A SIMULATION OF CONTRACT FARMING USING AGENT BASED MODELING
Directory of Open Access Journals (Sweden)
Yuanita Handayati
2016-12-01
Full Text Available This study aims to simulate the effects of contract farming and farmer commitment to contract farming on supply chain performance by using agent based modeling as a methodology. Supply chain performance is represented by profits and service levels. The simulation results indicate that farmers should pay attention to customer requirements and plan their agricultural activities in order to fulfill these requirements. Contract farming helps farmers deal with demand and price uncertainties. We also find that farmer commitment is crucial to fulfilling contract requirements. This study contributes to this field from a conceptual as well as a practical point of view. From the conceptual point of view, our simulation results show that different levels of farmer commitment have an impact on farmer performance when implementing contract farming. From a practical point of view, the uncertainty faced by farmers and the market can be managed by implementing cultivation and harvesting scheduling, information sharing, and collective learning as ways of committing to contract farming.
Simulating the activation, contraction and movement of skeletal muscles using the bidomain model.
Lopez Rincon, A; Cantu, C; Soto, R; Shimoda, S
2016-08-01
A simulation of the muscle activation, contraction and movement is here presented. This system was developed based on the Bidomain mathematical model of the electrical propagation in muscles. This study shows an electrical stimuli input to a muscle and how this behave. The comparison between healthy subject and patient with muscle activation impairment is depicted, depending on whether the signal reaches a threshold. A 3D model of a bicep muscle and a forearm bone connected was constructed using OpenGL. This platform could be used for development of controllers for biomechatronic systems in future works. This kind of bioinspired model could be used for a better understanding of the neuromotor system.
Temporary Workforce Planning with Firm Contracts: A Model and a Simulated Annealing Heuristic
Directory of Open Access Journals (Sweden)
Muhammad Al-Salamah
2011-01-01
Full Text Available The aim of this paper is to introduce a model for temporary staffing when temporary employment is managed by firm contracts and to propose a simulated annealing-based method to solve the model. Temporary employment is a policy frequently used to adjust the working hour capacity to fluctuating demand. Temporary workforce planning models have been unnecessarily simplified to account for only periodic hiring and laying off; a company can review its workforce requirement every period and make hire-fire decisions accordingly, usually with a layoff cost. We present a more realistic temporary workforce planning model that assumes a firm contract between the worker and the company, which can extend to several periods. The model assumes the traditional constraints, such as inventory balance constraints, worker availability, and labor hour mix. The costs are the inventory holding cost, training cost of the temporary workers, and the backorder cost. The mixed integer model developed for this case has been found to be difficult to solve even for small problem sizes; therefore, a simulated annealing algorithm is proposed to solve the mixed integer model. The performance of the SA algorithm is compared with the CPLEX solution.
Sierra, M; Miana-Mena, F J; Calvo, B; Muñoz, M J; Rodríguez, J F; Grasa, J
2015-10-01
In the field of computational biomechanics, the experimental evaluation of the material properties is crucial for the development of computational models that closely reproduce real organ systems. When simulations of muscle tissue are concerned, stress/strain relations for both passive and active behavior are required. These experimental relations usually exhibit certain variability. In this study, a set of material parameters involved in a 3D skeletal muscle model are determined by using a system biology approach in which the parameters are randomly varied leading to a population of models. Using a set of experimental results from an animal model, a subset of the entire population of models was selected. This reduced population predicted the mechanical response within the window of experimental observations. Hence, a range of model parameters, instead of a single set of them, was determined. Rat Tibialis Anterior muscle was selected for this study. Muscles ([Formula: see text]) were activated through the sciatic nerve and during contraction the tissue pulled a weight fixed to the distal tendon (concentric contraction). Three different weights 1, 2 and 3 N were used and the time course of muscle stretch was analyzed obtaining values of (mean [Formula: see text] standard deviation): [Formula: see text], [Formula: see text] and [Formula: see text] respectively. A paired two-sided sign rank test showed significant differences between the muscle response for the three weights ([Formula: see text]). This study shows that the Monte Carlo method could be used for determine muscle characteristic parameters considering the variability of the experimental population.
Directory of Open Access Journals (Sweden)
Tien M. Nguyen
2018-03-01
Full Text Available This paper provides a high-level discussion and propositions of frameworks and models for acquisition strategy of complex systems. In particular, it presents an innovative system engineering approach to model the Department of Defense (DoD acquisition process and offers several optimization modules including simulation models using game theory and war-gaming concepts. Our frameworks employ Advanced Game-based Mathematical Framework (AGMF and Unified Game-based Acquisition Framework (UGAF, and related advanced simulation and mathematical models that include a set of War-Gaming Engines (WGEs implemented in MATLAB statistical optimization models. WGEs are defined as a set of algorithms, characterizing the Program and Technical Baseline (PTB, technology enablers, architectural solutions, contract type, contract parameters and associated incentives, and industry bidding position. As a proof of concept, Aerospace, in collaboration with the North Carolina State University (NCSU and University of Hawaii (UH, successfully applied and extended the proposed frameworks and decision models to determine the optimum contract parameters and incentives for a Cost Plus Incentive Fee (CPIF contract. As a result, we can suggest a set of acquisition strategies that ensure the optimization of the PTB.
Directory of Open Access Journals (Sweden)
Rositsa Raikova
2013-01-01
Full Text Available Muscle force is due to the cumulative effect of repetitively contracting motor units (MUs. To simulate the contribution of each MU to whole muscle force, an approach implemented in a novel computer program is proposed. The individual contraction of an MU (the twitch is modeled by a 6-parameter analytical function previously proposed; the force of one MU is a sum of its contractions due to an applied stimulation pattern, and the muscle force is the sum of the active MUs. The number of MUs, the number of slow, fast-fatigue-resistant, and fast-fatigable MUs, and their six parameters as well as a file with stimulation patterns for each MU are inputs for the developed software. Different muscles and different firing patterns can be simulated changing the input data. The functionality of the program is illustrated with a model consisting of 30 MUs of rat medial gastrocnemius muscle. The twitches of these MUs were experimentally measured and modeled. The forces of the MUs and of the whole muscle were simulated using different stimulation patterns that included different regular, irregular, synchronous, and asynchronous firing patterns of MUs. The size principle of MUs for recruitment and derecruitment was also demonstrated using different stimulation paradigms.
Sen, Shin; Ando, Takehiro; Kobayashi, Etsuko; Miyamoto, Hideaki; Ohashi, Satoru; Tanaka, Sakae; Joung, Sanghyun; Park, Il-Hyung; Sakuma, Ichiro
2014-01-01
In femoral fracture reduction, orthopedic surgeons must pull distal bone fragments with great traction force and return them to their correct positions, by referring to 2D-fluoroscopic images. Since this method is physically burdensome, the introduction of robotic assistance is desirable. While such robots have been developed, adequate control methods have not yet been established because of the lack of experimental data. It is difficult to obtain accurate data using cadavers or animals because they are different from the living human body's muscle characteristics and anatomy. Therefore, an experimental model for simulating human femoral characteristics is required. In this research, human muscles are reproduced using a McKibben-type pneumatic rubber actuator (artificial muscle) to develop a model that simulates typical femur muscles using artificial muscles.
International Nuclear Information System (INIS)
Ehlen, Mark A.; Scholand, Andrew J.; Stamber, Kevin L.
2007-01-01
An agent-based model is constructed in which a demand aggregator sells both uniform-price and real-time price (RTP) contracts to households as means for adding price elasticity in residential power use sectors, particularly during peak-price hours of the day. Simulations suggest that RTP contracts help a demand aggregator (1) shift its long-term contracts toward off-peak hours, thereby reducing its cost of power and (2) increase its short-run profits if it is one of the first aggregators to have large numbers of RTP contracts; but (3) create susceptibilities to short-term market demand and price volatilities. (author)
Martin, Heiner; Guthoff, Rudolf; Schmitz, Klaus-Peter
2011-09-01
Polymer injection into the capsular bag after phakoemulsification is an interesting and promising approach to lens surgery. Safe clinical application of this technique will require an appropriate estimate of the effect of implantation variables on the lens power. This article details the results of finite element investigations into the effects of the injected polymer volume and capsular bag contraction on the resultant lens power and accommodation amplitude. An axisymmetric finite element model was created from literature sources. Polymer injection and the capsular contraction were simulated, and their effect on the lens power was calculated. The simulations show that overfilling during polymer injection leads to a refractive power increase of the lens. Capsular bag contraction also results in a power increase. The calculated accommodative amplitude of the lens is minimally affected by capsular bag contraction but decreases significantly with increased capsular bag stiffness as a result of fibrosis. © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.
National Research Council Canada - National Science Library
Kasal, Omer
1999-01-01
...) test system of the Turkish Army Command are the failure to address life cycle cost (LCC) considerations during financial resource allocations and the absence of contract reliability incentives...
Directory of Open Access Journals (Sweden)
J. Vaverka
2018-01-01
Full Text Available Recent studies have shown that left ventricle (LV exhibits considerable transmural differences in active mechanical properties induced by transmural differences in electrical activity, excitation-contraction coupling, and contractile properties of individual myocytes. It was shown that the time between electrical and mechanical activation of myocytes (electromechanical delay: EMD decreases from subendocardium to subepicardium and, on the contrary, the myocyte shortening velocity (MSV increases in the same direction. To investigate the physiological importance of this inhomogeneity, we developed a new finite element model of LV incorporating the observed transmural gradients in EMD and MSV. Comparative simulations with the model showed that when EMD or MSV or both were set constant across the LV wall, the LV contractility during isovolumic contraction (IVC decreased significantly (dp/dtmax was reduced by 2 to 38% and IVC was prolonged by 18 to 73%. This was accompanied by an increase of transmural differences in wall stress. These results suggest that the transmural differences in EMD and MSV play an important role in physiological contractility of LV by synchronising the contraction of individual layers of ventricular wall during the systole. Reduction or enhancement of these differences may therefore impair the function of LV and contribute to heart failure.
National Research Council Canada - National Science Library
Jackson, Jr, Carl J
2007-01-01
.... The purpose of this research project is to analyze the 314th Contracting Squadron contracting processes and requirement target areas for improvement efforts by the application of the Contract Management Maturity Model (CMMM...
An event-based model for contracts
Directory of Open Access Journals (Sweden)
Tiziana Cimoli
2013-02-01
Full Text Available We introduce a basic model for contracts. Our model extends event structures with a new relation, which faithfully captures the circular dependencies among contract clauses. We establish whether an agreement exists which respects all the contracts at hand (i.e. all the dependencies can be resolved, and we detect the obligations of each participant. The main technical contribution is a correspondence between our model and a fragment of the contract logic PCL. More precisely, we show that the reachable events are exactly those which correspond to provable atoms in the logic. Despite of this strong correspondence, our model improves previous work on PCL by exhibiting a finer-grained notion of culpability, which takes into account the legitimate orderings of events.
Monte Carlo simulation based reliability evaluation in a multi-bilateral contracts market
International Nuclear Information System (INIS)
Goel, L.; Viswanath, P.A.; Wang, P.
2004-01-01
This paper presents a time sequential Monte Carlo simulation technique to evaluate customer load point reliability in multi-bilateral contracts market. The effects of bilateral transactions, reserve agreements, and the priority commitments of generating companies on customer load point reliability have been investigated. A generating company with bilateral contracts is modelled as an equivalent time varying multi-state generation (ETMG). A procedure to determine load point reliability based on ETMG has been developed. The developed procedure is applied to a reliability test system to illustrate the technique. Representing each bilateral contract by an ETMG provides flexibility in determining the reliability at various customer load points. (authors)
7 CFR 1718.104 - Availability of model loan contract.
2010-01-01
..., DEPARTMENT OF AGRICULTURE LOAN SECURITY DOCUMENTS FOR ELECTRIC BORROWERS Loan Contracts With Distribution Borrowers § 1718.104 Availability of model loan contract. Single copies of the model loan contract (RUS... 7 Agriculture 11 2010-01-01 2010-01-01 false Availability of model loan contract. 1718.104 Section...
A trace-based model for multiparty contracts
DEFF Research Database (Denmark)
Hvitved, Tom; Klaedtke, Felix; Zălinescu, Eugen
2012-01-01
In this article we present a model for multiparty contracts in which contract conformance is defned abstractly as a property on traces. A key feature of our model is blame assignment, which means that for a given contract, every breach is attributed to a set of parties. We show that blame...... assignment is compositional by de¿ning contract conjunction and contract disjunction. Moreover, to specify real-world contracts, we introduce the contract speci¿cation language CSL with an operational semantics. We show that each CSL contract has a counterpart in our trace-based model and from...... the operational semantics we derive a run-time monitor. CSL overcomes limitations of previously proposed formalisms for specifying contracts by supporting: (history sensitive and conditional) commitments, parametrised contract templates, relative and absolute temporal constraints, potentially in¿nite contracts...
SoS contract verification using statistical model checking
Directory of Open Access Journals (Sweden)
Alessandro Mignogna
2013-11-01
Full Text Available Exhaustive formal verification for systems of systems (SoS is impractical and cannot be applied on a large scale. In this paper we propose to use statistical model checking for efficient verification of SoS. We address three relevant aspects for systems of systems: 1 the model of the SoS, which includes stochastic aspects; 2 the formalization of the SoS requirements in the form of contracts; 3 the tool-chain to support statistical model checking for SoS. We adapt the SMC technique for application to heterogeneous SoS. We extend the UPDM/SysML specification language to express the SoS requirements that the implemented strategies over the SoS must satisfy. The requirements are specified with a new contract language specifically designed for SoS, targeting a high-level English- pattern language, but relying on an accurate semantics given by the standard temporal logics. The contracts are verified against the UPDM/SysML specification using the Statistical Model Checker (SMC PLASMA combined with the simulation engine DESYRE, which integrates heterogeneous behavioral models through the functional mock-up interface (FMI standard. The tool-chain allows computing an estimation of the satisfiability of the contracts by the SoS. The results help the system architect to trade-off different solutions to guide the evolution of the SoS.
Stochastic modeling of financial electricity contracts
International Nuclear Information System (INIS)
Benth, Fred Espen; Koekebakker, Steen
2008-01-01
We discuss the modeling of electricity contracts traded in many deregulated power markets. These forward/futures type contracts deliver (either physically or financially) electricity over a specified time period, and is frequently referred to as swaps since they in effect represent an exchange of fixed for floating electricity price. We propose to use the Heath-Jarrow-Morton approach to model swap prices since the notion of a spot price is not easily defined in these markets. For general stochastic dynamical models, we connect the spot price, the instantaneous-delivery forward price and the swap price, and analyze two different ways to apply the Heath-Jarrow-Morton approach to swap pricing: Either one specifies a dynamics for the non-existing instantaneous-delivery forwards and derives the implied swap dynamics, or one models directly on the swaps. The former is shown to lead to quite complicated stochastic models for the swap price, even when the forward dynamics is simple. The latter has some theoretical problems due to a no-arbitrage condition that has to be satisfied for swaps with overlapping delivery periods. To overcome this problem, a practical modeling approach is analyzed. The market is supposed only to consist of non-overlapping swaps, and these are modelled directly. A thorough empirical study is performed using data collected from Nord Pool. Our investigations demonstrate that it is possible to state reasonable models for the swap price dynamics which is analytically tractable for risk management and option pricing purposes, however, this is an area of further research. (author)
Magnetic-Island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares
Guidoni, S. E.; Devore, C. R.; Karpen, J. T.; Lynch, B. J.
2016-01-01
The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magneto hydro dynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.
Economic contract theory tests models of mutualism.
Weyl, E Glen; Frederickson, Megan E; Yu, Douglas W; Pierce, Naomi E
2010-09-07
Although mutualisms are common in all ecological communities and have played key roles in the diversification of life, our current understanding of the evolution of cooperation applies mostly to social behavior within a species. A central question is whether mutualisms persist because hosts have evolved costly punishment of cheaters. Here, we use the economic theory of employment contracts to formulate and distinguish between two mechanisms that have been proposed to prevent cheating in host-symbiont mutualisms, partner fidelity feedback (PFF) and host sanctions (HS). Under PFF, positive feedback between host fitness and symbiont fitness is sufficient to prevent cheating; in contrast, HS posits the necessity of costly punishment to maintain mutualism. A coevolutionary model of mutualism finds that HS are unlikely to evolve de novo, and published data on legume-rhizobia and yucca-moth mutualisms are consistent with PFF and not with HS. Thus, in systems considered to be textbook cases of HS, we find poor support for the theory that hosts have evolved to punish cheating symbionts; instead, we show that even horizontally transmitted mutualisms can be stabilized via PFF. PFF theory may place previously underappreciated constraints on the evolution of mutualism and explain why punishment is far from ubiquitous in nature.
Army Contracting Command Workforce Model Analysis
2012-02-09
Empresas in Madrid. His Air Force contracting experience includes F-22 Fighter, C-17 Cargo Transport , and a contingency deployment as director of Joint...and the University of Maryland (University College). He has also conducted visiting seminars at American University in Cairo and Instituto de ...the long total process times that are sometimes involved in weapon system contracting, such an assessment may equate to a de facto future work
MODEL APLIKASI FIKIH MUAMALAH PADA FORMULASI HYBRID CONTRACT
Directory of Open Access Journals (Sweden)
Ali Murtadho
2013-10-01
Full Text Available Modern literatures of fiqh mu’āmalah talk alot about various contract formulation with capability of maximizing profit in shariah finance industry. This new contract modification is the synthesis among existing contracts which is formulated in such a way to be an integrated contract. This formulation is known as a hybrid contract or multicontract (al-'uqūd al-murakkabah. Some of them are, bay' bi thaman 'ājil, Ijārah muntahiyah bi ’l-tamlīk dan mushārakah mutanāqiṣah. This study intends to further describe models of hybrid contract, and explore the shari'ah principles in modern financial institutions. This study found a potential shift from the ideal values of the spirit of shari'ah into the spirit of competition based shari'ah formally.
Vankan, W J; Huyghe, J M; Slaaf, D W; van Donkelaar, C C; Drost, M R; Janssen, J D; Huson, A
1997-09-01
Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a finite-element model of the mechanical behavior of blood-perfused muscle tissue, which accounts for mechanical blood-tissue interaction in maximally vasodilated vasculature. Verification of the model was performed by comparing finite-element results of blood pressure and flow with experimental measurements in a muscle that is subject to well-controlled mechanical loading conditions. In addition, we performed simulations of blood perfusion during tetanic, isometric contraction and maximal vasodilation in a simplified, two-dimensional finite-element model of a rat calf muscle. A vascular waterfall in the venous compartment was identified as the main cause for blood flow impediment both in the experiment and in the finite-element simulations. The validated finite-element model offers possibilities for detailed analysis of blood perfusion in three-dimensional muscle models under complicated loading conditions.
Rossetti, Manuel D
2015-01-01
Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition als
Directory of Open Access Journals (Sweden)
Aaron Manderson
2015-08-01
Full Text Available Building Information Modelling (BIM is seen as a panacea to many of the ills confronting the Architectural, Engineering and Construction (AEC sector. In spite of its well documented benefits the widespread integration of BIM into the project lifecycle is yet to occur. One commonly identified barrier to BIM adoption is the perceived legal risks associated with its integration, coupled with the need for implementation in a collaborative environment. Many existing standardised contracts used in the Australian AEC industry were drafted before the emergence of BIM. As BIM continues to become ingrained in the delivery process the shortcomings of these existing contracts have become apparent. This paper reports on a study that reviewed and consolidated the contractual and legal concerns associated with BIM implementation. The findings of the review were used to conduct a qualitative content analysis of the GC21 2nd edition, an Australian standardised construction contract, to identify possible changes to facilitate the implementation of BIM in a collaborative environment. The findings identified a number of changes including the need to adopt a collaborative contract structure with equitable risk and reward mechanisms, recognition of the model as a contract document and the need for standardisation of communication/information exchange.
Aviation Safety Simulation Model
Houser, Scott; Yackovetsky, Robert (Technical Monitor)
2001-01-01
The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.
Termination of Dynamic Contracts in an Equilibrium Labor Market Model
Wang, Cheng
2005-01-01
I construct an equilibrium model of the labor market where workers and firms enter into dyamic contracts that can potentially last forever, but are subject to optimal terminations. Upon a termination, the firm hires a new worker, and the worker who is terminated receives a termination compensation from the firm and is then free to go back to the labor market to seek new employment opportunities and enter into new dynamic contracts. The model permits only two types of equilibrium terminations ...
Simulation in Complex Modelling
DEFF Research Database (Denmark)
Nicholas, Paul; Ramsgaard Thomsen, Mette; Tamke, Martin
2017-01-01
This paper will discuss the role of simulation in extended architectural design modelling. As a framing paper, the aim is to present and discuss the role of integrated design simulation and feedback between design and simulation in a series of projects under the Complex Modelling framework. Complex...... performance, engage with high degrees of interdependency and allow the emergence of design agency and feedback between the multiple scales of architectural construction. This paper presents examples for integrated design simulation from a series of projects including Lace Wall, A Bridge Too Far and Inflated...... Restraint developed for the research exhibition Complex Modelling, Meldahls Smedie Gallery, Copenhagen in 2016. Where the direct project aims and outcomes have been reported elsewhere, the aim for this paper is to discuss overarching strategies for working with design integrated simulation....
Scientific Modeling and simulations
Diaz de la Rubia, Tomás
2009-01-01
Showcases the conceptual advantages of modeling which, coupled with the unprecedented computing power through simulations, allow scientists to tackle the formibable problems of our society, such as the search for hydrocarbons, understanding the structure of a virus, or the intersection between simulations and real data in extreme environments
Computer Modeling and Simulation
Energy Technology Data Exchange (ETDEWEB)
Pronskikh, V. S. [Fermilab
2014-05-09
Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes
Automated Simulation Model Generation
Huang, Y.
2013-01-01
One of today's challenges in the field of modeling and simulation is to model increasingly larger and more complex systems. Complex models take long to develop and incur high costs. With the advances in data collection technologies and more popular use of computer-aided systems, more data has become
National Research Council Canada - National Science Library
Welsh, Brian K
2008-01-01
.... This research develops contract production models at the Recruiting Sub Station level to estimate the effects of local economic conditions, demographics, and recruiting resources on new high quality...
AEGIS geologic simulation model
International Nuclear Information System (INIS)
Foley, M.G.
1982-01-01
The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application
Validation of simulation models
DEFF Research Database (Denmark)
Rehman, Muniza; Pedersen, Stig Andur
2012-01-01
In philosophy of science, the interest for computational models and simulations has increased heavily during the past decades. Different positions regarding the validity of models have emerged but the views have not succeeded in capturing the diversity of validation methods. The wide variety...
Beyond altruistic and commercial contract motherhood: the professional model.
Van Zyl, Liezl; Walker, Ruth
2013-09-01
It has become common to distinguish between altruistic and commercial contract motherhood (or 'surrogacy'). Altruistic arrangements are based on the 'gift relationship': a woman is motivated by altruism to have a baby for an infertile couple, who are free to reciprocate as they see fit. By contrast, in commercial arrangements both parties are motivated by personal gain to enter a legally enforceable agreement, which stipulates that the contract mother or 'surrogate' is to bear a child for the intending parents in exchange for a fee. She is required to undergo medical examinations and to refrain from behaviour that could harm the foetus. The intending parents are the child's legal parents from the outset. The parties to the contract can, but are not expected to, maintain contact after the transaction is completed. We argue that contract motherhood should not be organized according to the norms of the gift relationship, and that contract mothers should be compensated for their labour. However, we accept that there are good reasons for rejecting the commercial model as a suitable framework for contract pregnancy, and argue, instead, in favour of viewing it as a profession. © 2012 John Wiley & Sons Ltd.
A conceptual model of psychological contracts in construction projects
Directory of Open Access Journals (Sweden)
Yongjian Ke
2016-09-01
Full Text Available The strategic importance of relationship style contracting is recognised in the construction industry. Both public and private sector clients are stipulating more integrated and collaborative forms of procurement. Despite relationship and integrated contractual arrangement being available for some time, it is clear that construction firms have been slow to adopt them. Hence it is timely to examine how social exchanges, via unwritten agreement and behaviours, are being nurtured in construction projects. This paper adopted the concept of Psychological Contracts (PC to describe unwritten agreement and behaviours. A conceptual model of the PC is developed and validated using the results from a questionnaire survey administered to construction professionals in Australia. The results uncovered the relationships that existed amongst relational conditions and relational benefits, the PC and the partners’ satisfaction. The results show that all the hypotheses in the conceptual model of the PC are supported, suggesting the PC model is important and may have an effect on project performance and relationship quality among contracting parties. A validated model of the PC in construction was then developed based on the correlations among each component. The managerial implications are that past relationships and relationship characteristics should be taken into account in the selection of procurement partners and the promise of future resources, support and tangible relational outcomes are also vital. It is important for contracting parties to pay attention to unwritten agreements (the PC and behaviours when managing construction projects.
A Game-Theoretic Model for Distributed Programming by Contract
DEFF Research Database (Denmark)
Henriksen, Anders Starcke; Hvitved, Tom; Filinski, Andrzej
2009-01-01
We present an extension of the programming-by-contract (PBC) paradigm to a concurrent and distributed environment. Classical PBC is characterized by absolute conformance of code to its specification, assigning blame in case of failures, and a hierarchical, cooperative decomposition model – none...
Multiscale forward electromagnetic model of uterine contractions during pregnancy
International Nuclear Information System (INIS)
La Rosa, Patricio S; Eswaran, Hari; Preissl, Hubert; Nehorai, Arye
2012-01-01
Analyzing and monitoring uterine contractions during pregnancy is relevant to the field of reproductive health assessment. Its clinical importance is grounded in the need to reliably predict the onset of labor at term and pre-term. Preterm births can cause health problems or even be fatal for the fetus. Currently, there are no objective methods for consistently predicting the onset of labor based on sensing of the mechanical or electrophysiological aspects of uterine contractions. Therefore, modeling uterine contractions could help to better interpret such measurements and to develop more accurate methods for predicting labor. In this work, we develop a multiscale forward electromagnetic model of myometrial contractions during pregnancy. In particular, we introduce a model of myometrial current source densities and compute its magnetic field and action potential at the abdominal surface, using Maxwell’s equations and a four-compartment volume conductor geometry. To model the current source density at the myometrium we use a bidomain approach. We consider a modified version of the Fitzhugh-Nagumo (FHN) equation for modeling ionic currents in each myocyte, assuming a plateau-type transmembrane potential, and we incorporate the anisotropic nature of the uterus by designing conductivity-tensor fields. We illustrate our modeling approach considering a spherical uterus and one pacemaker located in the fundus. We obtained a travelling transmembrane potential depolarizing from −56 mV to −16 mV and an average potential in the plateau area of −25 mV with a duration, before hyperpolarization, of 35 s, which is a good approximation with respect to the average recorded transmembrane potentials at term reported in the technical literature. Similarly, the percentage of myometrial cells contracting as a function of time had the same symmetric properties and duration as the intrauterine pressure waveforms of a pregnant human myometrium at term. We introduced a multiscale
International Nuclear Information System (INIS)
Lee, M.J.; Sheppard, J.C.; Sullenberger, M.; Woodley, M.D.
1983-09-01
On-line mathematical models have been used successfully for computer controlled operation of SPEAR and PEP. The same model control concept is being implemented for the operation of the LINAC and for the Damping Ring, which will be part of the Stanford Linear Collider (SLC). The purpose of this paper is to describe the general relationships between models, simulations and the control system for any machine at SLAC. The work we have done on the development of the empirical model for the Damping Ring will be presented as an example
PSH Transient Simulation Modeling
Energy Technology Data Exchange (ETDEWEB)
Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-12-21
PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.
Contractual Efficiency of PPP Infrastructure Projects: An Incomplete Contract Model
Directory of Open Access Journals (Sweden)
Lei Shi
2018-01-01
Full Text Available This study analyses the contractual efficiency of public-private partnership (PPP infrastructure projects, with a focus on two financial aspects: the nonrecourse principal and incompleteness of debt contracts. The nonrecourse principal releases the sponsoring companies from the debt contract when the special purpose vehicle (SPV established by the sponsoring companies falls into default. Consequently, all obligations under the debt contract are limited to the liability of the SPV following its default. Because the debt contract is incomplete, a renegotiation of an additional loan between the bank and the SPV might occur to enable project continuation or liquidation, which in turn influences the SPV’s ex ante strategies (moral hazard. Considering these two financial features of PPP infrastructure projects, this study develops an incomplete contract model to investigate how the renegotiation triggers ex ante moral hazard and ex post inefficient liquidation. We derive equilibrium strategies under service fees endogenously determined via bidding and examine the effect of equilibrium strategies on contractual efficiency. Finally, we propose an optimal combination of a performance guarantee, the government’s termination right, and a service fee to improve the contractual efficiency of PPP infrastructure projects.
DEFF Research Database (Denmark)
Larsen, Gunner Chr.; Madsen Aagaard, Helge; Larsen, Torben J.
We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, howev...... methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjæreborg wind farm, have been performed showing satisfactory agreement between predictions and measurements...
On the application of copula in modeling maintenance contract
International Nuclear Information System (INIS)
Iskandar, B P; Husniah, H
2016-01-01
This paper deals with the application of copula in maintenance contracts for a nonrepayable item. Failures of the item are modeled using a two dimensional approach where age and usage of the item and this requires a bi-variate distribution to modelling failures. When the item fails then corrective maintenance (CM) is minimally repaired. CM can be outsourced to an external agent or done in house. The decision problem for the owner is to find the maximum total profit whilst for the agent is to determine the optimal price of the contract. We obtain the mathematical models of the decision problems for the owner as well as the agent using a Nash game theory formulation. (paper)
The Generalized Hill Model: A Kinematic Approach Towards Active Muscle Contraction
Menzel, Andreas; Kuhl, Ellen
2014-01-01
Excitation-contraction coupling is the physiological process of converting an electrical stimulus into a mechanical response. In muscle, the electrical stimulus is an action potential and the mechanical response is active contraction. The classical Hill model characterizes muscle contraction though one contractile element, activated by electrical excitation, and two non-linear springs, one in series and one in parallel. This rheology translates into an additive decomposition of the total stress into a passive and an active part. Here we supplement this additive decomposition of the stress by a multiplicative decomposition of the deformation gradient into a passive and an active part. We generalize the one-dimensional Hill model to the three-dimensional setting and constitutively define the passive stress as a function of the total deformation gradient and the active stress as a function of both the total deformation gradient and its active part. We show that this novel approach combines the features of both the classical stress-based Hill model and the recent active-strain models. While the notion of active stress is rather phenomenological in nature, active strain is micro-structurally motivated, physically measurable, and straightforward to calibrate. We demonstrate that our model is capable of simulating excitation-contraction coupling in cardiac muscle with its characteristic features of wall thickening, apical lift, and ventricular torsion. PMID:25221354
Directory of Open Access Journals (Sweden)
Mengxue Zhang
Full Text Available Understanding the mechanisms of uterine contractions during pregnancy is especially important in predicting the onset of labor and thus in forecasting preterm deliveries. Preterm birth can cause serious health problems in newborns, as well as large financial burdens to society. Various techniques such as electromyography (EMG and magnetomyography (MMG have been developed to quantify uterine contractions. However, no widely accepted method to predict labor based on electromagnetic measurement is available. Therefore, developing a biophysical model of EMG and MMG could help better understand uterine contractions, interpret real measurements, and detect labor. In this work, we propose a multiscale realistic model of uterine contractions during pregnancy. At the cellular level, building on bifurcation theory, we apply generalized FitzHugh-Nagumo (FHN equations that produces both plateau-type and bursting-type action potentials. At the tissue level, we introduce a random fiber orientation model applicable to an arbitrary uterine shape. We also develop an analytical expression for the propagation speed of transmembrane potential. At the organ level, a realistic volume conductor geometry model is provided based on magnetic resonance images of a pregnant woman. To simulate the measurements from the SQUID Array for Reproductive Assessment (SARA device, we propose a sensor array model. Our model is able to reproduce the characteristics of action potentials. Additionally, we investigate the sensitivity of MMG to model configuration aspects such as volume geometry, fiber orientation, and pacemaker location. Our numerical results show that fiber orientation and pacemaker location are the key aspects that greatly affect the MMG as measured by the SARA device. We conclude that sphere is appropriate as an approximation of the volume geometry. The initial step towards validating the model against real MMG measurement is also presented. Our results show that the
Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models
Marquette, Michele L.; Sognier, Marguerite A.
2013-01-01
An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.
MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks.
Directory of Open Access Journals (Sweden)
Konstantin Popov
2016-04-01
Full Text Available Active matter systems, and in particular the cell cytoskeleton, exhibit complex mechanochemical dynamics that are still not well understood. While prior computational models of cytoskeletal dynamics have lead to many conceptual insights, an important niche still needs to be filled with a high-resolution structural modeling framework, which includes a minimally-complete set of cytoskeletal chemistries, stochastically treats reaction and diffusion processes in three spatial dimensions, accurately and efficiently describes mechanical deformations of the filamentous network under stresses generated by molecular motors, and deeply couples mechanics and chemistry at high spatial resolution. To address this need, we propose a novel reactive coarse-grained force field, as well as a publicly available software package, named the Mechanochemical Dynamics of Active Networks (MEDYAN, for simulating active network evolution and dynamics (available at www.medyan.org. This model can be used to study the non-linear, far from equilibrium processes in active matter systems, in particular, comprised of interacting semi-flexible polymers embedded in a solution with complex reaction-diffusion processes. In this work, we applied MEDYAN to investigate a contractile actomyosin network consisting of actin filaments, alpha-actinin cross-linking proteins, and non-muscle myosin IIA mini-filaments. We found that these systems undergo a switch-like transition in simulations from a random network to ordered, bundled structures when cross-linker concentration is increased above a threshold value, inducing contraction driven by myosin II mini-filaments. Our simulations also show how myosin II mini-filaments, in tandem with cross-linkers, can produce a range of actin filament polarity distributions and alignment, which is crucially dependent on the rate of actin filament turnover and the actin filament's resulting super-diffusive behavior in the actomyosin-cross-linker system
Simulation - modeling - experiment
International Nuclear Information System (INIS)
2004-01-01
After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F
A modelling approach for exploring muscle dynamics during cyclic contractions.
Directory of Open Access Journals (Sweden)
Stephanie A Ross
2018-04-01
Full Text Available Hill-type muscle models are widely used within the field of biomechanics to predict and understand muscle behaviour, and are often essential where muscle forces cannot be directly measured. However, these models have limited accuracy, particularly during cyclic contractions at the submaximal levels of activation that typically occur during locomotion. To address this issue, recent studies have incorporated effects into Hill-type models that are oftentimes neglected, such as size-dependent, history-dependent, and activation-dependent effects. However, the contribution of these effects on muscle performance has yet to be evaluated under common contractile conditions that reflect the range of activations, strains, and strain rates that occur in vivo. The purpose of this study was to develop a modelling framework to evaluate modifications to Hill-type muscle models when they contract in cyclic loops that are typical of locomotor muscle function. Here we present a modelling framework composed of a damped harmonic oscillator in series with a Hill-type muscle actuator that consists of a contractile element and parallel elastic element. The intrinsic force-length and force-velocity properties are described using Bézier curves where we present a system to relate physiological parameters to the control points for these curves. The muscle-oscillator system can be geometrically scaled while preserving dynamic and kinematic similarity to investigate the muscle size effects while controlling for the dynamics of the harmonic oscillator. The model is driven by time-varying muscle activations that cause the muscle to cyclically contract and drive the dynamics of the harmonic oscillator. Thus, this framework provides a platform to test current and future Hill-type model formulations and explore factors affecting muscle performance in muscles of different sizes under a range of cyclic contractile conditions.
Energy Technology Data Exchange (ETDEWEB)
Larsen, G.C.; Aagaard Madsen, H.; Larsen, T.J.; Troldborg, N.
2008-07-15
We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering (DWM) model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture a stochastic model of the downstream wake meandering is formulated. In addition to the kinematic formulation of the dynamics of the 'meandering frame of reference', models characterizing the mean wake deficit as well as the added wake turbulence, described in the meandering frame of reference, are an integrated part the DWM model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. A computationally low cost model is developed for this purpose. Likewise, the character of the added wake turbulence, generated by the up-stream turbine in the form of shed and trailed vorticity, has been approached by a simple semi-empirical model essentially based on an eddy viscosity philosophy. Contrary to previous attempts to model wake loading, the DWM approach opens for a unifying description in the sense that turbine power- and load aspects can be treated simultaneously. This capability is a direct and attractive consequence of the model being based on the underlying physical process, and it potentially opens for optimization of wind farm topology, of wind farm operation as well as of control strategies for the individual turbine. To establish an integrated modeling tool, the DWM methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjaereborg wind farm, have
A New Availability-Payment Model for Pricing Performance-Based Logistics Contracts
2014-05-01
Grant number: N00244‐13‐1‐0009 A New “Availability‐ Payment ” Model for Pricing Performance‐ Based Logistics Contracts A. KashaniPour, X. Zhu, P...DATE MAY 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE A New ’Availability‐ Payment ’ Model for...is how the payment model in the contract quantifies the contractor’s performance for awarding incentives or penalties Discrete‐Event Simulator ut
Biomolecular modelling and simulations
Karabencheva-Christova, Tatyana
2014-01-01
Published continuously since 1944, the Advances in Protein Chemistry and Structural Biology series is the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics. Describes advances in biomolecular modelling and simulations Chapters are written by authorities in their field Targeted to a wide audience of researchers, specialists, and students The information provided in the volume is well supported by a number of high quality illustrations, figures, and tables.
Fatigue in isometric contraction in a single muscle fibre: a compartmental calcium ion flow model.
Kothiyal, K P; Ibramsha, M
1986-01-01
Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.
Analyzing the profit-loss sharing contracts with Markov model
Directory of Open Access Journals (Sweden)
Imam Wahyudi
2016-12-01
Full Text Available The purpose of this paper is to examine how to use first order Markov chain to build a reliable monitoring system for the profit-loss sharing based contracts (PLS as the mode of financing contracts in Islamic bank with censored continuous-time observations. The paper adopts the longitudinal analysis with the first order Markov chain framework. Laplace transform was used with homogenous continuous time assumption, from discretized generator matrix, to generate the transition matrix. Various metrics, i.e.: eigenvalue and eigenvector were used to test the first order Markov chain assumption. Cox semi parametric model was used also to analyze the momentum and waiting time effect as non-Markov behavior. The result shows that first order Markov chain is powerful as a monitoring tool for Islamic banks. We find that waiting time negatively affected present rating downgrade (upgrade significantly. Likewise, momentum covariate showed negative effect. Finally, the result confirms that different origin rating have different movement behavior. The paper explores the potential of Markov chain framework as a risk management tool for Islamic banks. It provides valuable insight and integrative model for banks to manage their borrower accounts. This model can be developed to be a powerful early warning system to identify which borrower needs to be monitored intensively. Ultimately, this model could potentially increase the efficiency, productivity and competitiveness of Islamic banks in Indonesia. The analysis used only rating data. Further study should be able to give additional information about the determinant factors of rating movement of the borrowers by incorporating various factors such as contract-related factors, bank-related factors, borrower-related factors and macroeconomic factors.
Dymasius, A.; Wangsaputra, R.; Iskandar, B. P.
2016-02-01
A mining company needs high availability of dump trucks used to haul mining materials. As a result, an effective maintenance action is required to keep the dump trucks in a good condition and hence reducing failure and downtime of the dump trucks. To carry out maintenance in-house requires a high intensive maintenance facility and high skilled maintenance specialists. Often, outsourcing maintenance is an economic option for the company. An external agent takes a proactive action with offering some maintenance contract options to the owner. The decision problem for the owner is to decide the best option and for the agent is to determine the optimal price for each option offered. A non-cooperative game-theory is used to formulate the decision problems for the owner and the agent. We consider that failure pattern of each truck follows a non-homogeneous Poisson process (NHPP) and a queueing theory with multiple servers is used to estimate the downtime. As it involves high complexity to model downtime using a queueing theory, then in this paper we use a simulation method. Furthermore, we conduct experiment to seek for the best number of maintenance facilities (servers) which minimises maintenance and penalty costs incurred to the agent.
A FEW ASPECTS REGARDING THE SIMULATION OF CONTRACT IN THE ROMANIAN CIVIL CODE
Directory of Open Access Journals (Sweden)
Tudor Vlad RĂDULESCU
2017-05-01
Full Text Available The article aims to analyze some key aspects of simulation in contracts, as regulated by the Romanian Civil Code . The process of simulation will be explained, based on the provisions of the previous Civil Code, but also with reference to the relevant provisions of the legislation of some European countries. The analyse will focus on the apparent act, and also on the secret one and a special emphasis on intention to simulate, animo simulandi, the key aspect of the matter. Also the effects of the simulation will be reviewed, both from the point of view of the parties and that of third parties, the concept of third parties having another meaning in this procedure.
Simulation of a chain of collapsible contracting lymphangions with progressive valve closure.
Bertram, C D; Macaskill, C; Moore, J E
2011-01-01
The aim of this investigation was to achieve the first step toward a comprehensive model of the lymphatic system. A numerical model has been constructed of a lymphatic vessel, consisting of a short series chain of contractile segments (lymphangions) and of intersegmental valves. The changing diameter of a segment governs the difference between the flows through inlet and outlet valves and is itself governed by a balance between transmural pressure and passive and active wall properties. The compliance of segments is maximal at intermediate diameters and decreases when the segments are subject to greatly positive or negative transmural pressure. Fluid flow is the result of time-varying active contraction causing diameter to reduce and is limited by segmental viscous and valvular resistance. The valves effect a smooth transition from low forward-flow resistance to high backflow resistance. Contraction occurs sequentially in successive lymphangions in the forward-flow direction. The behavior of chains of one to five lymphangions was investigated by means of pump function curves, with variation of valve opening parameters, maximum contractility, lymphangion size gradation, number of lymphangions, and phase delay between adjacent lymphangion contractions. The model was reasonably robust numerically, with mean flow-rate generally reducing as adverse pressure was increased. Sequential contraction was found to be much more efficient than synchronized contraction. At the highest adverse pressures, pumping failed by one of two mechanisms, depending on parameter settings: either mean leakback flow exceeded forward pumping or contraction failed to open the lymphangion outlet valve. Maximum pressure and maximum flow-rate were both sensitive to the contractile state; maximum pressure was also determined by the number of lymphangions in series. Maximum flow-rate was highly sensitive to the transmural pressure experienced by the most upstream lymphangions, suggesting that many
Notes on modeling and simulation
Energy Technology Data Exchange (ETDEWEB)
Redondo, Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-10
These notes present a high-level overview of how modeling and simulation are carried out by practitioners. The discussion is of a general nature; no specific techniques are examined but the activities associated with all modeling and simulation approaches are briefly addressed. There is also a discussion of validation and verification and, at the end, a section on why modeling and simulation are useful.
