WorldWideScience

Sample records for models revealed significant

  1. Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Wang, Y; Zhang, K; Wasala, N B; Duan, D; Yao, G

    2015-02-01

    Optical polarization tractography (OPT) was recently developed to visualize tissue fiber architecture with cellular-level resolution and accuracy. In this study, we explored the feasibility of using OPT to study muscle disease in the mdx4cv mouse model of Duchenne muscular dystrophy. The freshly dissected tibialis anterior muscles of mdx4cv and normal mice were imaged. A "fiber disarray index" (FDI) was developed to quantify the myofiber disorganization. In necrotic muscle regions of the mdx4cv mice, the FDI was significantly elevated and can be used to segment the 3D necrotic regions for assessing the overall muscle damage. These results demonstrated the OPT's capability for imaging microscopic fiber alternations in muscle research.

  2. Targeted liquid chromatography quadrupole ion trap mass spectrometry analysis of tachykinin related peptides reveals significant expression differences in a rat model of neuropathic pain.

    Science.gov (United States)

    Pailleux, Floriane; Vachon, Pascal; Lemoine, Jérôme; Beaudry, Francis

    2013-08-01

    Animal models are widely used to perform basic scientific research in pain. The rodent chronic constriction injury (CCI) model is widely used to study neuropathic pain. Animals were tested prior and after CCI surgery using behavioral tests (von Frey filaments and Hargreaves test) to evaluate pain. The brain and the lumbar enlargement of the spinal cord were collected from neuropathic and normal animals. Tachykinin related peptides were analyzed by high performance liquid chromatography quadrupole ion trap mass spectrometry. Our results reveal that the β-tachykinin₅₈₋₇₁, SP and SP₃₋₁₁ up-regulation are closely related to pain behavior. The spinal β-tachykinin₅₈₋₇₁, SP and SP₃₋₁₁ concentrations were significantly up-regulated in neuropathic animals compared with normal animals (ptachykinin₅₈₋₇₁ and SP concentrations were significantly up-regulated (ptachykinin₅₈₋₇₁, SP₁₋₇ and SP₆₋₁₁ (p>0.05). The β-tachykinin₅₈₋₇₁, SP and C-terminal SP metabolites could potentially serve as biomarkers in early drug discovery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Shotgun metagenomic data reveals significant abundance but low diversity of "

    NARCIS (Netherlands)

    Villanueva, L.; Speth, D.R.; van Alen, T.; Hoischen, A.; Jetten, M.S.M.

    2014-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in both water columns and sediments worldwide belong almost

  4. In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and Increased Tumor Hypoxia-Inducible Factor-1α Expression Induced by High Single-Dose Irradiation in a Pancreatic Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Azusa [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Chen, Yonghong; Bu, Jiachuan; Mujcic, Hilda [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Wouters, Bradly G. [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); DaCosta, Ralph S., E-mail: rdacosta@uhnres.utoronto.ca [Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Techna Institute, University Health Network, Toronto, Ontario (Canada)

    2017-01-01

    Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularity for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.

  5. Modelling vocal anatomy's significant effect on speech

    NARCIS (Netherlands)

    de Boer, B.

    2010-01-01

    This paper investigates the effect of larynx position on the articulatory abilities of a humanlike vocal tract. Previous work has investigated models that were built to resemble the anatomy of existing species or fossil ancestors. This has led to conflicting conclusions about the relation between

  6. 78 FR 55772 - Culturally Significant Object Imported for Exhibition Determinations: “Beauty Revealed: Images of...

    Science.gov (United States)

    2013-09-11

    ... Culturally Significant Object Imported for Exhibition Determinations: ``Beauty Revealed: Images of Women in...: Images of Women in Qing Dynasty Chinese Painting,'' imported from abroad for temporary exhibition within... object at the Berkeley Art Museum & Pacific Film Archive, Berkeley, California, from on or about...

  7. Phylogeographic analysis reveals significant spatial genetic structure of Incarvillea sinensis as a product of mountain building

    Directory of Open Access Journals (Sweden)

    Chen Shaotian

    2012-04-01

    Full Text Available Abstract Background Incarvillea sinensis is widely distributed from Southwest China to Northeast China and in the Russian Far East. The distribution of this species was thought to be influenced by the uplift of the Qinghai-Tibet Plateau and Quaternary glaciation. To reveal the imprints of geological events on the spatial genetic structure of Incarvillea sinensis, we examined two cpDNA segments ( trnH- psbA and trnS- trnfM in 705 individuals from 47 localities. Results A total of 16 haplotypes was identified, and significant genetic differentiation was revealed (GST =0.843, NST = 0.975, P  Conclusions The results revealed that the uplift of the Qinghai-Tibet Plateau likely resulted in the significant divergence between the lineage in the eastern Qinghai-Tibet Plateau and the other one outside this area. The diverse niches in the eastern Qinghai-Tibet Plateau created a wide spectrum of habitats to accumulate and accommodate new mutations. The features of genetic diversity of populations outside the eastern Qinghai-Tibet Plateau seemed to reveal the imprints of extinction during the Glacial and the interglacial and postglacial recolonization. Our study is a typical case of the significance of the uplift of the Qinghai-Tibet Plateau and the Quaternary Glacial in spatial genetic structure of eastern Asian plants, and sheds new light on the evolution of biodiversity in the Qinghai-Tibet Plateau at the intraspecies level.

  8. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.

    Directory of Open Access Journals (Sweden)

    Guodong Rao

    2016-06-01

    Full Text Available The content of walnut metabolites is related to its nutritive value and physiological characteristics, however, comprehensive information concerning the metabolome of walnut kernels is limited. In this study we analyzed the metabolites of walnut kernels at five developmental stages from filling to ripening using GC-MS-based untargeted metabolomics; of a total 252 peaks identified, 85 metabolites were positively identified. Further statistical analysis revealed that these 85 metabolites covered different types of metabolism pathways. PCA scores revealed that the metabolic compositions of the embryo are different at each stage, while the metabolic composition of the endotesta could not be significantly separated into distinct groups. Additionally, 7225 metabolite-metabolite correlations were detected in walnut kernel by a Pearson correlation coefficient approach; during screening of the calculated correlations, 463 and 1047 were determined to be significant with r2≥0.49 and had a false discovery rate (FDR ≤0.05 in endotesta and embryo, respectively. This work provides the first comprehensive metabolomic study of walnut kernels and reveals that most of the carbohydrate and protein-derived carbon was transferred into other compounds, such as fatty acids, during the maturation of walnuts, which may potentially provide the basis for further studies on walnut kernel metabolism.

  9. Statistically significant contrasts between EMG waveforms revealed using wavelet-based functional ANOVA

    Science.gov (United States)

    McKay, J. Lucas; Welch, Torrence D. J.; Vidakovic, Brani

    2013-01-01

    We developed wavelet-based functional ANOVA (wfANOVA) as a novel approach for comparing neurophysiological signals that are functions of time. Temporal resolution is often sacrificed by analyzing such data in large time bins, increasing statistical power by reducing the number of comparisons. We performed ANOVA in the wavelet domain because differences between curves tend to be represented by a few temporally localized wavelets, which we transformed back to the time domain for visualization. We compared wfANOVA and ANOVA performed in the time domain (tANOVA) on both experimental electromyographic (EMG) signals from responses to perturbation during standing balance across changes in peak perturbation acceleration (3 levels) and velocity (4 levels) and on simulated data with known contrasts. In experimental EMG data, wfANOVA revealed the continuous shape and magnitude of significant differences over time without a priori selection of time bins. However, tANOVA revealed only the largest differences at discontinuous time points, resulting in features with later onsets and shorter durations than those identified using wfANOVA (P < 0.02). Furthermore, wfANOVA required significantly fewer (∼¼×; P < 0.015) significant F tests than tANOVA, resulting in post hoc tests with increased power. In simulated EMG data, wfANOVA identified known contrast curves with a high level of precision (r2 = 0.94 ± 0.08) and performed better than tANOVA across noise levels (P < <0.01). Therefore, wfANOVA may be useful for revealing differences in the shape and magnitude of neurophysiological signals (e.g., EMG, firing rates) across multiple conditions with both high temporal resolution and high statistical power. PMID:23100136

  10. Transcriptome sequencing revealed significant alteration of cortical promoter usage and splicing in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jing Qin Wu

