry have started to benefit from this technology trend by providing more and more miniature biomedical devices for personalized medical treatments in order to obtain better and more accurate outcome. This article introduces some recent development in non-intrusive and intrusive biomedical devices resulted from the advancement of niche miniature sensors and actuators, namely, wearable biomedical sensors, wearable haptic devices, and ingestible medical capsules. The development of these devices requires carful integration of knowledge and people from many different disciplines like medicine, electronics, mechanics, and design. Furthermore, designing affordable devices and systems to benefit all mankind is a great challenge ahead. The multi-disciplinary nature of the R&D effort in this area provides a new perspective for the future mechanical engineers.

  10. Modelling degradation of bioresorbable polymeric medical devices

    CERN Document Server

    Pan, J

    2015-01-01

    The use of bioresorbable polymers in stents, fixation devices and tissue engineering is revolutionising medicine. Both industry and academic researchers are interested in using computer modelling to replace some experiments which are costly and time consuming. This book provides readers with a comprehensive review of modelling polymers and polymeric medical devices as an alternative to practical experiments. Chapters in part one provide readers with an overview of the fundamentals of biodegradation. Part two looks at a wide range of degradation theories for bioresorbable polymers and devices.

  11. Reliability of microtechnology interconnects, devices and systems

    CERN Document Server

    Liu, Johan; Sarkka, Jussi; Tegehall, Per-Erik; Andersson, Cristina

    2011-01-01

    This text discusses the reliability of microtechnology products from the bottom up, beginning with devices and extending to systems. It covers many topics, and it addresses specific failure modes in solder and conductive adhesives at great length.

  12. Medical Device Integration Model Based on the Internet of Things

    Science.gov (United States)

    Hao, Aiyu; Wang, Ling

    2015-01-01

    At present, hospitals in our country have basically established the HIS system, which manages registration, treatment, and charge, among many others, of patients. During treatment, patients need to use medical devices repeatedly to acquire all sorts of inspection data. Currently, the output data of the medical devices are often manually input into information system, which is easy to get wrong or easy to cause mismatches between inspection reports and patients. For some small hospitals of which information construction is still relatively weak, the information generated by the devices is still presented in the form of paper reports. When doctors or patients want to have access to the data at a given time again, they can only look at the paper files. Data integration between medical devices has long been a difficult problem for the medical information system, because the data from medical devices are lack of mandatory unified global standards and have outstanding heterogeneity of devices. In order to protect their own interests, manufacturers use special protocols, etc., thus causing medical decices to still be the "lonely island" of hospital information system. Besides, unfocused application of the data will lead to failure to achieve a reasonable distribution of medical resources. With the deepening of IT construction in hospitals, medical information systems will be bound to develop towards mobile applications, intelligent analysis, and interconnection and interworking, on the premise that there is an effective medical device integration (MDI) technology. To this end, this paper presents a MDI model based on the Internet of Things (IoT). Through abstract classification, this model is able to extract the common characteristics of the devices, resolve the heterogeneous differences between them, and employ a unified protocol to integrate data between devices. And by the IoT technology, it realizes interconnection network of devices and conducts associate matching

  13. Micro and smart devices and systems

    CERN Document Server

    Ananthasuresh, G; Pratap, Rudra; Krupanidhi, S

    2014-01-01

    The book presents cutting-edge research in the emerging fields of micro, nano, and smart devices and systems from experts working in these fields over the last decade. Most of the contributors have built devices or systems or developed processes or algorithms in these areas. The book is a unique collection of chapters from different areas with a common theme and is immensely useful to academic researchers and practitioners in the industry who work in this field.

  14. Safety status system for operating room devices.

    Science.gov (United States)

    Guédon, Annetje C P; Wauben, Linda S G L; Overvelde, Marlies; Blok, Joleen H; van der Elst, Maarten; Dankelman, Jenny; van den Dobbelsteen, John J

    2014-01-01

    Since the increase of the number of technological aids in the operating room (OR), equipment-related incidents have come to be a common kind of adverse events. This underlines the importance of adequate equipment management to improve the safety in the OR. A system was developed to monitor the safety status (periodic maintenance and registered malfunctions) of OR devices and to facilitate the notification of malfunctions. The objective was to assess whether the system is suitable for use in an busy OR setting and to analyse its effect on the notification of malfunctions. The system checks automatically the safety status of OR devices through constant communication with the technical facility management system, informs the OR staff real-time and facilitates notification of malfunctions. The system was tested for a pilot period of six months in four ORs of a Dutch teaching hospital and 17 users were interviewed on the usability of the system. The users provided positive feedback on the usability. For 86.6% of total time, the localisation of OR devices was accurate. 62 malfunctions of OR devices were reported, an increase of 12 notifications compared to the previous year. The safety status system was suitable for an OR complex, both from a usability and technical point of view, and an increase of reported malfunctions was observed. The system eases monitoring the safety status of equipment and is a promising tool to improve the safety related to OR devices.

  15. Data-Acquisition Systems for Fusion Devices

    NARCIS (Netherlands)

    van Haren, P. C.; Oomens, N. A.

    1993-01-01

    During the last two decades, computerized data acquisition systems (DASs) have been applied at magnetic confinement fusion devices. Present-day data acquisition is done by means of distributed computer systems and transient recorders in CAMAC systems. The development of DASs has been technology

  16. Power mos devices: structures and modelling procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rossel, P.; Charitat, G.; Tranduc, H.; Morancho, F.; Moncoqut

    1997-05-01

    In this survey, the historical evolution of power MOS transistor structures is presented and currently used devices are described. General considerations on current and voltage capabilities are discussed and configurations of popular structures are given. A synthesis of different modelling approaches proposed last three years is then presented, including analytical solutions, for basic electrical parameters such as threshold voltage, on-resistance, saturation and quasi-saturation effects, temperature influence and voltage handling capability. The numerical solutions of basic semiconductor devices is then briefly reviewed along with some typical problems which can be solved this way. A compact circuit modelling method is finally explained with emphasis on dynamic behavior modelling

  17. Integrated multiscale modeling of molecular computing devices

    International Nuclear Information System (INIS)

    Cummings, Peter T; Leng Yongsheng

    2005-01-01

    Molecular electronics, in which single organic molecules are designed to perform the functions of transistors, diodes, switches and other circuit elements used in current siliconbased microelecronics, is drawing wide interest as a potential replacement technology for conventional silicon-based lithographically etched microelectronic devices. In addition to their nanoscopic scale, the additional advantage of molecular electronics devices compared to silicon-based lithographically etched devices is the promise of being able to produce them cheaply on an industrial scale using wet chemistry methods (i.e., self-assembly from solution). The design of molecular electronics devices, and the processes to make them on an industrial scale, will require a thorough theoretical understanding of the molecular and higher level processes involved. Hence, the development of modeling techniques for molecular electronics devices is a high priority from both a basic science point of view (to understand the experimental studies in this field) and from an applied nanotechnology (manufacturing) point of view. Modeling molecular electronics devices requires computational methods at all length scales - electronic structure methods for calculating electron transport through organic molecules bonded to inorganic surfaces, molecular simulation methods for determining the structure of self-assembled films of organic molecules on inorganic surfaces, mesoscale methods to understand and predict the formation of mesoscale patterns on surfaces (including interconnect architecture), and macroscopic scale methods (including finite element methods) for simulating the behavior of molecular electronic circuit elements in a larger integrated device. Here we describe a large Department of Energy project involving six universities and one national laboratory aimed at developing integrated multiscale methods for modeling molecular electronics devices. The project is funded equally by the Office of Basic

  18. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    Science.gov (United States)

    McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  19. Light-emitting device test systems

    Science.gov (United States)

    McCord, Mark; Brodie, Alan; George, James; Guan, Yu; Nyffenegger, Ralph

    2018-01-23

    Light-emitting devices, such as LEDs, are tested using a photometric unit. The photometric unit, which may be an integrating sphere, can measure flux, color, or other properties of the devices. The photometric unit may have a single port or both an inlet and outlet. Light loss through the port, inlet, or outlet can be reduced or calibrated for. These testing systems can provide increased reliability, improved throughput, and/or improved measurement accuracy.

  20. Obfuscated authentication systems, devices, and methods

    Science.gov (United States)

    Armstrong, Robert C; Hutchinson, Robert L

    2013-10-22

    Embodiments of the present invention are directed toward authentication systems, devices, and methods. Obfuscated executable instructions may encode an authentication procedure and protect an authentication key. The obfuscated executable instructions may require communication with a remote certifying authority for operation. In this manner, security may be controlled by the certifying authority without regard to the security of the electronic device running the obfuscated executable instructions.

  1. Biometric Authentication System on Mobile Personal Devices

    NARCIS (Netherlands)

    Tao, Q.; Veldhuis, Raymond N.J.

    We propose a secure, robust, and low-cost biometric authentication system on the mobile personal device for the personal network. The system consists of the following five key modules: 1) face detection; 2) face registration; 3) illumination normalization; 4) face verification; and 5) information

  2. Floating seal system for rotary devices

    Science.gov (United States)

    Banasiuk, H.A.

    1983-08-23

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10[degree] to about 30[degree] in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device. 5 figs.

  3. Modelling toolkit for simulation of maglev devices

    Science.gov (United States)

    Peña-Roche, J.; Badía-Majós, A.

    2017-01-01

    A stand-alone App1 has been developed, focused on obtaining information about relevant engineering properties of magnetic levitation systems. Our modelling toolkit provides real time simulations of 2D magneto-mechanical quantities for superconductor (SC)/permanent magnet structures. The source code is open and may be customised for a variety of configurations. Ultimately, it relies on the variational statement of the critical state model for the superconducting component and has been verified against experimental data for YBaCuO/NdFeB assemblies. On a quantitative basis, the values of the arising forces, induced superconducting currents, as well as a plot of the magnetic field lines are displayed upon selection of an arbitrary trajectory of the magnet in the vicinity of the SC. The stability issues related to the cooling process, as well as the maximum attainable forces for a given material and geometry are immediately observed. Due to the complexity of the problem, a strategy based on cluster computing, database compression, and real-time post-processing on the device has been implemented.

  4. Electrochemical model of the polyaniline based organic memristive device

    International Nuclear Information System (INIS)

    Demin, V. A.; Erokhin, V. V.; Kashkarov, P. K.; Kovalchuk, M. V.

    2014-01-01

    The electrochemical organic memristive device with polyaniline active layer is a stand-alone device designed and realized for reproduction of some synapse properties in the innovative electronic circuits, including the neuromorphic networks capable for learning. In this work, a new theoretical model of the polyaniline memristive is presented. The developed model of organic memristive functioning was based on the detailed consideration of possible electrochemical processes occuring in the active zone of this device. Results of the calculation have demonstrated not only the qualitative explanation of the characteristics observed in the experiment but also the quantitative similarities of the resultant current values. It is shown how the memristive could behave at zero potential difference relative to the reference electrode. This improved model can establish a basis for the design and prediction of properties of more complicated circuits and systems (including stochastic ones) based on the organic memristive devices

  5. Compression Models for Plasma Focus Devices

    International Nuclear Information System (INIS)

    Gonzalez, Jose; Calusse, Alejandro; Ramos, Ruben; Rodriguez Palomino, Luis

    2003-01-01

    Using a numerical model that calculates the dynamics of Plasma Focus devices, we compared the results of three different compression models of the plasma pinch.One of the main objectives in this area is to develop a simplified model to calculate the neutron production of Plasma Focus devices, to study the influence of the main parameters in this neutron yield.The dynamics is thoroughly studied, and the model predicts fairly well values such as maximum currents and times for pinch collapse.Therefore, we evaluate here different models of pinch compression, to try to predict the neutron production with good agreement with the rest of the variables involved.To fulfill this requirement, we have experimental results of neutron production as a function of deuterium filling pressure in the chamber, and typical values of other main variables in the dynamics of the current sheet

  6. Reduced Order Models for Dynamic Behavior of Elastomer Damping Devices

    Science.gov (United States)

    Morin, B.; Legay, A.; Deü, J.-F.

    2016-09-01

    In the context of passive damping, various mechanical systems from the space industry use elastomer components (shock absorbers, silent blocks, flexible joints...). The material of these devices has frequency, temperature and amplitude dependent characteristics. The associated numerical models, using viscoelastic and hyperelastic constitutive behaviour, may become computationally too expensive during a design process. The aim of this work is to propose efficient reduced viscoelastic models of rubber devices. The first step is to choose an accurate material model that represent the viscoelasticity. The second step is to reduce the rubber device finite element model to a super-element that keeps the frequency dependence. This reduced model is first built by taking into account the fact that the device's interfaces are much more rigid than the rubber core. To make use of this difference, kinematical constraints enforce the rigid body motion of these interfaces reducing the rubber device model to twelve dofs only on the interfaces (three rotations and three translations per face). Then, the superelement is built by using a component mode synthesis method. As an application, the dynamic behavior of a structure supported by four hourglass shaped rubber devices under harmonic loads is analysed to show the efficiency of the proposed approach.

  7. Status and perspectives of nanoscale device modelling

    DEFF Research Database (Denmark)

    Macucci, M.; Lannaccone, G.; Greer, J.

    2001-01-01

    During the meetings of the theory and modelling working group, within the MEL-ARI (Microelectronics Advanced Research Initiative) and NID-FET (Nanotechnology information Devices-Future and Emerging Technologies) initiatives of the European Commission, we have been discussing the current status...

  8. Global numerical modeling of magnetized plasma in a linear device

    DEFF Research Database (Denmark)

    Magnussen, Michael Løiten

    Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion dev...... with simulations performed at different ionization levels, using a simple model for plasma interaction with neutrals. It is found that the steady state and the saturated state of the system bifurcates when the neutral interaction dominates the electron-ion collisions.......Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion...... devices, and are easier to diagnose due to lower temperatures and a better access to the plasma. In order to gain greater insight into this complex turbulent behavior, numerical simulations of plasma in a linear device are performed in this thesis. Here, a three-dimensional drift-fluid model is derived...

  9. Stretchable bioelectronics for medical devices and systems

    CERN Document Server

    Ghaffari, Roozbeh; Kim, Dae-Hyeong

    2016-01-01

    This book highlights recent advances in soft and stretchable biointegrated electronics. A renowned group of authors address key ideas in the materials, processes, mechanics, and devices of soft and stretchable electronics; the wearable electronics systems; and bioinspired and implantable biomedical electronics. Among the topics discussed are liquid metals, stretchable and flexible energy sources, skin-like devices, in vitro neural recording, and more. Special focus is given to recent advances in extremely soft and stretchable bio-inspired electronics with real-world clinical studies that validate the technology. Foundational theoretical and experimental aspects are also covered in relation to the design and application of these biointegrated electronics systems. This is an ideal book for researchers, engineers, and industry professionals involved in developing healthcare devices, medical tools and related instruments relevant to various clinical practices.

  10. Finite Element Modeling of Material Fatigue and Cracking Problems for Steam Power System HP Devices Exposed to Thermal Shocks

    Directory of Open Access Journals (Sweden)

    Pawlicki Jakub

    2016-09-01

    Full Text Available The paper presents a detailed analysis of the material damaging process due to low-cycle fatigue and subsequent crack growth under thermal shocks and high pressure. Finite Element Method (FEM model of a high pressure (HP by-pass valve body and a steam turbine rotor shaft (used in a coal power plant is presented. The main damaging factor in both cases is fatigue due to cycles of rapid temperature changes. The crack initiation, occurring at a relatively low number of load cycles, depends on alternating or alternating-incremental changes in plastic strains. The crack propagation is determined by the classic fracture mechanics, based on finite element models and the most dangerous case of brittle fracture. This example shows the adaptation of the structure to work in the ultimate conditions of high pressure, thermal shocks and cracking.

  11. Device-Free Indoor Activity Recognition System

    Directory of Open Access Journals (Sweden)

    Mohammed Abdulaziz Aide Al-qaness

    2016-11-01

    Full Text Available In this paper, we explore the properties of the Channel State Information (CSI of WiFi signals and present a device-free indoor activity recognition system. Our proposed system uses only one ubiquitous router access point and a laptop as a detection point, while the user is free and neither needs to wear sensors nor carry devices. The proposed system recognizes six daily activities, such as walk, crawl, fall, stand, sit, and lie. We have built the prototype with an effective feature extraction method and a fast classification algorithm. The proposed system has been evaluated in a real and complex environment in both line-of-sight (LOS and none-line-of-sight (NLOS scenarios, and the results validate the performance of the proposed system.

  12. Control system and method for prosthetic devices

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1992-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the movable body part through the full-shrug position of the movable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the movable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective movable prosthesis device and its sub-prosthesis.

  13. 78 FR 58785 - Unique Device Identification System

    Science.gov (United States)

    2013-09-24

    ... the UDI system because they are controlled in the supply chain by the kit rather than by constituent... reduce existing obstacles to the adequate identification of medical devices used in the United States. By... stated, ``We support FDA's objective to substantially reduce existing obstacles to the adequate...

  14. 77 FR 40735 - Unique Device Identification System

    Science.gov (United States)

    2012-07-10

    ... lessons learned from these pilot activities. FDA also solicited input through public meetings; a public... used to identify devices, and no assurance that different companies are using a given term in the same... weaknesses or problems in our implementation of the UDI system and to make appropriate mid-course corrections...

  15. Terrestrial radiation effects in ULSI devices and electronic systems

    CERN Document Server

    Ibe, Eishi H

    2014-01-01

    A practical guide on how mathematical approaches can be used to analyze and control radiation effects in semiconductor devices within various environments Covers faults in ULSI devices to failures in electronic systems caused by a wide variety of radiation fields, including electrons, alpha -rays, muons, gamma rays, neutrons and heavy ions. Readers will learn the environmental radiation features at the ground or avionics altitude. Readers will also learn how to make numerical models from physical insight and what kind of mathematical approaches should be implemented to analyze the radiation effects. A wide variety of mitigation techniques against soft-errors are reviewed and discussed. The author shows how to model sophisticated radiation effects in condensed matter in order to quantify and control them. The book provides the reader with the knowledge on a wide variety of radiation fields and their effects on the electronic devices and systems. It explains how electronic systems including servers and rout...

  16. Wireless Communications Device Wakeup Method and System

    NARCIS (Netherlands)

    Drago, S.; Sebastiano, F.; Leenaerts, D.M.W.; Breems, L.J.

    2008-01-01

    Abstract of WO 2009044368 Disclosed are wakeable wireless communications devices, and methods for waking wireless communications devices, for use in a wireless network of such devices. The devices communicate during respectively-designated timeslots according to a communications protocol. The

  17. Physical models of semiconductor quantum devices

    CERN Document Server

    Fu, Ying

    2013-01-01

    The science and technology relating to nanostructures continues to receive significant attention for its applications to various fields including microelectronics, nanophotonics, and biotechnology. This book describes the basic quantum mechanical principles underlining this fast developing field. From the fundamental principles of quantum mechanics to nanomaterial properties, from device physics to research and development of new systems, this title is aimed at undergraduates, graduates, postgraduates, and researchers.

  18. Expert system for fault diagnostic in electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, G

    1984-03-01

    Troubleshooting of electronic devices and highly complex PCBS (printed circuit boards) is an area where expert systems can be used. In addition to the difficulties intrinsic to this area it is also impossible to integrate the amount of knowledge based on experience in a traditional model. 8 references.

  19. Modeling Users, Context and Devices for Ambient Assisted Living Environments

    Science.gov (United States)

    Castillejo, Eduardo; Almeida, Aitor; López-de-Ipiña, Diego; Chen, Liming

    2014-01-01

    The participation of users within AAL environments is increasing thanks to the capabilities of the current wearable devices. Furthermore, the significance of considering user's preferences, context conditions and device's capabilities help smart environments to personalize services and resources for them. Being aware of different characteristics of the entities participating in these situations is vital for reaching the main goals of the corresponding systems efficiently. To collect different information from these entities, it is necessary to design several formal models which help designers to organize and give some meaning to the gathered data. In this paper, we analyze several literature solutions for modeling users, context and devices considering different approaches in the Ambient Assisted Living domain. Besides, we remark different ongoing standardization works in this area. We also discuss the used techniques, modeled characteristics and the advantages and drawbacks of each approach to finally draw several conclusions about the reviewed works. PMID:24643006

  20. Thermoelectric Energy Conversion: Materials, Devices, and Systems

    International Nuclear Information System (INIS)

    Chen, Gang

    2015-01-01

    This paper will present a discussion of challenges, progresses, and opportunities in thermoelectric energy conversion technology. We will start with an introduction to thermoelectric technology, followed by discussing advances in thermoelectric materials, devices, and systems. Thermoelectric energy conversion exploits the Seebeck effect to convert thermal energy into electricity, or the Peltier effect for heat pumping applications. Thermoelectric devices are scalable, capable of generating power from nano Watts to mega Watts. One key issue is to improve materials thermoelectric figure- of-merit that is linearly proportional to the Seebeck coefficient, the square of the electrical conductivity, and inversely proportional to the thermal conductivity. Improving the figure-of-merit requires good understanding of electron and phonon transport as their properties are often contradictory in trends. Over the past decade, excellent progresses have been made in the understanding of electron and phonon transport in thermoelectric materials, and in improving existing and identify new materials, especially by exploring nanoscale size effects. Taking materials to real world applications, however, faces more challenges in terms of materials stability, device fabrication, thermal management and system design. Progresses and lessons learnt from our effort in fabricating thermoelectric devices will be discussed. We have demonstrated device thermal-to-electrical energy conversion efficiency ∼10% and solar-thermoelectric generator efficiency at 4.6% without optical concentration of sunlight (Figure 1) and ∼8-9% efficiency with optical concentration. Great opportunities exist in advancing materials as well as in using existing materials for energy efficiency improvements and renewable energy utilization, as well as mobile applications. (paper)

  1. Economic Models as Devices of Policy Change

    DEFF Research Database (Denmark)

    Henriksen, Lasse Folke

    2013-01-01

    Can the emergence of a new policy model be a catalyst for a paradigm shift in the overall interpretative framework of how economic policy is conducted within a society? This paper claims that models are understudied as devices used by actors to induce policy change. This paper explores the role...... of models in Danish economic policy, where, from the 1970s onwards, executive public servants in this area have exclusively been specialists in model design. To understand changes in economic policy, this paper starts with a discussion of whether the notion of paradigm shift is adequate. It then examines...... the extent to which the performativity approach can help identify macroscopic changes in policy from seemingly microscopic changes in policy models. The concept of performativity is explored as a means of thinking about the constitution of agency directed at policy change. The paper brings this concept...

  2. Adaptation of the model of tunneling in a metal/CaF{sub 2}/Si(111) system for use in industrial simulators of MIS devices

    Energy Technology Data Exchange (ETDEWEB)

    Vexler, M. I., E-mail: shulekin@mail.ioffe.ru; Illarionov, Yu. Yu.; Tyaginov, S. E. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Grasser, T. [Institute for Microelectronics, TU Vienna (Austria)

    2015-02-15

    An approach toward simplification of the model of the tunneling transport of electrons through a thin layer of crystalline calcium fluoride into a silicon (111) substrate with subsequent implementation in simulators of semiconductor devices is suggested. The validity of the approach is proven by comparing the results of modeling using simplified formulas with the results of precise calculations and experimental data. The approach can be applied to calculations of tunneling currents in structures with any crystalline insulators on Si (111)

  3. Symplectic models for general insertion devices

    International Nuclear Information System (INIS)

    Wu, Y.; Forest, E.; Robin, D. S.; Nishimura, H.; Wolski, A.; Litvinenko, V. N.

    2001-01-01

    A variety of insertion devices (IDs), wigglers and undulators, linearly or elliptically polarized,are widely used as high brightness radiation sources at the modern light source rings. Long and high-field wigglers have also been proposed as the main source of radiation damping at next generation damping rings. As a result, it becomes increasingly important to understand the impact of IDs on the charged particle dynamics in the storage ring. In this paper, we report our recent development of a general explicit symplectic model for IDs with the paraxial ray approximation. High-order explicit symplectic integrators are developed to study real-world insertion devices with a number of wiggler harmonics and arbitrary polarizations

  4. Modeling and Prediction of Krueger Device Noise

    Science.gov (United States)

    Guo, Yueping; Burley, Casey L.; Thomas, Russell H.

    2016-01-01

    This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components.

  5. Modeling reacting gases and aftertreatment devices for internal combustion engines

    Science.gov (United States)

    Depcik, Christopher David

    As more emphasis is placed worldwide on reducing greenhouse gas emissions, automobile manufacturers have to create more efficient engines. Simultaneously, legislative agencies want these engines to produce fewer problematic emissions such as nitrogen oxides and particulate matter. In response, newer combustion methods, like homogeneous charge compression ignition and fuel cells, are being researched alongside the old standard of efficiency, the compression ignition or diesel engine. These newer technologies present a number of benefits but still have significant challenges to overcome. As a result, renewed interest has risen in making diesel engines cleaner. The key to cleaning up the diesel engine is the placement of aftertreatment devices in the exhaust. These devices have shown great potential in reducing emission levels below regulatory levels while still allowing for increased fuel economy versus a gasoline engine. However, these devices are subject to many flow control issues. While experimental evaluation of these devices helps to understand these issues better, it is impossible to solve the problem through experimentation alone because of time and cost constraints. Because of this, accurate models are needed in conjunction with the experimental work. In this dissertation, the author examines the entire exhaust system including reacting gas dynamics and aftertreatment devices, and develops a complete numerical model for it. The author begins by analyzing the current one-dimensional gas-dynamics simulation models used for internal combustion engine simulations. It appears that more accurate and faster numerical method is available, in particular, those developed in aeronautical engineering, and the author successfully implements one for the exhaust system. The author then develops a comprehensive literature search to better understand the aftertreatment devices. A number of these devices require a secondary injection of fuel or reductant in the exhaust stream

  6. Data processing device for computed tomography system

    International Nuclear Information System (INIS)

    Nakayama, N.; Ito, Y.; Iwata, K.; Nishihara, E.; Shibayama, S.

    1984-01-01

    A data processing device applied to a computed tomography system which examines a living body utilizing radiation of X-rays is disclosed. The X-rays which have penetrated the living body are converted into electric signals in a detecting section. The electric signals are acquired and converted from an analog form into a digital form in a data acquisition section, and then supplied to a matrix data-generating section included in the data processing device. By this matrix data-generating section are generated matrix data which correspond to a plurality of projection data. These matrix data are supplied to a partial sum-producing section. The partial sums respectively corresponding to groups of the matrix data are calculated in this partial sum-producing section and then supplied to an accumulation section. In this accumulation section, the final value corresponding to the total sum of the matrix data is calculated, whereby the calculation for image reconstruction is performed

  7. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  8. Data acquisition systems for fusion devices

    International Nuclear Information System (INIS)

    Van Haren, P.C.; Oomens, N.A.

    1993-01-01

    During the last two decades, computerized data acquisition systems (DASs) have been applied at magnetic confinement fusion devices. Present-day data acquisition is done by means of distributed computer systems and transient recorders in CAMAC systems. The development of DASs has been technology driven; the emphasis has been on the development of computer hardware and system software. For future DASs, challenging problems are to be solved: The DASs have to be better optimized with respect to the needs of the users. Existing bottlenecks, such as CAMAC-computer coupling or pulse file merging, need to be eliminated. Continuous or long-pulse operation will require the introduction of event abstraction in DAS design. 59 refs., 4 figs., 1 tab

  9. Ultrafast characterization of optoelectronic devices and systems

    Science.gov (United States)

    Zheng, Xuemei

    The recent fast growth in high-speed electronics and optoelectronics has placed demanding requirements on testing tools. Electro-optic (EO) sampling is a well-established technique for characterization of high-speed electronic and optoelectronic devices and circuits. However, with the progress in device miniaturization, lower power consumption (smaller signal), and higher throughput (higher clock rate), EO sampling also needs to be updated, accordingly, towards better signal-to-noise ratio (SNR) and sensitivity, without speed sacrifice. In this thesis, a novel EO sampler with a single-crystal organic 4-dimethylamino-N-methy-4-stilbazolium tosylate (DAST) as the EO sensor is developed. The system exhibits sub-picosecond temporal resolution, sub-millivolt sensitivity, and a 10-fold improvement on SNR, compared with its LiTaO3 counterpart. The success is attributed to the very high EO coefficient, the very low dielectric constant, and the fast response, coming from the major contribution of the pi-electrons in DAST. With the advance of ultrafast laser technology, low-noise and compact femtosecond fiber lasers have come to maturation and become light-source options for ultrafast metrology systems. We have successfully integrated a femtosecond erbium-doped-fiber laser into an EO sampler, making the system compact and very reliable. The fact that EO sampling is essentially an impulse-response measurement process, requires integration of ultrashort (sub-picosecond) impulse generation network with the device under test. We have implemented a reliable lift-off and transfer technique in order to obtain epitaxial-quality freestanding low-temperature-grown GaAs (LT-GaAs) thin-film photo-switches, which can be integrated with many substrates. The photoresponse of our freestanding LT-GaAs devices was thoroughly characterized with the help of our EO sampler. As fast as 360 fs full-width-at-half-maximum (FWHM) and >1 V electrical pulses were obtained, with quantum efficiency

  10. Respiratory protective device design using control system techniques

    Science.gov (United States)

    Burgess, W. A.; Yankovich, D.

    1972-01-01

    The feasibility of a control system analysis approach to provide a design base for respiratory protective devices is considered. A system design approach requires that all functions and components of the system be mathematically identified in a model of the RPD. The mathematical notations describe the operation of the components as closely as possible. The individual component mathematical descriptions are then combined to describe the complete RPD. Finally, analysis of the mathematical notation by control system theory is used to derive compensating component values that force the system to operate in a stable and predictable manner.

  11. Memristive Systems Analysis of 3-Terminal Devices

    OpenAIRE

    Mouttet, Blaise

    2010-01-01

    Memristive systems were proposed in 1976 by Leon Chua and Sung Mo Kang as a model for 2-terminal passive nonlinear dynamical systems which exhibit memory effects. Such systems were originally shown to be relevant to the modeling of action potentials in neurons in regards to the Hodgkin-Huxley model and, more recently, to the modeling of thin film materials such as TiO2-x proposed for non-volatile resistive memory. However, over the past 50 years a variety of 3-terminal non-passive dynamical d...

  12. Electric drive systems including smoothing capacitor cooling devices and systems

    Energy Technology Data Exchange (ETDEWEB)

    Dede, Ercan Mehmet; Zhou, Feng

    2017-02-28

    An electric drive system includes a smoothing capacitor including at least one terminal, a bus bar electrically coupled to the at least one terminal, a thermoelectric device including a first side and a second side positioned opposite the first side, where the first side is thermally coupled to at least one of the at least one terminal and the bus bar, and a cooling element thermally coupled to the second side of the thermoelectric device, where the cooling element dissipates heat from the thermoelectric device.

  13. Energy efficient hybrid computing systems using spin devices

    Science.gov (United States)

    Sharad, Mrigank

    Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.

  14. Hybrid quantum-classical modeling of quantum dot devices

    Science.gov (United States)

    Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas

    2017-11-01

    The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.

  15. News and Events - Nanodelivery Systems and Devices Branch

    Science.gov (United States)

    The latest news from the Nanodelivery Systems and Devices Branch and the Alliance, as well as upcoming and past events attended by the Nanodelivery Systems and Devices Branchstaff, and relevant upcoming scientific meetings.

  16. Lighting system with a device for reducing system wattage

    NARCIS (Netherlands)

    1996-01-01

    A lighting system having a high pressure gas discharge lamp intended to be operated on a stabilization ballast further includes a low loss device to reduce the current through the ballast and lamp, thereby reducing system wattage for energy savings. For a lead-type ballast, the current reducing

  17. Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices

    Science.gov (United States)

    Berggren, Susan Anne Elizabeth

    This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.

  18. Modelling Technical and Economic Parameters in Selection of Manufacturing Devices

    Directory of Open Access Journals (Sweden)

    Naqib Daneshjo

    2017-11-01

    Full Text Available Sustainable science and technology development is also conditioned by continuous development of means of production which have a key role in structure of each production system. Mechanical nature of the means of production is complemented by controlling and electronic devices in context of intelligent industry. A selection of production machines for a technological process or technological project has so far been practically resolved, often only intuitively. With regard to increasing intelligence, the number of variable parameters that have to be considered when choosing a production device is also increasing. It is necessary to use computing techniques and decision making methods according to heuristic methods and more precise methodological procedures during the selection. The authors present an innovative model for optimization of technical and economic parameters in the selection of manufacturing devices for industry 4.0.

  19. An implantable thermoresponsive drug delivery system based on Peltier device.

    Science.gov (United States)

    Yang, Rongbing; Gorelov, Alexander V; Aldabbagh, Fawaz; Carroll, William M; Rochev, Yury

    2013-04-15

    Locally dropping the temperature in vivo is the main obstacle to the clinical use of a thermoresponsive drug delivery system. In this paper, a Peltier electronic element is incorporated with a thermoresponsive thin film based drug delivery system to form a new drug delivery device which can regulate the release of rhodamine B in a water environment at 37 °C. Various current signals are used to control the temperature of the cold side of the Peltier device and the volume of water on top of the Peltier device affects the change in temperature. The pulsatile on-demand release profile of the model drug is obtained by turning the current signal on and off. The work has shown that the 2600 mAh power source is enough to power this device for 1.3 h. Furthermore, the excessive heat will not cause thermal damage in the body as it will be dissipated by the thermoregulation of the human body. Therefore, this simple novel device can be implanted and should work well in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. 76 FR 8637 - Medical Devices; Medical Device Data Systems

    Science.gov (United States)

    2011-02-15

    ....2100), or a picture archiving and communications system (PACS) classified under Sec. 892.2050 (21 CFR.... Because MDDS systems are so varied and these systems and their communication protocols change frequently... transfer or communication function of MDDS, however, the reference to the ``exchange'' function was removed...

  1. Coordinate Systems Integration for Craniofacial Database from Multimodal Devices

    Directory of Open Access Journals (Sweden)

    Deni Suwardhi

    2005-05-01

    Full Text Available This study presents a data registration method for craniofacial spatial data of different modalities. The data consists of three dimensional (3D vector and raster data models. The data is stored in object relational database. The data capture devices are Laser scanner, CT (Computed Tomography scan and CR (Close Range Photogrammetry. The objective of the registration is to transform the data from various coordinate systems into a single 3-D Cartesian coordinate system. The standard error of the registration obtained from multimodal imaging devices using 3D affine transformation is in the ranged of 1-2 mm. This study is a step forward for storing the craniofacial spatial data in one reference system in database.

  2. Method and system for mesh network embedded devices

    Science.gov (United States)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for managing mesh network devices. A mesh network device with integrated features creates an N-way mesh network with a full mesh network topology or a partial mesh network topology.

  3. [Design and application of implantable medical device information management system].

    Science.gov (United States)

    Cao, Shaoping; Yin, Chunguang; Zhao, Zhenying

    2013-03-01

    Through the establishment of implantable medical device information management system, with the aid of the regional joint sharing of resources, we further enhance the implantable medical device traceability management level, strengthen quality management, control of medical risk.

  4. Modeling Emerging Solar Cell Materials and Devices

    Science.gov (United States)

    Thongprong, Non

    Organic photovoltaics (OPVs) and perovskite solar cells are emerging classes of solar cell that are promising for clean energy alternatives to fossil fuels. Understanding fundamental physics of these materials is crucial for improving their energy conversion efficiencies and promoting them to practical applications. Current density-voltage (JV) curves; which are important indicators of OPV efficiency, have direct connections to many fundamental properties of solar cells. They can be described by the Shockley diode equation, resulting in fitting parameters; series and parallel resistance (Rs and Rp), diode saturation current ( J0) and ideality factor (n). However, the Shockley equation was developed specifically for inorganic p-n junction diodes, so it lacks physical meanings when it is applied to OPVs. Hence, the puRposes of this work are to understand the fundamental physics of OPVs and to develop new diode equations in the same form as the Shockley equation that are based on OPV physics. We develop a numerical drift-diffusion simulation model to study bilayer OPVs, which will be called the drift-diffusion for bilayer interface (DD-BI) model. The model solves Poisson, drift-diffusion and current-continuity equations self-consistently for charge densities and potential profiles of a bilayer device with an organic heterojunction interface described by the GWWF model. We also derive new diode equations that have JV curves consistent with the DD-BI model and thus will be called self-consistent diode (SCD) equations. Using the DD-BI and the SCD model allows us to understand working principles of bilayer OPVs and physical definitions of the Shockley parameters. Due to low carrier mobilities in OPVs, space charge accumulation is common especially near the interface and electrodes. Hence, quasi-Fermi levels (i.e. chemical potentials), which depend on charge densities, are modified around the interface, resulting in a splitting of quasi-Fermi levels that works as a driving

  5. Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices

    CERN Document Server

    Merten, K; Bulirsch, R

    1990-01-01

    Numerical simulation and modelling of electric circuits and semiconductor devices are of primal interest in today's high technology industries. At the Oberwolfach Conference more than forty scientists from around the world, in­ cluding applied mathematicians and electrical engineers from industry and universities, presented new results in this area of growing importance. The contributions to this conference are presented in these proceedings. They include contributions on special topics of current interest in circuit and device simulation, as well as contributions that present an overview of the field. In the semiconductor area special lectures were given on mixed finite element methods and iterative procedures for the solution of large linear systems. For three dimensional models new discretization procedures including software packages were presented. Con­ nections between semiconductor equations and the Boltzmann equation were shown as well as relations to the quantum transport equation. Other issues dis...

  6. Transient electro-thermal modeling of bipolar power semiconductor devices

    CERN Document Server

    Gachovska, Tanya Kirilova; Du, Bin

    2013-01-01

    This book presents physics-based electro-thermal models of bipolar power semiconductor devices including their packages, and describes their implementation in MATLAB and Simulink. It is a continuation of our first book Modeling of Bipolar Power Semiconductor Devices. The device electrical models are developed by subdividing the devices into different regions and the operations in each region, along with the interactions at the interfaces, are analyzed using the basic semiconductor physics equations that govern device behavior. The Fourier series solution is used to solve the ambipolar diffusio

  7. Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics

    Science.gov (United States)

    Kimber, Robin G. E.; Wright, Edward N.; O'Kane, Simon E. J.; Walker, Alison B.; Blakesley, James C.

    2012-12-01

    Measured mobility and current-voltage characteristics of single layer and photovoltaic (PV) devices composed of poly{9,9-dioctylfluorene-co-bis[N,N'-(4-butylphenyl)]bis(N,N'-phenyl-1,4-phenylene)diamine} (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) have been reproduced by a mesoscopic model employing the kinetic Monte Carlo (KMC) approach. Our aim is to show how to avoid the uncertainties common in electrical transport models arising from the need to fit a large number of parameters when little information is available, for example, a single current-voltage curve. Here, simulation parameters are derived from a series of measurements using a self-consistent “building-blocks” approach, starting from data on the simplest systems. We found that site energies show disorder and that correlations in the site energies and a distribution of deep traps must be included in order to reproduce measured charge mobility-field curves at low charge densities in bulk PFB and F8BT. The parameter set from the mobility-field curves reproduces the unipolar current in single layers of PFB and F8BT and allows us to deduce charge injection barriers. Finally, by combining these disorder descriptions and injection barriers with an optical model, the external quantum efficiency and current densities of blend and bilayer organic PV devices can be successfully reproduced across a voltage range encompassing reverse and forward bias, with the recombination rate the only parameter to be fitted, found to be 1×107 s-1. These findings demonstrate an approach that removes some of the arbitrariness present in transport models of organic devices, which validates the KMC as an accurate description of organic optoelectronic systems, and provides information on the microscopic origins of the device behavior.

  8. Dynamical phase separation using a microfluidic device: experiments and modeling

    Science.gov (United States)

    Aymard, Benjamin; Vaes, Urbain; Radhakrishnan, Anand; Pradas, Marc; Gavriilidis, Asterios; Kalliadasis, Serafim; Complex Multiscale Systems Team

    2017-11-01

    We study the dynamical phase separation of a binary fluid by a microfluidic device both from the experimental and from the modeling points of view. The experimental device consists of a main channel (600 μm wide) leading into an array of 276 trapezoidal capillaries of 5 μm width arranged on both sides and separating the lateral channels from the main channel. Due to geometrical effects as well as wetting properties of the substrate, and under well chosen pressure boundary conditions, a multiphase flow introduced into the main channel gets separated at the capillaries. Understanding this dynamics via modeling and numerical simulation is a crucial step in designing future efficient micro-separators. We propose a diffuse-interface model, based on the classical Cahn-Hilliard-Navier-Stokes system, with a new nonlinear mobility and new wetting boundary conditions. We also propose a novel numerical method using a finite-element approach, together with an adaptive mesh refinement strategy. The complex geometry is captured using the same computer-aided design files as the ones adopted in the fabrication of the actual device. Numerical simulations reveal a very good qualitative agreement between model and experiments, demonstrating also a clear separation of phases.

  9. Microfluidic Devices for Drug Delivery Systems and Drug Screening

    Science.gov (United States)

    Kompella, Uday B.; Damiati, Safa A.

    2018-01-01

    Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system. PMID:29462948

  10. Frequency-domain thermal modelling of power semiconductor devices

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Andresen, Markus

    2015-01-01

    to correctly predict the device temperatures, especially when considering the thermal grease and heat sink attached to the power semiconductor devices. In this paper, the frequency-domain approach is applied to the modelling of thermal dynamics for power devices. The limits of the existing RC lump...

  11. Reengineering a PC-based System into the Mobile Device Product Line

    DEFF Research Database (Denmark)

    Zhang, Weishan; Jarzabek, Stanislaw; Loughran, Neil

    2003-01-01

    There is a growing demand to port existing PC-based software systems to mobile device platforms. Systems running on mobile devices share basic characteristics with their PC-based counterparts, but differ from them in details of user interfaces, application models, etc. Systems running on mobile...... devices must also perform well using less memory than PC-based systems. Mobile devices themselves are different from each other in many ways, too. We describe how we made an existing PC-based City Guide System available on a wide range of mobile devices, in a cost-effective way. We applied "reengineering...... into a product line architecture" approach to achieve the goal. Our product line architecture facilitates reuse via generation. We generate specific City Guide Systems for target platforms including PC, Pocket PC and other mobile devices, from generic meta-components that form the City Guide System product line...

  12. A portable air jet actuator device for mechanical system identification

    Science.gov (United States)

    Belden, Jesse; Staats, Wayne L.; Mazumdar, Anirban; Hunter, Ian W.

    2011-03-01

    System identification of limb mechanics can help diagnose ailments and can aid in the optimization of robotic limb control parameters and designs. An interesting fluid phenomenon—the Coandă effect—is utilized in a portable actuator to provide a stochastic binary force disturbance to a limb system. The design of the actuator is approached with the goal of creating a portable device which could be deployed on human or robotic limbs for in situ mechanical system identification. The viability of the device is demonstrated by identifying the parameters of an underdamped elastic beam system with fixed inertia and stiffness and variable damping. The nonparametric compliance impulse response yielded from the system identification is modeled as a second-order system and the resultant parameters are found to be in excellent agreement with those found using more traditional system identification techniques. The current design could be further miniaturized and developed as a portable, wireless, unrestrained mechanical system identification instrument for less intrusive and more widespread use.