Simulation Model of a Transient
DEFF Research Database (Denmark)
Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte
2005-01-01
This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operati...
Cognitive models embedded in system simulation models
International Nuclear Information System (INIS)
Siegel, A.I.; Wolf, J.J.
1982-01-01
If we are to discuss and consider cognitive models, we must first come to grips with two questions: (1) What is cognition; (2) What is a model. Presumably, the answers to these questions can provide a basis for defining a cognitive model. Accordingly, this paper first places these two questions into perspective. Then, cognitive models are set within the context of computer simulation models and a number of computer simulations of cognitive processes are described. Finally, pervasive issues are discussed vis-a-vis cognitive modeling in the computer simulation context
General introduction to simulation models
DEFF Research Database (Denmark)
Hisham Beshara Halasa, Tariq; Boklund, Anette
2012-01-01
trials. However, if simulation models would be used, good quality input data must be available. To model FMD, several disease spread models are available. For this project, we chose three simulation model; Davis Animal Disease Spread (DADS), that has been upgraded to DTU-DADS, InterSpread Plus (ISP......Monte Carlo simulation can be defined as a representation of real life systems to gain insight into their functions and to investigate the effects of alternative conditions or actions on the modeled system. Models are a simplification of a system. Most often, it is best to use experiments and field...... trials to investigate the effect of alternative conditions or actions on a specific system. Nonetheless, field trials are expensive and sometimes not possible to conduct, as in case of foot-and-mouth disease (FMD). Instead, simulation models can be a good and cheap substitute for experiments and field...
Psychological Contract Development: An Integration of Existing Knowledge to Form a Temporal Model
Directory of Open Access Journals (Sweden)
Kelly Windle
2014-07-01
Full Text Available The psychological contract has received substantial theoretical attention over the past two decades as a popular framework within which to examine contemporary employment relationships. Previous research mostly examines breach and violation of the psychological contract and its impact on employee organization outcomes. Few studies have employed longitudinal, prospective research designs to investigate the psychological contract and as a result, psychological contract content and formation are incompletely understood. It is argued that employment relationships may be better proactively managed with greater understanding of formation and changes in the psychological contract. We examine existing psychological contract literature to identify five key factors proposed to contribute to the formation of psychological contracts. We extend the current research by integrating these factors for the first time into a temporal model of psychological contract development.
Simulation - modeling - experiment; Simulation - modelisation - experience
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F
Erosion Modeling of the High Contraction Chromium Plated Crusader Gun System
National Research Council Canada - National Science Library
Sopok, S
2003-01-01
Thermal-chemical- mechanical erosion modeling predictions are given for the high contraction chromium plated Crusader gun system based on extensive cannon firing, inspection, characterization, and experimental data...
Model of excitation-contraction coupling of rat neonatal ventricular myocytes.
Korhonen, Topi; Hänninen, Sandra L; Tavi, Pasi
2009-02-01
The neonatal rat ventricular myocyte culture is one of the most popular experimental cardiac cell models. To our knowledge, the excitation-contraction coupling (ECC) of these cells, i.e., the process linking the electrical activity to the cytosolic Ca2+ transient and contraction, has not been previously analyzed, nor has it been presented as a complete system in detail. Neonatal cardiomyocytes are in the postnatal developmental stage, and therefore, the features of their ECC differ vastly from those of adult ventricular myocytes. We present the first complete analysis of ECC in these cells by characterizing experimentally the action potential and calcium signaling and developing the first mathematical model of ECC in neonatal cardiomyocytes that we know of. We show that in comparison to adult cardiomyocytes, neonatal cardiomyocytes have long action potentials, heterogeneous cytosolic Ca2+ signals, weaker sarcoplasmic reticulum Ca2+ handling, and stronger sarcolemmal Ca2+ handling, with a significant contribution by the Na+/Ca2+ exchanger. The developed model reproduces faithfully the ECC of rat neonatal cardiomyocytes with a novel description of spatial cytosolic [Ca2+] signals. Simulations also demonstrate how an increase in the cell size (hypertrophy) affects the ECC in neonatal cardiomyocytes. This model of ECC in developing cardiomyocytes provides a platform for developing future models of cardiomyocytes at different developmental stages.
A Manpower Model for U.S. Navy Operational Contracting
2012-06-01
CLC 056 Analyzing Contract Costs CLC 057 Performance Based Payments and Value of Cash Flow HBS 428 Negotiating Education At least 24...MONTHLY METRICS 38 The heads of contracting at the seven FLCs are responsible for maintaining all of the “ dashboard ” metrics. NAVSUP GLS headquarters
ECONOMIC MODELING STOCKS CONTROL SYSTEM: SIMULATION MODEL
Климак, М.С.; Войтко, С.В.
2016-01-01
Considered theoretical and applied aspects of the development of simulation models to predictthe optimal development and production systems that create tangible products andservices. It isproved that theprocessof inventory control needs of economicandmathematical modeling in viewof thecomplexity of theoretical studies. A simulation model of stocks control that allows make managementdecisions with production logistics
Progress in modeling and simulation.
Kindler, E
1998-01-01
For the modeling of systems, the computers are more and more used while the other "media" (including the human intellect) carrying the models are abandoned. For the modeling of knowledges, i.e. of more or less general concepts (possibly used to model systems composed of instances of such concepts), the object-oriented programming is nowadays widely used. For the modeling of processes existing and developing in the time, computer simulation is used, the results of which are often presented by means of animation (graphical pictures moving and changing in time). Unfortunately, the object-oriented programming tools are commonly not designed to be of a great use for simulation while the programming tools for simulation do not enable their users to apply the advantages of the object-oriented programming. Nevertheless, there are exclusions enabling to use general concepts represented at a computer, for constructing simulation models and for their easy modification. They are described in the present paper, together with true definitions of modeling, simulation and object-oriented programming (including cases that do not satisfy the definitions but are dangerous to introduce misunderstanding), an outline of their applications and of their further development. In relation to the fact that computing systems are being introduced to be control components into a large spectrum of (technological, social and biological) systems, the attention is oriented to models of systems containing modeling components.
Stochastic modeling analysis and simulation
Nelson, Barry L
1995-01-01
A coherent introduction to the techniques for modeling dynamic stochastic systems, this volume also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Suitable for advanced undergraduates and graduate-level industrial engineers and management science majors, it proposes modeling systems in terms of their simulation, regardless of whether simulation is employed for analysis. Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, se
FASTBUS simulation models in VHDL
International Nuclear Information System (INIS)
Appelquist, G.
1992-11-01
Four hardware simulation models implementing the FASTBUS protocol are described. The models are written in the VHDL hardware description language to obtain portability, i.e. without relations to any specific simulator. They include two complete FASTBUS devices, a full-duplex segment interconnect and ancillary logic for the segment. In addition, master and slave models using a high level interface to describe FASTBUS operations, are presented. With these models different configurations of FASTBUS systems can be evaluated and the FASTBUS transactions of new devices can be verified. (au)
Model reduction for circuit simulation
Hinze, Michael; Maten, E Jan W Ter
2011-01-01
Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the devi
Game-Theoretic Models for Usage-based Maintenance Contract
Husniah, H.; Wangsaputra, R.; Cakravastia, A.; Iskandar, B. P.
2018-03-01
A usage-based maintenance contracts with coordination and non coordination between two parties is studied in this paper. The contract is applied to a dump truck operated in a mining industry. The situation under study is that an agent offers service contract to the owner of the truck after warranty ends. This contract has only a time limit but no usage limit. If the total usage per period exceeds the maximum usage allowed in the contract, then the owner will be charged an additional cost. In general, the agent (Original Equipment Manufacturer/OEM) provides a full coverage of maintenance, which includes PM and CM under the lease contract. The decision problem for the owner is to select the best option offered that fits to its requirement, and the decision problem for the agent is to find the optimal maintenance efforts for a given price of the service option offered. We first find the optimal decisions using coordination scheme and then with non coordination scheme for both parties.
Electrical stimulation induces propagated colonic contractions in an experimental model.
Aellen, S; Wiesel, P H; Gardaz, J-P; Schlageter, V; Bertschi, M; Virag, N; Givel, J-C
2009-02-01
Direct colonic electrical stimulation may prove to be a treatment option for specific motility disorders such as chronic constipation. The aim of this study was to provoke colonic contractions using electrical stimulation delivered from a battery-operated device. Electrodes were inserted into the caecal seromuscular layer of eight anaesthetized pigs. Contractions were induced by a neurostimulator (Medtronic 3625). Caecal motility was measured simultaneously by video image analysis, manometry and a technique assessing colonic transit. Caecal contractions were generated using 8-10 V amplitude, 1000 micros pulse width, 120 Hz frequency for 10-30 s, with an intensity of 7-15 mA. The maximal contraction strength was observed after 20-25 s. Electrical stimulation was followed by a relaxation phase of 1.5-2 min during which contractions propagated orally and aborally over at least 10 cm. Spontaneous and stimulated caecal motility values were significantly different for both intraluminal pressure (mean(s.d.) 332(124) and 463(187) mmHg respectively; P < 0.001, 42 experiments) and movement of contents (1.6(0.9) and 3.9(2.8) mm; P < 0.001, 40 experiments). Electrical stimulation modulated caecal motility, and provoked localized and propagated colonic contractions.
Bot, G.P.A.
1989-01-01
A model is a representation of a real system to describe some properties i.e. internal factors of that system (out-puts) as function of some external factors (inputs). It is impossible to describe the relation between all internal factors (if even all internal factors could be defined) and all
Koike, Narihiko; Ii, Satoshi; Yoshinaga, Tsukasa; Nozaki, Kazunori; Wada, Shigeo
2017-11-07
This paper presents a novel inverse estimation approach for the active contraction stresses of tongue muscles during speech. The proposed method is based on variational data assimilation using a mechanical tongue model and 3D tongue surface shapes for speech production. The mechanical tongue model considers nonlinear hyperelasticity, finite deformation, actual geometry from computed tomography (CT) images, and anisotropic active contraction by muscle fibers, the orientations of which are ideally determined using anatomical drawings. The tongue deformation is obtained by solving a stationary force-equilibrium equation using a finite element method. An inverse problem is established to find the combination of muscle contraction stresses that minimizes the Euclidean distance of the tongue surfaces between the mechanical analysis and CT results of speech production, where a signed-distance function represents the tongue surface. Our approach is validated through an ideal numerical example and extended to the real-world case of two Japanese vowels, /ʉ/ and /ɯ/. The results capture the target shape completely and provide an excellent estimation of the active contraction stresses in the ideal case, and exhibit similar tendencies as in previous observations and simulations for the actual vowel cases. The present approach can reveal the relative relationship among the muscle contraction stresses in similar utterances with different tongue shapes, and enables the investigation of the coordination of tongue muscles during speech using only the deformed tongue shape obtained from medical images. This will enhance our understanding of speech motor control. Copyright © 2017 Elsevier Ltd. All rights reserved.
A VRLA battery simulation model
International Nuclear Information System (INIS)
Pascoe, Phillip E.; Anbuky, Adnan H.
2004-01-01
A valve regulated lead acid (VRLA) battery simulation model is an invaluable tool for the standby power system engineer. The obvious use for such a model is to allow the assessment of battery performance. This may involve determining the influence of cells suffering from state of health (SOH) degradation on the performance of the entire string, or the running of test scenarios to ascertain the most suitable battery size for the application. In addition, it enables the engineer to assess the performance of the overall power system. This includes, for example, running test scenarios to determine the benefits of various load shedding schemes. It also allows the assessment of other power system components, either for determining their requirements and/or vulnerabilities. Finally, a VRLA battery simulation model is vital as a stand alone tool for educational purposes. Despite the fundamentals of the VRLA battery having been established for over 100 years, its operating behaviour is often poorly understood. An accurate simulation model enables the engineer to gain a better understanding of VRLA battery behaviour. A system level multipurpose VRLA battery simulation model is presented. It allows an arbitrary battery (capacity, SOH, number of cells and number of strings) to be simulated under arbitrary operating conditions (discharge rate, ambient temperature, end voltage, charge rate and initial state of charge). The model accurately reflects the VRLA battery discharge and recharge behaviour. This includes the complex start of discharge region known as the coup de fouet
Sensitivity Analysis of Simulation Models
Kleijnen, J.P.C.
2009-01-01
This contribution presents an overview of sensitivity analysis of simulation models, including the estimation of gradients. It covers classic designs and their corresponding (meta)models; namely, resolution-III designs including fractional-factorial two-level designs for first-order polynomial
Computer Based Modelling and Simulation
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:
Strategic forward contracting in electricity markets: modelling and analysis by equilibrium method
International Nuclear Information System (INIS)
Chung, T.S.; Zhang, S.H.; Wong, K.P.; Yu, C.W.; Chung, C.Y.
2004-01-01
Contractual arrangement plays an important role in mitigating market power in electricity markets. The issue of whether rational generators would voluntarily enter contract markets through a strategic incentive is examined, and the factors which could affect this strategic contracting behaviour. A two-stage game model is presented to formulate the competition of generators in bid-based pool spot markets and contract markets, as well as the interaction between these two markets. The affine supply function equilibrium (SFE) method is used to model competitive bidding for the spot market, while the contract market is modelled with the general conjectural variation method. The proposed methodology allows asymmetric, multiple strategic generators having capacity constraints and affine marginal costs with non-zero intercepts to be taken into account. It is shown that the presence of forward contract markets will complicate the solution to the affine SFE, and a new methodology is developed in this regard. Strategic contracting behaviours are analysed in the context of asymmetric, multiple strategic generators. A numerical example is used to verify theoretical results. It is shown that the observability of contract markets plays an important role in fostering generators' strategic contracting incentive, and that this contracting behaviour could also be affected by generators' cost parameters and demand elasticity. (author)
Neural control of muscle force: indications from a simulation model
Luca, Carlo J. De
2013-01-01
We developed a model to investigate the influence of the muscle force twitch on the simulated firing behavior of motoneurons and muscle force production during voluntary isometric contractions. The input consists of an excitatory signal common to all the motor units in the pool of a muscle, consistent with the “common drive” property. Motor units respond with a hierarchically structured firing behavior wherein at any time and force, firing rates are inversely proportional to recruitment threshold, as described by the “onion skin” property. Time- and force-dependent changes in muscle force production are introduced by varying the motor unit force twitches as a function of time or by varying the number of active motor units. A force feedback adjusts the input excitation, maintaining the simulated force at a target level. The simulations replicate motor unit behavior characteristics similar to those reported in previous empirical studies of sustained contractions: 1) the initial decrease and subsequent increase of firing rates, 2) the derecruitment and recruitment of motor units throughout sustained contractions, and 3) the continual increase in the force fluctuation caused by the progressive recruitment of larger motor units. The model cautions the use of motor unit behavior at recruitment and derecruitment without consideration of changes in the muscle force generation capacity. It describes an alternative mechanism for the reserve capacity of motor units to generate extraordinary force. It supports the hypothesis that the control of motoneurons remains invariant during force-varying and sustained isometric contractions. PMID:23236008
Vehicle dynamics modeling and simulation
Schramm, Dieter; Bardini, Roberto
2014-01-01
The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.
Numerical simulation of Higgs models
International Nuclear Information System (INIS)
Jaster, A.
1995-10-01
The SU(2) Higgs and the Schwinger model on the lattice were analysed. Numerical simulations of the SU(2) Higgs model were performed to study the finite temperature electroweak phase transition. With the help of the multicanonical method the distribution of an order parameter at the phase transition point was measured. This was used to obtain the order of the phase transition and the value of the interface tension with the histogram method. Numerical simulations were also performed at zero temperature to perform renormalization. The measured values for the Wilson loops were used to determine the static potential and from this the renormalized gauge coupling. The Schwinger model was simulated at different gauge couplings to analyse the properties of the Kaplan-Shamir fermions. The prediction that the mass parameter gets only multiplicative renormalization was tested and verified. (orig.)
Stochastic models: theory and simulation.
Energy Technology Data Exchange (ETDEWEB)
Field, Richard V., Jr.
2008-03-01
Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.
Plasma modelling and numerical simulation
International Nuclear Information System (INIS)
Van Dijk, J; Kroesen, G M W; Bogaerts, A
2009-01-01
Plasma modelling is an exciting subject in which virtually all physical disciplines are represented. Plasma models combine the electromagnetic, statistical and fluid dynamical theories that have their roots in the 19th century with the modern insights concerning the structure of matter that were developed throughout the 20th century. The present cluster issue consists of 20 invited contributions, which are representative of the state of the art in plasma modelling and numerical simulation. These contributions provide an in-depth discussion of the major theories and modelling and simulation strategies, and their applications to contemporary plasma-based technologies. In this editorial review, we introduce and complement those papers by providing a bird's eye perspective on plasma modelling and discussing the historical context in which it has surfaced. (editorial review)
Stephanie A. Snyder; Keith D. Stockmann; Gaylord E. Morris
2012-01-01
The US Forest Service used contracted helicopter services as part of its wildfire suppression strategy. An optimization decision-modeling system was developed to assist in the contract selection process. Three contract award selection criteria were considered: cost per pound of delivered water, total contract cost, and quality ratings of the aircraft and vendors....
Peerlings, J.H.M.; Polman, N.B.P.
2008-01-01
The paper examines the possibility of lock-in on the area contracted under an agri-environmental contract in Dutch dairy farming, using a mathematical programming model, and the interaction of these contracts with Dutch national manure policy. Stricter manure policies increase contract
Iterated non-linear model predictive control based on tubes and contractive constraints.
Murillo, M; Sánchez, G; Giovanini, L
2016-05-01
This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Morgan, Kathy Ye; Black, Lauren Deems
2014-01-01
This commentary discusses the rationale behind our recently reported work entitled "Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs," introduces new data supporting our hypothesis, and discusses future applications of our bioreactor system. The ability to stimulate engineered cardiac tissue in a bioreactor system that combines both electrical and mechanical stimulation offers a unique opportunity to simulate the appropriate dynamics between stretch and contraction and model isovolumic contraction in vitro. Our previous study demonstrated that combined electromechanical stimulation that simulated the timing of isovolumic contraction in healthy tissue improved force generation via increased contractile and calcium handling protein expression and improved hypertrophic pathway activation. In new data presented here, we further demonstrate that modification of the timing between electrical and mechanical stimulation to mimic a non-physiological process negatively impacts the functionality of the engineered constructs. We close by exploring the various disease states that have altered timing between the electrical and mechanical stimulation signals as potential future directions for the use of this system.
Model for Simulation Atmospheric Turbulence
DEFF Research Database (Denmark)
Lundtang Petersen, Erik
1976-01-01
A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance...... eigenfunctions and estimates of the distributions of the corresponding expansion coefficients. The simulation method utilizes the eigenfunction expansion procedure to produce preliminary time histories of the three velocity components simultaneously. As a final step, a spectral shaping procedure is then applied....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....
Numerical modelling of air flow attributes in a contractions chamber
Czech Academy of Sciences Publication Activity Database
Michalcová, V.; Kuznetsov, Sergeii; Pospíšil, Stanislav
2014-01-01
Roč. 14, č. 2 (2014), s. 11-16 ISSN 1804-4824 R&D Projects: GA ČR(CZ) GA14-12892S; GA MŠk(CZ) LO1219 Keywords : aerodynamics * wind tunnel contraction * CFD Subject RIV: JN - Civil Engineering http://www.degruyter.com/view/j/tvsb.2014.14.issue-2/tvsb-2014-0026/tvsb-2014-0026. xml ?format=INT
Modeling Psychological Contract Violation using Dual Regime Models: An Event-based Approach.
Hofmans, Joeri
2017-01-01
A good understanding of the dynamics of psychological contract violation requires theories, research methods and statistical models that explicitly recognize that violation feelings follow from an event that violates one's acceptance limits, after which interpretative processes are set into motion, determining the intensity of these violation feelings. Whereas theories-in the form of the dynamic model of the psychological contract-and research methods-in the form of daily diary research and experience sampling research-are available by now, the statistical tools to model such a two-stage process are still lacking. The aim of the present paper is to fill this gap in the literature by introducing two statistical models-the Zero-Inflated model and the Hurdle model-that closely mimic the theoretical process underlying the elicitation violation feelings via two model components: a binary distribution that models whether violation has occurred or not, and a count distribution that models how severe the negative impact is. Moreover, covariates can be included for both model components separately, which yields insight into their unique and shared antecedents. By doing this, the present paper offers a methodological-substantive synergy, showing how sophisticated methodology can be used to examine an important substantive issue.
Validation process of simulation model
International Nuclear Information System (INIS)
San Isidro, M. J.
1998-01-01
It is presented a methodology on empirical validation about any detailed simulation model. This king of validation it is always related with an experimental case. The empirical validation has a residual sense, because the conclusions are based on comparisons between simulated outputs and experimental measurements. This methodology will guide us to detect the fails of the simulation model. Furthermore, it can be used a guide in the design of posterior experiments. Three steps can be well differentiated: Sensitivity analysis. It can be made with a DSA, differential sensitivity analysis, and with a MCSA, Monte-Carlo sensitivity analysis. Looking the optimal domains of the input parameters. It has been developed a procedure based on the Monte-Carlo methods and Cluster techniques, to find the optimal domains of these parameters. Residual analysis. This analysis has been made on the time domain and on the frequency domain, it has been used the correlation analysis and spectral analysis. As application of this methodology, it is presented the validation carried out on a thermal simulation model on buildings, Esp., studying the behavior of building components on a Test Cell of LECE of CIEMAT. (Author) 17 refs
Directory of Open Access Journals (Sweden)
Ani Amar
Full Text Available Mechano-electric feedback affects the electrophysiological and mechanical function of the heart and the cellular, tissue, and organ properties. To determine the main factors that contribute to this effect, this study investigated the changes in the action potential characteristics of the ventricle during contraction. A model of stretch-activated channels was incorporated into a three-dimensional multiscale model of the contracting ventricle to assess the effect of different preload lengths on the electrophysiological behavior. The model describes the initiation and propagation of the electrical impulse, as well as the passive (stretch and active (contraction changes in the cardiac mechanics. Simulations were performed to quantify the relationship between the cellular activation and recovery patterns as well as the action potential durations at different preload lengths in normal and heart failure pathological conditions. The simulation results showed that heart failure significantly affected the excitation propagation parameters compared to normal condition. The results showed that the mechano-electrical feedback effects appear to be most important in failing hearts with low ejection fraction.
Simulation of dynamic expansion, contraction, and connectivity in a mountain stream network
Ward, Adam S.; Schmadel, Noah M.; Wondzell, Steven M.
2018-04-01
Headwater stream networks expand and contract in response to changes in stream discharge. The changes in the extent of the stream network are also controlled by geologic or geomorphic setting - some reaches go dry even under relatively wet conditions, other reaches remain flowing under relatively dry conditions. While such patterns are well recognized, we currently lack tools to predict the extent of the stream network and the times and locations where the network is dry within large river networks. Here, we develop a perceptual model of the river corridor in a headwater mountainous catchment, translate this into a reduced-complexity mechanistic model, and implement the model to examine connectivity and network extent over an entire water year. Our model agreed reasonably well with our observations, showing that the extent and connectivity of the river network was most sensitive to hydrologic forcing under the lowest discharges (Qgauge 10 L s-1) the extent of the network was relatively insensitive to hydrologic forcing and was instead determined by the network topology. We do not expect that the specific thresholds observed in this study would be transferable to other catchments with different geology, topology, or hydrologic forcing. However, we expect that the general pattern should be robust: the dominant controls will shift from hydrologic forcing to geologic setting as discharge increases. Furthermore, our method is readily transferable as the model can be applied with minimal data requirements (a single stream gauge, a digital terrain model, and estimates of hydrogeologic properties) to estimate flow duration or connectivity along the river corridor in unstudied catchments. As the available information increases, the model could be better calibrated to match site-specific observations of network extent, locations of dry reaches, or solute break through curves as demonstrated in this study. Based on the low initial data requirements and ability to later tune
Modeling and Simulation for Safeguards
International Nuclear Information System (INIS)
Swinhoe, Martyn T.
2012-01-01
The purpose of this talk is to give an overview of the role of modeling and simulation in Safeguards R and D and introduce you to (some of) the tools used. Some definitions are: (1) Modeling - the representation, often mathematical, of a process, concept, or operation of a system, often implemented by a computer program; (2) Simulation - the representation of the behavior or characteristics of one system through the use of another system, especially a computer program designed for the purpose; and (3) Safeguards - the timely detection of diversion of significant quantities of nuclear material. The role of modeling and simulation are: (1) Calculate amounts of material (plant modeling); (2) Calculate signatures of nuclear material etc. (source terms); and (3) Detector performance (radiation transport and detection). Plant modeling software (e.g. FACSIM) gives the flows and amount of material stored at all parts of the process. In safeguards this allow us to calculate the expected uncertainty of the mass and evaluate the expected MUF. We can determine the measurement accuracy required to achieve a certain performance.
Modeling and Simulation of Nanoindentation
Huang, Sixie; Zhou, Caizhi
2017-11-01
Nanoindentation is a hardness test method applied to small volumes of material which can provide some unique effects and spark many related research activities. To fully understand the phenomena observed during nanoindentation tests, modeling and simulation methods have been developed to predict the mechanical response of materials during nanoindentation. However, challenges remain with those computational approaches, because of their length scale, predictive capability, and accuracy. This article reviews recent progress and challenges for modeling and simulation of nanoindentation, including an overview of molecular dynamics, the quasicontinuum method, discrete dislocation dynamics, and the crystal plasticity finite element method, and discusses how to integrate multiscale modeling approaches seamlessly with experimental studies to understand the length-scale effects and microstructure evolution during nanoindentation tests, creating a unique opportunity to establish new calibration procedures for the nanoindentation technique.
Assessment of Molecular Modeling & Simulation
Energy Technology Data Exchange (ETDEWEB)
None
2002-01-03
This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.
NRTA simulation by modeling PFPF
International Nuclear Information System (INIS)
Asano, Takashi; Fujiwara, Shigeo; Takahashi, Saburo; Shibata, Junichi; Totsu, Noriko
2003-01-01
In PFPF, NRTA system has been applied since 1991. It has been confirmed by evaluating facility material accountancy data provided from operator in each IIV that a significant MUF was not generated. In case of throughput of PFPF scale, MUF can be evaluated with a sufficient detection probability by the present NRTA evaluation manner. However, by increasing of throughput, the uncertainty of material accountancy will increase, and the detection probability will decline. The relationship between increasing of throughput and declining of detection probability and the maximum throughput upon application of following measures with a sufficient detection probability were evaluated by simulation of NRTA system. This simulation was performed by modeling of PFPF. Measures for increasing detection probability are shown as follows. Shortening of the evaluation interval. Segmentation of evaluation area. This report shows the results of these simulations. (author)
Evaluation model based on FAHP for nuclear power project contract performance
International Nuclear Information System (INIS)
Liu Bohang; Cheng Jing
2012-01-01
Fuzzy Comprehensive Evaluation is a common tool to analyze comprehensive integration. Fuzzy Analytic Hierarchy Process is an improvement for Analytic Hierarchy Process. Firstly the paper pointed out the concept of FAHP, and then used FAHP to setup an evaluation system model for nuclear power project contract performance. Based on this model, all the evaluation factors were assigned to different weightiness. By weighting the score of each factor, output would be the result which could evaluate the contract performance. On the basis of the research, the paper gave the principle of evaluating contract performance of nuclear power suppliers, which can assure the procurement process. (authors)
Repository simulation model: Final report
International Nuclear Information System (INIS)
1988-03-01
This report documents the application of computer simulation for the design analysis of the nuclear waste repository's waste handling and packaging operations. The Salt Repository Simulation Model was used to evaluate design alternatives during the conceptual design phase of the Salt Repository Project. Code development and verification was performed by the Office of Nuclear Waste Isolation (ONWL). The focus of this report is to relate the experience gained during the development and application of the Salt Repository Simulation Model to future repository design phases. Design of the repository's waste handling and packaging systems will require sophisticated analysis tools to evaluate complex operational and logistical design alternatives. Selection of these design alternatives in the Advanced Conceptual Design (ACD) and License Application Design (LAD) phases must be supported by analysis to demonstrate that the repository design will cost effectively meet DOE's mandated emplacement schedule and that uncertainties in the performance of the repository's systems have been objectively evaluated. Computer simulation of repository operations will provide future repository designers with data and insights that no other analytical form of analysis can provide. 6 refs., 10 figs
Weigel, Martin
2011-09-01
Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.
Standard for Models and Simulations
Steele, Martin J.
2016-01-01
This NASA Technical Standard establishes uniform practices in modeling and simulation to ensure essential requirements are applied to the design, development, and use of models and simulations (MS), while ensuring acceptance criteria are defined by the program project and approved by the responsible Technical Authority. It also provides an approved set of requirements, recommendations, and criteria with which MS may be developed, accepted, and used in support of NASA activities. As the MS disciplines employed and application areas involved are broad, the common aspects of MS across all NASA activities are addressed. The discipline-specific details of a given MS should be obtained from relevant recommended practices. The primary purpose is to reduce the risks associated with MS-influenced decisions by ensuring the complete communication of the credibility of MS results.
A novel three-filament model of force generation in eccentric contraction of skeletal muscles.
Directory of Open Access Journals (Sweden)
Gudrun Schappacher-Tilp
Full Text Available We propose and examine a three filament model of skeletal muscle force generation, thereby extending classical cross-bridge models by involving titin-actin interaction upon active force production. In regions with optimal actin-myosin overlap, the model does not alter energy and force predictions of cross-bridge models for isometric contractions. However, in contrast to cross-bridge models, the three filament model accurately predicts history-dependent force generation in half sarcomeres for eccentric and concentric contractions, and predicts the activation-dependent forces for stretches beyond actin-myosin filament overlap.
Modeling Flare Hard X-ray Emission from Electrons in Contracting Magnetic Islands
Guidoni, Silvina E.; Allred, Joel C.; Alaoui, Meriem; Holman, Gordon D.; DeVore, C. Richard; Karpen, Judith T.
2016-05-01
The mechanism that accelerates particles to the energies required to produce the observed impulsive hard X-ray emission in solar flares is not well understood. It is generally accepted that this emission is produced by a non-thermal beam of electrons that collides with the ambient ions as the beam propagates from the top of a flare loop to its footpoints. Most current models that investigate this transport assume an injected beam with an initial energy spectrum inferred from observed hard X-ray spectra, usually a power law with a low-energy cutoff. In our previous work (Guidoni et al. 2016), we proposed an analytical method to estimate particle energy gain in contracting, large-scale, 2.5-dimensional magnetic islands, based on a kinetic model by Drake et al. (2010). We applied this method to sunward-moving islands formed high in the corona during fast reconnection in a simulated eruptive flare. The overarching purpose of the present work is to test this proposed acceleration model by estimating the hard X-ray flux resulting from its predicted accelerated-particle distribution functions. To do so, we have coupled our model to a unified computational framework that simulates the propagation of an injected beam as it deposits energy and momentum along its way (Allred et al. 2015). This framework includes the effects of radiative transfer and return currents, necessary to estimate flare emission that can be compared directly to observations. We will present preliminary results of the coupling between these models.
Characterization of an acute muscle contraction model using cultured C2C12 myotubes.
Directory of Open Access Journals (Sweden)
Yasuko Manabe
Full Text Available A cultured C2C12 myotube contraction system was examined for application as a model for acute contraction-induced phenotypes of skeletal muscle. C2C12 myotubes seeded into 4-well rectangular plates were placed in a contraction system equipped with a carbon electrode at each end. The myotubes were stimulated with electric pulses of 50 V at 1 Hz for 3 ms at 997-ms intervals. Approximately 80% of the myotubes were observed to contract microscopically, and the contractions lasted for at least 3 h with electrical stimulation. Calcium ion (Ca²⁺ transient evoked by the electric pulses was detected fluorescently with Fluo-8. Phosphorylation of protein kinase B/Akt (Akt, 5' AMP-activated protein kinase (AMPK, p38 mitogen-activated protein kinase (p38, and c-Jun NH2-terminal kinase (JNK1/2, which are intracellular signaling proteins typically activated in exercised/contracted skeletal muscle, was observed in the electrically stimulated C2C12 myotubes. The contractions induced by the electric pulses increased glucose uptake and depleted glycogen in the C2C12 myotubes. C2C12 myotubes that differentiated after exogenous gene transfection by a lipofection or an electroporation method retained their normal contractile ability by electrical stimulation. These findings show that our C2C12 cell contraction system reproduces the muscle phenotypes that arise invivo (exercise, in situ (hindlimb muscles in an anesthetized animal, and invitro (dissected muscle tissues in incubation buffer by acute muscle contraction, demonstrating that the system is applicable for the analysis of intracellular events evoked by acute muscle contraction.
Energy Technology Data Exchange (ETDEWEB)
Kida, Takashi; Umeda, Miki; Sugikawa, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2003-03-01
MOX dissolution using silver-mediated electrochemical method will be employed for the preparation of plutonium nitrate solution in the criticality safety experiments in the Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF). A simulation code for the MOX dissolution has been developed for the operating support. The present report describes the outline of the simulation code, a comparison with the experimental data and a parameter study on the MOX dissolution. The principle of this code is based on the Zundelevich's model for PuO{sub 2} dissolution using Ag(II). The influence of nitrous acid on the material balance of Ag(II) is taken into consideration and the surface area of MOX powder is evaluated by particle size distribution in this model. The comparison with experimental data was carried out to confirm the validity of this model. It was confirmed that the behavior of MOX dissolution could adequately be simulated using an appropriate MOX dissolution rate constant. It was found from the result of parameter studies that MOX particle size was major governing factor on the dissolution rate. (author)
Verifying and Validating Simulation Models
Energy Technology Data Exchange (ETDEWEB)
Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-23
This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statistical sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.
Murthy, D N Prabhakar
2014-01-01
Serving to unify the existing literature on extended warranties, maintenance service contracts and lease contracts, this book also presents a unique perspective on the topic focussed on cost analysis and decision-making from the perspectives of the parties involved. Using a game theoretic approach together with mathematical modelling, results are presented in an integrated manner with key topics that require further research highlighted in order to serve as a starting point for researchers (engineers and statisticians) who are interested in doing further work in these areas. Designed to assist practitioners (managers, engineers, applied statisticians) who are involved with extended warranties, maintenance service contracts and lease contracts, the book provides them with the models and techniques needed for proper cost analysis and effective decision-making. The book is also suitable for use as a reference text in industrial engineering, applied statistics, operations research and management.
Are Emotions Transmitted From Work to Family? A Crossover Model of Psychological Contract Breach.
Liang, Huai-Liang
2018-01-01
Based on affective events theory and the crossover model, this study examines the effect of psychological contract breach on employee dysfunctional behavior and partner family undermining and explores the crossover effect of employee dysfunctional behavior on partner family undermining in work-family issues. This study collected 370 employee-partner dyads (277 male employees, 93 female employees, M age = 43.59 years) from a large manufacturing organization. The results of this study support the conception that employees' psychological contract breach results in frustration in the workplace. In addition, mediation analysis results reveal that psychological contract breach relates to employee dysfunctional behavior in the workplace. The findings show that partners' psychological strain mediates the relationship between employee dysfunctional behavior and partner family undermining. Furthermore, these findings provide investigations for the crossover model to display the value of psychological contract breach in family issues.
Advances in Intelligent Modelling and Simulation Simulation Tools and Applications
Oplatková, Zuzana; Carvalho, Marco; Kisiel-Dorohinicki, Marek
2012-01-01
The human capacity to abstract complex systems and phenomena into simplified models has played a critical role in the rapid evolution of our modern industrial processes and scientific research. As a science and an art, Modelling and Simulation have been one of the core enablers of this remarkable human trace, and have become a topic of great importance for researchers and practitioners. This book was created to compile some of the most recent concepts, advances, challenges and ideas associated with Intelligent Modelling and Simulation frameworks, tools and applications. The first chapter discusses the important aspects of a human interaction and the correct interpretation of results during simulations. The second chapter gets to the heart of the analysis of entrepreneurship by means of agent-based modelling and simulations. The following three chapters bring together the central theme of simulation frameworks, first describing an agent-based simulation framework, then a simulator for electrical machines, and...
MODELLING, SIMULATING AND OPTIMIZING BOILERS
DEFF Research Database (Denmark)
Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels
2004-01-01
In the present work a framework for optimizing the design of boilers for dynamic operation has been developed. A cost function to be minimized during the optimization has been formulated and for the present design variables related to the Boiler Volume and the Boiler load Gradient (i.e. ring rate...... on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with respect to drum...
SEMI Modeling and Simulation Roadmap
Energy Technology Data Exchange (ETDEWEB)
Hermina, W.L.
2000-10-02
With the exponential growth in the power of computing hardware and software, modeling and simulation is becoming a key enabler for the rapid design of reliable Microsystems. One vision of the future microsystem design process would include the following primary software capabilities: (1) The development of 3D part design, through standard CAD packages, with automatic design rule checks that guarantee the manufacturability and performance of the microsystem. (2) Automatic mesh generation, for 3D parts as manufactured, that permits computational simulation of the process steps, and the performance and reliability analysis for the final microsystem. (3) Computer generated 2D layouts for process steps that utilize detailed process models to generate the layout and process parameter recipe required to achieve the desired 3D part. (4) Science-based computational tools that can simulate the process physics, and the coupled thermal, fluid, structural, solid mechanics, electromagnetic and material response governing the performance and reliability of the microsystem. (5) Visualization software that permits the rapid visualization of 3D parts including cross-sectional maps, performance and reliability analysis results, and process simulation results. In addition to these desired software capabilities, a desired computing infrastructure would include massively parallel computers that enable rapid high-fidelity analysis, coupled with networked compute servers that permit computing at a distance. We now discuss the individual computational components that are required to achieve this vision. There are three primary areas of focus: design capabilities, science-based capabilities and computing infrastructure. Within each of these areas, there are several key capability requirements.
Formal verification of smart contracts based on users and blockchain behaviors models
Abdellatif , Tesnim; Brousmiche , Kei-Léo
2018-01-01
International audience; Blockchain technology has attracted increasing attention in recent years. One reason for this new trend is the introduction of on-chain smart contracts enabling the implementation of decentralized applications in trust-less environments. Along with its adoption, attacks exploiting smart contract vul-nerabilities are inevitably growing. To counter these attacks and avoid breaches, several approaches have been explored such as documenting vulnerabilities or model checkin...
Photovoltaic array performance simulation models
Energy Technology Data Exchange (ETDEWEB)
Menicucci, D. F.
1986-09-15
The experience of the solar industry confirms that, despite recent cost reductions, the profitability of photovoltaic (PV) systems is often marginal and the configuration and sizing of a system is a critical problem for the design engineer. Construction and evaluation of experimental systems are expensive and seldom justifiable. A mathematical model or computer-simulation program is a desirable alternative, provided reliable results can be obtained. Sandia National Laboratories, Albuquerque (SNLA), has been studying PV-system modeling techniques in an effort to develop an effective tool to be used by engineers and architects in the design of cost-effective PV systems. This paper reviews two of the sources of error found in previous PV modeling programs, presents the remedies developed to correct these errors, and describes a new program that incorporates these improvements.
An Uncertain Wage Contract Model with Adverse Selection and Moral Hazard
Directory of Open Access Journals (Sweden)
Xiulan Wang
2014-01-01
it can be characterized as an uncertain variable. Moreover, the employee's effort is unobservable to the employer, and the employee can select her effort level to maximize her utility. Thus, an uncertain wage contract model with adverse selection and moral hazard is established to maximize the employer's expected profit. And the model analysis mainly focuses on the equivalent form of the proposed wage contract model and the optimal solution to this form. The optimal solution indicates that both the employee's effort level and the wage increase with the employee's ability. Lastly, a numerical example is given to illustrate the effectiveness of the proposed model.
ANSYS modeling of thermal contraction of SPL HOM couplers during cool-down
Papke, K
2016-01-01
During the cool-down the HOM coupler as well as the cavity inside the cryo module experience a thermal contraction. For most materials between room temperature and liquid helium temperatures, the changes in dimension are in the order of a few tenths of a percent change in volume. This paper presents the effect of thermal contraction on the RF transmission behavior of HOM couplers, and in particular the influence on its notch filter. Furthermore the simulation process with APDL is explained in detail. Conclusions about the necessary tuning range of the notch filter are made which is especially a concern for couplers with only notch filter.
Simulated annealing model of acupuncture
Shang, Charles; Szu, Harold
2015-05-01
The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.
Semi-Automated Processing of Trajectory Simulator Output Files for Model Evaluation
2018-01-01
ARL-TR-8284 ● JAN 2018 US Army Research Laboratory Semi-Automated Processing of Trajectory Simulator Output Files for Model...Semi-Automated Processing of Trajectory Simulator Output Files for Model Evaluation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...although some minor changes may be needed. The program processes a GTRAJ output text file that contains results from 2 or more simulations , where each
Operations planning simulation: Model study
1974-01-01
The use of simulation modeling for the identification of system sensitivities to internal and external forces and variables is discussed. The technique provides a means of exploring alternate system procedures and processes, so that these alternatives may be considered on a mutually comparative basis permitting the selection of a mode or modes of operation which have potential advantages to the system user and the operator. These advantages are measurements is system efficiency are: (1) the ability to meet specific schedules for operations, mission or mission readiness requirements or performance standards and (2) to accomplish the objectives within cost effective limits.