    Full Text Available While hybridization based analysis of the cortical transcriptome has provided important insight into the neuropathology of schizophrenia, it represents a restricted view of disease-associated gene activity based on predetermined probes. By contrast, sequencing technology can provide un-biased analysis of transcription at nucleotide resolution. Here we use this approach to investigate schizophrenia-associated cortical gene expression.The data was generated from 76 bp reads of RNA-Seq, aligned to the reference genome and assembled into transcripts for quantification of exons, splice variants and alternative promoters in postmortem superior temporal gyrus (STG/BA22 from 9 male subjects with schizophrenia and 9 matched non-psychiatric controls. Differentially expressed genes were then subjected to further sequence and functional group analysis. The output, amounting to more than 38 Gb of sequence, revealed significant alteration of gene expression including many previously shown to be associated with schizophrenia. Gene ontology enrichment analysis followed by functional map construction identified three functional clusters highly relevant to schizophrenia including neurotransmission related functions, synaptic vesicle trafficking, and neural development. Significantly, more than 2000 genes displayed schizophrenia-associated alternative promoter usage and more than 1000 genes showed differential splicing (FDR<0.05. Both types of transcriptional isoforms were exemplified by reads aligned to the neurodevelopmentally significant doublecortin-like kinase 1 (DCLK1 gene.This study provided the first deep and un-biased analysis of schizophrenia-associated transcriptional diversity within the STG, and revealed variants with important implications for the complex pathophysiology of schizophrenia.

  11. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    Science.gov (United States)

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (pentropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Survey of French spine surgeons reveals significant variability in spine trauma practices in 2013.

    Science.gov (United States)

    Lonjon, G; Grelat, M; Dhenin, A; Dauzac, C; Lonjon, N; Kepler, C K; Vaccaro, A R

    2015-02-01

    In France, attempts to define common ground during spine surgery meetings have revealed significant variability in clinical practices across different schools of surgery and the two specialities involved in spine surgery, namely, neurosurgery and orthopaedic surgery. To objectively characterise this variability by performing a survey based on a fictitious spine trauma case. Our working hypothesis was that significant variability existed in trauma practices and that this variability was related to a lack of strong scientific evidence in spine trauma care. We performed a cross-sectional survey based on a clinical vignette describing a 31-year-old male with an L1 burst fracture and neurologic symptoms (numbness). Surgeons received the vignette and a 14-item questionnaire on the management of this patient. For each question, surgeons had to choose among five possible answers. Differences in answers across surgeons were assessed using the Index of Qualitative Variability (IQV), in which 0 indicates no variability and 1 maximal variability. Surgeons also received a questionnaire about their demographics and surgical experience. Of 405 invited spine surgeons, 200 responded to the survey. Five questions had an IQV greater than 0.9, seven an IQV between 0.5 and 0.9, and two an IQV lower than 0.5. Variability was greatest about the need for MRI (IQV=0.93), degree of urgency (IQV=0.93), need for fusion (IQV=0.92), need for post-operative bracing (IQV=0.91), and routine removal of instrumentation (IQV=0.94). Variability was lowest for questions about the need for surgery (IQV=0.42) and use of the posterior approach (IQV=0.36). Answers were influenced by surgeon specialty, age, experience level, and type of centre. Clinical practice regarding spine trauma varies widely in France. Little published evidence is available on which to base recommendations that would diminish this variability. Copyright © 2015. Published by Elsevier Masson SAS.

  13. Disease-aging network reveals significant roles of aging genes in connecting genetic diseases.

    Science.gov (United States)

    Wang, Jiguang; Zhang, Shihua; Wang, Yong; Chen, Luonan; Zhang, Xiang-Sun

    2009-09-01

    One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system-based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases.

  14. Significant feed-forward connectivity revealed by high frequency components of BOLD fMRI signals.

    Science.gov (United States)

    Lin, Fa-Hsuan; Chu, Ying-Hua; Hsu, Yi-Cheng; Lin, Jo-Fu Lotus; Tsai, Kevin W-K; Tsai, Shang-Yueh; Kuo, Wen-Jui

    2015-11-01

    Granger causality analysis has been suggested as a method of estimating causal modulation without specifying the direction of information flow a priori. Using BOLD-contrast functional MRI (fMRI) data, such analysis has been typically implemented in the time domain. In this study, we used magnetic resonance inverse imaging, a method of fast fMRI enabled by massively parallel detection allowing up to 10 Hz sampling rate, to investigate the causal modulation at different frequencies up to 5 Hz. Using a visuomotor two-choice reaction-time task, both the spectral decomposition of Granger causality and isolated effective coherence revealed that the BOLD signal at frequency up to 3 Hz can still be used to estimate significant dominant directions of information flow consistent with results from the time-domain Granger causality analysis. We showed the specificity of estimated dominant directions of information flow at high frequencies by contrasting causality estimates using data collected during the visuomotor task and resting state. Our data suggest that hemodynamic responses carry physiological information related to inter-regional modulation at frequency higher than what has been commonly considered. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. 77 FR 34121 - Culturally Significant Objects Imported for Exhibition Determinations: “Revealing the African...

    Science.gov (United States)

    2012-06-08

    ... Determinations: ``Revealing the African Presence in Renaissance Europe'' SUMMARY: Notice is hereby given of the... exhibition ``Revealing the African Presence in Renaissance Europe'' imported from abroad for temporary... exhibit objects at The Walters Art Museum, Baltimore, MD, from on or about October 14, 2012, until on or...

  16. Village energy survey reveals missing rural raw coal in northern China: Significance in science and policy.

    Science.gov (United States)

    Zhi, Guorui; Zhang, Yayun; Sun, Jianzhong; Cheng, Miaomiao; Dang, Hongyan; Liu, Shijie; Yang, Junchao; Zhang, Yuzhe; Xue, Zhigang; Li, Shuyuan; Meng, Fan

    2017-04-01

    Burning coal for winter heating has been considered a major contributor to northern China's winter haze, with the district heating boilers holding the balance. However a decade of intensive efforts on district heating boilers brought few improvements to northern China's winter air quality, arousing a speculation that the household heating stoves mainly in rural area rather than the district heating boilers mainly in urban area dominate coal emissions in winter. This implies an extreme underestimation of rural household coal consumption by the China Energy Statistical Yearbooks (CESYs), although direct evidence supporting this speculation is lacking. A village energy survey campaign was launched to gather the firsthand information on household coal consumption in the rural areas of two cities, Baoding (in Hebei province) and Beijing (the capital of China). The survey data show that the rural raw coal consumption in Baoding (5.04 × 10 3  kt) was approximately 6.5 times the value listed in the official CESY 2013 and exceeded the rural total of whole Hebei Province (4668 kt), revealing a huge amount of raw coal missing from the current statistical system. More importantly, rural emissions of particulate matter (PM) and SO 2 from raw coal, which had never been included in widely distributing environmental statistical reports, were found higher than those from industrial and urban household sectors in the two cities in 2013, which highlights the importance of rural coal burning in creating northern China's heavy haze and helps to explain why a number of modeling predictions on ambient pollutant concentrations based on normal emission inventories were more bias-prone in winter season than in other seasons. We therefore recommend placing greater emphasis on the "missing" rural raw coal to help China in its long-term ambition to achieve clean air in the context of rapid economic development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Next-Generation Sequencing Reveals Significant Bacterial Diversity of Botrytized Wine

    Science.gov (United States)

    Bokulich, Nicholas A.; Joseph, C. M. Lucy; Allen, Greg; Benson, Andrew K.; Mills, David A.

    2012-01-01

    While wine fermentation has long been known to involve complex microbial communities, the composition and role of bacteria other than a select set of lactic acid bacteria (LAB) has often been assumed either negligible or detrimental. This study served as a pilot study for using barcoded amplicon next-generation sequencing to profile bacterial community structure in wines and grape musts, comparing the taxonomic depth achieved by sequencing two different domains of prokaryotic 16S rDNA (V4 and V5). This study was designed to serve two goals: 1) to empirically determine the most taxonomically informative 16S rDNA target region for barcoded amplicon sequencing of wine, comparing V4 and V5 domains of bacterial 16S rDNA to terminal restriction fragment length polymorphism (TRFLP) of LAB communities; and 2) to explore the bacterial communities of wine fermentation to better understand the biodiversity of wine at a depth previously unattainable using other techniques. Analysis of amplicons from the V4 and V5 provided similar views of the bacterial communities of botrytized wine fermentations, revealing a broad diversity of low-abundance taxa not traditionally associated with wine, as well as atypical LAB communities initially detected by TRFLP. The V4 domain was determined as the more suitable read for wine ecology studies, as it provided greater taxonomic depth for profiling LAB communities. In addition, targeted enrichment was used to isolate two species of Alphaproteobacteria from a finished fermentation. Significant differences in diversity between inoculated and uninoculated samples suggest that Saccharomyces inoculation exerts selective pressure on bacterial diversity in these fermentations, most notably suppressing abundance of acetic acid bacteria. These results determine the bacterial diversity of botrytized wines to be far higher than previously realized, providing further insight into the fermentation dynamics of these wines, and demonstrate the utility of next

  18. Targeted Gene-Silencing Reveals the Functional Significance of Myocardin Signaling in the Failing Heart

    Science.gov (United States)

    Torrado, Mario; Iglesias, Raquel; Centeno, Alberto; López, Eduardo; Mikhailov, Alexander T.