  13. Model-based engineering for medical-device software.

    Science.gov (United States)

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi

    2010-01-01

    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.

  14. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  15. Medical Devices; Clinical Chemistry and Clinical Toxicology Devices; Classification of the Organophosphate Test System. Final order.

    Science.gov (United States)

    2017-10-18

    The Food and Drug Administration (FDA or we) is classifying the organophosphate test system into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the organophosphate test system's classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  16. Medical Devices; Hematology and Pathology Devices; Classification of a Cervical Intraepithelial Neoplasia Test System. Final order.

    Science.gov (United States)

    2018-01-03

    The Food and Drug Administration (FDA or we) is classifying the cervical intraepithelial neoplasia (CIN) test system into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the CIN test system's classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  17. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    Science.gov (United States)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  18. Video integrated measurement system. [Diagnostic display devices

    Energy Technology Data Exchange (ETDEWEB)

    Spector, B.; Eilbert, L.; Finando, S.; Fukuda, F.

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  19. Control system of fuel transporting device

    International Nuclear Information System (INIS)

    Yokota, Minoru.

    1981-01-01

    Purpose: To effectively avoid an obstacle in a fuel transporting device by reading the outputs of absolute position detectors mounted on movable trucks, controlling the movements of the trucks, and thereby smoothly and accurately positioning the fuel transporting device at predetermined position and providing a contact detector thereat. Method: The outputs from absolute position detectors which are mounted on a longitudinally movable truck and a laterally movable truck are input to an input/output control circuit. The input/output control circuit serves to compare, the position a fuel transporting device is to be moved to, with the present position on the basis of said input detection signal and a command signal from an operator console, to calculate the amount of movement to be driven, to produce an operation signal therefor to a control panel, and to drive and control the drive motors which are respectively mounted on the trucks for the fuel transfer device. On the other hand, in case that the transfer device comes into contact with an obstacle, the contact detector will immediately operate to produce a stop command through the control panel to the transporting device, and avoid a collision with the obstacle. (Yoshino, Y.)

  20. Electronic firing systems and methods for firing a device

    Science.gov (United States)

    Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID

    2012-04-24

    An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

  1. Internal Models Support Specific Gaits in Orthotic Devices

    DEFF Research Database (Denmark)

    Matthias Braun, Jan; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Patients use orthoses and prosthesis for the lower limbs to support and enable movements, they can not or only with difficulties perform themselves. Because traditional devices support only a limited set of movements, patients are restricted in their mobility. A possible approach to overcome such...... the system's accuracy and robustness on a Knee-Ankle-Foot-Orthosis, introducing behaviour changes depending on the patient's current walking situation. We conclude that the here presented model-based support of different gaits has the power to enhance the patient's mobility....

  2. Matching of traction control systems for all-wheel devices by means of a virtual driver model; Abstimmung von Traktionsregelsystemen fuer Allradfahrzeuge mit Hilfe eines virtuellen Fahrermodells

    Energy Technology Data Exchange (ETDEWEB)

    Vockenhuber, Mario [MAGNA Powertrain AG und Co. KG, Lannach (Austria); Fischer, Rainer [Magna Powertrain, Engineering Center Steyr, St. Valentin (Austria); Butz, Torsten; Ehmann, Martin [TESIS DYNAware GmbH, Muenchen (Germany)

    2011-07-01

    Simulation of the full vehicle dynamics is an efficient means for function development and validation as well as calibration of traction control systems for four-wheel drive vehicles. Simulation models for vehicle, control systems and environment with a suitable level of detail are used to investigate different layout variants of the drivetrain on various tracks. This contribution outlines a driver model which enables considering the influence of different driving styles. Various human driver types are depicted by specific controller parameterization or definition of reference values for longitudinal and lateral vehicle guidance. Thus, apart from the calibration of control system electronics also realistic load spectra for durability computations of mechanical components can be determined via simulation. (orig.)

  3. Modelling of new generation plasma optical devices

    Directory of Open Access Journals (Sweden)

    Litovko Irina V.

    2016-06-01

    Full Text Available The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.

  4. Modeling High Frequency Semiconductor Devices Using Maxwell's Equations

    National Research Council Canada - National Science Library

    El-Ghazaly, Samier

    1999-01-01

    .... In this research, we first replaced the conventional semiconductor device models, which are based on Poisson's Equation as a semiconductor model, with a new one that uses the full-wave electro...

  5. Design of biomedical devices and systems

    CERN Document Server

    Press, CRC

    2014-01-01

    ""This book is a comprehensive overview of all the pieces that need to come together to bring a medical device from an idea to an approved device. It is an impressive compilation of information that is not easily found elsewhere, and included extensive references for every chapter. The writing is clear, yet succinct. The book is well organized with labeled subsections that let the reader find exactly what content he/she may want to explore. Each chapter has exercises that can be used as a self-assessment or to supplement a class.""-Anna Iwaniec Hickerson, Keck Graduate Institute of Appl

  6. Unmanned Aerial System Four-Dimensional Gunnery Training Device Development

    Science.gov (United States)

    2017-10-01

    Aerial System (UAS) Four-Dimensional Gunnery Training Device: Training Effectiveness Assessment (James & Miller, in press). 31 Technical ...Research Product 2018-05 Unmanned Aerial System Four-Dimensional Gunnery Training Device Development David R. James...for the Department of the Army by Northrop Grumman Corporation. Technical review by Thomas Rhett Graves, Ph.D., U.S. Army Research Institute

  7. Safety of mechanical devices. Safety of automation systems

    International Nuclear Information System (INIS)

    Pahl, G.; Schweizer, G.; Kapp, K.

    1985-01-01

    The paper deals with the classic procedures of safety engineering in the sectors mechanical engineering, electrical and energy engineering, construction and transport, medicine technology and process technology. Particular stress is laid on the safety of automation systems, control technology, protection of mechanical devices, reactor safety, mechanical constructions, transport systems, railway signalling devices, road traffic and protection at work in chemical plans. (DG) [de

  8. Integrated neuron circuit for implementing neuromorphic system with synaptic device

    Science.gov (United States)

    Lee, Jeong-Jun; Park, Jungjin; Kwon, Min-Woo; Hwang, Sungmin; Kim, Hyungjin; Park, Byung-Gook

    2018-02-01

    In this paper, we propose and fabricate Integrate & Fire neuron circuit for implementing neuromorphic system. Overall operation of the circuit is verified by measuring discrete devices and the output characteristics of the circuit. Since the neuron circuit shows asymmetric output characteristic that can drive synaptic device with Spike-Timing-Dependent-Plasticity (STDP) characteristic, the autonomous weight update process is also verified by connecting the synaptic device and the neuron circuit. The timing difference of the pre-neuron and the post-neuron induce autonomous weight change of the synaptic device. Unlike 2-terminal devices, which is frequently used to implement neuromorphic system, proposed scheme of the system enables autonomous weight update and simple configuration by using 4-terminal synapse device and appropriate neuron circuit. Weight update process in the multi-layer neuron-synapse connection ensures implementation of the hardware-based artificial intelligence, based on Spiking-Neural- Network (SNN).

  9. Enabling Dynamic Security Management of Networked Systems via Device-Embedded Security (Self-Securing Devices)

    National Research Council Canada - National Science Library

    Ganger, Gregory R

    2007-01-01

    This report summarizes the results of the work on the AFOSR's Critical Infrastructure Protection Program project, entitled Enabling Dynamic Security Management of Networked Systems via Device-Embedded Security...

  10. Device and materials modeling in PEM fuel cells

    CERN Document Server

    Promislow, Keith

    2009-01-01

    Device and Materials Modeling in PEM Fuel Cells is a specialized text that compiles the mathematical details and results of both device and materials modeling in a single volume. Proton exchange membrane (PEM) fuel cells will likely have an impact on our way of life similar to the integrated circuit. The potential applications range from the micron scale to large scale industrial production. Successful integration of PEM fuel cells into the mass market will require new materials and a deeper understanding of the balance required to maintain various operational states. This book contains articles from scientists who contribute to fuel cell models from both the materials and device perspectives. Topics such as catalyst layer performance and operation, reactor dynamics, macroscopic transport, and analytical models are covered under device modeling. Materials modeling include subjects relating to the membrane and the catalyst such as proton conduction, atomistic structural modeling, quantum molecular dynamics, an...

  11. Design of digital systems and devices

    CERN Document Server

    Adamski, Marian; Wegrzyn, Marek

    2011-01-01

    This book includes a variety of design and test methods targeted on different digital devices, as well as different logic elements. The authors of the book represent such countries as Israel, Poland, Russia, and Ukraine. The book is divided by three main parts, including thirteen different Chapters.

  12. An investigation into autobalancing devices with multireservoir system

    International Nuclear Information System (INIS)

    Pashkov, Evgeny N; Martyushev, Nikita V; Ponomarev, Andrey V

    2014-01-01

    Behaviour of a liquid-type automatic balancing device is modeled in this paper. To perform mathematical research the authors use a rotor model which contains a ring functioning as a reservoir coupled to a rigid shaft being rotatable in bearings. An autobalancer with several reservoirs is used for the mathematical investigation. The article provides the layout of forces acting in a multi-reservoir balancing system. Data on the effect of various factors on balancing accuracy as well as the main calculation features of a multi-reservoir autobalancer are presented. The obtained modeling results indicate that autobalancing efficiency is enhanced by increasing the number of reservoirs. An increase in the number of reservoirs causes a decrease in a critical rotor speed

  13. Establishment and application of Competitive Intelligence System in Mobile Devices

    Directory of Open Access Journals (Sweden)

    Anass El Haddadi

    2011-12-01

    Full Text Available The strategy concept has changed dramatically: from a long range planning to strategic planning then to strategic responsiveness. This response implies moving from a concept of change to a concept of continuous evolution. In our context, the competitive intelligence system presented aims to improve decision‐making in all aspects of business life, particularly for offensive and innovative decisions. In the paper we present XPlor EveryWhere, our competitive intelligence system based on a multidimensional analysis model for mobile devices. The objective of this system is to capture the information environment in all dimensions of a decision problem, with the exploitation of information by analyzing the evolution of their interactions

  14. Magnesium-based methods, systems, and devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yufeng; Ban, Chunmei; Ruddy, Daniel; Parilla, Philip A.; Son, Seoung-Bum

    2017-12-12

    An aspect of the present invention is an electrical device, where the device includes a current collector and a porous active layer electrically connected to the current collector to form an electrode. The porous active layer includes MgB.sub.x particles, where x.gtoreq.1, mixed with a conductive additive and a binder additive to form empty interstitial spaces between the MgB.sub.x particles, the conductive additive, and the binder additive. The MgB.sub.x particles include a plurality of boron sheets of boron atoms covalently bound together, with a plurality of magnesium atoms reversibly intercalated between the boron sheets and ionically bound to the boron atoms.

  15. Design of biomedical devices and systems

    CERN Document Server

    King, Paul H

    2008-01-01

    Introduction to Biomedical Engineering Design. Fundamental Design Tools. Design Team Management, Reporting, and Documentation. Product Definition. Product Documentation. Product Development. Hardware Development Methods and Tools. Software Development Methods and Tools. Human Factors. Industrial Design. Biomaterials and Material Testing. Safety Engineering: Devices and Processes. Testing. Analysis of Test Data. Reliability and Liability. Food and Drug Administration. Regulations and Standards. Licensing, Patents, Copyrights, and Trade Secrets. Manufacturing and Quality Control. Miscellaneous Issues. Product Issues. Professional Issues. Design Case Studies. Future Design Issues.

  16. Modeling of detective quantum efficiency considering scatter-reduction devices

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Woong; Kim, Dong Woon; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The reduction of signal-to-noise ratio (SNR) cannot be restored and thus has become a severe issue in digital mammography.1 Therefore, antiscatter grids are typically used in mammography. Scatter-cleanup performance of various scatter-reduction devices, such as air gaps,2 linear (1D) or cellular (2D) grids,3, 4 and slot-scanning devices,5 has been extensively investigated by many research groups. In the present time, a digital mammography system with the slotscanning geometry is also commercially available.6 In this study, we theoretically investigate the effect of scattered photons on the detective quantum efficiency (DQE) performance of digital mammography detectors by using the cascaded-systems analysis (CSA) approach. We show a simple DQE formalism describing digital mammography detector systems equipped with scatter reduction devices by regarding the scattered photons as additive noise sources. The LFD increased with increasing PMMA thickness, and the amounts of LFD indicated the corresponding SF. The estimated SFs were 0.13, 0.21, and 0.29 for PMMA thicknesses of 10, 20, and 30 mm, respectively. While the solid line describing the measured MTF for PMMA with 0 mm was the result of least-squares of regression fit using Eq. (14), the other lines were simply resulted from the multiplication of the fit result (for PMMA with 0 mm) with the (1-SF) estimated from the LFDs in the measured MTFs. Spectral noise-power densities over the entire frequency range were not much changed with increasing scatter. On the other hand, the calculation results showed that the spectral noise-power densities increased with increasing scatter. This discrepancy may be explained by that the model developed in this study does not account for the changes in x-ray interaction parameters for varying spectral shapes due to beam hardening with increasing PMMA thicknesses.

  17. Improving Perovskite Solar Cells: Insights From a Validated Device Model

    NARCIS (Netherlands)

    Sherkar, Tejas S.; Momblona, Cristina; Gil-Escrig, Lidon; Bolink, Henk J.; Koster, L. Jan Anton

    2017-01-01

    To improve the efficiency of existing perovskite solar cells (PSCs), a detailed understanding of the underlying device physics during their operation is essential. Here, a device model has been developed and validated that describes the operation of PSCs and quantitatively explains the role of

  18. Portable devices for delivering imagery and modelling interventions ...

    African Journals Online (AJOL)

    The main objective of this study was to investigate the effectiveness of portable devices (MP4) and a stationary device (DVD and fixed point stationary computer) in delivering imagery and modelling training among female netball players, examining the effect on imagery adherence, performance, self-efficacy, and the relative ...

  19. Photon absorption models in nanostructured semiconductor solar cells and devices

    CERN Document Server

    Luque, Antonio

    2015-01-01

    This book is intended to be used by materials and device physicists and also solar cells researchers. It models the performance characteristics of nanostructured solar cells and resolves the dynamics of transitions between several levels of these devices. An outstanding insight into the physical behaviour of these devices is provided, which complements experimental work. This therefore allows a better understanding of the results, enabling the development of new experiments and optimization of new devices. It is intended to be accessible to researchers, but also to provide engineering tools w

  20. Device, method and system for preparing microcapsules

    DEFF Research Database (Denmark)

    2014-01-01

    into hydrophobic oil flow, which is horizontally maintained in the silicone tubing. The injection of polymer/cell mixture into a stream of mineral oil results in the generation of spherical droplet and in the formation of a water- in-oil emulsion due to the immiscibility of the two phases. Subsequently, the micro......-droplets in oil phase are converted into stable microcapsules by gelation in a separate chamber which is loaded with ionic cross- linking solution at physiological ionic strength and pH. The utility of the microcapsules generated by the device of present invention is virtually unlimited in the fields...

  1. Temperature Dependent Models of Semiconductor Devices for ...

    African Journals Online (AJOL)

    The paper presents an investigation of the temperature dependent model of a diode and bipolar transistor built-in to the NAP-2 program and comparison of these models with experimentally measured characteristics of the BA 100 diode and BC 109 transistor. The detail of the modelling technique has been discussed and ...

  2. Optial sensing systems for microfluidic devices: a review

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Huskens, Jurriaan; Verboom, Willem

    2007-01-01

    This review deals with the application of optical sensing systems for microfluidic devices. In the “off-chip approach” macro-scale optical infrastructure is coupled, while the “on-chip approach” comprises the integration of micro-optical functions into microfluidic devices. The current progress of

  3. Quartz microbalance device for transfer into ultrahigh vacuum systems

    International Nuclear Information System (INIS)

    Stavale, F.; Achete, C. A.; Niehus, H.

    2008-01-01

    An uncomplicated quartz microbalance device has been developed which is transferable into ultrahigh vacuum (UHV) systems. The device is extremely useful for flux calibration of different kinds of material evaporators. Mounted on a commercial specimen holder, the device allows fast quartz microbalance transfer into the UHV and subsequent positioning exactly to the sample location where subsequent thin film deposition experiments shall be carried out. After backtransfer into an UHV sample stage, the manipulator may be loaded in situ with the specimen suited for the experiment. The microbalance device capability is demonstrated for monolayer and submonolayer vanadium depositions with an achieved calibration sensitivity of less the 0.001 ML coverage.

  4. Finite element modeling of micromachined MEMS photon devices

    Science.gov (United States)

    Evans, Boyd M., III; Schonberger, D. W.; Datskos, Panos G.

    1999-09-01

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.

  5. Finite Element Modeling of Micromachined MEMS Photon Devices

    International Nuclear Information System (INIS)

    Datskos, P.G.; Evans, B.M.; Schonberger, D.

    1999-01-01

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness

  6. Main principles of developing exploitation models of semiconductor devices

    Science.gov (United States)

    Gradoboev, A. V.; Simonova, A. V.

    2018-05-01

    The paper represents primary tasks, solutions of which allow to develop the exploitation modes of semiconductor devices taking into account complex and combined influence of ionizing irradiation and operation factors. The structure of the exploitation model of the semiconductor device is presented, which is based on radiation and reliability models. Furthermore, it was shown that the exploitation model should take into account complex and combine influence of various ionizing irradiation types and operation factors. The algorithm of developing the exploitation model of the semiconductor devices is proposed. The possibility of creating the radiation model of Schottky barrier diode, Schottky field-effect transistor and Gunn diode is shown based on the available experimental data. The basic exploitation model of IR-LEDs based upon double AlGaAs heterostructures is represented. The practical application of the exploitation models will allow to output the electronic products with guaranteed operational properties.

  7. System Control Applications of Low-Power Radio Frequency Devices

    Science.gov (United States)

    van Rensburg, Roger

    2017-09-01

    This paper conceptualizes a low-power wireless sensor network design for application employment to reduce theft of portable computer devices used in educational institutions today. The aim of this study is to design and develop a reliable and robust wireless network that can eradicate accessibility of a device’s human interface. An embedded system supplied by an energy harvesting source, installed on the portable computer device, may represent one of multiple slave nodes which request regular updates from a standalone master station. A portable computer device which is operated in an undesignated area or in a field perimeter where master to slave communication is restricted, indicating a possible theft scenario, will initiate a shutdown of its operating system and render the device unusable. Consequently, an algorithm in the device firmware may ensure the necessary steps are executed to track the device, irrespective whether the device is enabled. Design outcomes thus far indicate that a wireless network using low-power embedded hardware, is feasible for anti-theft applications. By incorporating one of the latest Bluetooth low-energy, ANT+, ZigBee or Thread wireless technologies, an anti-theft system may be implemented that has the potential to reduce major portable computer device theft in institutions of digitized learning.

  8. Generic device controller for accelerator control systems

    International Nuclear Information System (INIS)

    Mariotti, R.; Buxton, W.; Frankel, R.; Hoff, L.

    1987-01-01

    Distributed intelligence for accelerator control systems has become possible as a result of advances in microprocessor technology. A system based on distributed intelligence is inherently versatile, readily expandable, and reduces both information flow across the system and software complexity in each unit

  9. Basic simulation models of phase tracking devices using Matlab

    CERN Document Server

    Tranter, William

    2010-01-01

    The Phase-Locked Loop (PLL), and many of the devices used for frequency and phase tracking, carrier and symbol synchronization, demodulation, and frequency synthesis, are fundamental building blocks in today's complex communications systems. It is therefore essential for both students and practicing communications engineers interested in the design and implementation of modern communication systems to understand and have insight into the behavior of these important and ubiquitous devices. Since the PLL behaves as a nonlinear device (at least during acquisition), computer simulation can be used

  10. Signal Processing Device (SPD) for networked radiation monitoring system

    International Nuclear Information System (INIS)

    Dharmapurikar, A.; Bhattacharya, S.; Mukhopadhyay, P.K.; Sawhney, A.; Patil, R.K.

    2010-01-01

    A networked radiation and parameter monitoring system with three tier architecture is being developed. Signal Processing Device (SPD) is a second level sub-system node in the network. SPD is an embedded system which has multiple input channels and output communication interfaces. It acquires and processes data from first level parametric sensor devices, and sends to third level devices in response to request commands received from host. It also performs scheduled diagnostic operations and passes on the information to host. It supports inputs in the form of differential digital signals and analog voltage signals. SPD communicates with higher level devices over RS232/RS422/USB channels. The system has been designed with main requirements of minimal power consumption and harsh environment in radioactive plants. This paper discusses the hardware and software design details of SPD. (author)

  11. Nanomedical device and systems design challenges, possibilities, visions

    CERN Document Server

    2014-01-01

    Nanomedical Device and Systems Design: Challenges, Possibilities, Visions serves as a preliminary guide toward the inspiration of specific investigative pathways that may lead to meaningful discourse and significant advances in nanomedicine/nanotechnology. This volume considers the potential of future innovations that will involve nanomedical devices and systems. It endeavors to explore remarkable possibilities spanning medical diagnostics, therapeutics, and other advancements that may be enabled within this discipline. In particular, this book investigates just how nanomedical diagnostic and

  12. Bring Your Own Device - Providing Reliable Model of Data Access

    Directory of Open Access Journals (Sweden)

    Stąpór Paweł

    2016-10-01

    Full Text Available The article presents a model of Bring Your Own Device (BYOD as a model network, which provides the user reliable access to network resources. BYOD is a model dynamically developing, which can be applied in many areas. Research network has been launched in order to carry out the test, in which as a service of BYOD model Work Folders service was used. This service allows the user to synchronize files between the device and the server. An access to the network is completed through the wireless communication by the 802.11n standard. Obtained results are shown and analyzed in this article.

  13. Novel Devices and Components for THz Systems

    Science.gov (United States)

    2014-04-25

    effectively . The cage rod system is again 30 mm...often used to reflect RF radiation, or create Faraday cages , this concept can be applied to the FPI mirrors. Wire meshes will simulate solid conductors...Single peice construction should resist leaning more effectively . The cage rod system is again 30 mm. 175 wire-mesh-mirrors. Fixing the rocking

  14. Mobility Device Quality Affects Participation Outcomes for People With Disabilities: A Structural Equation Modeling Analysis.

    Science.gov (United States)

    Magasi, Susan; Wong, Alex; Miskovic, Ana; Tulsky, David; Heinemann, Allen W

    2018-01-01

    To test the effect that indicators of mobility device quality have on participation outcomes in community-dwelling adults with spinal cord injury, traumatic brain injury, and stroke by using structural equation modeling. Survey, cross-sectional study, and model testing. Clinical research space at 2 academic medical centers and 1 free-standing rehabilitation hospital. Community-dwelling adults (N=250; mean age, 48±14.3y) with spinal cord injury, traumatic brain injury, and stroke. Not applicable. The Mobility Device Impact Scale, Patient-Reported Outcomes Measurement Information System Social Function (version 2.0) scale, including Ability to Participate in Social Roles and Activities and Satisfaction with Social Roles and Activities, and the 2 Community Participation Indicators' enfranchisement scales. Details about device quality (reparability, reliability, ease of maintenance) and device type were also collected. Respondents used ambulation aids (30%), manual (34%), and power wheelchairs (30%). Indicators of device quality had a moderating effect on participation outcomes, with 3 device quality variables (repairability, ease of maintenance, device reliability) accounting for 20% of the variance in participation. Wheelchair users reported lower participation enfranchisement than did ambulation aid users. Mobility device quality plays an important role in participation outcomes. It is critical that people have access to mobility devices and that these devices be reliable. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Electrical overstress (EOS) devices, circuits and systems

    CERN Document Server

    Voldman, Steven H

    2013-01-01

    Electrical Overstress (EOS) continues to impact semiconductor manufacturing, semiconductor components and systems as technologies scale from micro- to nano-electronics.  This bookteaches the fundamentals of electrical overstress  and how to minimize and mitigate EOS failures. The text provides a clear picture of EOS phenomena, EOS origins, EOS sources, EOS physics, EOS failure mechanisms, and EOS on-chip and system design.  It provides an illuminating insight into the sources of EOS in manufacturing, integration of on-chip, and system level EOS protection networks, followed by examples in spe

  16. EPICS device support module as ATCA system manager for the ITER fast plant system controller

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo F., E-mail: pricardofc@ipfn.ist.utl.pt [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa (Portugal); Santos, Bruno; Gonçalves, Bruno; Carvalho, Bernardo B.; Sousa, Jorge; Rodrigues, A.P.; Batista, António J.N.; Correia, Miguel; Combo, Álvaro [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa (Portugal); Correia, Carlos M.B.A. [Centro de Instrumentação, Departamento de Física, Universidade de Coimbra, Coimbra (Portugal); Varandas, Carlos A.F. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa (Portugal)

    2013-10-15

    messages from the EPICS device support module, validates and takes proper action in order to execute and acknowledge the required command operation and respond with an operation success or error return code. Each ATCA board contains inventory data that can be retrieved by the ShM controller to determine if there is enough power available for the payload process, provide manufacturer data information, retrieve board model and serial numbers and check number of available board sensors their types and fields. The ShM can provide this inventory data information to the EPICS device support module if is required. ShM module communicates with the ATCA boards through the Intelligent Platform Management Interface (IPMI) controller via IPMI communication protocol on redundant IPMI bus. This communication protocol is managed by the embedded Intelligent Management Platform Controller (IPMC) in the ATCA board side and by the embedded Shelf Management Controller (ShMC) in the ShM side. Queried inventory data information becomes available in the EPICS device support module upon ShM command response. EPICS device support module can be a valuable and good approach for ATCA ESM aiming the integration in the ITER Control and Data Acquisition (CODAC) core system according the ITER specification.

  17. Prototyping of concurrent control systems implemented in FPGA devices

    CERN Document Server

    Wiśniewski, Remigiusz

    2017-01-01

    This book focuses on prototyping aspects of concurrent control systems and their further implementation and partial reconfiguration in programmable devices. Further, it lays out a full prototyping flow for concurrent control systems. Based on a given primary specification, a system is described with an interpreted Petri net, which naturally reflects the concurrent and sequential relationships of the design. The book shows that, apart from the traditional option of static configuration of the entire system, the latest programmable devices (especially FPGAs) offer far more sophistication. Partial reconfiguration allows selected parts of the system to be replaced without having to reprogram the entire structure of the device. Approaches to dynamic and static partial reconfiguration of concurrent control systems are presented and described in detail.< The theoretical work is illustrated by examples drawn from various applications, with a milling machine and a traffic-light controller highlighted as representat...

  18. A lithium deposition system for tokamak devices*

    Science.gov (United States)

    Graziul, Christopher; Majeski, Richard; Kaita, Robert; Hoffman, Daniel; Timberlake, John; Card, David

    2002-11-01

    The production of a lithium deposition system using commercially available components is discussed. This system is intended to provide a fresh lithium wall coating between discharges in a tokamak. For this purpose, a film 100-200 Å thick is sufficient to ensure that the plasma interacts solely with the lithium. A test system consisting of a lithium evaporator and a deposition monitor has been designed and constructed to investigate deposition rates and coverage. A Thermionics 3kW e-gun is used to rapidly evaporate small amounts of solid lithium. An Inficon XTM/2 quartz deposition monitor then measures deposition rate at varying distances, positions and angles relative to the e-gun crucible. Initial results from the test system will be presented. *Supported by US DOE contract #DE-AC02-76CH-03073

  19. Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems

    Science.gov (United States)

    Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)

    2004-01-01

    An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.

  20. Advanced devices and systems for radiation measurements

    International Nuclear Information System (INIS)

    Knoll, G.F.; Wehe, D.K.; He, Z.; Barrett, C.; Miyamoto, J.

    1996-06-01

    The authors' most recent work continues their long-standing efforts to develop semiconductor detectors based on the collection of only a single type of charge carrier. Their best results are an extension of the principle of coplanar electrodes first described by Paul Luke of Lawrence Berkeley Laboratory 18 months ago. This technique, described in past progress reports, has the effect of deriving an output signal from detectors that depends only on the motion of carriers close to one surface. Since nearly all of these carriers are of one type (electrons) that are attracted to that electrode, the net effect is to nearly eliminate the influence of hole motion on the properties of the output signal. The result is that the much better mobility of electrons in compound semiconductors materials such as CZT can now be exploited without the concurrent penalty of poor hole collection. They have also developed new techniques in conjunction with the coplanar electrode principle that extends the technique into a new dimension. By proper processing of signals from the opposite electrode (the cathode) from the coplanar surface, they are able to derive a signal that is a good indication of the depth of interaction at which the charge carriers were initially formed. They have been the first group to demonstrate this technique, and examples of separate pulse height spectra recorded at a variety of different depths of interaction are shown in several of the figures that follow. Obtaining depth information is one step in the direction of obtaining volumetric point-of-interaction information from the detector. If one could known the coordinates of each specific interaction, then corrections could be applied to account for the inhomogeneities that currently plague many room-temperature devices

  1. Design, modelling and simulation aspects of an ankle rehabilitation device

    Science.gov (United States)

    Racu, C. M.; Doroftei, I.

    2016-08-01

    Ankle injuries are amongst the most common injuries of the lower limb. Besides initial treatment, rehabilitation of the patients plays a crucial role for future activities and proper functionality of the foot. Traditionally, ankle injuries are rehabilitated via physiotherapy, using simple equipment like elastic bands and rollers, requiring intensive efforts of therapists and patients. Thus, the need of robotic devices emerges. In this paper, the design concept and some modelling and simulation aspects of a novel ankle rehabilitation device are presented.

  2. Electronic system of TBR tokamak device

    International Nuclear Information System (INIS)

    Silva, R.P. da.

    1980-01-01

    The electronics developed as a part of the TBR project, which involves the construction of a small tokamak at the Physics Institute of the University of Sao Paulo, is described. On the basis of tokamak parameter values, the electronics for the toroidal field, ohmic/heating and vertical field systems is presented, including capacitors bank, switches, triggering circuits and power supplies. A controlled power oscilator used in discharge cleaning and pre-ionization is also described. The performance of the system as a function of the desired plasma parameters is discussed. (Author) [pt

  3. Database for fusion devices and associated fuel systems

    International Nuclear Information System (INIS)

    Woolgar, P.W.

    1983-03-01

    A computerized database storage and retrieval system has been set up for fusion devices and the associated fusion fuel systems which should be a useful tool for the CFFTP program and other users. The features of the Wang 'Alliance' system are discussed for this application, as well as some of the limitations of the system. Recommendations are made on the operation, upkeep and further development that should take place to implement and maintain the system

  4. Devices for Evaluating Imaging Systems. Chapter 15

    Energy Technology Data Exchange (ETDEWEB)

    Demirkaya, O.; Al-Mazrou, R. [Department of Biomedical Physics, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia)

    2014-12-15

    A quality management system (QMS) has three main components: (a) Quality assurance (QA); (b) Quality improvement; (c) Quality control (QC). The aim of a QMS is to ensure that the deliverables meet the requirements set forth by the users. The deliverables can be, in general, all the services provided in a nuclear medicine department, and the diagnostic imaging services in particular. In this section, the primary focus is the diagnostic imaging equipment and images produced by them.

  5. Semiconductor terahertz technology devices and systems at room temperature operation

    CERN Document Server

    Carpintero, G; Hartnagel, H; Preu, S; Raisanen, A

    2015-01-01

    Key advances in Semiconductor Terahertz (THz) Technology now promises important new applications enabling scientists and engineers to overcome the challenges of accessing the so-called "terahertz gap".  This pioneering reference explains the fundamental methods and surveys innovative techniques in the generation, detection and processing of THz waves with solid-state devices, as well as illustrating their potential applications in security and telecommunications, among other fields. With contributions from leading experts, Semiconductor Terahertz Technology: Devices and Systems at Room Tempe

  6. A COMPARISON OF THE TENSILE STRENGTH OF PLASTIC PARTS PRODUCED BY A FUSED DEPOSITION MODELING DEVICE

    Directory of Open Access Journals (Sweden)

    Juraj Beniak

    2015-12-01

    Full Text Available Rapid Prototyping systems are nowadays increasingly used in many areas of industry, not only for producing design models but also for producing parts for final use. We need to know the properties of these parts. When we talk about the Fused Deposition Modeling (FDM technique and FDM devices, there are many possible settings for devices and models which could influence the properties of a final part. In addition, devices based on the same principle may use different operational software for calculating the tool path, and this may have a major impact. The aim of this paper is to show the tensile strength value for parts produced from different materials on the Fused Deposition Modeling device when the horizontal orientation of the specimens is changed.

  7. Device for detecting failure of reactor system

    International Nuclear Information System (INIS)

    Miyazawa, Tatsuo.

    1979-01-01

    Purpose: To make it possible to rapidly detect any failure in a reactor system prior to the leakage of coolants. Constitution: The dose of beta line is computed from the difference between the power of a detector for reacting with both beta and gamma lines and a detector for reacting only with gamma line to detect the failure of a reactor system, thereby to raise the detection speed and improve the detection accuracy. More specifically, a radiation detector A detects gamma and beta lines by means of piezoelectric elements. A radiation detector B caused the opening of the detector A to be covered with a metal, and detects only gamma line. The detected values of detectors A and B are amplified by an amplifier and applied to a rate meter and a counter, the values being converted into DC and introduced into a comparison circuit, where the outputs of the rate meter are compared with each other. When the difference is more than the predetermined range, it is supplied as output to an alarm circuit where an alarm signal is produced. (Nakamura, S.)

  8. Automatic coordination of protection devices in distribution system

    International Nuclear Information System (INIS)

    Comassetto, L.; Bernardon, D.P.; Canha, L.N.; Abaide, A.R.

    2008-01-01

    Among the several components of distribution systems, protection devices present a fundamental importance, since they aim at keeping the physical integrity not only of the system equipment, but also of the electricians' team and the population in general. The existing tools today in the market that carry out the making of protection studies basically draw curves, and need direct user's interference for the protection devices adjustment and coordination analyses of selectivity, being susceptible to the user's mistakes and not always considering the best technical and economical application. In Brazil, the correct application of the protection devices demand a high amount of time, being extremely laborious due to the great number of devices (around 200 devices), besides the very dynamic behaviour of distribution networks and the need for constant system expansion. This article presents a computational tool developed with the objective of automatically determining the adjustments of all protection devices in the distribution networks to obtain the best technical application, optimizing its performance and making easier protection studies. (author)

  9. Quantum communications system with integrated photonic devices

    Science.gov (United States)

    Nordholt, Jane E.; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John

    2017-11-14

    Security is increased in quantum communication (QC) systems lacking a true single-photon laser source by encoding a transmitted optical signal with two or more decoy-states. A variable attenuator or amplitude modulator randomly imposes average photon values onto the optical signal based on data input and the predetermined decoy-states. By measuring and comparing photon distributions for a received QC signal, a single-photon transmittance is estimated. Fiber birefringence is compensated by applying polarization modulation. A transmitter can be configured to transmit in conjugate polarization bases whose states of polarization (SOPs) can be represented as equidistant points on a great circle on the Poincare sphere so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors. Transmitters are implemented in quantum communication cards and can be assembled from micro-optical components, or transmitter components can be fabricated as part of a monolithic or hybrid chip-scale circuit.

  10. Microcomputer based test system for charge coupled devices

    International Nuclear Information System (INIS)

    Sidman, S.

    1981-02-01

    A microcomputer based system for testing analog charge coupled integrated circuits has been developed. It measures device performance for three parameters: dynamic range, baseline shift due to leakage current, and transfer efficiency. A companion board tester has also been developed. The software consists of a collection of BASIC and assembly language routines developed on the test system microcomputer

  11. Development of signal acquisition device of rotating coil measurement system

    International Nuclear Information System (INIS)

    Zhou Jianxin; Li Li; Kang Wen; Deng Chengdong; Yin Baogui; Fu Shinian

    2013-01-01

    A new rotating coil magnetic measurement system using the technical solution of the combination of a dynamic signal acquisition card and software with specific functions was developed. The acquisition device of the system successfully implemented the function of the PDI-5025 integrator. The sampling rate, the range, the accuracy and the flexibility of the system were improved. The development program of signal acquisition equipment, the realization of the acquisition function and the reliability and stability of the system were introduced. (authors)

  12. On the problem of linear calibration for a reading system of measuring devices

    International Nuclear Information System (INIS)

    Shigaev, V.N.

    1978-01-01

    The problem of gauging the frame of reference of a measuring device has been giVen a general approach which consists in finding an approximated inverse transformation on the basis of a partial diagram of a direct transformation which is defined on a given set, D, within the limits of the device measuring range. The following linear models of frame of reference are discussed: a general oblique system; a rectangular system with axes having different scales; a rectangular system with similar scale axes. Linear distortion for two rectangular models has been assessed. It is pointed out that the best approximation to the reduction operation should be found over the D set

  13. Novel nonsurgical left ventricular assist device and system.

    Science.gov (United States)

    Misiri, Juna; DeSimone, Christopher V; Park, Soon J; Kushwaha, Sudhir S; Friedman, Paul A; Bruce, Charles J; Asirvatham, Samuel J

    2013-01-01

    Treatment options for advanced stages of congestive heart failure remain limited. Left ventricular assist devices (LVADs) have emerged as a means to support failing circulation. However, these devices are not without significant risk such as major open chest surgery. We utilized a novel approach for device placement at the aorto-left atria continuity as a site to create a conduit capable of accommodating a percutaneous LVAD system. We designed and developed an expandable nitinol based device for placement at this site to create a shunt between the LA and aorta. Our experiments support this anatomic location as an accessible and feasible site for accommodation of an entirely percutaneous LVAD. The novelty of this approach would bypass the left ventricle, and thereby minimize complications and morbidities associated with current LVAD placement. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The analysis of the wax foundry models fabrication process for the CPX3000 device

    Directory of Open Access Journals (Sweden)

    G. Budzik

    2011-04-01

    Full Text Available The paper presents possibilities of creating wax founding models by means of CPX3000 device. The device is used for Rapid Prototypingof models made of foundry wax in an incremental process. The paper also presents problems connected with choosing technologicalparameters for incremental shaping which influence the accuracy of created models. Issues connected with post-processing are alsodescribed. This process is of great importance for obtaining geometrically correct models. The analysis of parameters of cleaning models from supporting material is also presented. At present CPX3000 printer is the first used in Poland device by 3D Systems firm for creating wax models. The printer is at The Faculty of Mechanical Engineering at Rzeszów University of Technology.

  15. A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

    Directory of Open Access Journals (Sweden)

    Oh Jae-Won

    2014-09-01

    Full Text Available This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics

  16. A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

    Directory of Open Access Journals (Sweden)

    Jae-Won Oh

    2014-09-01

    Full Text Available This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics.

  17. LANL12-RS-108J Report on Device Modeler Testing of the Device Modeler Tool Kit. DMTK in FY14

    Energy Technology Data Exchange (ETDEWEB)

    Temple, Brian Allen [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Pimentel, David A. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2014-09-28

    This document covers the various testing and modifications of the Device Modeler Tool Kit (DMTK) for project LANL12-RS-108J in FY14. The testing has been comprised of different device modelers and trainees for device modeling using DMTK on the secure network for a few test problems. Most of these problems have been synthetic data problems. There has been a local secure network training drill where one of the trainees has used DMTK for real data. DMTK has also been used on a laptop for a deployed real data training drill. Once DMTK gets into the home team, it will be used for more training drills (TDs) which will contain real data in the future.

  18. Multi-valley effective mass theory for device-level modeling of open quantum dynamics

    Science.gov (United States)

    Jacobson, N. Tobias; Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Montano, Ines; Moussa, Jonathan E.; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Simple models for semiconductor-based quantum information processors can provide useful qualitative descriptions of device behavior. However, as experimental implementations have matured, more specific guidance from theory has become necessary, particularly in the form of quantitatively reliable yet computationally efficient modeling. Besides modeling static device properties, improved characterization of noisy gate operations requires a more sophisticated description of device dynamics. Making use of recent developments in multi-valley effective mass theory, we discuss device-level simulations of the open system quantum dynamics of a qubit interacting with phonons and other noise sources. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  19. Updated tokamak systems code and applications to high-field ignition devices

    International Nuclear Information System (INIS)

    Reid, R.L.; Galambos, J.D.; Peng, Y-K.M.; Strickler, D.J.; Selcow, E.C.

    1985-01-01

    This paper describes revisions made to the Tokamak Systems Code to more accurately model high-field copper ignition devices. The major areas of revision were in the plasma physics model, the toroidal field (TF) coil model, and the poloidal field (PF) coil/MHD model. Also included in this paper are results obtained from applying the revised code to a study for a high-field copper ignition device to determine the impact of magnetic field on axis, (at the major radius), on performance, and on cost

  20. A modeling of fuzzy logic controller on gamma scanning device

    International Nuclear Information System (INIS)

    Arjoni Amir

    2010-01-01

    Modeling and simulation of controller to set the high position and direction of the source of gamma radiation isotope Co-60 and Nal(TL) detector of gamma scanning device by using fuzzy logic controller FLC have been done. The high positions and in the right direction of gamma radiation and Nal (TI) detector obtained the optimal enumeration. The counting data obtained from gamma scanning device counting system is affected by the instability of high position and direction of the gamma radiation source and Nal(TI) detector or the height and direction are not equal between the gamma radiation source and Nal(TI) detector. Assumed a high position and direction of radiation sources can be fixed while the high position detector h (2, 1,0, -1, -2) can be adjusted up and down and the detector can be changed direction to the left or right angle ω (2, 1 , 0, -1, -2) when the position and direction are no longer aligned with the direction of the source of gamma radiation, the counting results obtained will not be optimal. Movement detector direction towards the left or right and the high detector arranged by the DC motor using fuzzy logic control in order to obtain the amount of output fuzzy logic control which forms the optimal output quantity count. The variation of height difference h between the source position of the gamma radiation detector and change direction with the detector angle ω becomes the input variable membership function (member function) whereas the fuzzy logic for the output variable membership function of fuzzy logic control output is selected scale fuzzy logic is directly proportional to the amount of optimal counting. From the simulation results obtained by the relationship between the amount of data output variable of fuzzy logic controller and the amount of data input variable height h and direction detector ω is depicted in graphical form surface. (author)

  1. Predicting patient exposure to nickel released from cardiovascular devices using multi-scale modeling.

    Science.gov (United States)

    Saylor, David M; Craven, Brent A; Chandrasekar, Vaishnavi; Simon, David D; Brown, Ronald P; Sussman, Eric M

    2018-04-01

    Many cardiovascular device alloys contain nickel, which if released in sufficient quantities, can lead to adverse health effects. However, in-vivo nickel release from implanted devices and subsequent biodistribution of nickel ions to local tissues and systemic circulation are not well understood. To address this uncertainty, we have developed a multi-scale (material, tissue, and system) biokinetic model. The model links nickel release from an implanted cardiovascular device to concentrations in peri-implant tissue, as well as in serum and urine, which can be readily monitored. The model was parameterized for a specific cardiovascular implant, nitinol septal occluders, using in-vitro nickel release test results, studies of ex-vivo uptake into heart tissue, and in-vivo and clinical measurements from the literature. Our results show that the model accurately predicts nickel concentrations in peri-implant tissue in an animal model and in serum and urine of septal occluder patients. The congruity of the model with these data suggests it may provide useful insight to establish nickel exposure limits and interpret biomonitoring data. Finally, we use the model to predict local and systemic nickel exposure due to passive release from nitinol devices produced using a wide range of manufacturing processes, as well as general relationships between release rate and exposure. These relationships suggest that peri-implant tissue and serum levels of nickel will remain below 5 μg/g and 10 μg/l, respectively, in patients who have received implanted nitinol cardiovascular devices provided the rate of nickel release per device surface area does not exceed 0.074 μg/(cm 2  d) and is less than 32 μg/d in total. The uncertainty in whether in-vitro tests used to evaluate metal ion release from medical products are representative of clinical environments is one of the largest roadblocks to establishing the associated patient risk. We have developed and validated a multi

  2. Quantum-corrected drift-diffusion models for transport in semiconductor devices

    International Nuclear Information System (INIS)

    De Falco, Carlo; Gatti, Emilio; Lacaita, Andrea L.; Sacco, Riccardo

    2005-01-01

    In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the electric potential. We examine two special, and relevant, examples of QCDD models; the first one is the modified DD model named Schroedinger-Poisson-drift-diffusion, and the second one is the quantum-drift-diffusion (QDD) model. For the decoupled solution of the two models, we introduce a functional iteration technique that extends the classical Gummel algorithm widely used in the iterative solution of the DD system. We discuss the finite element discretization of the various differential subsystems, with special emphasis on their stability properties, and illustrate the performance of the proposed algorithms and models on the numerical simulation of nanoscale devices in two spatial dimensions

  3. Safety and efficacy of the Aperio thrombectomy device when compared to the Solitaire AB/FR and the Revive devices in a pulsatile flow system.