Revenue-Sharing Contract Models for Logistics Service Supply Chains with Mass Customization Service
Directory of Open Access Journals (Sweden)
Weihua Liu
2015-01-01
Full Text Available The revenue-sharing contract is one of the most important supply chain coordination contracts; it has been applied in various supply chains. However, studies related to service supply chains with mass customization (MC are lacking. Considering the equity of benefit distribution between the members of service supply chains, in this paper, we designed two revenue-sharing contracts. The first contract for the maximum equity of a single logistics service integrator (LSI and single functional logistics service provider (FLSP in a two-echelon logistics service supply chain was designed by introducing the fair entropy function (“one to one” model. Furthermore, the method is extended to a more complex supply chain, which consists of a single LSI and multiple FLSPs. A new contract was designed not only for considering the equity of an LSI and each FLSP but also for the equity between each FLSP (“one to N” model. The “one to one” model in three-echelon LSSC is also provided. The result exemplifies that, whether in the “one to one” model or “one to N” model, there exists a best interval of customized level when the revenue-sharing coefficient reaches its maximum.
Impulse pumping modelling and simulation
International Nuclear Information System (INIS)
Pierre, B; Gudmundsson, J S
2010-01-01
Impulse pumping is a new pumping method based on propagation of pressure waves. Of particular interest is the application of impulse pumping to artificial lift situations, where fluid is transported from wellbore to wellhead using pressure waves generated at wellhead. The motor driven element of an impulse pumping apparatus is therefore located at wellhead and can be separated from the flowline. Thus operation and maintenance of an impulse pump are facilitated. The paper describes the different elements of an impulse pumping apparatus, reviews the physical principles and details the modelling of the novel pumping method. Results from numerical simulations of propagation of pressure waves in water-filled pipelines are then presented for illustrating impulse pumping physical principles, and validating the described modelling with experimental data.
Simulation model of a PWR power plant
International Nuclear Information System (INIS)
Larsen, N.
1987-03-01
A simulation model of a hypothetical PWR power plant is described. A large number of disturbances and failures in plant function can be simulated. The model is written as seven modules to the modular simulation system for continuous processes DYSIM and serves also as a user example of this system. The model runs in Fortran 77 on the IBM-PC-AT. (author)
Jansen, Nils
2011-01-01
Euroopa lepinguõiguse normide analüüs ja võrdlus. PECL - The Principles of European Cntract Law ; CISG - United Nations Convention on Contracts for the International Sale of Goods ; DCFR - Draft Common Frame of Reference ; UNIDROIT - Principles of International Commercial Contracts
Belo, João Filipe; Greenberg, Michael; Igarashi, Atsushi; Pierce, Benjamin C.
Manifest contracts track precise properties by refining types with predicates - e.g., {x : Int |x > 0 } denotes the positive integers. Contracts and polymorphism make a natural combination: programmers can give strong contracts to abstract types, precisely stating pre- and post-conditions while hiding implementation details - for example, an abstract type of stacks might specify that the pop operation has input type {x :α Stack |not ( empty x )} . We formalize this combination by defining FH, a polymorphic calculus with manifest contracts, and establishing fundamental properties including type soundness and relational parametricity. Our development relies on a significant technical improvement over earlier presentations of contracts: instead of introducing a denotational model to break a problematic circularity between typing, subtyping, and evaluation, we develop the metatheory of contracts in a completely syntactic fashion, omitting subtyping from the core system and recovering it post facto as a derived property.
On the existence of optimal contract mechanisms for incomplete information principal-agent models
Balder, E.J.
1997-01-01
Two abstract results are given for the existence of optimal contract selection mechanisms in principal-agent models; by a suitable reformulation of the (almost) incentive compatibility constraint, they deal with both single- and multi-agent models. In particular, it is shown that the existence
Gauge Group Contraction of Electroweak Model and its Natural Energy Limits
Directory of Open Access Journals (Sweden)
Nikolai A. Gromov
2015-09-01
Full Text Available The low and higher energy limits of the Electroweak Model are obtained from first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. The very weak neutrino-matter interaction is explained by zero tending contraction parameter, which depends on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the Electroweak Model. At the infinite energy all particles lose masses, electroweak interactions become long-range and are mediated by the neutral currents. The limit model represents the development of the early Universe from the Big Bang up to the end of the first second.
Natural limits of electroweak model as contraction of its gauge group
International Nuclear Information System (INIS)
Gromov, N A
2015-01-01
The low and higher energy limits of the electroweak model are obtained from the first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. Very weak neutrino–matter interactions are explained by zero tending contraction parameter, which depends on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the electroweak model. At the infinite energy all particles lose mass, electroweak interactions become long-range and are mediated by neutral currents. The limit model represents the development of the early Universe from the big bang up to the end of the first second. (paper)
Modeling Psychological Contract Violation using Dual Regime Models: An Event-based Approach
Directory of Open Access Journals (Sweden)
Joeri Hofmans
2017-11-01
Full Text Available A good understanding of the dynamics of psychological contract violation requires theories, research methods and statistical models that explicitly recognize that violation feelings follow from an event that violates one's acceptance limits, after which interpretative processes are set into motion, determining the intensity of these violation feelings. Whereas theories—in the form of the dynamic model of the psychological contract—and research methods—in the form of daily diary research and experience sampling research—are available by now, the statistical tools to model such a two-stage process are still lacking. The aim of the present paper is to fill this gap in the literature by introducing two statistical models—the Zero-Inflated model and the Hurdle model—that closely mimic the theoretical process underlying the elicitation violation feelings via two model components: a binary distribution that models whether violation has occurred or not, and a count distribution that models how severe the negative impact is. Moreover, covariates can be included for both model components separately, which yields insight into their unique and shared antecedents. By doing this, the present paper offers a methodological-substantive synergy, showing how sophisticated methodology can be used to examine an important substantive issue.
The psychological contract: is the UK National Health Service a model employer?
Fielden, Sandra; Whiting, Fiona
2007-05-01
The UK National Health Service (NHS) is facing recruitment challenges that mean it will need to become an 'employer of choice' if it is to continue to attract high-quality employees. This paper reports the findings from a study focusing on allied health professional staff (n = 67), aimed at establishing the expectations of the NHS inherent in their current psychological contract and to consider whether the government's drive to make the NHS a model employer meets those expectations. The findings show that the most important aspects of the psychological contract were relational and based on the investment made in the employment relationship by both parties. The employment relationship was one of high involvement but also one where transactional contract items, such as pay, were still of some importance. Although the degree of employee satisfaction with the relational content of the psychological contract was relatively positive, there was, nevertheless, a mismatch between levels of importance placed on such aspects of the contract and levels of satisfaction, with employees increasingly placing greater emphasis on those items the NHS is having the greatest difficulty providing. Despite this apparent disparity between employee expectation and the fulfilment of those expectations, the overall health of the psychological contract was still high.
Basic Conditions of Validity of Electronic Contracts in Iran and UNCITRAL Model Law
Directory of Open Access Journals (Sweden)
Abbas Karimi
2017-02-01
Full Text Available Diverse activities such as electronic exchange of goods and services, instant digital content delivery, electronic funds transfer, electronic stock exchange, electronic bill of lading, commercial projects, common engineering and design, sourcing, government purchase, direct marketing and post-sales services included in e-commerce field. Due to the increasing spread of the electronic world in all aspects, electronic contracts, in turn, was of great importance and made significant contributions in business contracts. The present study aims to investigate the concept, fundamentals and history of electronic contracts referring to UNCITRAL Model Law on Electronic Commerce and Electronic Commerce Act (1996. The results indicate that in terms of the conclusion and obligations of the parties, contract in cyberspace in general is similar to the contract in the real world and in this respect, there is no major difference between these two contexts. Potential electronic contracts considered as written ones and Electronic signatures recognized as valid as the basis of the validity of the will in electronic trading.
Modeling commodity salam contract between two parties for discrete and continuous time series
Hisham, Azie Farhani Badrol; Jaffar, Maheran Mohd
2017-08-01
In order for Islamic finance to remain competitive as the conventional, there needs a new development of Islamic compliance product such as Islamic derivative that can be used to manage the risk. However, under syariah principles and regulations, all financial instruments must not be conflicting with five syariah elements which are riba (interest paid), rishwah (corruption), gharar (uncertainty or unnecessary risk), maysir (speculation or gambling) and jahl (taking advantage of the counterparty's ignorance). This study has proposed a traditional Islamic contract namely salam that can be built as an Islamic derivative product. Although a lot of studies has been done on discussing and proposing the implementation of salam contract as the Islamic product however they are more into qualitative and law issues. Since there is lack of quantitative study of salam contract being developed, this study introduces mathematical models that can value the appropriate salam price for a commodity salam contract between two parties. In modeling the commodity salam contract, this study has modified the existing conventional derivative model and come out with some adjustments to comply with syariah rules and regulations. The cost of carry model has been chosen as the foundation to develop the commodity salam model between two parties for discrete and continuous time series. However, the conventional time value of money results from the concept of interest that is prohibited in Islam. Therefore, this study has adopted the idea of Islamic time value of money which is known as the positive time preference, in modeling the commodity salam contract between two parties for discrete and continuous time series.
Galaxy Alignments: Theory, Modelling & Simulations
Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais
2015-11-01
The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.
Kurtulmus, A. Besir; Daniel, Kenny
2018-01-01
Using blockchain technology, it is possible to create contracts that offer a reward in exchange for a trained machine learning model for a particular data set. This would allow users to train machine learning models for a reward in a trustless manner. The smart contract will use the blockchain to automatically validate the solution, so there would be no debate about whether the solution was correct or not. Users who submit the solutions won't have counterparty risk that they won't get paid fo...
Directory of Open Access Journals (Sweden)
Saori Morino
2017-10-01
Full Text Available Weight gain and stretched abdominal muscles from an enlarged gravid uterus are remarkable features during pregnancy. These changes elicit postural instability and place strain on body segments, contributing to lower back pain. In general, the agonist and antagonist muscles act simultaneously to increase joint stabilization; however, this can cause additional muscle stress during movement. Furthermore, this activation can be observed in pregnant women because of their unstable body joints. Hence, physical modalities based on assessments of muscle activation are useful for managing low back pain during pregnancy. Musculoskeletal models are common when investigating muscle load. However, it is difficult to apply such models to pregnant women and estimate the co-contraction of muscles using musculoskeletal models. Therefore, the purpose of this study is to construct a musculoskeletal model for pregnant women that estimates the co-contraction of trunk muscles. First, motion analysis was conducted on a pregnant woman and the muscle activations of the rectus abdominis and erector spinae were measured. Then, the musculoskeletal model was specifically modified for pregnant women. Finally, the co-contraction was estimated from the results of the musculoskeletal model and electromyography data using a genetic algorithm. With the proposed methods, weakened abdominal muscle torque and the co-contraction activation of trunk muscles were estimated successfully.
Environmental Parametric Cost Model in Oil and Gas EPC Contracts
Directory of Open Access Journals (Sweden)
Madjid Abbaspour
2018-01-01
Full Text Available This study aims at identifying the parameters that govern the environmental costs in oil and gas projects. An initial conceptual model was proposed. Next, the costs of environmental management work packages were estimated, separately and were applied in project control tools (WBS/CBS. Then, an environmental parametric cost model was designed to determine the environmental costs and relevant weighting factors. The suggested model can be considered as an innovative approach to designate the environmental indicators in oil and gas projects. The validity of variables was investigated based on Delphi method. The results indicated that the project environmental management’s weighting factor is 0.87% of total project’s weighting factor.
Vankan, W.J.; Huyghe, J.M.R.J.; Slaaf, D.W.; Donkelaar, van C.C.; Drost, M.R.; Janssen, J.D.; Huson, A.
1997-01-01
Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a
THE MARK I BUSINESS SYSTEM SIMULATION MODEL
of a large-scale business simulation model as a vehicle for doing research in management controls. The major results of the program were the...development of the Mark I business simulation model and the Simulation Package (SIMPAC). SIMPAC is a method and set of programs facilitating the construction...of large simulation models. The object of this document is to describe the Mark I Corporation model, state why parts of the business were modeled as they were, and indicate the research applications of the model. (Author)
Distributed simulation a model driven engineering approach
Topçu, Okan; Oğuztüzün, Halit; Yilmaz, Levent
2016-01-01
Backed by substantive case studies, the novel approach to software engineering for distributed simulation outlined in this text demonstrates the potent synergies between model-driven techniques, simulation, intelligent agents, and computer systems development.
Benchmark simulation models, quo vadis?
Jeppsson, U; Alex, J; Batstone, D J; Benedetti, L; Comas, J; Copp, J B; Corominas, L; Flores-Alsina, X; Gernaey, K V; Nopens, I; Pons, M-N; Rodríguez-Roda, I; Rosen, C; Steyer, J-P; Vanrolleghem, P A; Volcke, E I P; Vrecko, D
2013-01-01
As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work already being done within the context of the benchmarking simulation models (BSMs) or applicable work in the wider literature. Of key importance is increasing capability, usability and transparency of the BSM package while avoiding unnecessary complexity.
Study of impacts of physical contracts and financial contracts on bidding strategies of GENCOs
International Nuclear Information System (INIS)
Xiaoling Chen; He, Y.; Song, Y.H.
2004-01-01
This paper studies the impacts of physical contracts and financial contracts on the bidding strategies of GENCOs, including Physical Bilateral Contracts, Contracts for Difference (CfDs), Call Options and Put Options under discriminatory pricing mechanism. The integrated bidding decision model is applied, which has three main modules - probabilistic local marginal price simulator, market-oriented unit commitment model and multi-criteria decision system. The numerical results show that the GENCO will choose different bidding strategies if it holds different types of contract. The results also suggest that CfDs have the best performance for risk alleviation. (author)
Simulation modelling of fynbos ecosystems: Systems analysis and conceptual models
CSIR Research Space (South Africa)
Kruger, FJ
1985-03-01
Full Text Available -animal interactions. An additional two models, which expand aspects of the FYNBOS model, are described: a model for simulating canopy processes; and a Fire Recovery Simulator. The canopy process model will simulate ecophysiological processes in more detail than FYNBOS...
Modeling the Interest Rate Term Structure: Derivatives Contracts Dynamics and Evaluation
Directory of Open Access Journals (Sweden)
Pedro L. Valls Pereira
2005-06-01
Full Text Available This article deals with a model for the term structure of interest rates and the valuation of derivative contracts directly dependent on it. The work is of a theoretical nature and deals, exclusively, with continuous time models, making ample use of stochastic calculus results and presents original contributions that we consider relevant to the development of the fixed income market modeling. We develop a new multifactorial model of the term structure of interest rates. The model is based on the decomposition of the yield curve into the factors level, slope, curvature, and the treatment of their collective dynamics. We show that this model may be applied to serve various objectives: analysis of bond price dynamics, valuation of derivative contracts and also market risk management and formulation of operational strategies which is presented in another article.
Modelling Ca2+ bound Troponin in Excitation Contraction Coupling
Directory of Open Access Journals (Sweden)
Henry G. Zot
2016-09-01
Full Text Available To explain disparate decay rates of cytosolic Ca2+ and structural changes in the thin filaments during a twitch, we model the time course of Ca2+ bound troponin (Tn resulting from the free Ca2+ transient of fast skeletal muscle. In fibers stretched beyond overlap, the decay of Ca2+ as measured by a change in fluo 3 fluorescence is significantly slower than the intensity decay of the meridional 1/38.5 nm-1 reflection of Tn; this is not simply explained by considering only the Ca2+ binding properties of Tn alone (Matsuo, T., Iwamoto, H., and Yagi, N. (2010. Biophys. J. 99, 193-200. We apply a comprehensive model that includes the known Ca2+ binding properties of Tn in the context of the thin filament with and without cycling crossbridges. Calculations based on the model predict that the transient of Ca2+ bound Tn correlates with either the fluo 3 time course in muscle with overlapping thin and thick filaments or the intensity of the meridional 1/38.5 nm-1 reflection in overstretched muscle. Hence, cycling crossbridges delay the dissociation of Ca2+ from Tn. Correlation with the fluo 3 fluorescence change is not causal given that the transient of Ca2+ bound Tn depends on sarcomere length, whereas the fluo-3 fluorescence change does not. Transient positions of tropomyosin calculated from the time course of Ca2+ bound Tn are in reasonable agreement with the transient of measured perturbations of the Tn repeat in overlap and non-overlap muscle preparations.
Fundamental study on interfacial area transport model (I) (contract research)
International Nuclear Information System (INIS)
Mishima, Kaichiro; Nakamura, Hideo
2001-03-01
Recently, improvement in the best-estimate (BE) code predictive capability is attempted by incorporating the interfacial area transport model (IATM) into a one-dimensional two-fluid model to represent gas-liquid two-phase flows in detail with less uncertainty in the flow predictions. Internationally, the nuclear regulatory commission (NRC) and Purdue University in the U.S.A. and CEA in France have promoted the renewal of their BE codes such as TRAC, RELAP5 and CATHARE, by introducing the IATM in cooperative manner. In Japan, JAERI is underway to develop a one-dimensional code based primarily on the IATM against the licensing procedures of next-generation nuclear reactors. The IATM has a possibility to correctly predict flow transient along flow path for such flows as developing flows, multi-dimensional flows, transitional flows, boiling flows, which are difficult to accurately predict by the two-fluid models employed in the current BE codes. The newly developed code with the IATM would dramatically improve the accuracy in the flow prediction. The model, however, is under development and needs great effort to overcome many difficulties with plenty of theoretical considerations based on much of data bases to be acquired further. This study attempts to measure interfacial area in air-water two-phase flows in a large-diameter tube to understand the characteristic of multi-dimensional flows that usually appear in large-diameter tube flows, and provide data bases, to contribute the development of the IATM. The results obtained by such institutes as Purdue University and CEA France were reviewed first. Clarified are the current status and problems of the IATM, basics and practical methods to measure the interfacial area using multi-sensor miniature local probes; metal needle electro-resistance probe and fiber-optic probe. It was found that the applicability of the IATM is limited mostly to a one-dimensional bubbly flow, and is far from satisfactory for multi
An introduction to enterprise modeling and simulation
Energy Technology Data Exchange (ETDEWEB)
Ostic, J.K.; Cannon, C.E. [Los Alamos National Lab., NM (United States). Technology Modeling and Analysis Group
1996-09-01
As part of an ongoing effort to continuously improve productivity, quality, and efficiency of both industry and Department of Energy enterprises, Los Alamos National Laboratory is investigating various manufacturing and business enterprise simulation methods. A number of enterprise simulation software models are being developed to enable engineering analysis of enterprise activities. In this document the authors define the scope of enterprise modeling and simulation efforts, and review recent work in enterprise simulation at Los Alamos National Laboratory as well as at other industrial, academic, and research institutions. References of enterprise modeling and simulation methods and a glossary of enterprise-related terms are provided.
Simulation and Modeling Methodologies, Technologies and Applications
Filipe, Joaquim; Kacprzyk, Janusz; Pina, Nuno
2014-01-01
This book includes extended and revised versions of a set of selected papers from the 2012 International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2012) which was sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC) and held in Rome, Italy. SIMULTECH 2012 was technically co-sponsored by the Society for Modeling & Simulation International (SCS), GDR I3, Lionphant Simulation, Simulation Team and IFIP and held in cooperation with AIS Special Interest Group of Modeling and Simulation (AIS SIGMAS) and the Movimento Italiano Modellazione e Simulazione (MIMOS).
Structured building model reduction toward parallel simulation
Energy Technology Data Exchange (ETDEWEB)
Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University
2013-08-26
Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.
Brock, W.A.; Hommes, C.H.
2001-01-01
This paper discusses dynamic evolutionary multi-agent systems, as introduced by Brock and Hommes (1997). In particular the heterogeneous agent dynamic asset pricing model of Brock and Hommes (1998) is extended by introducing derivative securities by means of price contingent contracts. Numerical
Another Look at Helmholtz's Model for the Gravitational Contraction of the Sun
Tort, A. C.; Nogarol, F.
2011-01-01
We take another look at the Helmholtz model for the gravitational contraction of the Sun. We show that there are two other pedagogically useful ways of rederiving Helmholtz's main results that make use of Gauss's law, the concept of gravitational field energy and the work-kinetic energy theorem. An account of the energy balance involved in the…
Promises from Afar: A Model of International Student Psychological Contract in Business Education
Bordia, Sarbari; Bordia, Prashant; Restubog, Simon Lloyd D.
2015-01-01
Despite their significant presence in western business schools, the needs and experiences of international students have not been adequately reflected in the business education literature. We draw upon psychological contract theory--used to understand employer-employee relationships--to develop a novel theoretical model on the international…
Method of moments approach to pricing double barrier contracts in polynomial jump-diffusion models
Eriksson, B.; Pistorius, M.
2011-01-01
Abstract: We present a method of moments approach to pricing double barrier contracts when the underlying is modelled by a polynomial jump-diffusion. By general principles the price is linked to certain infinite dimensional linear programming problems. Subsequently approximating these by finite
A physiological production model for cacao : results of model simulations
Zuidema, P.A.; Leffelaar, P.A.
2002-01-01
CASE2 is a physiological model for cocoa (Theobroma cacao L.) growth and yield. This report introduces the CAcao Simulation Engine for water-limited production in a non-technical way and presents simulation results obtained with the model.
The Optimal Licensing Contract in a Differentiated Stackelberg Model
Directory of Open Access Journals (Sweden)
Xianpei Hong
2014-01-01
Full Text Available This paper extends the work of Wang (2002 by considering a differentiated Stackelberg model, when the leader firm is an inside innovator and licenses its new technology by three options, that is, fixed-fee licensing, royalty licensing, and two-part tariff licensing. The main contributions and conclusions of this paper are threefold. First of all, this paper derives a very different result from Wang (2002. We show that, with a nondrastic innovation, royalty licensing is always better than fixed-fee licensing for the innovator; with a drastic innovation, royalty licensing is superior to fixed-fee licensing for small values of substitution coefficient d; however when d becomes closer to 1, neither fee nor royalty licensing will occur. Secondly, this paper shows that the innovator is always better off in case of two-part tariff licensing than fixed-fee licensing no matter what the innovation size is. Thirdly, the innovator always prefers to license its nondrastic innovation by means of a two-part tariff instead of licensing by means of a royalty; however, with a drastic innovation, the optimal licensing strategy can be either a two-part tariff or a royalty, depending upon the differentiation of the goods.
The optimal licensing contract in a differentiated Stackelberg model.
Hong, Xianpei; Yang, Lijun; Zhang, Huaige; Zhao, Dan
2014-01-01
This paper extends the work of Wang (2002) by considering a differentiated Stackelberg model, when the leader firm is an inside innovator and licenses its new technology by three options, that is, fixed-fee licensing, royalty licensing, and two-part tariff licensing. The main contributions and conclusions of this paper are threefold. First of all, this paper derives a very different result from Wang (2002). We show that, with a nondrastic innovation, royalty licensing is always better than fixed-fee licensing for the innovator; with a drastic innovation, royalty licensing is superior to fixed-fee licensing for small values of substitution coefficient d; however when d becomes closer to 1, neither fee nor royalty licensing will occur. Secondly, this paper shows that the innovator is always better off in case of two-part tariff licensing than fixed-fee licensing no matter what the innovation size is. Thirdly, the innovator always prefers to license its nondrastic innovation by means of a two-part tariff instead of licensing by means of a royalty; however, with a drastic innovation, the optimal licensing strategy can be either a two-part tariff or a royalty, depending upon the differentiation of the goods.
Simulation modeling and analysis with Arena
Altiok, Tayfur
2007-01-01
Simulation Modeling and Analysis with Arena is a highly readable textbook which treats the essentials of the Monte Carlo discrete-event simulation methodology, and does so in the context of a popular Arena simulation environment. It treats simulation modeling as an in-vitro laboratory that facilitates the understanding of complex systems and experimentation with what-if scenarios in order to estimate their performance metrics. The book contains chapters on the simulation modeling methodology and the underpinnings of discrete-event systems, as well as the relevant underlying probability, statistics, stochastic processes, input analysis, model validation and output analysis. All simulation-related concepts are illustrated in numerous Arena examples, encompassing production lines, manufacturing and inventory systems, transportation systems, and computer information systems in networked settings.· Introduces the concept of discrete event Monte Carlo simulation, the most commonly used methodology for modeli...
Venture financing of start-ups: A model of contract between VC fund and entrepreneur
Directory of Open Access Journals (Sweden)
Osintsev Yury
2010-01-01
Full Text Available Venture capital has become one of the main sources of innovation in the modern, global economy. It is not just a substitute for bank loans: it has proven to be a more efficient way of financing projects at different stages. On one hand, venture financing allows for projects with higher risk, which leads to the possibility of higher returns on investment. On the other hand, venture investors who usually have managerial experience often participate in governing the business, which certainly adds value to the enterprise. In this paper we establish the model of contract between the venture capital fund and the entrepreneur, focusing on probably the most important issue of this contract: the shares of the parties in the business. The shares in the company determine the distribution of the joint surplus. The expected joint profits are not just exogenously specified in the contract but are dependent on the behavioral variables of both parties at the stage of fulfilling the contract. We call the behavioral variable of the entrepreneur ‘effort’ and the one of the venture fund ‘advice’. The probability of the project’s success, and hence the expected joint revenues, are increased by these two. However, both kinds of effort are costly to the respective parties that have made them. Based on this fact we can elaborate the profit functions of both sides of the contract. Our model can be considered as a basis for specifying contracts concerning venture financing. It can provide the logic for how the equilibrium shares of entrepreneur and venture fund are obtained.
Pakpahan, Eka K. A.; Iskandar, Bermawi P.
2015-12-01
Mining industry is characterized by a high operational revenue, and hence high availability of heavy equipment used in mining industry is a critical factor to ensure the revenue target. To maintain high avaliability of the heavy equipment, the equipment's owner hires an agent to perform maintenance action. Contract is then used to control the relationship between the two parties involved. The traditional contracts such as fixed price, cost plus or penalty based contract studied is unable to push agent's performance to exceed target, and this in turn would lead to a sub-optimal result (revenue). This research deals with designing maintenance contract compensation schemes. The scheme should induce agent to select the highest possible maintenance effort level, thereby pushing agent's performance and achieve maximum utility for both parties involved. Principal agent theory is used as a modeling approach due to its ability to simultaneously modeled owner and agent decision making process. Compensation schemes considered in this research includes fixed price, cost sharing and revenue sharing. The optimal decision is obtained using a numerical method. The results show that if both parties are risk neutral, then there are infinite combination of fixed price, cost sharing and revenue sharing produced the same optimal solution. The combination of fixed price and cost sharing contract results in the optimal solution when the agent is risk averse, while the optimal combination of fixed price and revenue sharing contract is obtained when agent is risk averse. When both parties are risk averse, the optimal compensation scheme is a combination of fixed price, cost sharing and revenue sharing.
Informed Principal Model and Contract in Supply Chain with Demand Disruption Asymmetric Information
Directory of Open Access Journals (Sweden)
Huan Zhang
2016-01-01
Full Text Available Because of the frequency and disastrous influence, the supply chain disruption has caused extensive concern both in the industry and in the academia. In a supply chain with one manufacturer and one retailer, the demand of the retailer is uncertain and meanwhile may suffer disruption with a probability. Taking the demand disruption probability as the retailer’s asymmetric information, an informed principal model with the retailer as the principal is explored to make the contract. The retailer can show its information to the manufacturer through the contract. It is found out that the high-risk retailer intends to pretend to be the low-risk one. So the separating contract is given through the low-information-intensity allocation, in which the order quantity and the transferring payment for the low-risk retailer distort upwards, but those of high-risk retailer do not distort. In order to reduce the signaling cost which the low-risk retailer pays, the interim efficient model is introduced, which ends up with the order quantity and transferring payment distorting upwards again but less than before. In the numerical examples, with two different mutation probabilities, the informed principal contracts show the application of the informed principal model in the supply chain with demand disruption.
Network Modeling and Simulation A Practical Perspective
Guizani, Mohsen; Khan, Bilal
2010-01-01
Network Modeling and Simulation is a practical guide to using modeling and simulation to solve real-life problems. The authors give a comprehensive exposition of the core concepts in modeling and simulation, and then systematically address the many practical considerations faced by developers in modeling complex large-scale systems. The authors provide examples from computer and telecommunication networks and use these to illustrate the process of mapping generic simulation concepts to domain-specific problems in different industries and disciplines. Key features: Provides the tools and strate
Modelling and simulation of a heat exchanger
Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.
1991-01-01
Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.
Modeling and simulation of large HVDC systems
Energy Technology Data Exchange (ETDEWEB)
Jin, H.; Sood, V.K.
1993-01-01
This paper addresses the complexity and the amount of work in preparing simulation data and in implementing various converter control schemes and the excessive simulation time involved in modelling and simulation of large HVDC systems. The Power Electronic Circuit Analysis program (PECAN) is used to address these problems and a large HVDC system with two dc links is simulated using PECAN. A benchmark HVDC system is studied to compare the simulation results with those from other packages. The simulation time and results are provided in the paper.
Directory of Open Access Journals (Sweden)
M. Golparvar
2014-12-01
Full Text Available This research was conducted with the purpose of studying the structural model of the relationships of psychological contract violation with organizational commitment, turnover, job satisfaction and deviant behaviors. Research method was correlation and the statistical population were male employees of an industrial company in Shiraz city, from among which 300 employees were selected using convenience sampling. Assessment instruments consisted of Psychological Contract Violation Questionnaire (Tekleab etal, 2005, Organizational Commitment Questionnaire (Speier & Vankatesh, 2002, Job Satisfaction Questionnaire (Spector, 1985, Turnover Questionnaire (Tekleab etal, 2005 and Deviant Behavior Questionnaire (Bennett & Robinson, 2000. Data was analyzed using Pearson’s correlation coefficient, structure equation modeling (SEM and mediation analysis. Findings showed that psychological contract violation explained 7.1 percent of organizational commitment variance, organizational commitment and job satisfaction explained 16.7 percent of turnover variance, organizational commitment explained 20.3 percent of job satisfaction variance and turnover explained 4.3 percent of deviant behavior variance. Mediation analysis showed that organizational commitment played the complete mediator variable in the relation of psychological contract violation with job satisfaction and job satisfaction was the partial mediator variable in the relation of organizational commitment with turnover. Finally with regard to the limitation of generalization of current research results it is suggested to industrial organizations that they should not violate their obligations to employees in anyway.
Automatic and quantitative measurement of collagen gel contraction using model-guided segmentation
Chen, Hsin-Chen; Yang, Tai-Hua; Thoreson, Andrew R.; Zhao, Chunfeng; Amadio, Peter C.; Sun, Yung-Nien; Su, Fong-Chin; An, Kai-Nan
2013-08-01
Quantitative measurement of collagen gel contraction plays a critical role in the field of tissue engineering because it provides spatial-temporal assessment (e.g., changes of gel area and diameter during the contraction process) reflecting the cell behavior and tissue material properties. So far the assessment of collagen gels relies on manual segmentation, which is time-consuming and suffers from serious intra- and inter-observer variability. In this study, we propose an automatic method combining various image processing techniques to resolve these problems. The proposed method first detects the maximal feasible contraction range of circular references (e.g., culture dish) and avoids the interference of irrelevant objects in the given image. Then, a three-step color conversion strategy is applied to normalize and enhance the contrast between the gel and background. We subsequently introduce a deformable circular model which utilizes regional intensity contrast and circular shape constraint to locate the gel boundary. An adaptive weighting scheme was employed to coordinate the model behavior, so that the proposed system can overcome variations of gel boundary appearances at different contraction stages. Two measurements of collagen gels (i.e., area and diameter) can readily be obtained based on the segmentation results. Experimental results, including 120 gel images for accuracy validation, showed high agreement between the proposed method and manual segmentation with an average dice similarity coefficient larger than 0.95. The results also demonstrated obvious improvement in gel contours obtained by the proposed method over two popular, generic segmentation methods.
Modeling and Simulation of Low Voltage Arcs
Ghezzi, L.; Balestrero, A.
2010-01-01
Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical
Model improvements to simulate charging in SEM
Arat, K. T.; Klimpel, T.; Hagen, C. W.
2018-03-01
Charging of insulators is a complex phenomenon to simulate since the accuracy of the simulations is very sensitive to the interaction of electrons with matter and electric fields. In this study, we report model improvements for a previously developed Monte-Carlo simulator to more accurately simulate samples that charge. The improvements include both modelling of low energy electron scattering and charging of insulators. The new first-principle scattering models provide a more realistic charge distribution cloud in the material, and a better match between non-charging simulations and experimental results. Improvements on charging models mainly focus on redistribution of the charge carriers in the material with an induced conductivity (EBIC) and a breakdown model, leading to a smoother distribution of the charges. Combined with a more accurate tracing of low energy electrons in the electric field, we managed to reproduce the dynamically changing charging contrast due to an induced positive surface potential.
Moreira, Elka Maltez de Miranda; Costa, Ediná Alves
2010-11-01
The Brazilian National Health Surveillance Agency (Anvisa) is supervised by the Ministry of Health by means of a management contract, a performance evaluation tool. This case study was aimed at describing and analyzing Anvisa's performance evaluation model based on the agency's institutional purpose, according to the following analytical categories: the management contract formalization, evaluation tools, evaluators and institutional performance. Semi-structured interviews and document analysis revealed that Anvisa signed only one management contract with the Ministry of Health in 1999, updated by four additive terms. The Collegiate Board of Directors and the Advisory Center for Strategic Management play the role of Anvisa's internal evaluators and an Assessing Committee, comprising the Ministry of Health, constitutes its external evaluator. Three phases were identified in the evaluation model: the structuring of the new management model (1999-2000), legitimation regarding the productive segment (2001-2004) and widespread legitimation (2005). The best performance was presented in 2000 (86.05%) and the worst in 2004 (40.00%). The evaluation model was shown to have contributed little towards the agency's institutional purpose and the effectiveness measurement of the implemented actions.
Whole-building Hygrothermal Simulation Model
DEFF Research Database (Denmark)
Rode, Carsten; Grau, Karl
2003-01-01
An existing integrated simulation tool for dynamic thermal simulation of building was extended with a transient model for moisture release and uptake in building materials. Validation of the new model was begun with comparison against measurements in an outdoor test cell furnished with single...... materials. Almost quasi-steady, cyclic experiments were used to compare the indoor humidity variation and the numerical results of the integrated simulation tool with the new moisture model. Except for the case with chipboard as furnishing, the predictions of indoor humidity with the detailed model were...
Simulation modeling for the health care manager.
Kennedy, Michael H
2009-01-01
This article addresses the use of simulation software to solve administrative problems faced by health care managers. Spreadsheet add-ins, process simulation software, and discrete event simulation software are available at a range of costs and complexity. All use the Monte Carlo method to realistically integrate probability distributions into models of the health care environment. Problems typically addressed by health care simulation modeling are facility planning, resource allocation, staffing, patient flow and wait time, routing and transportation, supply chain management, and process improvement.
Protein Simulation Data in the Relational Model.
Simms, Andrew M; Daggett, Valerie
2012-10-01
High performance computing is leading to unprecedented volumes of data. Relational databases offer a robust and scalable model for storing and analyzing scientific data. However, these features do not come without a cost-significant design effort is required to build a functional and efficient repository. Modeling protein simulation data in a relational database presents several challenges: the data captured from individual simulations are large, multi-dimensional, and must integrate with both simulation software and external data sites. Here we present the dimensional design and relational implementation of a comprehensive data warehouse for storing and analyzing molecular dynamics simulations using SQL Server.
Modeling and simulation of blood collection systems.
Alfonso, Edgar; Xie, Xiaolan; Augusto, Vincent; Garraud, Olivier
2012-03-01
This paper addresses the modeling and simulation of blood collection systems in France for both fixed site and mobile blood collection with walk in whole blood donors and scheduled plasma and platelet donors. Petri net models are first proposed to precisely describe different blood collection processes, donor behaviors, their material/human resource requirements and relevant regulations. Petri net models are then enriched with quantitative modeling of donor arrivals, donor behaviors, activity times and resource capacity. Relevant performance indicators are defined. The resulting simulation models can be straightforwardly implemented with any simulation language. Numerical experiments are performed to show how the simulation models can be used to select, for different walk in donor arrival patterns, appropriate human resource planning and donor appointment strategies.
Two dimensional numerical model for steam--water flow in a sudden contraction
International Nuclear Information System (INIS)
Crowe, C.T.; Choi, H.N.
1976-01-01
A computational model developed for two-dimensional dispersed two-phase flows is applied to steam--water flow in a sudden contraction. The calculational scheme utilizes the cellular approach in which each cell is regarded as a control volume and the droplets are regarded as sources of mass, momentum and energy to the conveying (steam) phase. The predictions show how droplets channel in the entry region and affect the velocity and pressure distributions along the duct
Modeling and Simulation of Matrix Converter
DEFF Research Database (Denmark)
Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede
2005-01-01
This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...
Modeling and analysis of strategic forward contracting in transmission constrained power markets
International Nuclear Information System (INIS)
Yu, C.W.; Chung, T.S.; Zhang, S.H.; Wang, X.
2010-01-01
Taking the effects of transmission network into account, strategic forward contracting induced by the interaction of generation firms' strategies in the spot and forward markets is investigated. A two-stage game model is proposed to describe generation firms' strategic forward contracting and spot market competition. In the spot market, generation firms behave strategically by submitting bids at their nodes in a form of linear supply function (LSF) and there are arbitrageurs who buy and resell power at different nodes where price differences exceed the costs of transmission. The owner of the grid is assumed to ration limited transmission line capacity to maximize the value of the transmission services in the spot market. The Cournot-type competition is assumed for the strategic forward contract market. This two-stage model is formulated as an equilibrium problem with equilibrium constraints (EPEC); in which each firm's optimization problem in the forward market is a mathematical program with equilibrium constraints (MPEC) and parameter-dependent spot market equilibrium as the inner problem. A nonlinear complementarity method is employed to solve this EPEC model. (author)
Simulation models for tokamak plasmas
International Nuclear Information System (INIS)
Dimits, A.M.; Cohen, B.I.
1992-01-01
Two developments in the nonlinear simulation of tokamak plasmas are described: (A) Simulation algorithms that use quasiballooning coordinates have been implemented in a 3D fluid code and a 3D partially linearized (Δf) particle code. In quasiballooning coordinates, one of the coordinate directions is closely aligned with that of the magnetic field, allowing both optimal use of the grid resolution for structures highly elongated along the magnetic field as well as implementation of the correct periodicity conditions with no discontinuities in the toroidal direction. (B) Progress on the implementation of a likeparticle collision operator suitable for use in partially linearized particle codes is reported. The binary collision approach is shown to be unusable for this purpose. The algorithm under development is a complete version of the test-particle plus source-field approach that was suggested and partially implemented by Xu and Rosenbluth
A sEMG model with experimentally based simulation parameters.
Wheeler, Katherine A; Shimada, Hiroshima; Kumar, Dinesh K; Arjunan, Sridhar P
2010-01-01
A differential, time-invariant, surface electromyogram (sEMG) model has been implemented. While it is based on existing EMG models, the novelty of this implementation is that it assigns more accurate distributions of variables to create realistic motor unit (MU) characteristics. Variables such as muscle fibre conduction velocity, jitter (the change in the interpulse interval between subsequent action potential firings) and motor unit size have been considered to follow normal distributions about an experimentally obtained mean. In addition, motor unit firing frequencies have been considered to have non-linear and type based distributions that are in accordance with experimental results. Motor unit recruitment thresholds have been considered to be related to the MU type. The model has been used to simulate single channel differential sEMG signals from voluntary, isometric contractions of the biceps brachii muscle. The model has been experimentally verified by conducting experiments on three subjects. Comparison between simulated signals and experimental recordings shows that the Root Mean Square (RMS) increases linearly with force in both cases. The simulated signals also show similar values and rates of change of RMS to the experimental signals.
A model management system for combat simulation
Dolk, Daniel R.
1986-01-01
The design and implementation of a model management system to support combat modeling is discussed. Structured modeling is introduced as a formalism for representing mathematical models. A relational information resource dictionary system is developed which can accommodate structured models. An implementation is described. Structured modeling is then compared to Jackson System Development (JSD) as a methodology for facilitating discrete event simulation. JSD is currently better at representin...
HVDC System Characteristics and Simulation Models
Energy Technology Data Exchange (ETDEWEB)
Moon, S.I.; Han, B.M.; Jang, G.S. [Electric Enginnering and Science Research Institute, Seoul (Korea)
2001-07-01
This report deals with the AC-DC power system simulation method by PSS/E and EUROSTAG for the development of a strategy for the reliable operation of the Cheju-Haenam interconnected system. The simulation using both programs is performed to analyze HVDC simulation models. In addition, the control characteristics of the Cheju-Haenam HVDC system as well as Cheju AC system characteristics are described in this work. (author). 104 figs., 8 tabs.
Physically realistic modeling of maritime training simulation
Cieutat , Jean-Marc
2003-01-01
Maritime training simulation is an important matter of maritime teaching, which requires a lot of scientific and technical skills.In this framework, where the real time constraint has to be maintained, all physical phenomena cannot be studied; the most visual physical phenomena relating to the natural elements and the ship behaviour are reproduced only. Our swell model, based on a surface wave simulation approach, permits to simulate the shape and the propagation of a regular train of waves f...
Software-Engineering Process Simulation (SEPS) model
Lin, C. Y.; Abdel-Hamid, T.; Sherif, J. S.
1992-01-01
The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments.
Systematic modelling and simulation of refrigeration systems
DEFF Research Database (Denmark)
Rasmussen, Bjarne D.; Jakobsen, Arne
1998-01-01
The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose...... of the simulation, to select appropriate component models and to set up the equations in a well-arranged way. In this paper the outline of such a method is proposed and examples showing the use of this method for simulation of refrigeration systems are given....
Deriving simulators for hybrid Chi models
Beek, van D.A.; Man, K.L.; Reniers, M.A.; Rooda, J.E.; Schiffelers, R.R.H.
2006-01-01
The hybrid Chi language is formalism for modeling, simulation and verification of hybrid systems. The formal semantics of hybrid Chi allows the definition of provably correct implementations for simulation, verification and realtime control. This paper discusses the principles of deriving an
Modeling and simulation for RF system design
Frevert, Ronny; Jancke, Roland; Knöchel, Uwe; Schwarz, Peter; Kakerow, Ralf; Darianian, Mohsen
2005-01-01
Focusing on RF specific modeling and simulation methods, and system and circuit level descriptions, this work contains application-oriented training material. Accompanied by a CD- ROM, it combines the presentation of a mixed-signal design flow, an introduction into VHDL-AMS and Verilog-A, and the application of commercially available simulators.