    2011-01-01

    Background Myocardin (MYOCD), a potent transcriptional coactivator of smooth muscle (SM) and cardiac genes, is upregulated in failing myocardium in animal models and human end-stage heart failure (HF). However, the molecular and functional consequences of myocd upregulation in HF are still unclear. Methodology/Principal Findings The goal of the present study was to investigate if targeted inhibition of upregulated expression of myocd could influence failing heart gene expression and function. To this end, we used the doxorubicin (Dox)-induced diastolic HF (DHF) model in neonatal piglets, in which, as we show, not only myocd but also myocd-dependent SM-marker genes are highly activated in failing left ventricular (LV) myocardium. In this model, intra-myocardial delivery of short-hairpin RNAs, designed to target myocd variants expressed in porcine heart, leads on day 2 post-delivery to: (1) a decrease in the activated expression of myocd and myocd-dependent SM-marker genes in failing myocardium to levels seen in healthy control animals, (2) amelioration of impaired diastolic dysfunction, and (3) higher survival rates of DHF piglets. The posterior restoration of elevated myocd expression (on day 7 post-delivery) led to overexpression of myocd-dependent SM-marker genes in failing LV-myocardium that was associated with a return to altered diastolic function. Conclusions/Significance These data provide the first evidence that a moderate inhibition (e.g., normalization) of the activated MYOCD signaling in the diseased heart may be promising from a therapeutic point of view. PMID:22028870

  19. Targeted gene-silencing reveals the functional significance of myocardin signaling in the failing heart.

    Directory of Open Access Journals (Sweden)

    Mario Torrado

    Full Text Available BACKGROUND: Myocardin (MYOCD, a potent transcriptional coactivator of smooth muscle (SM and cardiac genes, is upregulated in failing myocardium in animal models and human end-stage heart failure (HF. However, the molecular and functional consequences of myocd upregulation in HF are still unclear. METHODOLOGY/PRINCIPAL FINDINGS: The goal of the present study was to investigate if targeted inhibition of upregulated expression of myocd could influence failing heart gene expression and function. To this end, we used the doxorubicin (Dox-induced diastolic HF (DHF model in neonatal piglets, in which, as we show, not only myocd but also myocd-dependent SM-marker genes are highly activated in failing left ventricular (LV myocardium. In this model, intra-myocardial delivery of short-hairpin RNAs, designed to target myocd variants expressed in porcine heart, leads on day 2 post-delivery to: (1 a decrease in the activated expression of myocd and myocd-dependent SM-marker genes in failing myocardium to levels seen in healthy control animals, (2 amelioration of impaired diastolic dysfunction, and (3 higher survival rates of DHF piglets. The posterior restoration of elevated myocd expression (on day 7 post-delivery led to overexpression of myocd-dependent SM-marker genes in failing LV-myocardium that was associated with a return to altered diastolic function. CONCLUSIONS/SIGNIFICANCE: These data provide the first evidence that a moderate inhibition (e.g., normalization of the activated MYOCD signaling in the diseased heart may be promising from a therapeutic point of view.

  20. Bayesian Test of Significance for Conditional Independence: The Multinomial Model

    Directory of Open Access Journals (Sweden)

    Pablo de Morais Andrade

    2014-03-01

    Full Text Available Conditional independence tests have received special attention lately in machine learning and computational intelligence related literature as an important indicator of the relationship among the variables used by their models. In the field of probabilistic graphical models, which includes Bayesian network models, conditional independence tests are especially important for the task of learning the probabilistic graphical model structure from data. In this paper, we propose the full Bayesian significance test for tests of conditional independence for discrete datasets. The full Bayesian significance test is a powerful Bayesian test for precise hypothesis, as an alternative to the frequentist’s significance tests (characterized by the calculation of the p-value.

  1. Membrane bioreactor wastewater treatment plants reveal diverse yeast and protist communities of potential significance in biofouling.

    Science.gov (United States)

    Liébana, Raquel; Arregui, Lucía; Belda, Ignacio; Gamella, Luis; Santos, Antonio; Marquina, Domingo; Serrano, Susana

    2015-01-01

    The yeast community was studied in a municipal full-scale membrane bioreactor wastewater treatment plant (MBR-WWTP). The unexpectedly high diversity of yeasts indicated that the activated sludge formed a suitable environment for them to proliferate, with cellular concentrations of 2.2 ± 0.8 × 10(3) CFU ml(-1). Sixteen species of seven genera were present in the biological reactor, with Ascomycetes being the most prevalent group (93%). Most isolates were able to grow in a synthetic wastewater medium, adhere to polyethylene surfaces, and develop biofilms of variable complexity. The relationship between yeast populations and the protists in the MBR-WWTP was also studied, revealing that some protist species preyed on and ingested yeasts. These results suggest that yeast populations may play a role in the food web of a WWTP and, to some extent, contribute to membrane biofouling in MBR systems.

  2. Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa.

    Science.gov (United States)

    Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura; Hinney, Anke; Daly, Mark; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M

    2017-09-01

    The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Following uniform quality control and imputation procedures using the 1000 Genomes Project (phase 3) in 12 case-control cohorts comprising 3,495 anorexia nervosa cases and 10,982 controls, the authors performed standard association analysis followed by a meta-analysis across cohorts. Linkage disequilibrium score regression was used to calculate genome-wide common variant heritability (single-nucleotide polymorphism [SNP]-based heritability [h 2 SNP ]), partitioned heritability, and genetic correlations (r g ) between anorexia nervosa and 159 other phenotypes. Results were obtained for 10,641,224 SNPs and insertion-deletion variants with minor allele frequencies >1% and imputation quality scores >0.6. The h 2 SNP of anorexia nervosa was 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability arises from common genetic variation. The authors identified one genome-wide significant locus on chromosome 12 (rs4622308) in a region harboring a previously reported type 1 diabetes and autoimmune disorder locus. Significant positive genetic correlations were observed between anorexia nervosa and schizophrenia, neuroticism, educational attainment, and high-density lipoprotein cholesterol, and significant negative genetic correlations were observed between anorexia nervosa and body mass index, insulin, glucose, and lipid phenotypes. Anorexia nervosa is a complex heritable phenotype for which this study has uncovered the first genome-wide significant locus. Anorexia nervosa also has large and significant genetic correlations with both psychiatric phenotypes and metabolic traits. The study results encourage a reconceptualization of this frequently lethal disorder as one with both psychiatric and metabolic etiology.

  3. A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogs

    Science.gov (United States)

    Iglesias, Ari; Wilf, Peter; Johnson, Kirk R.; Zamuner, Alba B.; Rubén Cúneo, N.; Matheos, Sergio D.; Singer, Bradley S.

    2007-10-01

    Few South American macrofloras of Paleocene age are known, and this limits our knowledge of diversity and composition between the end-Cretaceous event and the Eocene appearance of high floral diversity. We report new, unbiased collections of 2516 compression specimens from the Paleocene Salamanca Formation (ca. 61.7 Ma) from two localities in the Palacio de los Loros exposures in southern Chubut, Patagonia, Argentina. Our samples reveal considerably greater richness than was previously known from the Paleocene of Patagonia, including 36 species of angiosperm leaves as well as angiosperm fruits, flowers, and seeds; ferns; and conifer leaves, cones, and seeds. The floras, which are from siltstone and sandstone channel-fills deposited on low-relief floodplain landscapes in a humid, warm temperate climate, are climatically and paleoenvironmentally comparable to many quantitatively collected Paleocene floras from the Western Interior of North America. Adjusted for sample size, there are >50% more species at each Palacio de los Loros quarry than in any comparable U.S. Paleocene sample. These results indicate more vibrant terrestrial ecosystems in Patagonian than in North American floodplain environments ˜4 m.y. after the end-Cretaceous extinction, and they push back the time line 10 m.y. for the evolution of high floral diversity in South America. The cause of the dis parity is unknown but could involve reduced impact effects because of greater distance from the Chicxulub site, higher latest Cretaceous diversity, or faster recovery or immigration rates.