    Science.gov (United States)

    Saleh, Mahdi; Spence, John Nathan; Nayak, Sanjeev; Pearce, Gillian; Tennuci, Christopher; Roffe, Christine

    2012-01-01

    There are a limited number of studies comparing the Aperio mechanical thrombectomy device to other stent-based devices. In this paper, we compared the Aperio thrombectomy device to the Solitaire AB, FR and Revive devices in a model of the middle cerebral artery (MCA) within a modified pulsatile flow system. Thrombi made of lamb's blood were placed into a pulsatile flow system perfused with Hartmann's solution at 80 bpm with a mean pressure of 90 mm Hg. 30 experiments were run with each device. Recanalization rates were similar for all three devices (90% with the Solitaire AB, FR, 80% with the Revive, and 90% with the Aperio). The mean number of attempts to retrieve the thrombus was also similar for all three devices (1.7 with the Solitaire AB, FR, 2.1 with the Revive, 1.6 with the Aperio). Clot fragmentation and embolization rates revealed no statistical significance but there was a trend towards lower embolization rates with the Aperio (23% compared to 40% with the Solitaire AB, FR and 47% with the Revive). The Aperio was the fastest to recanalize the MCA (mean of 66 seconds compared to 186 seconds for the Solitaire AB, FR and 169 seconds for the Revive). In this in vitro setting, the Aperio device seems to be an efficacious and safe device when compared to other similar clinically used mechanical thrombectomy devices. Larger clinical trials are warranted.

  4. EPICS: operating system independent device/driver support

    International Nuclear Information System (INIS)

    Kraimer, M.R.

    2003-01-01

    Originally EPICS input/output controllers (IOCs) were only supported on VME-based systems running the vxWorks operating system. Now IOCs are supported on many systems: vxWorks, RTEMS, Solaris, HPUX, Linux, WIN32, and Darwin. A challenge is to provide operating-system-independent device and driver support. This paper presents some techniques for providing such support. EPICS (Experimental Physics and Industrial Control System) is a set of software tools, libraries, and applications developed collaboratively and used worldwide to create distributed, real-time control systems for scientific instruments such as particle accelerators, telescopes, and other large scientific experiments. An important component of all EPICS-based control systems is a collection of input/output controllers (IOCs). An IOC has three primary components: (1) a real-time database; (2) channel access, which provides network access to the database; and (3) device/driver support for interfacing to equipment. This paper describes some projects related to providing device/driver support on non-vxWorks systems. In order to support IOCs on platforms other than vxWorks, operating-system-independent (OSI) application program interfaces (APIs) were defined for threads, semaphores, timers, etc. Providing support for a new platform consists of providing an operating-system-dependent implementation of the OSI APIs.

  5. Emulating Industrial Control System Field Devices Using Gumstix Technology

    Science.gov (United States)

    2012-06-01

    Security mechanisms (e.g., intrusion detection systems, antivirus and honeypots) are employed in traditional Information Technology (IT) systems to detect...can be used to determine the vendor of the device if the fingerprinting is done on a local segment. 2.8 Emulation Emulation is software or...Each of the honeypots in the network can be different systems ranging from Windows workstations to IIS web servers to Cisco routers. Honeynets rely

  6. A model of user engagement in medical device development.

    Science.gov (United States)

    Grocott, Patricia; Weir, Heather; Ram, Mala Bridgelal

    2007-01-01

    The purpose of this paper is to address three topical themes: user involvement in health services research; determining the value of new medical technologies in patient care pathways, furthering knowledge related to quality in health and social care; and knowledge exchange between manufacturers, health service supply chain networks and device users. The model is being validated in a case study in progress. The latter is a "proving ground" study for a translational research company. Medical devices play a pivotal role in the management of chronic diseases, across all care settings. Failure to engage users in device development inevitably affects the quality of clinical outcomes. A model of user engagement is presented, turning unmet needs for medical devices into viable commercial propositions. A case study investigating the perceptions of individuals with Epidermolysis Bullosa (EB), their lay and professional carers into unmet needs. EB is an inherited condition affecting the skin and mucosal linings that leads to blistering and wounds. Qualitative data are being collected to generate understanding of unmet needs and wound care products. These needs are being translated into new design concepts and prototypes. Prototypes will be evaluated in an n = 1 experimental design, generating quantitative outcomes data. There are generalisations from the case study, and the model outlined. New products for managing EB wounds can logically benefit other groups. The model is transferable to other clinical problems, which can benefit from research and technological advances that are integral to clinical needs and care.

  7. Live Mobile Distance Learning System for Smart Devices

    Directory of Open Access Journals (Sweden)

    Jang Ho Lee

    2015-03-01

    Full Text Available In recent years, mobile and ubiquitous computing has emerged in our daily lives, and extensive studies have been conducted in various areas using smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, in order to realize this computing technology. Especially, the integration of mobile networking technology and intelligent mobile devices has made it possible to develop the advanced mobile distance learning system that supports portable smart devices such as smartphones and tablets for the future IT environment. We present a synchronous mobile learning system that enables both instructor and student to participate in distance learning with their tablets. When an instructor gives a lecture using a tablet with front-face camera by bringing up slides and making annotations on them, students in the distance can watch the instructor and those slides with annotation on their own tablets in real time. A student can also ask a question or have a discussion together using the text chat feature of the system during a learning session. We also show the user evaluation of the system. A user survey shows that about 67% are in favor of the prototype of the system.

  8. Derived virtual devices: a secure distributed file system mechanism

    Science.gov (United States)

    VanMeter, Rodney; Hotz, Steve; Finn, Gregory

    1996-01-01

    This paper presents the design of derived virtual devices (DVDs). DVDs are the mechanism used by the Netstation Project to provide secure shared access to network-attached peripherals distributed in an untrusted network environment. DVDs improve Input/Output efficiency by allowing user processes to perform I/O operations directly from devices without intermediate transfer through the controlling operating system kernel. The security enforced at the device through the DVD mechanism includes resource boundary checking, user authentication, and restricted operations, e.g., read-only access. To illustrate the application of DVDs, we present the interactions between a network-attached disk and a file system designed to exploit the DVD abstraction. We further discuss third-party transfer as a mechanism intended to provide for efficient data transfer in a typical NAP environment. We show how DVDs facilitate third-party transfer, and provide the security required in a more open network environment.

  9. An automated fluid-transport device for a microfluidic system.

    Science.gov (United States)

    Feng, Jun; Yang, Xiu-Juan; Li, Xin-Chun; Yang, Hui; Chen, Zuan-Guang

    2011-01-01

    An automated fluid-transport device for a chip-based capillary electrophoresis system has been developed. The device mainly consists of six peristaltic micropumps, two vacuum micropumps, microvalves, multi-way joints, titanium tubes, and a macro-to-micro connector. Various solutions used for the cleaning and activation of chip channels, and electrophoresis separation, are allowed to automatically transport to chip reservoirs by the electric control module. The performance of the whole system was characterized by the analysis of fluorescein sodium using chip electrophoresis with LED-induced fluorescence detection. The peak-height variation (RSD) was 3.8% in six cycles of analyses. Additionally, compared with conventional manual operation, the developed device can spare 60% time for chip pretreatment. This microdevice offers high-efficiency pretreatment for microchips, thereby resulting in a remarkable improvement of analytical capacity for batch samples.

  10. Portable blood extraction device integrated with biomedical monitoring system

    Science.gov (United States)

    Khumpuang, S.; Horade, M.; Fujioka, K.; Sugiyama, S.

    2006-01-01

    Painless and portable blood extraction device has been immersed in the world of miniaturization on bio-medical research particularly in manufacturing point-of-care systems. The fabrication of a blood extraction device integrated with an electrolyte-monitoring system is reported in this paper. The device has advantages in precise controlled dosage of blood extracted including the slightly damaged blood vessels and nervous system. The in-house blood diagnostic will become simple for the patients. Main components of the portable system are; the blood extraction device and electrolyte-monitoring system. The monitoring system consists of ISFET (Ion Selective Field Effect Transistor) for measuring the concentration level of minerals in blood. In this work, we measured the level of 3 ions; Na+, K+ and Cl-. The mentioned ions are frequently required the measurement since their concentration levels in the blood can indicate whether the kidney, pancreas, liver or heart is being malfunction. The fabrication of the whole system and experimentation on each ISM (Ion Sensitive Membrane) will be provided. Taking the advantages of LIGA technology, the 100 hollow microneedles fabricated by Synchrotron Radiation deep X-ray lithography through PCT (Plane-pattern to Cross-section Transfer) technique have been consisted in 5x5 mm2 area. The microneedle is 300 μm in base-diameter, 500 μm-pitch, 800 μm-height and 50 μm hole-diameter. The total size of the blood extraction device is 2x2x2 cm 3. The package is made from a plastic socket including slots for inserting microneedle array and ISFET connecting to an electrical circuit for the monitoring. Through the dimensional design for simply handling and selection of disposable material, the patients can self-evaluate the critical level of the body minerals in anywhere and anytime.

  11. The inherent weaknesses in industrial control systems devices; hacking and defending SCADA systems

    Science.gov (United States)

    Bianco, Louis J.

    The North American Electric Reliability Corporation (NERC) is about to enforce their NERC Critical Infrastructure Protection (CIP) Version Five and Six requirements on July 1st 2016. The NERC CIP requirements are a set of cyber security standards designed to protect cyber assets essential the reliable operation of the electric grid. The new Version Five and Six requirements are a major revision to the Version Three (currently enforced) requirements. The new requirements also bring substations into scope alongside Energy Control Centers. When the Version Five requirements were originally drafted they were vague, causing in depth discussions throughout the industry. The ramifications of these requirements has made owners look at their systems in depth, questioning how much money it will take to meet these requirements. Some owners saw backing down from routable networks to non-routable as a means to save money as they would be held to less requirements within the standards. Some owners saw removing routable connections as a proper security move. The purpose of this research was to uncover the inherent weaknesses in Industrial Control Systems (ICS) devices; to show how ICS devices can be hacked and figure out potential protections for these Critical Infrastructure devices. In addition, this research also aimed to validate the decision to move from External Routable connectivity to Non-Routable connectivity, as a security measure and not as a means of savings. The results reveal in order to ultimately protect Industrial Control Systems they must be removed from the Internet and all bi-directional external routable connections must be removed. Furthermore; non-routable serial connections should be utilized, and these non-routable serial connections should be encrypted on different layers of the OSI model. The research concluded that most weaknesses in SCADA systems are due to the inherent weaknesses in ICS devices and because of these weaknesses, human intervention is

  12. Distribution system modeling and analysis

    CERN Document Server

    Kersting, William H

    2001-01-01

    For decades, distribution engineers did not have the sophisticated tools developed for analyzing transmission systems-often they had only their instincts. Things have changed, and we now have computer programs that allow engineers to simulate, analyze, and optimize distribution systems. Powerful as these programs are, however, without a real understanding of the operating characteristics of a distribution system, engineers using the programs can easily make serious errors in their designs and operating procedures. Distribution System Modeling and Analysis helps prevent those errors. It gives readers a basic understanding of the modeling and operating characteristics of the major components of a distribution system. One by one, the author develops and analyzes each component as a stand-alone element, then puts them all together to analyze a distribution system comprising the various shunt and series devices for power-flow and short-circuit studies. He includes the derivation of all models and includes many num...

  13. Models and Simulations of Carrier Transport in Novel Nanoelectronic Devices

    NARCIS (Netherlands)

    Rondoni, D.

    2009-01-01

    Nanotechnology is the field of applied science and technology that aims to manipulate, test and produce devices and systems which have dimensions comparable to the atomic and molecular scale, that is few tens of nanometers and smaller. Amongst the wide range of fields touched by nanotechnology,

  14. Comparative performance of passive devices for piping system under seismic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: pra_veen74@rediffmail.com [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Jangid, R.S. [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India); Reddy, G.R. [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India)

    2016-03-15

    Highlights: • Correlated the analytical results obtained from the proposed analytical procedures with experimental results in the case of XPD. • Substantial reduction of the seismic response of piping system with passive devices is observed. • Significant increase in the modal damping of the piping system is noted. • There exist an optimum parameters of the passive devices. • Good amount of energy dissipation is observed by using passive devices. - Abstract: Among several passive control devices, X-plate damper, viscous damper, visco-elastic damper, tuned mass damper and multiple tuned mass dampers are popular and used to mitigate the seismic response in the 3-D piping system. In the present paper detailed studies are made to see the effectiveness of the dampers when used in 3-D piping system subjected to artificial earthquake with increasing amplitudes. The analytical results obtained using Wen's model are compared with the corresponding experimental results available which indicated a good match with the proposed analytical procedure for the X-plate dampers. It is observed that there is significant reduction in the seismic response of interest like relative displacement, acceleration and the support reaction of the piping system with passive devices. In general, the passive devices under particular optimum parameters such as stiffness and damping are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping system.

  15. Constructing the informatics and information technology foundations of a medical device evaluation system: a report from the FDA unique device identifier demonstration.

    Science.gov (United States)

    Drozda, Joseph P; Roach, James; Forsyth, Thomas; Helmering, Paul; Dummitt, Benjamin; Tcheng, James E

    2018-02-01

    The US Food and Drug Administration (FDA) has recognized the need to improve the tracking of medical device safety and performance, with implementation of Unique Device Identifiers (UDIs) in electronic health information as a key strategy. The FDA funded a demonstration by Mercy Health wherein prototype UDIs were incorporated into its electronic information systems. This report describes the demonstration's informatics architecture. Prototype UDIs for coronary stents were created and implemented across a series of information systems, resulting in UDI-associated data flow from manufacture through point of use to long-term follow-up, with barcode scanning linking clinical data with UDI-associated device attributes. A reference database containing device attributes and the UDI Research and Surveillance Database (UDIR) containing the linked clinical and device information were created, enabling longitudinal assessment of device performance. The demonstration included many stakeholders: multiple Mercy departments, manufacturers, health system partners, the FDA, professional societies, the National Cardiovascular Data Registry, and information system vendors. The resulting system of systems is described in detail, including entities, functions, linkage between the UDIR and proprietary systems using UDIs as the index key, data flow, roles and responsibilities of actors, and the UDIR data model. The demonstration provided proof of concept that UDIs can be incorporated into provider and enterprise electronic information systems and used as the index key to combine device and clinical data in a database useful for device evaluation. Keys to success and challenges to achieving this goal were identified. Fundamental informatics principles were central to accomplishing the system of systems model. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Improving 200 MW NDHR reactor protection system with GAL devices

    International Nuclear Information System (INIS)

    Shi Mingde; Li Duo; Xie Zhengguo

    1999-01-01

    The emergence of General Array Logic (GAL), a fairly new type of logic devices with the characteristics of user-definable logic functions, have led to a revolutionary change in the design of logical circuits. The improvements of the reactor protection system for the 200 MW nuclear district heating reactor (NDHR) using GAL are covered

  17. On the feasibility of device fingerprinting in industrial control systems

    NARCIS (Netherlands)

    Caselli, M.; Hadziosmanovic, D.; Zambon, Emmanuele; Kargl, Frank; Luiijf, Eric; Hartel, Pieter H.

    2013-01-01

    As Industrial Control Systems (ICS) and standard IT networks are becoming one heterogeneous entity, there has been an increasing effort in adjusting common security tools and methodologies to fit the industrial environment. Fingerprinting of industrial devices is still an unexplored research field.

  18. Carbon nanotube and graphene device modeling and simulation

    Science.gov (United States)

    Yoon, Young Ki

    The performance of the semiconductors has been improved and the price has gone down for decades. It has been continuously scaled down in size year by year, and now it encounters the fundamental scaling limit. We, therefore, should prepare a new era beyond the conventional semiconductor technologies. One of the most promising devices is possible by carbon nanotube (CNT) or graphene nanoribbon (GNR) in terms of its excellent charge transport properties. Their fundamental material properties and device physics are totally different to those of the conventional devices. In this nano-regime, more sophisticated device modeling and simulation are really needed to elucidate nano-device operation and to save our resources from errors. The numerical simulation works in this dissertation will provide novel view points on the emerging devices. In this dissertation, CNT and GNR devices are numerically studied. The first part of this work is on CNT devices, and a common structure of CNT device has CNT channel, metal source and drain contacts, and gate electrode. We investigate the strain, geometry, and scattering effects on the device performance of CNT field-effect transistors (FETs). It is shown that even a small amount of strain can result in a large effect on the performance of CNTFETs due to the variation of the bandgap and band-structure-limited velocity. A type of strain which produces a larger bandgap results in increased Schottky barrier (SB) height and decreased band-structure-limited velocity, and hence a smaller minimum leakage current, smaller on current, larger maximum achievable Ion/Ioff, and larger intrinsic delay. We also examine geometry effect of partial gate CNTFETs. In the growth process of vertical CNT, underlap between the gate and the bottom electrode is advantageous for transistor operation because it suppresses ambipolar conduction of SBFETs. Both n-type and p-type transistor operations with balanced performance metrics can be achieved on a single

  19. 242-A Control System device logic software documentation. Revision 2

    International Nuclear Information System (INIS)

    Berger, J.F.

    1995-01-01

    A Distributive Process Control system was purchased by Project B-534. This computer-based control system, called the Monitor and Control System (MCS), was installed in the 242-A Evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and Monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment System Engineering Group of Westinghouse. This document describes the Device Logic for this system

  20. CREATING DIGITAL ELEVATION MODEL USING A MOBILE DEVICE

    Directory of Open Access Journals (Sweden)

    A. İ. Durmaz

    2017-11-01

    Full Text Available DEM (Digital Elevation Models is the best way to interpret topography on the ground. In recent years, lidar technology allows to create more accurate elevation models. However, the problem is this technology is not common all over the world. Also if Lidar data are not provided by government agencies freely, people have to pay lots of money to reach these point clouds. In this article, we will discuss how we can create digital elevation model from less accurate mobile devices’ GPS data. Moreover, we will evaluate these data on the same mobile device which we collected data to reduce cost of this modeling.

  1. Modeling the DBR laser used as wavelength conversion device

    DEFF Research Database (Denmark)

    Braagaard, Carsten; Mikkelsen, Benny; Durhuus, Terji

    1994-01-01

    In this paper, a novel and efficient way to model the dynamic field in optical DBR-type semiconductor devices is presented. The model accounts for the longitudinal carrier, photon, and refractive index distribution. Furthermore, the model handles both active and passive sections that may include...... gratings. Thus, simulations of components containing, e.g., gain sections, absorptive sections, phase sections, and gratings, placed arbitrarily along the longitudinal direction of the cavity, are possible. Here, the model has been used for studying the DBR laser as a wavelength converter. Particularly...

  2. Determining of the Optimal Device Lifetime using Mathematical Renewal Models

    Directory of Open Access Journals (Sweden)

    Knežo Dušan

    2016-05-01

    Full Text Available Paper deals with the operations and equipment of the machine in the process of organizing production. During operation machines require maintenance and repairs, while in case of failure or machine wears it is necessary to replace them with new ones. For the process of replacement of old machines with new ones the term renewal is used. Qualitative aspects of the renewal process observe renewal theory, which is mainly based on the theory of probability and mathematical statistics. Devices lifetimes are closely related to the renewal of the devices. Presented article is focused on mathematical deduction of mathematical renewal models and determining optimal lifetime of the devices from the aspect of expenditures on renewal process.

  3. Models and prototypes of biomimetic devices to architectural purposes

    Directory of Open Access Journals (Sweden)

    Silvia Titotto

    2014-12-01

    Full Text Available This paper presents some results of an ongoing interdisciplinary research about models and prototypes of biomimetic devices via installations and the focus of this paper is to outline this research role in architectural purposes as it perpasses the cultural and heritage contexts by being a way of understanding and living in the world as well as taking place in the world as devices or environments that pass on to future generations to use, learn from and be inspired by. Both the theoretical and the experimental work done so far point out that installations built with association of laser cutting and rapid prototyping techniques might be on the best feasible ways for developing and testing new technologies involved in biomimetic devices to architectural purposes that put both tectonics and nature as their central theme. 

  4. Physically-based modelling of polycrystalline semiconductor devices

    International Nuclear Information System (INIS)

    Lee, S.

    2000-01-01

    Thin-film technology using polycrystalline semiconductors has been widely applied to active-matrix-addressed liquid crystal displays (AMLCDs) where thin-film transistors act as digital pixel switches. Research and development is in progress to integrate the driver circuits around the peripheral of the display, resulting in significant cost reduction of connections between rows and columns and the peripheral circuitry. For this latter application, where for instance it is important to control the greyscale voltage level delivered to the pixel, an understanding of device behaviour is required so that models can be developed for analogue circuit simulation. For this purpose, various analytical models have been developed based on that of Seto who considered the effect of monoenergetic trap states and grain boundaries in polycrystalline materials but not the contribution of the grains to the electrical properties. The principal aim of this thesis is to describe the use of a numerical device simulator (ATLAS) as a tool to investigate the physics of the trapping process involved in the device operation, which additionally takes into account the effect of multienergetic trapping levels and the contribution of the grain into the modelling. A study of the conventional analytical models is presented, and an alternative approach is introduced which takes into account the grain regions to enhance the accuracy of the analytical modelling. A physically-based discrete-grain-boundary model and characterisation method are introduced to study the effects of the multienergetic trap states on the electrical characteristics of poly-TFTs using CdSe devices as the experimental example, and the electrical parameters such as the density distribution of the trapping states are extracted. The results show excellent agreement between the simulation and experimental data. The limitations of this proposed physical model are also studied and discussed. (author)

  5. Synthesis of a hybrid model of the VSC FACTS devices and HVDC technologies

    Science.gov (United States)

    Borovikov, Yu S.; Gusev, A. S.; Sulaymanov, A. O.; Ufa, R. A.

    2014-10-01

    The motivation of the presented research is based on the need for development of new methods and tools for adequate simulation of FACTS devices and HVDC systems as part of real electric power systems (EPS). The Research object: An alternative hybrid approach for synthesizing VSC-FACTS and -HVDC hybrid model is proposed. The results: the VSC- FACTS and -HVDC hybrid model is designed in accordance with the presented concepts of hybrid simulation. The developed model allows us to carry out adequate simulation in real time of all the processes in HVDC, FACTS devices and EPS as a whole without any decomposition and limitation on their duration, and also use the developed tool for effective solution of a design, operational and research tasks of EPS containing such devices.

  6. Synthesis of a hybrid model of the VSC FACTS devices and HVDC technologies

    International Nuclear Information System (INIS)

    Borovikov, Yu S; Gusev, A S; Sulaymanov, A O; Ufa, R A

    2014-01-01

    The motivation of the presented research is based on the need for development of new methods and tools for adequate simulation of FACTS devices and HVDC systems as part of real electric power systems (EPS). The Research object: An alternative hybrid approach for synthesizing VSC-FACTS and -HVDC hybrid model is proposed. The results: the VSC- FACTS and -HVDC hybrid model is designed in accordance with the presented concepts of hybrid simulation. The developed model allows us to carry out adequate simulation in real time of all the processes in HVDC, FACTS devices and EPS as a whole without any decomposition and limitation on their duration, and also use the developed tool for effective solution of a design, operational and research tasks of EPS containing such devices

  7. A Co-modeling Method Based on Component Features for Mechatronic Devices in Aero-engines

    Science.gov (United States)

    Wang, Bin; Zhao, Haocen; Ye, Zhifeng

    2017-08-01

    Data-fused and user-friendly design of aero-engine accessories is required because of their structural complexity and stringent reliability. This paper gives an overview of a typical aero-engine control system and the development process of key mechatronic devices used. Several essential aspects of modeling and simulation in the process are investigated. Considering the limitations of a single theoretic model, feature-based co-modeling methodology is suggested to satisfy the design requirements and compensate for diversity of component sub-models for these devices. As an example, a stepper motor controlled Fuel Metering Unit (FMU) is modeled in view of the component physical features using two different software tools. An interface is suggested to integrate the single discipline models into the synthesized one. Performance simulation of this device using the co-model and parameter optimization for its key components are discussed. Comparison between delivery testing and the simulation shows that the co-model for the FMU has a high accuracy and the absolute superiority over a single model. Together with its compatible interface with the engine mathematical model, the feature-based co-modeling methodology is proven to be an effective technical measure in the development process of the device.

  8. Device model investigation of bilayer organic light emitting diodes

    International Nuclear Information System (INIS)

    Crone, B. K.; Davids, P. S.; Campbell, I. H.; Smith, D. L.

    2000-01-01

    Organic materials that have desirable luminescence properties, such as a favorable emission spectrum and high luminescence efficiency, are not necessarily suitable for single layer organic light-emitting diodes (LEDs) because the material may have unequal carrier mobilities or contact limited injection properties. As a result, single layer LEDs made from such organic materials are inefficient. In this article, we present device model calculations of single layer and bilayer organic LED characteristics that demonstrate the improvements in device performance that can occur in bilayer devices. We first consider an organic material where the mobilities of the electrons and holes are significantly different. The role of the bilayer structure in this case is to move the recombination away from the electrode that injects the low mobility carrier. We then consider an organic material with equal electron and hole mobilities but where it is not possible to make a good contact for one carrier type, say electrons. The role of a bilayer structure in this case is to prevent the holes from traversing the device without recombining. In both cases, single layer device limitations can be overcome by employing a two organic layer structure. The results are discussed using the calculated spatial variation of the carrier densities, electric field, and recombination rate density in the structures. (c) 2000 American Institute of Physics

  9. Examination of a microwave sensing system using superconducting devices

    International Nuclear Information System (INIS)

    Sekiya, N.; Mukaida, M.; Saito, A.; Hirano, S.; Oshima, S.

    2005-01-01

    We have designed and fabricated a microwave sensing system integrated with superconducting devices which can detect motion for crime prevention and security purposes. The system consists of a transmitting antenna, a receiving antenna, a power divider as a directional coupler, and a mixer. The antennas and the directional coupler were fabricated using 50-nm thick YBa 2 Cu 3 O 7-δ (YBCO) thin films. A superconducting antenna with a resonant frequency of 10.525 GHz and a superconducting directional coupler were designed and fabricated for the system. A Schottky barrier diode was used as a mixer. These devices were integrated and their operation as a sensor was examined. Comparisons of the output voltage of the IF signal amplifier showed that the superconducting integrated sensor system was superior to the normal conductor sensor

  10. Mobility Models for Systems Evaluation

    Science.gov (United States)

    Musolesi, Mirco; Mascolo, Cecilia

    Mobility models are used to simulate and evaluate the performance of mobile wireless systems and the algorithms and protocols at the basis of them. The definition of realistic mobility models is one of the most critical and, at the same time, difficult aspects of the simulation of applications and systems designed for mobile environments. There are essentially two possible types of mobility patterns that can be used to evaluate mobile network protocols and algorithms by means of simulations: traces and synthetic models [130]. Traces are obtained by means of measurements of deployed systems and usually consist of logs of connectivity or location information, whereas synthetic models are mathematical models, such as sets of equations, which try to capture the movement of the devices.

  11. Theoretical modeling of electronic transport in molecular devices

    Science.gov (United States)

    Piccinin, Simone

    In this thesis a novel approach for simulating electronic transport in nanoscale structures is introduced. We consider an open quantum system (the electrons of structure) accelerated by an external electromotive force and dissipating energy through inelastic scattering with a heat bath (phonons) acting on the electrons. This method can be regarded as a quantum-mechanical extension of the semi-classical Boltzmann transport equation. We use periodic boundary conditions and employ Density Functional Theory to recast the many-particle problem in an effective single-particle mean-field problem. By explicitly treating the dissipation in the electrodes, the behavior of the potential is an outcome of our method, at variance with the scattering approaches based on the Landauer formalism. We study the self-consistent steady-state solution, analyzing the out-of-equilibrium electron distribution, the electrical characteristics, the behavior of the self-consistent potential and the density of states of the system. We apply the method to the study of electronic transport in several molecular devices, consisting of small organic molecules or atomic wires sandwiched between gold surfaces. For gold wires we recover the experimental evidence that transport in short wires is ballistic, independent of the length of the wire and with conductance of one quantum. In benzene-1,4-dithiol we find that the delocalization of the frontier orbitals of the molecule is responsible for the high value of conductance and that, by inserting methylene groups to decouple the sulfur atoms from the carbon ring, the current is reduced, in agreement with the experimental measurements. We study the effect a geometrical distortion in a molecular device, namely the relative rotation of the carbon rings in a biphenyl-4,4'-dithiol molecule. We find that the reduced coupling between pi orbitals of the rings induced by the rotation leads to a reduction of the conductance and that this behavior is captured by a

  12. Surface photovoltage measurements and finite element modeling of SAW devices.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  13. DeMand: A tool for evaluating and comparing device-level demand and supply forecast models

    DEFF Research Database (Denmark)

    Neupane, Bijay; Siksnys, Laurynas; Pedersen, Torben Bach

    2016-01-01

    Fine-grained device-level predictions of both shiftable and non-shiftable energy demand and supply is vital in order to take advantage of Demand Response (DR) for efficient utilization of Renewable Energy Sources. The selection of an effective device-level load forecast model is a challenging task......, mainly due to the diversity of the models and the lack of proper tools and datasets that can be used to validate them. In this paper, we introduce the DeMand system for fine-tuning, analyzing, and validating the device-level forecast models. The system offers several built-in device-level measurement...... datasets, forecast models, features, and errors measures, thus semi-automating most of the steps of the forecast model selection and validation process. This paper presents the architecture and data model of the DeMand system; and provides a use-case example on how one particular forecast model...

  14. Use of digital computing devices in systems important to safety

    International Nuclear Information System (INIS)

    1986-01-01

    The incorporation of digital computing devices in systems important to safety now is progressing fast in several countries, including Canada, France, Federal Republic of Germany, Japan, USA. There are now reactors with microprocessors in some trip systems. The major functions of those systems are: reactor trip initiation, display, monitoring, testing, re-calibration of detectors. The benefits of moving to a fully computerized shut-down system should be improved reliability, greater flexibility, better man-machine interface, improved testing, higher reactor output and lower overall cost. With the introduction of computer devices in systems important to safety, plant availability and safety are improved because disturbances are treated before they lead to safety action, in this way helping the operator to avoid errors. The Meeting presentations were divided into sessions devoted to the following topics: Needs for the use of digital devices (DCD) in safety important systems (SIS) (5 papers); Problems raised by the integration SIS in the NPP control (7 papers); Description and presentation of DCD of SIS (6 papers); Results of experiences in engineering, manufacture, qualification operation of DCD hardware and software (5 papers). A separate abstract was prepared for each of these papers

  15. Integrated circuit devices in control systems of coal mining complexes

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Systems of automatic monitoring and control of coal mining complexes developed in the 1960's used electromagnetic relays, thyristors, and flip-flops on transistors of varying conductivity. The circuits' designers, devoted much attention to ensuring spark safety, lowering power consumption, and raising noise immunity and repairability of functional devices. The fast development of integrated circuitry led to the use of microelectronic components in most devices of mine automation. An analysis of specifications and experimental research into integrated circuits (IMS) shows that the series K 176 IMS components made by CMOS technology best meet mine conditions of operation. The use of IMS devices under mine conditions has demonstrated their high reliability. Further development of integrated circuitry involve using microprocessors and microcomputers. (SC)

  16. Charge transport models for reliability engineering of semiconductor devices

    International Nuclear Information System (INIS)

    Bina, M.

    2014-01-01

    The simulation of semiconductor devices is important for the assessment of device lifetimes before production. In this context, this work investigates the influence of the charge carrier transport model on the accuracy of bias temperature instability and hot-carrier degradation models in MOS devices. For this purpose, a four-state defect model based on a non-radiative multi phonon (NMP) theory is implemented to study the bias temperature instability. However, the doping concentrations typically used in nano-scale devices correspond to only a small number of dopants in the channel, leading to fluctuations of the electrostatic potential. Thus, the granularity of the doping cannot be ignored in these devices. To study the bias temperature instability in the presence of fluctuations of the electrostatic potential, the advanced drift diffusion device simulator Minimos-NT is employed. In a first effort to understand the bias temperature instability in p-channel MOSFETs at elevated temperatures, data from direct-current-current-voltage measurements is successfully reproduced using a four-state defect model. Differences between the four-state defect model and the commonly employed trapping model from Shockley, Read and Hall (SRH) have been investigated showing that the SRH model is incapable of reproducing the measurement data. This is in good agreement with the literature, where it has been extensively shown that a model based on SRH theory cannot reproduce the characteristic time constants found in BTI recovery traces. Upon inspection of recorded recovery traces after bias temperature stress in n-channel MOSFETs it is found that the gate current is strongly correlated with the drain current (recovery trace). Using a random discrete dopant model and non-equilibrium greens functions it is shown that direct tunnelling cannot explain the magnitude of the gate current reduction. Instead it is found that trap-assisted tunnelling, modelled using NMP theory, is the cause of this

  17. Simplified human thermoregulatory model for designing wearable thermoelectric devices

    Science.gov (United States)

    Wijethunge, Dimuthu; Kim, Donggyu; Kim, Woochul

    2018-02-01

    Research on wearable and implantable devices have become popular with the strong need in market. A precise understanding of the thermal properties of human skin, which are not constant values but vary depending on ambient condition, is required for the development of such devices. In this paper, we present simplified human thermoregulatory model for accurately estimating the thermal properties of the skin without applying rigorous calculations. The proposed model considers a variable blood flow rate through the skin, evaporation functions, and a variable convection heat transfer from the skin surface. In addition, wearable thermoelectric generation (TEG) and refrigeration devices were simulated. We found that deviations of 10-60% can be resulted in estimating TEG performance without considering human thermoregulatory model owing to the fact that thermal resistance of human skin is adapted to ambient condition. Simplicity of the modeling procedure presented in this work could be beneficial for optimizing and predicting the performance of any applications that are directly coupled with skin thermal properties.

  18. Loss Model and Efficiency Analysis of Tram Auxiliary Converter Based on a SiC Device

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2017-12-01

    Full Text Available Currently, the auxiliary converter in the auxiliary power supply system of a modern tram adopts Si IGBT as its switching device and with the 1700 V/225 A SiC MOSFET module commercially available from Cree, an auxiliary converter using all SiC devices is now possible. A SiC auxiliary converter prototype is developed during this study. The author(s derive the loss calculation formula of the SiC auxiliary converter according to the system topology and principle and each part loss in this system can be calculated based on the device datasheet. Then, the static and dynamic characteristics of the SiC MOSFET module used in the system are tested, which aids in fully understanding the performance of the SiC devices and provides data support for the establishment of the PLECS loss simulation model. Additionally, according to the actual circuit parameters, the PLECS loss simulation model is set up. This simulation model can simulate the actual operating conditions of the auxiliary converter system and calculate the loss of each switching device. Finally, the loss of the SiC auxiliary converter prototype is measured and through comparison it is found that the loss calculation theory and PLECS loss simulation model is valuable. Furthermore, the thermal images of the system can prove the conclusion about loss distribution to some extent. Moreover, these two methods have the advantages of less variables and fast calculation for high power applications. The loss models may aid in optimizing the switching frequency and improving the efficiency of the system.

  19. Embedded Control System for Smart Walking Assistance Device.

    Science.gov (United States)

    Bosnak, Matevz; Skrjanc, Igor

    2017-03-01

    This paper presents the design and implementation of a unique control system for a smart hoist, a therapeutic device that is used in rehabilitation of walking. The control system features a unique human-machine interface that allows the human to intuitively control the system just by moving or rotating its body. The paper contains an overview of the complete system, including the design and implementation of custom sensors, dc servo motor controllers, communication interfaces and embedded-system based central control system. The prototype of the complete system was tested by conducting a 6-runs experiment on 11 subjects and results are showing that the proposed control system interface is indeed intuitive and simple to adopt by the user.

  20. Innovative wave energy device applied to coastal observatory systems

    Science.gov (United States)

    Marcelli, Marco; Bonamano, Simone; Piermattei, Viviana; Scanu, Sergio; Paladini de Mendoza, Francesco; Martellucci, Riccardo; Maximo, Peviani

    2017-04-01

    Marine environment is one of the most promising sources of renewable energy, whose exploitation could have an effect on several application fields. This work presents the design of an innovative device based on the Oscillating Water Column (OWC), that allows to convert wave energy into electricity, suitable for the typical Mediterranean wave climate. The flexibility of the device permits its installation either in deep or shallow waters, with reduced costs of deployment, maintenance and connection to the grid. Furthermore, the replicability of the design allows the device to be installed in array of several number of similar units. The technical concept is to convey the sea water within a vertical pipe, in which the water movements activate a rotor connected to a generator that transforms the energy of the water motion into electricity. The hydrodynamic design of the pipe is built to minimize the losses due to friction and turbulence and to exploit the maximum possible energy from wave motion. The wave energy is directly absorbed by the rotational movement of the turbine blades located in the water itself allowing a further reduction of the energy losses associated with the transformation of the linear water motion into electrical generation in the air phase (typical configuration of the OWC devices). In this work the device components are described considering two possible configurations that use a Wells turbine or a Bulb type turbine. The system can be realized at a low cost, because of the modularity of the device project, which allows large freedom of sizes and placements, being able to be installed both individually and in arrays. The modularity, associated with the fact that the main elements of the system are available on the market, makes the device particularly attractive from the economic point of view. Finally, it is realized with a high constructive flexibility: the proposed system can be transported floating and moored to existing coastal structures or

  1. Modelling Framework and Assistive Device for Peripheral Intravenous Injections

    Science.gov (United States)

    Kam, Kin F.; Robinson, Martin P.; Gilbert, Mathew A.; Pelah, Adar

    2016-02-01

    Intravenous access for blood sampling or drug administration that requires peripheral venepuncture is perhaps the most common invasive procedure practiced in hospitals, clinics and general practice surgeries.We describe an idealised mathematical framework for modelling the dynamics of the peripheral venepuncture process. Basic assumptions of the model are confirmed through motion analysis of needle trajectories during venepuncture, taken from video recordings of a skilled practitioner injecting into a practice kit. The framework is also applied to the design and construction of a proposed device for accurate needle guidance during venepuncture administration, assessed as consistent and repeatable in application and does not lead to over puncture. The study provides insights into the ubiquitous peripheral venepuncture process and may contribute to applications in training and in the design of new devices, including for use in robotic automation.

  2. Experimental validation of models for Plasma Focus devices

    International Nuclear Information System (INIS)

    Rodriguez Palomino, Luis; Gonzalez, Jose; Clausse, Alejandro

    2003-01-01

    Plasma Focus(PF) Devices are thermonuclear pulsators that produce short pulsed radiation (X-ray, charged particles and neutrons). Since Filippov and Mather, investigations have been used to study plasma properties. Nowadays the interest about PF is focused in technology applications, related to the use of these devices as pulsed neutron sources. In the numerical calculus the Inter institutional PLADEMA (PLAsmas DEnsos MAgnetizados) network is developing three models. Each one is useful in different engineering stages of the Plasma Focus design. One of the main objectives in this work is a comparative study on the influence of the different parameters involved in each models. To validate these results, several experimental measurements under different geometry and initial conditions were performed. (author)

  3. Modeling Multi-Level Systems

    CERN Document Server

    Iordache, Octavian

    2011-01-01

    This book is devoted to modeling of multi-level complex systems, a challenging domain for engineers, researchers and entrepreneurs, confronted with the transition from learning and adaptability to evolvability and autonomy for technologies, devices and problem solving methods. Chapter 1 introduces the multi-scale and multi-level systems and highlights their presence in different domains of science and technology. Methodologies as, random systems, non-Archimedean analysis, category theory and specific techniques as model categorification and integrative closure, are presented in chapter 2. Chapters 3 and 4 describe polystochastic models, PSM, and their developments. Categorical formulation of integrative closure offers the general PSM framework which serves as a flexible guideline for a large variety of multi-level modeling problems. Focusing on chemical engineering, pharmaceutical and environmental case studies, the chapters 5 to 8 analyze mixing, turbulent dispersion and entropy production for multi-scale sy...

  4. Control system devices : architectures and supply channels overview.

    Energy Technology Data Exchange (ETDEWEB)

    Trent, Jason; Atkins, William Dee; Schwartz, Moses Daniel; Mulder, John C.

    2010-08-01

    This report describes a research project to examine the hardware used in automated control systems like those that control the electric grid. This report provides an overview of the vendors, architectures, and supply channels for a number of control system devices. The research itself represents an attempt to probe more deeply into the area of programmable logic controllers (PLCs) - the specialized digital computers that control individual processes within supervisory control and data acquisition (SCADA) systems. The report (1) provides an overview of control system networks and PLC architecture, (2) furnishes profiles for the top eight vendors in the PLC industry, (3) discusses the communications protocols used in different industries, and (4) analyzes the hardware used in several PLC devices. As part of the project, several PLCs were disassembled to identify constituent components. That information will direct the next step of the research, which will greatly increase our understanding of PLC security in both the hardware and software areas. Such an understanding is vital for discerning the potential national security impact of security flaws in these devices, as well as for developing proactive countermeasures.

  5. MEMS- and NEMS-based smart devices and systems

    Science.gov (United States)

    Varadan, Vijay K.