Magnetosphere Modeling: From Cartoons to Simulations
Gombosi, T. I.
2017-12-01
Over the last half a century physics-based global computer simulations became a bridge between experiment and basic theory and now it represents the "third pillar" of geospace research. Today, many of our scientific publications utilize large-scale simulations to interpret observations, test new ideas, plan campaigns, or design new instruments. Realistic simulations of the complex Sun-Earth system have been made possible by the dramatically increased power of both computing hardware and numerical algorithms. Early magnetosphere models were based on simple E&M concepts (like the Chapman-Ferraro cavity) and hydrodynamic analogies (bow shock). At the beginning of the space age current system models were developed culminating in the sophisticated Tsyganenko-type description of the magnetic configuration. The first 3D MHD simulations of the magnetosphere were published in the early 1980s. A decade later there were several competing global models that were able to reproduce many fundamental properties of the magnetosphere. The leading models included the impact of the ionosphere by using a height-integrated electric potential description. Dynamic coupling of global and regional models started in the early 2000s by integrating a ring current and a global magnetosphere model. It has been recognized for quite some time that plasma kinetic effects play an important role. Presently, global hybrid simulations of the dynamic magnetosphere are expected to be possible on exascale supercomputers, while fully kinetic simulations with realistic mass ratios are still decades away. In the 2010s several groups started to experiment with PIC simulations embedded in large-scale 3D MHD models. Presently this integrated MHD-PIC approach is at the forefront of magnetosphere simulations and this technique is expected to lead to some important advances in our understanding of magnetosheric physics. This talk will review the evolution of magnetosphere modeling from cartoons to current systems
Siegfried, Robert
2014-01-01
Robert Siegfried presents a framework for efficient agent-based modeling and simulation of complex systems. He compares different approaches for describing structure and dynamics of agent-based models in detail. Based on this evaluation the author introduces the "General Reference Model for Agent-based Modeling and Simulation" (GRAMS). Furthermore he presents parallel and distributed simulation approaches for execution of agent-based models -from small scale to very large scale. The author shows how agent-based models may be executed by different simulation engines that utilize underlying hard
NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW ...
African Journals Online (AJOL)
2014-06-30
Jun 30, 2014 ... objective of this study is to control the simulation of unsteady flows around structures. ... Aerospace, our results were in good agreement with experimental .... Two-Equation Eddy-Viscosity Turbulence Models for Engineering.
SEIR model simulation for Hepatitis B
Side, Syafruddin; Irwan, Mulbar, Usman; Sanusi, Wahidah
2017-09-01
Mathematical modelling and simulation for Hepatitis B discuss in this paper. Population devided by four variables, namely: Susceptible, Exposed, Infected and Recovered (SEIR). Several factors affect the population in this model is vaccination, immigration and emigration that occurred in the population. SEIR Model obtained Ordinary Differential Equation (ODE) non-linear System 4-D which then reduces to 3-D. SEIR model simulation undertaken to predict the number of Hepatitis B cases. The results of the simulation indicates the number of Hepatitis B cases will increase and then decrease for several months. The result of simulation using the number of case in Makassar also found the basic reproduction number less than one, that means, Makassar city is not an endemic area of Hepatitis B.
Maintenance Personnel Performance Simulation (MAPPS) model
International Nuclear Information System (INIS)
Siegel, A.I.; Bartter, W.D.; Wolf, J.J.; Knee, H.E.; Haas, P.M.
1984-01-01
A stochastic computer model for simulating the actions and behavior of nuclear power plant maintenance personnel is described. The model considers personnel, environmental, and motivational variables to yield predictions of maintenance performance quality and time to perform. The mode has been fully developed and sensitivity tested. Additional evaluation of the model is now taking place
Computer simulations of the random barrier model
DEFF Research Database (Denmark)
Schrøder, Thomas; Dyre, Jeppe
2002-01-01
A brief review of experimental facts regarding ac electronic and ionic conduction in disordered solids is given followed by a discussion of what is perhaps the simplest realistic model, the random barrier model (symmetric hopping model). Results from large scale computer simulations are presented...
Turbine modelling for real time simulators
International Nuclear Information System (INIS)
Oliveira Barroso, A.C. de; Araujo Filho, F. de
1992-01-01
A model for vapor turbines and its peripherals has been developed. All the important variables have been included and emphasis has been given for the computational efficiency to obtain a model able to simulate all the modeled equipment. (A.C.A.S.)
A Continuous-Time Agency Model of Optimal Contracting and Capital Structure
Peter M. DeMarzo; Yuliy Sannikov
2004-01-01
We consider a principal-agent model in which the agent needs to raise capital from the principal to finance a project. Our model is based on DeMarzo and Fishman (2003), except that the agent's cash flows are given by a Brownian motion with drift in continuous time. The difficulty in writing an appropriate financial contract in this setting is that the agent can conceal and divert cash flows for his own consumption rather than pay back the principal. Alternatively, the agent may reduce the mea...
Theory, modeling, and simulation annual report, 1992
Energy Technology Data Exchange (ETDEWEB)
1993-05-01
This report briefly discusses research on the following topics: development of electronic structure methods; modeling molecular processes in clusters; modeling molecular processes in solution; modeling molecular processes in separations chemistry; modeling interfacial molecular processes; modeling molecular processes in the atmosphere; methods for periodic calculations on solids; chemistry and physics of minerals; graphical user interfaces for computational chemistry codes; visualization and analysis of molecular simulations; integrated computational chemistry environment; and benchmark computations.
Modeling and simulation with operator scaling
Cohen, Serge; Meerschaert, Mark M.; Rosiński, Jan
2010-01-01
Self-similar processes are useful in modeling diverse phenomena that exhibit scaling properties. Operator scaling allows a different scale factor in each coordinate. This paper develops practical methods for modeling and simulating stochastic processes with operator scaling. A simulation method for operator stable Levy processes is developed, based on a series representation, along with a Gaussian approximation of the small jumps. Several examples are given to illustrate practical application...
Lower extremity finite element model for crash simulation
Energy Technology Data Exchange (ETDEWEB)
Schauer, D.A.; Perfect, S.A.
1996-03-01
A lower extremity model has been developed to study occupant injury mechanisms of the major bones and ligamentous soft tissues resulting from vehicle collisions. The model is based on anatomically correct digitized bone surfaces of the pelvis, femur, patella and the tibia. Many muscles, tendons and ligaments were incrementally added to the basic bone model. We have simulated two types of occupant loading that occur in a crash environment using a non-linear large deformation finite element code. The modeling approach assumed that the leg was passive during its response to the excitation, that is, no active muscular contraction and therefore no active change in limb stiffness. The approach recognized that the most important contributions of the muscles to the lower extremity response are their ability to define and modify the impedance of the limb. When nonlinear material behavior in a component of the leg model was deemed important to response, a nonlinear constitutive model was incorporated. The accuracy of these assumptions can be verified only through a review of analysis results and careful comparison with test data. As currently defined, the model meets the objective for which it was created. Much work remains to be done, both from modeling and analysis perspectives, before the model can be considered complete. The model implements a modeling philosophy that can accurately capture both kinematic and kinetic response of the lower limb. We have demonstrated that the lower extremity model is a valuable tool for understanding the injury processes and mechanisms. We are now in a position to extend the computer simulation to investigate the clinical fracture patterns observed in actual crashes. Additional experience with this model will enable us to make a statement on what measures are needed to significantly reduce lower extremity injuries in vehicle crashes. 6 refs.
Modeling of magnetic particle suspensions for simulations
Satoh, Akira
2017-01-01
The main objective of the book is to highlight the modeling of magnetic particles with different shapes and magnetic properties, to provide graduate students and young researchers information on the theoretical aspects and actual techniques for the treatment of magnetic particles in particle-based simulations. In simulation, we focus on the Monte Carlo, molecular dynamics, Brownian dynamics, lattice Boltzmann and stochastic rotation dynamics (multi-particle collision dynamics) methods. The latter two simulation methods can simulate both the particle motion and the ambient flow field simultaneously. In general, specialized knowledge can only be obtained in an effective manner under the supervision of an expert. The present book is written to play such a role for readers who wish to develop the skill of modeling magnetic particles and develop a computer simulation program using their own ability. This book is therefore a self-learning book for graduate students and young researchers. Armed with this knowledge,...
Modelling and Simulation of Wave Loads
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
velocity can be approximated by a Gaussian Markov process. Known approximate results for the first-passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on slender members of offshore structures is described. The wave elevation of the sea state is modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...
Modelling and Simulation of Wave Loads
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Thoft-Christensen, Palle
1985-01-01
velocity can be approximated by a Gaussian Markov process. Known approximate results for the first passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...
Modeling and simulation of discrete event systems
Choi, Byoung Kyu
2013-01-01
Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on
Minimum-complexity helicopter simulation math model
Heffley, Robert K.; Mnich, Marc A.
1988-01-01
An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.
Bagley, Justin C; Sandel, Michael; Travis, Joseph; Lozano-Vilano, María de Lourdes; Johnson, Jerald B
2013-10-09
Climatic and sea-level fluctuations throughout the last Pleistocene glacial cycle (~130-0 ka) profoundly influenced present-day distributions and genetic diversity of Northern Hemisphere biotas by forcing range contractions in many species during the glacial advance and allowing expansion following glacial retreat ('expansion-contraction' model). Evidence for such range dynamics and refugia in the unglaciated Gulf-Atlantic Coastal Plain stems largely from terrestrial species, and aquatic species Pleistocene responses remain relatively uninvestigated. Heterandria formosa, a wide-ranging regional endemic, presents an ideal system to test the expansion-contraction model within this biota. By integrating ecological niche modeling and phylogeography, we infer the Pleistocene history of this livebearing fish (Poeciliidae) and test for several predicted distributional and genetic effects of the last glaciation. Paleoclimatic models predicted range contraction to a single southwest Florida peninsula refugium during the Last Glacial Maximum, followed by northward expansion. We inferred spatial-population subdivision into four groups that reflect genetic barriers outside this refuge. Several other features of the genetic data were consistent with predictions derived from an expansion-contraction model: limited intraspecific divergence (e.g. mean mtDNA p-distance = 0.66%); a pattern of mtDNA diversity (mean Hd = 0.934; mean π = 0.007) consistent with rapid, recent population expansion; a lack of mtDNA isolation-by-distance; and clinal variation in allozyme diversity with higher diversity at lower latitudes near the predicted refugium. Statistical tests of mismatch distributions and coalescent simulations of the gene tree lent greater support to a scenario of post-glacial expansion and diversification from a single refugium than to any other model examined (e.g. multiple-refugia scenarios). Congruent results from diverse data indicate H. formosa fits the classic Pleistocene
Computer Based Modelling and Simulation
Indian Academy of Sciences (India)
GENERAL I ARTICLE. Computer Based ... universities, and later did system analysis, ... sonal computers (PC) and low cost software packages and tools. They can serve as useful learning experience through student projects. Models are .... Let us consider a numerical example: to calculate the velocity of a trainer aircraft ...
Thermal unit availability modeling in a regional simulation model
International Nuclear Information System (INIS)
Yamayee, Z.A.; Port, J.; Robinett, W.
1983-01-01
The System Analysis Model (SAM) developed under the umbrella of PNUCC's System Analysis Committee is capable of simulating the operation of a given load/resource scenario. This model employs a Monte-Carlo simulation to incorporate uncertainties. Among uncertainties modeled is thermal unit availability both for energy simulation (seasonal) and capacity simulations (hourly). This paper presents the availability modeling in the capacity and energy models. The use of regional and national data in deriving the two availability models, the interaction between the two and modifications made to the capacity model in order to reflect regional practices is presented. A sample problem is presented to show the modification process. Results for modeling a nuclear unit using NERC-GADS is presented
Plasma disruption modeling and simulation
International Nuclear Information System (INIS)
Hassanein, A.
1994-01-01
Disruptions in tokamak reactors are considered a limiting factor to successful operation and reliable design. The behavior of plasma-facing components during a disruption is critical to the overall integrity of the reactor. Erosion of plasma facing-material (PFM) surfaces due to thermal energy dump during the disruption can severely limit the lifetime of these components and thus diminish the economic feasibility of the reactor. A comprehensive understanding of the interplay of various physical processes during a disruption is essential for determining component lifetime and potentially improving the performance of such components. There are three principal stages in modeling the behavior of PFM during a disruption. Initially, the incident plasma particles will deposit their energy directly on the PFM surface, heating it to a very high temperature where ablation occurs. Models for plasma-material interactions have been developed and used to predict material thermal evolution during the disruption. Within a few microseconds after the start of the disruption, enough material is vaporized to intercept most of the incoming plasma particles. Models for plasma-vapor interactions are necessary to predict vapor cloud expansion and hydrodynamics. Continuous heating of the vapor cloud above the material surface by the incident plasma particles will excite, ionize, and cause vapor atoms to emit thermal radiation. Accurate models for radiation transport in the vapor are essential for calculating the net radiated flux to the material surface which determines the final erosion thickness and consequently component lifetime. A comprehensive model that takes into account various stages of plasma-material interaction has been developed and used to predict erosion rates during reactor disruption, as well during induced disruption in laboratory experiments
Legal analysis of contract models in a common Nordic electricity retail market
Energy Technology Data Exchange (ETDEWEB)
Bjoerneby, Henrik; Alvik, Ivar
2012-07-01
The main objective of this study is to consider the legal advantages and disadvantages with different contract models given NordREG's choice of a supplier centric model with mandatory combined billing in a future Nordic end-user market for electricity.At the outset, there are today three relevant categories of agreements in place between customers, suppliers and DSOs in the Nordic electricity retail markets: the electricity supply agreements between customers and suppliers, the grid use agreements between customers and DSOs, and the grid connection agreements usually entered into between customers and DSOs. We have assumed that issues governed by the grid connection agreements will still be entered into by DSOs under a supplier centric model. Two general contract models have on this basis been considered as possible approaches to regulation of electricity supply and grid use terms under a future supplier centric model. The subcontractor model is considered in more detail in chapter 7 of this report. Under this model, the customer enters into a contract with the supplier governing both electricity supply and grid use. The supplier then enters into a separate contract with the DSO for grid use, making the DSO a subcontractor for this service. The Danish wholesale model which will be implemented from 1 October 2014 represents one example of a subcontractor model.The main advantage of the subcontractor model is that it will entitle the customer to envisage the electricity supply, including grid services, as a single service delivered by the supplier. On the other hand, the sub-contractor model will extend the responsibilities of suppliers towards customers. We discuss the advantages and disadvantages of this model further in section 7.2. The power of attorney model is considered in more detail in chapter 8 of this report. Under this model, the customer and the DSO will still formally be contract parties to the grid use agreement, but the supplier will act with a
Modelling and simulating fire tube boiler performance
DEFF Research Database (Denmark)
Sørensen, K.; Condra, T.; Houbak, Niels
2003-01-01
A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2......: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......Lab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results experiments has been carried out on a full scale boiler plant....
A virtual laboratory notebook for simulation models.
Winfield, A J
1998-01-01
In this paper we describe how we have adopted the laboratory notebook as a metaphor for interacting with computer simulation models. This 'virtual' notebook stores the simulation output and meta-data (which is used to record the scientist's interactions with the simulation). The meta-data stored consists of annotations (equivalent to marginal notes in a laboratory notebook), a history tree and a log of user interactions. The history tree structure records when in 'simulation' time, and from what starting point in the tree changes are made to the parameters by the user. Typically these changes define a new run of the simulation model (which is represented as a new branch of the history tree). The tree shows the structure of the changes made to the simulation and the log is required to keep the order in which the changes occurred. Together they form a record which you would normally find in a laboratory notebook. The history tree is plotted in simulation parameter space. This shows the scientist's interactions with the simulation visually and allows direct manipulation of the parameter information presented, which in turn is used to control directly the state of the simulation. The interactions with the system are graphical and usually involve directly selecting or dragging data markers and other graphical control devices around in parameter space. If the graphical manipulators do not provide precise enough control then textual manipulation is still available which allows numerical values to be entered by hand. The Virtual Laboratory Notebook, by providing interesting interactions with the visual view of the history tree, provides a mechanism for giving the user complex and novel ways of interacting with biological computer simulation models.
Bridging experiments, models and simulations
DEFF Research Database (Denmark)
Carusi, Annamaria; Burrage, Kevin; Rodríguez, Blanca
2012-01-01
Computational models in physiology often integrate functional and structural information from a large range of spatiotemporal scales from the ionic to the whole organ level. Their sophistication raises both expectations and skepticism concerning how computational methods can improve our...... understanding of living organisms and also how they can reduce, replace, and refine animal experiments. A fundamental requirement to fulfill these expectations and achieve the full potential of computational physiology is a clear understanding of what models represent and how they can be validated. The present...... that contributes to defining the specific aspects of cardiac electrophysiology the MSE system targets, rather than being only an external test, and that this is driven by advances in experimental and computational methods and the combination of both....
MODELLING, SIMULATING AND OPTIMIZING BOILERS
DEFF Research Database (Denmark)
Sørensen, K.; Condra, T.; Houbak, Niels
2003-01-01
, and the total stress level (i.e. stresses introduced due to internal pressure plus stresses introduced due to temperature gradients) must always be kept below the allowable stress level. In this way, the increased water-/steam space that should allow for better dynamic performance, in the end causes limited...... freedom with respect to dynamic operation of the plant. By means of an objective function including as well the price of the plant as a quantification of the value of dynamic operation of the plant an optimization is carried out. The dynamic model of the boiler plant is applied to define parts...
Advanced training simulator models. Implementation and validation
International Nuclear Information System (INIS)
Borkowsky, Jeffrey; Judd, Jerry; Belblidia, Lotfi; O'farrell, David; Andersen, Peter
2008-01-01
Modern training simulators are required to replicate plant data for both thermal-hydraulic and neutronic response. Replication is required such that reactivity manipulation on the simulator properly trains the operator for reactivity manipulation at the plant. This paper discusses advanced models which perform this function in real-time using the coupled code system THOR/S3R. This code system models the all fluids systems in detail using an advanced, two-phase thermal-hydraulic a model. The nuclear core is modeled using an advanced, three-dimensional nodal method and also by using cycle-specific nuclear data. These models are configured to run interactively from a graphical instructor station or handware operation panels. The simulator models are theoretically rigorous and are expected to replicate the physics of the plant. However, to verify replication, the models must be independently assessed. Plant data is the preferred validation method, but plant data is often not available for many important training scenarios. In the absence of data, validation may be obtained by slower-than-real-time transient analysis. This analysis can be performed by coupling a safety analysis code and a core design code. Such a coupling exists between the codes RELAP5 and SIMULATE-3K (S3K). RELAP5/S3K is used to validate the real-time model for several postulated plant events. (author)
Regularization modeling for large-eddy simulation
Geurts, Bernardus J.; Holm, D.D.
2003-01-01
A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of
Analytical system dynamics modeling and simulation
Fabien, Brian C
2008-01-01
This book offering a modeling technique based on Lagrange's energy method includes 125 worked examples. Using this technique enables one to model and simulate systems as diverse as a six-link, closed-loop mechanism or a transistor power amplifier.
Hybrid simulation models of production networks
Kouikoglou, Vassilis S
2001-01-01
This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.
Dynamic modeling and simulation of wind turbines
International Nuclear Information System (INIS)
Ghafari Seadat, M.H.; Kheradmand Keysami, M.; Lari, H.R.
2002-01-01
Using wind energy for generating electricity in wind turbines is a good way for using renewable energies. It can also help to protect the environment. The main objective of this paper is dynamic modeling by energy method and simulation of a wind turbine aided by computer. In this paper, the equations of motion are extracted for simulating the system of wind turbine and then the behavior of the system become obvious by solving the equations. The turbine is considered with three blade rotor in wind direction, induced generator that is connected to the network and constant revolution for simulation of wind turbine. Every part of the wind turbine should be simulated for simulation of wind turbine. The main parts are blades, gearbox, shafts and generator
Regional model simulations of New Zealand climate
Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.
1998-03-01
Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.
Landscape Modelling and Simulation Using Spatial Data
Directory of Open Access Journals (Sweden)
Amjed Naser Mohsin AL-Hameedawi
2017-08-01
Full Text Available In this paper a procedure was performed for engendering spatial model of landscape acclimated to reality simulation. This procedure based on combining spatial data and field measurements with computer graphics reproduced using Blender software. Thereafter that we are possible to form a 3D simulation based on VIS ALL packages. The objective was to make a model utilising GIS, including inputs to the feature attribute data. The objective of these efforts concentrated on coordinating a tolerable spatial prototype, circumscribing facilitation scheme and outlining the intended framework. Thus; the eventual result was utilized in simulation form. The performed procedure contains not only data gathering, fieldwork and paradigm providing, but extended to supply a new method necessary to provide the respective 3D simulation mapping production, which authorises the decision makers as well as investors to achieve permanent acceptance an independent navigation system for Geoscience applications.
Quantitative interface models for simulating microstructure evolution
International Nuclear Information System (INIS)
Zhu, J.Z.; Wang, T.; Zhou, S.H.; Liu, Z.K.; Chen, L.Q.
2004-01-01
To quantitatively simulate microstructural evolution in real systems, we investigated three different interface models: a sharp-interface model implemented by the software DICTRA and two diffuse-interface models which use either physical order parameters or artificial order parameters. A particular example is considered, the diffusion-controlled growth of a γ ' precipitate in a supersaturated γ matrix in Ni-Al binary alloys. All three models use the thermodynamic and kinetic parameters from the same databases. The temporal evolution profiles of composition from different models are shown to agree with each other. The focus is on examining the advantages and disadvantages of each model as applied to microstructure evolution in alloys
A queuing model for road traffic simulation
International Nuclear Information System (INIS)
Guerrouahane, N.; Aissani, D.; Bouallouche-Medjkoune, L.; Farhi, N.
2015-01-01
We present in this article a stochastic queuing model for the raod traffic. The model is based on the M/G/c/c state dependent queuing model, and is inspired from the deterministic Godunov scheme for the road traffic simulation. We first propose a variant of M/G/c/c state dependent model that works with density-flow fundamental diagrams rather than density-speed relationships. We then extend this model in order to consider upstream traffic demand as well as downstream traffic supply. Finally, we show how to model a whole raod by concatenating raod sections as in the deterministic Godunov scheme
Clock error models for simulation and estimation
International Nuclear Information System (INIS)
Meditch, J.S.
1981-10-01
Mathematical models for the simulation and estimation of errors in precision oscillators used as time references in satellite navigation systems are developed. The results, based on all currently known oscillator error sources, are directly implementable on a digital computer. The simulation formulation is sufficiently flexible to allow for the inclusion or exclusion of individual error sources as desired. The estimation algorithms, following from Kalman filter theory, provide directly for the error analysis of clock errors in both filtering and prediction
Modeling and simulation goals and accomplishments
International Nuclear Information System (INIS)
Turinsky, P.
2013-01-01
The CASL (Consortium for Advanced Simulation of Light Water Reactors) mission is to develop and apply the Virtual Reactor simulator (VERA) to optimise nuclear power in terms of capital and operating costs, of nuclear waste production and of nuclear safety. An efficient and reliable virtual reactor simulator relies on 3-dimensional calculations, accurate physics models and code coupling. Advances in computer hardware, along with comparable advances in numerical solvers make the VERA project achievable. This series of slides details the VERA project and presents the specificities and performance of the codes involved in the project and ends by listing the computing needs
Simulation Modeling of Software Development Processes
Calavaro, G. F.; Basili, V. R.; Iazeolla, G.
1996-01-01
A simulation modeling approach is proposed for the prediction of software process productivity indices, such as cost and time-to-market, and the sensitivity analysis of such indices to changes in the organization parameters and user requirements. The approach uses a timed Petri Net and Object Oriented top-down model specification. Results demonstrate the model representativeness, and its usefulness in verifying process conformance to expectations, and in performing continuous process improvement and optimization.
Validation of the simulator neutronics model
International Nuclear Information System (INIS)
Gregory, M.V.
1984-01-01
The neutronics model in the SRP reactor training simulator computes the variation with time of the neutron population in the reactor core. The power output of a reactor is directly proportional to the neutron population, thus in a very real sense the neutronics model determines the response of the simulator. The geometrical complexity of the reactor control system in SRP reactors requires the neutronics model to provide a detailed, 3D representation of the reactor core. Existing simulator technology does not allow such a detailed representation to run in real-time in a minicomputer environment, thus an entirely different approach to the problem was required. A prompt jump method has been developed in answer to this need
Analyzing Strategic Business Rules through Simulation Modeling
Orta, Elena; Ruiz, Mercedes; Toro, Miguel
Service Oriented Architecture (SOA) holds promise for business agility since it allows business process to change to meet new customer demands or market needs without causing a cascade effect of changes in the underlying IT systems. Business rules are the instrument chosen to help business and IT to collaborate. In this paper, we propose the utilization of simulation models to model and simulate strategic business rules that are then disaggregated at different levels of an SOA architecture. Our proposal is aimed to help find a good configuration for strategic business objectives and IT parameters. The paper includes a case study where a simulation model is built to help business decision-making in a context where finding a good configuration for different business parameters and performance is too complex to analyze by trial and error.
Universal fit to p-p elastic diffraction scattering from the Lorentz contracted geometrical model
International Nuclear Information System (INIS)
Hansen, P.H.; Krisch, A.D.
1976-01-01
The prediction of the Lorentz contracted geometical model for proton-proton elastic scattering at small angles is examined. The model assumes that when two high energy particles collide, each behaves as a geometrical object which has a Gaussian density and is spherically symmetric except for the Lorentz contraction in the incident direction. It is predicted that dsigma/dt should be independent of energy when plotted against the variable β 2 P 2 sub(perpendicular) sigmasub(TOT)(s)/38.3. Thus the energy dependence of the diffraction peak slope (b in an esup(-b mod(t))plot) is given by b(s)=A 2 β 2 sigmasub(TOT)(s)/38.3 where β is the proton's c.m. velocity and A is its radius. Recently measured values of sigmasub(TOT)(s) were used and an excellent fit obtained to the elastic slope in both t regions [-t 2 and 0.1 2 ] at all energies from s=6 to 4000(GeV/c) 2 . (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Ibrahim, Khaled Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Epifanovsky, Evgeny [Q-Chem, Inc., Pleasanton, CA (United States); Williams, Samuel W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Krylov, Anna I. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Chemistry
2016-07-26
Coupled-cluster methods provide highly accurate models of molecular structure by explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix-matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts to extend the Libtensor framework to work in the distributed memory environment in a scalable and energy efficient manner. We achieve up to 240 speedup compared with the best optimized shared memory implementation. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures, (Cray XC30&XC40, BlueGene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance. Nevertheless, we preserve a uni ed interface to both programming models to maintain the productivity of computational quantum chemists.
New exploration on TMSR: modelling and simulation
Energy Technology Data Exchange (ETDEWEB)
Si, S.; Chen, Q.; Bei, H.; Zhao, J., E-mail: ssy@snerdi.com.cn [Shanghai Nuclear Engineering Research & Design Inst., Shanghai (China)
2015-07-01
A tightly coupled multi-physics model for MSR (Molten Salt Reactor) system involving the reactor core and the rest of the primary loop has been developed and employed in an in-house developed computer code TANG-MSR. In this paper, the computer code is used to simulate the behavior of steady state operation and transient for our redesigned TMSR. The presented simulation results demonstrate that the models employed in TANG-MSR can capture major physics phenomena in MSR and the redesigned TMSR has excellent performance of safety and sustainability. (author)
Nuclear reactor core modelling in multifunctional simulators
International Nuclear Information System (INIS)
Puska, E.K.
1999-01-01
The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been
Nuclear reactor core modelling in multifunctional simulators
Energy Technology Data Exchange (ETDEWEB)
Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)
1999-06-01
The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been
Good Models Gone Bad: Quantifying and Predicting Parameter-Induced Climate Model Simulation Failures
Lucas, D. D.; Klein, R.; Tannahill, J.; Brandon, S.; Covey, C. C.; Domyancic, D.; Ivanova, D. P.
2012-12-01
Simulations using IPCC-class climate models are subject to fail or crash for a variety of reasons. Statistical analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation failures of the Parallel Ocean Program (POP2). About 8.5% of our POP2 runs failed for numerical reasons at certain combinations of parameter values. We apply support vector machine (SVM) classification from the fields of pattern recognition and machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. The SVM classifiers readily predict POP2 failures in an independent validation ensemble, and are subsequently used to determine the causes of the failures via a global sensitivity analysis. Four parameters related to ocean mixing and viscosity are identified as the major sources of POP2 failures. Our method can be used to improve the robustness of complex scientific models to parameter perturbations and to better steer UQ ensembles. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the Uncertainty Quantification Strategic Initiative Laboratory Directed Research and Development Project at LLNL under project tracking code 10-SI-013 (UCRL LLNL-ABS-569112).
Tuluc, Petronel; Kern, Georg; Obermair, Gerald J; Flucher, Bernhard E
2007-06-26
L-type Ca(2+) currents determine the shape of cardiac action potentials (AP) and the magnitude of the myoplasmic Ca(2+) signal, which regulates the contraction force. The auxiliary Ca(2+) channel subunits alpha(2)delta-1 and beta(2) are important regulators of membrane expression and current properties of the cardiac Ca(2+) channel (Ca(V)1.2). However, their role in cardiac excitation-contraction coupling is still elusive. Here we addressed this question by combining siRNA knockdown of the alpha(2)delta-1 subunit in a muscle expression system with simulation of APs and Ca(2+) transients by using a quantitative computer model of ventricular myocytes. Reconstitution of dysgenic muscle cells with Ca(V)1.2 (GFP-alpha(1C)) recapitulates key properties of cardiac excitation-contraction coupling. Concomitant depletion of the alpha(2)delta-1 subunit did not perturb membrane expression or targeting of the pore-forming GFP-alpha(1C) subunit into junctions between the outer membrane and the sarcoplasmic reticulum. However, alpha(2)delta-1 depletion shifted the voltage dependence of Ca(2+) current activation by 9 mV to more positive potentials, and it slowed down activation and inactivation kinetics approximately 2-fold. Computer modeling revealed that the altered voltage dependence and current kinetics exert opposing effects on the function of ventricular myocytes that in total cause a 60% prolongation of the AP and a 2-fold increase of the myoplasmic Ca(2+) concentration during each contraction. Thus, the Ca(2+) channel alpha(2)delta-1 subunit is not essential for normal Ca(2+) channel targeting in muscle but is a key determinant of normal excitation and contraction of cardiac muscle cells, and a reduction of alpha(2)delta-1 function is predicted to severely perturb normal heart function.
Kanban simulation model for production process optimization
Directory of Open Access Journals (Sweden)
Golchev Riste
2015-01-01
Full Text Available A long time has passed since the KANBAN system has been established as an efficient method for coping with the excessive inventory. Still, the possibilities for its improvement through its integration with other different approaches should be investigated further. The basic research challenge of this paper is to present benefits of KANBAN implementation supported with Discrete Event Simulation (DES. In that direction, at the beginning, the basics of KANBAN system are presented with emphasis on the information and material flow, together with a methodology for implementation of KANBAN system. Certain analysis on combining the simulation with this methodology is presented. The paper is concluded with a practical example which shows that through understanding the philosophy of the implementation methodology of KANBAN system and the simulation methodology, a simulation model can be created which can serve as a basis for a variety of experiments that can be conducted within a short period of time, resulting with production process optimization.
Vermont Yankee simulator BOP model upgrade
International Nuclear Information System (INIS)
Alejandro, R.; Udbinac, M.J.
2006-01-01
The Vermont Yankee simulator has undergone significant changes in the 20 years since the original order was placed. After the move from the original Unix to MS Windows environment, and upgrade to the latest version of SimPort, now called MASTER, the platform was set for an overhaul and replacement of major plant system models. Over a period of a few months, the VY simulator team, in partnership with WSC engineers, replaced outdated legacy models of the main steam, condenser, condensate, circulating water, feedwater and feedwater heaters, and main turbine and auxiliaries. The timing was ideal, as the plant was undergoing a power up-rate, so the opportunity was taken to replace the legacy models with industry-leading, true on-line object oriented graphical models. Due to the efficiency of design and ease of use of the MASTER tools, VY staff performed the majority of the modeling work themselves with great success, with only occasional assistance from WSC, in a relatively short time-period, despite having to maintain all of their 'regular' simulator maintenance responsibilities. This paper will provide a more detailed view of the VY simulator, including how it is used and how it has benefited from the enhancements and upgrades implemented during the project. (author)
Pennings, J.M.E.
2004-01-01
Channel contract relations are dynamic. In this paper, it is argued that one of the drivers for this dynamism is a firm's strive for shareholder value. Using channel contract relationships as market-based assets, firms are managing a portfolio of spot and forward contract relationships. By
Durčáková, Klára
2010-01-01
Resumé - Bank Contracts Bank Contracts are an integral part of our everyday lives. Citizen and bussines entities used bank contracts very often. Despite this fact we can't find legal definition in the Czech law. Banking contracts understand contracts that are signed by banks in their business activities and obligations under these contracts arise. While the banking contracts have been widely used, in Czech law there is not too much literature and judgements abou this issue. Lack of legislatio...
Simulation modeling and analysis in safety. II
International Nuclear Information System (INIS)
Ayoub, M.A.
1981-01-01
The paper introduces and illustrates simulation modeling as a viable approach for dealing with complex issues and decisions in safety and health. The author details two studies: evaluation of employee exposure to airborne radioactive materials and effectiveness of the safety organization. The first study seeks to define a policy to manage a facility used in testing employees for radiation contamination. An acceptable policy is one that would permit the testing of all employees as defined under regulatory requirements, while not exceeding available resources. The second study evaluates the relationship between safety performance and the characteristics of the organization, its management, its policy, and communication patterns among various functions and levels. Both studies use models where decisions are reached based on the prevailing conditions and occurrence of key events within the simulation environment. Finally, several problem areas suitable for simulation studies are highlighted. (Auth.)
Modeling salmonella Dublin into the dairy herd simulation model Simherd
DEFF Research Database (Denmark)
Kudahl, Anne Braad
2010-01-01
Infection with Salmonella Dublin in the dairy herd and effects of the infection and relevant control measures are currently being modeled into the dairy herd simulation model called Simherd. The aim is to compare the effects of different control strategies against Salmonella Dublin on both within...... of the simulations will therefore be used for decision support in the national surveillance and eradication program against Salmonella Dublin. Basic structures of the model are programmed and will be presented at the workshop. The model is in a phase of face-validation by a group of Salmonella......-herd- prevalence and economy by simulations. The project Dublin on both within-herd- prevalence and economy by simulations. The project is a part of a larger national project "Salmonella 2007 - 2011" with the main objective to reduce the prevalence of Salmonella Dublin in Danish Dairy herds. Results...
Spot markets vs. long-term contracts - modelling tools for regional electricity generating utilities
International Nuclear Information System (INIS)
Grohnheit, P.E.
1999-01-01
A properly organised market for electricity requires that some information will be available for all market participants. Also a range of generally available modelling tools are necessary. This paper describes a set of simple models based on published data for analyses of the long-term revenues of regional utilities with combined heat and power generation (CHP), who will operate a competitive international electricity market and a local heat market. The future revenues from trade on the spot market is analysed using a load curve model, in which marginal costs are calculated on the basis of short-term costs of the available units and chronological hourly variations in the demands for electricity and heat. Assumptions on prices, marginal costs and electricity generation by the different types of generating units are studied for selected types of local electricity generators. The long-term revenue requirements to be met by long-term contracts are analysed using a traditional techno-economic optimisation model focusing on technology choice and competition among technologies over 20.30 years. A possible conclusion from this discussion is that it is important for the economic and environmental efficiency of the electricity market that local or regional generators of CHP, who are able to react on price signals, do not conclude long-term contracts that include fixed time-of-day tariff for sale of electricity. Optimisation results for a CHP region (represented by the structure of the Danish electricity and CHP market in 1995) also indicates that a market for CO 2 tradable permits is unlikely to attract major non-fossil fuel technologies for electricity generation, e.g. wind power. (au)
Improved Kinetic Models for High-Speed Combustion Simulation
National Research Council Canada - National Science Library
Montgomery, C. J; Tang, Q; Sarofim, A. F; Bockelie, M. J; Gritton, J. K; Bozzelli, J. W; Gouldin, F. C; Fisher, E. M; Chakravarthy, S
2008-01-01
Report developed under an STTR contract. The overall goal of this STTR project has been to improve the realism of chemical kinetics in computational fluid dynamics modeling of hydrocarbon-fueled scramjet combustors...
A universal simulator for ecological models
DEFF Research Database (Denmark)
Holst, Niels
2013-01-01
Software design is an often neglected issue in ecological models, even though bad software design often becomes a hindrance for re-using, sharing and even grasping an ecological model. In this paper, the methodology of agile software design was applied to the domain of ecological models. Thus...... the principles for a universal design of ecological models were arrived at. To exemplify this design, the open-source software Universal Simulator was constructed using C++ and XML and is provided as a resource for inspiration....
Biological transportation networks: Modeling and simulation
Albi, Giacomo
2015-09-15
We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.
Reproducibility in Computational Neuroscience Models and Simulations
McDougal, Robert A.; Bulanova, Anna S.; Lytton, William W.
2016-01-01
Objective Like all scientific research, computational neuroscience research must be reproducible. Big data science, including simulation research, cannot depend exclusively on journal articles as the method to provide the sharing and transparency required for reproducibility. Methods Ensuring model reproducibility requires the use of multiple standard software practices and tools, including version control, strong commenting and documentation, and code modularity. Results Building on these standard practices, model sharing sites and tools have been developed that fit into several categories: 1. standardized neural simulators, 2. shared computational resources, 3. declarative model descriptors, ontologies and standardized annotations; 4. model sharing repositories and sharing standards. Conclusion A number of complementary innovations have been proposed to enhance sharing, transparency and reproducibility. The individual user can be encouraged to make use of version control, commenting, documentation and modularity in development of models. The community can help by requiring model sharing as a condition of publication and funding. Significance Model management will become increasingly important as multiscale models become larger, more detailed and correspondingly more difficult to manage by any single investigator or single laboratory. Additional big data management complexity will come as the models become more useful in interpreting experiments, thus increasing the need to ensure clear alignment between modeling data, both parameters and results, and experiment. PMID:27046845
A SIMULATION MODEL OF THE GAS COMPLEX
Directory of Open Access Journals (Sweden)
Sokolova G. E.
2016-06-01
Full Text Available The article considers the dynamics of gas production in Russia, the structure of sales in the different market segments, as well as comparative dynamics of selling prices on these segments. Problems of approach to the creation of the gas complex using a simulation model, allowing to estimate efficiency of the project and determine the stability region of the obtained solutions. In the presented model takes into account the unit repayment of the loan, allowing with the first year of simulation to determine the possibility of repayment of the loan. The model object is a group of gas fields, which is determined by the minimum flow rate above which the project is cost-effective. In determining the minimum source flow rate for the norm of discount is taken as a generalized weighted average percentage on debt and equity taking into account risk premiums. He also serves as the lower barrier to internal rate of return below which the project is rejected as ineffective. Analysis of the dynamics and methods of expert evaluation allow to determine the intervals of variation of the simulated parameters, such as the price of gas and the exit gas complex at projected capacity. Calculated using the Monte Carlo method, for each random realization of the model simulated values of parameters allow to obtain a set of optimal for each realization of values minimum yield of wells, and also allows to determine the stability region of the solution.
Object Oriented Modelling and Dynamical Simulation
DEFF Research Database (Denmark)
Wagner, Falko Jens; Poulsen, Mikael Zebbelin
1998-01-01
This report with appendix describes the work done in master project at DTU.The goal of the project was to develop a concept for simulation of dynamical systems based on object oriented methods.The result was a library of C++-classes, for use when both building componentbased models and when...
Advanced feeder control using fast simulation models
Verheijen, O.S.; Op den Camp, O.M.G.C.; Beerkens, R.G.C.; Backx, A.C.P.M.; Huisman, L.; Drummond, C.H.
2005-01-01
For the automatic control of glass quality in glass production, the relation between process variable and product or glass quality and process conditions/process input parameters must be known in detail. So far, detailed 3-D glass melting simulation models were used to predict the effect of process
Modeling and Simulating Virtual Anatomical Humans
Madehkhaksar, Forough; Luo, Zhiping; Pronost, Nicolas; Egges, Arjan
2014-01-01
This chapter presents human musculoskeletal modeling and simulation as a challenging field that lies between biomechanics and computer animation. One of the main goals of computer animation research is to develop algorithms and systems that produce plausible motion. On the other hand, the main
Agent Based Modelling for Social Simulation
Smit, S.K.; Ubink, E.M.; Vecht, B. van der; Langley, D.J.
2013-01-01
This document is the result of an exploratory project looking into the status of, and opportunities for Agent Based Modelling (ABM) at TNO. The project focussed on ABM applications containing social interactions and human factors, which we termed ABM for social simulation (ABM4SS). During the course
Thermohydraulic modeling and simulation of breeder reactors
International Nuclear Information System (INIS)
Agrawal, A.K.; Khatib-Rahbar, M.; Curtis, R.T.; Hetrick, D.L.; Girijashankar, P.V.
1982-01-01
This paper deals with the modeling and simulation of system-wide transients in LMFBRs. Unprotected events (i.e., the presumption of failure of the plant protection system) leading to core-melt are not considered in this paper. The existing computational capabilities in the area of protected transients in the US are noted. Various physical and numerical approximations that are made in these codes are discussed. Finally, the future direction in the area of model verification and improvements is discussed
Directory of Open Access Journals (Sweden)
Alaa Al-Ibadi
2017-10-01
Full Text Available To clarify the advantages of using soft robots in all aspects of life, the effective behaviour of the pneumatic muscle actuator (PMA must be known. In this work, the performances of the PMA are explained and modelled with three formulas. The first formula describes the pulling force of the actuator based on the structure parameters; furthermore, the formula presented is the generalised contraction force for wholly-pneumatic muscle actuators. The second important model is the length formula, which is modified to our previous work to fit different actuator structures. Based on these two models, the stiffness of the actuator is formulated to illustrate its variability at different air pressure amounts. In addition, these formulas will make the selection of proper actuators for any robot arm structure easier using the knowledge gained from their performance. On the other hand, the desired behaviour of this type of actuator will be predefined and controlled.