  4. Pathophysiological Significance of Dermatan Sulfate Proteoglycans Revealed by Human Genetic Disorders

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2017-03-01

    Full Text Available The indispensable roles of dermatan sulfate-proteoglycans (DS-PGs have been demonstrated in various biological events including construction of the extracellular matrix and cell signaling through interactions with collagen and transforming growth factor-β, respectively. Defects in the core proteins of DS-PGs such as decorin and biglycan cause congenital stromal dystrophy of the cornea, spondyloepimetaphyseal dysplasia, and Meester-Loeys syndrome. Furthermore, mutations in human genes encoding the glycosyltransferases, epimerases, and sulfotransferases responsible for the biosynthesis of DS chains cause connective tissue disorders including Ehlers-Danlos syndrome and spondyloepimetaphyseal dysplasia with joint laxity characterized by skin hyperextensibility, joint hypermobility, and tissue fragility, and by severe skeletal disorders such as kyphoscoliosis, short trunk, dislocation, and joint laxity. Glycobiological approaches revealed that mutations in DS-biosynthetic enzymes cause reductions in enzymatic activities and in the amount of synthesized DS and also disrupt the formation of collagen bundles. This review focused on the growing number of glycobiological studies on recently reported genetic diseases caused by defects in the biosynthesis of DS and DS-PGs.

  5. Urban eddy covariance measurements reveal significant missing NOx emissions in Central Europe.

    Science.gov (United States)

    Karl, T; Graus, M; Striednig, M; Lamprecht, C; Hammerle, A; Wohlfahrt, G; Held, A; von der Heyden, L; Deventer, M J; Krismer, A; Haun, C; Feichter, R; Lee, J

    2017-05-30

    Nitrogen oxide (NO x ) pollution is emerging as a primary environmental concern across Europe. While some large European metropolitan areas are already in breach of EU safety limits for NO 2 , this phenomenon does not seem to be only restricted to large industrialized areas anymore. Many smaller scale populated agglomerations including their surrounding rural areas are seeing frequent NO 2 concentration violations. The question of a quantitative understanding of different NO x emission sources is therefore of immanent relevance for climate and air chemistry models as well as air pollution management and health. Here we report simultaneous eddy covariance flux measurements of NO x , CO 2 , CO and non methane volatile organic compound tracers in a city that might be considered representative for Central Europe and the greater Alpine region. Our data show that NO x fluxes are largely at variance with modelled emission projections, suggesting an appreciable underestimation of the traffic related atmospheric NO x input in Europe, comparable to the weekend-weekday effect, which locally changes ozone production rates by 40%.

  6. A Case Control Study Reveals that Polyomaviruria Is Significantly Associated with Interstitial Cystitis and Vesical Ulceration.

    Directory of Open Access Journals (Sweden)

    Benjamin J Winter

    Full Text Available To investigate whether polyomaviruses contribute to interstitial cystitis pathogenesis.A prospective study was performed with 50 interstitial cystitis cases compared with 50 age-matched, disease-free controls for the frequency of polyomaviruria. Associations between polyomaviruria and disease characteristics were analysed in cases. Polyomavirus in urine and bladder tissue was detected with species (JC virus vs. BK virus specific, real-time PCR.Case patients were reflective of interstitial cystitis epidemiology with age range from 26-88 years (median 58 and female predominance (41/50 F. There was a significant increase in the frequency of polyomavirus shedding between cases and controls (p<0.02. Polyomavirus shedding, in particular BK viruria, was associated with vesical ulceration, a marker of disease severity, among interstitial cystitis cases after adjustment for age and sex (OR 6.8, 95% CI 1.89-24.4. There was a significant association among cases between the presence of BK viruria and response to intravesical Clorpactin therapy (OR 4.50, 95% CI 1.17-17.4.The presence of polyomaviruria was found to be associated with the ulcerative form of interstitial cystitis. Clorpactin, which has anti-DNA virus activity, was more likely to improve symptoms in the presence of BK viruria. These data from this pilot study suggest associations between polyomaviruria and interstitial cystitis warranting further investigation.

  7. A Case Control Study Reveals that Polyomaviruria Is Significantly Associated with Interstitial Cystitis and Vesical Ulceration.

    Science.gov (United States)

    Winter, Benjamin J; O'Connell, Helen E; Bowden, Scott; Carey, Marcus; Eisen, Damon P

    2015-01-01

    To investigate whether polyomaviruses contribute to interstitial cystitis pathogenesis. A prospective study was performed with 50 interstitial cystitis cases compared with 50 age-matched, disease-free controls for the frequency of polyomaviruria. Associations between polyomaviruria and disease characteristics were analysed in cases. Polyomavirus in urine and bladder tissue was detected with species (JC virus vs. BK virus) specific, real-time PCR. Case patients were reflective of interstitial cystitis epidemiology with age range from 26-88 years (median 58) and female predominance (41/50 F). There was a significant increase in the frequency of polyomavirus shedding between cases and controls (pinterstitial cystitis cases after adjustment for age and sex (OR 6.8, 95% CI 1.89-24.4). There was a significant association among cases between the presence of BK viruria and response to intravesical Clorpactin therapy (OR 4.50, 95% CI 1.17-17.4). The presence of polyomaviruria was found to be associated with the ulcerative form of interstitial cystitis. Clorpactin, which has anti-DNA virus activity, was more likely to improve symptoms in the presence of BK viruria. These data from this pilot study suggest associations between polyomaviruria and interstitial cystitis warranting further investigation.

  8. Combining Chromosomal Arm Status and Significantly Aberrant Genomic Locations Reveals New Cancer Subtypes

    Directory of Open Access Journals (Sweden)

    Tal Shay

    2009-01-01

    Full Text Available Many types of tumors exhibit characteristic chromosomal losses or gains, as well as local amplifications and deletions. Within any given tumor type, sample specific amplifications and deletions are also observed. Typically, a region that is aberrant in more tumors, or whose copy number change is stronger, would be considered as a more promising candidate to be biologically relevant to cancer. We sought for an intuitive method to define such aberrations and prioritize them. We define V, the “volume” associated with an aberration, as the product of three factors: (a fraction of patients with the aberration, (b the aberration’s length and (c its amplitude. Our algorithm compares the values of V derived from the real data to a null distribution obtained by permutations, and yields the statistical significance (p-value of the measured value of V. We detected genetic locations that were significantly aberrant, and combine them with chromosomal arm status (gain/loss to create a succinct fingerprint of the tumor genome. This genomic fingerprint is used to visualize the tumors, highlighting events that are co-occurring or mutually exclusive. We apply the method on three different public array CGH datasets of Medulloblastoma and Neuroblastoma, and demonstrate its ability to detect chromosomal regions that were known to be altered in the tested cancer types, as well as to suggest new genomic locations to be tested. We identified a potential new subtype of Medulloblastoma, which is analogous to Neuroblastoma type 1.