    2001-11-01

    The microelectronics industry has seen explosive growth during the last thirty years. Extremely large markets for logic and memory devices have driven the development of new materials, and technologies for the fabrication of even more complex devices with features sized now don at the sub micron and nanometer level. Recent interest has arisen in employing these materials, tools and technologies for the fabrication of miniature sensors and actuators and their integration with electronic circuits to produce smart devices and systems. This effort offers the promise of: 1) increasing the performance and manufacturability of both sensors and actuators by exploiting new batch fabrication processes developed including micro stereo lithographic an micro molding techniques; 2) developing novel classes of materials and mechanical structures not possible previously, such as diamond like carbon, silicon carbide and carbon nanotubes, micro-turbines and micro-engines; 3) development of technologies for the system level and wafer level integration of micro components at the nanometer precision, such as self-assembly techniques and robotic manipulation; 4) development of control and communication systems for MEMS devices, such as optical and RF wireless, and power delivery systems, etc. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composite provide a new avenue for future smart systems. The integration of NEMS (NanoElectroMechanical Systems), MEMS, IDTs (Interdigital Transducers) and required microelectronics and conformal antenna in the multifunctional smart materials and composites results in a smart system suitable for sensing and control of a variety functions in automobile, aerospace, marine and civil

  6. Interface requirements in nuclear medicine devices and systems

    International Nuclear Information System (INIS)

    Maguire, G.Q. Jr.; Brill, A.B.; Noz, M.E.

    1982-01-01

    Interface designs for three nuclear medicine imaging systems, and computer networking strategies proposed for medical imaging departments are presented. Configurations for two positron-emission-tomography devices (PET III and ECAT) and a general-purpose tomography instrument (the UNICON) are analyzed in terms of specific performance parameters. Interface designs for these machines are contrasted in terms of utilization of standard versus custom modules, cost, and ease of modification, upgrade, and support. The requirements of general purpose systems for medical image analysis, display, and archiving, are considered, and a realizable state-of-the-art system is specfied, including a suggested timetable

  7. Automatic Number Plate Recognition System for IPhone Devices

    Directory of Open Access Journals (Sweden)

    Călin Enăchescu

    2013-06-01

    Full Text Available This paper presents a system for automatic number plate recognition, implemented for devices running the iOS operating system. The methods used for number plate recognition are based on existing methods, but optimized for devices with low hardware resources. To solve the task of automatic number plate recognition we have divided it into the following subtasks: image acquisition, localization of the number plate position on the image and character detection. The first subtask is performed by the camera of an iPhone, the second one is done using image pre-processing methods and template matching. For the character recognition we are using a feed-forward artificial neural network. Each of these methods is presented along with its results.

  8. Development of an Erlang System Adaopted to Embedded Devices

    OpenAIRE

    Andersson, Fredrik; Bergström, Fabian

    2011-01-01

    Erlang is a powerful and robust language for writing massively parallel and distributed applications. With the introduction of multi-core ARM processors, the embedded market will be looking for ways of taking advantage of the newfound opportunities for parallelism. To support the development of embedded applications using Erlang we want to provide Erlang and Embedded developers with a run-time system suited for embedded devices. We have managed to shrink the disk size of the Erlang runtime sy...

  9. Dependable Design Flow for Protection Systems using Programmable Logic Devices

    CERN Document Server

    Kwiatkowski, M

    2011-01-01

    Programmable Logic Devices (PLD) such as Field Programmable Gate Arrays (FPGA) are becoming more prevalent in protection and safety-related electronic systems. When employing such programmable logic devices, extra care and attention needs to be taken. The final synthesis result, used to generate the bit-stream to program the device, must be shown to meet the design’s requirements. This paper describes how to maximize confidence using techniques such as Formal Methods, exhaustive Hardware Description Language (HDL) code simulation and hardware testing. An example is given for one of the critical functions of the Safe Machine Parameters (SMP) system, used in the protection of the Large Hadron Collider (LHC) at CERN. CERN is also working towards an adaptation of the IEC- 61508 lifecycle designed for Machine Protection Systems (MPS), and the High Energy Physics environment, implementation of a protection function in FPGA code is only one small step of this lifecycle. The ultimate aim of this project is to cre...

  10. A device model framework for magnetoresistive sensors based on the Stoner–Wohlfarth model

    International Nuclear Information System (INIS)

    Bruckner, Florian; Bergmair, Bernhard; Brueckl, Hubert; Palmesi, Pietro; Buder, Anton; Satz, Armin; Suess, Dieter

    2015-01-01

    The Stoner–Wohlfarth (SW) model provides an efficient analytical model to describe the behavior of magnetic layers within magnetoresistive sensors. Combined with a proper description of magneto-resistivity an efficient device model can be derived, which is necessary for an optimal electric circuit design. Parameters of the model are determined by global optimization of an application specific cost function which contains measured resistances for different applied fields. Several application cases are examined and used for validation of the device model. - Highlights: • An efficient device model framework for various types of magnetoresistive sensors is presented. • The model is based on the analytical solution of the Stoner–Wohlfarth model. • Numerical optimization methods provide optimal model parameters for a different application cases. • The model is applied to several application cases and is able to reproduce measured hysteresis and swiching behavior

  11. Device-Level Models Using Multi-Valley Effective Mass

    Science.gov (United States)

    Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Gao, Xujiao; Jacobson, N. Tobias; Mitchell, John A.; Montaño, Inès; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Continued progress in quantum electronics depends critically on the availability of robust device-level modeling tools that capture a wide range of physics and effective mass theory (EMT) is one means of building such models. Recent developments in multi-valley EMT show quantitative agreement with more detailed atomistic tight-binding calculations of phosphorus donors in silicon (Gamble, et. al., arXiv:1408.3159). Leveraging existing PDE solvers, we are developing a framework in which this multi-valley EMT is coupled to an integrated device-level description of several experimentally active qubit technologies. Device-level simulations of quantum operations will be discussed, as well as the extraction of process matrices at this level of theory. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  12. Economic analysis of using above ground gas storage devices for compressed air energy storage system

    Science.gov (United States)

    Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing

    2014-12-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.

  13. The Role of a Mental Model in Learning to Operate a Device.

    Science.gov (United States)

    Kieras, David E.; Bovair, Susan

    1984-01-01

    Describes three studies concerned with learning to operate a control panel device and how this learning is affected by understanding a device model that describes its internal mechanism. Results indicate benefits of a device model depend on whether it supports direct inference of exact steps required to operate the device. (Author/MBR)

  14. Contribution to the systemic study of energetic systems including electrochemical devices: Bond Graph formalism applied to modelling fuel cells, lithium-ion batteries and sun-racer; Contribution a l'etude systemique de dispositifs energetiques a composants electrochimiques. Formalisme Bond Graph applique aux piles a combustible, accumulateurs lithium-ion, vehicule solaire

    Energy Technology Data Exchange (ETDEWEB)

    Saisset, R.

    2004-04-01

    This thesis is a contribution to the study of electric power conversion systems including electrochemical devices. A systemic approach draws advantage of the unified Bond Graph formalism in order to model every component as well as the whole system. A state of the art of electrochemical devices for decentralized electric energy generation and storage put emphasis on common phenomena with the aim of developing 'system oriented' generic models. Solid Oxide and Proton Exchange Fuel Cells (SOFC, PEMFC), as well as Lithium Ion batteries, have been modelled through an efficient work with electrochemistry specialists. These models involve an explicit representation, at a macroscopic level, of conversion and irreversible phenomena linked to the chemical reaction and coupled together both in the hydraulic, chemical, thermodynamic, electric and thermal fields. These models are used to study the modularity of the components, particularly the electric and thermal imbalances in the series and parallel fuel cells associations. The systemic approach is also applied to the study of architectures and energy management of electric power generating units involving PEMFC and battery or super-capacitors storage. Different working conditions for the fuel cells are defined and studied, consisting in either voltage or current or power imposed by means of the storage and static converters environment. Identification of parameters and working tests are performed on specially developed test benches so as to validate theoretical results. At last, the method is applied to study a 'sun-racer', an original complex system with embedded photovoltaic generator, electrochemical storage and brush-less wheel motor, wholly modelled in order to compare various energy management onboard the solar vehicle 'Solelhada'. (author)

  15. Electromagnetic Vibration Energy Harvesting Devices Architectures, Design, Modeling and Optimization

    CERN Document Server

    Spreemann, Dirk

    2012-01-01

    Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the design...

  16. Charge-coupled-device X-ray detector performance model

    Science.gov (United States)

    Bautz, M. W.; Berman, G. E.; Doty, J. P.; Ricker, G. R.

    1987-01-01

    A model that predicts the performance characteristics of CCD detectors being developed for use in X-ray imaging is presented. The model accounts for the interactions of both X-rays and charged particles with the CCD and simulates the transport and loss of charge in the detector. Predicted performance parameters include detective and net quantum efficiencies, split-event probability, and a parameter characterizing the effective thickness presented by the detector to cosmic-ray protons. The predicted performance of two CCDs of different epitaxial layer thicknesses is compared. The model predicts that in each device incomplete recovery of the charge liberated by a photon of energy between 0.1 and 10 keV is very likely to be accompanied by charge splitting between adjacent pixels. The implications of the model predictions for CCD data processing algorithms are briefly discussed.

  17. EMC, RF, and Antenna Systems in Miniature Electronic Devices

    DEFF Research Database (Denmark)

    Ruaro, Andrea

    Advanced techniques for the control of electromagnetic interference (EMI) and for the optimization of the electromagnetic compatibility (EMC) performance has been developed under the constraints typical of miniature electronic devices (MED). The electromagnetic coexistence of multiple systems....... The structure allows for effective suppression of radiation from the MED, while taking into consideration the integration and miniaturization aspects. To increase the sensitivity of the system, a compact LNA suitable for on-body applications has been developed. The LNA allows for an increase in the overall...

  18. Energy management in mobile devices with the cinder operating system

    KAUST Repository

    Roy, Arjun

    2011-01-01

    We argue that controlling energy allocation is an increasingly useful and important feature for operating systems, especially on mobile devices. We present two new low-level abstractions in the Cinder operating system, reserves and taps, which store and distribute energy for application use. We identify three key properties of control - isolation, delegation, and subdivision - and show how using these abstractions can achieve them. We also show how the architecture of the HiStar information-flow control kernel lends itself well to energy control. We prototype and evaluate Cinder on a popular smartphone, the Android G1. Copyright © 2011 ACM.

  19. Development of computer-aided design system of elastic sensitive elements of automatic metering devices

    Science.gov (United States)

    Kalinkina, M. E.; Kozlov, A. S.; Labkovskaia, R. I.; Pirozhnikova, O. I.; Tkalich, V. L.; Shmakov, N. A.

    2018-05-01

    The object of research is the element base of devices of control and automation systems, including in its composition annular elastic sensitive elements, methods of their modeling, calculation algorithms and software complexes for automation of their design processes. The article is devoted to the development of the computer-aided design system of elastic sensitive elements used in weight- and force-measuring automation devices. Based on the mathematical modeling of deformation processes in a solid, as well as the results of static and dynamic analysis, the calculation of elastic elements is given using the capabilities of modern software systems based on numerical simulation. In the course of the simulation, the model was a divided hexagonal grid of finite elements with a maximum size not exceeding 2.5 mm. The results of modal and dynamic analysis are presented in this article.

  20. Interpretation and mapping of geological features using mobile devices for 3D outcrop modelling

    Science.gov (United States)

    Buckley, Simon J.; Kehl, Christian; Mullins, James R.; Howell, John A.

    2016-04-01

    Advances in 3D digital geometric characterisation have resulted in widespread adoption in recent years, with photorealistic models utilised for interpretation, quantitative and qualitative analysis, as well as education, in an increasingly diverse range of geoscience applications. Topographic models created using lidar and photogrammetry, optionally combined with imagery from sensors such as hyperspectral and thermal cameras, are now becoming commonplace in geoscientific research. Mobile devices (tablets and smartphones) are maturing rapidly to become powerful field computers capable of displaying and interpreting 3D models directly in the field. With increasingly high-quality digital image capture, combined with on-board sensor pose estimation, mobile devices are, in addition, a source of primary data, which can be employed to enhance existing geological models. Adding supplementary image textures and 2D annotations to photorealistic models is therefore a desirable next step to complement conventional field geoscience. This contribution reports on research into field-based interpretation and conceptual sketching on images and photorealistic models on mobile devices, motivated by the desire to utilise digital outcrop models to generate high quality training images (TIs) for multipoint statistics (MPS) property modelling. Representative training images define sedimentological concepts and spatial relationships between elements in the system, which are subsequently modelled using artificial learning to populate geocellular models. Photorealistic outcrop models are underused sources of quantitative and qualitative information for generating TIs, explored further in this research by linking field and office workflows through the mobile device. Existing textured models are loaded to the mobile device, allowing rendering in a 3D environment. Because interpretation in 2D is more familiar and comfortable for users, the developed application allows new images to be captured

  1. 75 FR 68200 - Medical Devices; Radiology Devices; Reclassification of Full-Field Digital Mammography System

    Science.gov (United States)

    2010-11-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 892 [Docket No. FDA-2008-N-0273] Medical Devices; Radiology Devices; Reclassification of Full- Field Digital... and Drugs, 21 CFR part 892 is amended as follows: PART 892--RADIOLOGY DEVICES 0 1. The authority...

  2. 76 FR 36548 - Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-06-22

    ... information related to the humanitarian device exemption for the Berlin Heart EXCOR Pediatric Ventricular Assist Device (VAD) sponsored by Berlin Heart, Inc. The Berlin Heart EXCOR Pediatric VAD device is a..., please contact AnnMarie Williams, Conference Management Staff, at 301-796-5966, at least 7 days in...

  3. Electron cyclotron beam measurement system in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Kamio, S., E-mail: kamio@nifs.ac.jp; Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  4. Tritium Systems Test Assembly: design for major device fabrication review

    International Nuclear Information System (INIS)

    Anderson, J.L.; Sherman, R.H.

    1977-06-01

    This document has been prepared for the Major Device Fabrication Review for the Tritium Systems Test Assembly (TSTA). The TSTA is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for fusion reactor systems. The principal objectives for TSTA are: (a) demonstrate the fuel cycle for fusion reactor systems; (b) develop test and qualify equipment for tritium service in the fusion program; (c) develop and test environmental and personnel protective systems; (d) evaluate long-term reliability of components; (e) demonstrate long-term safe handling of tritium with no major releases or incidents; and (f) investigate and evaluate the response of the fuel cycle and environmental packages to normal, off-normal, and emergency situations. This document presents the current status of a conceptual design and cost estimate for TSTA. The total cost to design, construct, and operate TSTA through FY-1981 is estimated to be approximately $12.2 M

  5. Railgun pellet injection system for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Oda, Y. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Azuma, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Satake, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Kasai, S. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan); Hasegawa, K. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan)

    1995-11-01

    A railgun pellet injection system has been developed for fusion experimental devices. Using a low electric energy railgun system, hydrogen pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high speed pellet injection into fusion plasmas. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. Under the same operational conditions, the energy conversion coefficient for the dummy pellets was around 0.4%, while that for the hydrogen pellets was around 0.12%. The highest hydrogen pellet velocity was 1.4 km s{sup -1} using a 1 m long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km s{sup -1} using a 3 m long railgun. (orig.).

  6. Railgun pellet injection system for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, M.; Hasegawa, K.

    1995-01-01

    A railgun pellet injection system has been developed for fusion experimental devices. Using a low electric energy railgun system, hydrogen pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high speed pellet injection into fusion plasmas. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. Under the same operational conditions, the energy conversion coefficient for the dummy pellets was around 0.4%, while that for the hydrogen pellets was around 0.12%. The highest hydrogen pellet velocity was 1.4 km s -1 using a 1 m long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km s -1 using a 3 m long railgun. (orig.)

  7. MODEL NATIVIS LANGUAGE ACQUISITION DEVICE (SEBUAH TEORI PEMEROLEHAN BAHASA

    Directory of Open Access Journals (Sweden)

    Mamluatul Hasanah

    2011-10-01

    Full Text Available The ability of using mother tongue has been possessed by every child. They can master the language without getting specific education. In a short time a child has mastered the language to communicate with others. There are many theories of language acquisition. One of them that still exists is The Native Model of Language Acquisition (LAD. This theory was pioneered by Noam Chomsky. In this language naturally. This ability develops automatically when the language is used is Language Acquisition Device (LAD. LAD constitutes a hypothesis of feature of grammatical rules used progressively by a child in accordance with his psychological development.

  8. Control device for start-up of reactor depressurization system

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Saito, Minoru; Oda, Shingo; Miura, Satoshi; Hashimoto, Koji; Tate, Hitoshi; Fujii, Kazunobu

    1998-01-01

    The present invention concerns are emergency reactor core cooling system (ECCS) of a BWR type reactor and provides a control device for start-up of an automatic depressurization system. Namely, the device has an object of preventing erroneous opening of a main steam escape safety value when testing a start-up signal circuit of an automatic depressurization system for testing the automatic depressurization system. A start-up signal circuit receives both signals of a reactor container pressure high signal and a reactor pressure vessel water level low signal and outputs an automatic start-up signal for compulsorily opening a main steam escape safety valve automatically. A test switch having a self-holding circuit is disposed to a central control chamber. A test signal circuit is disposed for preventing transfer of an erroneous start-up signal to the main steam escape safety valve due to a simulation signal during output test signals by the test switch. (I.S.)

  9. A compact electroencephalogram recording device with integrated audio stimulation system

    Science.gov (United States)

    Paukkunen, Antti K. O.; Kurttio, Anttu A.; Leminen, Miika M.; Sepponen, Raimo E.

    2010-06-01

    A compact (96×128×32 mm3, 374 g), battery-powered, eight-channel electroencephalogram recording device with an integrated audio stimulation system and a wireless interface is presented. The recording device is capable of producing high-quality data, while the operating time is also reasonable for evoked potential studies. The effective measurement resolution is about 4 nV at 200 Hz sample rate, typical noise level is below 0.7 μVrms at 0.16-70 Hz, and the estimated operating time is 1.5 h. An embedded audio decoder circuit reads and plays wave sound files stored on a memory card. The activities are controlled by an 8 bit main control unit which allows accurate timing of the stimuli. The interstimulus interval jitter measured is less than 1 ms. Wireless communication is made through bluetooth and the data recorded are transmitted to an external personal computer (PC) interface in real time. The PC interface is implemented with LABVIEW® and in addition to data acquisition it also allows online signal processing, data storage, and control of measurement activities such as contact impedance measurement, for example. The practical application of the device is demonstrated in mismatch negativity experiment with three test subjects.

  10. Modeller af komplicerede systemer

    DEFF Research Database (Denmark)

    Mortensen, J.

    emphasizes their use in relation to technical systems. All the presented models, with the exception of the types presented in chapter 2, are non-theoretical non-formal conceptual network models. Two new model types are presented: 1) The System-Environment model, which describes the environments interaction...... with conceptual modeling in relation to process control. It´s purpose is to present classify and exemplify the use of a set of qualitative model types. Such model types are useful in the early phase of modeling, where no structured methods are at hand. Although the models are general in character, this thesis......This thesis, "Modeller af komplicerede systemer", represents part of the requirements for the Danish Ph.D.degree. Assisting professor John Nørgaard-Nielsen, M.Sc.E.E.Ph.D. has been principal supervisor and professor Morten Lind, M.Sc.E.E.Ph.D. has been assisting supervisor. The thesis is concerned...

  11. Design of central control system for large helical device (LHD)

    International Nuclear Information System (INIS)

    Yamazaki, K.; Kaneko, H.; Yamaguchi, S.; Watanabe, K.Y.; Taniguchi, Y.; Motojima, O.

    1993-11-01

    The world largest superconducting fusion machine LHD (Large Helical Device) is under construction in Japan, aiming at steady state operations. Its basic control system consists of UNIX computers, FDDI/Ethernet LANs, VME multiprocessors and VxWorks real-time OS. For flexible and reliable operations of the LHD machine a cooperative distributed system with more than 30 experimental equipments is controlled by the central computer and the main timing system, and is supervised by the main protective interlock system. Intelligent control systems, such as applications of fuzzy logic and neural networks, are planed to be adopted for flexible feedback controls of plasma configurations besides the classical PID control scheme. Design studies of its control system and related R and D programs with coil-plasma simulation systems are now being performed. The construction of the LHD Control Building in a new site will begin in 1995 after finishing the construction of the LHD Experimental Building, and the hardware construction of the LHD central control equipments will be started in 1996. A first plasma production by means of this control system is expected in 1997. (author)

  12. Turbomolecular pumping systems for nuclear fusion devices in JAERI

    International Nuclear Information System (INIS)

    Ohga, Tokumichi; Arai, Takashi

    1978-01-01

    The turbomolecular pumping systems for the nuclear fusion devices JFT-2, JFT-2a and the injector test stands ITS-1, 2 and 3 in the Japan Atomic Energy Research Institute are mainly reported. For these vacuum systems, many requirements exist, such as oil free, large exhausting speed up to high pressure region (10 -3 Torr), compactness and easy operation and maintenance, etc., for the special usage. The outline of the systems and components, and the functions and the operational characteristics of the turbomolecular pumps are introduced. Concerning to the vacuum systems for JFT-2 and JFT-2a, the main system flow charts, the key specifications, the exhausting characteristic curves in case of starting from the atmospheric pressure for both JFT-2 and JFT-2a, and the conductance for hydrogen gas in the high vacuum side of JFT-2a are explained. As for the vacuum system for ITS-2, the main specification, the system flow chart, the main components, the functions, the conductance for hydrogen gas, the pumping characteristic curve, the starting characteristic of the turbomolecular pump, the exhausting speed for hydrogen gas and an example of mass spectrum are shown. The vacuum pressure obtained is almost 10 -5 -- 10 -6 torr for the three pumping systems. (Nakai, Y.)

  13. Self-consistent modeling of amorphous silicon devices

    International Nuclear Information System (INIS)

    Hack, M.

    1987-01-01

    The authors developed a computer model to describe the steady-state behaviour of a range of amorphous silicon devices. It is based on the complete set of transport equations and takes into account the important role played by the continuous distribution of localized states in the mobility gap of amorphous silicon. Using one set of parameters they have been able to self-consistently simulate the current-voltage characteristics of p-i-n (or n-i-p) solar cells under illumination, the dark behaviour of field-effect transistors, p-i-n diodes and n-i-n diodes in both the ohmic and space charge limited regimes. This model also describes the steady-state photoconductivity of amorphous silicon, in particular, its dependence on temperature, doping and illumination intensity

  14. The systems integration modeling system

    International Nuclear Information System (INIS)

    Danker, W.J.; Williams, J.R.

    1990-01-01

    This paper discusses the systems integration modeling system (SIMS), an analysis tool for the detailed evaluation of the structure and related performance of the Federal Waste Management System (FWMS) and its interface with waste generators. It's use for evaluations in support of system-level decisions as to FWMS configurations, the allocation, sizing, balancing and integration of functions among elements, and the establishment of system-preferred waste selection and sequencing methods and other operating strategies is presented. SIMS includes major analysis submodels which quantify the detailed characteristics of individual waste items, loaded casks and waste packages, simulate the detailed logistics of handling and processing discrete waste items and packages, and perform detailed cost evaluations

  15. Remote device control and monitor system for the LHD deuterium experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Hideya, E-mail: nakanisi@nifs.ac.jp [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Dept. Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan); Ohsuna, Masaki; Ito, Tatsuki; Nonomura, Miki; Imazu, Setsuo; Emoto, Masahiko; Iwata, Chie; Yoshida, Masanobu; Yokota, Mitsuhiro; Maeno, Hiroya; Aoyagi, Miwa; Ogawa, Hideki; Nakamura, Osamu; Morita, Yoshitaka; Inoue, Tomoyuki; Watanabe, Kiyomasa [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Ida, Katsumi; Ishiguro, Seiji; Kaneko, Osamu [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Dept. Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan)

    2016-11-15

    Highlights: • Device remote control will be significant for the LHD deuterium experiments. • A central management GUI to control the power distribution for devices. • For safety, power management is separated from operational commanding. • Wi-Fi was tested and found to be not reliable with fusion plasmas. - Abstract: Upon beginning the LHD deuterium experiment, the opportunity for maintenance work in the torus hall will be conspicuously reduced such that all instruments must be controlled remotely. The LHD data acquisition (DAQ) and archiving system have been using about 110 DAQ front-end, and the DAQ central control and monitor system has been implemented for their remote management. This system is based on the “multi-agent” model whose communication protocol has been unified. Since DAQ front-end electronics would suffer from the “single-event effect” (SEE) of D-D neutrons, software-based remote operation might become ineffective, and then securely intercepting or recycling the electrical power of the device would be indispensable for recovering from a non-responding fault condition. In this study, a centralized control and monitor system has been developed for a number of power distribution units (PDUs). This system adopts the plug-in structure in which the plug-in modules can absorb the differences among the commercial products of numerous vendors. The combination of the above-mentioned functionalities has led to realizing the flexible and highly reliable remote control infrastructure for the plasma diagnostics and the device management in LHD.

  16. Alpha Channeling in Open-System Magnetic Devices

    International Nuclear Information System (INIS)

    Fisch, Nathaniel

    2016-01-01

    The Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, is a continuation of the Grant DE-FG02-06ER54851, Alpha Channeling in Mirror Machines. In publications funded by DE-SC0000736, the grant DE-FG02-06ER54851 was actually credited. The key results obtained under Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, appear in a series of publications. The earlier effort under DE-FG02- 06ER54851 was the subject of a previous Final Report. The theme of this later effort has been unusual confinement effects, or de-confinement effects, in open-field magnetic confinement devices. First, the possibilities in losing axisymmetry were explored. Then a number of issues in rotating plasma were addressed. Most importantly, a spinoff application to plasma separations was recognized, which also resulted in a provisional patent application. (That provisional patent application, however, was not pursued further.) Alpha channeling entails injecting waves into magnetically confined plasma to release energy from one particular ion while ejecting that ion. The ejection of the ion is actually a concomitant effect in releasing energy from the ion to the wave. In rotating plasma, there is the opportunity to store the energy in a radial electric field rather than in waves. In other words, the ejected alpha particle loses its energy to the radial potential, which in turn produces plasma rotation. This is a very useful effect, since producing radial electric fields by other means are technologically more difficult. In fact, one can heat ions, and then eject them, to produce the desired radial field. In each case, there is a separation effect of different ions, which generalizes the original alpha-channeling concept of separating alpha ash from hydrogen. In a further generalization of the separation concept, a double-well filter represents a new way to produce high-throughput separations of ions, potentially useful for nuclear waste remediation.

  17. Management information system of medical equipment using mobile devices

    Science.gov (United States)

    Núñez, C.; Castro, D.

    2011-09-01

    The large numbers of technologies currently incorporated into mobile devices transform them into excellent tools for capture and to manage the information, because of the increasing computing power and storage that allow to add many miscellaneous applications. In order to obtain benefits of these technologies, in the biomedical engineering field, it was developed a mobile information system for medical equipment management. The central platform for the system it's a mobile phone, which by a connection with a web server, it's capable to send and receive information relative to any medical equipment. Decoding a type of barcodes, known as QR-Codes, the management process is simplified and improved. These barcodes identified the medical equipments in a database, when these codes are photographed and decoded with the mobile device, you can access to relevant information about the medical equipment in question. This Project in it's actual state is a basic support tool for the maintenance of medical equipment. It is also a modern alternative, competitive and economic in the actual market.

  18. The transient electric field measurement system for EAST device

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wayong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Ji, Z.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Zhu, C.M. [The Experiment & Verification Center of State Grid Electric Power Research Institute (The Automation Equipment EMC Lab. of State Grid Co.), Nanjing, Jiangsu (China); Zhang, Z.C.; Ma, T.F.; Xu, Z.H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2016-11-15

    The electromagnetic environment around the Experimental Advanced Superconducting Tokamak (EAST) device is very complex during plasma discharge experiment. In order to fully monitor the changes of electric field around the EAST device during plasma discharge, a transient electric field measurement system based on PCI eXtensions for Instrumentation (PXI) platform has been designed. A digitizer is used for high-speed data acquisition of raw signals from electric field sensors, and a Field Programmable Gate Array (FPGA) module is used for realizing an on-the-fly fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) algorithm including a beforehand identified antenna factor (AF) to achieve finally a calibrated and filtered electric field measurement, then these signals can be displayed and easily analyzed. The raw signals from electric field sensors are transferred through optical fiber by optical isolation to reduce electromagnetic interference (EMI). The high speed data streaming technology is used for data storage. A prototype of this system has been realized to measure the transient electric field strength, with the real-time processing and continuous acquisition ability of one channel of 14-bit resolution and up to 50 MHz sampling rate, and 6 KHz FFT frequency resolution.

  19. A Text-Independent Speaker Authentication System for Mobile Devices

    Directory of Open Access Journals (Sweden)

    Florentin Thullier

    2017-09-01

    Full Text Available This paper presents a text independent speaker authentication method adapted to mobile devices. Special attention was placed on delivering a fully operational application, which admits a sufficient reliability level and an efficient functioning. To this end, we have excluded the need for any network communication. Hence, we opted for the completion of both the training and the identification processes directly on the mobile device through the extraction of linear prediction cepstral coefficients and the naive Bayes algorithm as the classifier. Furthermore, the authentication decision is enhanced to overcome misidentification through access privileges that the user should attribute to each application beforehand. To evaluate the proposed authentication system, eleven participants were involved in the experiment, conducted in quiet and noisy environments. Public speech corpora were also employed to compare this implementation to existing methods. Results were efficient regarding mobile resources’ consumption. The overall classification performance obtained was accurate with a small number of samples. Then, it appeared that our authentication system might be used as a first security layer, but also as part of a multilayer authentication, or as a fall-back mechanism.

  20. 78 FR 79300 - Cardiovascular Devices; Reclassification of Intra-Aortic Balloon and Control Systems for Acute...

    Science.gov (United States)

    2013-12-30

    .... FDA-2013-N-0581] Cardiovascular Devices; Reclassification of Intra-Aortic Balloon and Control Systems... of these devices into class II. List of Subjects in 21 CFR Part 870 Medical devices, Cardiovascular... Commissioner of Food and Drugs, 21 CFR part 870 is amended as follows: PART 870--CARDIOVASCULAR DEVICES 0 1...

  1. 77 FR 16126 - Microbiology Devices; Reclassification of Nucleic Acid-Based Systems for Mycobacterium tuberculosis

    Science.gov (United States)

    2012-03-19

    .... FDA-2012-N-0159] Microbiology Devices; Reclassification of Nucleic Acid-Based Systems for... convened a meeting of the Microbiology Devices Panel of the Medical Devices Advisory Committee (Microbiology Devices Panel) on June 29, 2011 (Ref. 2). Although not a formal reclassification meeting, panel...

  2. 78 FR 31576 - Enforcement Proceeding; Certain Two-Way Global Satellite Communication Devices, System and...

    Science.gov (United States)

    2013-05-24

    ...-Way Global Satellite Communication Devices, System and Components Thereof; Notice of Institution of... importation of certain two-way global satellite communication devices, system and components thereof by reason... importation any two-way global satellite communication devices, system, and components thereof that infringe...

  3. Micro and nano devices in passive millimetre wave imaging systems

    Science.gov (United States)

    Appleby, R.

    2013-06-01

    The impact of micro and nano technology on millimetre wave imaging from the post war years to the present day is reviewed. In the 1950s whisker contacted diodes in mixers and vacuum tubes were used to realise both radiometers and radars but required considerable skill to realise the performance needed. Development of planar semiconductor devices such as Gunn and Schottky diodes revolutionised mixer performance and provided considerable improvement. The next major breakthrough was high frequency transistors based on gallium arsenide which were initially used at intermediate frequencies but later after further development at millimeter wave frequencies. More recently Monolithic Microwave Integrated circuits(MMICs) offer exceptional performance and the opportunity for innovative design in passive imaging systems. In the future the use of micro and nano technology will continue to drive system performance and we can expect to see integration of antennae, millimetre wave and sub millimetre wave circuits and signal processing.

  4. System theory in medical diagnostic devices: an overview.

    Science.gov (United States)

    Baura, Gail D

    2006-01-01

    Medical diagnostics refers to testing conducted either in vitro or in vivo to provide critical health care information for risk assessment, early diagnosis, treatment, or disease management. Typical in vivo diagnostic tests include the computed tomography scan, magnetic resonance imaging, and blood pressure screening. Typical in vitro diagnostic tests include cholesterol, Papanicolaou smear, and conventional glucose monitoring tests. Historically, devices associated with both types of diagnostics have used heuristic curve fitting during signal analysis. However, since the early 1990s, a few enterprising engineers and physicians have used system theory to improve their core processing for feature detection and system identification. Current applications include automated Pap smear screening for detection of cervical cancer and diagnosis of Alzheimer's disease. Future applications, such as disease prediction before symptom onset and drug treatment customization, have been catalyzed by the Human Genome Project.

  5. Analytical models for total dose ionization effects in MOS devices.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Bogdan, Carolyn W.

    2008-08-01

    MOS devices are susceptible to damage by ionizing radiation due to charge buildup in gate, field and SOI buried oxides. Under positive bias holes created in the gate oxide will transport to the Si / SiO{sub 2} interface creating oxide-trapped charge. As a result of hole transport and trapping, hydrogen is liberated in the oxide which can create interface-trapped charge. The trapped charge will affect the threshold voltage and degrade the channel mobility. Neutralization of oxidetrapped charge by electron tunneling from the silicon and by thermal emission can take place over long periods of time. Neutralization of interface-trapped charge is not observed at room temperature. Analytical models are developed that account for the principal effects of total dose in MOS devices under different gate bias. The intent is to obtain closed-form solutions that can be used in circuit simulation. Expressions are derived for the aging effects of very low dose rate radiation over long time periods.

  6. Left Atrial Appendage Closure Device With Delivery System: A Health Technology Assessment

    Science.gov (United States)

    Nevis, Immaculate; Falk, Lindsey; Wells, David; Higgins, Caroline

    2017-01-01

    Background Atrial fibrillation is a common cardiac arrhythmia, and 15% to 20% of those who have experienced stroke have atrial fibrillation. Treatment options to prevent stroke in people with atrial fibrillation include pharmacological agents such as novel oral anticoagulants or nonpharmacological devices such as the left atrial appendage closure device with delivery system (LAAC device). The objectives of this health technology assessment were to assess the clinical effectiveness and cost-effectiveness of the LAAC device versus novel oral anticoagulants in patients without contraindications to oral anticoagulants and versus antiplatelet agents in patients with contraindications to oral anticoagulants. Methods We performed a systematic review and network meta-analysis. We also conducted an economic literature review, economic evaluation, and budget impact analysis to assess the cost-effectiveness and budget impact of the LAAC device compared with novel oral anticoagulants and oral antiplatelet agents (e.g., aspirin). We also spoke with patients to better understand their preferences, perspectives, and values. Results Seven randomized controlled studies met the inclusion criteria for indirect comparison. Five studies assessed the effectiveness of novel oral anticoagulants versus warfarin, and two studies compared the LAAC device with warfarin. No studies were identified that compared the LAAC device with aspirin in patients in whom oral anticoagulants were contraindicated. Using the random effects model, we found that the LAAC device was comparable to novel oral anticoagulants in reducing stroke (odds ratio [OR] 0.85; credible interval [Cr.I] 0.63–1.05). Similarly, the reduction in the risk of all-cause mortality was comparable between the LAAC device and novel oral anticoagulants (OR 0.71; Cr.I 0.49–1.22). The LAAC device was found to be superior to novel oral anticoagulants in preventing hemorrhagic stroke (OR 0.45; Cr.I 0.29–0.79), whereas novel oral

  7. 78 FR 49272 - Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-08-13

    ... into two types: (1) Devices that provide automatic chest compressions at a fixed compression rate and... circuit is comprised of multiple device types, including, but not limited to, an oxygenator, blood pump... submit a brief statement of the general nature of the evidence or arguments they wish to present, the...

  8. Tank vent processing system having a corrosion preventive device

    International Nuclear Information System (INIS)

    Ouchi, Shoichi; Sato, Hirofumi

    1987-01-01

    Purpose: To prevent corrosion of a tank vent processing device by injecting an oxygen gas. Constitution: Oxygen gas and phosphorous at high temperature are poured into a tank vent processing device and amorphous oxide layers optimum to the prevention of external corrosion are formed to the inner surface of the device. Since the corrosion preventive device using the oxygen gas injection can be constituted as a relatively simple device, it is more economical than constituting a relatively large tank vent processing device with corrosion resistant stainless steels. (Kamimura, M.)

  9. Periodic orbits of solar sail equipped with reflectance control device in Earth-Moon system

    Science.gov (United States)

    Yuan, Jianping; Gao, Chen; Zhang, Junhua

    2018-02-01

    In this paper, families of Lyapunov and halo orbits are presented with a solar sail equipped with a reflectance control device in the Earth-Moon system. System dynamical model is established considering solar sail acceleration, and four solar sail steering laws and two initial Sun-sail configurations are introduced. The initial natural periodic orbits with suitable periods are firstly identified. Subsequently, families of solar sail Lyapunov and halo orbits around the L1 and L2 points are designed with fixed solar sail characteristic acceleration and varying reflectivity rate and pitching angle by the combination of the modified differential correction method and continuation approach. The linear stabilities of solar sail periodic orbits are investigated, and a nonlinear sliding model controller is designed for station keeping. In addition, orbit transfer between the same family of solar sail orbits is investigated preliminarily to showcase reflectance control device solar sail maneuver capability.

  10. Research on Experiment of Islanding Protection Device of Grid-connected Photovoltaic System Based on RTDS

    Science.gov (United States)

    Zhou, Ning; Yang, Jia; Cheng, Zheng; Chen, Bo; Su, Yong Chun; Shu, Zhan; Zou, Jin

    2017-06-01

    Solar photovoltaic power generation is the power generation using solar cell module converting sunlight into DC electric energy. In the paper an equivalent model of solar photovoltaic power generation system is built in RTDS. The main circuit structure of the two-stage PV grid-connected system consists of the DC-DC, DC-AC circuit. The MPPT (Maximum Power Point Tracking) control of the PV array is controlled by adjusting the duty ratio of the DC-DC circuit. The proposed control strategy of constant voltage/constant reactive power (V/Q) control is successfully implemented grid-connected control of the inverter when grid-connected operation. The closed-loop experiment of islanding protection device of photovoltaic power plant on RTDS, verifies the correctness of the simulation model, and the experimental verification can be applied to this type of device.

  11. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    Directory of Open Access Journals (Sweden)

    Xiang He

    2015-12-01

    Full Text Available Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer, wireless signal strength indicators (WiFi, Bluetooth, Zigbee, and visual sensors (LiDAR, camera. People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  12. Design and construction of engineering test device of a multi-purpose radwaste incineration system

    International Nuclear Information System (INIS)

    Wang Peiyi; Zhou Lianquan; Ma Mingxie; Qiu Mingcai; Yang Liguo; Li Xiaohai; Zhang Xiaobin; Lu Xiaowu; Dong Jingling; Wang Xujin; Li Chuanlian; Yang Baomin

    2002-01-01

    The author describes designs of main un-standard devices, monitoring system and safety system, as well as construction of the engineering system devices for a multi-purpose radwaste incineration system. Un-standard devices include waste crusher, pyrolysis furnace, incinerator furnace, cool stream dilution device and bag filter, etc. The monitoring system mainly includes industrial controlled computer, supported by conventional electrical equipment and instruments. Designs of system safety takes account of containment of radioactive materials fire-prevention, explosion prevention, anti-corrosion, redundance and reservation, emergency system, controlling and electric safety system, etc. Results show that main technological system remains good airtight with leakage ratio at 0.67%

  13. Early decision-analytic modeling - a case study on vascular closure devices.

    Science.gov (United States)

    Brandes, Alina; Sinner, Moritz F; Kääb, Stefan; Rogowski, Wolf H

    2015-10-27

    As economic considerations become more important in healthcare reimbursement, decisions about the further development of medical innovations need to take into account not only medical need and potential clinical effectiveness, but also cost-effectiveness. Already early in the innovation process economic evaluations can support decisions on development in specific indications or patient groups by anticipating future reimbursement and implementation decisions. One potential concept for early assessment is value-based pricing. The objective is to assess the feasibility of value-based pricing and product design for a hypothetical vascular closure device in the pre-clinical stage which aims at decreasing bleeding events. A deterministic decision-analytic model was developed to estimate the cost-effectiveness of established vascular closure devices from the perspective of the Statutory Health Insurance system. To identify early benchmarks for pricing and product design, three strategies of determining the product's value are explored: 1) savings from complications avoided by the new device; 2) valuation of the avoided complications based on an assumed willingness-to-pay-threshold (the efficiency frontier approach); 3) value associated with modifying the care pathways within which the device would be applied. Use of established vascular closure devices is dominated by manual compression. The hypothetical vascular closure device reduces overall complication rates at higher costs than manual compression. Maximum cost savings of only about €4 per catheterization could be realized by applying the hypothetical device. Extrapolation of an efficiency frontier is only possible for one subgroup where vascular closure devices are not a dominated strategy. Modifying care in terms of same-day discharge of patients treated with vascular closure devices could result in cost savings of €400-600 per catheterization. It was partially feasible to calculate value-based prices for the

  14. Animal Models for Evaluation of Bone Implants and Devices: Comparative Bone Structure and Common Model Uses.

    Science.gov (United States)

    Wancket, L M

    2015-09-01

    Bone implants and devices are a rapidly growing field within biomedical research, and implants have the potential to significantly improve human and animal health. Animal models play a key role in initial product development and are important components of nonclinical data included in applications for regulatory approval. Pathologists are increasingly being asked to evaluate these models at the initial developmental and nonclinical biocompatibility testing stages, and it is important to understand the relative merits and deficiencies of various species when evaluating a new material or device. This article summarizes characteristics of the most commonly used species in studies of bone implant materials, including detailed information about the relevance of a particular model to human bone physiology and pathology. Species reviewed include mice, rats, rabbits, guinea pigs, dogs, sheep, goats, and nonhuman primates. Ultimately, a comprehensive understanding of the benefits and limitations of different model species will aid in rigorously evaluating a novel bone implant material or device. © The Author(s) 2015.

  15. Model predictive control approach for a CPAP-device

    Directory of Open Access Journals (Sweden)

    Scheel Mathias

    2017-09-01

    Full Text Available The obstructive sleep apnoea syndrome (OSAS is characterized by a collapse of the upper respiratory tract, resulting in a reduction of the blood oxygen- and an increase of the carbon dioxide (CO2 - concentration, which causes repeated sleep disruptions. The gold standard to treat the OSAS is the continuous positive airway pressure (CPAP therapy. The continuous pressure keeps the upper airway open and prevents the collapse of the upper respiratory tract and the pharynx. Most of the available CPAP-devices cannot maintain the pressure reference [1]. In this work a model predictive control approach is provided. This control approach has the possibility to include the patient’s breathing effort into the calculation of the control variable. Therefore a patient-individualized control strategy can be developed.

  16. Numerical modelling of electromagnetic loads on fusion device structures

    International Nuclear Information System (INIS)

    Bettini, Paolo; Palumbo, Maurizio Furno; Specogna, Ruben

    2014-01-01

    In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine

  17. Numerical modelling of electromagnetic loads on fusion device structures

    Science.gov (United States)

    Bettini, Paolo; Furno Palumbo, Maurizio; Specogna, Ruben

    2014-03-01

    In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine.