Modeling Supermassive Black Holes in Cosmological Simulations
Tremmel, Michael
My thesis work has focused on improving the implementation of supermassive black hole (SMBH) physics in cosmological hydrodynamic simulations. SMBHs are ubiquitous in mas- sive galaxies, as well as bulge-less galaxies and dwarfs, and are thought to be a critical component to massive galaxy evolution. Still, much is unknown about how SMBHs form, grow, and affect their host galaxies. Cosmological simulations are an invaluable tool for un- derstanding the formation of galaxies, self-consistently tracking their evolution with realistic merger and gas accretion histories. SMBHs are often modeled in these simulations (generally as a necessity to produce realistic massive galaxies), but their implementations are commonly simplified in ways that can limit what can be learned. Current and future observations are opening new windows into the lifecycle of SMBHs and their host galaxies, but require more detailed, physically motivated simulations. Within the novel framework I have developed, SMBHs 1) are seeded at early times without a priori assumptions of galaxy occupation, 2) grow in a way that accounts for the angular momentum of gas, and 3) experience realistic orbital evolution. I show how this model, properly tuned with a novel parameter optimiza- tion technique, results in realistic galaxies and SMBHs. Utilizing the unique ability of these simulations to capture the dynamical evolution of SMBHs, I present the first self-consistent prediction for the formation timescales of close SMBH pairs, precursors to SMBH binaries and merger events potentially detected by future gravitational wave experiments.
Call, Jarrod A; Lowe, Dawn A
2016-01-01
In order to investigate the molecular and cellular mechanisms of muscle regeneration an experimental injury model is required. Advantages of eccentric contraction-induced injury are that it is a controllable, reproducible, and physiologically relevant model to cause muscle injury, with injury being defined as a loss of force generating capacity. While eccentric contractions can be incorporated into conscious animal study designs such as downhill treadmill running, electrophysiological approaches to elicit eccentric contractions and examine muscle contractility, for example before and after the injurious eccentric contractions, allows researchers to circumvent common issues in determining muscle function in a conscious animal (e.g., unwillingness to participate). Herein, we describe in vitro and in vivo methods that are reliable, repeatable, and truly maximal because the muscle contractions are evoked in a controlled, quantifiable manner independent of subject motivation. Both methods can be used to initiate eccentric contraction-induced injury and are suitable for monitoring functional muscle regeneration hours to days to weeks post-injury.
Advances in NLTE Modeling for Integrated Simulations
Energy Technology Data Exchange (ETDEWEB)
Scott, H A; Hansen, S B
2009-07-08
The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, {Delta}n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.
Mesoscopic modelling and simulation of soft matter.
Schiller, Ulf D; Krüger, Timm; Henrich, Oliver
2017-12-20
The deformability of soft condensed matter often requires modelling of hydrodynamical aspects to gain quantitative understanding. This, however, requires specialised methods that can resolve the multiscale nature of soft matter systems. We review a number of the most popular simulation methods that have emerged, such as Langevin dynamics, dissipative particle dynamics, multi-particle collision dynamics, sometimes also referred to as stochastic rotation dynamics, and the lattice-Boltzmann method. We conclude this review with a short glance at current compute architectures for high-performance computing and community codes for soft matter simulation.
Aquatic Contaminant and Mercury Simulation Modules Developed for Hydrologic and Hydraulic Models
2016-07-01
Technical Director, and William Jones was Program Manager . The report was prepared by Dr. Zhonglong Zhang of LimnoTech, under contract to the U.S. Army...Corps of Engineers ERDC/EL TR-16-8 xi WARMF Watershed Analysis Risk Management Framework WASP Water Quality Analysis Simulation Program ERDC/EL...water qaulity become indispensable tools used by environ- mental analysts. Over the last three decades, a variety of H&H models have been developed for
Numerical model simulation of atmospheric coolant plumes
International Nuclear Information System (INIS)
Gaillard, P.
1980-01-01
The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr
Modeling, simulation and optimization of bipedal walking
Berns, Karsten
2013-01-01
The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired con...
Multiphase reacting flows modelling and simulation
Marchisio, Daniele L
2007-01-01
The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...
Advancing Material Models for Automotive Forming Simulations
International Nuclear Information System (INIS)
Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E.
2005-01-01
Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior
Modelling and simulation of thermal power plants
Energy Technology Data Exchange (ETDEWEB)
Eborn, J.
1998-02-01
Mathematical modelling and simulation are important tools when dealing with engineering systems that today are becoming increasingly more complex. Integrated production and recycling of materials are trends that give rise to heterogenous systems, which are difficult to handle within one area of expertise. Model libraries are an excellent way to package engineering knowledge of systems and units to be reused by those who are not experts in modelling. Many commercial packages provide good model libraries, but they are usually domain-specific and closed. Heterogenous, multi-domain systems requires open model libraries written in general purpose modelling languages. This thesis describes a model database for thermal power plants written in the object-oriented modelling language OMOLA. The models are based on first principles. Subunits describe volumes with pressure and enthalpy dynamics and flows of heat or different media. The subunits are used to build basic units such as pumps, valves and heat exchangers which can be used to build system models. Several applications are described; a heat recovery steam generator, equipment for juice blending, steam generation in a sulphuric acid plant and a condensing steam plate heat exchanger. Model libraries for industrial use must be validated against measured data. The thesis describes how parameter estimation methods can be used for model validation. Results from a case-study on parameter optimization of a non-linear drum boiler model show how the technique can be used 32 refs, 21 figs
Validity of microgravity simulation models on earth
DEFF Research Database (Denmark)
Regnard, J; Heer, M; Drummer, C
2001-01-01
Many studies have used water immersion and head-down bed rest as experimental models to simulate responses to microgravity. However, some data collected during space missions are at variance or in contrast with observations collected from experimental models. These discrepancies could reflect...... incomplete knowledge of the characteristics inherent to each model. During water immersion, the hydrostatic pressure lowers the peripheral vascular capacity and causes increased thoracic blood volume and high vascular perfusion. In turn, these changes lead to high urinary flow, low vasomotor tone, and a high...
Mathematical models and numerical simulation in electromagnetism
Bermúdez, Alfredo; Salgado, Pilar
2014-01-01
The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.
Modeling and simulation of economic processes
Directory of Open Access Journals (Sweden)
Bogdan Brumar
2010-12-01
Full Text Available In general, any activity requires a longer action often characterized by a degree of uncertainty, insecurity, in terms of size of the objective pursued. Because of the complexity of real economic systems, the stochastic dependencies between different variables and parameters considered, not all systems can be adequately represented by a model that can be solved by analytical methods and covering all issues for management decision analysis-economic horizon real. Often in such cases, it is considered that the simulation technique is the only alternative available. Using simulation techniques to study real-world systems often requires a laborious work. Making a simulation experiment is a process that takes place in several stages.
Simulation as a surgical teaching model.
Ruiz-Gómez, José Luis; Martín-Parra, José Ignacio; González-Noriega, Mónica; Redondo-Figuero, Carlos Godofredo; Manuel-Palazuelos, José Carlos
2018-01-01
Teaching of surgery has been affected by many factors over the last years, such as the reduction of working hours, the optimization of the use of the operating room or patient safety. Traditional teaching methodology fails to reduce the impact of these factors on surgeońs training. Simulation as a teaching model minimizes such impact, and is more effective than traditional teaching methods for integrating knowledge and clinical-surgical skills. Simulation complements clinical assistance with training, creating a safe learning environment where patient safety is not affected, and ethical or legal conflicts are avoided. Simulation uses learning methodologies that allow teaching individualization, adapting it to the learning needs of each student. It also allows training of all kinds of technical, cognitive or behavioural skills. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
Modeling and simulation of photovoltaic solar panel
International Nuclear Information System (INIS)
Belarbi, M.; Haddouche, K.; Midoun, A.
2006-01-01
In this article, we present a new approach for estimating the model parameters of a photovoltaic solar panel according to the irradiance and temperature. The parameters of the one diode model are given from the knowledge of three operating points: short-circuit, open circuit, and maximum power. In the first step, the adopted approach concerns the resolution of the system of equations constituting the three operating points to write all the model parameters according to series resistance. Secondly, we make an iterative resolution at the optimal operating point by using the Newton-Raphson method to calculate the series resistance value as well as the model parameters. Once the panel model is identified, we consider other equations for taking into account the irradiance and temperature effect. The simulation results show the convergence speed of the model parameters and the possibility of visualizing the electrical behaviour of the panel according to the irradiance and temperature. Let us note that a sensitivity of the algorithm at the optimal operating point was observed owing to the fact that a small variation of the optimal voltage value leads to a very great variation of the identified parameters values. With the identified model, we can develop algorithms of maximum power point tracking, and make simulations of a solar water pumping system.(Author)
Deep Drawing Simulations With Different Polycrystalline Models
Duchêne, Laurent; de Montleau, Pierre; Bouvier, Salima; Habraken, Anne Marie
2004-06-01
The goal of this research is to study the anisotropic material behavior during forming processes, represented by both complex yield loci and kinematic-isotropic hardening models. A first part of this paper describes the main concepts of the `Stress-strain interpolation' model that has been implemented in the non-linear finite element code Lagamine. This model consists of a local description of the yield locus based on the texture of the material through the full constraints Taylor's model. The texture evolution due to plastic deformations is computed throughout the FEM simulations. This `local yield locus' approach was initially linked to the classical isotropic Swift hardening law. Recently, a more complex hardening model was implemented: the physically-based microstructural model of Teodosiu. It takes into account intergranular heterogeneity due to the evolution of dislocation structures, that affects isotropic and kinematic hardening. The influence of the hardening model is compared to the influence of the texture evolution thanks to deep drawing simulations.
Facebook's personal page modelling and simulation
Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.
2015-02-01
In this paper we will try to define the utility of Facebook's Personal Page marketing method. This tool that Facebook provides, is modelled and simulated using iThink in the context of a Facebook marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following model has been developed for a social media marketing agent/company, Facebook platform oriented and tested in real circumstances. This model is finalized through a number of revisions and iterators of the design, development, simulation, testing and evaluation processes. The validity and usefulness of this Facebook marketing model for the day-to-day decision making are authenticated by the management of the company organization. Facebook's Personal Page method can be adjusted, depending on the situation, in order to maximize the total profit of the company which is to bring new customers, keep the interest of the old customers and deliver traffic to its website.
A simulation model for material accounting systems
International Nuclear Information System (INIS)
Coulter, C.A.; Thomas, K.E.
1987-01-01
A general-purpose model that was developed to simulate the operation of a chemical processing facility for nuclear materials has been extended to describe material measurement and accounting procedures as well. The model now provides descriptors for material balance areas, a large class of measurement instrument types and their associated measurement errors for various classes of materials, the measurement instruments themselves with their individual calibration schedules, and material balance closures. Delayed receipt of measurement results (as for off-line analytical chemistry assay), with interim use of a provisional measurement value, can be accurately represented. The simulation model can be used to estimate inventory difference variances for processing areas that do not operate at steady state, to evaluate the timeliness of measurement information, to determine process impacts of measurement requirements, and to evaluate the effectiveness of diversion-detection algorithms. Such information is usually difficult to obtain by other means. Use of the measurement simulation model is illustrated by applying it to estimate inventory difference variances for two material balance area structures of a fictitious nuclear material processing line
Theory, modeling and simulation: Annual report 1993
Energy Technology Data Exchange (ETDEWEB)
Dunning, T.H. Jr.; Garrett, B.C.
1994-07-01
Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE`s research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies.
Theory, modeling and simulation: Annual report 1993
International Nuclear Information System (INIS)
Dunning, T.H. Jr.; Garrett, B.C.
1994-07-01
Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE's research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies
Ng, Thomas W H; Feldman, Daniel C; Lam, Simon S K
2010-07-01
This study examined the relationships among psychological contract breaches, organizational commitment, and innovation-related behaviors (generating, spreading, implementing innovative ideas at work) over a 6-month period. Results indicate that the effects of psychological contract breaches on employees are not static. Specifically, perceptions of psychological contract breaches strengthened over time and were associated with decreased levels of affective commitment over time. Further, increased perceptions of psychological contract breaches were associated with decreases in innovation-related behaviors. We also found evidence that organizational commitment mediates the relationship between psychological contract breaches and innovation-related behaviors. These results highlight the importance of examining the nomological network of psychological contract breaches from a change perspective.
From Risk Models to Loan Contracts: Austerity as the Continuation of Calculation by Other Means
Directory of Open Access Journals (Sweden)
Pierre Pénet
2014-06-01
Full Text Available This article analyses how financial actors sought to minimise financial uncertainties during the European sovereign debt crisis by employing simulations as legal instruments of market regulation. We first contrast two roles that simulations can play in sovereign debt markets: ‘simulation-hypotheses’, which work as bundles of constantly updated hypotheses with the goal of better predicting financial risks; and ‘simulation-fictions’, which provide fixed narratives about the present with the purpose of postponing the revision of market risks. Using ratings reports published by Moody’s on Greece and European Central Bank (ECB regulations, we show that Moody’s stuck to a simulationfiction and displayed rating inertia on Greece’s trustworthiness to prevent the destabilising effects that further downgrades would have on Greek borrowing costs. We also show that the multi-notch downgrade issued by Moody’s in June 2010 followed the ECB’s decision to remove ratings from its collateral eligibility requirements. Then, as regulators moved from ‘regulation through model’ to ‘regulation through contract’, ratings stopped functioning as simulation-fictions. Indeed, the conditions of the Greek bailout implemented in May 2010 replaced the CRAs’ models as the main simulation-fiction, which market actors employed to postpone the prospect of a Greek default. We conclude by presenting austerity measures as instruments of calculative governance rather than ideological compacts
NUMERICAL MODEL APPLICATION IN ROWING SIMULATOR DESIGN
Directory of Open Access Journals (Sweden)
Petr Chmátal
2016-04-01
Full Text Available The aim of the research was to carry out a hydraulic design of rowing/sculling and paddling simulator. Nowadays there are two main approaches in the simulator design. The first one includes a static water with no artificial movement and counts on specially cut oars to provide the same resistance in the water. The second approach, on the other hand uses pumps or similar devices to force the water to circulate but both of the designs share many problems. Such problems are affecting already built facilities and can be summarized as unrealistic feeling, unwanted turbulent flow and bad velocity profile. Therefore, the goal was to design a new rowing simulator that would provide nature-like conditions for the racers and provide an unmatched experience. In order to accomplish this challenge, it was decided to use in-depth numerical modeling to solve the hydraulic problems. The general measures for the design were taken in accordance with space availability of the simulator ́s housing. The entire research was coordinated with other stages of the construction using BIM. The detailed geometry was designed using a numerical model in Ansys Fluent and parametric auto-optimization tools which led to minimum negative hydraulic phenomena and decreased investment and operational costs due to the decreased hydraulic losses in the system.
eShopper modeling and simulation
Petrushin, Valery A.
2001-03-01
The advent of e-commerce gives an opportunity to shift the paradigm of customer communication into a highly interactive mode. The new generation of commercial Web servers, such as the Blue Martini's server, combines the collection of data on a customer behavior with real-time processing and dynamic tailoring of a feedback page. The new opportunities for direct product marketing and cross selling are arriving. The key problem is what kind of information do we need to achieve these goals, or in other words, how do we model the customer? The paper is devoted to customer modeling and simulation. The focus is on modeling an individual customer. The model is based on the customer's transaction data, click stream data, and demographics. The model includes the hierarchical profile of a customer's preferences to different types of products and brands; consumption models for the different types of products; the current focus, trends, and stochastic models for time intervals between purchases; product affinity models; and some generalized features, such as purchasing power, sensitivity to advertising, price sensitivity, etc. This type of model is used for predicting the date of the next visit, overall spending, and spending for different types of products and brands. For some type of stores (for example, a supermarket) and stable customers, it is possible to forecast the shopping lists rather accurately. The forecasting techniques are discussed. The forecasting results can be used for on- line direct marketing, customer retention, and inventory management. The customer model can also be used as a generative model for simulating the customer's purchasing behavior in different situations and for estimating customer's features.
A collision model in plasma particle simulations
International Nuclear Information System (INIS)
Ma Yanyun; Chang Wenwei; Yin Yan; Yue Zongwu; Cao Lihua; Liu Daqing
2000-01-01
In order to offset the collisional effects reduced by using finite-size particles, β particle clouds are used in particle simulation codes (β is the ratio of charge or mass of modeling particles to real ones). The method of impulse approximation (strait line orbit approximation) is used to analyze the scattering cross section of β particle clouds plasmas. The authors can obtain the relation of the value of a and β and scattering cross section (a is the radius of β particle cloud). By using this relation the authors can determine the value of a and β so that the collisional effects of the modeling system is correspondent with the real one. The authors can also adjust the values of a and β so that the authors can enhance or reduce the collisional effects fictitiously. The results of simulation are in good agreement with the theoretical ones
Macro Level Simulation Model Of Space Shuttle Processing
2000-01-01
The contents include: 1) Space Shuttle Processing Simulation Model; 2) Knowledge Acquisition; 3) Simulation Input Analysis; 4) Model Applications in Current Shuttle Environment; and 5) Model Applications for Future Reusable Launch Vehicles (RLV's). This paper is presented in viewgraph form.
High-Fidelity Roadway Modeling and Simulation
Wang, Jie; Papelis, Yiannis; Shen, Yuzhong; Unal, Ozhan; Cetin, Mecit
2010-01-01
Roads are an essential feature in our daily lives. With the advances in computing technologies, 2D and 3D road models are employed in many applications, such as computer games and virtual environments. Traditional road models were generated by professional artists manually using modeling software tools such as Maya and 3ds Max. This approach requires both highly specialized and sophisticated skills and massive manual labor. Automatic road generation based on procedural modeling can create road models using specially designed computer algorithms or procedures, reducing the tedious manual editing needed for road modeling dramatically. But most existing procedural modeling methods for road generation put emphasis on the visual effects of the generated roads, not the geometrical and architectural fidelity. This limitation seriously restricts the applicability of the generated road models. To address this problem, this paper proposes a high-fidelity roadway generation method that takes into account road design principles practiced by civil engineering professionals, and as a result, the generated roads can support not only general applications such as games and simulations in which roads are used as 3D assets, but also demanding civil engineering applications, which requires accurate geometrical models of roads. The inputs to the proposed method include road specifications, civil engineering road design rules, terrain information, and surrounding environment. Then the proposed method generates in real time 3D roads that have both high visual and geometrical fidelities. This paper discusses in details the procedures that convert 2D roads specified in shape files into 3D roads and civil engineering road design principles. The proposed method can be used in many applications that have stringent requirements on high precision 3D models, such as driving simulations and road design prototyping. Preliminary results demonstrate the effectiveness of the proposed method.
Difficulties with True Interoperability in Modeling & Simulation
2011-12-01
Standards in M&S cover multiple layers of technical abstraction. There are middleware specifica- tions, such as the High Level Architecture (HLA) ( IEEE Xplore ... IEEE Xplore Digital Library. 2010. 1516-2010 IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) – Framework and Rules...using different communication protocols being able to allow da- 2642978-1-4577-2109-0/11/$26.00 ©2011 IEEE Report Documentation Page Form ApprovedOMB No
Agent Based Modelling for Social Simulation
Smit, S.K.; Ubink, E.M.; Vecht, B. van der; Langley, D.J.
2013-01-01
This document is the result of an exploratory project looking into the status of, and opportunities for Agent Based Modelling (ABM) at TNO. The project focussed on ABM applications containing social interactions and human factors, which we termed ABM for social simulation (ABM4SS). During the course of this project two workshops were organized. At these workshops, a wide range of experts, both ABM experts and domain experts, worked on several potential applications of ABM. The results and ins...
Mathematical models for photovoltaic solar panel simulation
Energy Technology Data Exchange (ETDEWEB)
Santos, Jose Airton A. dos; Gnoatto, Estor; Fischborn, Marcos; Kavanagh, Edward [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], Emails: airton@utfpr.edu.br, gnoatto@utfpr.edu.br, fisch@utfpr.edu.br, kavanagh@utfpr.edu.br
2008-07-01
A photovoltaic generator is subject to several variations of solar intensity, ambient temperature or load, that change your point of operation. This way, your behavior should be analyzed by such alterations, to optimize your operation. The present work sought to simulate a photovoltaic generator, of polycrystalline silicon, by characteristics supplied by the manufacturer, and to compare the results of two mathematical models with obtained values of field, in the city of Cascavel, for a period of one year. (author)
Koppenol, D.C.; Vermolen, F.J.
2017-01-01
A continuum hypothesis-based model is developed for the simulation of the (long term) contraction of skin grafts that cover excised burns in order to obtain suggestions regarding the ideal length of splinting therapy and when to start with this therapy such that the therapy is effective
Modelling interplanetary CMEs using magnetohydrodynamic simulations
Directory of Open Access Journals (Sweden)
P. J. Cargill
Full Text Available The dynamics of Interplanetary Coronal Mass Ejections (ICMEs are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.
Key words. Interplanetary physics (interplanetary magnetic fields Solar physics, astrophysics, and astronomy (flares and mass ejections Space plasma physics (numerical simulation studies
Interactive Modelling and Simulation of Human Motion
DEFF Research Database (Denmark)
Engell-Nørregård, Morten Pol
menneskers led, der udviser både ikke-konveksitet og flere frihedsgrader • En generel og alsidig model for aktivering af bløde legemer. Modellen kan anvendes som et animations værktøj, men er lige så velegnet til simulering af menneskelige muskler, da den opfylder de grundlæggende fysiske principper......Dansk resumé Denne ph.d.-afhandling beskæftiger sig med modellering og simulation af menneskelig bevægelse. Emnerne i denne afhandling har mindst to ting til fælles. For det første beskæftiger de sig med menneskelig bevægelse. Selv om de udviklede modeller også kan benyttes til andre ting,er det...... primære fokus på at modellere den menneskelige krop. For det andet, beskæftiger de sig alle med simulering som et redskab til at syntetisere bevægelse og dermed skabe animationer. Dette er en vigtigt pointe, da det betyder, at vi ikke kun skaber værktøjer til animatorer, som de kan bruge til at lave sjove...
MODELING AND SIMULATION OF A HYDROCRACKING UNIT
Directory of Open Access Journals (Sweden)
HASSAN A. FARAG
2016-06-01
Full Text Available Hydrocracking is used in the petroleum industry to convert low quality feed stocks into high valued transportation fuels such as gasoline, diesel, and jet fuel. The aim of the present work is to develop a rigorous steady state two-dimensional mathematical model which includes conservation equations of mass and energy for simulating the operation of a hydrocracking unit. Both the catalyst bed and quench zone have been included in this integrated model. The model equations were numerically solved in both axial and radial directions using Matlab software. The presented model was tested against a real plant data in Egypt. The results indicated that a very good agreement between the model predictions and industrial values have been reported for temperature profiles, concentration profiles, and conversion in both radial and axial directions at the hydrocracking unit. Simulation of the quench zone conversion and temperature profiles in the quench zone was also included and gave a low deviation from the actual ones. In concentration profiles, the percentage deviation in the first reactor was found to be 9.28 % and 9.6% for the second reactor. The effect of several parameters such as: Pellet Heat Transfer Coefficient, Effective Radial Thermal Conductivity, Wall Heat Transfer Coefficient, Effective Radial Diffusivity, and Cooling medium (quench zone has been included in this study. The variation of Wall Heat Transfer Coefficient, Effective Radial Diffusivity for the near-wall region, gave no remarkable changes in the temperature profiles. On the other hand, even small variations of Effective Radial Thermal Conductivity, affected the simulated temperature profiles significantly, and this effect could not be compensated by the variations of the other parameters of the model.
On Improving 4-km Mesoscale Model Simulations
Deng, Aijun; Stauffer, David R.
2006-03-01
A previous study showed that use of analysis-nudging four-dimensional data assimilation (FDDA) and improved physics in the fifth-generation Pennsylvania State University National Center for Atmospheric Research Mesoscale Model (MM5) produced the best overall performance on a 12-km-domain simulation, based on the 18 19 September 1983 Cross-Appalachian Tracer Experiment (CAPTEX) case. However, reducing the simulated grid length to 4 km had detrimental effects. The primary cause was likely the explicit representation of convection accompanying a cold-frontal system. Because no convective parameterization scheme (CPS) was used, the convective updrafts were forced on coarser-than-realistic scales, and the rainfall and the atmospheric response to the convection were too strong. The evaporative cooling and downdrafts were too vigorous, causing widespread disruption of the low-level winds and spurious advection of the simulated tracer. In this study, a series of experiments was designed to address this general problem involving 4-km model precipitation and gridpoint storms and associated model sensitivities to the use of FDDA, planetary boundary layer (PBL) turbulence physics, grid-explicit microphysics, a CPS, and enhanced horizontal diffusion. Some of the conclusions include the following: 1) Enhanced parameterized vertical mixing in the turbulent kinetic energy (TKE) turbulence scheme has shown marked improvements in the simulated fields. 2) Use of a CPS on the 4-km grid improved the precipitation and low-level wind results. 3) Use of the Hong and Pan Medium-Range Forecast PBL scheme showed larger model errors within the PBL and a clear tendency to predict much deeper PBL heights than the TKE scheme. 4) Combining observation-nudging FDDA with a CPS produced the best overall simulations. 5) Finer horizontal resolution does not always produce better simulations, especially in convectively unstable environments, and a new CPS suitable for 4-km resolution is needed. 6
Reactive transport models and simulation with ALLIANCES
International Nuclear Information System (INIS)
Leterrier, N.; Deville, E.; Bary, B.; Trotignon, L.; Hedde, T.; Cochepin, B.; Stora, E.
2009-01-01
Many chemical processes influence the evolution of nuclear waste storage. As a result, simulations based only upon transport and hydraulic processes fail to describe adequately some industrial scenarios. We need to take into account complex chemical models (mass action laws, kinetics...) which are highly non-linear. In order to simulate the coupling of these chemical reactions with transport, we use a classical Sequential Iterative Approach (SIA), with a fixed point algorithm, within the mainframe of the ALLIANCES platform. This approach allows us to use the various transport and chemical modules available in ALLIANCES, via an operator-splitting method based upon the structure of the chemical system. We present five different applications of reactive transport simulations in the context of nuclear waste storage: 1. A 2D simulation of the lixiviation by rain water of an underground polluted zone high in uranium oxide; 2. The degradation of the steel envelope of a package in contact with clay. Corrosion of the steel creates corrosion products and the altered package becomes a porous medium. We follow the degradation front through kinetic reactions and the coupling with transport; 3. The degradation of a cement-based material by the injection of an aqueous solution of zinc and sulphate ions. In addition to the reactive transport coupling, we take into account in this case the hydraulic retroaction of the porosity variation on the Darcy velocity; 4. The decalcification of a concrete beam in an underground storage structure. In this case, in addition to the reactive transport simulation, we take into account the interaction between chemical degradation and the mechanical forces (cracks...), and the retroactive influence on the structure changes on transport; 5. The degradation of the steel envelope of a package in contact with a clay material under a temperature gradient. In this case the reactive transport simulation is entirely directed by the temperature changes and
Computer Models Simulate Fine Particle Dispersion
2010-01-01
Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.
Consolidation modelling for thermoplastic composites forming simulation
Xiong, H.; Rusanov, A.; Hamila, N.; Boisse, P.
2016-10-01
Pre-impregnated thermoplastic composites are widely used in the aerospace industry for their excellent mechanical properties, Thermoforming thermoplastic prepregs is a fast manufacturing process, the automotive industry has shown increasing interest in this manufacturing processes, in which the reconsolidation is an essential stage. The model of intimate contact is investigated as the consolidation model, compression experiments have been launched to identify the material parameters, several numerical tests show the influents of the temperature and pressure applied during processing. Finally, a new solid-shell prismatic element has been presented for the simulation of consolidation step in the thermoplastic composites forming process.
Quantification of uncertainties of modeling and simulation
International Nuclear Information System (INIS)
Ma Zhibo; Yin Jianwei
2012-01-01
The principles of Modeling and Simulation (M and S) is interpreted by a functional relation, from which the total uncertainties of M and S are identified and sorted to three parts considered to vary along with the conceptual models' parameters. According to the idea of verification and validation, the space of the parameters is parted to verified and applied domains, uncertainties in the verified domain are quantified by comparison between numerical and standard results, and those in the applied domain are quantified by a newly developed extrapolating method. Examples are presented to demonstrate and qualify the ideas aimed to build a framework to quantify the uncertainties of M and S. (authors)
Simulation models generator. Applications in scheduling
Directory of Open Access Journals (Sweden)
Omar Danilo Castrillón
2013-08-01
Rev.Mate.Teor.Aplic. (ISSN 1409-2433 Vol. 20(2: 231–241, July 2013 generador de modelos de simulacion 233 will, in order to have an approach to reality to evaluate decisions in order to take more assertive. To test prototype was used as the modeling example of a production system with 9 machines and 5 works as a job shop configuration, testing stops processing times and stochastic machine to measure rates of use of machines and time average jobs in the system, as measures of system performance. This test shows the goodness of the prototype, to save the user the simulation model building
Modeling and simulation of reactive flows
Bortoli, De AL; Pereira, Felipe
2015-01-01
Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va
Nonlinear friction model for servo press simulation
Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo
2013-12-01
The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.
Directory of Open Access Journals (Sweden)
Juan P. Pérez Monsalve
2014-12-01
Full Text Available This work analyzed the relationship of the two main Price indicators in the Colombian economy, the IPP and the IPC. For this purpose, we identified the theory comprising both indexes to then develop a vector autoregressive model, which shows the reaction to shocks both in itself as in the other variable, whose impact continues propagating in the long term. Additionally, the work presents a simulation of the VAR model through the Monte Carlo method, verifying the coincidence in distributions of probability and volatility levels, as well as the existence correlation over time
TMS modeling toolbox for realistic simulation.
Cho, Young Sun; Suh, Hyun Sang; Lee, Won Hee; Kim, Tae-Seong
2010-01-01
Transcranial magnetic stimulation (TMS) is a technique for brain stimulation using rapidly changing magnetic fields generated by coils. It has been established as an effective stimulation technique to treat patients suffering from damaged brain functions. Although TMS is known to be painless and noninvasive, it can also be harmful to the brain by incorrect focusing and excessive stimulation which might result in seizure. Therefore there is ongoing research effort to elucidate and better understand the effect and mechanism of TMS. Lately Boundary element method (BEM) and Finite element method (FEM) have been used to simulate the electromagnetic phenomenon of TMS. However, there is a lack of general tools to generate the models of TMS due to some difficulties in realistic modeling of the human head and TMS coils. In this study, we have developed a toolbox through which one can generate high-resolution FE TMS models. The toolbox allows creating FE models of the head with isotropic and anisotropic electrical conductivities in five different tissues of the head and the coils in 3D. The generated TMS model is importable to FE software packages such as ANSYS for further and efficient electromagnetic analysis. We present a set of demonstrative results of realistic simulation of TMS with our toolbox.
Biomedical Simulation Models of Human Auditory Processes
Bicak, Mehmet M. A.
2012-01-01
Detailed acoustic engineering models that explore noise propagation mechanisms associated with noise attenuation and transmission paths created when using hearing protectors such as earplugs and headsets in high noise environments. Biomedical finite element (FE) models are developed based on volume Computed Tomography scan data which provides explicit external ear, ear canal, middle ear ossicular bones and cochlea geometry. Results from these studies have enabled a greater understanding of hearing protector to flesh dynamics as well as prioritizing noise propagation mechanisms. Prioritization of noise mechanisms can form an essential framework for exploration of new design principles and methods in both earplug and earcup applications. These models are currently being used in development of a novel hearing protection evaluation system that can provide experimentally correlated psychoacoustic noise attenuation. Moreover, these FE models can be used to simulate the effects of blast related impulse noise on human auditory mechanisms and brain tissue.
Modeling and simulation of gamma camera
International Nuclear Information System (INIS)
Singh, B.; Kataria, S.K.; Samuel, A.M.
2002-08-01
Simulation techniques play a vital role in designing of sophisticated instruments and also for the training of operating and maintenance staff. Gamma camera systems have been used for functional imaging in nuclear medicine. Functional images are derived from the external counting of the gamma emitting radioactive tracer that after introduction in to the body mimics the behavior of native biochemical compound. The position sensitive detector yield the coordinates of the gamma ray interaction with the detector and are used to estimate the point of gamma ray emission within the tracer distribution space. This advanced imaging device is thus dependent on the performance of algorithm for coordinate computing, estimation of point of emission, generation of image and display of the image data. Contemporary systems also have protocols for quality control and clinical evaluation of imaging studies. Simulation of this processing leads to understanding of the basic camera design problems. This report describes a PC based package for design and simulation of gamma camera along with the options of simulating data acquisition and quality control of imaging studies. Image display and data processing the other options implemented in SIMCAM will be described in separate reports (under preparation). Gamma camera modeling and simulation in SIMCAM has preset configuration of the design parameters for various sizes of crystal detector with the option to pack the PMT on hexagon or square lattice. Different algorithm for computation of coordinates and spatial distortion removal are allowed in addition to the simulation of energy correction circuit. The user can simulate different static, dynamic, MUGA and SPECT studies. The acquired/ simulated data is processed for quality control and clinical evaluation of the imaging studies. Results show that the program can be used to assess these performances. Also the variations in performance parameters can be assessed due to the induced
Modeling initial contact dynamics during ambulation with dynamic simulation.
Meyer, Andrew R; Wang, Mei; Smith, Peter A; Harris, Gerald F
2007-04-01
Ankle-foot orthoses are frequently used interventions to correct pathological gait. Their effects on the kinematics and kinetics of the proximal joints are of great interest when prescribing ankle-foot orthoses to specific patient groups. Mathematical Dynamic Model (MADYMO) is developed to simulate motor vehicle crash situations and analyze tissue injuries of the occupants based multibody dynamic theories. Joint kinetics output from an inverse model were perturbed and input to the forward model to examine the effects of changes in the internal sagittal ankle moment on knee and hip kinematics following heel strike. Increasing the internal ankle moment (augmentation, equivalent to gastroc-soleus contraction) produced less pronounced changes in kinematic results at the hip, knee and ankle than decreasing the moment (attenuation, equivalent to gastroc-soleus relaxation). Altering the internal ankle moment produced two distinctly different kinematic curve morphologies at the hip. Decreased internal ankle moments increased hip flexion, peaking at roughly 8% of the gait cycle. Increasing internal ankle moments decreased hip flexion to a lesser degree, and approached normal at the same point in the gait cycle. Increasing the internal ankle moment produced relatively small, well-behaved extension-biased kinematic results at the knee. Decreasing the internal ankle moment produced more substantial changes in knee kinematics towards flexion that increased with perturbation magnitude. Curve morphologies were similar to those at the hip. Immediately following heel strike, kinematic results at the ankle showed movement in the direction of the internal moment perturbation. Increased internal moments resulted in kinematic patterns that rapidly approach normal after initial differences. When the internal ankle moment was decreased, differences from normal were much greater and did not rapidly decrease. This study shows that MADYMO can be successfully applied to accomplish forward
Desktop Modeling and Simulation: Parsimonious, yet Effective Discrete-Event Simulation Analysis
Bradley, James R.
2012-01-01
This paper evaluates how quickly students can be trained to construct useful discrete-event simulation models using Excel The typical supply chain used by many large national retailers is described, and an Excel-based simulation model is constructed of it The set of programming and simulation skills required for development of that model are then determined we conclude that six hours of training are required to teach the skills to MBA students . The simulation presented here contains all fundamental functionallty of a simulation model, and so our result holds for any discrete-event simulation model. We argue therefore that Industry workers with the same technical skill set as students having completed one year in an MBA program can be quickly trained to construct simulation models. This result gives credence to the efficacy of Desktop Modeling and Simulation whereby simulation analyses can be quickly developed, run, and analyzed with widely available software, namely Excel.
Systematic simulations of modified gravity: chameleon models
International Nuclear Information System (INIS)
Brax, Philippe; Davis, Anne-Christine; Li, Baojiu; Winther, Hans A.; Zhao, Gong-Bo
2013-01-01
In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc −1 , since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future
Systematic simulations of modified gravity: chameleon models
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [Institut de Physique Theorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Davis, Anne-Christine [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Li, Baojiu [Institute for Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Winther, Hans A. [Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo (Norway); Zhao, Gong-Bo, E-mail: philippe.brax@cea.fr, E-mail: a.c.davis@damtp.cam.ac.uk, E-mail: baojiu.li@durham.ac.uk, E-mail: h.a.winther@astro.uio.no, E-mail: gong-bo.zhao@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)
2013-04-01
In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc{sup −1}, since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future.
Directory of Open Access Journals (Sweden)
Lorenzo Marcucci
Full Text Available Muscular force generation in response to external stimuli is the result of thermally fluctuating, cyclical interactions between myosin and actin, which together form the actomyosin complex. Normally, these fluctuations are modelled using transition rate functions that are based on muscle fiber behaviour, in a phenomenological fashion. However, such a basis reduces the predictive power of these models. As an alternative, we propose a model which uses direct single molecule observations of actomyosin fluctuations reported in the literature. We precisely estimate the actomyosin potential bias and use diffusion theory to obtain a brownian ratchet model that reproduces the complete cross-bridge cycle. The model is validated by simulating several macroscopic experimental conditions, while its interpretation is compatible with two different force-generating scenarios.
[Modeling and Simulation of Spectral Polarimetric BRDF].
Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu
2016-01-01
Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.
Tokamak Simulation Code modeling of NSTX
International Nuclear Information System (INIS)
Jardin, S.C.; Kaye, S.; Menard, J.; Kessel, C.; Glasser, A.H.
2000-01-01
The Tokamak Simulation Code [TSC] is widely used for the design of new axisymmetric toroidal experiments. In particular, TSC was used extensively in the design of the National Spherical Torus eXperiment [NSTX]. The authors have now benchmarked TSC with initial NSTX results and find excellent agreement for plasma and vessel currents and magnetic flux loops when the experimental coil currents are used in the simulations. TSC has also been coupled with a ballooning stability code and with DCON to provide stability predictions for NSTX operation. TSC has also been used to model initial CHI experiments where a large poloidal voltage is applied to the NSTX vacuum vessel, causing a force-free current to appear in the plasma. This is a phenomenon that is similar to the plasma halo current that sometimes develops during a plasma disruption
Simulations, evaluations and models. Vol. 1
International Nuclear Information System (INIS)
Brehmer, B.; Leplat, J.
1992-01-01
Papers presented at the Fourth MOHAWC (Models of Human Activities in Work Context) workshop. The general theme was simulations, evaluations and models. The emphasis was on time in relation to the modelling of human activities in modern, high tech. work. Such work often requires people to control dynamic systems, and the behaviour and misbehaviour of these systems in time is a principle focus of work in, for example, a modern process plant. The papers report on microworlds and on their innovative uses, both in the form of experiments and in the form of a new form of use, that of testing a program which performs diagnostic reasoning. They present new aspects on the problem of time in process control, showing the importance of considering the time scales of dynamic tasks, both in individual decision making and in distributed decision making, and in providing new formalisms, both for the representation of time and for reasoning involving time in diagnosis. (AB)
Process model simulations of the divergence effect
Anchukaitis, K. J.; Evans, M. N.; D'Arrigo, R. D.; Smerdon, J. E.; Hughes, M. K.; Kaplan, A.; Vaganov, E. A.
2007-12-01
We explore the extent to which the Vaganov-Shashkin (VS) model of conifer tree-ring formation can explain evidence for changing relationships between climate and tree growth over recent decades. The VS model is driven by daily environmental forcing (temperature, soil moisture, and solar radiation), and simulates tree-ring growth cell-by-cell as a function of the most limiting environmental control. This simplified representation of tree physiology allows us to examine using a selection of case studies whether instances of divergence may be explained in terms of changes in limiting environmental dependencies or transient climate change. Identification of model-data differences permits further exploration of the effects of tree-ring standardization, atmospheric composition, and additional non-climatic factors.
Radiation Modeling with Direct Simulation Monte Carlo
Carlson, Ann B.; Hassan, H. A.
1991-01-01
Improvements in the modeling of radiation in low density shock waves with direct simulation Monte Carlo (DSMC) are the subject of this study. A new scheme to determine the relaxation collision numbers for excitation of electronic states is proposed. This scheme attempts to move the DSMC programs toward a more detailed modeling of the physics and more reliance on available rate data. The new method is compared with the current modeling technique and both techniques are compared with available experimental data. The differences in the results are evaluated. The test case is based on experimental measurements from the AVCO-Everett Research Laboratory electric arc-driven shock tube of a normal shock wave in air at 10 km/s and .1 Torr. The new method agrees with the available data as well as the results from the earlier scheme and is more easily extrapolated to di erent ow conditions.
Traffic flow dynamics data, models and simulation
Treiber, Martin
2013-01-01
This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...
Biomechanics trends in modeling and simulation
Ogden, Ray
2017-01-01
The book presents a state-of-the-art overview of biomechanical and mechanobiological modeling and simulation of soft biological tissues. Seven well-known scientists working in that particular field discuss topics such as biomolecules, networks and cells as well as failure, multi-scale, agent-based, bio-chemo-mechanical and finite element models appropriate for computational analysis. Applications include arteries, the heart, vascular stents and valve implants as well as adipose, brain, collagenous and engineered tissues. The mechanics of the whole cell and sub-cellular components as well as the extracellular matrix structure and mechanotransduction are described. In particular, the formation and remodeling of stress fibers, cytoskeletal contractility, cell adhesion and the mechanical regulation of fibroblast migration in healing myocardial infarcts are discussed. The essential ingredients of continuum mechanics are provided. Constitutive models of fiber-reinforced materials with an emphasis on arterial walls ...
Qualitative simulation in formal process modelling
International Nuclear Information System (INIS)
Sivertsen, Elin R.