  9. Melatonin Distribution Reveals Clues to Its Biological Significance in Basal Metazoans

    Science.gov (United States)

    Roopin, Modi; Levy, Oren

    2012-01-01

    Although nearly ubiquitous in nature, the precise biological significance of endogenous melatonin is poorly understood in phylogenetically basal taxa. In the present work, we describe insights into the functional role of melatonin at the most “basal” level of metazoan evolution. Hitherto unknown morphological determinants of melatonin distribution were evaluated in Nematostella vectensis by detecting melatonin immunoreactivity and examining the spatial gene expression patterns of putative melatonin biosynthetic and receptor elements that are located at opposing ends of the melatonin signaling pathway. Immuno-melatonin profiling indicated an elaborate interaction with reproductive tissues, reinforcing previous conjectures of a melatonin-responsive component in anthozoan reproduction. In situ hybridization (ISH) to putative melatonin receptor elements highlighted the possibility that the bioregulatory effects of melatonin in anthozoan reproduction may be mediated by interactions with membrane receptors, as in higher vertebrates. Another intriguing finding of the present study pertains to the prevalence of melatonin in centralized nervous structures. This pattern may be of great significance given that it 1) identifies an ancestral association between melatonin and key neuronal components and 2) potentially implies that certain effects of melatonin in basal species may be spread widely by regionalized nerve centers. PMID:23300630

  10. Comparative genomic sequence analysis of strawberry and other rosids reveals significant microsynteny

    Directory of Open Access Journals (Sweden)

    Abbott Albert

    2010-06-01

    Full Text Available Abstract Background Fragaria belongs to the Rosaceae, an economically important family that includes a number of important fruit producing genera such as Malus and Prunus. Using genomic sequences from 50 Fragaria fosmids, we have examined the microsynteny between Fragaria and other plant models. Results In more than half of the strawberry fosmids, we found syntenic regions that are conserved in Populus, Vitis, Medicago and/or Arabidopsis with Populus containing the greatest number of syntenic regions with Fragaria. The longest syntenic region was between LG VIII of the poplar genome and the strawberry fosmid 72E18, where seven out of twelve predicted genes were collinear. We also observed an unexpectedly high level of conserved synteny between Fragaria (rosid I and Vitis (basal rosid. One of the strawberry fosmids, 34E24, contained a cluster of R gene analogs (RGAs with NBS and LRR domains. We detected clusters of RGAs with high sequence similarity to those in 34E24 in all the genomes compared. In the phylogenetic tree we have generated, all the NBS-LRR genes grouped together with Arabidopsis CNL-A type NBS-LRR genes. The Fragaria RGA grouped together with those of Vitis and Populus in the phylogenetic tree. Conclusions Our analysis shows considerable microsynteny between Fragaria and other plant genomes such as Populus, Medicago, Vitis, and Arabidopsis to a lesser degree. We also detected a cluster of NBS-LRR type genes that are conserved in all the genomes compared.

  11. Transcriptomic and Protein Expression Analysis Reveals Clinicopathological Significance of Bloom Syndrome Helicase (BLM) in Breast Cancer.

    Science.gov (United States)

    Arora, Arvind; Abdel-Fatah, Tarek M A; Agarwal, Devika; Doherty, Rachel; Moseley, Paul M; Aleskandarany, Mohammed A; Green, Andrew R; Ball, Graham; Alshareeda, Alaa T; Rakha, Emad A; Chan, Stephen Y T; Ellis, Ian O; Madhusudan, Srinivasan

    2015-04-01

    Bloom syndrome helicase (BLM) has key roles in homologous recombination repair, telomere maintenance, and DNA replication. Germ-line mutations in the BLM gene causes Bloom syndrome, a rare disorder characterized by premature aging and predisposition to multiple cancers, including breast cancer. The clinicopathologic significance of BLM in sporadic breast cancers is unknown. We investigated BLM mRNA expression in the Molecular Taxonomy of Breast Cancer International Consortium cohort (n = 1,950) and validated in an external dataset of 2,413 tumors. BLM protein level was evaluated in the Nottingham Tenovus series comprising 1,650 breast tumors. BLM mRNA overexpression was significantly associated with high histologic grade, larger tumor size, estrogen receptor-negative (ER(-)), progesterone receptor-negative (PR(-)), and triple-negative phenotypes (ps < 0.0001). BLM mRNA overexpression was also linked to aggressive molecular phenotypes, including PAM50.Her2 (P < 0.0001), PAM50.Basal (P < 0.0001), and PAM50.LumB (P < 0.0001) and Genufu subtype (ER(+)/Her2(-)/high proliferation; P < 0.0001). PAM50.LumA tumors and Genufu subtype (ER(+)/Her2(-)/low proliferation) were more likely to express low levels of BLM mRNA (ps < 0.0001). Integrative molecular clusters (intClust) intClust.1 (P < 0.0001), intClust.5 (P < 0.0001), intClust.9 (P < 0.0001), and intClust.10 (P < 0.0001) were also more likely in tumors with high BLM mRNA expression. BLM mRNA overexpression was associated with poor breast cancer-specific survival (BCSS; ps < 0.000001). At the protein level, altered subcellular localization with high cytoplasmic BLM and low nuclear BLM was linked to aggressive phenotypes. In multivariate analysis, BLM mRNA and BLM protein levels independently influenced BCSS. This is the first and the largest study to provide evidence that BLM is a promising biomarker in breast cancer. ©2015 American Association for Cancer Research.

  12. In vitro bioassays reveal that additives are significant contributors to the toxicity of commercial household pesticides.

    Science.gov (United States)

    van de Merwe, Jason P; Neale, Peta A; Melvin, Steven D; Leusch, Frederic D L

    2018-03-28

    Pesticides commonly used around households can contain additives of unknown concentrations and toxicity. Given the likelihood of these chemicals washing into urban waterways, it is important to understand the effects that these additives may have on aquatic organisms. The aim of this study was to compare the toxicity of commercially available household pesticides to that of the active ingredient(s) alone. The toxicity of five household pesticides (three herbicides and two insecticides) was investigated using a bacterial cytotoxicity bioassay and an algal photosynthesis bioassay. The commercial products were up to an order of magnitude more toxic than the active ingredient(s) alone. In addition, two commercial products with the same listed active ingredients in the same ratio had a 600× difference in potency. These results clearly demonstrate that additives in commercial formulations are significant contributors to the toxicity of household pesticides. The toxicity of pesticides in aquatic systems is therefore likely underestimated by conventional chemical monitoring and risk assessment when only the active ingredients are considered. Regulators and customers should require more clarity from pesticide manufacturers about the nature and concentrations of not only the active ingredients, but also additives used in commercial formulations. In addition, monitoring programmes and chemical risk assessments schemes should develop a structured approach to assessing the toxic effects of commercial formulations, including additives, rather than simply those of the listed active ingredients. Copyright © 2018. Published by Elsevier B.V.

  13. Epigenome profiling reveals significant DNA demethylation of interferon signature genes in lupus neutrophils.

    Science.gov (United States)

    Coit, Patrick; Yalavarthi, Srilakshmi; Ognenovski, Mikhail; Zhao, Wenpu; Hasni, Sarfaraz; Wren, Jonathan D; Kaplan, Mariana J; Sawalha, Amr H

    2015-04-01

    Recent evidence suggests that neutrophils play an important role in the pathogenesis of lupus. The goal of this study was to characterize the epigenetic architecture, by studying the DNA methylome, of neutrophils and low density granulocytes (LDGs) in lupus patients. We studied 15 lupus patients and 15 healthy age, sex, and ethnicity matched controls. Genome-wide DNA methylation was assessed using the Illumina HumanMethylation 450 BeadChip array, which includes over 485,000 methylation sites across the entire genome. Bisulfite DNA sequencing was used to validate the array results. Statistical and bioinformatic analysis was performed to identify and characterize differentially methylated loci and genes. We identified 293 differentially methylated CG sites in neutrophils between lupus patients and controls. The majority (68%) of differentially methylated CG sites were hypomethylated in lupus neutrophils compared to controls, suggesting overall hypomethylation. We found a robust and consistent demethylation of interferon signature genes in lupus neutrophils, and similar demethylation in the same genes in autologous LDGs. Indeed, the DNA methylome in lupus neutrophils and LDGs was almost identical, suggesting similar chromatin architecture in the two granulocyte subsets. A notable exception was the hypomethylation of a CG site in the promoter region of the cytoskeleton-regulating gene RAC1 in LDGs. Our findings demonstrate a pattern of robust demethylation of interferon signature genes in lupus patients supporting a pathogenic role for neutrophils in lupus. We suggest a model whereby DNA from lupus neutrophils and LDGs externalized by NETosis enhance type-I IFN production via TLR-9 stimulation by hypomethylated DNA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Introduction of e-learning in dental radiology reveals significantly improved results in final examination.