  18. MODELING PROTECTIVE DEVICES FOR DISTRIBUTION SYSTEMS WITH DISTRIBUTED GENERATION USING AN EMTP-TYPE TOOL REPRESENTACIÓN EN EMTP DE DISPOSITIVOS DE PROTECCIÓN DE REDES DE DISTRIBUCIÓN CON GENERACIÓN DISTRIBUIDA

    Directory of Open Access Journals (Sweden)

    Juan A Martínez-Velasco

    2010-08-01

    Full Text Available This paper presents the main features of a library of modules for representation of protective devices of distribution networks with distributed generation (DG. The impact of distributed generation in a distribution network depends, among other aspects, on the design of the protection system and the coordination between the different protective devices. The presence of distributed generation changes the radial nature of distribution systems and affects the performance of the protection system. This document discusses the present protection practices for distribution systems and DG interties, describes the implementation of protective devices (circuit breakers, relays, reclosers, fuses, sectionalizers in an EMTP-type tool, and presents some simulation results whose main goal is to analyze the impact of synchronous machine-based embedded generators on the coordination between the different types of protective devices.Este artículo presenta las características principales de una librería de módulos desarrollada para representar dispositivos de protección de una red de distribución de energía eléctrica con generación distribuida (GD. El impacto de la generación distribuida depende, entre otros aspectos, del diseño del sistema de protección, y de la coordinación entre los diferentes dispositivos de protección. La presencia de unidades generadoras altera el flujo radial inherente a un sistema de distribución y afecta al comportamiento del sistema de protección. Este trabajo presenta una introducción de los sistemas de protección de las redes de distribución y de la interconexión de unidades generadoras, describe la implantación de dispositivos de protección (interruptores, relés, reenganchadores, fusibles, seccionalizadores en un programa tipo EMTP, y presenta algunos resultados obtenidos mediante simulación, cuyo principal objetivo es ilustrar el impacto que la generación distribuida basada en generadores síncronos puede

  19. Printed polymer photonic devices for optical interconnect systems

    Science.gov (United States)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.

  20. Integrating Simulated Physics and Device Virtualization in Control System Testbeds

    OpenAIRE

    Redwood , Owen; Reynolds , Jason; Burmester , Mike

    2016-01-01

    Part 3: INFRASTRUCTURE MODELING AND SIMULATION; International audience; Malware and forensic analyses of embedded cyber-physical systems are tedious, manual processes that testbeds are commonly not designed to support. Additionally, attesting the physics impact of embedded cyber-physical system malware has no formal methodologies and is currently an art. This chapter describes a novel testbed design methodology that integrates virtualized embedded industrial control systems and physics simula...

  1. A Systematic Approach for Understanding and Modeling the Performance of Network Security Devices

    OpenAIRE

    Beyene, Yordanos

    2014-01-01

    In this dissertation, we attempt to understand and predict the performance of security devices. More specifically, we examine the following types of questions: (a) Given a security device, and a traffic load, can we predict the performance of the device? (b) Given a traffic load and a security device, how can we tune the performance of the device to achieve the desired trade-off between security and performance? We consider both stateful firewalls and Network Intrusion Prevention systems (NIP...

  2. Systems and methods for scalable perovskite device fabrication

    Science.gov (United States)

    Huang, Jinsong; Dong, Qingfeng; Sao, Yuchuan

    2017-02-28

    Continuous processes for fabricating a perovskite device are described that include using a doctor blade for continuously forming a perovskite layer and using a conductive tape lamination process to form an anode or a cathode layer on the perovskite device.

  3. System and method of operating toroidal magnetic confinement devices

    Science.gov (United States)

    Chance, M.S.; Jardin, S.C.; Stix, T.H.; Grimm, R.C.; Manickam, J.; Okabayashi, M.

    1984-08-30

    This invention pertains to methods and arrangements for attaining high beta values in plasma confinement devices. More specifically, this invention pertains to methods for accessing the second stability region of operation in toroidal magnetic confinement devices.

  4. Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems

    Science.gov (United States)

    Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram

    2014-12-01

    Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.

  5. Modeling selective attention using a neuromorphic analog VLSI device.

    Science.gov (United States)

    Indiveri, G

    2000-12-01

    Attentional mechanisms are required to overcome the problem of flooding a limited processing capacity system with information. They are present in biological sensory systems and can be a useful engineering tool for artificial visual systems. In this article we present a hardware model of a selective attention mechanism implemented on a very large-scale integration (VLSI) chip, using analog neuromorphic circuits. The chip exploits a spike-based representation to receive, process, and transmit signals. It can be used as a transceiver module for building multichip neuromorphic vision systems. We describe the circuits that carry out the main processing stages of the selective attention mechanism and provide experimental data for each circuit. We demonstrate the expected behavior of the model at the system level by stimulating the chip with both artificially generated control signals and signals obtained from a saliency map, computed from an image containing several salient features.

  6. The Earth System Model

    Science.gov (United States)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  7. RSMASS system model development

    International Nuclear Information System (INIS)

    Marshall, A.C.; Gallup, D.R.

    1998-01-01

    RSMASS system mass models have been used for more than a decade to make rapid estimates of space reactor power system masses. This paper reviews the evolution of the RSMASS models and summarizes present capabilities. RSMASS has evolved from a simple model used to make rough estimates of space reactor and shield masses to a versatile space reactor power system model. RSMASS uses unique reactor and shield models that permit rapid mass optimization calculations for a variety of space reactor power and propulsion systems. The RSMASS-D upgrade of the original model includes algorithms for the balance of the power system, a number of reactor and shield modeling improvements, and an automatic mass optimization scheme. The RSMASS-D suite of codes cover a very broad range of reactor and power conversion system options as well as propulsion and bimodal reactor systems. Reactor choices include in-core and ex-core thermionic reactors, liquid metal cooled reactors, particle bed reactors, and prismatic configuration reactors. Power conversion options include thermoelectric, thermionic, Stirling, Brayton, and Rankine approaches. Program output includes all major component masses and dimensions, efficiencies, and a description of the design parameters for a mass optimized system. In the past, RSMASS has been used as an aid to identify and select promising concepts for space power applications. The RSMASS modeling approach has been demonstrated to be a valuable tool for guiding optimization of the power system design; consequently, the model is useful during system design and development as well as during the selection process. An improved in-core thermionic reactor system model RSMASS-T is now under development. The current development of the RSMASS-T code represents the next evolutionary stage of the RSMASS models. RSMASS-T includes many modeling improvements and is planned to be more user-friendly. RSMASS-T will be released as a fully documented, certified code at the end of

  8. Devices, systems, and methods for detecting nucleic acids using sedimentation

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory J.

    2017-10-24

    Embodiments of the present invention are directed toward devices, systems, and method for conducting nucleic acid purification and quantification using sedimentation. In one example, a method includes generating complexes which bind to a plurality of beads in a fluid sample, individual ones of the complexes comprising a nucleic acid molecule such as DNA or RNA and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  9. Disruptive Logic Architectures and Technologies From Device to System Level

    CERN Document Server

    Gaillardon, Pierre-Emmanuel; Clermidy, Fabien

    2012-01-01

    This book discusses the opportunities offered by disruptive technologies to overcome the economical and physical limits currently faced by the electronics industry. It provides a new methodology for the fast evaluation of an emerging technology from an architectural perspective and discusses the implications from simple circuits to complex architectures. Several technologies are discussed, ranging from 3-D integration of devices (Phase Change Memories, Monolithic 3-D, Vertical NanoWires-based transistors) to dense 2-D arrangements (Double-Gate Carbon Nanotubes, Sublithographic Nanowires, Lithographic Crossbar arrangements). Novel architectural organizations, as well as the associated tools, are presented in order to explore this freshly opened design space. Describes a novel architectural organization for future reconfigurable systems; Includes a complete benchmarking toolflow for emerging technologies; Generalizes the description of reconfigurable circuits in terms of hierarchical levels; Assesses disruptive...

  10. Systemic resilience model

    International Nuclear Information System (INIS)

    Lundberg, Jonas; Johansson, Björn JE

    2015-01-01

    It has been realized that resilience as a concept involves several contradictory definitions, both for instance resilience as agile adjustment and as robust resistance to situations. Our analysis of resilience concepts and models suggest that beyond simplistic definitions, it is possible to draw up a systemic resilience model (SyRes) that maintains these opposing characteristics without contradiction. We outline six functions in a systemic model, drawing primarily on resilience engineering, and disaster response: anticipation, monitoring, response, recovery, learning, and self-monitoring. The model consists of four areas: Event-based constraints, Functional Dependencies, Adaptive Capacity and Strategy. The paper describes dependencies between constraints, functions and strategies. We argue that models such as SyRes should be useful both for envisioning new resilience methods and metrics, as well as for engineering and evaluating resilient systems. - Highlights: • The SyRes model resolves contradictions between previous resilience definitions. • SyRes is a core model for envisioning and evaluating resilience metrics and models. • SyRes describes six functions in a systemic model. • They are anticipation, monitoring, response, recovery, learning, self-monitoring. • The model describes dependencies between constraints, functions and strategies

  11. 77 FR 58579 - Certain Two-Way Global Satellite Communication Devices, System and Components Thereof...

    Science.gov (United States)

    2012-09-21

    ... Communication Devices, System and Components Thereof; Institution of Investigation Pursuant to 19 U.S.C. 1337... certain two-way global satellite communication devices, system and components thereof that infringe one or... within the United States after importation of certain two-way global satellite communication devices...

  12. Selected System Models

    Science.gov (United States)

    Schmidt-Eisenlohr, F.; Puñal, O.; Klagges, K.; Kirsche, M.

    Apart from the general issue of modeling the channel, the PHY and the MAC of wireless networks, there are specific modeling assumptions that are considered for different systems. In this chapter we consider three specific wireless standards and highlight modeling options for them. These are IEEE 802.11 (as example for wireless local area networks), IEEE 802.16 (as example for wireless metropolitan networks) and IEEE 802.15 (as example for body area networks). Each section on these three systems discusses also at the end a set of model implementations that are available today.

  13. 2011 Marine Hydrokinetic Device Modeling Workshop: Final Report; March 1, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Reed, M.; Smith, B.

    2011-10-01

    This report summarizes the NREL Marine and Hydrokinetic Device Modeling Workshop. The objectives for the modeling workshop were to: (1) Review the designs of existing MHK device prototypes and discuss design and optimization procedures; (2) Assess the utility and limitations of modeling techniques and methods presently used for modeling MHK devices; (3) Assess the utility and limitations of modeling methods used in other areas, such as naval architecture and ocean engineering (e.g., oil & gas industry); and (4) Identify the necessary steps to link modeling with other important components that analyze MHK devices (e.g., tank testing, PTO design, mechanical design).

  14. Alignment and focusing device for a multibeam laser system

    International Nuclear Information System (INIS)

    Sweatt, W.C.

    1980-01-01

    Large inertial confinement fusion laser systems have many beams focusing on a small target. The Antares system is a 24-beam CO 2 pulse laser. To produce uniform illumination, the 24 beams must be individually focused on (or near) the target's surface in a symmetric pattern. To assess the quality of a given beam, we will locate a Smartt (point diffraction) interferometer at the desired focal point and illuminate it with an alignment laser. The resulting fringe pattern shows defocus, lateral misalignment, and beam aberrations; all of which can be minimized by tilting and translating the focusing mirror and the preceding flat mirror. The device described in this paper will remotely translate the Smartt interferometer to any position in the target space and point it in any direction using a two-axis gimbal. The fringes produced by the interferometer are relayed out of the target vacuum shell to a vidicon by a train or prisms. We are designing four separate snap-in heads to mount on the gimbal; two of which are Smartt interferometers (for 10.6 μm and 633 nm) and two for pinholes, should we wish to put an alignment beam backwards through the system

  15. A Mobile Device System for Early Warning of ECG Anomalies

    Directory of Open Access Journals (Sweden)

    Adam Szczepański

    2014-06-01

    Full Text Available With the rapid increase in computational power of mobile devices the amount of ambient intelligence-based smart environment systems has increased greatly in recent years. A proposition of such a solution is described in this paper, namely real time monitoring of an electrocardiogram (ECG signal during everyday activities for identification of life threatening situations. The paper, being both research and review, describes previous work of the authors, current state of the art in the context of the authors’ work and the proposed aforementioned system. Although parts of the solution were described in earlier publications of the authors, the whole concept is presented completely for the first time along with the prototype implementation on mobile device—a Windows 8 tablet with Modern UI. The system has three main purposes. The first goal is the detection of sudden rapid cardiac malfunctions and informing the people in the patient’s surroundings, family and friends and the nearest emergency station about the deteriorating health of the monitored person. The second goal is a monitoring of ECG signals under non-clinical conditions to detect anomalies that are typically not found during diagnostic tests. The third goal is to register and analyze repeatable, long-term disturbances in the regular signal and finding their patterns.

  16. Microprocessor system for data acquisition and processing for the Flora device

    International Nuclear Information System (INIS)

    Klimov, V.M.

    1986-01-01

    ''VEhFORMIKA'' microprocessor system for data collection and processing when conducting experiments at the ''Flora'' device is described, its application is grounded. The complex allows one to conduct investigations using multichannel methods and exercise the device electrophysical control

  17. Polycrystalline CVD diamond device level modeling for particle detection applications

    Science.gov (United States)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-12-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  18. Polycrystalline CVD diamond device level modeling for particle detection applications

    International Nuclear Information System (INIS)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-01-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  19. Surface ionization wave in a plasma focus-like model device

    International Nuclear Information System (INIS)

    Yordanov, V; Blagoev, A; Ivanova-Stanik, I; Veldhuizen, E M van; Nijdam, S; Dijk, J van; Mullen, J J A M van der

    2008-01-01

    A numerical particle in cell-Monte Carlo model of the breakdown in the plasma focus device simulates the development of an ionization wave sliding along the insulator. In order to validate this model a planar model device is created. The pictures of the discharges taken by a fast optical camera show that we have qualitative agreement between the model and the experimental observations.

  20. Surface ionization wave in a plasma focus-like model device

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, V; Blagoev, A [Faculty of Physics, University of Sofia, 5 James Bourchier Blvd, BG-1164, Sofia (Bulgaria); Ivanova-Stanik, I [IPPLM, 23 Hery St, PO Box 49, PL-00-908 Warsaw (Poland); Veldhuizen, E M van; Nijdam, S; Dijk, J van; Mullen, J J A M van der [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)], E-mail: v.yordanov@phys.uni-sofia.bg

    2008-11-07

    A numerical particle in cell-Monte Carlo model of the breakdown in the plasma focus device simulates the development of an ionization wave sliding along the insulator. In order to validate this model a planar model device is created. The pictures of the discharges taken by a fast optical camera show that we have qualitative agreement between the model and the experimental observations.

  1. Modeling cellular systems

    CERN Document Server

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  2. Nuclear criticality safety and time reactivity enhancement aspects of energy amplifier system devices

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, F [ENEA, Centro Ricerche Trisaia, Rotondelle, Matera (Italy). Direzione INFO

    1995-12-01

    As far as the Rubbia`s and colleagues proposal of innovating Energy Amplifier system (E.A.s.) device driven by a particle beam accelerator is concerned, four basic topics are comprised in the present paper: (1) A short outline of the nuclear aspects of Th-U and U-Pu fuel cycles regarding their general breeding and efficiency features. (2) The needed nuclear criticality control requirements have been studied in terms of safety regulating parameters on the basis of the ThO2 mixed oxides selected as fuel kind for the E.A.s. device technology development. Particular attention is devoted to time evolution of neutron multiplication factor since delayed development of the 233U buildup and so system reactivity are expected in the Th-U cycle. (3) Code E.A.s. device irradiation and post-irradiation modelling for determining higher actinides buildup, fission products formation and fuel consumption trends as function of time, system enrichment degree and flux level parameters. (4) The confirmation, on the basis of the same specific power irradiation, of expected actinides waste obtainment cleaner than the one deriving from the U-Pu cycle utilization. For this end, a model comparison of equivalent enriched fissile nuclides in both cycles has been devised as having, within the range of 0-700 days, ten irradiation periods of about 53 MW/ton specific power and equivalent cooling time post-irradiation periods.

  3. Design and development of a device management platform for EAST cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiwei, E-mail: zzw@ipp.ac.cn; Lu, Xiaofei, E-mail: xiaofeilu@ipp.ac.cn; Zhuang, Ming, E-mail: zhm@ipp.ac.cn; Hu, Liangbing, E-mail: huliangbing@ipp.ac.cn; Xia, Genhai, E-mail: xgh@ipp.ac.cn

    2014-05-15

    Highlights: • A device management platform for EAST cryogenic system based on DCS is designed. • This platform enhances the integrity and continuity of system device information. • It can help predictive maintenance and device management decision. - Abstract: EAST cryogenic system is one of the critical sub-systems of the EAST tokamak device. It is a large scale helium cryoplant, which adopts distributed control system to realize monitoring and control of the cryogenic process and devices. However, the maintenance and management of most field devices are still in the corrective maintenance or traditional preventive maintenance stage. Under maintained or over maintained problems widely exist, which could cause devices fault and increase operation costs. Therefore, a device management platform is proposed for a safe and steady operation as well as fault diagnosis and predictive maintenance of EAST cryogenic system. This paper presents the function design and architecture design of the cryogenic device management platform. This platform is developed based on DeltaV DCS and acquires monitoring data through OPC protocol. It consists of three pillars, namely device information management, device condition management, and device performance monitoring. The development and implementation of every pillar are illustrated in detail in this paper. Test results and discussions are presented in the end.

  4. Comparison of Prandtl–Ishlinskiı and Preisach modeling for smart devices applications

    Energy Technology Data Exchange (ETDEWEB)

    Al Janaideh, Mohammad [Department of Mechanical and Industrial Engineering, The Mechatronics and Microsystems Design Laboratory, University of Toronto, Toronto (Canada); Department of Mechatronics Engineering, The University of Jordan, Amman 11942 (Jordan); Davino, Daniele, E-mail: davino@unisannio.it [Department of Engineering, University of Sannio, I-82100 Benevento (Italy); Krejčí, Pavel [Institute of Mathematics, Czech Academy of Sciences, Zitna 25, CZ-11567 Praha 1 (Czech Republic); Visone, Ciro [Department of Engineering, University of Sannio, I-82100 Benevento (Italy)

    2016-04-01

    Hysteresis of smart devices should be modeled in order to improve the performances and to relieve the control system tasks. Prandtl–Ishlinskiı (PI) and Generalized Prandtl–Ishlinskiı (GPI) hysteresis operators are popular because of their easiness of implementation and of the availability of inverse closed formulas. Nevertheless, PI and GPI are a subset of Preisach model (PM). Therefore, in principle, they are limited in representing hysteretic behaviors with respect to PM. In this paper, a first attempt to study the representation error of GPI with respect to general Preisach hysteretic behavior is presented and evaluated through two numerical experiments.

  5. Communication Between Devices in the Viola Document Delivery System

    Directory of Open Access Journals (Sweden)

    Theodor Tolstoy

    2015-01-01

    Full Text Available Viola is a newly developed document delivery system that handles incoming and outgoing requests for printed books, articles, sharing electronic resources, and other document delivery services on the local level in a library organisation. An important part of Viola is the stack fetching Android application that enables librarians to collect books in the open and closed stacks in an efficient manner using a smartphone and a Bluetooth connected portable printer. The aim of this article is to show how information is transferred between systems and devices in Viola. The article presents code examples from Viola that use current .NET technologies. The examples span from the creation of high-level REST-based JSON APIs to byte array communication with a Bluetooth connected printer and the reading of RFID tags. Please note that code examples in this article are for illustration purposes only. Null checking and other exception handling has been removed for clarity. Code that is separated in Viola for testability and other reasons has been brought together to make it more readable.

  6. Automatic Data Logging and Quality Analysis System for Mobile Devices

    Directory of Open Access Journals (Sweden)

    Yong-Yi Fanjiang

    2017-01-01

    Full Text Available The testing phase of mobile device products includes two important test projects that must be completed before shipment: the field trial and the beta user trial. During the field trial, the product is certified based on its integration and stability with the local operator’s system, and, during the beta user trial, the product is certified by multiple users regarding its daily use, where the goal is to detect and solve early problems. In the traditional approach used to issue returns, testers must log into a web site, fill out a problem form, and then go through a browser or FTP to upload logs; however, this is inconvenient, and problems are reported slowly. Therefore, we propose an “automatic logging analysis system” (ALAS to construct a convenient test environment and, using a record analysis (log parser program, automate the parsing of log files and have questions automatically sent to the database by the system. Finally, the mean time between failures (MTBF is used to establish measurement indicators for the beta user trial.

  7. A Portable, Air-Jet-Actuator-Based Device for System Identification

    Science.gov (United States)

    Staats, Wayne; Belden, Jesse; Mazumdar, Anirban; Hunter, Ian

    2010-11-01

    System identification (ID) of human and robotic limbs could help in diagnosis of ailments and aid in optimization of control parameters and future redesigns. We present a self-contained actuator, which uses the Coanda effect to rapidly switch the direction of a high speed air jet to create a binary stochastic force input to a limb for system ID. The design of the actuator is approached with the goal of creating a portable device, which could deployed on robot or human limbs for in situ identification. The viability of the device is demonstrated by performing stochastic system ID on an underdamped elastic beam system with fixed inertia and stiffness, and variable damping. The non-parametric impulse response yielded from the stochastic system ID is modeled as a second order system, and the resultant parameters are found to be in excellent agreement with those found using more traditional system ID techniques. The current design could be further miniaturized and developed as a portable, wireless, on-site multi-axis system identification system for less intrusive and more widespread use.

  8. SUBWAY POWER SYSTEMS WITH MODERN SEMICONDUCTOR CONVERTERS AND ENERGY STORAGE DEVICES

    Directory of Open Access Journals (Sweden)

    O.I. Kholod

    2013-02-01

    Full Text Available Five subway power systems, a traditional power system and power systems with an active rectifier and an energy storage device, are considered. Estimation of energy loss in the analyzed subway power systems circuits is made.

  9. Process automation system for integration and operation of Large Volume Plasma Device

    International Nuclear Information System (INIS)

    Sugandhi, R.; Srivastava, P.K.; Sanyasi, A.K.; Srivastav, Prabhakar; Awasthi, L.M.; Mattoo, S.K.

    2016-01-01

    Highlights: • Analysis and design of process automation system for Large Volume Plasma Device (LVPD). • Data flow modeling for process model development. • Modbus based data communication and interfacing. • Interface software development for subsystem control in LabVIEW. - Abstract: Large Volume Plasma Device (LVPD) has been successfully contributing towards understanding of the plasma turbulence driven by Electron Temperature Gradient (ETG), considered as a major contributor for the plasma loss in the fusion devices. Large size of the device imposes certain difficulties in the operation, such as access of the diagnostics, manual control of subsystems and large number of signals monitoring etc. To achieve integrated operation of the machine, automation is essential for the enhanced performance and operational efficiency. Recently, the machine is undergoing major upgradation for the new physics experiments. The new operation and control system consists of following: (1) PXIe based fast data acquisition system for the equipped diagnostics; (2) Modbus based Process Automation System (PAS) for the subsystem controls and (3) Data Utilization System (DUS) for efficient storage, processing and retrieval of the acquired data. In the ongoing development, data flow model of the machine’s operation has been developed. As a proof of concept, following two subsystems have been successfully integrated: (1) Filament Power Supply (FPS) for the heating of W- filaments based plasma source and (2) Probe Positioning System (PPS) for control of 12 number of linear probe drives for a travel length of 100 cm. The process model of the vacuum production system has been prepared and validated against acquired pressure data. In the next upgrade, all the subsystems of the machine will be integrated in a systematic manner. The automation backbone is based on 4-wire multi-drop serial interface (RS485) using Modbus communication protocol. Software is developed on LabVIEW platform using

  10. Process automation system for integration and operation of Large Volume Plasma Device

    Energy Technology Data Exchange (ETDEWEB)

    Sugandhi, R., E-mail: ritesh@ipr.res.in; Srivastava, P.K.; Sanyasi, A.K.; Srivastav, Prabhakar; Awasthi, L.M.; Mattoo, S.K.

    2016-11-15

    Highlights: • Analysis and design of process automation system for Large Volume Plasma Device (LVPD). • Data flow modeling for process model development. • Modbus based data communication and interfacing. • Interface software development for subsystem control in LabVIEW. - Abstract: Large Volume Plasma Device (LVPD) has been successfully contributing towards understanding of the plasma turbulence driven by Electron Temperature Gradient (ETG), considered as a major contributor for the plasma loss in the fusion devices. Large size of the device imposes certain difficulties in the operation, such as access of the diagnostics, manual control of subsystems and large number of signals monitoring etc. To achieve integrated operation of the machine, automation is essential for the enhanced performance and operational efficiency. Recently, the machine is undergoing major upgradation for the new physics experiments. The new operation and control system consists of following: (1) PXIe based fast data acquisition system for the equipped diagnostics; (2) Modbus based Process Automation System (PAS) for the subsystem controls and (3) Data Utilization System (DUS) for efficient storage, processing and retrieval of the acquired data. In the ongoing development, data flow model of the machine’s operation has been developed. As a proof of concept, following two subsystems have been successfully integrated: (1) Filament Power Supply (FPS) for the heating of W- filaments based plasma source and (2) Probe Positioning System (PPS) for control of 12 number of linear probe drives for a travel length of 100 cm. The process model of the vacuum production system has been prepared and validated against acquired pressure data. In the next upgrade, all the subsystems of the machine will be integrated in a systematic manner. The automation backbone is based on 4-wire multi-drop serial interface (RS485) using Modbus communication protocol. Software is developed on LabVIEW platform using

  11. Garbage Modeling for On-device Speech Recognition

    NARCIS (Netherlands)

    Van Gysel, C.; Velikovich, L.; McGraw, I.; Beaufays, F.

    2015-01-01

    User interactions with mobile devices increasingly depend on voice as a primary input modality. Due to the disadvantages of sending audio across potentially spotty network connections for speech recognition, in recent years there has been growing attention to performing recognition on-device. The

  12. Development of Hand Grip Assistive Device Control System for Old People through Electromyography (EMG) Signal Acquisitions

    OpenAIRE

    Khamis Herman; Mohamaddan Shahrol; Komeda Takashi; Alias Aidil Azli; Tanjong Shirley Jonathan; Julai Norhuzaimin; Hashim Nurul ‘Izzati

    2017-01-01

    The hand grip assistive device is a glove to assist old people who suffer from hand weakness in their daily life activities. The device earlier control system only use simple on and off switch. This required old people to use both hand to activate the device. The new control system of the hand grip assistive device was developed to allow single hand operation for old people. New control system take advantages of electromyography (EMG) and flex sensor which was implemented to the device. It wa...

  13. Loss and thermal model for power semiconductors including device rating information

    DEFF Research Database (Denmark)

    Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon

    2014-01-01

    The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal models, only the electrical loadings are focused and treated as design variables, while the device rating is normally...

  14. STcontrol and NEWPORT Motion Controller Model ESP 301 Device

    CERN Document Server

    Kapanadze, Giorgi

    2015-01-01

    Pixel detectors are used to detect particle tracks in LHC experiments. This kind of detectors are built with silicon semiconductor diodes. Ionizing particles create charge in the diode and the reverse bias voltage creates electric field in the diode which causes effective charge collection by the drift of electrons [1]. One of the main parameter of tracker detectors is efficiency. The efficiency as a function of position in the pixel matrix can be evaluated by scanning the matrix with red and infrared lasers. It is important to know what is happening between pixels in terms of efficiency. We perform these measurements to test new type of pixel detectors for the LHC future upgrade in 2023. New type of detectors are needed because the radiation level will be much higher [2]. For the measurements we need to control a stage motion controller (NEWPORT Motion Controller Model ESP 301) with the existing software STcontrol, which is used for readout data from pixel detectors and to control other devices like the lase...

  15. System for measurement and automatic regulation of gas flow within an oil aging test device

    Directory of Open Access Journals (Sweden)

    Žigić Aleksandar

    2014-01-01

    Full Text Available This paper describes a system within an oil aging test device that serves for measurement and automatic regulation of gas flow. Following an already realized system that continuously monitors, logs, and regulates transformer oil temperature during the aging process and maintains temperature consistency within strict limits, a model of a flow meter and regulator of air or oxygen through transformer oil samples is developed. A special feature of the implemented system is the measurement of very small gas flows. A short technical description of the realized system is given with a functional block diagram. The basic technical characteristics of the system are specified, and the operating principles and application of the system are described. The paper also gives performance test results in a real exploitation environment.

  16. Photovoltaic Device Performance Evaluation Using an Open-Hardware System and Standard Calibrated Laboratory Instruments

    Directory of Open Access Journals (Sweden)

    Jesús Montes-Romero

    2017-11-01

    Full Text Available This article describes a complete characterization system for photovoltaic devices designed to acquire the current-voltage curve and to process the obtained data. The proposed system can be replicated for educational or research purposes without having wide knowledge about electronic engineering. Using standard calibrated instrumentation, commonly available in any laboratory, the accuracy of measurements is ensured. A capacitive load is used to bias the device due to its versatility and simplicity. The system includes a common part and an interchangeable part that must be designed depending on the electrical characteristics of each PV device. Control software, developed in LabVIEW, controls the equipment, performs automatic campaigns of measurements, and performs additional calculations in real time. These include different procedures to extrapolate the measurements to standard test conditions and methods to obtain the intrinsic parameters of the single diode model. A deep analysis of the uncertainty of measurement is also provided. Finally, the proposed system is validated by comparing the results obtained from some commercial photovoltaic modules to the measurements given by an independently accredited laboratory.

  17. MODEL DRIVEN DEVELOPMENT OF ONLINE BANKING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Bresfelean Vasile Paul

    2011-07-01

    Full Text Available In case of online applications the cycle of software development varies from the routine. The online environment, the variety of users, the treatability of the mass of information created by them, the reusability and the accessibility from different devices are all factors of these systems complexity. The use of model drive approach brings several advantages that ease up the development process. Working prototypes that simplify client relationship and serve as the base of model tests can be easily made from models describing the system. These systems make possible for the banks clients to make their desired actions from anywhere. The user has the possibility of accessing information or making transactions.

  18. 47 CFR 15.115 - TV interface devices, including cable system terminal devices.

    Science.gov (United States)

    2010-10-01

    ... output terminal(s) of the device terminated by a resistance equal to the rated output impedance. The...: (1) At any RF output terminal, the maximum measured RMS voltage, in microvolts, corresponding to the peak envelope power of the modulated signal during maximum amplitude peaks across a resistance (R in...

  19. 76 FR 6551 - Medical Devices; General and Plastic Surgery Devices; Classification of Contact Cooling System...

    Science.gov (United States)

    2011-02-07

    ... (classes) of devices, depending on the regulatory controls needed to provide reasonable assurance of their... addressed by adequate bench testing demonstrating that the feedback controls for temperature/ cooling are functional and do maintain target temperature within the stated value. Proper function of mechanical controls...

  20. 77 FR 8117 - Medical Devices; Cardiovascular Devices; Classification of the Endovascular Suturing System

    Science.gov (United States)

    2012-02-14

    ... premarket notification, prior to marketing the device, which contains information about the endovascular...), and the Unfunded Mandates Reform Act of 1995 (Pub. L. 104-4). Executive Orders 12866 and 13563 direct..., environmental, public health and safety, and other advantages; distributive impacts; and equity). The Agency...

  1. MYRRHA/XT-ADS primary system design and experimental devices

    International Nuclear Information System (INIS)

    Maes, D.

    2009-01-01

    The EUROTRANS project is an integrated project in the Sixth European Framework Program in the context of Partitioning and Transmutation. The objective of this project is to work towards an ETD (European Transmutation Demonstration) in a step-wise manner. The first step is to carry out an advanced design of a small-scale XT-ADS (eXperimental Transmutation in an Accelerator Driven System) for realisation in a short-term (about 10 years) as well as to accomplish a generic conceptual design of EFIT (European Facility for Industrial Transmutation) for realisation in the long-term. The MYRRHA-2005 design served as a starting basis for the XT-ADS. Many options have been revisited and the framework is now set up. While the MYRRHA-2005 design was still a conceptual design, the intention is to get at the end of the EUROTRANS project (March 2009) an advanced design of the XT-ADS, albeit a first advanced design. While the design work performed during the first years of the project (2005-2006) was mainly devoted to optimise and enhance the primary and secondary system configuration according to the suggestions and contributions of our industrial partners (Ansaldo Nucleare, Areva, Suez-Tractebel) within the DM1 (Domain 1 D ESIGN ) , the last year work objectives mainly consisted of (1) the release of the Remote Handling Design Catalogue for XT-ADS and (2) the formulation of the specification of the experimental devices according to the XT-ADS objectives and adapted to the actual XT-ADS core and core support structure design; (3) the detailed calculations of the main XT-ADS primary and secondary system components

  2. Modeling Sustainable Food Systems.

    Science.gov (United States)

    Allen, Thomas; Prosperi, Paolo

    2016-05-01

    The processes underlying environmental, economic, and social unsustainability derive in part from the food system. Building sustainable food systems has become a predominating endeavor aiming to redirect our food systems and policies towards better-adjusted goals and improved societal welfare. Food systems are complex social-ecological systems involving multiple interactions between human and natural components. Policy needs to encourage public perception of humanity and nature as interdependent and interacting. The systemic nature of these interdependencies and interactions calls for systems approaches and integrated assessment tools. Identifying and modeling the intrinsic properties of the food system that will ensure its essential outcomes are maintained or enhanced over time and across generations, will help organizations and governmental institutions to track progress towards sustainability, and set policies that encourage positive transformations. This paper proposes a conceptual model that articulates crucial vulnerability and resilience factors to global environmental and socio-economic changes, postulating specific food and nutrition security issues as priority outcomes of food systems. By acknowledging the systemic nature of sustainability, this approach allows consideration of causal factor dynamics. In a stepwise approach, a logical application is schematized for three Mediterranean countries, namely Spain, France, and Italy.

  3. Complete Loss and Thermal Model of Power Semiconductors Including Device Rating Information

    DEFF Research Database (Denmark)

    Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon

    2015-01-01

    Thermal loading of power devices are closely related to the reliability performance of the whole converter system. The electrical loading and device rating are both important factors that determine the loss and thermal behaviors of power semiconductor devices. In the existing loss and thermal...

  4. Designing and modeling a centrifugal microfluidic device to separate target blood cells

    International Nuclear Information System (INIS)

    Shamloo, Amir; Selahi, AmirAli; Madadelahi, Masoud

    2016-01-01

    The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of target cells using magnetic beads. The first model consists of one container in the inlet section and two containers in the outlets. Initially, the inlet container is filled with diluted blood sample which is a mixture of red blood cells (RBCs) plus neutrophils which are attached to Magnetic beads. It is shown that by using centrifugal and magnetic forces, this model can separate all neutrophils with recovery factor of ∼100%. In the second model, due to excess of magnetic beads in usual experimental analysis (to ensure that all target cells are attached to them) the geometry is improved by adding a third outlet for these free magnetic beads. It is shown that at angular velocity of 45 rad s −1 , recovery factor of 100% is achievable for RBCs, free magnetic beads and neutrophils as target cells. (paper)

  5. Designing and modeling a centrifugal microfluidic device to separate target blood cells

    Science.gov (United States)

    Shamloo, Amir; Selahi, AmirAli; Madadelahi, Masoud

    2016-03-01

    The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of target cells using magnetic beads. The first model consists of one container in the inlet section and two containers in the outlets. Initially, the inlet container is filled with diluted blood sample which is a mixture of red blood cells (RBCs) plus neutrophils which are attached to Magnetic beads. It is shown that by using centrifugal and magnetic forces, this model can separate all neutrophils with recovery factor of ~100%. In the second model, due to excess of magnetic beads in usual experimental analysis (to ensure that all target cells are attached to them) the geometry is improved by adding a third outlet for these free magnetic beads. It is shown that at angular velocity of 45 rad s-1, recovery factor of 100% is achievable for RBCs, free magnetic beads and neutrophils as target cells.

  6. Aerial measuring system sensor modeling

    International Nuclear Information System (INIS)

    Detwiler, Rebecca

    2002-01-01

    The AMS fixed-wing and rotary-wing systems are critical National Nuclear Security Administration (NNSA) Emergency Response assets. This project is principally focused on the characterization of the sensors utilized with these systems via radiation transport calculations. The Monte Carlo N-Particle code (MCNP) which has been developed at Los Alamos National Laboratory was used to model the detector response of the AMS fixed wing and helicopter systems. To validate the calculations, benchmark measurements were made for simple source-detector configurations. The fixed-wing system is an important tool in response to incidents involving the release of mixed fission products (a commercial power reactor release), the threat or actual explosion of a Radiological Dispersal Device, and the loss or theft of a large industrial source (a radiography source). Calculations modeled the spectral response for the sensors contained, a 3-element NaI detector pod and HpGe detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photo-peak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 C i/m2

  7. Processes in construction of failure management expert systems from device design information

    Science.gov (United States)

    Malin, Jane T.; Lance, Nick

    1987-01-01

    This paper analyzes the tasks and problem solving methods used by an engineer in constructing a failure management expert system from design information about the device to te diagnosed. An expert test engineer developed a trouble-shooting expert system based on device design information and experience with similar devices, rather than on specific expert knowledge gained from operating the device or troubleshooting its failures. The construction of the expert system was intensively observed and analyzed. This paper characterizes the knowledge, tasks, methods, and design decisions involved in constructing this type of expert system, and makes recommendations concerning tools for aiding and automating construction of such systems.

  8. A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays

    Directory of Open Access Journals (Sweden)

    S. Illera

    2015-01-01

    Full Text Available We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  9. 78 FR 36702 - Cardiovascular Devices; Reclassification of Intra-Aortic Balloon and Control Systems (IABP) for...

    Science.gov (United States)

    2013-06-19

    .... FDA-2013-N-0581] Cardiovascular Devices; Reclassification of Intra-Aortic Balloon and Control Systems... Device In the preamble to the proposed rule (44 FR 13369; March 9, 1979), the Cardiovascular Device... Bypass Grafting: A Propensity Score Analysis,'' Interactive Cardiovascular and Thoracic Surgery, vol. 9...

  10. Carbon material based microelectromechanical system (MEMS): Fabrication and devices

    Science.gov (United States)

    Xu, Wenjun

    This PhD dissertation presents the exploration and development of two carbon materials, carbon nanotubes (CNTs) and carbon fiber (CF), as either key functional components or unconventional substrates for a variety of MEMS applications. Their performance in three different types of MEMS devices, namely, strain/stress sensors, vibration-powered generators and fiber solar cells, were evaluated and the working mechanisms of these two non-traditional materials in these systems were discussed. The work may potentially enable the development of new types of carbon-MEMS devices. Carbon nanotubes were selected from the carbon family due to several advantageous characteristics that this nanomaterial offers. They carry extremely high mechanical strength (Ey=1TPa), superior electrical properties (current density of 4x109 A/cm2), exceptional piezoresistivity (G=2900), and unique spatial format (high aspect ratio hollow nanocylinder), among other properties. If properly utilized, all these merits can give rise to a variety of new types of carbon nanotube based micro- and nanoelectronics that can greatly fulfill the need for the next generation of faster, smaller and better devices. However, before these functions can be fully realized, one substantial issue to cope with is how to implement CNTs into these systems in an effective and controllable fashion. Challenges associated with CNTs integration include very poor dispersibility in solvents, lack of melting/sublimation point, and unfavorable rheology with regard to mixing and processing highly viscous, CNT-loaded polymer solutions. These issues hinder the practical progress of CNTs both in a lab scale and in the industrial level. To this end, a MEMS-assisted electrophoretic deposition technique was developed, aiming to achieve controlled integration of CNT into both conventional and flexible microsystems at room temperature with a relatively high throughput. MEMS technology has demonstrated strong capability in developing

  11. Effective vulnerability assessments for physical security devices, systems, and programs

    International Nuclear Information System (INIS)

    Johnston, R.G.; Garcia, A.R.E.

    2002-01-01

    Full text: The efficacy of devices, systems, and programs used for physical security depend critically on having periodic and effective vulnerability assessments. Effective vulnerability assessments, in turn, require certain conditions and attributes. These include: a proper understanding of their purpose; not confusing vulnerability assessments with other kinds of metrics, analyses, tests, and security exercises; the view that vulnerabilities are inevitable, and that finding them is good news (since they can then be mitigated), not bad news; rejection of findings of no vulnerabilities; avoidance of mere 'compliance mode' rubber stamping; the use of the proper outside, independent, imaginative personnel; psychologically predisposed to finding and demonstrating problems; the absence of conflicts of interest; no unrealistic constraints on the possible attack tools, procedures, personnel, or strategies; efforts to not just find and demonstrate vulnerabilities, but also to suggest possible countermeasures; proper context; input and buy-in from ALL facility security personnel, especially low-level personnel; emphasis on the simplest, most relevant attacks first; no underestimation of potential adversaries; consideration of fault analysis attacks; awareness of Rohrbach's Maxim and Shannon's Maxim. In addition to these factors, we will cover some of the complex issues and problems associated with the design of vulnerability assessments. There will also be suggestions on how to conduct effective vulnerability assessments on a severely limited budget. We will conclude with a discussion of both conventional and unconventional ways of reporting results. (author)

  12. Efficient Device-Independent Entanglement Detection for Multipartite Systems

    Science.gov (United States)

    Baccari, F.; Cavalcanti, D.; Wittek, P.; Acín, A.

    2017-04-01

    Entanglement is one of the most studied properties of quantum mechanics for its application in quantum information protocols. Nevertheless, detecting the presence of entanglement in large multipartite states continues to be a great challenge both from the theoretical and the experimental point of view. Most of the known methods either have computational costs that scale inefficiently with the number of particles or require more information on the state than what is attainable in everyday experiments. We introduce a new technique for entanglement detection that provides several important advantages in these respects. First, it scales efficiently with the number of particles, thus allowing for application to systems composed by up to few tens of particles. Second, it needs only the knowledge of a subset of all possible measurements on the state, therefore being apt for experimental implementation. Moreover, since it is based on the detection of nonlocality, our method is device independent. We report several examples of its implementation for well-known multipartite states, showing that the introduced technique has a promising range of applications.

  13. Modeling Complex Systems

    CERN Document Server

    Boccara, Nino

    2010-01-01

    Modeling Complex Systems, 2nd Edition, explores the process of modeling complex systems, providing examples from such diverse fields as ecology, epidemiology, sociology, seismology, and economics. It illustrates how models of complex systems are built and provides indispensable mathematical tools for studying their dynamics. This vital introductory text is useful for advanced undergraduate students in various scientific disciplines, and serves as an important reference book for graduate students and young researchers. This enhanced second edition includes: . -recent research results and bibliographic references -extra footnotes which provide biographical information on cited scientists who have made significant contributions to the field -new and improved worked-out examples to aid a student’s comprehension of the content -exercises to challenge the reader and complement the material Nino Boccara is also the author of Essentials of Mathematica: With Applications to Mathematics and Physics (Springer, 2007).