1999-01-01
In relation to several different research activities at the OECD Halden Reactor Project, the usefulness of formal process models has been identified. Being represented in some appropriate representation language, the purpose of these models is to model process plants and plant automatics in a unified way to allow verification and computer aided design of control strategies. The present report discusses qualitative simulation and the tool QSIM as one approach to formal process models. In particular, the report aims at investigating how recent improvements of the tool facilitate the use of the approach in areas like process system analysis, procedure verification, and control software safety analysis. An important long term goal is to provide a basis for using qualitative reasoning in combination with other techniques to facilitate the treatment of embedded programmable systems in Probabilistic Safety Analysis (PSA). This is motivated from the potential of such a combination in safety analysis based on models comprising both software, hardware, and operator. It is anticipated that the research results from this activity will benefit V and V in a wide variety of applications where formal process models can be utilized. Examples are operator procedures, intelligent decision support systems, and common model repositories (author) (ml)
Traffic flow dynamics. Data, models and simulation
Energy Technology Data Exchange (ETDEWEB)
Treiber, Martin [Technische Univ. Dresden (Germany). Inst. fuer Wirtschaft und Verkehr; Kesting, Arne [TomTom Development Germany GmbH, Berlin (Germany)
2013-07-01
First comprehensive textbook of this fascinating interdisciplinary topic which explains advances in a way that it is easily accessible to engineering, physics and math students. Presents practical applications of traffic theory such as driving behavior, stability analysis, stop-and-go waves, and travel time estimation. Presents the topic in a novel and systematic way by addressing both microscopic and macroscopic models with a focus on traffic instabilities. Revised and extended edition of the German textbook ''Verkehrsdynamik und -simulation''. This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.
Simulation Model of Mobile Detection Systems
International Nuclear Information System (INIS)
Edmunds, T.; Faissol, D.; Yao, Y.
2009-01-01
In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped with 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains
Simulation Model of Mobile Detection Systems
Energy Technology Data Exchange (ETDEWEB)
Edmunds, T; Faissol, D; Yao, Y
2009-01-27
In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped with 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains
Directory of Open Access Journals (Sweden)
Franco Barbanera
2016-02-01
Full Text Available In calculi for modelling communication protocols, internal and external choices play dual roles. Two external choices can be viewed naturally as dual too, as they represent an agreement between the communicating parties. If the interaction fails, the past agreements are good candidates as points where to roll back, in order to take a different agreement. We propose a variant of contracts with synchronous rollbacks to agreement points in case of deadlock. The new calculus is equipped with a compliance relation which is shown to be decidable.
CASTOR detector. Model, objectives and simulated performance
International Nuclear Information System (INIS)
Angelis, A. L. S.; Mavromanolakis, G.; Panagiotou, A. D.; Aslanoglou, X.; Nicolis, N.; Lobanov, M.; Erine, S.; Kharlov, Y. V.; Bogolyubsky, M. Y.; Kurepin, A. B.; Chileev, K.; Wlodarczyk, Z.
2001-01-01
It is presented a phenomenological model describing the formation and evolution of a Centauro fireball in the baryon-rich region in nucleus-nucleus interactions in the upper atmosphere and at the LHC. The small particle multiplicity and imbalance of electromagnetic and hadronic content characterizing a Centauro event and also the strongly penetrating particles (assumed to be strangelets) frequently accompanying them can be naturally explained. It is described the CASTOR calorimeter, a sub detector of the ALICE experiment dedicated to the search for Centauro in the very forward, baryon-rich region of central Pb+Pb collisions at the LHC. The basic characteristics and simulated performance of the calorimeter are presented
Modelling and simulation of railway cable systems
Energy Technology Data Exchange (ETDEWEB)
Teichelmann, G.; Schaub, M.; Simeon, B. [Technische Univ. Muenchen, Garching (Germany). Zentrum Mathematik M2
2005-12-15
Mathematical models and numerical methods for the computation of both static equilibria and dynamic oscillations of railroad catenaries are derived and analyzed. These cable systems form a complex network of string and beam elements and lead to coupled partial differential equations in space and time where constraints and corresponding Lagrange multipliers express the interaction between carrier, contact wire, and pantograph head. For computing static equilibria, three different algorithms are presented and compared, while the dynamic case is treated by a finite element method in space, combined with stabilized time integration of the resulting differential algebraic system. Simulation examples based on reference data from industry illustrate the potential of such computational tools. (orig.)
ADIABATIC HEATING OF CONTRACTING TURBULENT FLUIDS
International Nuclear Information System (INIS)
Robertson, Brant; Goldreich, Peter
2012-01-01
Turbulence influences the behavior of many astrophysical systems, frequently by providing non-thermal pressure support through random bulk motions. Although turbulence is commonly studied in systems with constant volume and mean density, turbulent astrophysical gases often expand or contract under the influence of pressure or gravity. Here, we examine the behavior of turbulence in contracting volumes using idealized models of compressed gases. Employing numerical simulations and an analytical model, we identify a simple mechanism by which the turbulent motions of contracting gases 'adiabatically heat', experiencing an increase in their random bulk velocities until the largest eddies in the gas circulate over a Hubble time of the contraction. Adiabatic heating provides a mechanism for sustaining turbulence in gases where no large-scale driving exists. We describe this mechanism in detail and discuss some potential applications to turbulence in astrophysical settings.
An Agent-Based Monetary Production Simulation Model
DEFF Research Database (Denmark)
Bruun, Charlotte
2006-01-01
An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable......An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable...
Simulation model for port shunting yards
Rusca, A.; Popa, M.; Rosca, E.; Rosca, M.; Dragu, V.; Rusca, F.
2016-08-01
Sea ports are important nodes in the supply chain, joining two high capacity transport modes: rail and maritime transport. The huge cargo flows transiting port requires high capacity construction and installation such as berths, large capacity cranes, respectively shunting yards. However, the port shunting yards specificity raises several problems such as: limited access since these are terminus stations for rail network, the in-output of large transit flows of cargo relatively to the scarcity of the departure/arrival of a ship, as well as limited land availability for implementing solutions to serve these flows. It is necessary to identify technological solutions that lead to an answer to these problems. The paper proposed a simulation model developed with ARENA computer simulation software suitable for shunting yards which serve sea ports with access to the rail network. Are investigates the principal aspects of shunting yards and adequate measures to increase their transit capacity. The operation capacity for shunting yards sub-system is assessed taking in consideration the required operating standards and the measure of performance (e.g. waiting time for freight wagons, number of railway line in station, storage area, etc.) of the railway station are computed. The conclusion and results, drawn from simulation, help transports and logistics specialists to test the proposals for improving the port management.
Traffic simulation based ship collision probability modeling
Energy Technology Data Exchange (ETDEWEB)
Goerlandt, Floris, E-mail: floris.goerlandt@tkk.f [Aalto University, School of Science and Technology, Department of Applied Mechanics, Marine Technology, P.O. Box 15300, FI-00076 AALTO, Espoo (Finland); Kujala, Pentti [Aalto University, School of Science and Technology, Department of Applied Mechanics, Marine Technology, P.O. Box 15300, FI-00076 AALTO, Espoo (Finland)
2011-01-15
Maritime traffic poses various risks in terms of human, environmental and economic loss. In a risk analysis of ship collisions, it is important to get a reasonable estimate for the probability of such accidents and the consequences they lead to. In this paper, a method is proposed to assess the probability of vessels colliding with each other. The method is capable of determining the expected number of accidents, the locations where and the time when they are most likely to occur, while providing input for models concerned with the expected consequences. At the basis of the collision detection algorithm lays an extensive time domain micro-simulation of vessel traffic in the given area. The Monte Carlo simulation technique is applied to obtain a meaningful prediction of the relevant factors of the collision events. Data obtained through the Automatic Identification System is analyzed in detail to obtain realistic input data for the traffic simulation: traffic routes, the number of vessels on each route, the ship departure times, main dimensions and sailing speed. The results obtained by the proposed method for the studied case of the Gulf of Finland are presented, showing reasonable agreement with registered accident and near-miss data.
Modeling VOC transport in simulated waste drums
International Nuclear Information System (INIS)
Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.
1993-06-01
A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the VOC permeability had been measured. Permeabilities for five VOCs [methylene chloride, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), 1,1,1-trichloroethane, carbon tetrachloride, and trichloroethylene] were measured across a polyethylene bag. Comparison of model and experimental results of VOC concentration as a function of time indicate that model accurately accounts for significant VOC transport mechanisms in a lab-scale waste drum
International Nuclear Information System (INIS)
Zerbino, H.
1999-01-01
In 1994-1996, Thomson Training and Simulation (TT and S) earned out the D50 Project, which involved the design and construction of optimized replica simulators for one Dutch and three German Nuclear Power Plants. It was recognized early on that the faithful reproduction of the Siemens reactor control and protection systems would impose extremely stringent demands on the simulation models, particularly the Core physics and the RCS thermohydraulics. The quality of the models, and their thorough validation, were thus essential. The present paper describes the main features of the fully 3D Core model implemented by TT and S, and its extensive validation campaign, which was defined in extremely positive collaboration with the Customer and the Core Data suppliers. (author)
Influence of Joint Angle on EMG-Torque Model During Constant-Posture, Torque-Varying Contractions.
Liu, Pu; Liu, Lukai; Clancy, Edward A
2015-11-01
Relating the electromyogram (EMG) to joint torque is useful in various application areas, including prosthesis control, ergonomics and clinical biomechanics. Limited study has related EMG to torque across varied joint angles, particularly when subjects performed force-varying contractions or when optimized modeling methods were utilized. We related the biceps-triceps surface EMG of 22 subjects to elbow torque at six joint angles (spanning 60° to 135°) during constant-posture, torque-varying contractions. Three nonlinear EMG σ -torque models, advanced EMG amplitude (EMG σ ) estimation processors (i.e., whitened, multiple-channel) and the duration of data used to train models were investigated. When EMG-torque models were formed separately for each of the six distinct joint angles, a minimum "gold standard" error of 4.01±1.2% MVC(F90) resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so achieved a statistically equivalent error of 4.06±1.2% MVC(F90). Results demonstrated that advanced EMG σ processors lead to improved joint torque estimation as do longer model training durations.
Modeling and visual simulation of Microalgae photobioreactor
Zhao, Ming; Hou, Dapeng; Hu, Dawei
Microalgae is a kind of nutritious and high photosynthetic efficiency autotrophic plant, which is widely distributed in the land and the sea. It can be extensively used in medicine, food, aerospace, biotechnology, environmental protection and other fields. Photobioreactor which is important equipment is mainly used to cultivate massive and high-density microalgae. In this paper, based on the mathematical model of microalgae which grew under different light intensity, three-dimensional visualization model was built and implemented in 3ds max, Virtools and some other three dimensional software. Microalgae is photosynthetic organism, it can efficiently produce oxygen and absorb carbon dioxide. The goal of the visual simulation is to display its change and impacting on oxygen and carbon dioxide intuitively. In this paper, different temperatures and light intensities were selected to control the photobioreactor, and dynamic change of microalgal biomass, Oxygen and carbon dioxide was observed with the aim of providing visualization support for microalgal and photobioreactor research.
Efficient Turbulence Modeling for CFD Wake Simulations
DEFF Research Database (Denmark)
van der Laan, Paul
Wind turbine wakes can cause 10-20% annual energy losses in wind farms, and wake turbulence can decrease the lifetime of wind turbine blades. One way of estimating these effects is the use of computational fluid dynamics (CFD) to simulate wind turbines wakes in the atmospheric boundary layer. Since...... this flow is in the high Reynolds number regime, it is mainly dictated by turbulence. As a result, the turbulence modeling in CFD dominates the wake characteristics, especially in Reynolds-averaged Navier-Stokes (RANS). The present work is dedicated to study and develop RANS-based turbulence models...... verified with a grid dependency study. With respect to the standard k-ε EVM, the k-ε- fp EVM compares better with measurements of the velocity deficit, especially in the near wake, which translates to improved power deficits of the first wind turbines in a row. When the CFD metholody is applied to a large...
Molecular models and simulations of layered materials
International Nuclear Information System (INIS)
Kalinichev, Andrey G.; Cygan, Randall Timothy; Heinz, Hendrik; Greathouse, Jeffery A.
2008-01-01
The micro- to nano-sized nature of layered materials, particularly characteristic of naturally occurring clay minerals, limits our ability to fully interrogate their atomic dispositions and crystal structures. The low symmetry, multicomponent compositions, defects, and disorder phenomena of clays and related phases necessitate the use of molecular models and modern simulation methods. Computational chemistry tools based on classical force fields and quantum-chemical methods of electronic structure calculations provide a practical approach to evaluate structure and dynamics of the materials on an atomic scale. Combined with classical energy minimization, molecular dynamics, and Monte Carlo techniques, quantum methods provide accurate models of layered materials such as clay minerals, layered double hydroxides, and clay-polymer nanocomposites
At the biological modeling and simulation frontier.
Hunt, C Anthony; Ropella, Glen E P; Lam, Tai Ning; Tang, Jonathan; Kim, Sean H J; Engelberg, Jesse A; Sheikh-Bahaei, Shahab
2009-11-01
We provide a rationale for and describe examples of synthetic modeling and simulation (M&S) of biological systems. We explain how synthetic methods are distinct from familiar inductive methods. Synthetic M&S is a means to better understand the mechanisms that generate normal and disease-related phenomena observed in research, and how compounds of interest interact with them to alter phenomena. An objective is to build better, working hypotheses of plausible mechanisms. A synthetic model is an extant hypothesis: execution produces an observable mechanism and phenomena. Mobile objects representing compounds carry information enabling components to distinguish between them and react accordingly when different compounds are studied simultaneously. We argue that the familiar inductive approaches contribute to the general inefficiencies being experienced by pharmaceutical R&D, and that use of synthetic approaches accelerates and improves R&D decision-making and thus the drug development process. A reason is that synthetic models encourage and facilitate abductive scientific reasoning, a primary means of knowledge creation and creative cognition. When synthetic models are executed, we observe different aspects of knowledge in action from different perspectives. These models can be tuned to reflect differences in experimental conditions and individuals, making translational research more concrete while moving us closer to personalized medicine.
Plasma simulation studies using multilevel physics models
International Nuclear Information System (INIS)
Park, W.; Belova, E.V.; Fu, G.Y.; Tang, X.Z.; Strauss, H.R.; Sugiyama, L.E.
1999-01-01
The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of δf particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future. copyright 1999 American Institute of Physics
Plasma simulation studies using multilevel physics models
International Nuclear Information System (INIS)
Park, W.; Belova, E.V.; Fu, G.Y.
2000-01-01
The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of delta f particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future
Stabilising the global greenhouse. A simulation model
International Nuclear Information System (INIS)
Michaelis, P.
1993-01-01
This paper investigates the economic implications of a comprehensive approach to greenhouse policies that strives to stabilise the atmospheric concentration of greenhouse gases at an ecolocially determined threshold level. In a theoretical optimisation model conditions for an efficient allocation of abatement effort among pollutants and over time are derived. The model is empirically specified and adapted to a dynamic Gams-algorithm. By various simulation runs for the period of 1990 to 2110, the economics of greenhouse gas accumulation are explored. In particular, the long-run cost associated with the above stabilisation target are evaluated for three different policy scenarios: i) A comprehensive approach that covers all major greenhouse gases simultaneously, ii) a piecemeal approach that is limited to reducing CO 2 emissions, and iii) a ten-year moratorium that postpones abatement effort until new scientific evidence on the greenhouse effect will become available. Comparing the simulation results suggests that a piecemeal approach would considerably increase total cost, whereas a ten-year moratorium might be reasonable even if the probability of 'good news' is comparatively small. (orig.)
Modeling lift operations with SASmacr Simulation Studio
Kar, Leow Soo
2016-10-01
Lifts or elevators are an essential part of multistorey buildings which provide vertical transportation for its occupants. In large and high-rise apartment buildings, its occupants are permanent, while in buildings, like hospitals or office blocks, the occupants are temporary or users of the buildings. They come in to work or to visit, and thus, the population of such buildings are much higher than those in residential apartments. It is common these days that large office blocks or hospitals have at least 8 to 10 lifts serving its population. In order to optimize the level of service performance, different transportation schemes are devised to control the lift operations. For example, one lift may be assigned to solely service the even floors and another solely for the odd floors, etc. In this paper, a basic lift system is modelled using SAS Simulation Studio to study the effect of factors such as the number of floors, capacity of the lift car, arrival rate and exit rate of passengers at each floor, peak and off peak periods on the system performance. The simulation is applied to a real lift operation in Sunway College's North Building to validate the model.
Simulation as a vehicle for enhancing collaborative practice models.
Jeffries, Pamela R; McNelis, Angela M; Wheeler, Corinne A
2008-12-01
Clinical simulation used in a collaborative practice approach is a powerful tool to prepare health care providers for shared responsibility for patient care. Clinical simulations are being used increasingly in professional curricula to prepare providers for quality practice. Little is known, however, about how these simulations can be used to foster collaborative practice across disciplines. This article provides an overview of what simulation is, what collaborative practice models are, and how to set up a model using simulations. An example of a collaborative practice model is presented, and nursing implications of using a collaborative practice model in simulations are discussed.
Modeling and numerical simulations of the influenced Sznajd model
Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep
2017-08-01
This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.
McGowan, C.P.; Neptune, R.R.; Herzog, W.
2009-01-01
History dependent effects on muscle force development following active changes in length have been measured in a number of experimental studies. However, few muscle models have included these properties or examined their impact on force and power output in dynamic cyclic movements. The goal of this study was to develop and validate a modified Hill-type muscle model that includes shortening induced force depression and assess its influence on locomotor performance. The magnitude of force depression was defined by empirical relationships based on muscle mechanical work. To validate the model, simulations incorporating force depression were developed to emulate single muscle in situ and whole muscle group leg extension experiments. There was excellent agreement between simulation and experimental values, with in situ force patterns closely matching the experimental data (average RMS error pedaling with and without force depression were generated. Force depression decreased maximum crank power by 20% – 40%, depending on the relationship between force depression and muscle work used. These results indicate that force depression has the potential to substantially influence muscle power output in dynamic cyclic movements. However, to fully understand the impact of this phenomenon on human movement, more research is needed to characterize the relationship between force depression and mechanical work in large muscles with different morphologies. PMID:19879585
Dispersion modeling by kinematic simulation: Cloud dispersion model
International Nuclear Information System (INIS)
Fung, J C H; Perkins, R J
2008-01-01
A new technique has been developed to compute mean and fluctuating concentrations in complex turbulent flows (tidal current near a coast and deep ocean). An initial distribution of material is discretized into any small clouds which are advected by a combination of the mean flow and large scale turbulence. The turbulence can be simulated either by kinematic simulation (KS) or direct numerical simulation. The clouds also diffuse relative to their centroids; the statistics for this are obtained from a separate calculation of the growth of individual clouds in small scale turbulence, generated by KS. The ensemble of discrete clouds is periodically re-discretized, to limit the size of the small clouds and prevent overlapping. The model is illustrated with simulations of dispersion in uniform flow, and the results are compared with analytic, steady state solutions. The aim of this study is to understand how pollutants disperses in a turbulent flow through a numerical simulation of fluid particle motion in a random flow field generated by Fourier modes. Although this homogeneous turbulent is rather a 'simple' flow, it represents a building block toward understanding pollutant dispersion in more complex flow. The results presented here are preliminary in nature, but we expect that similar qualitative results should be observed in a genuine turbulent flow.
Comparison of performance of simulation models for floor heating
DEFF Research Database (Denmark)
Weitzmann, Peter; Svendsen, Svend
2005-01-01
This paper describes the comparison of performance of simulation models for floor heating with different level of detail in the modelling process. The models are compared in an otherwise identical simulation model containing room model, walls, windows, ceiling and ventilation system. By exchanging...
Tecnomatix Plant Simulation modeling and programming by means of examples
Bangsow, Steffen
2015-01-01
This book systematically introduces the development of simulation models as well as the implementation and evaluation of simulation experiments with Tecnomatix Plant Simulation. It deals with all users of Plant Simulation, who have more complex tasks to handle. It also looks for an easy entry into the program. Particular attention has been paid to introduce the simulation flow language SimTalk and its use in various areas of the simulation. The author demonstrates with over 200 examples how to combine the blocks for simulation models and how to deal with SimTalk for complex control and analys
Dynamic skin deformation simulation using musculoskeletal model and soft tissue dynamics
Institute of Scientific and Technical Information of China (English)
Akihiko Murai; Q. Youn Hong; Katsu Yamane; Jessica K. Hodgins
2017-01-01
Deformation of skin and muscle is essential for bringing an animated character to life. This deformation is difficult to animate in a realistic fashion using traditional techniques because of the subtlety of the skin deformations that must move appropriately for the character design. In this paper, we present an algorithm that generates natural, dynamic, and detailed skin deformation (movement and jiggle) from joint angle data sequences. The algorithm has two steps: identification of parameters for a quasi-static muscle deformation model, and simulation of skin deformation. In the identification step, we identify the model parameters using a musculoskeletal model and a short sequence of skin deformation data captured via a dense marker set. The simulation step first uses the quasi-static muscle deformation model to obtain the quasi-static muscle shape at each frame of the given motion sequence (slow jump). Dynamic skin deformation is then computed by simulating the passive muscle and soft tissue dynamics modeled as a mass–spring–damper system. Having obtained the model parameters, we can simulate dynamic skin deformations for subjects with similar body types from new motion data. We demonstrate our method by creating skin deformations for muscle co-contraction and external impacts from four different behaviors captured as skeletal motion capture data. Experimental results show that the simulated skin deformations are quantitatively and qualitatively similar to measured actual skin deformations.
Dynamic skin deformation simulation using musculoskeletal model and soft tissue dynamics
Institute of Scientific and Technical Information of China (English)
Akihiko Murai; Q.Youn Hong; Katsu Yamane; Jessica K.Hodgins
2017-01-01
Deformation of skin and muscle is essential for bringing an animated character to life. This deformation is difficult to animate in a realistic fashion using traditional techniques because of the subtlety of the skin deformations that must move appropriately for the character design. In this paper, we present an algorithm that generates natural, dynamic, and detailed skin deformation(movement and jiggle) from joint angle data sequences. The algorithm has two steps: identification of parameters for a quasi-static muscle deformation model, and simulation of skin deformation. In the identification step, we identify the model parameters using a musculoskeletal model and a short sequence of skin deformation data captured via a dense marker set. The simulation step first uses the quasi-static muscle deformation model to obtain the quasi-static muscle shape at each frame of the given motion sequence(slow jump). Dynamic skin deformation is then computed by simulating the passive muscle and soft tissue dynamics modeled as a mass–spring–damper system. Having obtained the model parameters, we can simulate dynamic skin deformations for subjects with similar body types from new motion data. We demonstrate our method by creating skin deformations for muscle co-contraction and external impacts from four different behaviors captured as skeletal motion capture data. Experimental results show that the simulated skin deformations are quantitatively and qualitatively similar to measured actual skin deformations.
Nonlinear distortion in wireless systems modeling and simulation with Matlab
Gharaibeh, Khaled M
2011-01-01
This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems
Multiple Time Series Ising Model for Financial Market Simulations
International Nuclear Information System (INIS)
Takaishi, Tetsuya
2015-01-01
In this paper we propose an Ising model which simulates multiple financial time series. Our model introduces the interaction which couples to spins of other systems. Simulations from our model show that time series exhibit the volatility clustering that is often observed in the real financial markets. Furthermore we also find non-zero cross correlations between the volatilities from our model. Thus our model can simulate stock markets where volatilities of stocks are mutually correlated
Cognitive Modeling for Agent-Based Simulation of Child Maltreatment
Hu, Xiaolin; Puddy, Richard
This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.
Modeling and Simulation Techniques for Large-Scale Communications Modeling
National Research Council Canada - National Science Library
Webb, Steve
1997-01-01
.... Tests of random number generators were also developed and applied to CECOM models. It was found that synchronization of random number strings in simulations is easy to implement and can provide significant savings for making comparative studies. If synchronization is in place, then statistical experiment design can be used to provide information on the sensitivity of the output to input parameters. The report concludes with recommendations and an implementation plan.
Monte Carlo simulation of Markov unreliability models
International Nuclear Information System (INIS)
Lewis, E.E.; Boehm, F.
1984-01-01
A Monte Carlo method is formulated for the evaluation of the unrealibility of complex systems with known component failure and repair rates. The formulation is in terms of a Markov process allowing dependences between components to be modeled and computational efficiencies to be achieved in the Monte Carlo simulation. Two variance reduction techniques, forced transition and failure biasing, are employed to increase computational efficiency of the random walk procedure. For an example problem these result in improved computational efficiency by more than three orders of magnitudes over analog Monte Carlo. The method is generalized to treat problems with distributed failure and repair rate data, and a batching technique is introduced and shown to result in substantial increases in computational efficiency for an example problem. A method for separating the variance due to the data uncertainty from that due to the finite number of random walks is presented. (orig.)
Directory of Open Access Journals (Sweden)
Lorenzo Rakesh Sewanan
2016-10-01
Full Text Available Point mutations to the human gene TPM1 have been implicated in the development of both hypertrophic and dilated cardiomyopathies. Such observations have led to studies investigating the link between single residue changes and the biophysical behavior of the tropomyosin molecule. However, the degree to which these molecular perturbations explain the performance of intact sarcomeres containing mutant tropomyosin remains uncertain. Here, we present a modeling approach that integrates various aspects of tropomyosin’s molecular properties into a cohesive paradigm representing their impact on muscle function. In particular, we considered the effects of tropomyosin mutations on (1 persistence length, (2 equilibrium between thin filament blocked and closed regulatory states, and (3 the crossbridge duty cycle. After demonstrating the ability of the new model to capture Ca-dependent myofilament responses during both dynamic and steady-state activation, we used it to capture the effects of hypertrophic cardiomyopathy (HCM related E180G and D175N mutations on skinned myofiber mechanics. Our analysis indicates that the fiber-level effects of the two mutations can be accurately described by a combination of changes to the three tropomyosin properties represented in the model. Subsequently, we used the model to predict mutation effects on muscle twitch. Both mutations led to increased twitch contractility as a consequence of diminished cooperative inhibition between thin filament regulatory units. Overall, simulations suggest that a common twitch phenotype for HCM-linked tropomyosin mutations includes both increased contractility and elevated diastolic tension.
Developing Cognitive Models for Social Simulation from Survey Data
Alt, Jonathan K.; Lieberman, Stephen
The representation of human behavior and cognition continues to challenge the modeling and simulation community. The use of survey and polling instruments to inform belief states, issue stances and action choice models provides a compelling means of developing models and simulations with empirical data. Using these types of data to population social simulations can greatly enhance the feasibility of validation efforts, the reusability of social and behavioral modeling frameworks, and the testable reliability of simulations. We provide a case study demonstrating these effects, document the use of survey data to develop cognitive models, and suggest future paths forward for social and behavioral modeling.
A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation
Wee, Loo Kang; Goh, Giam Hwee
2013-01-01
We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…
Deflagration to Detonation Transition (DDT) Simulations of HMX Powder Using the HERMES Model
White, Bradley; Reaugh, John; Tringe, Joseph
2017-06-01
We performed computer simulations of DDT experiments with Class I HMX powder using the HERMES model (High Explosive Response to MEchanical Stimulus) in ALE3D. Parameters for the model were fitted to the limited available mechanical property data of the low-density powder, and to the Shock to Detonation Transition (SDT) test results. The DDT tests were carried out in steel-capped polycarbonate tubes. This arrangement permits direct observation of the event using both flash X-ray radiography and high speed camera imaging, and provides a stringent test of the model. We found the calculated detonation transition to be qualitatively similar to experiment. Through simulation we also explored the effects of confinement strength, the HMX particle size distribution and porosity on the computed detonation transition location. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.
Four Models of In Situ Simulation
DEFF Research Database (Denmark)
Musaeus, Peter; Krogh, Kristian; Paltved, Charlotte
2014-01-01
Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest that there are f......Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest...... that there are four fruitful approaches to in situ simulation: (1) In situ simulation informed by reported critical incidents and adverse events from emergency departments (ED) in which team training is about to be conducted to write scenarios. (2) In situ simulation through ethnographic studies at the ED. (3) Using...... the following processes: Transition processes, Action processes and Interpersonal processes. Design and purpose This abstract suggests four approaches to in situ simulation. A pilot study will evaluate the different approaches in two emergency departments in the Central Region of Denmark. Methods The typology...
Modeling and simulation of the SDC data collection chip
International Nuclear Information System (INIS)
Hughes, E.; Haney, M.; Golin, E.; Jones, L.; Knapp, D.; Tharakan, G.; Downing, R.
1992-01-01
This paper describes modeling and simulation of the Data Collection Chip (DCC) design for the Solenoidal Detector Collaboration (SDC). Models of the DCC written in Verilog and VHDL are described, and results are presented. The models have been simulated to study queue depth requirements and to compare control feedback alternatives. Insight into the management of models and simulation tools is given. Finally, techniques useful in the design process for data acquisition systems are discussed
Molecular Simulation towards Efficient and Representative Subsurface Reservoirs Modeling
Kadoura, Ahmad Salim
2016-01-01
This dissertation focuses on the application of Monte Carlo (MC) molecular simulation and Molecular Dynamics (MD) in modeling thermodynamics and flow of subsurface reservoir fluids. At first, MC molecular simulation is proposed as a promising method
Modelling toolkit for simulation of maglev devices
Peña-Roche, J.; Badía-Majós, A.
2017-01-01
A stand-alone App1 has been developed, focused on obtaining information about relevant engineering properties of magnetic levitation systems. Our modelling toolkit provides real time simulations of 2D magneto-mechanical quantities for superconductor (SC)/permanent magnet structures. The source code is open and may be customised for a variety of configurations. Ultimately, it relies on the variational statement of the critical state model for the superconducting component and has been verified against experimental data for YBaCuO/NdFeB assemblies. On a quantitative basis, the values of the arising forces, induced superconducting currents, as well as a plot of the magnetic field lines are displayed upon selection of an arbitrary trajectory of the magnet in the vicinity of the SC. The stability issues related to the cooling process, as well as the maximum attainable forces for a given material and geometry are immediately observed. Due to the complexity of the problem, a strategy based on cluster computing, database compression, and real-time post-processing on the device has been implemented.
Simulation and Modeling Application in Agricultural Mechanization
Directory of Open Access Journals (Sweden)
R. M. Hudzari
2012-01-01
Full Text Available This experiment was conducted to determine the equations relating the Hue digital values of the fruits surface of the oil palm with maturity stage of the fruit in plantation. The FFB images were zoomed and captured using Nikon digital camera, and the calculation of Hue was determined using the highest frequency of the value for R, G, and B color components from histogram analysis software. New procedure in monitoring the image pixel value for oil palm fruit color surface in real-time growth maturity was developed. The estimation of day harvesting prediction was calculated based on developed model of relationships for Hue values with mesocarp oil content. The simulation model is regressed and predicts the day of harvesting or a number of days before harvest of FFB. The result from experimenting on mesocarp oil content can be used for real-time oil content determination of MPOB color meter. The graph to determine the day of harvesting the FFB was presented in this research. The oil was found to start developing in mesocarp fruit at 65 days before fruit at ripe maturity stage of 75% oil to dry mesocarp.
Mistake and non-disclosure of facts: models for English contract law
Beale, H.
2012-01-01
This book examines the case for reforming the law on mistake and non-disclosure of fact to bring English law closer to the law in much of continental Europe. There, and in common law countries like the US, a party may avoid a contract for mistake of fact on a more liberal basis, and a party who
Modelization and simulation of capillary barriers
International Nuclear Information System (INIS)
Lisbona Cortes, F.; Aguilar Villa, G.; Clavero Gracia, C.; Gracia Lozano, J.L.
1998-01-01
Among the different underground transport phenomena, that due to water flows is of great relevance. Water flows in infiltration and percolation processes are responsible of the transport of hazardous wastes towards phreatic layers. From the industrial and geological standpoints, there is a great interest in the design of natural devices to avoid the flows transporting polluting substances. This interest is increased when devices are used to isolate radioactive waste repositories, whose life is to be longer than several hundred years. The so-called natural devices are those based on the superimposition of material with different hydraulic properties. In particular, the flow retention in this kind stratified media, in unsaturated conditions, is basically due to the capillary barrier effect, resulting from placing a low conductivity material over another with a high hydraulic conductivity. Covers designed from the effect above have also to allow a drainage of the upper layer. The lower cost of these covers, with respect to other kinds of protection systems, and the stability in time of their components make them very attractive. However, a previous investigation to determine their effectivity is required. In this report we present the computer code BCSIM, useful for easy simulations of unsaturated flows in a capillary barrier configuration with drainage, and which is intended to serve as a tool for designing efficient covers. The model, the numerical algorithm and several implementation aspects are described. Results obtained in several simulations, confirming the effectivity of capillary barriers as a technique to build safety covers for hazardous waste repositories, are presented. (Author)
Simulation Models for Socioeconomic Inequalities in Health: A Systematic Review
Directory of Open Access Journals (Sweden)
Niko Speybroeck
2013-11-01
Full Text Available Background: The emergence and evolution of socioeconomic inequalities in health involves multiple factors interacting with each other at different levels. Simulation models are suitable for studying such complex and dynamic systems and have the ability to test the impact of policy interventions in silico. Objective: To explore how simulation models were used in the field of socioeconomic inequalities in health. Methods: An electronic search of studies assessing socioeconomic inequalities in health using a simulation model was conducted. Characteristics of the simulation models were extracted and distinct simulation approaches were identified. As an illustration, a simple agent-based model of the emergence of socioeconomic differences in alcohol abuse was developed. Results: We found 61 studies published between 1989 and 2013. Ten different simulation approaches were identified. The agent-based model illustration showed that multilevel, reciprocal and indirect effects of social determinants on health can be modeled flexibly. Discussion and Conclusions: Based on the review, we discuss the utility of using simulation models for studying health inequalities, and refer to good modeling practices for developing such models. The review and the simulation model example suggest that the use of simulation models may enhance the understanding and debate about existing and new socioeconomic inequalities of health frameworks.
An electrical circuit model for simulation of indoor radon concentration.
Musavi Nasab, S M; Negarestani, A
2013-01-01
In this study, a new model based on electric circuit theory was introduced to simulate the behaviour of indoor radon concentration. In this model, a voltage source simulates radon generation in walls, conductivity simulates migration through walls and voltage across a capacitor simulates radon concentration in a room. This simulation considers migration of radon through walls by diffusion mechanism in one-dimensional geometry. Data reported in a typical Greek house were employed to examine the application of this technique of simulation to the behaviour of radon.
Aircraft vulnerability analysis by modeling and simulation
Willers, Cornelius J.; Willers, Maria S.; de Waal, Alta
2014-10-01
guidance acceleration and seeker sensitivity. For the purpose of this investigation the aircraft is equipped with conventional pyrotechnic decoy flares and the missile has no counter-countermeasure means (security restrictions on open publication). This complete simulation is used to calculate the missile miss distance, when the missile is launched from different locations around the aircraft. The miss distance data is then graphically presented showing miss distance (aircraft vulnerability) as a function of launch direction and range. The aircraft vulnerability graph accounts for aircraft and missile characteristics, but does not account for missile deployment doctrine. A Bayesian network is constructed to fuse the doctrinal rules with the aircraft vulnerability data. The Bayesian network now provides the capability to evaluate the combined risk of missile launch and aircraft vulnerability. It is shown in this paper that it is indeed possible to predict the aircraft vulnerability to missile attack in a comprehensive modelling and a holistic process. By using the appropriate real-world models, this approach is used to evaluate the effectiveness of specific countermeasure techniques against specific missile threats. The use of a Bayesian network provides the means to fuse simulated performance data with more abstract doctrinal rules to provide a realistic assessment of the aircraft vulnerability.
Model calibration for building energy efficiency simulation
International Nuclear Information System (INIS)
Mustafaraj, Giorgio; Marini, Dashamir; Costa, Andrea; Keane, Marcus
2014-01-01
Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE) hourly from −5.6% to 7.5% and CV(RMSE) hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases
Predictive Capability Maturity Model for computational modeling and simulation.
Energy Technology Data Exchange (ETDEWEB)
Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.
2007-10-01
The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.
Sunspot Modeling: From Simplified Models to Radiative MHD Simulations
Directory of Open Access Journals (Sweden)
Rolf Schlichenmaier
2011-09-01
Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.
Life cycle cost-based risk model for energy performance contracting retrofits
Berghorn, George H.
Buildings account for 41% of the primary energy consumption in the United States, nearly half of which is accounted for by commercial buildings. Among the greatest energy users are those in the municipalities, universities, schools, and hospitals (MUSH) market. Correctional facilities are in the upper half of all commercial building types for energy intensity. Public agencies have experienced reduced capital budgets to fund retrofits; this has led to the increased use of energy performance contracts (EPC), which are implemented by energy services companies (ESCOs). These companies guarantee a minimum amount of energy savings resulting from the retrofit activities, which in essence transfers performance risk from the owner to the contractor. Building retrofits in the MUSH market, especially correctional facilities, are well-suited to EPC, yet despite this potential and their high energy intensities, efficiency improvements lag behind that of other public building types. Complexities in project execution, lack of support for data requests and sub-metering, and conflicting project objectives have been cited as reasons for this lag effect. As a result, project-level risks must be understood in order to support wider adoption of retrofits in the public market, in particular the correctional facility sub-market. The goal of this research is to understand risks related to the execution of energy efficiency retrofits delivered via EPC in the MUSH market. To achieve this goal, in-depth analysis and improved understanding was sought with regard to ESCO risks that are unique to EPC in this market. The proposed work contributes to this understanding by developing a life cycle cost-based risk model to improve project decision making with regard to risk control and reduction. The specific objectives of the research are: (1) to perform an exploratory analysis of the EPC retrofit process and identify key areas of performance risk requiring in-depth analysis; (2) to construct a
Guidelines for Reproducibly Building and Simulating Systems Biology Models.
Medley, J Kyle; Goldberg, Arthur P; Karr, Jonathan R
2016-10-01
Reproducibility is the cornerstone of the scientific method. However, currently, many systems biology models cannot easily be reproduced. This paper presents methods that address this problem. We analyzed the recent Mycoplasma genitalium whole-cell (WC) model to determine the requirements for reproducible modeling. We determined that reproducible modeling requires both repeatable model building and repeatable simulation. New standards and simulation software tools are needed to enhance and verify the reproducibility of modeling. New standards are needed to explicitly document every data source and assumption, and new deterministic parallel simulation tools are needed to quickly simulate large, complex models. We anticipate that these new standards and software will enable researchers to reproducibly build and simulate more complex models, including WC models.
Construction of a kinetics model for liquid-solid transitions built from atomistic simulations
Benedict, Lorin; Zepeda-Ruiz, Luis; Haxhimali, Tomorr; Hamel, Sebastien; Sadigh, Babak; Chernov, Alexander; Belof, Jonathan
We discuss work in progress towards a kinetics model for dynamically-driven liquid-solid transitions built from MD simulations. The growth of solid particles within a liquid is studied for a range of conditions, and careful attention is paid to the construction of an accurate multi-phase (equilibrium) equation of state for the system under consideration, in order to provide a framework upon which the non-equilibrium physics is based. His work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.
Beyond Modeling: All-Atom Olfactory Receptor Model Simulations
Directory of Open Access Journals (Sweden)
Peter C Lai
2012-05-01
Full Text Available Olfactory receptors (ORs are a type of GTP-binding protein-coupled receptor (GPCR. These receptors are responsible for mediating the sense of smell through their interaction with odor ligands. OR-odorant interactions marks the first step in the process that leads to olfaction. Computational studies on model OR structures can validate experimental functional studies as well as generate focused and novel hypotheses for further bench investigation by providing a view of these interactions at the molecular level. Here we have shown the specific advantages of simulating the dynamic environment that is associated with OR-odorant interactions. We present a rigorous methodology that ranges from the creation of a computationally-derived model of an olfactory receptor to simulating the interactions between an OR and an odorant molecule. Given the ubiquitous occurrence of GPCRs in the membranes of cells, we anticipate that our OR-developed methodology will serve as a model for the computational structural biology of all GPCRs.
Directory of Open Access Journals (Sweden)
Vukićević-Petković Milica
2015-01-01
Full Text Available Administrative contracts are a special type of contract where usually one of the contracting parties is a public law body and which is concluded for the performance of public service and the realization of a public interest. They go a long way since its inception to its eventual final acceptance of all the legal systems. One of the enduring characteristics of this type of contract is their disquised or unnoticed existence. This is why only monitoring their development may lead to a complete understanding of the importance and essence of this institution as well as the need for its complete legal regulation.
Neidle, Michael
2013-01-01
Electrical Contracting, Second Edition is a nine-chapter text guide for the greater efficiency in planning and completing installations for the design, installation and control of electrical contracts. This book starts with a general overview of the efficient cabling and techniques that must be employed for safe wiring design, as well as the cost estimation of the complete electrical contract. The subsequent chapters are devoted to other electrical contracting requirements, including electronic motor control, lighting, and electricity tariffs. A chapter focuses on the IEE Wiring Regulations an
Vukićević-Petković Milica
2015-01-01
Administrative contracts are a special type of contract where usually one of the contracting parties is a public law body and which is concluded for the performance of public service and the realization of a public interest. They go a long way since its inception to its eventual final acceptance of all the legal systems. One of the enduring characteristics of this type of contract is their disquised or unnoticed existence. This is why only monitoring their development may lead to a complete u...
The COD Model: Simulating Workgroup Performance
Biggiero, Lucio; Sevi, Enrico
Though the question of the determinants of workgroup performance is one of the most central in organization science, precise theoretical frameworks and formal demonstrations are still missing. In order to fill in this gap the COD agent-based simulation model is here presented and used to study the effects of task interdependence and bounded rationality on workgroup performance. The first relevant finding is an algorithmic demonstration of the ordering of interdependencies in terms of complexity, showing that the parallel mode is the most simplex, followed by the sequential and then by the reciprocal. This result is far from being new in organization science, but what is remarkable is that now it has the strength of an algorithmic demonstration instead of being based on the authoritativeness of some scholar or on some episodic empirical finding. The second important result is that the progressive introduction of realistic limits to agents' rationality dramatically reduces workgroup performance and addresses to a rather interesting result: when agents' rationality is severely bounded simple norms work better than complex norms. The third main finding is that when the complexity of interdependence is high, then the appropriate coordination mechanism is agents' direct and active collaboration, which means teamwork.