    Science.gov (United States)

    Meckfessel, Sandra; Stühmer, Constantin; Bormann, Kai-Hendrik; Kupka, Thomas; Behrends, Marianne; Matthies, Herbert; Vaske, Bernhard; Stiesch, Meike; Gellrich, Nils-Claudius; Rücker, Martin

    2011-01-01

    Because a traditionally instructed dental radiology lecture course is very time-consuming and labour-intensive, online courseware, including an interactive-learning module, was implemented to support the lectures. The purpose of this study was to evaluate the perceptions of students who have worked with web-based courseware as well as the effect on their results in final examinations. Users (n(3+4)=138) had access to the e-program from any networked computer at any time. Two groups (n(3)=71, n(4)=67) had to pass a final exam after using the e-course. Results were compared with two groups (n(1)=42, n(2)=48) who had studied the same content by attending traditional lectures. In addition a survey of the students was statistically evaluated. Most of the respondents reported a positive attitude towards e-learning and would have appreciated more access to computer-assisted instruction. Two years after initiating the e-course the failure rate in the final examination dropped significantly, from 40% to less than 2%. The very positive response to the e-program and improved test scores demonstrated the effectiveness of our e-course as a learning aid. Interactive modules in step with clinical practice provided learning that is not achieved by traditional teaching methods alone. To what extent staff savings are possible is part of a further study. Copyright © 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Rare human papillomavirus 16 E6 variants reveal significant oncogenic potential

    Directory of Open Access Journals (Sweden)

    Tommasino Massimo

    2011-06-01

    Full Text Available Abstract The aim of this study was to determine whether low prevalence human papillomavirus (HPV 16 E6 variants differ from high prevalence types in their functional abilities. We evaluated functions relevant to carcinogenesis for the rarely-detected European variants R8Q, R10G and R48W as compared to the commonly detected L83V. Human immortalized keratinocytes (NIKS stably transduced with the E6 variants were used in most functional assays. Low and high prevalence E6 variants displayed similar abilities in abrogation of growth arrest and inhibition of p53 elevation induced by actinomycin D. Differences were detected in the abilities to dysregulate stratification and differentiation of NIKS in organotypic raft cultures, modulate detachment induced apoptosis (anoikis and hyperactivate Wnt signaling. No distinctive phenotype could be assigned to include all rare variants. Like L83V, raft cultures derived from variants R10G and R48W similarly induced hyperplasia and aberrantly expressed keratin 5 in the suprabasal compartment with significantly lower expression of keratin 10. Unlike L83V, both variants, and particularly R48W, induced increased levels of anoikis upon suspension in semisolid medium. R8Q induced a unique phenotype characterized by thin organotypic raft cultures, low expression of keratin 10, and high expression of keratins 5 and 14 throughout all raft layers. Interestingly, in a reporter based assay R8Q exhibited a higher ability to augment TCF/β-catenin transcription. The data suggests that differences in E6 variant prevalence in cervical carcinoma may not be related to the carcinogenic potential of the E6 protein.

  16. Footprints of domestication revealed by RAD-tag resequencing in loquat: SNP data reveals a non-significant domestication bottleneck and a single domestication event.

    Science.gov (United States)

    Wang, Yunsheng; Shahid, Muhammad Qasim; Lin, Shunquan; Chen, Chengjie; Hu, Chen

    2017-05-06

    The process of crop domestication has long been a major area of research to gain insights into the history of human civilization and to understand the process of evolution. Loquat (Eriobotrya japonica Lindl.) is one of the typical subtropical fruit trees, which was domesticated in China at least 2000 years ago. In the present study, we re-sequenced the genome of nine wild loquat accessions collected from wide geographical range and 10 representative cultivated loquat cultivars by using RAD-tag tacit to exploit the molecular footprints of domestication. We obtained 26.4 Gb clean sequencing data from 19 loquat accessions, with an average of 32.64 M reads per genotype. We identified more than 80,000 SNPs distributed throughout the loquat genome. The SNP density and numbers were slightly higher in the wild loquat populations than that in the cultivated populations. All cultivars were clustered together by structure, phylogenetic and PCA analyses. The modern loquat cultivars have experienced a non-significant genetic bottleneck during domestication, and originated from a single domesticated event. Moreover, our study revealed that Hubei province of China is probably the origin center of cultivated loquat.

  17. Multiresolution wavelet-ANN model for significant wave height forecasting.

    Digital Repository Service at National Institute of Oceanography (India)

    Deka, P.C.; Mandal, S.; Prahlada, R.

    (ANN) modeling. The transformed output data are used as inputs to ANN models. Various decomposition levels have been tried for a db3 wavelet to obtain optimal results. It is found that the performance of hybrid WLNN is better than that of ANN when lead...

  18. A genome scan revealed significant associations of growth traits with a major QTL and GHR2 in tilapia

    Science.gov (United States)

    Liu, Feng; Sun, Fei; Xia, Jun Hong; Li, Jian; Fu, Gui Hong; Lin, Grace; Tu, Rong Jian; Wan, Zi Yi; Quek, Delia; Yue, Gen Hua

    2014-01-01

    Growth is an important trait in animal breeding. However, the genetic effects underpinning fish growth variability are still poorly understood. QTL mapping and analysis of candidate genes are effective methods to address this issue. We conducted a genome-wide QTL analysis for growth in tilapia. A total of 10, 7 and 8 significant QTLs were identified for body weight, total length and standard length at 140 dph, respectively. The majority of these QTLs were sex-specific. One major QTL for growth traits was identified in the sex-determining locus in LG1, explaining 71.7%, 67.2% and 64.9% of the phenotypic variation (PV) of body weight, total length and standard length, respectively. In addition, a candidate gene GHR2 in a QTL was significantly associated with body weight, explaining 13.1% of PV. Real-time qPCR revealed that different genotypes at the GHR2 locus influenced the IGF-1 expression level. The markers located in the major QTL for growth traits could be used in marker-assisted selection of tilapia. The associations between GHR2 variants and growth traits suggest that the GHR2 gene should be an important gene that explains the difference in growth among tilapia species. PMID:25435025

  19. Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis.

    Science.gov (United States)

    Ma, Liping; Li, Bing; Zhang, Tong

    2014-06-01

    In the present study, a newly developed metagenomic analysis approach was applied to investigate the abundance and diversity of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aquaculture farm sediments, activated sludge, biofilm, anaerobic digestion sludge, and river water. BLASTX analysis against the Comprehensive Antibiotic Resistance Database was conducted for the metagenomic sequence data of each sample and then the ARG-like sequences were sorted based on structured sub-database using customized scripts. The results showed that freshwater fishpond sediment had the highest abundance (196 ppm), and anaerobic digestion sludge possessed the highest diversity (133 subtypes) of ARGs among the samples in this study. Significantly, rifampin resistance genes were universal in all the diverse samples and consistently accounted for 26.9~38.6 % of the total annotated ARG sequences. Furthermore, a significant linear correlation (R (2) = 0.924) was found between diversities (number of subtypes) of ARGs and diversities of plasmids in diverse samples. This work provided a wide spectrum scan of ARGs and MGEs in different environments and revealed the prevalence of rifampin resistance genes and the strong correlation between ARG diversity and plasmid diversity for the first time.

  20. Interspecific rice hybrid of Oryza sativa x Oryza nivara reveals a significant increase in seed protein content.

    Science.gov (United States)

    Mahmoud, Ahmed A; Sukumar, S; Krishnan, Hari B

    2008-01-23

    Wild species offer a potential reservoir of genetic variation for crop improvement. Besides the valuable genes for disease resistance that the wild species have provided for rice improvement, recent studies have shown that these wild species could also provide favorable alleles for the improvement of yield and yield-related traits. The present study reports yet another potential of wild relatives of rice, which involves the improvement of seed protein content. A significant increase in seed protein content was observed in an interspecific hybrid between Oryza sativa ssp. indica and the wild species Oryza nivara. The hybrid showed a protein content of 12.4%, which was 28 and 18.2% higher than those of the parents O. nivara and IR 64, respectively. The increase in protein content was dependent on the genetic background of the rice variety used in the hybridization. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of seed storage proteins demonstrated that a significant increase in prolamins and glutelins was mainly responsible for the elevated protein content of the hybrid. Amino acid analysis of seed proteins revealed that the hybrid had net gains of 19.5% in lysine and 19.4% in threonine over the O. nivara parent on a seed dry weight basis. Molecular analysis indicated that the increase in protein content of the hybrid was not a result of chromosomal rearrangements or transposable element activation, at least in the chromosomal regions containing seed storage protein genes. A preliminary genetic analysis of the F 2 segregating population showed that the inheritance of the increased protein content was polygenic in nature. The development of this interspecific hybrid offers a great potential for selecting new rice cultivars that combine the high yield and superior cooking quality of IR 64 with improved seed protein content.