  14. Modeling Complex Systems

    International Nuclear Information System (INIS)

    Schreckenberg, M

    2004-01-01

    This book by Nino Boccara presents a compilation of model systems commonly termed as 'complex'. It starts with a definition of the systems under consideration and how to build up a model to describe the complex dynamics. The subsequent chapters are devoted to various categories of mean-field type models (differential and recurrence equations, chaos) and of agent-based models (cellular automata, networks and power-law distributions). Each chapter is supplemented by a number of exercises and their solutions. The table of contents looks a little arbitrary but the author took the most prominent model systems investigated over the years (and up until now there has been no unified theory covering the various aspects of complex dynamics). The model systems are explained by looking at a number of applications in various fields. The book is written as a textbook for interested students as well as serving as a comprehensive reference for experts. It is an ideal source for topics to be presented in a lecture on dynamics of complex systems. This is the first book on this 'wide' topic and I have long awaited such a book (in fact I planned to write it myself but this is much better than I could ever have written it!). Only section 6 on cellular automata is a little too limited to the author's point of view and one would have expected more about the famous Domany-Kinzel model (and more accurate citation!). In my opinion this is one of the best textbooks published during the last decade and even experts can learn a lot from it. Hopefully there will be an actualization after, say, five years since this field is growing so quickly. The price is too high for students but this, unfortunately, is the normal case today. Nevertheless I think it will be a great success! (book review)

  15. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  16. [Study on the reform and improvement of the medical device registration system in China].

    Science.gov (United States)

    Wang, Lanming

    2012-11-01

    Based on the theories of the Government Regulation and Administrative Licensure, aiming at the current situations of medical device registration system in China, some policy suggestions for future reform and improvement were provided as follows. (1) change the concepts of medical device registration administration. (2) perfect the regulations of medical device registration administration. (3) reform the medical device review organizational system. (4) Optimize the procedure of review and approval. (5) set up and maintain a professional team of review and approval staff. (6) reinforce the post-marketing supervision of medical devices. (7) foster and bring into play of the role of non-government organizations.

  17. New handling systems as technical support for the working process. Part 6. Feeding devices

    Energy Technology Data Exchange (ETDEWEB)

    Becher, H; Burkhardt, R; Drexel, P; Graf, B; Krreis, W

    1982-03-01

    Social, technical and economic reasons require an enhanced application of handling systems such as industrial robots. Quality and efficiency of an industrial robot depends greatly on feeding devices, and the ARGE-HHS within its project new handling systems as a technical aid in the working process intends to analyze all feeding devices that are likely to be most suitable for advanced applications. Forty one feeding devices were developed, known devices were modified, adapted to different applications, and tested. A variety of feeding devices for most applications in the field of material handling is reported.

  18. Design and Analysis of a Novel Centrifugal Braking Device for a Mechanical Antilock Braking System.

    Science.gov (United States)

    Yang, Cheng-Ping; Yang, Ming-Shien; Liu, Tyng

    2015-06-01

    A new concept for a mechanical antilock braking system (ABS) with a centrifugal braking device (CBD), termed a centrifugal ABS (C-ABS), is presented and developed in this paper. This new CBD functions as a brake in which the output braking torque adjusts itself depending on the speed of the output rotation. First, the structure and mechanical models of the entire braking system are introduced and established. Second, a numerical computer program for simulating the operation of the system is developed. The characteristics of the system can be easily identified and can be designed with better performance by using this program to studying the effects of different design parameters. Finally, the difference in the braking performance between the C-ABS and the braking system with or without a traditional ABS is discussed. The simulation results indicate that the C-ABS can prevent the wheel from locking even if excessive operating force is provided while still maintaining acceptable braking performance.

  19. The infrared camera system on the HL-2A tokamak device

    International Nuclear Information System (INIS)

    Li Wei; Lu Jie; Yi Ping

    2009-04-01

    In order to measure and analyze the heat flux on the divertor plate under different discharge conditions, an infrared camera diagnostic system for HL-2A Device has been developed. The infrared camera diagnostic system mainly includes the thermograph with uncooled microbolometer Focal Plane Array detector, Zinc Selenide window, Firewire Fiber Repeaters, 50 m long fibers, magnetic shielding box and data acquisition card. The diagnostic system can provide high spatial resolution, long distance control and real-time data acquisition. Based on the surface temperature measured by the infrared camera diagnostic system and the knowledge of the copper thermal properties, the heat flux can be derived by heat conduct model. The infrared camera diagnostic system and preliminary results are presented in details. (authors)

  20. Medical devices; exemption from premarket notification; Class II devices; optical impression systems for computer assisted design and manufacturing. Final rule.

    Science.gov (United States)

    2003-04-22

    The Food and Drug Administration (FDA) is publishing an order granting a petition requesting exemption from the premarket notification requirements for data acquisition units for ceramic dental restoration systems. This rule exempts from premarket notification data acquisition units for ceramic dental restoration systems and establishes a guidance document as a special control for this device. FDA is publishing this order in accordance with the Food and Drug Administration Modernization Act of 1997 (FDAMA).

  1. Reconfigurable Computing for Embedded Systems, FPGA Devices and Software Components

    National Research Council Canada - National Science Library

    Bardouleau, Graham; Kulp, James

    2005-01-01

    In recent years the size and capabilities of field-programmable gate array (FPGA) devices have increased to a point where they can be deployed as adjunct processing elements within a multicomputer environment...

  2. System equivalent model mixing

    Science.gov (United States)

    Klaassen, Steven W. B.; van der Seijs, Maarten V.; de Klerk, Dennis

    2018-05-01

    This paper introduces SEMM: a method based on Frequency Based Substructuring (FBS) techniques that enables the construction of hybrid dynamic models. With System Equivalent Model Mixing (SEMM) frequency based models, either of numerical or experimental nature, can be mixed to form a hybrid model. This model follows the dynamic behaviour of a predefined weighted master model. A large variety of applications can be thought of, such as the DoF-space expansion of relatively small experimental models using numerical models, or the blending of different models in the frequency spectrum. SEMM is outlined, both mathematically and conceptually, based on a notation commonly used in FBS. A critical physical interpretation of the theory is provided next, along with a comparison to similar techniques; namely DoF expansion techniques. SEMM's concept is further illustrated by means of a numerical example. It will become apparent that the basic method of SEMM has some shortcomings which warrant a few extensions to the method. One of the main applications is tested in a practical case, performed on a validated benchmark structure; it will emphasize the practicality of the method.

  3. Electro-thermal Modeling of Modern Power Devices for Studying Abnormal Operating Conditions

    DEFF Research Database (Denmark)

    Wu, Rui

    in industrial power electronic systems in the range above 10 kW. The failure of IGBTs can be generally classified as catastrophic failures and wear out failures. A wear out failure is mainly induced by accumulated degradation with time, while a catastrophic failure is triggered by a single-event abnormal....... The objective of this project has been to model and predict the electro-thermal behavior of IGBT power modules under abnormal conditions, especially short circuits. A thorough investigation on catastrophic failure modes and mechanisms of modern power semiconductor devices, including IGBTs and power diodes, has...

  4. Performance Analysis of Dual-Polarized Massive MIMO System with Human-Care IoT Devices for Cellular Networks

    Directory of Open Access Journals (Sweden)

    Jun-Ki Hong

    2018-01-01

    Full Text Available The performance analysis of the dual-polarized massive multiple-input multiple-output (MIMO system with Internet of things (IoT devices is studied when outdoor human-care IoT devices are connected to a cellular network via a dual-polarized massive MIMO system. The research background of the performance analysis of dual-polarized massive MIMO system with IoT devices is that recently the data usage of outdoor human-care IoT devices has increased. Therefore, the outdoor human-care IoT devices are necessary to connect with 5G cellular networks which can expect 1000 times higher performance compared with 4G cellular networks. Moreover, in order to guarantee the safety of the patient for emergency cases, a human-care Iot device must be connected to cellular networks which offer more stable communication for outdoors compared to short-range communication technologies such as Wi-Fi, Zigbee, and Bluetooth. To analyze the performance of the dual-polarized massive MIMO system for human-care IoT devices, a dual-polarized MIMO spatial channel model (SCM is proposed which considers depolarization effect between the dual-polarized transmit-antennas and the receive-antennas. The simulation results show that the performance of the dual-polarized massive MIMO system is improved about 16% to 92% for 20 to 150 IoT devices compared to conventional single-polarized massive MIMO system for identical size of the transmit array.

  5. Design of Instantaneous High Power Supply System with power distribution management for portable military devices

    Science.gov (United States)

    Kwak, Kiho; Kwak, Dongmin; Yoon, Joohong

    2015-08-01

    A design of an Instantaneous High Power Supply System (IHPSS) with a power distribution management (PDM) for portable military devices is newly addressed. The system includes a power board and a hybrid battery that can not only supply instantaneous high power but also maintain stable operation at critical low temperature (-30 °C). The power leakage and battery overcharge are effectively prevented by the optimal PDM. The performance of the proposed system under the required pulse loads and the operating conditions of a Korean Advanced Combat Rifle employed in the battlefield is modeled with simulations and verified experimentally. The system with the IHPSS charged the fuse setter with 1.7 times higher voltage (8.6 V) than the one without (5.4 V) under the pulse discharging rate (1 A at 0.5 duty, 1 ms) for 500 ms.

  6. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    Science.gov (United States)

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  7. Impedance matching wireless power transmission system for biomedical devices.

    Science.gov (United States)

    Lum, Kin Yun; Lindén, Maria; Tan, Tian Swee

    2015-01-01

    For medical application, the efficiency and transmission distance of the wireless power transfer (WPT) are always the main concern. Research has been showing that the impedance matching is one of the critical factors for dealing with the problem. However, there is not much work performed taking both the source and load sides into consideration. Both sides matching is crucial in achieving an optimum overall performance, and the present work proposes a circuit model analysis for design and implementation. The proposed technique was validated against experiment and software simulation. Result was showing an improvement in transmission distance up to 6 times, and efficiency at this transmission distance had been improved up to 7 times as compared to the impedance mismatch system. The system had demonstrated a near-constant transfer efficiency for an operating range of 2cm-12cm.

  8. Mechanical Systems, Classical Models

    CERN Document Server

    Teodorescu, Petre P

    2009-01-01

    This third volume completes the Work Mechanical Systems, Classical Models. The first two volumes dealt with particle dynamics and with discrete and continuous mechanical systems. The present volume studies analytical mechanics. Topics like Lagrangian and Hamiltonian mechanics, the Hamilton-Jacobi method, and a study of systems with separate variables are thoroughly discussed. Also included are variational principles and canonical transformations, integral invariants and exterior differential calculus, and particular attention is given to non-holonomic mechanical systems. The author explains in detail all important aspects of the science of mechanics, regarded as a natural science, and shows how they are useful in understanding important natural phenomena and solving problems of interest in applied and engineering sciences. Professor Teodorescu has spent more than fifty years as a Professor of Mechanics at the University of Bucharest and this book relies on the extensive literature on the subject as well as th...

  9. Modeling and simulation of floating gate nanocrystal FET devices and circuits

    Science.gov (United States)

    Hasaneen, El-Sayed A. M.

    The nonvolatile memory market has been growing very fast during the last decade, especially for mobile communication systems. The Semiconductor Industry Association International Technology Roadmap for Semiconductors states that the difficult challenge for nonvolatile semiconductor memories is to achieve reliable, low power, low voltage performance and high-speed write/erase. This can be achieved by aggressive scaling of the nonvolatile memory cells. Unfortunately, scaling down of conventional nonvolatile memory will further degrade the retention time due to the charge loss between the floating gate and drain/source contacts and substrate which makes conventional nonvolatile memory unattractive. Using nanocrystals as charge storage sites reduces dramatically the charge leakage through oxide defects and drain/source contacts. Floating gate nanocrystal nonvolatile memory, FG-NCNVM, is a candidate for future memory because it is advantageous in terms of high-speed write/erase, small size, good scalability, low-voltage, low-power applications, and the capability to store multiple bits per cell. Many studies regarding FG-NCNVMs have been published. Most of them have dealt with fabrication improvements of the devices and device characterizations. Due to the promising FG-NCNVM applications in integrated circuits, there is a need for circuit a simulation model to simulate the electrical characteristics of the floating gate devices. In this thesis, a FG-NCNVM circuit simulation model has been proposed. It is based on the SPICE BSIM simulation model. This model simulates the cell behavior during normal operation. Model validation results have been presented. The SPICE model shows good agreement with experimental results. Current-voltage characteristics, transconductance and unity gain frequency (fT) have been studied showing the effect of the threshold voltage shift (DeltaVth) due to nanocrystal charge on the device characteristics. The threshold voltage shift due to

  10. Spherical Detector Device Mathematical Modelling with Taking into Account Detector Module Symmetry

    International Nuclear Information System (INIS)

    Batyj, V.G.; Fedorchenko, D.V.; Prokopets, S.I.; Prokopets, I.M.; Kazhmuradov, M.A.

    2005-01-01

    Mathematical Model for spherical detector device accounting to symmetry properties is considered. Exact algorithm for simulation of measurement procedure with multiple radiation sources is developed. Modelling results are shown to have perfect agreement with calibration measurements

  11. Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture

    Science.gov (United States)

    Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

    2011-02-01

    Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

  12. Device and materials modeling in PEM fuel cells

    National Research Council Canada - National Science Library

    Paddison, Stephen J; Promislow, Keith

    2009-01-01

    .... Materials modeling include subjects relating to the membrane and the catalyst such as proton conduction, atomistic structural modeling, quantum molecular dynamics, and molecular-level modeling...

  13. Maritime improvised explosive devices, modelling and large scale trials

    NARCIS (Netherlands)

    Heuvel, W. van den; Trouwborst, W.; Vader, J.A.A.

    2013-01-01

    Maritime Improvised Explosive Devices (MIEDs) such as small boats filled with explosives are likely to be a threat in future combat scenarios. For example the suicide attack against the USS Cole in Yemen (October 2000) has shown how disastrous MIEDs can be. With relatively simple means a complete

  14. System and method of operating toroidal magnetic confinement devices

    Science.gov (United States)

    Chance, Morrell S.; Jardin, Stephen C.; Stix, Thomas H.; Grimm, deceased, Ray C.; Manickam, Janardhan; Okabayashi, Michio

    1987-01-01

    For toroidal magnetic confinement devices the second region of stability against ballooning modes can be accessed with controlled operation. Under certain modes of operation, the first and second stability regions may be joined together. Accessing the second region of stability is accomplished by forming a bean-shaped plasma and increasing the indentation until a critical value of indentation is reached. A pusher coil, located at the inner-major-radius side of the device, is engaged to form a bean-shaped poloidal cross-section in the plasma.

  15. Modeling dental radiographic systems

    International Nuclear Information System (INIS)

    Webber, R.L.

    1980-01-01

    The Bureau of Radiological Health has been actively collaborating with the Clinical Investigations Branch, NIDR, in applied research involving diagnostic use of ionizing radiation in dentistry. This work has centered on the search for alternatives to conventional radiographic systems in an attempt to improve diagnostic performance while reducing the required exposure. The basic approach involves analysis of factors limiting performance of properly defined diagnostic tasks and the modeling alternative systems with an eye toward increasing objective measures of performance. Previous collaborative work involved using a nonlinear model to compare various x-ray spectra. The data were expressed as brightness-contrast versus exposure for simulated tasks of clinical interest. This report supplements these findings by extending the number of parameters under investigation and modifying the mode of data display so that an actual radiographic image can be simulated on a television screen

  16. Improving the Validity of Squeeze Film Air-Damping Model of MEMS Devices with Border Effect

    Directory of Open Access Journals (Sweden)

    Cheng Bai

    2014-01-01

    Full Text Available Evaluation of squeezed film air damping is critical in the design and control of dynamic MEMS devices. The published squeezed film air damping models are generally derived from the analytical solutions of Reynolds equation or its other modified forms under the supposition of trivial pressure boundary conditions on the peripheral borders. These treatments ignoring the border effect can not give faithful result for structure with smaller air venting gap or the double-gimbaled structure in which the inner frame and outer one affect the air venting. In this paper, we use Green’s function to solve the nonlinear Reynolds equation with inhomogeneous boundary conditions. For two typical normal motion cases of parallel plate, the analytical models of squeeze film damping force with border effect are established. The viscous and inertial losses with real values and image values acoustic impedance are all included in the model. These models reduced the time consumption while giving satisfactory result. Without multifield coupling analysis, the estimation of the dynamic behavior of MEMS device is also allowed, and the simulation of the system performance is more convenient.

  17. Simulating The Technological Movements Of The Equipment Used For Manufacturing Prosthetic Devices Using 3D Models

    Science.gov (United States)

    Chicea, Anca-Lucia

    2015-09-01

    The paper presents the process of building geometric and kinematic models of a technological equipment used in the process of manufacturing devices. First, the process of building the model for a six axes industrial robot is presented. In the second part of the paper, the process of building the model for a five-axis CNC milling machining center is also shown. Both models can be used for accurate cutting processes simulation of complex parts, such as prosthetic devices.

  18. Physical Modeling of the Polyfrequency Filter-Compensating Device Based on the Capacitor-Coil

    Science.gov (United States)

    Butyrin, P. A.; Gusev, G. G.; Mikheev, D. V.; Shakirzianov, F. N.

    2017-12-01

    The paper presents the results of physical modeling and experimental study of the frequency characteristics of the polyfrequency filter-compensating device (PFCD) based on a capacitor-coil. The amplitude- frequency and phase-frequency characteristics of the physical PFCD model were constructed and its equivalent parameters were identified. The feasibility of a PFCD in the form of a single technical device with high technical and economic characteristics was experimentally proven. In the paper, recommendations for practical applications of the capacitor-coil-based PFCD are made and the advantages of the device over known standard passive filter-compensating devices are evaluated.

  19. Power Management of MEMS-Based Storage Devices for Mobile Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    2008-01-01

    Because of its small form factor, high capacity, and expected low cost, MEMS-based storage is a suitable storage technology for mobile systems. MEMS-based storage devices should also be energy efficient for deployment in mobile systems. The problem is that MEMS-based storage devices are mechanical,

  20. 21 CFR 821.25 - Device tracking system and content requirements: manufacturer requirements.

    Science.gov (United States)

    2010-04-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE TRACKING REQUIREMENTS Tracking... procedure for the collection, maintenance, and auditing of the data specified in paragraphs (a) and (b) of... recording system, and the file maintenance procedures system; and (3) A quality assurance program that...

  1. Design of a SIP device cooperation system on OSGi service platforms

    Science.gov (United States)

    Takayama, Youji; Koita, Takahiro; Sato, Kenya

    2007-12-01

    Home networks feature such various technologies as protocols, specifications, and middleware, including HTTP, UPnP, and Jini. A service platform is required to handle such technologies to enable them to cooperate with different devices. The OSGi service platform, which meets the requirements based on service-oriented architecture, is designed and standardized by OSGi Alliance and consists of two parts: one OSGi Framework and bundles. On the OSGi service platform, APIs are defined as services that can handle these technologies and are implemented in the bundle. By using the OSGi Framework with bundles, various technologies can cooperate with each other. On the other hand, in IP networks, Session Initiation Protocol (SIP) is often used in device cooperation services to resolve an IP address, control a session between two or more devices, and easily exchange the statuses of devices. However, since many existing devices do not correspond to SIP, it cannot be used for device cooperation services. A device that does not correspond to SIP is called an unSIP device. This paper proposes and implements a prototype system that enables unSIP devices to correspond to SIP. For unSIP devices, the proposed system provides device cooperation services with SIP.

  2. Development of a mini-mobile digital radiography system by using wireless smart devices.

    Science.gov (United States)

    Jeong, Chang-Won; Joo, Su-Chong; Ryu, Jong-Hyun; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha

    2014-08-01

    The current technologies that trend in digital radiology (DR) are toward systems using portable smart mobile as patient-centered care. We aimed to develop a mini-mobile DR system by using smart devices for wireless connection into medical information systems. We developed a mini-mobile DR system consisting of an X-ray source and a Complementary Metal-Oxide Semiconductor (CMOS) sensor based on a flat panel detector for small-field diagnostics in patients. It is used instead of the systems that are difficult to perform with a fixed traditional device. We also designed a method for embedded systems in the development of portable DR systems. The external interface used the fast and stable IEEE 802.11n wireless protocol, and we adapted the device for connections with Picture Archiving and Communication System (PACS) and smart devices. The smart device could display images on an external monitor other than the monitor in the DR system. The communication modules, main control board, and external interface supporting smart devices were implemented. Further, a smart viewer based on the external interface was developed to display image files on various smart devices. In addition, the advantage of operators is to reduce radiation dose when using remote smart devices. It is integrated with smart devices that can provide X-ray imaging services anywhere. With this technology, it can permit image observation on a smart device from a remote location by connecting to the external interface. We evaluated the response time of the mini-mobile DR system to compare to mobile PACS. The experimental results show that our system outperforms conventional mobile PACS in this regard.

  3. Modeling Novo Nordisk Production Systems

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth

    1997-01-01

    This report describes attributes of models and systems, and how models can be used for description of production systems. There are special attention on the 'Theory of Domains'.......This report describes attributes of models and systems, and how models can be used for description of production systems. There are special attention on the 'Theory of Domains'....

  4. Monoscopic photogrammetry to obtain 3D models by a mobile device: a method for making facial prostheses.

    Science.gov (United States)

    Salazar-Gamarra, Rodrigo; Seelaus, Rosemary; da Silva, Jorge Vicente Lopes; da Silva, Airton Moreira; Dib, Luciano Lauria

    2016-05-25

    The aim of this study is to present the development of a new technique to obtain 3D models using photogrammetry by a mobile device and free software, as a method for making digital facial impressions of patients with maxillofacial defects for the final purpose of 3D printing of facial prostheses. With the use of a mobile device, free software and a photo capture protocol, 2D captures of the anatomy of a patient with a facial defect were transformed into a 3D model. The resultant digital models were evaluated for visual and technical integrity. The technical process and resultant models were described and analyzed for technical and clinical usability. Generating 3D models to make digital face impressions was possible by the use of photogrammetry with photos taken by a mobile device. The facial anatomy of the patient was reproduced by a *.3dp and a *.stl file with no major irregularities. 3D printing was possible. An alternative method for capturing facial anatomy is possible using a mobile device for the purpose of obtaining and designing 3D models for facial rehabilitation. Further studies must be realized to compare 3D modeling among different techniques and systems. Free software and low cost equipment could be a feasible solution to obtain 3D models for making digital face impressions for maxillofacial prostheses, improving access for clinical centers that do not have high cost technology considered as a prior acquisition.

  5. Staging workers' use of hearing protection devices: application of the transtheoretical model.

    Science.gov (United States)

    Raymond, Delbert M; Lusk, Sally L

    2006-04-01

    The threat of noise-induced hearing loss is a serious concern for many workers. This study explores use of the transtheoretical model as a framework for defining stages of workers' acceptance of hearing protection devices. A secondary analysis was performed using a cross-section of data from a randomized, controlled clinical trial of an intervention to increase use of hearing protection. Use of hearing protection devices was well distributed across the theorized stages of change. Chi-square analysis and analysis of variance revealed significant differences between stages for the variables studied. Discrete stages of hearing protection device use can be identified, laying the foundation for further work investigating use of the transtheoretical model for promoting hearing protection device use. The model can provide a framework for tailoring interventions and evaluating their effects. With further development of the transtheoretical model, nurses may be able to easily identify workers' readiness to use hearing protection devices and tailor training toward that goal.

  6. An improved mounting device for attaching intracranial probes in large animal models.

    Science.gov (United States)

    Dunster, Kimble R

    2015-12-01

    The rigid support of intracranial probes can be difficult when using animal models, as mounting devices suitable for the probes are either not available, or designed for human use and not suitable in animal skulls. A cheap and reliable mounting device for securing intracranial probes in large animal models is described. Using commonly available clinical consumables, a universal mounting device for securing intracranial probes to the skull of large animals was developed and tested. A simply made mounting device to hold a variety of probes from 500 μm to 1.3 mm in diameter to the skull was developed. The device was used to hold probes to the skulls of sheep for up to 18 h. No adhesives or cements were used. The described device provides a reliable method of securing probes to the skull of animals.

  7. A novel automotive headlight system based on digital micro-mirror devices and diffractive optical elements

    Science.gov (United States)

    Su, Ping; Song, Yuming; Ma, Jianshe

    2018-01-01

    The DMD (Digital Micro-mirror Device) has the advantages of high refresh rate and high diffraction efficiency, and these make it become an ideal loader of multiple modes illumination. DOEs (Diffractive Optical Element) have the advantages of high degree of freedom, light weight, easy to copy, low cost etc., and can be used to reduce the weight, complexity, cost of optical system. A novel automotive headlamp system using DMD as the light distribution element and a DOE as the light field modulation device is proposed in this paper. The pure phase DOE is obtained by the GS algorithm using Rayleigh-Sommerfeld diffraction integral model. Based on the standard automotive headlamp light intensity distribution in the target plane, the amplitude distribution of DMD is obtained by numerical simulation, and the grayscale diagram loaded on the DMD can be obtained accordingly. Finally, according to simulation result, the light intensity distribution in the target plane is proportional to the national standard, hence verifies the validity of the novel system. The novel illumination system proposed in this paper provides a reliable hardware platform for the intelligent headlamps.

  8. Smart devices are different

    DEFF Research Database (Denmark)

    Stisen, Allan; Blunck, Henrik; Bhattacharya, Sourav

    2015-01-01

    research results. This is due to variations in training and test device hardware and their operating system characteristics among others. In this paper, we systematically investigate sensor-, device- and workload-specific heterogeneities using 36 smartphones and smartwatches, consisting of 13 different...... device models from four manufacturers. Furthermore, we conduct experiments with nine users and investigate popular feature representation and classification techniques in HAR research. Our results indicate that on-device sensor and sensor handling heterogeneities impair HAR performances significantly...

  9. Polysilicon high frequency devices for large area electronics: Characterization, simulation and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Botrel, J L [CEA-LETI 17, rue des Martyrs 38054 Grenoble (France); IMEP 23, rue des Martyrs 38016 Grenoble (France)], E-mail: jean-loius.botrel@cea.fr; Savry, O; Rozeau, O; Templier, F [CEA-LETI 17, rue des Martyrs 38054 Grenoble (France); Jomaah, J [IMEP 23, rue des Martyrs 38016 Grenoble (France)

    2007-07-16

    Laser Crystallised Polysilicon Thin Film Transistors have now sufficient good conduction properties to be used in high-frequency applications. In this work, we report the results for 5 {mu}m long polysilicon TFTs obtained at frequencies up to several hundred MHz for applications such as RFID tags or System-On-Panel. In order to investigate the device operation, DC and AC two-dimensional simulations of these devices in the Effective Medium framework have been performed. In the light of simulation results, the effects of carrier trapping and carrier transit on the device capacitances as a function of dimensions are analysed and compared. An equivalent small-signal circuit which accounts for the behaviour of these transistors in all regions of operation is proposed and a model for the most relevant elements of this circuit is presented. To validate our simulation results, scattering-parameters (S-parameters) measurements are performed for several structures such as multi-finger, serpentine and linear architectures and the most meaningful parameters will be given. Cut-off frequencies as high as 300 MHz and maximum oscillation frequencies of about 600 MHz have been extracted.

  10. SIERRA - A 3-D device simulator for reliability modeling

    Science.gov (United States)

    Chern, Jue-Hsien; Arledge, Lawrence A., Jr.; Yang, Ping; Maeda, John T.

    1989-05-01

    SIERRA is a three-dimensional general-purpose semiconductor-device simulation program which serves as a foundation for investigating integrated-circuit (IC) device and reliability issues. This program solves the Poisson and continuity equations in silicon under dc, transient, and small-signal conditions. Executing on a vector/parallel minisupercomputer, SIERRA utilizes a matrix solver which uses an incomplete LU (ILU) preconditioned conjugate gradient square (CGS, BCG) method. The ILU-CGS method provides a good compromise between memory size and convergence rate. The authors have observed a 5x to 7x speedup over standard direct methods in simulations of transient problems containing highly coupled Poisson and continuity equations such as those found in reliability-oriented simulations. The application of SIERRA to parasitic CMOS latchup and dynamic random-access memory single-event-upset studies is described.

  11. Data-acquisition system of the reversed field pinch device REPUTE-1

    International Nuclear Information System (INIS)

    Tsuzuki, N.; Aoki, H.; Shinohara, H.; Toyama, H.; Morikawa, J.

    1988-01-01

    The new, compact data-acquisition system of the reversed field pinch device, REPUTE-1, is reported. Its distinctive feature is high flexibility and easy handling. The interface between the computer and measurement devices is CAMAC. The computer and the CAMAC devices are connected to a CAMAC byte serial highway that transmits setup parameters and acquisition data. The computer carries out setup of CAMAC devices and data acquisition automatically by use of CAMAC parameters and the acquisition data base. The maintenance tools for the data base are also provided. The computer system, which consists of a ''TOSBAC DS-600,'' has been in operation for REPUTE-1 since 1985

  12. Application of Devices and Systems Designed for Power Quality Monitoring and Assessment

    Directory of Open Access Journals (Sweden)

    Wiesław Gil

    2014-03-01

    Full Text Available The paper presents the problems associated with increasing demands on the equipment and systems for power quality assessment (PQ, installed at power substations. Difficulties are signaled due to current lack of standards defining the test methodology of measuring devices. The necessary device properties and the structure of a large system operated in real time and designed to assess the PQ are discussed. The usefulness of multi-channel analyzers featuring the identification and registration of transients is pointed out. The desirability of synchrophasor assessment implementation and device integration by standard PN-EN 61850 with other SAS devices is also justified.

  13. Gravity insensitive inventory control device for a two-phase flow system

    International Nuclear Information System (INIS)

    Bland, T.J.

    1987-01-01

    A liquid inventory control device is described for a flow system where the liquid changes phase to a vapor and back and a pitot pump separates vapor from liquid and pumps the liquid to a component of the flow system comprising: a liquid storage device for storing liquid under pressure, a tube positioned within the pitot pump and in open communication with the liquid storage device, and the tube having an opening positioned within the pitot pump at a location to establish a desired liquid level in the pitot pump and at which level the pressure at the pitot tube inlet will equal the liquid pressure at the liquid storage device

  14. Demonstrating EnTracked a System for Energy-Efficient Position Tracking for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Jensen, Jakob Langdal; Godsk, Torben

    An important feature of a modern mobile device is that it can position itself. Not only for use on the device but also for remote applications that require tracking of the device. To be useful, such position tracking has to be energy-efficient to avoid having a major impact on the battery life...... of the mobile device. To address this challenge we have build a system named EnTracked that, based on the estimation and prediction of system conditions and mobility, schedules position updates to both minimize energy consumption and optimize robustness. In this demonstration we would like to show how...

  15. Application of kinetic flux vector splitting scheme for solving multi-dimensional hydrodynamical models of semiconductor devices

    Science.gov (United States)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    In this article, one and two-dimensional hydrodynamical models of semiconductor devices are numerically investigated. The models treat the propagation of electrons in a semiconductor device as the flow of a charged compressible fluid. It plays an important role in predicting the behavior of electron flow in semiconductor devices. Mathematically, the governing equations form a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the kinetic flux-vector splitting (KFVS) method for the hyperbolic step, and a semi-implicit Runge-Kutta method for the relaxation step. The KFVS method is based on the direct splitting of macroscopic flux functions of the system on the cell interfaces. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Several case studies are considered. For validation, the results of current scheme are compared with those obtained from the splitting scheme based on the NT central scheme. The effects of various parameters such as low field mobility, device length, lattice temperature and voltage are analyzed. The accuracy, efficiency and simplicity of the proposed KFVS scheme validates its generic applicability to the given model equations. A two dimensional simulation is also performed by KFVS method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  16. Clinical Implementation of a Model-Based In Vivo Dose Verification System for Stereotactic Body Radiation Therapy–Volumetric Modulated Arc Therapy Treatments Using the Electronic Portal Imaging Device

    Energy Technology Data Exchange (ETDEWEB)

    McCowan, Peter M., E-mail: pmccowan@cancercare.mb.ca [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Asuni, Ganiyu [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Van Uytven, Eric [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba (Canada); VanBeek, Timothy [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); McCurdy, Boyd M.C. [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba (Canada); Loewen, Shaun K. [Department of Oncology, University of Calgary, Calgary, Alberta (Canada); Ahmed, Naseer; Bashir, Bashir; Butler, James B.; Chowdhury, Amitava; Dubey, Arbind; Leylek, Ahmet; Nashed, Maged [CancerCare Manitoba, Winnipeg, Manitoba (Canada)

    2017-04-01

    Purpose: To report findings from an in vivo dosimetry program implemented for all stereotactic body radiation therapy patients over a 31-month period and discuss the value and challenges of utilizing in vivo electronic portal imaging device (EPID) dosimetry clinically. Methods and Materials: From December 2013 to July 2016, 117 stereotactic body radiation therapy–volumetric modulated arc therapy patients (100 lung, 15 spine, and 2 liver) underwent 602 EPID-based in vivo dose verification events. A developed model-based dose reconstruction algorithm calculates the 3-dimensional dose distribution to the patient by back-projecting the primary fluence measured by the EPID during treatment. The EPID frame-averaging was optimized in June 2015. For each treatment, a 3%/3-mm γ comparison between our EPID-derived dose and the Eclipse AcurosXB–predicted dose to the planning target volume (PTV) and the ≥20% isodose volume were performed. Alert levels were defined as γ pass rates <85% (lung and liver) and <80% (spine). Investigations were carried out for all fractions exceeding the alert level and were classified as follows: EPID-related, algorithmic, patient setup, anatomic change, or unknown/unidentified errors. Results: The percentages of fractions exceeding the alert levels were 22.6% for lung before frame-average optimization and 8.0% for lung, 20.0% for spine, and 10.0% for liver after frame-average optimization. Overall, mean (± standard deviation) planning target volume γ pass rates were 90.7% ± 9.2%, 87.0% ± 9.3%, and 91.2% ± 3.4% for the lung, spine, and liver patients, respectively. Conclusions: Results from the clinical implementation of our model-based in vivo dose verification method using on-treatment EPID images is reported. The method is demonstrated to be valuable for routine clinical use for verifying delivered dose as well as for detecting errors.

  17. An enhanced lumped element electrical model of a double barrier memristive device

    International Nuclear Information System (INIS)

    Solan, Enver; Ochs, Karlheinz; Dirkmann, Sven; Hansen, Mirko; Kohlstedt, Hermann; Ziegler, Martin; Schroeder, Dietmar; Mussenbrock, Thomas

    2017-01-01

    The massive parallel approach of neuromorphic circuits leads to effective methods for solving complex problems. It has turned out that resistive switching devices with a continuous resistance range are potential candidates for such applications. These devices are memristive systems—nonlinear resistors with memory. They are fabricated in nanotechnology and hence parameter spread during fabrication may aggravate reproducible analyses. This issue makes simulation models of memristive devices worthwhile. Kinetic Monte-Carlo simulations based on a distributed model of the device can be used to understand the underlying physical and chemical phenomena. However, such simulations are very time-consuming and neither convenient for investigations of whole circuits nor for real-time applications, e.g. emulation purposes. Instead, a concentrated model of the device can be used for both fast simulations and real-time applications, respectively. We introduce an enhanced electrical model of a valence change mechanism (VCM) based double barrier memristive device (DBMD) with a continuous resistance range. This device consists of an ultra-thin memristive layer sandwiched between a tunnel barrier and a Schottky-contact. The introduced model leads to very fast simulations by using usual circuit simulation tools while maintaining physically meaningful parameters. Kinetic Monte-Carlo simulations based on a distributed model and experimental data have been utilized as references to verify the concentrated model. (paper)

  18. Network-based Fingerprint Authentication System Using a Mobile Device

    OpenAIRE

    Zhang, Qihu

    2016-01-01

    Abstract— Fingerprint-based user authentication is highly effective in networked services such as electronic payment, but conventional authentication solutions have problems in cost, usability and security. To resolve these problems, we propose a touch-less fingerprint authentication solution, in which a mobile device's built-in camera is used to capture fingerprint image, and then it is sent to the server to determine the identity of the user. We designed and implemented a prototype as an a...

  19. Coupling of the PISCES device modeler to a 3-D Maxwell FDTD solver

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, V.A.; Jones, M.E.; Mason, R.J. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The authors show how PISCES-like semiconductor models can be joined non-invasively to finite difference time domain models for the calculation of coupled external electromagnetics. The method involves tricking the standard current boundary condition for the device model into accepting an effective parallel external capacitance. For nearly steady state device conditions the authors show the results for a transmission line-coupled PISCES diode to agree well with those for an ideal diode.

  20. Efficiency Optimization Of Attendance System With GPS And Biometric Method Using Mobile Devices

    OpenAIRE

    Soewito, Benfano; Simanjuntak, Echo Wahana Marciano

    2014-01-01

    The existing attendance system still has drawbacks, namely the queue in front of the finger scanner, the attendance data are not integrated with Human Resources Systems, and also the employees who work outside the office cannot get in the attendance system to roll presence. In the other hand, everyone has the mobile devices and all the mobile devices will be embedded a finger scanner in the future. In this paper, it is proposed the absence system using one own device. The finger scanner and c...

  1. A novel electro-thermal model for wide bandgap semiconductor based devices

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Christian; Blaabjerg, Frede; Wang, Huai

    2013-01-01

    This paper propose a novel Electro-Thermal Model for the new generation of power electronics WBG-devices (by considering the SiC MOSFET-CMF20120D from CREE), which is able to estimate the device junction and case temperature. The Device-Model estimates the voltage drop and the switching energies...... by considering the device current, the off-state blocking voltage and junction temperature variation. Moreover, the proposed Thermal-Model is able to consider the thermal coupling within the MOSFET and its freewheeling diode, integrated into the same package, and the influence of the ambient temperature...... variation. The importance of temperature loop feedback in the estimation accuracy of device junction and case temperature is studied. Furthermore, the Safe Operating Area (SOA) of the SiC MOSFET is determined for 2L-VSI applications which are using sinusoidal PWM. Thus, by considering the heatsink thermal...

  2. Plasma edge and plasma-wall interaction modelling: Lessons learned from metallic devices

    Directory of Open Access Journals (Sweden)

    S. Wiesen

    2017-08-01

    Full Text Available Robust power exhaust schemes employing impurity seeding are needed for target operational scenarios in present day tokamak devices with metallic plasma-facing components (PFCs. For an electricity-producing fusion power plant at power density Psep/R>15MW/m divertor detachment is a requirement for heat load mitigation. 2D plasma edge transport codes like the SOLPS code as well as plasma-wall interaction (PWI codes are key to disentangle relevant physical processes in power and particle exhaust. With increased quantitative credibility in such codes more realistic and physically sound estimates of the life-time expectations and performance of metallic PFCs can be accomplished for divertor conditions relevant for ITER and DEMO. An overview is given on the recent progress of plasma edge and PWI modelling activities for (carbon-free metallic devices, that include results from JET with the ITER-like wall, ASDEX Upgrade and Alcator C-mod. It is observed that metallic devices offer an opportunity to progress the understanding of underlying plasma physics processes in the edge. The validation of models can be substantially improved by eliminating carbon from the experiment as well as from the numerical system with reduced degrees of freedom as no chemical sputtering from amorphous carbon layers and no carbon or hydro-carbon transport are present. With the absence of carbon as the primary plasma impurity and given the fact that the physics of the PWI at metallic walls is less complex it is possible to isolate the crucial plasma physics processes relevant for particle and power exhaust. For a reliable 2D dissipative plasma exhaust model these are: cross-field drifts, complete kinetic neutral physics, geometry effects (including main-chamber, divertor and sub-divertor structures, SOL transport reflecting also the non-diffusive nature of anomalous transport, as well as transport within the pedestal region in case of significant edge impurity radiation

  3. A surface diffuse scattering model for the mobility of electrons in surface charge coupled devices

    International Nuclear Information System (INIS)

    Ionescu, M.

    1977-01-01

    An analytical model for the mobility of electrons in surface charge coupled devices is studied on the basis of the results previously obtained, considering a surface diffuse scattering; the importance of the results obtained for a better understanding of the influence of the fringing field in surface charge coupled devices is discussed. (author)

  4. Design of numerical model for thermoacoustic devices using OpenFOAM

    Science.gov (United States)

    Tisovsky, Tomas; Vit, Tomas

    2017-09-01

    Thermoacoustic devices are increasingly popular especially because of their construction simplicity and the ability to easily convert waste heat into the form of usable energy. Aim of this paper is to introduce some of the effective procedures for creating a complex mathematical model of thermoacoustic devices in OpenFOAM.

  5. New fundamental insights into capacitance modeling of laterally nonuniform MOS devices

    NARCIS (Netherlands)

    Aarts, A.C.T.; Hout, van der R.; Paasschens, J.C.J.; Scholten, A.J.; Willemsen, M.B.; Klaassen, D.B.M.

    2006-01-01

    In compact transistor modeling for circuit simulation, the capacitances of conventional MOS devices are commonly determined as the derivatives of terminal charges, which in their turn are obtained from the so-called Ward-Dutton charge partitioning scheme. For devices with a laterally nonuniform

  6. MODELING SIMULATION AND PERFORMANCE STUDY OF GRIDCONNECTED PHOTOVOLTAIC ENERGY SYSTEM

    OpenAIRE

    Nagendra K; Karthik J; Keerthi Rao C; Kumar Raja Pemmadi

    2017-01-01

    This paper presents Modeling Simulation of grid connected Photovoltaic Energy System and performance study using MATLAB/Simulink. The Photovoltaic energy system is considered in three main parts PV Model, Power conditioning System and Grid interface. The Photovoltaic Model is inter-connected with grid through full scale power electronic devices. The simulation is conducted on the PV energy system at normal temperature and at constant load by using MATLAB.

  7. X-parameter Based GaN Device Modeling and its Application to a High-efficiency PA Design

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Jensen, Ole Kiel

    2014-01-01

    X-parameters are supersets of S-parameters and applicable to both linear and nonlinear system modeling. In this paper, a packaged 6 W Gallium Nitride (GaN) RF power transistor is modeled using load-dependent X-parameters by simulations. During the device characterization the load impedance is tuned...... to decrease the complexity of a harmonic load-pull measurement setup. A high-efficiency 2 GHz power amplifier is also designed for further validation of the concept....

  8. Safety device and machine system of nuclear power plant

    International Nuclear Information System (INIS)

    1978-10-01

    It introduces principle and kinds of heat power including heat balance and nuclear power. It explains a lot of technical terms about the nuclear power system, which are primary loop, reactor, steam generator, primary coolant pump and pressurizer in PWR, chemical and volume control system, component cooling system, safety injection system, and spent fuel cooling and storage system in auxiliary system, liquid solid and gaseous waste disposal system in radwaste disposal, gland sealing system, turbine instrumentation, turning gear, hydrogen cooling system, condenser, feedwater heater, degenerate heater, auxiliary heat exchanger, centrifugal pump, rotary reciprocating and tank and pressure vessel.

  9. Verification, Validation and Credibility Assessment of a Computational Model of the Advanced Resistive Exercise Device (ARED)

    Science.gov (United States)

    Werner, C. R.; Humphreys, B. T.; Mulugeta, L.

    2014-01-01

    The Advanced Resistive Exercise Device (ARED) is the resistive exercise device used by astronauts on the International Space Station (ISS) to mitigate bone loss and muscle atrophy due to extended exposure to microgravity (micro g). The Digital Astronaut Project (DAP) has developed a multi-body dynamics model of biomechanics models for use in spaceflight exercise physiology research and operations. In an effort to advance model maturity and credibility of the ARED model, the DAP performed verification, validation and credibility (VV and C) assessment of the analyses of the model in accordance to NASA-STD-7009 'Standards for Models and Simulations'.