Diversity modelling for electrical power system simulation
International Nuclear Information System (INIS)
Sharip, R M; Abu Zarim, M A U A
2013-01-01
This paper considers diversity of generation and demand profiles against the different future energy scenarios and evaluates these on a technical basis. Compared to previous studies, this research applied a forecasting concept based on possible growth rates from publically electrical distribution scenarios concerning the UK. These scenarios were created by different bodies considering aspects such as environment, policy, regulation, economic and technical. In line with these scenarios, forecasting is on a long term timescale (up to every ten years from 2020 until 2050) in order to create a possible output of generation mix and demand profiles to be used as an appropriate boundary condition for the network simulation. The network considered is a segment of rural LV populated with a mixture of different housing types. The profiles for the 'future' energy and demand have been successfully modelled by applying a forecasting method. The network results under these profiles shows for the cases studied that even though the value of the power produced from each Micro-generation is often in line with the demand requirements of an individual dwelling there will be no problems arising from high penetration of Micro-generation and demand side management for each dwellings considered. The results obtained highlight the technical issues/changes for energy delivery and management to rural customers under the future energy scenarios
Diversity modelling for electrical power system simulation
Sharip, R. M.; Abu Zarim, M. A. U. A.
2013-12-01
This paper considers diversity of generation and demand profiles against the different future energy scenarios and evaluates these on a technical basis. Compared to previous studies, this research applied a forecasting concept based on possible growth rates from publically electrical distribution scenarios concerning the UK. These scenarios were created by different bodies considering aspects such as environment, policy, regulation, economic and technical. In line with these scenarios, forecasting is on a long term timescale (up to every ten years from 2020 until 2050) in order to create a possible output of generation mix and demand profiles to be used as an appropriate boundary condition for the network simulation. The network considered is a segment of rural LV populated with a mixture of different housing types. The profiles for the 'future' energy and demand have been successfully modelled by applying a forecasting method. The network results under these profiles shows for the cases studied that even though the value of the power produced from each Micro-generation is often in line with the demand requirements of an individual dwelling there will be no problems arising from high penetration of Micro-generation and demand side management for each dwellings considered. The results obtained highlight the technical issues/changes for energy delivery and management to rural customers under the future energy scenarios.
Optical Imaging and Radiometric Modeling and Simulation
Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.
2010-01-01
OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge
Modeling ground-based timber harvesting systems using computer simulation
Jingxin Wang; Chris B. LeDoux
2001-01-01
Modeling ground-based timber harvesting systems with an object-oriented methodology was investigated. Object-oriented modeling and design promote a better understanding of requirements, cleaner designs, and better maintainability of the harvesting simulation system. The model developed simulates chainsaw felling, drive-to-tree feller-buncher, swing-to-tree single-grip...
Simulation Modeling of a Facility Layout in Operations Management Classes
Yazici, Hulya Julie
2006-01-01
Teaching quantitative courses can be challenging. Similarly, layout modeling and lean production concepts can be difficult to grasp in an introductory OM (operations management) class. This article describes a simulation model developed in PROMODEL to facilitate the learning of layout modeling and lean manufacturing. Simulation allows for the…
Dynamic wind turbine models in power system simulation tool
DEFF Research Database (Denmark)
Hansen, A.; Jauch, Clemens; Soerensen, P.
The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...
A New Model for Simulating TSS Washoff in Urban Areas
Directory of Open Access Journals (Sweden)
E. Crobeddu
2011-01-01
Full Text Available This paper presents the formulation and validation of the conceptual Runoff Quality Simulation Model (RQSM that was developed to simulate the erosion and transport of solid particles in urban areas. The RQSM assumes that solid particle accumulation on pervious and impervious areas is infinite. The RQSM simulates soil erosion using rainfall kinetic energy and solid particle transport with linear system theory. A sensitivity analysis was conducted on the RQSM to show the influence of each parameter on the simulated load. Total suspended solid (TSS loads monitored at the outlet of the borough of Verdun in Canada and at three catchment outlets of the City of Champaign in the United States were used to validate the RQSM. TSS loads simulated by the RQSM were compared to measured loads and to loads simulated by the Rating Curve model and the Exponential model of the SWMM software. The simulation performance of the RQSM was comparable to the Exponential and Rating Curve models.
Business Process Simulation: Requirements for Business and Resource Models
Directory of Open Access Journals (Sweden)
Audrius Rima
2015-07-01
Full Text Available The purpose of Business Process Model and Notation (BPMN is to provide easily understandable graphical representation of business process. Thus BPMN is widely used and applied in various areas one of them being a business process simulation. This paper addresses some BPMN model based business process simulation problems. The paper formulate requirements for business process and resource models in enabling their use for business process simulation.
Standard Port-Visit Cost Forecasting Model for U.S. Navy Husbanding Contracts
2009-12-01
Protocol (HTTP) server.35 2. MySQL . An open-source database.36 3. PHP . A common scripting language used for Web development.37 E. IMPLEMENTATION OF...Inc. (2009). MySQL Community Server (Version 5.1) [Software]. Available from http://dev.mysql.com/downloads/ 37 The PHP Group (2009). PHP (Version...Logistics Services MySQL My Structured Query Language NAVSUP Navy Supply Systems Command NC Non-Contract Items NPS Naval Postgraduate
2011-07-01
Branching Configuration 33 6.6 CONTRACTION COEFFICIENT 35 7.0 SUPERCAVITATION 36 7.1 FLOW REATTACHMENT 36 7.1.1 In-Line... SUPERCAVITATION 37 7.2.1 In-Line Configuration Critical Cavitation 37 7.2.2 Dead Head Configuration Critical Cavitation 38 7.2.3 Approach...regimes are: (1) Non-Cavitation, (2) Inception of Cavitation, (3) Full Cavitation, (4) Supercavitation , and (5) Hydraulic Flip. The flow
Mathematical model and simulations of radiation fluxes from buried radionuclides
International Nuclear Information System (INIS)
Ahmad Saat
1999-01-01
A mathematical model and a simple Monte Carlo simulations were developed to predict radiation fluxes from buried radionuclides. The model and simulations were applied to measured (experimental) data. The results of the mathematical model showed good acceptable order of magnitude agreement. A good agreement was also obtained between the simple simulations and the experimental results. Thus, knowing the radionuclide distribution profiles in soil from a core sample, it can be applied to the model or simulations to estimate the radiation fluxes emerging from the soil surface. (author)
Quantum Link Models and Quantum Simulation of Gauge Theories
International Nuclear Information System (INIS)
Wiese, U.J.
2015-01-01
This lecture is about Quantum Link Models and Quantum Simulation of Gauge Theories. The lecture consists out of 4 parts. The first part gives a brief history of Computing and Pioneers of Quantum Computing and Quantum Simulations of Quantum Spin Systems are introduced. The 2nd lecture is about High-Temperature Superconductors versus QCD, Wilson’s Lattice QCD and Abelian Quantum Link Models. The 3rd lecture deals with Quantum Simulators for Abelian Lattice Gauge Theories and Non-Abelian Quantum Link Models. The last part of the lecture discusses Quantum Simulators mimicking ‘Nuclear’ physics and the continuum limit of D-Theorie models. (nowak)
Modeling and Simulation of U-tube Steam Generator
Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei
2018-03-01
The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.
Functional Decomposition of Modeling and Simulation Terrain Database Generation Process
National Research Council Canada - National Science Library
Yakich, Valerie R; Lashlee, J. D
2008-01-01
.... This report documents the conceptual procedure as implemented by Lockheed Martin Simulation, Training, and Support and decomposes terrain database construction using the Integration Definition for Function Modeling (IDEF...
Global Information Enterprise (GIE) Modeling and Simulation (GIESIM)
National Research Council Canada - National Science Library
Bell, Paul
2005-01-01
... AND S) toolkits into the Global Information Enterprise (GIE) Modeling and Simulation (GIESim) framework to create effective user analysis of candidate communications architectures and technologies...
Modeling, Simulation and Position Control of 3DOF Articulated Manipulator
Directory of Open Access Journals (Sweden)
Hossein Sadegh Lafmejani
2014-08-01
Full Text Available In this paper, the modeling, simulation and control of 3 degrees of freedom articulated robotic manipulator have been studied. First, we extracted kinematics and dynamics equations of the mentioned manipulator by using the Lagrange method. In order to validate the analytical model of the manipulator we compared the model simulated in the simulation environment of Matlab with the model was simulated with the SimMechanics toolbox. A sample path has been designed for analyzing the tracking subject. The system has been linearized with feedback linearization and then a PID controller was applied to track a reference trajectory. Finally, the control results have been compared with a nonlinear PID controller.
MODEL OF HEAT SIMULATOR FOR DATA CENTERS
Directory of Open Access Journals (Sweden)
Jan Novotný
2016-08-01
Full Text Available The aim of this paper is to present a design and a development of a heat simulator, which will be used for a flow research in data centers. The designed heat simulator is based on an ideological basis of four-processor 1U Supermicro server. The designed heat simulator enables to control the flow and heat output within the range of 10–100 %. The paper covers also the results of testing measurements of mass flow rates and heat flow rates in the simulator. The flow field at the outlet of the server was measured by the stereo PIV method. The heat flow rate was determined, based on measuring the temperature field at the inlet and outlet of the simulator and known mass flow rate.
Common modelling approaches for training simulators for nuclear power plants
International Nuclear Information System (INIS)
1990-02-01
Training simulators for nuclear power plant operating staff have gained increasing importance over the last twenty years. One of the recommendations of the 1983 IAEA Specialists' Meeting on Nuclear Power Plant Training Simulators in Helsinki was to organize a Co-ordinated Research Programme (CRP) on some aspects of training simulators. The goal statement was: ''To establish and maintain a common approach to modelling for nuclear training simulators based on defined training requirements''. Before adapting this goal statement, the participants considered many alternatives for defining the common aspects of training simulator models, such as the programming language used, the nature of the simulator computer system, the size of the simulation computers, the scope of simulation. The participants agreed that it was the training requirements that defined the need for a simulator, the scope of models and hence the type of computer complex that was required, the criteria for fidelity and verification, and was therefore the most appropriate basis for the commonality of modelling approaches. It should be noted that the Co-ordinated Research Programme was restricted, for a variety of reasons, to consider only a few aspects of training simulators. This report reflects these limitations, and covers only the topics considered within the scope of the programme. The information in this document is intended as an aid for operating organizations to identify possible modelling approaches for training simulators for nuclear power plants. 33 refs
Qualitative and Quantitative Integrated Modeling for Stochastic Simulation and Optimization
Directory of Open Access Journals (Sweden)
Xuefeng Yan
2013-01-01
Full Text Available The simulation and optimization of an actual physics system are usually constructed based on the stochastic models, which have both qualitative and quantitative characteristics inherently. Most modeling specifications and frameworks find it difficult to describe the qualitative model directly. In order to deal with the expert knowledge, uncertain reasoning, and other qualitative information, a qualitative and quantitative combined modeling specification was proposed based on a hierarchical model structure framework. The new modeling approach is based on a hierarchical model structure which includes the meta-meta model, the meta-model and the high-level model. A description logic system is defined for formal definition and verification of the new modeling specification. A stochastic defense simulation was developed to illustrate how to model the system and optimize the result. The result shows that the proposed method can describe the complex system more comprehensively, and the survival probability of the target is higher by introducing qualitative models into quantitative simulation.
Roig, Francesc; Saigí, Francesc
2011-01-01
Despite the clear political will to promote telemedicine and the large number of initiatives, the incorporation of this modality in clinical practice remains limited. The objective of this study was to identify the barriers perceived by key professionals who actively participate in the design and implementation of telemedicine in a healthcare system model based on purchasing of healthcare services using providers' contracts. We performed a qualitative study based on data from semi-structured interviews with 17 key informants belonging to distinct Catalan health organizations. The barriers identified were grouped in four areas: technological, organizational, human and economic. The main barriers identified were changes in the healthcare model caused by telemedicine, problems with strategic alignment, resistance to change in the (re)definition of roles, responsibilities and new skills, and lack of a business model that incorporates telemedicine in the services portfolio to ensure its sustainability. In addition to suitable management of change and of the necessary strategic alignment, the definitive normalization of telemedicine in a mixed healthcare model based on purchasing of healthcare services using providers' contracts requires a clear and stable business model that incorporates this modality in the services portfolio and allows healthcare organizations to obtain reimbursement from the payer. 2010 SESPAS. Published by Elsevier Espana. All rights reserved.
International Nuclear Information System (INIS)
Finelli, Fabio; Brandenberger, Robert
2002-01-01
In pre-big-bang and in ekpyrotic cosmology, perturbations on cosmological scales today are generated from quantum vacuum fluctuations during a phase when the Universe is contracting (viewed in the Einstein frame). The backgrounds studied to date do not yield a scale-invariant spectrum of adiabatic fluctuations. Here, we present a new contracting background model (neither of pre-big-bang nor of the ekpyrotic form) involving a single scalar field coupled to gravity in which a scale-invariant spectrum of curvature fluctuations and gravitational waves results. The equation of state of this scalar field corresponds to cold matter. We demonstrate that if this contracting phase can be matched via a nonsingular bounce to an expanding Friedmann cosmology, the scale-invariance of the curvature fluctuations is maintained. We also find new background solutions for pre-big-bang and for ekpyrotic cosmology, which involve two scalar fields with exponential potentials with background values which are evolving in time. We comment on the difficulty of obtaining a scale-invariant spectrum of adiabatic fluctuations with background solutions which have been studied in the past
Modeling and Simulation of a 12 MW Wind Farm
Directory of Open Access Journals (Sweden)
GROZA, V.
2010-05-01
Full Text Available The installation of wind turbines in power systems has developed rapidly through the last 20 years. In this paper a complete simulation model of a 6 x 2 MW wind turbines is presented using data from a wind farm installed in Denmark. A model of the wind turbine with cage-rotor induction generator is presented in details. A set of simulations are performed and they show that it is possible to simulate a complete wind farm from wind to the grid. The simulation tool can also be used to simulate bigger wind farms connected to the grid.
Theory of compressive modeling and simulation
Szu, Harold; Cha, Jae; Espinola, Richard L.; Krapels, Keith
2013-05-01
Modeling and Simulation (M&S) has been evolving along two general directions: (i) data-rich approach suffering the curse of dimensionality and (ii) equation-rich approach suffering computing power and turnaround time. We suggest a third approach. We call it (iii) compressive M&S (CM&S); because the basic Minimum Free-Helmholtz Energy (MFE) facilitating CM&S can reproduce and generalize Candes, Romberg, Tao & Donoho (CRT&D) Compressive Sensing (CS) paradigm as a linear Lagrange Constraint Neural network (LCNN) algorithm. CM&S based MFE can generalize LCNN to 2nd order as Nonlinear augmented LCNN. For example, during the sunset, we can avoid a reddish bias of sunlight illumination due to a long-range Rayleigh scattering over the horizon. With CM&S we can take instead of day camera, a night vision camera. We decomposed long wave infrared (LWIR) band with filter into 2 vector components (8~10μm and 10~12μm) and used LCNN to find pixel by pixel the map of Emissive-Equivalent Planck Radiation Sources (EPRS). Then, we up-shifted consistently, according to de-mixed sources map, to the sub-micron RGB color image. Moreover, the night vision imaging can also be down-shifted at Passive Millimeter Wave (PMMW) imaging, suffering less blur owing to dusty smokes scattering and enjoying apparent smoothness of surface reflectivity of man-made objects under the Rayleigh resolution. One loses three orders of magnitudes in the spatial Rayleigh resolution; but gains two orders of magnitude in the reflectivity, and gains another two orders in the propagation without obscuring smog . Since CM&S can generate missing data and hard to get dynamic transients, CM&S can reduce unnecessary measurements and their associated cost and computing in the sense of super-saving CS: measuring one & getting one's neighborhood free .
Architecture oriented modeling and simulation method for combat mission profile
Directory of Open Access Journals (Sweden)
CHEN Xia
2017-05-01
Full Text Available In order to effectively analyze the system behavior and system performance of combat mission profile, an architecture-oriented modeling and simulation method is proposed. Starting from the architecture modeling,this paper describes the mission profile based on the definition from National Military Standard of China and the US Department of Defense Architecture Framework(DoDAFmodel, and constructs the architecture model of the mission profile. Then the transformation relationship between the architecture model and the agent simulation model is proposed to form the mission profile executable model. At last,taking the air-defense mission profile as an example,the agent simulation model is established based on the architecture model,and the input and output relations of the simulation model are analyzed. It provides method guidance for the combat mission profile design.
International Nuclear Information System (INIS)
Zou Tingyun
1996-01-01
A multi-node containment thermal-hydraulic model has been developed and adapted in Full Scope Simulator for Qinshan 300 MW Nuclear Power Unit with good realtime simulation effects. Containment pressure for LBLOCA calculated by the model is well agreed with those of CONTEMPT-4/MOD3
Medical simulation: Overview, and application to wound modelling and management
Directory of Open Access Journals (Sweden)
Dinker R Pai
2012-01-01
Full Text Available Simulation in medical education is progressing in leaps and bounds. The need for simulation in medical education and training is increasing because of a overall increase in the number of medical students vis-à-vis the availability of patients; b increasing awareness among patients of their rights and consequent increase in litigations and c tremendous improvement in simulation technology which makes simulation more and more realistic. Simulation in wound care can be divided into use of simulation in wound modelling (to test the effect of projectiles on the body and simulation for training in wound management. Though this science is still in its infancy, more and more researchers are now devising both low-technology and high-technology (virtual reality simulators in this field. It is believed that simulator training will eventually translate into better wound care in real patients, though this will be the subject of further research.
Medical simulation: Overview, and application to wound modelling and management.
Pai, Dinker R; Singh, Simerjit
2012-05-01
Simulation in medical education is progressing in leaps and bounds. The need for simulation in medical education and training is increasing because of a) overall increase in the number of medical students vis-à-vis the availability of patients; b) increasing awareness among patients of their rights and consequent increase in litigations and c) tremendous improvement in simulation technology which makes simulation more and more realistic. Simulation in wound care can be divided into use of simulation in wound modelling (to test the effect of projectiles on the body) and simulation for training in wound management. Though this science is still in its infancy, more and more researchers are now devising both low-technology and high-technology (virtual reality) simulators in this field. It is believed that simulator training will eventually translate into better wound care in real patients, though this will be the subject of further research.
Understanding Emergency Care Delivery Through Computer Simulation Modeling.
Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L
2018-02-01
In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.
Vehicle Modeling for Future Generation Transportation Simulation
2009-05-10
Recent development of inter-vehicular wireless communication technologies have motivated many innovative applications aiming at significantly increasing traffic throughput and improving highway safety. Powerful traffic simulation is an indispensable ...
A eural etwork Model for Dynamics Simulation
African Journals Online (AJOL)
Nafiisah
Results 5 - 18 ... situations, such as a dynamic environment (e.g., a molecular dynamics (MD) simulation whereby an atom constantly changes its local environment and number ..... of systems including both small clusters and bulk structures. 7.
Induction generator models in dynamic simulation tools
DEFF Research Database (Denmark)
Knudsen, Hans; Akhmatov, Vladislav
1999-01-01
For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained...
SIMULATION TOOLS FOR ELECTRICAL MACHINES MODELLING ...
African Journals Online (AJOL)
Dr Obe
ABSTRACT. Simulation tools are used both for research and teaching to allow a good ... The solution provide an easy way of determining the dynamic .... incorporate an in-built numerical algorithm, ... to learn, versatile in application, enhanced.
Multiscale Modeling and Simulation of Material Processing
2006-07-01
challenge is how to develop methods that permit simulation of a process with a fewer number of atoms (for e.g. 106 instead of 1014 atoms in a cube) or...rreula bakgrundmes to ea wih poblms n-here. In dynamic simulations, the mass and momentum volving rapidly varying stress, such as stress field near a...significant, as indicated by numerical examples that will follow. We next summarize the coupling scheme with the aid of flowchart Fig. 8. The material
Discrete event simulation modelling of patient service management with Arena
Guseva, Elena; Varfolomeyeva, Tatyana; Efimova, Irina; Movchan, Irina
2018-05-01
This paper describes the simulation modeling methodology aimed to aid in solving the practical problems of the research and analysing the complex systems. The paper gives the review of a simulation platform sand example of simulation model development with Arena 15.0 (Rockwell Automation).The provided example of the simulation model for the patient service management helps to evaluate the workload of the clinic doctors, determine the number of the general practitioners, surgeons, traumatologists and other specialized doctors required for the patient service and develop recommendations to ensure timely delivery of medical care and improve the efficiency of the clinic operation.
Stochastic models to simulate paratuberculosis in dairy herds
DEFF Research Database (Denmark)
Nielsen, Søren Saxmose; Weber, M.F.; Kudahl, Anne Margrethe Braad
2011-01-01
Stochastic simulation models are widely accepted as a means of assessing the impact of changes in daily management and the control of different diseases, such as paratuberculosis, in dairy herds. This paper summarises and discusses the assumptions of four stochastic simulation models and their use...... the models are somewhat different in their underlying principles and do put slightly different values on the different strategies, their overall findings are similar. Therefore, simulation models may be useful in planning paratuberculosis strategies in dairy herds, although as with all models caution...
A Simulation Model Articulation of the REA Ontology
Laurier, Wim; Poels, Geert
This paper demonstrates how the REA enterprise ontology can be used to construct simulation models for business processes, value chains and collaboration spaces in supply chains. These models support various high-level and operational management simulation applications, e.g. the analysis of enterprise sustainability and day-to-day planning. First, the basic constructs of the REA ontology and the ExSpect modelling language for simulation are introduced. Second, collaboration space, value chain and business process models and their conceptual dependencies are shown, using the ExSpect language. Third, an exhibit demonstrates the use of value chain models in predicting the financial performance of an enterprise.
State-and-transition simulation models: a framework for forecasting landscape change
Daniel, Colin; Frid, Leonardo; Sleeter, Benjamin M.; Fortin, Marie-Josée
2016-01-01
SummaryA wide range of spatially explicit simulation models have been developed to forecast landscape dynamics, including models for projecting changes in both vegetation and land use. While these models have generally been developed as separate applications, each with a separate purpose and audience, they share many common features.We present a general framework, called a state-and-transition simulation model (STSM), which captures a number of these common features, accompanied by a software product, called ST-Sim, to build and run such models. The STSM method divides a landscape into a set of discrete spatial units and simulates the discrete state of each cell forward as a discrete-time-inhomogeneous stochastic process. The method differs from a spatially interacting Markov chain in several important ways, including the ability to add discrete counters such as age and time-since-transition as state variables, to specify one-step transition rates as either probabilities or target areas, and to represent multiple types of transitions between pairs of states.We demonstrate the STSM method using a model of land-use/land-cover (LULC) change for the state of Hawai'i, USA. Processes represented in this example include expansion/contraction of agricultural lands, urbanization, wildfire, shrub encroachment into grassland and harvest of tree plantations; the model also projects shifts in moisture zones due to climate change. Key model output includes projections of the future spatial and temporal distribution of LULC classes and moisture zones across the landscape over the next 50 years.State-and-transition simulation models can be applied to a wide range of landscapes, including questions of both land-use change and vegetation dynamics. Because the method is inherently stochastic, it is well suited for characterizing uncertainty in model projections. When combined with the ST-Sim software, STSMs offer a simple yet powerful means for developing a wide range of models of
Impact of reactive settler models on simulated WWTP performance
DEFF Research Database (Denmark)
Gernaey, Krist; Jeppsson, Ulf; Batstone, Damien J.
2006-01-01
for an ASM1 case study. Simulations with a whole plant model including the non-reactive Takacs settler model are used as a reference, and are compared to simulation results considering two reactive settler models. The first is a return sludge model block removing oxygen and a user-defined fraction of nitrate......, combined with a non-reactive Takacs settler. The second is a fully reactive ASM1 Takacs settler model. Simulations with the ASM1 reactive settler model predicted a 15.3% and 7.4% improvement of the simulated N removal performance, for constant (steady-state) and dynamic influent conditions respectively....... The oxygen/nitrate return sludge model block predicts a 10% improvement of N removal performance under dynamic conditions, and might be the better modelling option for ASM1 plants: it is computationally more efficient and it will not overrate the importance of decay processes in the settler....
Integrated Biosphere Simulator Model (IBIS), Version 2.5
National Aeronautics and Space Administration — ABSTRACT: The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of...
Integrated Biosphere Simulator Model (IBIS), Version 2.5
National Aeronautics and Space Administration — The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of processes,...
User's Manual for the Simulating Waves Nearshore Model (SWAN)
National Research Council Canada - National Science Library
Allard, Richard
2002-01-01
The Simulating WAves Nearshore (SWAN) model is a numerical wave model used to obtain realistic estimates of wave parameters in coastal areas, lakes, and estuaries from given wind, bottom, and current conditions...
Modeling and Simulation of Energy Recovery from a Photovoltaic ...
African Journals Online (AJOL)
Modeling and Simulation of Energy Recovery from a Photovoltaic Solar cell. ... Photovoltaic (PV) solar cell which converts solar energy directly into electrical energy is one of ... model of the solar panel which could represent the real systems.
Reliability modelling and simulation of switched linear system ...
African Journals Online (AJOL)
Reliability modelling and simulation of switched linear system control using temporal databases. ... design of fault-tolerant real-time switching systems control and modelling embedded micro-schedulers for complex systems maintenance.
Simulation modeling for quality and productivity in steel cord manufacturing
Türkseven, Can Hulusi; Turkseven, Can Hulusi; Ertek, Gürdal; Ertek, Gurdal
2003-01-01
We describe the application of simulation modeling to estimate and improve quality and productivity performance of a steel cord manufacturing system. We describe the typical steel cord manufacturing plant, emphasize its distinguishing characteristics, identify various production settings and discuss applicability of simulation as a management decision support tool. Besides presenting the general structure of the developed simulation model, we focus on wire fractures, which can be an important...
Are Hydrostatic Models Still Capable of Simulating Oceanic Fronts
2016-11-10
Hydrostatic Models Still Capable of Simulating Oceanic Fronts Yalin Fan Zhitao Yu Ocean Dynamics and Prediction Branch Oceanography Division FengYan Shi...OF PAGES 17. LIMITATION OF ABSTRACT Are Hydrostatic Models Still Capable of Simulating Oceanic Fronts? Yalin Fan, Zhitao Yu, and, Fengyan Shi1 Naval...mixed layer and thermocline simulations as well as large scale circulations. Numerical experiments are conducted using hydrostatic (HY) and
Simulating individual-based models of epidemics in hierarchical networks
Quax, R.; Bader, D.A.; Sloot, P.M.A.
2009-01-01
Current mathematical modeling methods for the spreading of infectious diseases are too simplified and do not scale well. We present the Simulator of Epidemic Evolution in Complex Networks (SEECN), an efficient simulator of detailed individual-based models by parameterizing separate dynamics
Simulation modelling in agriculture: General considerations. | R.I. ...
African Journals Online (AJOL)
A computer simulation model is a detailed working hypothesis about a given system. The computer does all the necessary arithmetic when the hypothesis is invoked to predict the future behaviour of the simulated system under given conditions.A general pragmatic approach to model building is discussed; techniques are ...
Mesoscale meteorological model based on radioactive explosion cloud simulation
International Nuclear Information System (INIS)
Zheng Yi; Zhang Yan; Ying Chuntong
2008-01-01
In order to simulate nuclear explosion and dirty bomb radioactive cloud movement and concentration distribution, mesoscale meteorological model RAMS was used. Particles-size, size-active distribution and gravitational fallout in the cloud were considered. The results show that the model can simulate the 'mushroom' clouds of explosion. Three-dimension fluid field and radioactive concentration field were received. (authors)
Exploiting Modelling and Simulation in Support of Cyber Defence
Klaver, M.H.A.; Boltjes, B.; Croom-Jonson, S.; Jonat, F.; Çankaya, Y.
2014-01-01
The rapidly evolving environment of Cyber threats against the NATO Alliance has necessitated a renewed focus on the development of Cyber Defence policy and capabilities. The NATO Modelling and Simulation Group is looking for ways to leverage Modelling and Simulation experience in research, analysis
Experimental Design for Sensitivity Analysis of Simulation Models
Kleijnen, J.P.C.
2001-01-01
This introductory tutorial gives a survey on the use of statistical designs for what if-or sensitivity analysis in simulation.This analysis uses regression analysis to approximate the input/output transformation that is implied by the simulation model; the resulting regression model is also known as
Simulation-based modeling of building complexes construction management
Shepelev, Aleksandr; Severova, Galina; Potashova, Irina
2018-03-01
The study reported here examines the experience in the development and implementation of business simulation games based on network planning and management of high-rise construction. Appropriate network models of different types and levels of detail have been developed; a simulation model including 51 blocks (11 stages combined in 4 units) is proposed.
New Simulation Models for Addressing Like X–Aircraft Responses ...
African Journals Online (AJOL)
New Simulation Models for Addressing Like X–Aircraft Responses. AS Mohammed, SO Abdulkareem. Abstract. The original Monte Carlo model was previously modified for use in simulating data that conform to certain resource flow constraints. Recent encounters in communication and controls render these data absolute ...
Analyzing Interaction Patterns to Verify a Simulation/Game Model
Myers, Rodney Dean
2012-01-01
In order for simulations and games to be effective for learning, instructional designers must verify that the underlying computational models being used have an appropriate degree of fidelity to the conceptual models of their real-world counterparts. A simulation/game that provides incorrect feedback is likely to promote misunderstanding and…
Girard, B; Tabareau, N; Pham, Q C; Berthoz, A; Slotine, J-J
2008-05-01
Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.
Eberhard, Lydia; Terebesi, Sophia; Giannakopoulos, Nikolaos Nikitas; Hellmann, Daniel; Schindler, Hans-Jürgen; Schmitter, Marc; Pfau, Doreen
2018-02-01
Bruxism is discussed as an etiological factor in the pathogenesis of orofacial and cervical pain. As the sternocleidomastoid muscle (SCM) is co-activated during clenching, our aim was to investigate, whether the muscle loading leads to peripheral or central sensitizations. In twenty-one healthy female volunteers, somatosensory profiles of the SCM were recorded according to the test battery of the German Research Network on Neuropathic Pain (DFNS) prior to and after an isometric muscle exercise. QST comprised thermal and mechanical stimuli. A submaximal activation of the SCM (15% MVC) was kept for 10min in sitting position. In separate test sessions one month apart, one sham and one verum experiment were conducted in randomized order. During the muscle loading, the parameters cold detection threshold (CDT), mechanical pain sensitivity (MPS) and pressure pain treshold (PPT) were tested and experimental pain recorded by visual analogoue scales (VAS). All test sessions were performed during the follicular phase of the menstrual cycle (day 5), to avoid effects on pain perception. Data were analyzed with Repeated Measures ANOVA (SPSS 22.0) RESULTS: No significant changes were found during or after (sham) loading except for stimulus-response-function (SR, P=0.01) and PPT (P=0.02) in the sham test. No effect was observed in the verum experiment (P=0.12 up to 1.0). Prolonged low level contraction of the SCM does not evoke painful sensitization. In contrast, submaximal muscle activation seems to have a protective effect corresponding to a training effect preventing sensitization. Copyright © 2017. Published by Elsevier Ltd.
Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation
International Nuclear Information System (INIS)
Bakic, Predrag R.; Albert, Michael; Brzakovic, Dragana; Maidment, Andrew D. A.
2002-01-01
A method is proposed for generating synthetic mammograms based upon simulations of breast tissue and the mammographic imaging process. A computer breast model has been designed with a realistic distribution of large and medium scale tissue structures. Parameters controlling the size and placement of simulated structures (adipose compartments and ducts) provide a method for consistently modeling images of the same simulated breast with modified position or acquisition parameters. The mammographic imaging process is simulated using a compression model and a model of the x-ray image acquisition process. The compression model estimates breast deformation using tissue elasticity parameters found in the literature and clinical force values. The synthetic mammograms were generated by a mammogram acquisition model using a monoenergetic parallel beam approximation applied to the synthetically compressed breast phantom
A Simulation and Modeling Framework for Space Situational Awareness
International Nuclear Information System (INIS)
Olivier, S.S.
2008-01-01
This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated
MOVES (MOTOR VEHICLE EMISSION SIMULATOR) MODEL ...
A computer model, intended to eventually replace the MOBILE model and to incorporate the NONROAD model, that will provide the ability to estimate criteria and toxic air pollutant emission factors and emission inventories that are specific to the areas and time periods of interest, at scales ranging from local to national. Development of a new emission factor and inventory model for mobile source emissions. The model will be used by air pollution modelers within EPA, and at the State and local levels.
Modeling and Simulation of Cyber Battlefield
Directory of Open Access Journals (Sweden)
AliJabar Rashidi
2017-12-01
Full Text Available In order to protect cyberspace against cyber-attacks we need cyber situation awareness framework for the implementation of our cyber maneuvers. This article allows execution cyber maneuvers with dynamic cyber battlefield simulator. Cyber battlefield contains essential information for the detection of cyber events, therefore, it can be considered most important and complicated factor in the high-level fusion. Cyber battlefield by gather detail data of cyberspace elements, including knowledge repository of vulnerability, tangible and intangible elements of cyberspace and the relationships between them, can provide and execute cyber maneuvers, penetration testing, cyber-attacks injection, attack tracking, visualization, cyber-attacks impact assessment and risk assessment. The dynamic maker Engine in simulator is designed to update the knowledge base of vulnerabilities, change the topology elements, and change the access list, services, hosts and users. Evaluation of simulator do with qualitative method of research and with create a focus group.
A simulation model for the determination of tabarru' rate in a family takaful
Ismail, Hamizun bin
2014-06-01
The concept of tabarru' that is incorporated in family takaful serves to eliminate the element of uncertainty in the contract as a participant agree to relinquish as donation certain portion of his contribution. The most important feature in family takaful is that it does not guarantee a definite return on a participant's contribution, unlike its conventional counterpart where a premium is paid in return for a guaranteed amount of insurance benefit. In other words, investment return on contributed funds by the participants are based on actual investment experience. The objective of this study is to set up a framework for the determination of tabarru' rate by simulation. The model is based on binomial death process. Specifically, linear tabarru' rate and flat tabarru' rate are introduced. The results of the simulation trials show that the linear assumption on the tabarru' rate has an advantage over the flat counterpart as far as the risk of the investment accumulation on maturity is concerned.
Modeling and simulation of pressurized water reactor power plant
International Nuclear Information System (INIS)
Wang, S.J.
1983-01-01
Two kinds of balance of plant (BOP) models of a pressurized water reactor (PWR) system are developed in this work - the detailed BOP model and the simple BOP model. The detailed model is used to simulate the normal operational performance of a whole BOP system. The simple model is used to combine with the NSSS model for a whole plant simulation. The trends of the steady state values of the detailed model are correct and the dynamic responses are reasonable. The simple BOP model approach starts the modelling work from the overall point of view. The response of the normalized turbine power and the feedwater inlet temperature to the steam generator of the simple model are compared with those of the detailed model. Both the steady state values and the dynamic responses are close to those of the detailed model. The simple BOP model is found adequate to represent the main performance of the BOP system. The simple balance of plant model was coupled with a NSSS model for a whole plant simulation. The NSSS model consists of the reactor core model, the steam generator model, and the coolant temperature control system. A closed loop whole plant simulation for an electric load perturbation was performed. The results are plausible. The coupling effect between the NSSS system and the BOP system was analyzed. The feedback of the BOP system has little effect on the steam generator performance, while the performance of the BOP system is strongly affected by the steam flow rate from the NSSS
Nonlinear plasma wave models in 3D fluid simulations of laser-plasma interaction
Chapman, Thomas; Berger, Richard; Arrighi, Bill; Langer, Steve; Banks, Jeffrey; Brunner, Stephan
2017-10-01
Simulations of laser-plasma interaction (LPI) in inertial confinement fusion (ICF) conditions require multi-mm spatial scales due to the typical laser beam size and durations of order 100 ps in order for numerical laser reflectivities to converge. To be computationally achievable, these scales necessitate a fluid-like treatment of light and plasma waves with a spatial grid size on the order of the light wave length. Plasma waves experience many nonlinear phenomena not naturally described by a fluid treatment, such as frequency shifts induced by trapping, a nonlinear (typically suppressed) Landau damping, and mode couplings leading to instabilities that can cause the plasma wave to decay rapidly. These processes affect the onset and saturation of stimulated Raman and Brillouin scattering, and are of direct interest to the modeling and prediction of deleterious LPI in ICF. It is not currently computationally feasible to simulate these Debye length-scale phenomena in 3D across experimental scales. Analytically-derived and/or numerically benchmarked models of processes occurring at scales finer than the fluid simulation grid offer a path forward. We demonstrate the impact of a range of kinetic processes on plasma reflectivity via models included in the LPI simulation code pF3D. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
An ARM data-oriented diagnostics package to evaluate the climate model simulation
Zhang, C.; Xie, S.
2016-12-01
A set of diagnostics that utilize long-term high frequency measurements from the DOE Atmospheric Radiation Measurement (ARM) program is developed for evaluating the regional simulation of clouds, radiation and precipitation in climate models. The diagnostics results are computed and visualized automatically in a python-based package that aims to serve as an easy entry point for evaluating climate simulations using the ARM data, as well as the CMIP5 multi-model simulations. Basic performance metrics are computed to measure the accuracy of mean state and variability of simulated regional climate. The evaluated physical quantities include vertical profiles of clouds, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, radiative fluxes, aerosol and cloud microphysical properties. Process-oriented diagnostics focusing on individual cloud and precipitation-related phenomena are developed for the evaluation and development of specific model physical parameterizations. Application of the ARM diagnostics package will be presented in the AGU session. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, IM release number is: LLNL-ABS-698645.
The invaluable benefits of modeling and simulation in our lives
International Nuclear Information System (INIS)
Lorencez, C.
2015-01-01
'Full text:' In general terms, we associate the words 'modeling and simulation' with semi-ideal mathematical models reproducing complex Engineering problems. However, the use of modeling and simulation is much more extensive than that: it is applied on a daily basis in almost every front of Science, from sociology and biology to climate change, medicine, robotics, war strategies, etc. It is also being applied by our frontal lobe when we make decisions. The results of these exercises on modeling and simulation have had invaluable benefits on our well being, and we are just at the beginning. (author)
Optical modeling and simulation of thin-film photovoltaic devices
Krc, Janez
2013-01-01
In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models
The invaluable benefits of modeling and simulation in our lives
Energy Technology Data Exchange (ETDEWEB)
Lorencez, C., E-mail: carlos.lorencez@opg.com [Ontario Power Generation, Nuclear Safety Div., Pickering, Ontario (Canada)
2015-07-01
'Full text:' In general terms, we associate the words 'modeling and simulation' with semi-ideal mathematical models reproducing complex Engineering problems. However, the use of modeling and simulation is much more extensive than that: it is applied on a daily basis in almost every front of Science, from sociology and biology to climate change, medicine, robotics, war strategies, etc. It is also being applied by our frontal lobe when we make decisions. The results of these exercises on modeling and simulation have had invaluable benefits on our well being, and we are just at the beginning. (author)
Relative importance of secondary settling tank models in WWTP simulations
DEFF Research Database (Denmark)
Ramin, Elham; Flores-Alsina, Xavier; Sin, Gürkan
2012-01-01
Results obtained in a study using the Benchmark Simulation Model No. 1 (BSM1) show that a one-dimensional secondary settling tank (1-D SST) model structure and its parameters are among the most significant sources of uncertainty in wastewater treatment plant (WWTP) simulations [Ramin et al., 2011......]. The sensitivity results consistently indicate that the prediction of sludge production is most sensitive to the variation of the settling parameters. In the present study, we use the Benchmark Simulation Model No. 2 (BSM2), a plant-wide benchmark, that combines the Activated Sludge Model No. 1 (ASM1...
Simulation modeling on the growth of firm's safety management capability
Institute of Scientific and Technical Information of China (English)
LIU Tie-zhong; LI Zhi-xiang
2008-01-01
Aiming to the deficiency of safety management measure, established simulation model about firm's safety management capability(FSMC) based on organizational learning theory. The system dynamics(SD) method was used, in which level and rate system, variable equation and system structure flow diagram was concluded. Simulation model was verified from two aspects: first, model's sensitivity to variable was tested from the gross of safety investment and the proportion of safety investment; second, variables dependency was checked up from the correlative variable of FSMC and organizational learning. The feasibility of simulation model is verified though these processes.
A study for production simulation model generation system based on data model at a shipyard
Directory of Open Access Journals (Sweden)
Myung-Gi Back
2016-09-01
Full Text Available Simulation technology is a type of shipbuilding product lifecycle management solution used to support production planning or decision-making. Normally, most shipbuilding processes are consisted of job shop production, and the modeling and simulation require professional skills and experience on shipbuilding. For these reasons, many shipbuilding companies have difficulties adapting simulation systems, regardless of the necessity for the technology. In this paper, the data model for shipyard production simulation model generation was defined by analyzing the iterative simulation modeling procedure. The shipyard production simulation data model defined in this study contains the information necessary for the conventional simulation modeling procedure and can serve as a basis for simulation model generation. The efficacy of the developed system was validated by applying it to the simulation model generation of the panel block production line. By implementing the initial simulation model generation process, which was performed in the past with a simulation modeler, the proposed system substantially reduced the modeling time. In addition, by reducing the difficulties posed by different modeler-dependent generation methods, the proposed system makes the standardization of the simulation model quality possible.
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-02-15
In connection with the ERP project 'Dynamic modelling of staged gasification processes' a gasification simulator has been constructed. The simulator consists of: a mathematical model of the gasification process developed at Technical University of Denmark, a user interface programme, IGSS, and a communication interface between the two programmes. (BA)
Model and simulation of Krause model in dynamic open network
Zhu, Meixia; Xie, Guangqiang
2017-08-01
The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.
Mechanical System Simulations for Seismic Signature Modeling
National Research Council Canada - National Science Library
Lacombe, J
2001-01-01
.... Results for an M1A1 and T72 are discussed. By analyzing the simulated seismic signature data in conjunction with the spectral features associated with the vibrations of specific vehicle sprung and un-sprung components we are able to make...
Spiral Growth in Plants: Models and Simulations
Allen, Bradford D.
2004-01-01
The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…
Application of Hidden Markov Models in Biomolecular Simulations.