  1. The history of nursing in the home: revealing the significance of place in the expression of moral agency.

    Science.gov (United States)

    Peter, Elizabeth

    2002-06-01

    The history of nursing in the home: revealing the significance of place in the expression of moral agency The relationship between place and moral agency in home care nursing is explored in this paper. The notion of place is argued to have relevance to moral agency beyond moral context. This argument is theoretically located in feminist ethics and human geography and is supported through an examination of historical documents (1900-33) that describe the experiences and insights of American home care/private duty nurses or that are related to nursing ethics. Specifically, the role of place in inhibiting and enhancing care, justice, good relationships, and power in the practice of private duty nurses is explored. Several implications for current nursing ethics come out of this analysis. (i) The moral agency of nurses is highly nuanced. It is not only structured by nurses' relationships to patients and health professionals, i.e. moral context, it is also structured by the place of nursing care. (ii) Place has the potential to limit and enhance the power of nurses. (iii) Some aspects of nursing's conception of the good, such as what constitutes a good nurse-patient relationship, are historically and geographically relative.

  2. Life-table studies revealed significant effects of deforestation on the development and survivorship of Anopheles minimus larvae.

    Science.gov (United States)

    Wang, Xiaoming; Zhou, Guofa; Zhong, Daibin; Wang, Xiaoling; Wang, Ying; Yang, Zhaoqing; Cui, Liwang; Yan, Guiyun

    2016-06-06

    Many developing countries are experiencing rapid ecological changes such as deforestation and shifting agricultural practices. These environmental changes may have an important consequence on malaria due to their impact on vector survival and reproduction. Despite intensive deforestation and malaria transmission in the China-Myanmar border area, the impact of deforestation on malaria vectors in the border area is unknown. We conducted life table studies on Anopheles minimus larvae to determine the pupation rate and development time in microcosms under deforested, banana plantation, and forested environments. The pupation rate of An. minimus was 3.8 % in the forested environment. It was significantly increased to 12.5 % in banana plantations and to 52.5 % in the deforested area. Deforestation reduced larval-to-pupal development time by 1.9-3.3 days. Food supplementation to aquatic habitats in forested environments and banana plantations significantly increased larval survival rate to a similar level as in the deforested environment. Deforestation enhanced the survival and development of An. minimus larvae, a major malaria vector in the China-Myanmar border area. Experimental determination of the life table parameters on mosquito larvae under a variety of environmental conditions is valuable to model malaria transmission dynamics and impact by climate and environmental changes.

  3. Meta-Analysis Reveals Significant Association of the 3'-UTR VNTR in SLC6A3 with Alcohol Dependence.

    Science.gov (United States)

    Ma, Yunlong; Fan, Rongli; Li, Ming D

    2016-07-01

    Although many studies have analyzed the association of 3'-untranslated region variable-number tandem repeat (VNTR) polymorphism in SLC6A3 with alcohol dependence (AD), the results remain controversial. This study aimed to determine whether this variant indeed has any genetic effect on AD by integrating 17 reported studies with 5,929 participants included. The A9-dominant genetic model that considers A9-repeat and non-A9 repeat as 2 genotypes and compared their frequencies in alcoholics with that in controls was adopted. Considering the potential influence of ethnicity, differences in diagnostic criteria of AD, and alcoholic subgroups, stratified meta-analyses were conducted. There existed no evidence for the presence of heterogeneity among the studied samples, indicating the results under the fixed-effects model are acceptable. We found a significant association of VNTR A9 genotypes with AD in all ethnic populations (pooled odds ratio [OR] 1.12; 95% confidence interval [CI] 1.00, 1.25; p = 0.045) and the Caucasian population (pooled OR 1.15; 95% CI 1.01, 1.31; p = 0.036). We also found VNTR A9 genotypes to be significantly associated with alcoholism as defined by the DSM-IV criteria (pooled OR 1.18; 95% CI 1.03, 1.36; p = 0.02). Further, we found a significant association between VNTR A9 genotypes and alcoholism associated with alcohol withdrawal seizure or delirium tremens (pooled OR 1.55; 95% CI 1.24, 1.92; p = 1.0 × 10(-4) ). In all these meta-analyses, no evidence of publication bias was detected. We concluded that the VNTR polymorphism has an important role in the etiology of AD, and individuals with at least 1 A9 allele are more likely to be dependent on alcohol than persons carrying the non-A9 allele. Copyright © 2016 by the Research Society on Alcoholism.

  4. The Significant of Model School in Pluralistic Society of the Three Southern Border Provinces of Thailand

    Directory of Open Access Journals (Sweden)

    Haji-Awang Faisol

    2016-01-01

    The result of the study show that, a significant traits of the model schools in the multi-cultural society are not merely performed well in administrative procedure, teaching and learning process, but these schools also able to reveal the real social norm and religious believe into communities’ practical life as a truly “Malay-Muslim” society. It is means that, the school able to run the integrated programs under the shade of philosophy of Islamic education paralleled the National Education aims to ensure that the productivities of the programs able to serve both sides, national education on the one hand and the Malay Muslim communities’ satisfaction on the other hand.

  5. Light and electron microscopy of the European beaver (Castor fiber) stomach reveal unique morphological features with possible general biological significance.

    Science.gov (United States)

    Ziółkowska, Natalia; Lewczuk, Bogdan; Petryński, Wojciech; Palkowska, Katarzyna; Prusik, Magdalena; Targońska, Krystyna; Giżejewski, Zygmunt; Przybylska-Gornowicz, Barbara

    2014-01-01

    Anatomical, histological, and ultrastructural studies of the European beaver stomach revealed several unique morphological features. The prominent attribute of its gross morphology was the cardiogastric gland (CGG), located near the oesophageal entrance. Light microscopy showed that the CGG was formed by invaginations of the mucosa into the submucosa, which contained densely packed proper gastric glands comprised primarily of parietal and chief cells. Mucous neck cells represented beaver stomach was the presence of specific mucus with a thickness up to 950 µm (in frozen, unfixed sections) that coated the mucosa. Our observations suggest that the formation of this mucus is complex and includes the secretory granule accumulation in the cytoplasm of pit cells, the granule aggregation inside cells, and the incorporation of degenerating cells into the mucus.

  6. Light and Electron Microscopy of the European Beaver (Castor fiber) Stomach Reveal Unique Morphological Features with Possible General Biological Significance

    Science.gov (United States)

    Petryński, Wojciech; Palkowska, Katarzyna; Prusik, Magdalena; Targońska, Krystyna; Giżejewski, Zygmunt; Przybylska-Gornowicz, Barbara

    2014-01-01

    Anatomical, histological, and ultrastructural studies of the European beaver stomach revealed several unique morphological features. The prominent attribute of its gross morphology was the cardiogastric gland (CGG), located near the oesophageal entrance. Light microscopy showed that the CGG was formed by invaginations of the mucosa into the submucosa, which contained densely packed proper gastric glands comprised primarily of parietal and chief cells. Mucous neck cells represented stomach lumen. These data suggest that chief cells in the CGG develop from undifferentiated cells that migrate through the gastric gland neck rather than from mucous neck cells. Classical chief cell formation (i.e., arising from mucous neck cells) occurred in the mucosa lining the stomach lumen, however. The muscularis around the CGG consisted primarily of skeletal muscle tissue. The cardiac region was rudimentary while the fundus/corpus and pyloric regions were equally developed. Another unusual feature of the beaver stomach was the presence of specific mucus with a thickness up to 950 µm (in frozen, unfixed sections) that coated the mucosa. Our observations suggest that the formation of this mucus is complex and includes the secretory granule accumulation in the cytoplasm of pit cells, the granule aggregation inside cells, and the incorporation of degenerating cells into the mucus. PMID:24727802

  7. "Topological significance" analysis of gene expression and proteomic profiles from prostate cancer cells reveals key mechanisms of androgen response.