  10. Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering.

    Science.gov (United States)

    Menolascina, Filippo; Bellomo, Domenico; Maiwald, Thomas; Bevilacqua, Vitoantonio; Ciminelli, Caterina; Paradiso, Angelo; Tommasi, Stefania

    2009-10-15

    Mechanistic models are becoming more and more popular in Systems Biology; identification and control of models underlying biochemical pathways of interest in oncology is a primary goal in this field. Unfortunately the scarce availability of data still limits our understanding of the intrinsic characteristics of complex pathologies like cancer: acquiring information for a system understanding of complex reaction networks is time consuming and expensive. Stimulus response experiments (SRE) have been used to gain a deeper insight into the details of biochemical mechanisms underlying cell life and functioning. Optimisation of the input time-profile, however, still remains a major area of research due to the complexity of the problem and its relevance for the task of information retrieval in systems biology-related experiments. We have addressed the problem of quantifying the information associated to an experiment using the Fisher Information Matrix and we have proposed an optimal experimental design strategy based on evolutionary algorithm to cope with the problem of information gathering in Systems Biology. On the basis of the theoretical results obtained in the field of control systems theory, we have studied the dynamical properties of the signals to be used in cell stimulation. The results of this study have been used to develop a microfluidic device for the automation of the process of cell stimulation for system identification. We have applied the proposed approach to the Epidermal Growth Factor Receptor pathway and we observed that it minimises the amount of parametric uncertainty associated to the identified model. A statistical framework based on Monte-Carlo estimations of the uncertainty ellipsoid confirmed the superiority of optimally designed experiments over canonical inputs. The proposed approach can be easily extended to multiobjective formulations that can also take advantage of identifiability analysis. Moreover, the availability of fully automated

  11. Development of high impedance measurement system for water leakage detection in implantable neuroprosthetic devices.

    Science.gov (United States)

    Yousif, Aziz; Kelly, Shawn K

    2016-08-01

    There has been a push for a greater number of channels in implantable neuroprosthetic devices; but, that number has largely been limited by current hermetic packaging technology. Microfabricated packaging is becoming reality, but a standard testing system is needed to prepare these devices for clinical trials. Impedance measurements of electrodes built into the packaging layers may give an early warning of device failure and predict device lifetime. Because the impedance magnitudes of such devices can be on the order of gigaohms, a versatile system was designed to accommodate ultra-high impedances and allow future integrated circuit implementation in current neural prosthetic technologies. Here we present the circuitry, control software, and preliminary testing results of our designed system.

  12. Development of device drivers embedded in real time OS for SPring-8 SR control system

    International Nuclear Information System (INIS)

    Masuda, T.; Fujiwara, S.; Nakamura, T.; Takebe, H.; Wada, T.

    1994-01-01

    A distributed computer system has been adopted for the SPring-8 SR control system. For lower level computers, we intend to adopt VMEbus computer systems with the real time OS which are compliant with POSIX. For R and D study, we introduced LynxOS and wrote device drivers for Digital Output(DO), Digital Input(DI) and Analog Input(AI) boards on VMEbus. They were successfully operated with device drivers. (author)

  13. Application of complex programmable logic devices in memory radiation effects test system

    International Nuclear Information System (INIS)

    Li Yonghong; He Chaohui; Yang Hailiang; He Baoping

    2005-01-01

    The application of the complex programmable logic device (CPLD) in electronics is emphatically discussed. The method of using software MAX + plus II and CPLD are introduced. A new test system for memory radiation effects is established by using CPLD devices-EPM7128C84-15. The old test system's function are realized and, moreover, a number of small scale integrated circuits are reduced and the test system's reliability is improved. (authors)

  14. Development of gas-sampling device for 13N monitoring system

    International Nuclear Information System (INIS)

    Zhao Lihong; Gong Xueyu

    2003-01-01

    The 13 N monitoring system is used in the monitoring of the rate of leakage of the primary coolant circuit in nuclear power stations. The author introduces a gas-sampling device of the 13 Nmonitoring system. It is with a close-loop flow control system with intelligent control of Single Chip Micyoco (SCM), and has the ability to monitor and replace the filter paper automatically, to increase the automation of the device and stable operation in long time

  15. DeviceGuard: External Device-Assisted System And Data Security

    OpenAIRE

    Deng, Yipan

    2011-01-01

    This thesis addresses the threat that personal computer faced from malware when the personal computer is connected to the Internet. Traditional host-based security approaches, such as anti-virus scanning protect the host from virus, worms, Trojans and other malwares. One of the issues of the host-based security approaches is that when the operating system is compromised by the malware, the antivirus software also becomes vulnerable. In this thesis, we present a novel approach through usin...

  16. Measuring devices for the modular switch system; Messgeraete fuer den Schaltschrank

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rudolf [Janitza Electronics GmbH, Lahnau (Germany). Sales und Marketing

    2008-10-15

    The advantages of digital universal measuring instruments are: lower device cost for more information and functionality. Furtheron digital measuring technology is more exactly during service life. Cost advantages result due to low installation cost and reduced installation of wires and cables. So universal devices replace all analogue systems and offer further functions. (orig./GL)

  17. 78 FR 36698 - Microbiology Devices; Reclassification of Nucleic Acid-Based Systems for Mycobacterium tuberculosis

    Science.gov (United States)

    2013-06-19

    .... FDA-2013-N-0544] Microbiology Devices; Reclassification of Nucleic Acid-Based Systems for... workshop, FDA agreed to consider this issue further and subsequently convened a meeting of the Microbiology... Health After considering the information discussed by the Microbiology Devices Panel during the June 29...

  18. Development of Hand Grip Assistive Device Control System for Old People through Electromyography (EMG Signal Acquisitions

    Directory of Open Access Journals (Sweden)

    Khamis Herman

    2017-01-01

    Full Text Available The hand grip assistive device is a glove to assist old people who suffer from hand weakness in their daily life activities. The device earlier control system only use simple on and off switch. This required old people to use both hand to activate the device. The new control system of the hand grip assistive device was developed to allow single hand operation for old people. New control system take advantages of electromyography (EMG and flex sensor which was implemented to the device. It was programmed into active and semi-active mode operation. EMG sensors were placed on the forearm to capture EMG signal of Flexor Digitorum Profundus muscle to activate the device. Flex sensor was used to indicate the finger position and placed on top of the finger. The signal from both sensors then used to control the device. The new control system allowed single hand operation and designed to prevent user from over depended on the device by activating it through moving their fingers.

  19. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such

  20. A nanosecond high voltage pulse device for accelerator time analytical system

    International Nuclear Information System (INIS)

    Lou Binqiao; Ding Furong; Xue Zhihua; Wang Xuemei; Shen Dingyu

    2002-01-01

    A nanosecond high voltage pulse device has been designed. The pulse rise time is 10 ns. The pulse voltage reached 16000 V. This device has been used to accelerator time analytical system, its resolution time is less than 0.8%

  1. A simple optical fibre-linked remote control system for multiple devices

    Indian Academy of Sciences (India)

    We report on the development of a simple control system which can handle multiple devices through an optical fibre data link. The devices are controlled using a set of DACs through serial data communication via a serial port of a PC. Serial data from the PC get converted to parallel mode using a homemade “serial in ...

  2. Operating Systems for Low-End Devices in the Internet of Things: a Survey

    OpenAIRE

    Hahm , Oliver; Baccelli , Emmanuel; Petersen , Hauke; Tsiftes , Nicolas

    2016-01-01

    International audience; The Internet of Things (IoT) is projected to soon interconnect tens of billions of new devices, in large part also connected to the Internet. IoT devices include both high-end devices which can use traditional go-to operating systems (OS) such as Linux, and low-end devices which cannot, due to stringent resource constraints, e.g. very limited memory, computational power, and power supply. However, large-scale IoT software development, deployment, and maintenance requir...

  3. Simulation of a model nanopore sensor: Ion competition underlies device behavior

    Science.gov (United States)

    Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső

    2017-12-01

    We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

  4. Development of a physical and electronic model for RuO 2 nanorod rectenna devices

    Science.gov (United States)

    Dao, Justin

    Ruthenium oxide (RuO2) nanorods are an emergent technology in nanostructure devices. As the physical size of electronics approaches a critical lower limit, alternative solutions to further device miniaturization are currently under investigation. Thin-film nanorod growth is an interesting technology, being investigated for use in wireless communications, sensor systems, and alternative energy applications. In this investigation, self-assembled RuO2 nanorods are grown on a variety of substrates via a high density plasma, reactive sputtering process. Nanorods have been found to grow on substrates that form native oxide layers when exposed to air, namely silicon, aluminum, and titanium. Samples were analyzed with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. Conductive Atomic Force Microscopy (C-AFM) measurements were performed on single nanorods to characterize structure and electrical conductivity. The C-AFM probe tip is placed on a single nanorod and I-V characteristics are measured, potentially exhibiting rectifying capabilities. An analysis of these results using fundamental semiconductor physics principles is presented. Experimental data for silicon substrates was most closely approximated by the Simmons model for direct electron tunneling, whereas that of aluminum substrates was well approximated by Fowler-Nordheim tunneling. The native oxide of titanium is regarded as a semiconductor rather than an insulator and its ability to function as a rectifier is not strong. An electronic model for these nanorods is described herein.

  5. On the Modelling of Context-Aware Security for Mobile Devices

    Directory of Open Access Journals (Sweden)

    Tomasz Zurek

    2016-01-01

    Full Text Available Security management in wireless networks has to deal with the changing character of the environment, which can further lead to decision making problem for unexpected events. Among a huge list of devices, the mobile ones are especially vulnerable to this situation. The solution for adapting systems and applications to dynamic environments can be context-aware description of the user actions, which gives a possibility to take into account the factors that influence these actions. In the article, we propose a context-aware security adjusting model, which is based on proposition logic and incorporates mechanisms that assist in the reasoning process. The main benefits that differentiate our approach from similar ones are a formal representation of the model, the usage of the whole spectrum of context attributes, the detection and analysis of contextual data integrity, and conflicting rules’ eradication capability. All these traits transcribe into a more effective way of adjusting security measures in accordance with existing circumstances. To illustrate the proposed approach, we present the case study of context-aware security management for mobile devices.

  6. Method for optimization of the orientation and fixing system of workpiece for the construction of control devices

    Directory of Open Access Journals (Sweden)

    Iordache Daniela-Monica

    2017-01-01

    Full Text Available The development and evolution of technological equipment for machining, assembly and control ensure the modernization of manufacturing processes. Devices as subsystems of technological system in the general context of the development and diversification of machinery, tools, workpiece and drives are made in a variety of sizes and constructive variants that create difficulties in their structure and improvement. Part of the research in recent years presented in this paper have as major objectives the increase of accuracy, productivity and flexibility of orientation and fixing devices for control operations. To this end there have been developed a mathematical model, a new method of working and an algorithm for optimizing the construction of the orientation and fixing system of a new type of control device.

  7. Using cloud models of heartbeats as the entity identifier to secure mobile devices.

    Science.gov (United States)

    Fu, Donglai; Liu, Yanhua

    2017-01-01

    Mobile devices are extensively used to store more private and often sensitive information. Therefore, it is important to protect them against unauthorised access. Authentication ensures that authorised users can use mobile devices. However, traditional authentication methods, such as numerical or graphic passwords, are vulnerable to passive attacks. For example, an adversary can steal the password by snooping from a shorter distance. To avoid these problems, this study presents a biometric approach that uses cloud models of heartbeats as the entity identifier to secure mobile devices. Here, it is identified that these concepts including cloud model or cloud have nothing to do with cloud computing. The cloud model appearing in the study is the cognitive model. In the proposed method, heartbeats are collected by two ECG electrodes that are connected to one mobile device. The backward normal cloud generator is used to generate ECG standard cloud models characterising the heartbeat template. When a user tries to have access to their mobile device, cloud models regenerated by fresh heartbeats will be compared with ECG standard cloud models to determine if the current user can use this mobile device. This authentication method was evaluated from three aspects including accuracy, authentication time and energy consumption. The proposed method gives 86.04% of true acceptance rate with 2.73% of false acceptance rate. One authentication can be done in 6s, and this processing consumes about 2000 mW of power.

  8. A Monte Carlo calculation model of electronic portal imaging device for transit dosimetry through heterogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858 (United States); Kim, Jong Oh [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States); Yeo, Inhwan [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92354 (United States)

    2016-05-15

    Purpose: To develop and evaluate a fast Monte Carlo (MC) dose calculation model of electronic portal imaging device (EPID) based on its effective atomic number modeling in the XVMC code. Methods: A previously developed EPID model, based on the XVMC code by density scaling of EPID structures, was modified by additionally considering effective atomic number (Z{sub eff}) of each structure and adopting a phase space file from the EGSnrc code. The model was tested under various homogeneous and heterogeneous phantoms and field sizes by comparing the calculations in the model with measurements in EPID. In order to better evaluate the model, the performance of the XVMC code was separately tested by comparing calculated dose to water with ion chamber (IC) array measurement in the plane of EPID. Results: In the EPID plane, calculated dose to water by the code showed agreement with IC measurements within 1.8%. The difference was averaged across the in-field regions of the acquired profiles for all field sizes and phantoms. The maximum point difference was 2.8%, affected by proximity of the maximum points to penumbra and MC noise. The EPID model showed agreement with measured EPID images within 1.3%. The maximum point difference was 1.9%. The difference dropped from the higher value of the code by employing the calibration that is dependent on field sizes and thicknesses for the conversion of calculated images to measured images. Thanks to the Z{sub eff} correction, the EPID model showed a linear trend of the calibration factors unlike those of the density-only-scaled model. The phase space file from the EGSnrc code sharpened penumbra profiles significantly, improving agreement of calculated profiles with measured profiles. Conclusions: Demonstrating high accuracy, the EPID model with the associated calibration system may be used for in vivo dosimetry of radiation therapy. Through this study, a MC model of EPID has been developed, and their performance has been rigorously

  9. Launch Lock Assemblies Including Axial Gap Amplification Devices and Spacecraft Isolation Systems Including the Same

    Science.gov (United States)

    Barber, Tim Daniel (Inventor); Hindle, Timothy (Inventor); Young, Ken (Inventor); Davis, Torey (Inventor)

    2014-01-01

    Embodiments of a launch lock assembly are provided, as are embodiments of a spacecraft isolation system including one or more launch lock assemblies. In one embodiment, the launch lock assembly includes first and second mount pieces, a releasable clamp device, and an axial gap amplification device. The releasable clamp device normally maintains the first and second mount pieces in clamped engagement; and, when actuated, releases the first and second mount pieces from clamped engagement to allow relative axial motion there between. The axial gap amplification device normally residing in a blocking position wherein the gap amplification device obstructs relative axial motion between the first and second mount pieces. The axial gap amplification device moves into a non-blocking position when the first and second mount pieces are released from clamped engagement to increase the range of axial motion between the first and second mount pieces.

  10. Fast Running Urban Dispersion Model for Radiological Dispersal Device (RDD) Releases: Model Description and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Gowardhan, Akshay [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Donetti, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Walker, Hoyt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Belles, Rich [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Eme, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Homann, Steven [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC)

    2017-05-24

    Aeolus is an efficient three-dimensional computational fluid dynamics code based on finite volume method developed for predicting transport and dispersion of contaminants in a complex urban area. It solves the time dependent incompressible Navier-Stokes equation on a regular Cartesian staggered grid using a fractional step method. It also solves a scalar transport equation for temperature and using the Boussinesq approximation. The model also includes a Lagrangian dispersion model for predicting the transport and dispersion of atmospheric contaminants. The model can be run in an efficient Reynolds Average Navier-Stokes (RANS) mode with a run time of several minutes, or a more detailed Large Eddy Simulation (LES) mode with run time of hours for a typical simulation. This report describes the model components, including details on the physics models used in the code, as well as several model validation efforts. Aeolus wind and dispersion predictions are compared to field data from the Joint Urban Field Trials 2003 conducted in Oklahoma City (Allwine et al 2004) including both continuous and instantaneous releases. Newly implemented Aeolus capabilities include a decay chain model and an explosive Radiological Dispersal Device (RDD) source term; these capabilities are described. Aeolus predictions using the buoyant explosive RDD source are validated against two experimental data sets: the Green Field explosive cloud rise experiments conducted in Israel (Sharon et al 2012) and the Full-Scale RDD Field Trials conducted in Canada (Green et al 2016).

  11. Nano-scaled semiconductor devices physics, modelling, characterisation, and societal impact

    CERN Document Server

    Gutiérrez-D, Edmundo A

    2016-01-01

    This book describes methods for the characterisation, modelling, and simulation prediction of these second order effects in order to optimise performance, energy efficiency and new uses of nano-scaled semiconductor devices.

  12. Communicating about quantity without a language model: number devices in homesign grammar.

    Science.gov (United States)

    Coppola, Marie; Spaepen, Elizabet; Goldin-Meadow, Susan

    2013-01-01

    All natural languages have formal devices for communicating about number, be they lexical (e.g., two, many) or grammatical (e.g., plural markings on nouns and/or verbs). Here we ask whether linguistic devices for number arise in communication systems that have not been handed down from generation to generation. We examined deaf individuals who had not been exposed to a usable model of conventional language (signed or spoken), but had nevertheless developed their own gestures, called homesigns, to communicate. Study 1 examined four adult homesigners and a hearing communication partner for each homesigner. The adult homesigners produced two main types of number gestures: gestures that enumerated sets (cardinal number marking), and gestures that signaled one vs. more than one (non-cardinal number marking). Both types of gestures resembled, in form and function, number signs in established sign languages and, as such, were fully integrated into each homesigner's gesture system and, in this sense, linguistic. The number gestures produced by the homesigners' hearing communication partners displayed some, but not all, of the homesigners' linguistic patterns. To better understand the origins of the patterns displayed by the adult homesigners, Study 2 examined a child homesigner and his hearing mother, and found that the child's number gestures displayed all of the properties found in the adult homesigners' gestures, but his mother's gestures did not. The findings suggest that number gestures and their linguistic use can appear relatively early in homesign development, and that hearing communication partners are not likely to be the source of homesigners' linguistic expressions of non-cardinal number. Linguistic devices for number thus appear to be so fundamental to language that they can arise in the absence of conventional linguistic input. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Apparatuses, Systems and Methods for Cleaning Photovoltaic Devices

    KAUST Repository

    Eitelhuber, Georg

    2013-01-01

    Embodiments of solar panel cleaning apparatuses, solar panel cleaning systems, and solar panel cleaning methods are disclosed. In certain embodiments, the disclosed solar panel cleaning apparatuses, systems and methods do may not require any water

  14. System constitution of plasma high frequency heating device and element equipment

    International Nuclear Information System (INIS)

    Nagashima, Takashi

    1988-01-01

    On the high frequency heating device used for nuclear fusion experiment, the system constitution and the main items of development for the element equipment are described. As for the high frequency heating device, large technical progress was observed in the past 10 years as the second stage heating for tokamaks and one of the main means of current drive. At present, three frequency zones are regarded as promising for plasma high frequency heating in large nuclear fusion devices, and the experiment of 10 MW class is in progress at JT-60, JET and so on. There are electron cyclotron heating, lower hybrid resonance frequency heating and ion cyclotron range of frquency heating. The basic constitution of these heating devices includes a high frequency source, a transmission system, a connection system, and a common system for control, cooling, record and others. The ECH device using gyrotrons of several tens GHz, the LHRF heating device using large power klystrons up to several GHz and the ICRF heating device up to 200 MHz are briefly explained. The main element equipments composing the high frequency heating systems of several tens MW are discussed. (Kako, I.)

  15. A City Parking Integration System Combined with Cloud Computing Technologies and Smart Mobile Devices

    Science.gov (United States)

    Yeh, Her-Tyan; Chen, Bing-Chang; Wang, Bo-Xun

    2016-01-01

    The current study applied cloud computing technology and smart mobile devices combined with a streaming server for parking lots to plan a city parking integration system. It is also equipped with a parking search system, parking navigation system, parking reservation service, and car retrieval service. With this system, users can quickly find…

  16. Constancy tests radiography X-ray devices with CR system

    International Nuclear Information System (INIS)

    Durdikova, M.; Zakova, M.

    2005-01-01

    The paper presents the changes in QAP (Quality Assurance Program) as consequence of digitalisation of medical facilities. Digitalisation brings many advantages - more comfort for personal use, images are easy achievable and transferable to workstation, fine quality images by postprocessing are easily achievable. But it must be taken into account that due to simplicity of image make it is sometimes taken more images then necessary .There are two possible ways of digitalisation in radiography: to exchange conventional developer machine by Computer Radiography (CR), that means to use CR reader and cassette with phosphor plate - un-direct digitalisation or to use special radiography X-ray devices with flat-panel detector -direct radiography. (authors)

  17. Novel Musculoskeletal Loading System for Small Exercise Devices

    Science.gov (United States)

    Downs, Meghan; Newby, Nate; Trinh, Tinh; Hanson, Andrea

    2016-01-01

    Long duration spaceflight places astronauts at increased risk for muscle strain and bone fracture upon return to a 1-g or partial gravity environment. Functionally limiting decrements in musculoskeletal health are likely during Mars proving-ground and Earth-independent missions given extended transit times and the vehicle limitations for exercise devices (low-mass, small volume, little to no power). This is particularly alarming for exploration missions because astronauts will be required to perform novel and physically demanding tasks (i.e. vehicle egress, exploration, and habitat building activities) on unfamiliar terrain. Accordingly, NASA's exploration roadmap identifies the need for development of small exercise equipment that can prevent musculoskeletal atrophy and has the ability to assess musculoskeletal health at multiple time points during long-duration missions.

  18. Closed-loop model: An optimization of integrated thin-film magnetic devices

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghazaly, Amal, E-mail: amale@stanford.edu [Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Sato, Noriyuki [Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); White, Robert M. [Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Wang, Shan X. [Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States)

    2017-06-15

    Highlights: • An analytical model for inductance of thin-film magnetic devices was developed. • Different device topologies and magnetic permeabilities were addressed. • Inductance of various topologies were calculated and compared with simulation. • The model predicts simulated values with excellent accuracy. - Abstract: A generic analytical model has been developed to fully describe the flux closure through magnetic inductors. The model was applied to multiple device topologies including solenoidal single return path and dual return path inductors as well as spiral magnetic inductors for a variety of permeabilities and dimensions. The calculated inductance values from the analytical model were compared with simulated results for each of the analyzed device topologies and found to agree within 0.1 nH for the range of typical thin-film magnetic permeabilities (∼10{sup 2} to 10{sup 3}). Furthermore, the model can be used to evaluate behavior in other integrated or discrete magnetic devices with either non-isotropic or isotropic permeability and used to produce more efficient device designs in the future.

  19. A model for plasma discharges simulation in Tokamak devices

    International Nuclear Information System (INIS)

    Fonseca, Antonio M.M.; Silva, Ruy P. da; Galvao, Ricardo M.O.; Kusnetzov, Yuri; Nascimento, I.C.; Cuevas, Nelson

    2001-01-01

    In this work, a 'zero-dimensional' model for simulation of discharges in Tokamak machine is presented. The model allows the calculation of the time profiles of important parameters of the discharge. The model was applied to the TCABR Tokamak to study the influence of parameters and physical processes during the discharges. Basically it is constituted of five differential equations: two related to the primary and secondary circuits of the ohmic heating transformer and the other three conservation equations of energy, charge and neutral particles. From the physical model, a computer program has been built with the objective of obtaining the time profiles of plasma current, the current in the primary of the ohmic heating transformer, the electronic temperature, the electronic density and the neutral particle density. It was also possible, with the model, to simulate the effects of gas puffing during the shot. The results of the simulation were compared with the experimental results obtained in the TCABR Tokamak, using hydrogen gas

  20. Research on export system of marine nuclear power device

    International Nuclear Information System (INIS)

    Fu Mingyu; Bian Xinqian; Shi Ji; Xin Chengdong; Wei Dong

    2002-01-01

    A marine nuclear power plant simulation system is founded, and a management expert system, which can administer and diagnose the typical faults, is constituted by the intelligent expert theory. This real-time expert system can analyze the reason of the typical fault caused by the nuclear power plant practically running and give the best solvent by the expert knowledge reasoning in the repository; a neural network fault inspection and diagnosis expert system which can inspect every equipment continually and give the faults diagnosis result based on the inspective dates is established. Based on the three hierarchical architecture, the operation performance is improved very much by using of the neural network fault inspection and diagnosis expert system to inspect and diagnose the nuclear power plant faults and the management expert system to supervise the nuclear power plant running. The expert system research can give guidance for the marine nuclear power plant safety operation

  1. Analysis of operations and cyber security policies for a system of cooperating Flexible Alternating Current Transmission System (FACTS) devices.

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Laurence R.; Tejani, Bankim; Margulies, Jonathan; Hills, Jason L.; Richardson, Bryan T.; Baca, Micheal J.; Weiland, Laura

    2005-12-01

    Flexible Alternating Current Transmission Systems (FACTS) devices are installed on electric power transmission lines to stabilize and regulate power flow. Power lines protected by FACTS devices can increase power flow and better respond to contingencies. The University of Missouri Rolla (UMR) is currently working on a multi-year project to examine the potential use of multiple FACTS devices distributed over a large power system region in a cooperative arrangement in which the FACTS devices work together to optimize and stabilize the regional power system. The report describes operational and security challenges that need to be addressed to employ FACTS devices in this way and recommends references, processes, technologies, and policies to address these challenges.

  2. 40 CFR 264.1033 - Standards: Closed-vent systems and control devices.

    Science.gov (United States)

    2010-07-01

    ... determined by dividing the volumetric flow rate (in units of standard temperature and pressure), as.... The system shall be equipped with at least one pressure gauge or other pressure measurement device...

  3. 40 CFR 265.1033 - Standards: Closed-vent systems and control devices.

    Science.gov (United States)

    2010-07-01

    ... actual exit velocity of a flare shall be determined by dividing the volumetric flow rate (in units of.... The system shall be equipped with at least one pressure gauge or other pressure measurement device...

  4. 76 FR 22726 - Certain Multimedia Display and Navigation Devices and Systems, Components Thereof, and Products...

    Science.gov (United States)

    2011-04-22

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-694] Certain Multimedia Display and Navigation Devices and Systems, Components Thereof, and Products Containing Same; Notice of Commission... importation, and the sale within the United States after importation of certain multimedia display and...

  5. System for deuterium-tritium mixture filling the working chamber of a dense plasma focus device

    International Nuclear Information System (INIS)

    Bondar', A.I.; Vyskubov, V.P.; Gerasimov, S.A.

    1981-01-01

    A gas-vacuum system designed for filling the gas-discharge chamber of a plasma focus device with equal-coaponent deuterium-tritium mixture is described. The system consists of a unit for gaseous mixture prepa ration and a unit for mixture absorption and device evacuation. The system provides the gaseous mixture purification of O 2 and N 2 impurities. Final tritium content in the gas-discharge chamber after tritium removal is not greater than 2x10 8 Bq/l. Tritium content in a sealed box in which the device is placed does not exceed 30 Bq/l that is less than limiting safe value. The conclusion is made that the described system design gives an opportunity to begin experimental studies at plasma focus devices with deuterium-tritium mixture [ru

  6. Automatic cross-sectioning and monitoring system locates defects in electronic devices

    Science.gov (United States)

    Jacobs, G.; Slaughter, B.

    1971-01-01

    System consists of motorized grinding and lapping apparatus, sample holder, and electronic control circuit. Low power microscope examines device to pinpoint location of circuit defect, and monitor displays output signal when defect is located exactly.

  7. AUTOMATED IRRIGATION SYSTEM CONSTITUTED OF ELECTRONIC ELEMENTS, MOBILE DEVICE AND THE CONSTRUCTION OF SPRINKLER

    Directory of Open Access Journals (Sweden)

    Alma Delia González

    2017-12-01

    Full Text Available This document presents the development of an automated irrigation system, which consisted of a sprinkler that has a range of 16 meters in diameter using only sprinklers per one hectare of land, water pump, hose, water containers, electro valves, relays, electronic components such as humidity and temperature sensor, ultrasonic sensor, LCD screen, microcontroller (Arduino Mega, for communication a bluetooth module and a mobile device (Android. The agile methodology used was Extreme XP Programming, following its 4 phases, planning, design, development and testing. With this an automated irrigation system was used that was developed to monitor temperature, humidity and to generate a saving in the water thanks to the census of the container of the same, as well as the reduction of maintenance costs, this can be activated or deactivated by the user regardless of the conditions. The system complies with the characteristics of a utility model, because these models are all those objects, tools, appliances or tools that, as a result of a change in their layout, configuration, structure or form, present a different function with respect to the parts that integrate it or advantages in terms of its usefulness and thanks to the search carried out in IMPI. In the study of the state of the art the search was made in the data bases of Mexico in SIGA (Information System of the Gazette of the Industrial Property and internationally in Thomson, the results showed that there were similar sy

  8. Reliability-cost models for the power switching devices of wind power converters

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    In order to satisfy the growing reliability requirements for the wind power converters with more cost-effective solution, the target of this paper is to establish a new reliability-cost model which can connect the relationship between reliability performances and corresponding semiconductor cost...... temperature mean value Tm and fluctuation amplitude ΔTj of power devices, are presented. With the proposed reliability-cost model, it is possible to enable future reliability-oriented design of the power switching devices for wind power converters, and also an evaluation benchmark for different wind power...... for power switching devices. First the conduction loss, switching loss as well as thermal impedance models of power switching devices (IGBT module) are related to the semiconductor chip number information respectively. Afterwards simplified analytical solutions, which can directly extract the junction...

  9. Compact modeling of CRS devices based on ECM cells for memory, logic and neuromorphic applications

    International Nuclear Information System (INIS)

    Linn, E; Ferch, S; Waser, R; Menzel, S

    2013-01-01

    Dynamic physics-based models of resistive switching devices are of great interest for the realization of complex circuits required for memory, logic and neuromorphic applications. Here, we apply such a model of an electrochemical metallization (ECM) cell to complementary resistive switches (CRSs), which are favorable devices to realize ultra-dense passive crossbar arrays. Since a CRS consists of two resistive switching devices, it is straightforward to apply the dynamic ECM model for CRS simulation with MATLAB and SPICE, enabling study of the device behavior in terms of sweep rate and series resistance variations. Furthermore, typical memory access operations as well as basic implication logic operations can be analyzed, revealing requirements for proper spike and level read operations. This basic understanding facilitates applications of massively parallel computing paradigms required for neuromorphic applications. (paper)

  10. Structure of the main control system for the FTU device

    International Nuclear Information System (INIS)

    Panaccione, L.

    1983-01-01

    The computer based control system for FTU (Frascati Tokamak Upgrade) machine is a distributed intelligence control system consisting of various subsystems, called ''specific units''. A specific unit can work as a stand-alone small system or as a part of more complex systems, together with other units, in any possible combination. In the case of combined units working mode, a dedicated specific unit performs supervisory functions. Communication between specific units is done on a dedicated bus-like network, in the form of temporary master-slave relationship. There are three groups of specific units: Plant Control Units, Supervisory Control Unit and Synoptic Handling Unit. Performances and structures of these specific units are described. In addition, a very simple hard-wired safety system works in parallel with the computer based control system, in order to save personnel and apparatus. (author)

  11. The upgraded control and instrumentation system of C5 irradiation device

    International Nuclear Information System (INIS)

    Iordache, A.; Ancuta, M.; Gruia, L.; Pulpa, A.; Salistean, E.; Gusescu, G.

    2013-01-01

    C5 capsule is an irradiation device of TRIGA SSR, which is designed for irradiation of structural materials in an inert environment for mechanical behavior characterization and the material microstructure evolution during irradiation. The paper presents the upgraded control and instrumentation system of the C5 irradiation device which was designed and manufactured to enhance the performance of this system for better surveillance and processing the acquired experimental data. (authors)

  12. Support system for loop device operator. Analysis of technological processes

    International Nuclear Information System (INIS)

    Yakovlev, V.V.; Mozhaev, A.A.; Lyadin, A.V.

    1988-01-01

    The paper presents the results obtained from the analysis of controlling the loops of a research reactor. A method of optimized interaction of the operator and hardware of the control system by computeraided identification of the cause of regime violation is considered. The equipment diagnostics based on use of the expert system methods and tuzzy algorithms enables to propose a support system for application in new generation of loops

  13. [Impact of an automated dispensing system for medical devices in cardiac surgery department].

    Science.gov (United States)

    Clou, E; Dompnier, M; Kably, B; Leplay, C; Poupon, E; Archer, V; Paul, M

    2018-01-01

    To secure medical devices' management, the implementation of automated dispensing system in surgical service has been realized. The objective of this study was to evaluate security, organizational and economic impact of installing automated dispensing system for medical devices (ASDM). The implementation took place in a cardiac surgery department. Security impact was assessed by comparing traceability rate of implantable medical devices one year before and one year after installation. Questionnaire on nurses' perception and satisfaction completed this survey. Resupplying costs, stocks' evolution and investments for the implementation of ASDM were the subject of cost-benefit study. After one year, traceability rate is excellent (100%). Nursing staffs were satisfied with 87.5% by this new system. The introduction of ASDM allowed a qualitative and quantitative decrease in stocks, with a reduction of 30% for purchased medical devices and 15% for implantable medical devices in deposit-consignment. Cost-benefit analysis shows a rapid return on investment. Real stock decrease (purchased medical devices) is equivalent to 46.6% of investment. Implementation of ASDM allows to secure storage and dispensing of medical devices. This system has also an important economic impact and appreciated by users. Copyright © 2017 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  14. Datacollection And Fault Tolerant Design Of Iot Devices Over A Distributed Network System

    Directory of Open Access Journals (Sweden)

    Bharadwaj Turlapati

    2017-10-01

    Full Text Available In a world where connecting and communicating with devices have never been more in need The Internet of Things thereby has a demanding need for a strategy of a design to ensure the communication between these devices is reliable maintainable and scalable. Having many permutations and combinations of possibilities of devices and solutions offered to world this paper addresses a solution with a working use case to design the system check for reliability throughput maintainability scalability and address the issues in the current system and how this design will help to overcome those issues.

  15. A passive cold storage device economic model to evaluate selected immunization location scenarios.

    Science.gov (United States)

    Norman, Bryan A; Nourollahi, Sevnaz; Chen, Sheng-I; Brown, Shawn T; Claypool, Erin G; Connor, Diana L; Schmitz, Michelle M; Rajgopal, Jayant; Wateska, Angela R; Lee, Bruce Y

    2013-10-25

    The challenge of keeping vaccines cold at health posts given the unreliability of power sources in many low- and middle-income countries and the expense and maintenance requirements of solar refrigerators has motivated the development of passive cold storage devices (PCDs), containers that keep vaccines cold without using an active energy source. With different PCDs under development, manufacturers, policymakers and funders need guidance on how varying different PCD characteristics may affect the devices' cost and utility. We developed an economic spreadsheet model representing the lowest two levels of a typical Expanded Program on Immunization (EPI) vaccine supply chain: a district store, the immunization locations that the district store serves, and the transport vehicles that operate between the district store and the immunization locations. The model compares the use of three vaccine storage device options [(1) portable PCDs, (2) stationary PCDs, or (3) solar refrigerators] and allows the user to vary different device (e.g., size and cost) and scenario characteristics (e.g., catchment area population size and vaccine schedule). For a sample set of select scenarios and equipment specification, we found the portable PCD to generally be better suited to populations of 5,000 or less. The stationary PCD replenished once per month can be a robust design especially with a 35L capacity and a cost of $2,500 or less. The solar device was generally a reasonable alternative for most of the scenarios explored if the cost was $2,100 or less (including installation). No one device type dominated over all explored circumstances. Therefore, the best device may vary from country-to-country and location-to-location within a country. This study introduces a quantitative model to help guide PCD development. Although our selected set of explored scenarios and device designs was not exhaustive, future explorations can further alter model input values to represent additional scenarios

  16. Profilographic detection system for single-track scanning device

    International Nuclear Information System (INIS)

    Silar, J.; Kula, J.

    1988-01-01

    A profilographic detection system is claimed for diagnosing the renal function by isotope nephrography, and the bladder filling in small children and infants. The configuration described guarantees good position resolution and sensitivity of the detection system. (E.J.). 2 figs

  17. Hybrid optical security system using photonic crystals and MEMS devices

    Science.gov (United States)

    Ciosek, Jerzy; Ostrowski, Roman

    2017-10-01

    An important issue in security systems is that of selection of the appropriate detectors or sensors, whose sensitivity guarantees functional reliability whilst avoiding false alarms. Modern technology enables the optimization of sensor systems, tailored to specific risk factors. In optical security systems, one of the safety parameters considered is the spectral range in which the excitation signal is associated with a risk factor. Advanced safety systems should be designed taking into consideration the possible occurrence of, often multiple, complex risk factors, which can be identified individually. The hazards of concern in this work are chemical warfare agents and toxic industrial compounds present in the forms of gases and aerosols. The proposed sensor solution is a hybrid optical system consisting of a multi-spectral structure of photonic crystals associated with a MEMS (Micro Electro-Mechanical System) resonator. The crystallographic structures of carbon present in graphene rings and graphenecarbon nanotube nanocomposites have properties which make them desirable for use in detectors. The advantage of this system is a multi-spectral sensitivity at the same time as narrow-band selectivity for the identification of risk factors. It is possible to design a system optimized for detecting specified types of risk factor from very complex signals.

  18. Potential Usage of Thermoelectric Devices in a HTPEMFC System

    DEFF Research Database (Denmark)

    Xin, Gao; Chen, Min; Andreasen, Søren Juhl

    Methanol fuelled high temperature polymer electrolyte membrane fuel cell (HTPEMFC) power systems are promising as new generation vehicle engines, efficient and environmentally friendly. Currently, they still rely on large Li-ion batteries for system startup. In this paper, the application potential...

  19. RIO EPICS device support application case study on an ion source control system (ISHP)

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Diego [UPM – Universidad Politécnica de Madrid, Madrid (Spain); Ruiz, Mariano, E-mail: mariano.ruiz@upm.es [UPM – Universidad Politécnica de Madrid, Madrid (Spain); Eguiraun, Mikel [Department of Electricity and Electronic, Faculty of Science and Technology, University of Basque Country, Bilbao (Spain); Arredondo, Iñigo [ESS Bilbao Consortium, Zamudio (Spain); Badillo, Inari; Jugo, Josu [Department of Electricity and Electronic, Faculty of Science and Technology, University of Basque Country, Bilbao (Spain); Vega, Jesús; Castro, Rodrigo [Asociación EURATOM/CIEMAT, Madrid (Spain)

    2015-10-15

    Highlights: • A use case example of RIO/FlexRIO design methodology is described. • Ion source device is controlled and monitored by means EPICS IOCs. • NIRIO EPICS device support demonstrates that is able to manage RIO devices. • Easy and fast deployment is possible using RIO/FlexRIO design methodology using NIRIO-EDS. • RIO/FlexRIO technology and EPICS are a good combination for support large scale experiments in fusion environments. - Abstract: Experimental Physics and Industrial Control System (EPICS) is a software tool that during last years has become relevant as a main framework to deploy distributed control systems in large scientific environments. At the moment, ESS Bilbao uses this middleware to perform the control of their Ion Source Hydrogen Positive (ISHP) project. The implementation of the control system was based on: PXI Real Time controllers using the LabVIEW-RT and LabVIEW-EPICS tools; and RIO devices based on Field-Programmable Gate Array (FPGA) technology. Intended to provide a full compliant EPICS IOCs for RIO devices and to avoid additional efforts on the system maintainability, a migration of the current system to a derivative Red Hat Linux (CentOS) environment has been conducted. This paper presents a real application case study for using the NIRIO EPICS device support (NIRIO-EDS) to give support to the ISHP. Although RIO FPGA configurations are particular solutions for ISHP performance, the NIRIO-EDS has permitted the control and monitoring of devices by applying a well-defined design methodology into the previous FPGA configuration for RIO/FlexRIO devices. This methodology has permitted a fast and easy deployment for the new robust, scalable and maintainable software to support RIO devices into the ISHP control architecture.

  20. On Modelling an Immune System

    OpenAIRE

    Monroy, Raúl; Saab, Rosa; Godínez, Fernando

    2004-01-01

    Immune systems of live forms have been an abundant source of inspiration to contemporary computer scientists. Problem solving strategies, stemming from known immune system phenomena, have been successfully applied to challenging problems of modern computing. However, research in artificial immune systems has overlooked establishing a coherent model of known immune system behaviour. This paper aims reports on an preliminary computer model of an immune system, where each immune system component...

  1. Detection device for off-gas system accidents

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Tsuruoka, Ryozo; Yamanari, Shozo.

    1984-01-01

    Purpose: To rapidly isolate the off-gas system by detecting the off-gas system failure accident in a short time. Constitution: Radiation monitors are disposed to ducts connecting an exhaust gas area and an air conditioning system as a portion of a turbine building. The ducts are disposed independently such that they ventilate only the atmosphere in the exhaust gas area and do not mix the atmosphere in the turbine building. Since radioactivity issued upon off-gas accidents to the exhaust gas area is sucked to the duct, it can be detected by radiation detection monitors in a short time after the accident. Further, since the operator judges it as the off-gas system accident, the off-gas system can be isolated in a short time after the accident. (Moriyama, K.)

  2. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    International Nuclear Information System (INIS)

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-01-01

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as ∼ 16 We/kg and ∼ 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is ∼ 640 m2 and ∼ 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is ∼ 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is ∼ 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems

  3. Overcoming Challenges in Kinetic Modeling of Magnetized Plasmas and Vacuum Electronic Devices

    Science.gov (United States)

    Omelchenko, Yuri; Na, Dong-Yeop; Teixeira, Fernando

    2017-10-01

    We transform the state-of-the art of plasma modeling by taking advantage of novel computational techniques for fast and robust integration of multiscale hybrid (full particle ions, fluid electrons, no displacement current) and full-PIC models. These models are implemented in 3D HYPERS and axisymmetric full-PIC CONPIC codes. HYPERS is a massively parallel, asynchronous code. The HYPERS solver does not step fields and particles synchronously in time but instead executes local variable updates (events) at their self-adaptive rates while preserving fundamental conservation laws. The charge-conserving CONPIC code has a matrix-free explicit finite-element (FE) solver based on a sparse-approximate inverse (SPAI) algorithm. This explicit solver approximates the inverse FE system matrix (``mass'' matrix) using successive sparsity pattern orders of the original matrix. It does not reduce the set of Maxwell's equations to a vector-wave (curl-curl) equation of second order but instead utilizes the standard coupled first-order Maxwell's system. We discuss the ability of our codes to accurately and efficiently account for multiscale physical phenomena in 3D magnetized space and laboratory plasmas and axisymmetric vacuum electronic devices.

  4. Nonlinear ECRH and ECCD modeling in toroidal devices

    International Nuclear Information System (INIS)

    Kamendje, R.; Kernbichler, W.; Heyn, M.F.; Kasilov, S.V.; Poli, E.