Shukla, Saurabh; Shamsi, Zahra; Moffett, Alexander S; Selvam, Balaji; Shukla, Diwakar
2017-01-01
Hidden Markov models (HMMs) provide a framework to analyze large trajectories of biomolecular simulation datasets. HMMs decompose the conformational space of a biological molecule into finite number of states that interconvert among each other with certain rates. HMMs simplify long timescale trajectories for human comprehension, and allow comparison of simulations with experimental data. In this chapter, we provide an overview of building HMMs for analyzing bimolecular simulation datasets. We demonstrate the procedure for building a Hidden Markov model for Met-enkephalin peptide simulation dataset and compare the timescales of the process.
A View on Future Building System Modeling and Simulation
Energy Technology Data Exchange (ETDEWEB)
Wetter, Michael
2011-04-01
This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).
Mars Exploration Rover Terminal Descent Mission Modeling and Simulation
Raiszadeh, Behzad; Queen, Eric M.
2004-01-01
Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.
Methodology of modeling and measuring computer architectures for plasma simulations
Wang, L. P. T.
1977-01-01
A brief introduction to plasma simulation using computers and the difficulties on currently available computers is given. Through the use of an analyzing and measuring methodology - SARA, the control flow and data flow of a particle simulation model REM2-1/2D are exemplified. After recursive refinements the total execution time may be greatly shortened and a fully parallel data flow can be obtained. From this data flow, a matched computer architecture or organization could be configured to achieve the computation bound of an application problem. A sequential type simulation model, an array/pipeline type simulation model, and a fully parallel simulation model of a code REM2-1/2D are proposed and analyzed. This methodology can be applied to other application problems which have implicitly parallel nature.
Calibration of the simulation model of the VINCY cyclotron magnet
Directory of Open Access Journals (Sweden)
Ćirković Saša
2002-01-01
Full Text Available The MERMAID program will be used to isochronise the nominal magnetic field of the VINCY Cyclotron. This program simulates the response, i. e. calculates the magnetic field, of a previously defined model of a magnet. The accuracy of 3D field calculation depends on the density of the grid points in the simulation model grid. The size of the VINCY Cyclotron and the maximum number of grid points in the XY plane limited by MERMAID define the maximumobtainable accuracy of field calculations. Comparisons of the field simulated with maximum obtainable accuracy with the magnetic field measured in the first phase of the VINCY Cyclotron magnetic field measurements campaign has shown that the difference between these two fields is not as small as required. Further decrease of the difference between these fields is obtained by the simulation model calibration, i. e. by adjusting the current through the main coils in the simulation model.
Modeling and simulation of Indus-2 RF feedback control system
International Nuclear Information System (INIS)
Sharma, D.; Bagduwal, P.S.; Tiwari, N.; Lad, M.; Hannurkar, P.R.
2012-01-01
Indus-2 synchrotron radiation source has four RF stations along with their feedback control systems. For higher beam energy and current operation amplitude and phase feedback control systems of Indus-2 are being upgraded. To understand the behaviour of amplitude and phase control loop under different operating conditions, modelling and simulation of RF feedback control system is done. RF cavity baseband I/Q model has been created due to its close correspondence with actual implementation and better computational efficiency which makes the simulation faster. Correspondence between cavity baseband and RF model is confirmed by comparing their simulation results. Low Level RF (LLRF) feedback control system simulation is done using the same cavity baseband I/Q model. Error signals are intentionally generated and response of the closed loop system is observed. Simulation will help us in optimizing parameters of upgraded LLRF system for higher beam energy and current operation. (author)
Gobbini, Elisa; Pilotto, Sara; Pasello, Giulia; Polo, Valentina; Di Maio, Massimo; Arizio, Francesca; Galetta, Domenico; Petrillo, Patrizia; Chiari, Rita; Matocci, Roberta; Di Costanzo, Alessandro; Di Stefano, Teresa Severina; Aglietta, Massimo; Cagnazzo, Celeste; Sperduti, Isabella; Bria, Emilio; Novello, Silvia
2018-03-01
Contract research organization (CRO) support is largely included in clinical trial management, although its effect in terms of time savings and benefit has not yet been quantified. We performed a retrospective multicenter analysis of lung cancer trials to explore differences in term of trial activation timelines and accrual for studies with and without CRO involvement. Results regarding study timelines from feasibility data to first patient enrollment were collected from 7 Italian thoracic oncology departments. The final accruals (screened/enrolled patients) are reported. We considered CRO/sponsor-administered and CRO-free trials according to who was responsible for the management of the crucial setup phases. Of 113 trials, 62 (54.9%) were CRO-administered, 34 (30.1%) were sponsor-administered, and 17 (15.0%) were CRO-free. The median time from feasibility invitation to documentation obtainment was 151 days in the CRO-administered trials versus 128 in the sponsor-administered and 120 in the CRO-free trials. The time from document submission to contract signature was 142 days in the CRO-administered versus 128 in the sponsor-administered and 132 in the CRO-free trials. The time from global accrual opening to first patient enrollment was 247 days for the CRO-administered versus 194 in the sponsor-administered and 151 in the CRO-free trials. No significant differences were observed in terms of the median overall timeline: 21 months in the CRO-administered, 15 in the sponsor-administered, and 18 months in the CRO-free studies (P = .29). Although no statistically significant differences were identified, the results of our analysis support the idea that bureaucratic procedures might require more time in CRO-administered trials than in sponsor-administered and CRO-free studies. This bureaucratic delay could negatively affect Italian patients' screening and enrollment compared with other countries. Copyright © 2017 Elsevier Inc. All rights reserved.
Modelling of thermalhydraulics and reactor physics in simulators
International Nuclear Information System (INIS)
Miettinen, J.
1994-01-01
The evolution of thermalhydraulic analysis methods for analysis and simulator purposes has brought closer the thermohydraulic models in both application areas. In large analysis codes like RELAP5, TRAC, CATHARE and ATHLET the accuracy for calculating complicated phenomena has been emphasized, but in spite of large development efforts many generic problems remain unsolved. For simulator purposes fast running codes have been developed and these include only limited assessment efforts. But these codes have more simulator friendly features than large codes, like portability and modular code structure. In this respect the simulator experiences with SMABRE code are discussed. Both large analysis codes and special simulator codes have their advances in simulator applications. The evolution of reactor physical calculation methods in simulator applications has started from simple point kinetic models. For analysis purposes accurate 1-D and 3-D codes have been developed being capable for fast and complicated transients. For simulator purposes capability for simulation of instruments has been emphasized, but the dynamic simulation capability has been less significant. The approaches for 3-dimensionality in simulators requires still quite much development, before the analysis accuracy is reached. (orig.) (8 refs., 2 figs., 2 tabs.)
Discrete event simulation: Modeling simultaneous complications and outcomes
Quik, E.H.; Feenstra, T.L.; Krabbe, P.F.M.
2012-01-01
OBJECTIVES: To present an effective and elegant model approach to deal with specific characteristics of complex modeling. METHODS: A discrete event simulation (DES) model with multiple complications and multiple outcomes that each can occur simultaneously was developed. In this DES model parameters,
FISHRENT; Bio-economic simulation and optimisation model
Salz, P.; Buisman, F.C.; Soma, K.; Frost, H.; Accadia, P.; Prellezo, R.
2011-01-01
Key findings: The FISHRENT model is a major step forward in bio-economic model-ling, combining features that have not been fully integrated in earlier models: 1- Incorporation of any number of species (or stock) and/or fleets 2- Integration of simulation and optimisation over a period of 25 years 3-
Modeling and Simulation of a Modified Quadruple Tank System
DEFF Research Database (Denmark)
Mohd. Azam, Sazuan Nazrah; Jørgensen, John Bagterp
2015-01-01
to model and control. In this paper, a modified quadruple-tank system has been described, all the important variables has been outlined and a mathematical model has been presented. We developed deterministic and stochastic models using differential equations and simulate the models using Matlab...
MODELING SIMULATION AND PERFORMANCE STUDY OF GRIDCONNECTED PHOTOVOLTAIC ENERGY SYSTEM
Nagendra K; Karthik J; Keerthi Rao C; Kumar Raja Pemmadi
2017-01-01
This paper presents Modeling Simulation of grid connected Photovoltaic Energy System and performance study using MATLAB/Simulink. The Photovoltaic energy system is considered in three main parts PV Model, Power conditioning System and Grid interface. The Photovoltaic Model is inter-connected with grid through full scale power electronic devices. The simulation is conducted on the PV energy system at normal temperature and at constant load by using MATLAB.
CFD Modeling and Simulation in Materials Processing 2018
Nastac, Laurentiu; Pericleous, Koulis; Sabau, Adrian S.; Zhang, Lifeng; Thomas, Brian G.
2018-01-01
This book contains the proceedings of the symposium “CFD Modeling and Simulation in Materials Processing” held at the TMS 2018 Annual Meeting & Exhibition in Phoenix, Arizona, USA, March 11–15, 2018. This symposium dealt with computational fluid dynamics (CFD) modeling and simulation of engineering processes. The papers published in this book were requested from researchers and engineers involved in the modeling of multiscale and multiphase phenomena in material processing systems. The sympos...
Use case driven approach to develop simulation model for PCS of APR1400 simulator
International Nuclear Information System (INIS)
Dong Wook, Kim; Hong Soo, Kim; Hyeon Tae, Kang; Byung Hwan, Bae
2006-01-01
The full-scope simulator is being developed to evaluate specific design feature and to support the iterative design and validation in the Man-Machine Interface System (MMIS) design of Advanced Power Reactor (APR) 1400. The simulator consists of process model, control logic model, and MMI for the APR1400 as well as the Power Control System (PCS). In this paper, a use case driven approach is proposed to develop a simulation model for PCS. In this approach, a system is considered from the point of view of its users. User's view of the system is based on interactions with the system and the resultant responses. In use case driven approach, we initially consider the system as a black box and look at its interactions with the users. From these interactions, use cases of the system are identified. Then the system is modeled using these use cases as functions. Lower levels expand the functionalities of each of these use cases. Hence, starting from the topmost level view of the system, we proceeded down to the lowest level (the internal view of the system). The model of the system thus developed is use case driven. This paper will introduce the functionality of the PCS simulation model, including a requirement analysis based on use case and the validation result of development of PCS model. The PCS simulation model using use case will be first used during the full-scope simulator development for nuclear power plant and will be supplied to Shin-Kori 3 and 4 plant. The use case based simulation model development can be useful for the design and implementation of simulation models. (authors)
Methodology for characterizing modeling and discretization uncertainties in computational simulation
Energy Technology Data Exchange (ETDEWEB)
ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.
2000-03-01
This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.
Biological transportation networks: Modeling and simulation
Albi, Giacomo; Artina, Marco; Foransier, Massimo; Markowich, Peter A.
2015-01-01
We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation
Hueschen, Richard M.
2011-01-01
A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.
Catalog of Wargaming and Military Simulation Models.
1982-05-01
OF MODELS Page U UNICORN - Conventinal/Nuclear Weapon Allocator Model ............ 785 UNREP - Underway Replenishment Model...relationships irn the model to around 4,000. The number of econometric relationships grows geometri- cdlly with the number of sectors. The sector detail...factors 784 11 I I UNICORN - Conventioiali’Nuclear Weapon Al locut( r utoYu IPITlNi NI: Of ice ot the Assi stirt Secretary uf Defense, Proyrdm Analysis
Modeling And Simulation Of Multimedia Communication Networks
Vallee, Richard; Orozco-Barbosa, Luis; Georganas, Nicolas D.
1989-05-01
In this paper, we present a simulation study of a browsing system involving radiological image servers. The proposed IEEE 802.6 DQDB MAN standard is designated as the computer network to transfer radiological images from file servers to medical workstations, and to simultaneously support real time voice communications. Storage and transmission of original raster scanned images and images compressed according to pyramid data structures are considered. Different types of browsing as well as various image sizes and bit rates in the DQDB MAN are also compared. The elapsed time, measured from the time an image request is issued until the image is displayed on the monitor, is the parameter considered to evaluate the system performance. Simulation results show that image browsing can be supported by the DQDB MAN.
A survey of formal languages for contracts
DEFF Research Database (Denmark)
Hvitved, Tom
2010-01-01
In this short paper we present the current status on formal languages and models for contracts. By a formal model is meant an unambiguous and rigorous representation of contracts, in order to enable their automatic validation, execution, and analysis — activates that are collectively referred...... to as contract lifecycle management (CLM). We present a set of formalism requirements, which represent features that any ideal contract model should support, based on which we present a comparative survey of existing contract formalisms....
International Nuclear Information System (INIS)
Motooka, Takafumi; Terakado, Shogo; Koya, Toshio; Hamada, Shozo; Kiuchi, Kiyoshi
2001-03-01
In order to evaluate the reliability of reprocessing equipment materials used in the Rokkasho Reprocessing Plant, we have proceeded a mock-up test and laboratory tests for getting corrosion parameters. In a dissolver made of zirconium, the simulation of test solutions to the practical solution which includes the high concentration of radioactive elements such as FP and TRU is one of the important issues with respect to the life prediction. On this experiment, the dissolution process of spent fuels and the preparation of test solution for evaluating the corrosion resistance of dissolver materials were selected. These processes were tested in the No.3 cell of WASTEF. The test solution for corrosion tests was prepared by adjusting the uranium and nitric acid concentrations. (author)
Crash simulation: an immersive learning model.
Wenham, John; Bennett, Paul; Gleeson, Wendy
2017-12-26
Far West New South Wales Local Emergency Management Committee runs an annual crash simulation exercise to assess the operational readiness of all local emergency services to coordinate and manage a multi-casualty exercise. Since 2009, the Broken Hill University Department of Rural Health (BHUDRH) has collaborated with the committee, enabling the inclusion of health students in this exercise. It is an immersive interprofessional learning experience that evaluates teamwork, communication and safe effective clinical trauma management outside the hospital setting. After 7 years of modifying and developing the exercise, we set out to evaluate its impact on the students' learning, and sought ethics approval from the University of Sydney for this study. At the start of this year's crash simulation, students were given information sheets and consent forms with regards to the research. Once formal debriefing had finished, the researchers conducted a semi-structured focus-group interview with the health students to gain insight into their experience and their perceived value of the training. Students also completed short-answer questionnaires, and the anonymised responses were analysed. Crash simulation … evaluates teamwork, communication and safe effective clinical trauma management IMPLICATIONS: Participants identified that this multidisciplinary learning opportunity in a pre-hospital mass casualty situation was of value to them. It has taken them outside of their usually protected hospital or primary care setting and tested their critical thinking and communication skills. We recommend this learning concept to other educational institutions. Further research will assess the learning value of the simulated event to the other agencies involved. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Nonlinear mirror mode dynamics: Simulations and modeling
Czech Academy of Sciences Publication Activity Database
Califano, F.; Hellinger, Petr; Kuznetsov, E.; Passot, T.; Sulem, P. L.; Trávníček, Pavel
2008-01-01
Roč. 113, - (2008), A08219/1-A08219/20 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Grant - others:PECS(CZ) 98024 Institutional research plan: CEZ:AV0Z30420517 Keywords : mirror instability * nonlinear evolution * numerical simulations * magnetic holes * mirror structures * kinetic plasma instabilities Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.147, year: 2008
ISM simulations: an overview of models
de Avillez, M. A.; Breitschwerdt, D.; Asgekar, A.; Spitoni, E.
2015-03-01
Until recently the dynamical evolution of the interstellar medium (ISM) was simulated using collisional ionization equilibrium (CIE) conditions. However, the ISM is a dynamical system, in which the plasma is naturally driven out of equilibrium due to atomic and dynamic processes operating on different timescales. A step forward in the field comprises a multi-fluid approach taking into account the joint thermal and dynamical evolutions of the ISM gas.
Fully Adaptive Radar Modeling and Simulation Development
2017-04-01
using an object oriented programming (OOP) approach. It includes a FAR engine to control the operation of the perception-action (PA) cycle and...is unlimited 41 NATO North Atlantic Treaty Organization OOP object oriented programming OSU The Ohio State University PA perception-action PDF...development and testing on simulated, previously collected, and real-time streaming data. The architecture is coded in MATLAB using an object oriented
Optimization of Operations Resources via Discrete Event Simulation Modeling
Joshi, B.; Morris, D.; White, N.; Unal, R.
1996-01-01
The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.
Simulator for candu600 fuel handling system. the experimental model
International Nuclear Information System (INIS)
Marinescu, N.; Predescu, D.; Valeca, S.
2013-01-01
A main way to increase the nuclear plant safety is related to selection and continuous training of the operation staff. In this order, the computer programs for training, testing and evaluation of the knowledge get, or training simulators including the advanced analytical models of the technological systems are using. The Institute for Nuclear Research from Pitesti, Romania intend to design and build an Fuel Handling Simulator at his F/M Head Test Rig facility, that will be used for training of operating personnel. This paper presents simulated system, advantages to use the simulator, and the experimental model of simulator, that has been built to allows setting of the requirements and fabrication details, especially for the software kit that will be designed and implement on main simulator. (authors)
Continuum Gyrokinetic Simulations of Turbulence in a Helical Model SOL with NSTX-type parameters
Hammett, G. W.; Shi, E. L.; Hakim, A.; Stoltzfus-Dueck, T.
2017-10-01
We have developed the Gkeyll code to carry out 3D2V full- F gyrokinetic simulations of electrostatic plasma turbulence in open-field-line geometries, using special versions of discontinuous-Galerkin algorithms to help with the computational challenges of the edge region. (Higher-order algorithms can also be helpful for exascale computing as they reduce the ratio of communications to computations.) Our first simulations with straight field lines were done for LAPD-type cases. Here we extend this to a helical model of an SOL plasma and show results for NSTX-type parameters. These simulations include the basic elements of a scrape-off layer: bad-curvature/interchange drive of instabilities, narrow sources to model plasma leaking from the core, and parallel losses with model sheath boundary conditions (our model allows currents to flow in and out of the walls). The formation of blobs is observed. By reducing the strength of the poloidal magnetic field, the heat flux at the divertor plate is observed to broaden. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.
Global ice sheet/RSL simulations using the higher-order Ice Sheet System Model.
Larour, E. Y.; Ivins, E. R.; Adhikari, S.; Schlegel, N.; Seroussi, H. L.; Morlighem, M.
2017-12-01
Relative sea-level rise is driven by processes that are intimately linked to the evolution ofglacial areas and ice sheets in particular. So far, most Earth System models capable of projecting theevolution of RSL on decadal to centennial time scales have relied on offline interactions between RSL andice sheets. In particular, grounding line and calving front dynamics have not been modeled in a way that istightly coupled with Elasto-Static Adjustment (ESA) and/or Glacial-Isostatic Adjustment (GIA). Here, we presenta new simulation of the entire Earth System in which both Greenland and Antarctica ice sheets are tightly coupledto an RSL model that includes both ESA and GIA at resolutions and time scales compatible with processes suchas grounding line dynamics for Antarctica ice shelves and calving front dynamics for Greenland marine-terminatingglaciers. The simulations rely on the Ice Sheet System Model (ISSM) and show the impact of higher-orderice flow dynamics and coupling feedbacks between ice flow and RSL. We quantify the exact impact of ESA andGIA inclusion on grounding line evolution for large ice shelves such as the Ronne and Ross ice shelves, as well asthe Agasea Embayment ice streams, and demonstate how offline vs online RSL simulations diverge in the long run,and the consequences for predictions of sea-level rise.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.
Contract Renewal Information - all Contracts
Department of Housing and Urban Development — Multifamily Portfolio datasets (section 8 contracts) - The information has been compiled from multiple data sources within FHA or its contractors. HUD oversees more...
Directory of Open Access Journals (Sweden)
Wing-Chiu Tong
2011-04-01
Full Text Available Uterine contractions during labor are discretely regulated by rhythmic action potentials (AP of varying duration and form that serve to determine calcium-dependent force production. We have employed a computational biology approach to develop a fuller understanding of the complexity of excitation-contraction (E-C coupling of uterine smooth muscle cells (USMC. Our overall aim is to establish a mathematical platform of sufficient biophysical detail to quantitatively describe known uterine E-C coupling parameters and thereby inform future empirical investigations of physiological and pathophysiological mechanisms governing normal and dysfunctional labors. From published and unpublished data we construct mathematical models for fourteen ionic currents of USMCs: Ca2+ currents (L- and T-type, Na+ current, an hyperpolarization-activated current, three voltage-gated K+ currents, two Ca2+-activated K+ current, Ca2+-activated Cl current, non-specific cation current, Na+-Ca2+ exchanger, Na+-K+ pump and background current. The magnitudes and kinetics of each current system in a spindle shaped single cell with a specified surface area:volume ratio is described by differential equations, in terms of maximal conductances, electrochemical gradient, voltage-dependent activation/inactivation gating variables and temporal changes in intracellular Ca2+ computed from known Ca2+ fluxes. These quantifications are validated by the reconstruction of the individual experimental ionic currents obtained under voltage-clamp. Phasic contraction is modeled in relation to the time constant of changing [Ca2+]i. This integrated model is validated by its reconstruction of the different USMC AP configurations (spikes, plateau and bursts of spikes, the change from bursting to plateau type AP produced by estradiol and of simultaneous experimental recordings of spontaneous AP, [Ca2+]i and phasic force. In summary, our advanced mathematical model provides a powerful tool to
Model for transient simulation in a PWR steam circuit
International Nuclear Information System (INIS)
Mello, L.A. de.
1982-11-01
A computer code (SURF) was developed and used to simulate pressure losses along the tubes of the main steam circuit of a PWR nuclear power plant, and the steam flow through relief and safety valves when pressure reactors its thresholds values. A thermodynamic model of turbines (high and low pressure), and its associated components are simulated too. The SURF computer code was coupled to the GEVAP computer code, complementing the simulation of a PWR nuclear power plant main steam circuit. (Author) [pt
APROS 3-D core models for simulators and plant analyzers
International Nuclear Information System (INIS)
Puska, E.K.
1999-01-01
The 3-D core models of APROS simulation environment can be used in simulator and plant analyzer applications, as well as in safety analysis. The key feature of APROS models is that the same physical models can be used in all applications. For three-dimensional reactor cores the APROS models cover both quadratic BWR and PWR cores and the hexagonal lattice VVER-type cores. In APROS environment the user can select the number of flow channels in the core and either five- or six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the channel description have a decisive effect on the calculation time of the 3-D core model and thus just these selection make at present the major difference between a safety analysis model and a training simulator model. The paper presents examples of various types of 3-D LWR-type core descriptions for simulator and plant analyzer use and discusses the differences of calculation speed and physical results between a typical safety analysis model description and a real-time simulator model description in transients. (author)
Systems modeling and simulation applications for critical care medicine
2012-01-01
Critical care delivery is a complex, expensive, error prone, medical specialty and remains the focal point of major improvement efforts in healthcare delivery. Various modeling and simulation techniques offer unique opportunities to better understand the interactions between clinical physiology and care delivery. The novel insights gained from the systems perspective can then be used to develop and test new treatment strategies and make critical care delivery more efficient and effective. However, modeling and simulation applications in critical care remain underutilized. This article provides an overview of major computer-based simulation techniques as applied to critical care medicine. We provide three application examples of different simulation techniques, including a) pathophysiological model of acute lung injury, b) process modeling of critical care delivery, and c) an agent-based model to study interaction between pathophysiology and healthcare delivery. Finally, we identify certain challenges to, and opportunities for, future research in the area. PMID:22703718
Systems modeling and simulation applications for critical care medicine.
Dong, Yue; Chbat, Nicolas W; Gupta, Ashish; Hadzikadic, Mirsad; Gajic, Ognjen
2012-06-15
Critical care delivery is a complex, expensive, error prone, medical specialty and remains the focal point of major improvement efforts in healthcare delivery. Various modeling and simulation techniques offer unique opportunities to better understand the interactions between clinical physiology and care delivery. The novel insights gained from the systems perspective can then be used to develop and test new treatment strategies and make critical care delivery more efficient and effective. However, modeling and simulation applications in critical care remain underutilized. This article provides an overview of major computer-based simulation techniques as applied to critical care medicine. We provide three application examples of different simulation techniques, including a) pathophysiological model of acute lung injury, b) process modeling of critical care delivery, and c) an agent-based model to study interaction between pathophysiology and healthcare delivery. Finally, we identify certain challenges to, and opportunities for, future research in the area.
Modelling and simulation of superalloys. Book of abstracts
Energy Technology Data Exchange (ETDEWEB)
Rogal, Jutta; Hammerschmidt, Thomas; Drautz, Ralf (eds.)
2014-07-01
Superalloys are multi-component materials with complex microstructures that offer unique properties for high-temperature applications. The complexity of the superalloy materials makes it particularly challenging to obtain fundamental insight into their behaviour from the atomic structure to turbine blades. Recent advances in modelling and simulation of superalloys contribute to a better understanding and prediction of materials properties and therefore offer guidance for the development of new alloys. This workshop will give an overview of recent progress in modelling and simulation of materials for superalloys, with a focus on single crystal Ni-base and Co-base alloys. Topics will include electronic structure methods, atomistic simulations, microstructure modelling and modelling of microstructural evolution, solidification and process simulation as well as the modelling of phase stability and thermodynamics.
Development of a Simulation Model for Swimming with Diving Fins
Directory of Open Access Journals (Sweden)
Motomu Nakashima
2018-02-01
Full Text Available The simulation model to assess the performance of diving fin was developed by extending the swimming human simulation model SWUM. A diving fin was modeled as a series of five rigid plates and connected to the human model by springs and dampers. These plates were connected to each other by virtual springs and dampers, and fin’s bending property was represented by springs and dampers as well. An actual diver’s swimming motion with fins was acquired by a motion capture experiment. In order to determine the bending property of the fin, two bending tests on land were conducted. In addition, an experiment was conducted in order to determine the fluid force coefficients in the fluid force model for the fin. Finally, using all measured and identified information, a simulation, in which the experimental situation was reproduced, was carried out. It was confirmed that the diver in the simulation propelled forward in the water successfully.
Simulation of finite size effects of the fiber bundle model
Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui
2018-01-01
In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.
Simulation and Modeling Capability for Standard Modular Hydropower Technology
Energy Technology Data Exchange (ETDEWEB)
Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsakiris, Achilleas [Univ. of Tennessee, Knoxville, TN (United States); Mooneyham, Christian [Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Univ. of Tennessee, Knoxville, TN (United States); Ekici, Kivanc [Univ. of Tennessee, Knoxville, TN (United States); Whisenant, Matthew J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Welch, Tim [US Department of Energy, Washington, DC (United States); Rabon, Daniel [US Department of Energy, Washington, DC (United States)
2017-08-01
Grounded in the stakeholder-validated framework established in Oak Ridge National Laboratory’s SMH Exemplary Design Envelope Specification, this report on Simulation and Modeling Capability for Standard Modular Hydropower (SMH) Technology provides insight into the concepts, use cases, needs, gaps, and challenges associated with modeling and simulating SMH technologies. The SMH concept envisions a network of generation, passage, and foundation modules that achieve environmentally compatible, cost-optimized hydropower using standardization and modularity. The development of standardized modeling approaches and simulation techniques for SMH (as described in this report) will pave the way for reliable, cost-effective methods for technology evaluation, optimization, and verification.
ANALYTICAL AND SIMULATION PLANNING MODEL OF URBAN PASSENGER TRANSPORT
Directory of Open Access Journals (Sweden)
Andrey Borisovich Nikolaev
2017-09-01
Full Text Available The article described the structure of the analytical and simulation models to make informed decisions in the planning of urban passenger transport. Designed UML diagram that describes the relationship of classes of the proposed model. A description of the main agents of the model developed in the simulation AnyLogic. Designed user interface integration with GIS map. Also provides simulation results that allow concluding about her health and the possibility of its use in solving planning problems of urban passenger transport.
An Integrated Simulation Tool for Modeling the Human Circulatory System
Asami, Ken'ichi; Kitamura, Tadashi
This paper presents an integrated simulation of the circulatory system in physiological movement. The large circulatory system model includes principal organs and functional units in modules in which comprehensive physiological changes such as nerve reflexes, temperature regulation, acid/base balance, O2/CO2 balance, and exercise are simulated. A beat-by-beat heart model, in which the corresponding electrical circuit problems are solved by a numerical analytic method, enables calculation of pulsatile blood flow to the major organs. The integration of different perspectives on physiological changes makes this simulation model applicable for the microscopic evaluation of blood flow under various conditions in the human body.
A coupling method for a cardiovascular simulation model which includes the Kalman filter.
Hasegawa, Yuki; Shimayoshi, Takao; Amano, Akira; Matsuda, Tetsuya
2012-01-01
Multi-scale models of the cardiovascular system provide new insight that was unavailable with in vivo and in vitro experiments. For the cardiovascular system, multi-scale simulations provide a valuable perspective in analyzing the interaction of three phenomenons occurring at different spatial scales: circulatory hemodynamics, ventricular structural dynamics, and myocardial excitation-contraction. In order to simulate these interactions, multiscale cardiovascular simulation systems couple models that simulate different phenomena. However, coupling methods require a significant amount of calculation, since a system of non-linear equations must be solved for each timestep. Therefore, we proposed a coupling method which decreases the amount of calculation by using the Kalman filter. In our method, the Kalman filter calculates approximations for the solution to the system of non-linear equations at each timestep. The approximations are then used as initial values for solving the system of non-linear equations. The proposed method decreases the number of iterations required by 94.0% compared to the conventional strong coupling method. When compared with a smoothing spline predictor, the proposed method required 49.4% fewer iterations.
National Aeronautics and Space Administration — There are significant logistical barriers to entry-level high performance computing (HPC) modeling and simulation (M IllinoisRocstar) sets up the infrastructure for...
Contract theory and EU Contract Law
Hesselink, M.W.; Twigg-Flesner, C.
2016-01-01
This paper explores the relationship between contract theory and European contract law. In particular, it confronts the leading contract law theories with the main characteristics of EU contract law. The conclusion is that the two do not match well. In particular, monist normative contract theories are largely irreconcilable with the contract law of the EU. The paper further addresses the main implications of this mismatch, both for contract theory and for EU contract law. It suggests that in...
Modeling and simulation of Si crystal growth from melt
Energy Technology Data Exchange (ETDEWEB)
Liu, Lijun; Liu, Xin; Li, Zaoyang [National Engineering Research Center for Fluid Machinery and Compressors, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Miyazawa, Hiroaki; Nakano, Satoshi; Kakimoto, Koichi [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan)
2009-07-01
A numerical simulator was developed with a global model of heat transfer for any crystal growth taking place at high temperature. Convective, conductive and radiative heat transfers in the furnace are solved together in a conjugated way by a finite volume method. A three-dimensional (3D) global model was especially developed for simulation of heat transfer in any crystal growth with 3D features. The model enables 3D global simulation be conducted with moderate requirement of computer resources. The application of this numerical simulator to a CZ growth and a directional solidification process for Si crystals, the two major production methods for crystalline Si for solar cells, was introduced. Some typical results were presented, showing the importance and effectiveness of numerical simulation in analyzing and improving these kinds of Si crystal growth processes from melt. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Simulation-Based Internal Models for Safer Robots
Directory of Open Access Journals (Sweden)
Christian Blum
2018-01-01
Full Text Available In this paper, we explore the potential of mobile robots with simulation-based internal models for safety in highly dynamic environments. We propose a robot with a simulation of itself, other dynamic actors and its environment, inside itself. Operating in real time, this simulation-based internal model is able to look ahead and predict the consequences of both the robot’s own actions and those of the other dynamic actors in its vicinity. Hence, the robot continuously modifies its own actions in order to actively maintain its own safety while also achieving its goal. Inspired by the problem of how mobile robots could move quickly and safely through crowds of moving humans, we present experimental results which compare the performance of our internal simulation-based controller with a purely reactive approach as a proof-of-concept study for the practical use of simulation-based internal models.
Modification of Core Model for KNTC 2 Simulator
Energy Technology Data Exchange (ETDEWEB)
Lee, Y.K.; Lee, J.G.; Park, J.E.; Bae, S.N.; Chin, H.C. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)
1997-12-31
KNTC 2 simulator was developed in 1986 referencing YGN 1. Since the YGN 1 has changed its fuel cycle to long term cycle(cycle 9), the data such as rod worth, boron worth, moderator temperature coefficient, and etc. of the simulator and those of the YGN 1 became different. To incorporate these changes into the simulator and make the simulator more close to the reference plant, core model upgrade became a necessity. During this research, core data for the simulator was newly generated using APA of the WH. And to make it easy tuning and verification of the key characteristics of the reactor model, PC-Based tool was also developed. And to facilitate later core model upgrade, two procedures-`the Procedures for core characteristic generation` and `the Procedures for core characteristic modification`-were also developed. (author). 16 refs., 22 figs., 1 tab.
System modeling and simulation at EBR-II
International Nuclear Information System (INIS)
Dean, E.M.; Lehto, W.K.; Larson, H.A.
1986-01-01
The codes being developed and verified using EBR-II data are the NATDEMO, DSNP and CSYRED. NATDEMO is a variation of the Westinghouse DEMO code coupled to the NATCON code previously used to simulate perturbations of reactor flow and inlet temperature and loss-of-flow transients leading to natural convection in EBR-II. CSYRED uses the Continuous System Modeling Program (CSMP) to simulate the EBR-II core, including power, temperature, control-rod movement reactivity effects and flow and is used primarily to model reactivity induced power transients. The Dynamic Simulator for Nuclear Power Plants (DSNP) allows a whole plant, thermal-hydraulic simulation using specific component and system models called from libraries. It has been used to simulate flow coastdown transients, reactivity insertion events and balance-of-plant perturbations
Evaluation of articulation simulation system using artificial maxillectomy models.
Elbashti, M E; Hattori, M; Sumita, Y I; Taniguchi, H
2015-09-01
Acoustic evaluation is valuable for guiding the treatment of maxillofacial defects and determining the effectiveness of rehabilitation with an obturator prosthesis. Model simulations are important in terms of pre-surgical planning and pre- and post-operative speech function. This study aimed to evaluate the acoustic characteristics of voice generated by an articulation simulation system using a vocal tract model with or without artificial maxillectomy defects. More specifically, we aimed to establish a speech simulation system for maxillectomy defect models that both surgeons and maxillofacial prosthodontists can use in guiding treatment planning. Artificially simulated maxillectomy defects were prepared according to Aramany's classification (Classes I-VI) in a three-dimensional vocal tract plaster model of a subject uttering the vowel /a/. Formant and nasalance acoustic data were analysed using Computerized Speech Lab and the Nasometer, respectively. Formants and nasalance of simulated /a/ sounds were successfully detected and analysed. Values of Formants 1 and 2 for the non-defect model were 675.43 and 976.64 Hz, respectively. Median values of Formants 1 and 2 for the defect models were 634.36 and 1026.84 Hz, respectively. Nasalance was 11% in the non-defect model, whereas median nasalance was 28% in the defect models. The results suggest that an articulation simulation system can be used to help surgeons and maxillofacial prosthodontists to plan post-surgical defects that will be facilitate maxillofacial rehabilitation. © 2015 John Wiley & Sons Ltd.
COMPARISON OF RF CAVITY TRANSPORT MODELS FOR BBU SIMULATIONS
Energy Technology Data Exchange (ETDEWEB)
Ilkyoung Shin,Byung Yunn,Todd Satogata,Shahid Ahmed
2011-03-01
The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANSPORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will improve BBU simulation results to be more matched with analytic calculations and experimental results.
Comparison Of RF Cavity Transport Models For BBU Simulations
International Nuclear Information System (INIS)
Shin, Ilkyoung; Yunn, Byung; Satogata, Todd; Ahmed, Shahid
2011-01-01
The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANSPORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will improve BBU simulation results to be more matched with analytic calculations and experimental results.
Ground Contact Model for Mars Science Laboratory Mission Simulations
Raiszadeh, Behzad; Way, David
2012-01-01
The Program to Optimize Simulated Trajectories II (POST 2) has been successful in simulating the flight of launch vehicles and entry bodies on earth and other planets. POST 2 has been the primary simulation tool for the Entry Descent, and Landing (EDL) phase of numerous Mars lander missions such as Mars Pathfinder in 1997, the twin Mars Exploration Rovers (MER-A and MER-B) in 2004, Mars Phoenix lander in 2007, and it is now the main trajectory simulation tool for Mars Science Laboratory (MSL) in 2012. In all previous missions, the POST 2 simulation ended before ground impact, and a tool other than POST 2 simulated landing dynamics. It would be ideal for one tool to simulate the entire EDL sequence, thus avoiding errors that could be introduced by handing off position, velocity, or other fight parameters from one simulation to the other. The desire to have one continuous end-to-end simulation was the motivation for developing the ground interaction model in POST 2. Rover landing, including the detection of the postlanding state, is a very critical part of the MSL mission, as the EDL landing sequence continues for a few seconds after landing. The method explained in this paper illustrates how a simple ground force interaction model has been added to POST 2, which allows simulation of the entire EDL from atmospheric entry through touchdown.
Probabilistic Load Models for Simulating the Impact of Load Management
DEFF Research Database (Denmark)
Chen, Peiyuan; Bak-Jensen, Birgitte; Chen, Zhe
2009-01-01
. It is concluded that the AR(12) model is favored with limited measurement data and that the joint-normal model may provide better results with a large data set. Both models can be applied in general to model load time series and used in time-sequential simulation of distribution system planning.......This paper analyzes a distribution system load time series through autocorrelation coefficient, power spectral density, probabilistic distribution and quantile value. Two probabilistic load models, i.e. the joint-normal model and the autoregressive model of order 12 (AR(12)), are proposed...... to simulate the impact of load management. The joint-normal model is superior in modeling the tail region of the hourly load distribution and implementing the change of hourly standard deviation. Whereas the AR(12) model requires much less parameter and is superior in modeling the autocorrelation...
Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory
DEFF Research Database (Denmark)
Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav
model is presented in the form of partial differential equations (PDE). Galerkin's method is then applied to obtain a set of ordinary differential equations such that the cable model is approximated by a FEM model. Based on the FEM model, a nonlinear observer is designed to estimate the cable...
Water Hammer Modelling and Simulation by GIS
Directory of Open Access Journals (Sweden)
K. Hariri Asli
2012-01-01
Full Text Available This work defined an Eulerian-based computational model compared with regression of the relationship between the dependent and independent variables for water hammer surge wave in transmission pipeline. The work also mentioned control of Unaccounted-for-Water (UFW based on the Geography Information System (GIS for water transmission pipeline. The experimental results of laboratory model and the field test results showed the validity of prediction achieved by computational model.
Sartori, Massimo; Maculan, Marco; Pizzolato, Claudio; Reggiani, Monica; Farina, Dario
2015-10-01
This work presents an electrophysiologically and dynamically consistent musculoskeletal model to predict stiffness in the human ankle and knee joints as derived from the joints constituent biological tissues (i.e., the spanning musculotendon units). The modeling method we propose uses electromyography (EMG) recordings from 13 muscle groups to drive forward dynamic simulations of the human leg in five healthy subjects during overground walking and running. The EMG-driven musculoskeletal model estimates musculotendon and resulting joint stiffness that is consistent with experimental EMG data as well as with the experimental joint moments. This provides a framework that allows for the first time observing 1) the elastic interplay between the knee and ankle joints, 2) the individual muscle contribution to joint stiffness, and 3) the underlying co-contraction strategies. It provides a theoretical description of how stiffness modulates as a function of muscle activation, fiber contraction, and interacting tendon dynamics. Furthermore, it describes how this differs from currently available stiffness definitions, including quasi-stiffness and short-range stiffness. This work offers a theoretical and computational basis for describing and investigating the neuromuscular mechanisms underlying human locomotion. Copyright © 2015 the American Physiological Society.
Semiempirical model for nanoscale device simulations
DEFF Research Database (Denmark)
Stokbro, Kurt; Petersen, Dan Erik; Smidstrup, Søren
2010-01-01
We present a semiempirical model for calculating electron transport in atomic-scale devices. The model is an extension of the extended Hückel method with a self-consistent Hartree potential that models the effect of an external bias and corresponding charge rearrangements in the device. It is also...... possible to include the effect of external gate potentials and continuum dielectric regions in the device. The model is used to study the electron transport through an organic molecule between gold surfaces, and it is demonstrated that the results are in closer agreement with experiments than ab initio...
Tidal simulation using regional ocean modeling systems (ROMS)
Wang, Xiaochun; Chao, Yi; Li, Zhijin; Dong, Changming; Farrara, John; McWilliams, James C.; Shum, C. K.; Wang, Yu; Matsumoto, Koji; Rosenfeld, Leslie K.;
2006-01-01
The purpose of our research is to test the capability of ROMS in simulating tides. The research also serves as a necessary exercise to implement tides in an operational ocean forecasting system. In this paper, we emphasize the validation of the model tide simulation. The characteristics and energetics of tides of the region will be reported in separate publications.
Overview of Computer Simulation Modeling Approaches and Methods
Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett
2005-01-01
The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...
Simulation models for food separation by adsorption process | Aoyi ...
African Journals Online (AJOL)
Separation of simulated industrial food products, by method of adsorption, has been studied. A thermodynamic approach has been applied to study the liquid adsorption where benzene and cyclohexane have been used to simulate edible oils in a system that employs silica gel as the adsorbent. Different models suggested ...
Computer Simulation (Microcultures): An Effective Model for Multicultural Education.
Nelson, Jorge O.
This paper presents a rationale for using high-fidelity computer simulation in planning for and implementing effective multicultural education strategies. Using computer simulation, educators can begin to understand and plan for the concept of cultural sensitivity in delivering instruction. The model promises to emphasize teachers' understanding…
Modular Modelling and Simulation Approach - Applied to Refrigeration Systems
DEFF Research Database (Denmark)
Sørensen, Kresten Kjær; Stoustrup, Jakob
2008-01-01
This paper presents an approach to modelling and simulation of the thermal dynamics of a refrigeration system, specifically a reefer container. A modular approach is used and the objective is to increase the speed and flexibility of the developed simulation environment. The refrigeration system...
Teaching Behavioral Modeling and Simulation Techniques for Power Electronics Courses
Abramovitz, A.
2011-01-01
This paper suggests a pedagogical approach to teaching the subject of behavioral modeling of switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The methodology is oriented toward electrical engineering (EE) students at the undergraduate level, enrolled in courses such as "Power…