    2003-01-01

    A Monte Carlo method of evaluation of the electron distribution function which takes into account realistic orbits of electrons during their nonlinear cyclotron interaction with the wave beam has been proposed. The focus there was on a proper description of particle interaction with a wave beam while the geometry of the main magnetic field outside the beam was the simplest possible (slab model). In the actual work, a more realistic tokamak geometry has been implemented in the model. In addition, an expression for the parallel current density through Green's function has been used. This allows to reduce statistical errors which result from the fact that the current generated by particles with positive v parallel >0 is almost compensated by the current resulting from particles with v parallel <0 if the complete distribution function is taken into account in the expression for the current. The code ECNL which is a Monte Carlo kinetic equation solver based on this model, has been coupled with the beam tracing code TORBEAM. The results of nonlinear modeling of ECCD in a tokamak with ASDEX Upgrade parameters with help of this combination of codes are compared below to the results of linear modeling performed with TORBEAM alone. In addition, implications for stellarators are discussed. (orig.)

  5. Ignitor electrode system design for the pulses electron irradiators device

    International Nuclear Information System (INIS)

    Lely Susita RM; Ihwanul Aziz

    2016-01-01

    The designed ignitor electrode system is a system used to initiate the plasma discharge. It consists of two pieces which are placed on both side of the plasma vessel. Each of the ignitor electrode system consists of a cathode, an anode and insulator between the cathode and the anode. The best cathode material for ignitor electrode system is Mg due to its lowest ion erosion rate (γi =11.7 μg/C) and its low cohesive energy (1.51 eV). The specifications of ignitor electrode system designed for the pulse electron irradiators is as follow: Mg cathode materials in the form of rod having a diameter of 6.35 mm and length of 76.75 mm. Anode material are made of non magnetic of SS 304 cylinder shaped with an outer diameter of 88.53 mm, an inner diameter of 81.53 mm and a thickness of 3.50 mm. Insulating material between the cathode and the anode is made of teflon cylinder shaped, outer diameter of 9.50 mm, an inner diameter of 6.35 mm and a length of 30 mm. Based on the ignitor electrode system design, the next step is construction and function test of the ignitor electrode system. (author)

  6. A 3D CFD Modelling Study of a Diesel Oil Evaporation Device Operating in the Stabilized Cool Flame Regime

    Directory of Open Access Journals (Sweden)

    Dionysios I. Kolaitis

    2010-12-01

    Full Text Available Diesel fuel is used in a variety of technological applications due to its high energy density and ease of distribution and storage. Motivated by the need to use novel fuel utilization techniques, such as porous burners and fuel cells, which have to be fed with a gaseous fuel, a Diesel fuel evaporation device, operating in the “Stabilized Cool Flame” (SCF regime, is numerically investigated. In this device, a thermo-chemically stable low-temperature oxidative environment is developed, which produces a well-mixed, heated air-fuel vapour gaseous mixture that can be subsequently fed either to premixed combustion systems or fuel reformer devices for fuel cell applications. In this work, the ANSYS CFX 11.0 CFD code is used to simulate the three-dimensional, turbulent, two-phase, multi-component and reacting flow-field, developed in a SCF evaporation device. An innovative modelling approach, based on the fitting parameter concept, has been developed in order to simulate cool flame reactions. The model, based on physico-chemical reasoning coupled with information from available experimental data, is implemented in the CFD code and is validated by comparing numerical predictions to experimental data obtained from an atmospheric pressure, recirculating flow SCF device. Numerical predictions are compared with temperature measurements, achieving satisfactory levels of agreement. The developed numerical tool can effectively support the theoretical study of the physical and chemical phenomena emerging in practical devices of liquid fuel spray evaporation in a SCF environment, as well as the design optimisation process of such innovative devices.

  7. A model of quantum communication device for quantum hashing

    International Nuclear Information System (INIS)

    Vasiliev, A

    2016-01-01

    In this paper we consider a model of quantum communications between classical computers aided with quantum processors, connected by a classical and a quantum channel. This type of communications implying both classical and quantum messages with moderate use of quantum processing is implicitly used in many quantum protocols, such as quantum key distribution or quantum digital signature. We show that using the model of a quantum processor on multiatomic ensembles in the common QED cavity we can speed up quantum hashing, which can be the basis of quantum digital signature and other communication protocols. (paper)

  8. Modeling of X-ray beamlines and devices

    International Nuclear Information System (INIS)

    Ice, G.E.

    1996-01-01

    X-ray beamlines on synchrotron sources are similar in size and complexity to beamlines at state-of-the-art neutron sources. The design principles, tools, and optimization strategies for synchrotron beamlines are also similar to those of neutron beamlines. The authors describe existing design tools for modeling synchrotron radiation beamlines and describe how these tools have evolved over the last two decades. The development of increasingly powerful modeling tools has been driven by the escalating cost and sophistication of state-of-the-art beamlines and by a world-wide race to exploit advanced synchrotron radiation sources

  9. Whole Device Modeling of Compact Tori: Stability and Transport Modeling of C-2W

    Science.gov (United States)

    Dettrick, Sean; Fulton, Daniel; Lau, Calvin; Lin, Zhihong; Ceccherini, Francesco; Galeotti, Laura; Gupta, Sangeeta; Onofri, Marco; Tajima, Toshiki; TAE Team

    2017-10-01

    Recent experimental evidence from the C-2U FRC experiment shows that the confinement of energy improves with inverse collisionality, similar to other high beta toroidal devices, NSTX and MAST. This motivated the construction of a new FRC experiment, C-2W, to study the energy confinement scaling at higher electron temperature. Tri Alpha Energy is working towards catalysing a community-wide collaboration to develop a Whole Device Model (WDM) of Compact Tori. One application of the WDM is the study of stability and transport properties of C-2W using two particle-in-cell codes, ANC and FPIC. These codes can be used to find new stable operating points, and to make predictions of the turbulent transport at those points. They will be used in collaboration with the C-2W experimental program to validate the codes against C-2W, mitigate experimental risk inherent in the exploration of new parameter regimes, accelerate the optimization of experimental operating scenarios, and to find operating points for future FRC reactor designs.

  10. The Evolution of Devices and Systems Supporting Rehabilitation of Lower Limbs

    Science.gov (United States)

    Olinski, M.; Lewandowski, B.; Gronowicz, A.

    2015-02-01

    This paper presents the process of development, as well as examples of devices and systems supporting rehabilitation of the human lower extremities, developed independently over the years in many parts of the world. Particular emphasis was placed on indicating, which major groups of devices supporting kinesitherapy of the lower limbs can be distinguished, what are the important advantages and disadvantages of particular types of solutions, as well as what directions currently dominating in development of rehabilitation systems may be specified. A deeper analysis and comparison of several selected systems was also conducted, resulting in gathering the outcomes in two tables. They focused on a few features of mechanical design, especially the devices' kinematic structures, and devices' additional functions associated with, among others, interaction, as well as diagnosis of the limb's state and the progress of rehabilitation.

  11. Parametric optimization in virtual prototyping environment of the control device for a robotic system used in thin layers deposition

    Science.gov (United States)

    Enescu (Balaş, M. L.; Alexandru, C.

    2016-08-01

    The paper deals with the optimal design of the control system for a 6-DOF robot used in thin layers deposition. The optimization is based on parametric technique, by modelling the design objective as a numerical function, and then establishing the optimal values of the design variables so that to minimize the objective function. The robotic system is a mechatronic product, which integrates the mechanical device and the controlled operating device.The mechanical device of the robot was designed in the CAD (Computer Aided Design) software CATIA, the 3D-model being then transferred to the MBS (Multi-Body Systems) environment ADAMS/View. The control system was developed in the concurrent engineering concept, through the integration with the MBS mechanical model, by using the DFC (Design for Control) software solution EASY5. The necessary angular motions in the six joints of the robot, in order to obtain the imposed trajectory of the end-effector, have been established by performing the inverse kinematic analysis. The positioning error in each joint of the robot is used as design objective, the optimization goal being to minimize the root mean square during simulation, which is a measure of the magnitude of the positioning error varying quantity.

  12. Eccentric Mounting and Adjustment System for Belt Driven Devices

    National Research Council Canada - National Science Library

    Hansen, David N

    2008-01-01

    .... The system includes a housing fixed to the engine, a socket rotatable in pawl-and-ratchet fashion within the housing, and a socket aperture eccentrically disposed relative to the socket's axis...

  13. DC motor proportional control system for orthotic devices

    Science.gov (United States)

    Blaise, H. T.; Allen, J. R.

    1972-01-01

    Multi-channel proportional control system for operation of dc motors for use with externally-powered orthotic arm braces is described. Components of circuitry and principles of operation are described. Schematic diagram of control circuit is provided.

  14. Lithographically-Scribed Planar Holographic Optical CDMA Devices and Systems

    National Research Council Canada - National Science Library

    Mossberg, Thomas

    2007-01-01

    .... The present Phase II effort has harnessed new fabrication tools to perfect disruptive HBR-based multiplexer products for DoD avionics, optical communications systems computer data communications and local area networks...

  15. Double deflection system for an electron beam device

    International Nuclear Information System (INIS)

    Parker, N.W.; Crewe, A.V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations

  16. Modeling and Optimization of an Electrostatic Energy Harvesting Device

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Wang, Fei; Hansen, Ole

    2014-01-01

    that the electrostatic transducer force is related to the voltage output and cannot be approximated by viscous damping or a Coulomb force as reported previously. The coupled model with two simultaneous differential equations is numerically solved for the voltage output and transduction force with given parameters...

  17. Revisited global drift fluid model for linear devices

    International Nuclear Information System (INIS)

    Reiser, Dirk

    2012-01-01

    The problem of energy conserving global drift fluid simulations is revisited. It is found that for the case of cylindrical plasmas in a homogenous magnetic field, a straightforward reformulation is possible avoiding simplifications leading to energetic inconsistencies. The particular new feature is the rigorous treatment of the polarisation drift by a generalization of the vorticity equation. The resulting set of model equations contains previous formulations as limiting cases and is suitable for efficient numerical techniques. Examples of applications on studies of plasma blobs and its impact on plasma target interaction are presented. The numerical studies focus on the appearance of plasma blobs and intermittent transport and its consequences on the release of sputtered target materials in the plasma. Intermittent expulsion of particles in radial direction can be observed and it is found that although the neutrals released from the target show strong fluctuations in their propagation into the plasma column, the overall effect on time averaged profiles is negligible for the conditions considered. In addition, the numerical simulations are utilised to perform an a-posteriori assessment of the magnitude of energetic inconsistencies in previously used simplified models. It is found that certain popular approximations, in particular by the use of simplified vorticity equations, do not significantly affect energetics. However, popular model simplifications with respect to parallel advection are found to provide significant deterioration of the model consistency.

  18. EFFICIENCY OPTIMIZATION OF ATTENDANCE SYSTEM WITH GPS AND BIOMETRIC METHOD USING MOBILE DEVICES

    Directory of Open Access Journals (Sweden)

    Benfano Soewito

    2014-05-01

    Full Text Available The existing attendance system still has drawbacks, namely the queue in front of the finger scanner, the attendance data are not integrated with Human Resources Systems, and also the employees who work outside the office cannot get in the attendance system to roll presence. In the other hand, everyone has the mobile devices and all the mobile devices will be embedded a finger scanner in the future. In this paper, it is proposed the absence system using one own device. The finger scanner and coordinate Global Position System (GPS are used as inputs for the attendance system that integrated with payroll system and human resource management tools. Application base on android platform is developed because the android is the most platforms that have been using in the most mobile devices. Using our proposed methodology, the employee can roll presence using their mobile devices and the do not need to be in queue and the employees who work outside the office also can roll presence. Research showed that proposed methodology can be used for the next generation attendance system.

  19. Simulated human eye retina adaptive optics imaging system based on a liquid crystal on silicon device

    International Nuclear Information System (INIS)

    Jiang Baoguang; Cao Zhaoliang; Mu Quanquan; Hu Lifa; Li Chao; Xuan Li

    2008-01-01

    In order to obtain a clear image of the retina of model eye, an adaptive optics system used to correct the wave-front error is introduced in this paper. The spatial light modulator that we use here is a liquid crystal on a silicon device instead of a conversional deformable mirror. A paper with carbon granule is used to simulate the retina of human eye. The pupil size of the model eye is adjustable (3-7 mm). A Shack–Hartman wave-front sensor is used to detect the wave-front aberration. With this construction, a value of peak-to-valley is achieved to be 0.086 λ, where λ is wavelength. The modulation transfer functions before and after corrections are compared. And the resolution of this system after correction (691p/m) is very close to the dirraction limit resolution. The carbon granule on the white paper which has a size of 4.7 μm is seen clearly. The size of the retina cell is between 4 and 10 mu;m. So this system has an ability to image the human eye's retina. (classical areas of phenomenology)

  20. Pembangunan Model Restaurant Management System

    OpenAIRE

    Fredy Jingga; Natalia Limantara

    2014-01-01

    Model design for Restaurant Management System aims to help in restaurant business process, where Restaurant Management System (RMS) help the waitress and chef could interact each other without paper limitation.  This Restaurant Management System Model develop using Agile Methodology and developed based on PHP Programming Langguage. The database management system is using MySQL. This web-based application model will enable the waitress and the chef to interact in realtime, from the time they a...

  1. Reliability of Dubbed Technical Systems with Built-In Control Device

    Directory of Open Access Journals (Sweden)

    V. A. Аnischenko

    2013-01-01

    Full Text Available The paper substantiates a selection of passive or active system for dubbing technical systems in accordance with characteristics pertaining to probability of no-failure operation and mean–time-between failures with due account of non-reliability of a built-in control device and systems complexity. 

  2. A DGS Gesture Dictionary for Modelling on Mobile Devices

    Science.gov (United States)

    Isotani, Seiji; Reis, Helena M.; Alvares, Danilo; Brandão, Anarosa A. F.; Brandão, Leônidas O.

    2018-01-01

    Interactive or Dynamic Geometry System (DGS) is a tool that help to teach and learn geometry using a computer-based interactive environment. Traditionally, the interaction with DGS is based on keyboard and mouse events where the functionalities are accessed using a menu of icons. Nevertheless, recent findings suggest that such a traditional model…

  3. Applications of Nonlinear Dynamics Model and Design of Complex Systems

    CERN Document Server

    In, Visarath; Palacios, Antonio

    2009-01-01

    This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.

  4. Modelling of wastewater systems

    DEFF Research Database (Denmark)

    Bechmann, Henrik

    to analyze and quantify the effect of the Aeration Tank Settling (ATS) operating mode, which is used during rain events. Furthermore, the model is used to propose a control algorithm for the phase lengths during ATS operation. The models are mainly formulated as state space model in continuous time......In this thesis, models of pollution fluxes in the inlet to 2 Danish wastewater treatment plants (WWTPs) as well as of suspended solids (SS) concentrations in the aeration tanks of an alternating WWTP and in the effluent from the aeration tanks are developed. The latter model is furthermore used...... at modelling the fluxes in terms of the multiple correlation coefficient R2. The model of the SS concentrations in the aeration tanks of an alternating WWTP as well as in the effluent from the aeration tanks is a mass balance model based on measurements of SS in one aeration tank and in the common outlet...

  5. A prompt information retrieval system on handheld devices

    Science.gov (United States)

    Huang, Yo-Ping; Yen, Wei; Lin, Shi-Hung

    2007-04-01

    In this paper, we propose an intelligent bird information retrieval system which aims to construct a mobility-learning activity under the up-to-date wireless technology. The system consists of a Tablet PC and PDAs with wireless networking capabilities. The PDA is equipped with a friendly retrieval interface and a good learning environment. In our system, users only need to click the buttons or input the keywords to retrieve bird information. Besides, users can discuss or share their information and knowledge via the wireless network. Our system saves bird information in four categories including "Introduction," "Images," "Sound," "Streaming Media," and "Ecological Memo." The integral knowledge helps users understand more about birds. Data mining and fuzzy association rules are applied to recommend users those birds they may be interested in. A streaming server on the Tablet PC is built to provide the streaming media for PDA users. By this way, PDA users can enjoy the multimedia from Tablet PC in real time without downloading completely. Finally, the system is a perfect tool for outdoor teaching and can be easily extended to provide navigation and touring services for national parks or museums.

  6. Study of grounding system of large tokamak device JT-60

    International Nuclear Information System (INIS)

    Arakawa, Kiyotsugu; Shimada, Ryuichi; Kishimoto, Hiroshi; Yabuno, Kohei; Ishigaki, Yukio.

    1982-01-01

    In the critical plasma testing facility JT-60 constructed by the Japan Atomic Energy Research Institute, high voltage, large current is required in an instant. Accordingly, for the protection of human bodies and the equipment, and for realizing the stable operation of the complex, precise control and measurement system, a large scale facility of grounding system is required. In case of the JT-60 experimental facility, the equipments with different functions in separate buildings are connected, therefore, it is an important point to avoid high potential difference between buildings. In the grounding system for the JT-60, a reticulate grounding electrode is laid for each building, and these electrodes are connected with a low impedance metallic duct called grounding trunk line. The power supply cables for various magnetic field coils, control lines and measurement lines are laid in the duct. It is a large problem to grasp quantitatively the effect of a grounding trunk line by analysis. The authors analyzed the phenomenon that large current flows into a grounding system by lightning strike or grounding. The fundamental construction of the grounding system for the JT-60, the condition for the analysis and the result of simulation are reported. (Kako, I.)

  7. Device Scale Modeling of Solvent Absorption using MFIX-TFM

    Energy Technology Data Exchange (ETDEWEB)

    Carney, Janine E. [National Energy Technology Lab. (NETL), Albany, OR (United States); Finn, Justin R. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2016-10-01

    Recent climate change is largely attributed to greenhouse gases (e.g., carbon dioxide, methane) and fossil fuels account for a large majority of global CO2 emissions. That said, fossil fuels will continue to play a significant role in the generation of power for the foreseeable future. The extent to which CO2 is emitted needs to be reduced, however, carbon capture and sequestration are also necessary actions to tackle climate change. Different approaches exist for CO2 capture including both post-combustion and pre-combustion technologies, oxy-fuel combustion and/or chemical looping combustion. The focus of this effort is on post-combustion solvent-absorption technology. To apply CO2 technologies at commercial scale, the availability and maturity and the potential for scalability of that technology need to be considered. Solvent absorption is a proven technology but not at the scale needed by typical power plant. The scale up and down and design of laboratory and commercial packed bed reactors depends heavily on the specific knowledge of two-phase pressure drop, liquid holdup, the wetting efficiency and mass transfer efficiency as a function of operating conditions. Simple scaling rules often fail to provide proper design. Conventional reactor design modeling approaches will generally characterize complex non-ideal flow and mixing patterns using simplified and/or mechanistic flow assumptions. While there are varying levels of complexity used within these approaches, none of these models resolve the local velocity fields. Consequently, they are unable to account for important design factors such as flow maldistribution and channeling from a fundamental perspective. Ideally design would be aided by development of predictive models based on truer representation of the physical and chemical processes that occur at different scales. Computational fluid dynamic (CFD) models are based on multidimensional flow equations with first

  8. Modeling and simulation of ventilation devices in nuclear waste storage

    International Nuclear Information System (INIS)

    Zhang, Yumeng

    2015-01-01

    The objective of this thesis is to develop models and algorithms to simulate efficiently the mass exchanges occurring at the interface between the nuclear waste deep geological repositories and the ventilation excavated galleries. To model such physical processes, one needs to account in the porous medium for the flow of the liquid and gas phases including the vaporization of the water component in the gas phase and the dissolution of the gaseous components in the liquid phase. In the free flow region, a single phase gas free flow is considered assuming that the liquid phase is instantaneously vaporized at the interface. This gas free flow has to be compositional to account for the change of the relative humidity in the free flow region which has a strong feedback on the liquid flow rate at the interface. In chapter 1, three formulations of the gas liquid compositional Darcy flow are studied. Their equivalence from the point of phase transitions is shown and they are compared numerically on 1D and 3D test cases including gas appearance and liquid disappearance. The 3D discretization is based on the Vertex Approximate Gradient (VAG) scheme and takes into account discontinuous capillary pressures. In chapter 2, a reduced model coupling a 3D gas liquid compositional Darcy flow in a fractured porous medium, and a 1D compositional free gas flow is introduced. The VAG discretization is extended to such models taking into account the coupling between the 3D matrix, the 2D network of fractures and the 1D gallery. Its convergence is studied both for the linear single phase stationary model and for a non linear model coupling the Richards equation to a single phase 1D flow or a 1D tracer equation in the gallery. Different test cases with Andra data sets are presented. In Chapter 3, a splitting algorithm to solve the coupling between the gas liquid compositional Darcy flow in the porous medium and the gas compositional free flow in the gallery is developed. The idea is to

  9. Application of Detailed Phase Comparison Protection Models for the Analysis of its Operation in Networks with Facts Devices

    Directory of Open Access Journals (Sweden)

    Ruban Nikolay Yu.

    2015-01-01

    Full Text Available The problem of relay protection misoperations in networks with FACTS devices is considered in the paper. It is offered a solution to this problem for a phase comparison protection of transmission power line through the use of its detailed model for the analysis of the functioning for a case of various normal, emergency and post-emergency modes of electric power systems. The research results of this approach are given in the paper.

  10. Modelling and Control of Robotic Leg as Assistive Device

    Science.gov (United States)

    Jingye, Yee; Zain, Badrul Aisham bin Md

    2017-10-01

    The ageing population (people older than 60 years old) is expected to constitute 21.8% of global population by year 2050. When human ages, bodily function including locomotors will deteriorate. Besides, there are hundreds of thousands of victims who suffer from multiple health conditions worldwide that leads to gait impairment. A promising solution will be the lower limb powered-exoskeleton. This study is to be a start-up platform to design a lower limb powered-exoskeleton for a normal Malaysian male, by designing and simulating the dynamic model of a 2-link robotic leg to observe its behaviour under different input conditions with and without a PID controller. Simulink in MATLAB software is used as the dynamic modelling and simulation software for this study. It is observed that the 2-links robotic leg behaved differently under different input conditions, and perform the best when it is constrained and controlled by PID controller. Simulink model is formed as a foundation for the upcoming researches and can be modified and utilised by the future researchers.

  11. Modeling and estimating system availability

    International Nuclear Information System (INIS)

    Gaver, D.P.; Chu, B.B.

    1976-11-01

    Mathematical models to infer the availability of various types of more or less complicated systems are described. The analyses presented are probabilistic in nature and consist of three parts: a presentation of various analytic models for availability; a means of deriving approximate probability limits on system availability; and a means of statistical inference of system availability from sparse data, using a jackknife procedure. Various low-order redundant systems are used as examples, but extension to more complex systems is not difficult

  12. Predictive modeling for corrective maintenance of imaging devices from machine logs.

    Science.gov (United States)

    Patil, Ravindra B; Patil, Meru A; Ravi, Vidya; Naik, Sarif

    2017-07-01

    In the cost sensitive healthcare industry, an unplanned downtime of diagnostic and therapy imaging devices can be a burden on the financials of both the hospitals as well as the original equipment manufacturers (OEMs). In the current era of connectivity, it is easier to get these devices connected to a standard monitoring station. Once the system is connected, OEMs can monitor the health of these devices remotely and take corrective actions by providing preventive maintenance thereby avoiding major unplanned downtime. In this article, we present an overall methodology of predicting failure of these devices well before customer experiences it. We use data-driven approach based on machine learning to predict failures in turn resulting in reduced machine downtime, improved customer satisfaction and cost savings for the OEMs. One of the use-case of predicting component failure of PHILIPS iXR system is explained in this article.

  13. A review of fusion device fuel cleanup systems

    International Nuclear Information System (INIS)

    Dombra, A.H.; Carney, M.

    1985-01-01

    Design options for a small fusion fuel purification system are assessed by comparing six conceptual system designs based on one of the following: a Zr/Al getter pump for in vacuo applications, a cryogenic molecular sieve adsorber at 77K, a palladium-alloy membrane diffuser, a U-bed reactor at 1170K, a two-compartment cryogenic freezer at 27-50K and 50-300K, a U-bed and non-regenerative Zr/Al gas purifier. The latter system introduces a new concept of fuel purification based on well-established techniques: recovery of purified D 2 -DT-T 2 from a helium carrier gas with the U-bed, followed by the removal of impurities from the carrier gas with the non-regenerative Zr/Al gas purifier. The main advantages of this system are simplicity, safety and relatively small quantity of tritiated waste produced by the process. The tritium in the waste is immobilized as a stable tritide of Zr/Al

  14. Energy Devices and Political Consumerism in Reconfigured Energy Systems

    NARCIS (Netherlands)

    Kloppenburg, S.; Vliet, van B.J.M.

    2018-01-01

    This chapter discusses political consumerism in the context of a transformation towards a low-carbon electricity system. Over the past decades, deregulation, liberalisation, and privatisation have opened up spaces for Western consumers to influence the greening of energy provision and consumption

  15. Data base management system configuration specification. [computer storage devices

    Science.gov (United States)

    Neiers, J. W.

    1979-01-01

    The functional requirements and the configuration of the data base management system are described. Techniques and technology which will enable more efficient and timely transfer of useful data from the sensor to the user, extraction of information by the user, and exchange of information among the users are demonstrated.

  16. System Control Device Electronics Smart Home Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Safarul Ilham

    2017-06-01

    Full Text Available The use of information technology is very useful for today’s life and the next, where the human facilitated in doing a variety of activities in the life day to day. By the development of the existing allows people no longer do a job with difficulty. For that, it takes a system safety home using system technology Web-based and complete video streaming CCTV (video streaming a person can see the condition of his home whenever and wherever by using handphone, laptops and other tools are connected to the Internet network. This tool can facilitate someone in the monitor at home and control equipment the House as open and close and the lock the gate, turning on and off the lights so homeowners are no longer have to visit their home and fear the state of the House because fully security and control in the House was handled by the system. based on the above problems Writer try to design work system a tool that can control the simulation tools home using two Microcontroller is Attiny 2313 and Atmega16.

  17. Modern devices of optimum filtration for the active radar system

    OpenAIRE

    V. E. Bychkov; O. D. Mrachkovskiy; V. I. Pravda

    2006-01-01

    The principle of construction the matched filter and correlator, for the active radar system operating with a broadband noise signal is esteemed. The example of construction a сhan-nel of processing on the basis of microcircuits of a programmed logic (PLD) is shown

  18. Optimal location of shunt FACTS devices in a power system with high wind feeding

    Energy Technology Data Exchange (ETDEWEB)

    Shakib, Arefeh Danesh; Balzer, Gerd [Technische Univ. Darmstadt (Germany). Inst. of Electrical Power Systems

    2009-07-01

    Connections of large offshore wind farms, which will be placed in the North Sea, will lead to several problems in Germany's power system. One of these is the occurance of undervoltage at weak nodes due to the reduction of reactive power generation. This paper is covering several singular analyses of the system Jacobin matrix whose results are applied to identify sensors and weak places in power systems with high wind feeding. This allows for the solution of optimal location of shunt FACTS devices for example static var compensators (SVC) for voltage control. The optimizations are made on two parameters: the location of the devices and their sizes. Simulations are performed on a IEEE 57-bus system for several wind feeding scenarios. It can be shown that by use of optimal placed FACTS devices the voltage stability of the power system in the case of high wind feeding can be guaranteed. (orig.)

  19. Modelling organs, tissues, cells and devices using Matlab and Comsol multiphysics

    CERN Document Server

    Dokos, Socrates

    2017-01-01

    This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.

  20. Combining Charge Couple Devices and Rate Sensors for the Feedforward Control System of a Charge Coupled Device Tracking Loop.

    Science.gov (United States)

    Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu

    2016-06-25

    A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.

  1. Discrete Event Simulation Model of the Polaris 2.1 Gamma Ray Imaging Radiation Detection Device

    Science.gov (United States)

    2016-06-01

    release; distribution is unlimited DISCRETE EVENT SIMULATION MODEL OF THE POLARIS 2.1 GAMMA RAY IMAGING RADIATION DETECTION DEVICE by Andres T...ONLY (Leave blank) 2. REPORT DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE DISCRETE EVENT SIMULATION MODEL...modeled. The platform, Simkit, was utilized to create a discrete event simulation (DES) model of the Polaris. After carefully constructing the DES

  2. Apparatuses, Systems and Methods for Cleaning Photovoltaic Devices

    KAUST Repository

    Eitelhuber, Georg

    2013-02-14

    Embodiments of solar panel cleaning apparatuses, solar panel cleaning systems, and solar panel cleaning methods are disclosed. In certain embodiments, the disclosed solar panel cleaning apparatuses, systems and methods do may not require any water or other cleaning liquids in the whole cleaning process, which makes them prominent well suited in for water-deficit environments such as deserts. In one embodiment, the solar panel cleaning apparatus comprises one or more rotatable brushes each having a rotational axis and a drive configured to move each of the one or more rotatable brushes in a direction that is not perpendicular to the rotational axis. The solar panel cleaning apparatus is may be configured such that the angle of the rotational axis of at least one of the one or more rotatable brushes is adjustable relative to the direction of travel.

  3. Microphotonic devices for compact planar lightwave circuits and sensor systems

    Science.gov (United States)

    Cardenas Gonzalez, Jaime

    2005-07-01

    Higher levels of integration in planar lightwave circuits and sensor systems can reduce fabrication costs and broaden viable applications for optical network and sensor systems. For example, increased integration and functionality can lead to sensor systems that are compact enough for easy transport, rugged enough for field applications, and sensitive enough even for laboratory applications. On the other hand, more functional and compact planar lightwave circuits can make optical networks components less expensive for the metro and access markets in urban areas and allow penetration of fiber to the home. Thus, there is an important area of opportunity for increased integration to provide low cost, compact solutions in both network components and sensor systems. In this dissertation, a novel splitting structure for microcantilever deflection detection is introduced. The splitting structure is designed so that its splitting ratio is dependent on the vertical position of the microcantilever. With this structure, microcantilevers sensitized to detect different analytes or biological agents can be integrated into an array on a single chip. Additionally, the integration of a depolarizer into the optoelectronic integrated circuit in an interferometric fiber optic gyroscope is presented as a means for cost reduction. The savings come in avoiding labor intensive fiber pigtailing steps by permitting batch fabrication of these components. In particular, this dissertation focuses on the design of the waveguides and polarization rotator, and the impact of imperfect components on the performance of the depolarizer. In the area of planar lightwave circuits, this dissertation presents the development of a fabrication process for single air interface bends (SAIBs). SAIBs can increase integration by reducing the area necessary to make a waveguide bend. Fabrication and measurement of a 45° SAIB with a bend efficiency of 93.4% for TM polarization and 92.7% for TE polarization are

  4. REACTIVE POWER DEVICES IN SYSTEMS OF ELECTRIC TRACTION

    Directory of Open Access Journals (Sweden)

    M. O. Kostin

    2010-04-01

    Full Text Available A comparative characteristic of different concepts and expressions for determination of reactive power in the circuits with non-sinusoidal electric values has been given. For the first Ukrainian electric locomotives of DE1 type with the system of DC electric traction, the values of reactive power after Budeany, Fryze, and also the differential, integral and generalized reactive powers have been determined. Some measures on reducing its consumption by the DC electric rolling stock have been suggested.

  5. SMS Security System on Mobile Devices Using Tiny Encryption Algorithm

    Science.gov (United States)

    Novelan, M. S.; Husein, A. M.; Harahap, M.; Aisyah, S.

    2018-04-01

    The development of telecommunications technology is so rapid has given such great benefits. With the telecommunication technology, distance and time no longer be a significant obstacle. One of the results of telecommunications technology that is well known is the Short Message Service. In this study developed an application on the mobile phone to modify the SMS message into ciphertext so that the information content of the SMS is not known by others. SMS delivery system for encrypting messages into ciphertext using a key that is entered by the sender then sends to the destination number. SMS reception system to decrypt it to others via SMS without the fear of information from these messages will be known by others. The method used in the system encrypt and decrypt the message is the algorithm Tiny Encryption Algorithm and implemented using the Java programming language. JDK 1.7 as the Java programming language ciphertext into plaintext using the key entered by the receiver and displays the original message to the recipient. This application can be used by someone who wants to send a confidential information and the Java compiler. Eclipse, a Java SDK and the Android SDK as a Java source code editor.

  6. Analytical model for nonlinear piezoelectric energy harvesting devices

    International Nuclear Information System (INIS)

    Neiss, S; Goldschmidtboeing, F; M Kroener; Woias, P

    2014-01-01

    In this work we propose analytical expressions for the jump-up and jump-down point of a nonlinear piezoelectric energy harvester. In addition, analytical expressions for the maximum power output at optimal resistive load and the 3 dB-bandwidth are derived. So far, only numerical models have been used to describe the physics of a piezoelectric energy harvester. However, this approach is not suitable to quickly evaluate different geometrical designs or piezoelectric materials in the harvester design process. In addition, the analytical expressions could be used to predict the jump-frequencies of a harvester during operation. In combination with a tuning mechanism, this would allow the design of an efficient control algorithm to ensure that the harvester is always working on the oscillator's high energy attractor. (paper)

  7. Economic benefits of safety-engineered sharp devices in Belgium - a budget impact model.

    Science.gov (United States)

    Hanmore, Emma; Maclaine, Grant; Garin, Fiona; Alonso, Alexander; Leroy, Nicolas; Ruff, Lewis

    2013-11-25

    Measures to protect healthcare workers where there is risk of injury or infection from medical sharps became mandatory in the European Union (EU) from May 2013. Our research objective was to estimate the net budget impact of introducing safety-engineered devices (SEDs) for prevention of needlestick injuries (NSIs) in a Belgian hospital. A 5-year incidence-based budget impact model was developed from the hospital inpatient perspective, comparing costs and outcomes with SEDs and prior-used conventional (non-safety) devices. The model accounts for device acquisition costs and costs of NSI management in 4 areas of application where SEDs are currently used: blood collection, infusion, injection and diabetes insulin administration. Model input data were sourced from the Institut National d'Assurance Maladie-Invalidité, published studies, clinical guidelines and market research. Costs are discounted at 3%. For a 420-bed hospital, 100% substitution of conventional devices by SEDs is estimated to decrease the cumulative 5-year incidence of NSIs from 310 to 75, and those associated with exposure to blood-borne viral diseases from 60 to 15. Cost savings from managing fewer NSIs more than offset increased device acquisition costs, yielding estimated 5-year overall savings of €51,710. The direction of these results is robust to a range of sensitivity and model scenario analyses. The model was most sensitive to variation in the acquisition costs of SEDs, rates of NSI associated with conventional devices, and the acquisition costs of conventional devices. NSIs are a significant potential risk with the use of sharp devices. The incidence of NSIs and the costs associated with their management can be reduced through the adoption of safer work practices, including investment in SEDs. For a Belgian hospital, the budget impact model reports that the incremental acquisition costs of SEDs are offset by the savings from fewer NSIs. The availability of more robust data for NSI reduction

  8. Ontology-Driven Instant Messaging-Based Dialogue System for Device Control

    KAUST Repository

    Noguera-Arnaldos, José Ángel

    2015-10-14

    The im4Things platform aims to develop a communication interface for devices in the Internet of the Things (IoT) through intelligent dialogue based on written natural language over instant messaging services. This type of communication can be established in different ways such as order sending and, status querying. Also, the devices themselves are responsible for alerting users when a change has been produced in the device’s sensors. The system has been validated and it has obtained promising results.

  9. Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system

    KAUST Repository

    Li, Huawei

    2013-10-10

    In this article, we described a simple and rapid method for fabrication of droplet microfluidic devices on polystyrene substrate using a CO2 laser system. The effects of the laser power and the cutting speed on the depth, width and aspect ratio of the microchannels fabricated on polystyrene were investigated. The polystyrene microfluidic channels were encapsulated using a hot press bonding technique. The experimental results showed that both discrete droplets and laminar flows could be obtained in the device.

  10. Conceptual design report for a Fusion Engineering Device sector-handling machine and movable manipulator system

    International Nuclear Information System (INIS)

    Watts, K.D.; Masson, L.S.; McPherson, R.S.

    1982-10-01

    Design requirements, trade studies, design descriptions, conceptual designs, and cost estimates have been completed for the Fusion Engineering Device sector handling machine, movable manipulator system, subcomponent handling machine, and limiter blade handling machine. This information will be used by the Fusion Engineering Design Center to begin to determine the cost and magnitude of the effort required to perform remote maintenance on the Fusion Engineering Device. The designs presented are by no means optimum, and the costs estimates are rough-order-of-magnitude

  11. Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Foulds, Ian G.; Kodzius, Rimantas

    2013-01-01

    In this article, we described a simple and rapid method for fabrication of droplet microfluidic devices on polystyrene substrate using a CO2 laser system. The effects of the laser power and the cutting speed on the depth, width and aspect ratio of the microchannels fabricated on polystyrene were investigated. The polystyrene microfluidic channels were encapsulated using a hot press bonding technique. The experimental results showed that both discrete droplets and laminar flows could be obtained in the device.

  12. Symmetric low-voltage powering system for relativistic electronic devices

    International Nuclear Information System (INIS)

    Agafonov, A.V.; Lebedev, A.N.; Krastelev, E.G.

    2005-01-01

    A special driver for double-sided powering of relativistic magnetrons and several methods of localized electron flow forming in the interaction region of relativistic magnetrons are proposed and discussed. Two experimental installations are presented and discussed. One of them is designed for laboratory research and demonstration experiments at a rather low voltage. The other one is a prototype of a full-scale installation for an experimental research at relativistic levels of voltages on the microwave generation in the new integrated system consisting of a relativistic magnetron and symmetrical induction driver

  13. Using event-B for critical device software systems

    CERN Document Server

    Singh, Neeraj Kumar

    2013-01-01

    Defining a new development life-cycle methodology, together with a set of associated techniques and tools to develop highly critical systems using formal techniques, this book adopts a rigorous safety assessment approach explored via several layers (from requirements analysis to automatic source code generation). This is assessed and evaluated via a standard case study: the cardiac pacemaker. Additionally a formalisation of an Electrocardiogram (ECG) is used to identify anomalies in order to improve existing medical protocols. This allows the key issue - that formal methods are not currently i

  14. Modeling soft interface dominated systems

    NARCIS (Netherlands)

    Lamorgese, A.; Mauri, R.; Sagis, L.M.C.

    2017-01-01

    The two main continuum frameworks used for modeling the dynamics of soft multiphase systems are the Gibbs dividing surface model, and the diffuse interface model. In the former the interface is modeled as a two dimensional surface, and excess properties such as a surface density, or surface energy

  15. Microphysiological systems composed of human organoids in microfluidic devices: advances and challenges

    Directory of Open Access Journals (Sweden)

    Talita Miguel Marin

    2018-05-01

    Full Text Available Introduction: Models with higher predictive capacity and able to produce results at lower costs and in shorter times are needed for drug development. The microphysiological systems (MPS that cultivate human tissues in three-dimensional histoarchitecture (3D are promising alternatives for these objectives. Objective: This review work aims to address the state of the art of SMF development and illustrate the initial Brazilian experience with this technology. Method: The research and data collection covering the theme “Microphysiological Systems”, and the subtopics “Microfluidic Devices” and “3D Culture of Human Cells”, was based on electronic search in Capes Journals Portal, scientific databases Scopus, PubMed and Science Direct and with the Google Scholar search tool. Results: Among the existing microphysiological systems, those that are characterized by the culture of human tissues organized in three - dimensional histoarchitecture in microfluidic devices were recently introduced, as being the most promising ones. In addition, between the years 2000-2017, we recorded approximately increases of 12, 985 and 380 times in the number of academic publications related to the areas of Microfluidics, Organ-on-a-Chip and MPS respectively, illustrating the impact of this technology today. Conclusions: This relatively recent technology has high potential to overcome the limitations of current in vitro experimental models.

  16. Finite Element Modelling of a Novel Anterior Cruciate Ligament Repairing Device

    Directory of Open Access Journals (Sweden)

    A.Vairis

    2014-07-01

    Full Text Available The knee anterior cruciate ligament which connects the femur to the tibia is often torn during sudden twisting motions resulting in knee instability with surgery being an effective treatment where the torn ligament is replaced with a graft. This study provides qualitative stress information on a restored knee which has been repaired using a novel device. This device has been designed to reduce graft damage and to minimize post-surgery complications. The device as well as the intact knee have been modelled in 3D and studied using finite elements to assess the mechanical behaviour of the device under different loads. Results are evaluated and compared to equivalent published works. They showed that high stresses appear where tendons wrap around objects like the securing pin of the knee ligament repair device, while the highest stresses are away from the repair device components indicating that the device design does not affect the graft. Developed stresses were within the tendon elastic range, and load case direction does not affect significantly the developed stresses on the circumference of tendons in the most stressed region.

  17. Implications for a Wireless, External Device System to Study Electrocorticography

    Directory of Open Access Journals (Sweden)

    David Rotermund

    2017-04-01

    Full Text Available Implantable neuronal interfaces to the brain are an important keystone for future medical applications. However, entering this field of research is difficult since such an implant requires components from many different areas of technology. Since the complete avoidance of wires is important due to the risk of infections and other long-term problems, means for wirelessly transmitting data and energy are a necessity which adds to the requirements. In recent literature, many high-tech components for such implants are presented with remarkable properties. However, these components are typically not freely available for such a system. Every group needs to re-develop their own solution. This raises the question if it is possible to create a reusable design for an implant and its external base-station, such that it allows other groups to use it as a starting point. In this article, we try to answer this question by presenting a design based exclusively on commercial off-the-shelf components and studying the properties of the resulting system. Following this idea, we present a fully wireless neuronal implant for simultaneously measuring electrocorticography signals at 128 locations from the surface of the brain. All design files are available as open source.

  18. Positioning device for MRI-guided high intensity focused ultrasound system

    Energy Technology Data Exchange (ETDEWEB)

    Damianou, Christakis [Frederick Institute of Technology (FIT), Limassol (Cyprus); MEDSONIC, LTD, Limassol (Cyprus); Ioannides, Kleanthis [Polikliniki Igia, Limassol (Cyprus); Milonas, Nicos [Frederick Institute of Technology (FIT), Limassol (Cyprus)

    2008-04-15

    A prototype magnetic resonance imaging (MRI)- compatible positioning device was used to move an MRI-guided high intensity focused ultrasound (HIFU) transducer. The positioning device has three user-controlled degrees of freedom that allow access to various targeted lesions. The positioning device was designed and fabricated using construction materials selected for compatibility with high magnetic fields and fast switching magnetic field gradients encountered inside MRI scanners. The positioning device incorporates only MRI compatible materials such as piezoelectric motors, plastic sheets, brass screws, plastic pulleys and timing belts. The HIFU/MRI system includes the multiple subsystems (a) HIFU system, (b) MR imaging, (c) Positioning device (robot) and associate drivers, (d) temperature measurement, (e) cavitation detection, (f) MRI compatible camera, and (g) Soft ware. The MRI compatibility of the system was successfully demonstrated in a clinical high-field MRI scanner. The ability of the robot to accurately move the transducer thus creating discrete and overlapping lesions in biological tissue was tested successfully. A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be sited on the scanner's table. The propagation of HIFU can use either a lateral or superior-inferior approach. Discrete and large lesions were created successfully with reproducible results. (orig.)

  19. Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices

    Science.gov (United States)

    Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan

    2014-10-01

    In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].

  20. Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems

    Science.gov (United States)

    Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia

    2016-09-01

    Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.