    Directory of Open Access Journals (Sweden)

    Adaikkalam Vellaichamy

    2010-06-01

    Full Text Available The problem of prostate cancer progression to androgen independence has been extensively studied. Several studies systematically analyzed gene expression profiles in the context of biological networks and pathways, uncovering novel aspects of prostate cancer. Despite significant research efforts, the mechanisms underlying tumor progression are poorly understood. We applied a novel approach to reconstruct system-wide molecular events following stimulation of LNCaP prostate cancer cells with synthetic androgen and to identify potential mechanisms of androgen-independent progression of prostate cancer.We have performed concurrent measurements of gene expression and protein levels following the treatment using microarrays and iTRAQ proteomics. Sets of up-regulated genes and proteins were analyzed using our novel concept of "topological significance". This method combines high-throughput molecular data with the global network of protein interactions to identify nodes which occupy significant network positions with respect to differentially expressed genes or proteins. Our analysis identified the network of growth factor regulation of cell cycle as the main response module for androgen treatment in LNCap cells. We show that the majority of signaling nodes in this network occupy significant positions with respect to the observed gene expression and proteomic profiles elicited by androgen stimulus. Our results further indicate that growth factor signaling probably represents a "second phase" response, not directly dependent on the initial androgen stimulus.We conclude that in prostate cancer cells the proliferative signals are likely to be transmitted from multiple growth factor receptors by a multitude of signaling pathways converging on several key regulators of cell proliferation such as c-Myc, Cyclin D and CREB1. Moreover, these pathways are not isolated but constitute an interconnected network module containing many alternative routes from inputs

  8. Co-evolution of cancer microenvironment reveals distinctive patterns of gastric cancer invasion: laboratory evidence and clinical significance

    Directory of Open Access Journals (Sweden)

    Li Yan

    2010-10-01

    Full Text Available Abstract Background Cancer invasion results from constant interactions between cancer cells and their microenvironment. Major components of the cancer microenvironment are stromal cells, infiltrating inflammatory cells, collagens, matrix metalloproteinases (MMP and newly formed blood vessels. This study was to determine the roles of MMP-9, MMP-2, type IV collagen, infiltrating macrophages and tumor microvessels in gastric cancer (GC invasion and their clinico-pathological significance. Methods Paraffin-embedded tissue sections from 37 GC patients were studied by Streptavidin-Peroxidase (SP immunohistochemical technique to determine the levels of MMP-2, MMP-9, type IV collagen, macrophages infiltration and microvessel density (MVD. Different invasion patterns were delineated and their correlation with major clinico-pathological information was explored. Results MMP2 expression was higher in malignant gland compared to normal gland, especially nearby the basement membrane (BM. High densities of macrophages at the interface of cancer nests and stroma were found where BM integrity was destroyed. MMP2 expression was significantly increased in cases with recurrence and distant metastasis (P = 0.047 and 0.048, respectively. Infiltrating macrophages were correlated with serosa invasion (P = 0.011 and TNM stage (P = 0.001. MVD was higher in type IV collagen negative group compared to type IV collagen positive group (P = 0.026. MVD was related to infiltrating macrophages density (P = 0.040. Patients with negative MMP9 expression had better overall survival (OS compared to those with positive MMP9 expression (Median OS 44.0 vs 13.5 mo, P = 0.036. Median OS was significantly longer in type IV collagen positive group than negative group (Median OS 25.5 vs 10.0 mo, P = 0.044. The cumulative OS rate was higher in low macrophages density group than in high macrophages density group (median OS 40.5 vs 13.0 mo, P = 0.056. Median OS was significantly longer in low

  9. Gaussian graphical modeling reveals specific lipid correlations in glioblastoma cells

    Science.gov (United States)

    Mueller, Nikola S.; Krumsiek, Jan; Theis, Fabian J.; Böhm, Christian; Meyer-Bäse, Anke

    2011-06-01

    Advances in high-throughput measurements of biological specimens necessitate the development of biologically driven computational techniques. To understand the molecular level of many human diseases, such as cancer, lipid quantifications have been shown to offer an excellent opportunity to reveal disease-specific regulations. The data analysis of the cell lipidome, however, remains a challenging task and cannot be accomplished solely based on intuitive reasoning. We have developed a method to identify a lipid correlation network which is entirely disease-specific. A powerful method to correlate experimentally measured lipid levels across the various samples is a Gaussian Graphical Model (GGM), which is based on partial correlation coefficients. In contrast to regular Pearson correlations, partial correlations aim to identify only direct correlations while eliminating indirect associations. Conventional GGM calculations on the entire dataset can, however, not provide information on whether a correlation is truly disease-specific with respect to the disease samples and not a correlation of control samples. Thus, we implemented a novel differential GGM approach unraveling only the disease-specific correlations, and applied it to the lipidome of immortal Glioblastoma tumor cells. A large set of lipid species were measured by mass spectrometry in order to evaluate lipid remodeling as a result to a combination of perturbation of cells inducing programmed cell death, while the other perturbations served solely as biological controls. With the differential GGM, we were able to reveal Glioblastoma-specific lipid correlations to advance biomedical research on novel gene therapies.

  10. Networks of Food Sharing Reveal the Functional Significance of Multilevel Sociality in Two Hunter-Gatherer Groups.

    Science.gov (United States)

    Dyble, Mark; Thompson, James; Smith, Daniel; Salali, Gul Deniz; Chaudhary, Nikhil; Page, Abigail E; Vinicuis, Lucio; Mace, Ruth; Migliano, Andrea Bamberg

    2016-08-08

    Like many other mammalian and primate societies [1-4], humans are said to live in multilevel social groups, with individuals situated in a series of hierarchically structured sub-groups [5, 6]. Although this multilevel social organization has been described among contemporary hunter-gatherers [5], questions remain as to the benefits that individuals derive from living in such groups. Here, we show that food sharing among two populations of contemporary hunter-gatherers-the Palanan Agta (Philippines) and Mbendjele BaYaka (Republic of Congo)-reveals similar multilevel social structures, with individuals situated in households, within sharing clusters of 3-4 households, within the wider residential camps, which vary in size. We suggest that these groupings serve to facilitate inter-sexual provisioning, kin provisioning, and risk reduction reciprocity, three levels of cooperation argued to be fundamental in human societies [7, 8]. Humans have a suite of derived life history characteristics including a long childhood and short inter-birth intervals that make offspring energetically demanding [9] and have moved to a dietary niche that often involves the exploitation of difficult to acquire foods with highly variable return rates [10-12]. This means that human foragers face both day-to-day and more long-term energetic deficits that conspire to make humans energetically interdependent. We suggest that a multilevel social organization allows individuals access to both the food sharing partners required to buffer themselves against energetic shortfalls and the cooperative partners required for skill-based tasks such as cooperative foraging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Significant genetic differentiation within the population of the Island of Corsica (France) revealed by y-chromosome analysis.

    Science.gov (United States)

    Ghiani, Maria Elena; Varesi, Laurent; Mitchell, Robert John; Vona, Giuseppe

    2009-12-01

    Using 10 Y-chromosome short tandem repeat allelic and haplotypic frequencies, we examined genetic variation within the population of Corsica and its relationship with other Mediterranean populations. The most significant finding is the high level of genetic differentiation within Corsica, with strong evidence of an effective barrier to male-mediated gene flow between the south and the rest of the island. This internal differentiation most probably results from low exogamy among small isolated populations and also from the orography of the island, with a central mountain chain running the length of the island restricting human movement. This physical barrier is reflected not only in present-day intraisland linguistic and genetic differences but also in the relatedness of Corsican regions to other Mediterranean groups. Northwest and Central Corsica are much closer to West Mediterranean populations, whereas South Corsica is closer to Central-North Sardinia and East Mediterranean populations.

  12. Breast Cancer Epidemiology of the Working-Age Female Population Reveals Significant Implications for the South Korean Economy.

    Science.gov (United States)

    Park, Jeong Hyun; Lee, Se Kyung; Lee, Jeong Eon; Kim, Seok Won; Nam, Seok Jin; Kim, Ji-Yeon; Ahn, Jin-Seok; Park, Won; Yu, Jonghan; Park, Yeon Hee

    2018-03-01

    In this study, we aimed to evaluate the economic loss due to the diagnosis of breast cancer within the female South Korean working-age population. A population-based cost analysis was performed for cancer-related diagnoses between 1999 and 2014, using respective public government funded databases. Among the five most common cancers, breast cancer mortality was strongly associated with the growth in gross domestic product between 1999 and 2014 (R=0.98). In the female population, breast cancer represented the greatest productivity loss among all cancers, which was a consequence of the peak in the incidence of breast cancer during mid-working age in the working-age population, in addition to being the most common and fastest growing cancer among South Korean women. Our study shows that breast cancer not only represents a significant disease burden for individual patients, but also contributes a real, nonnegligible loss in productivity in the South Korean economy.

  13. Multispectral images of flowers reveal the adaptive significance of using long-wavelength-sensitive receptors for edge detection in bees.

    Science.gov (United States)

    Vasas, Vera; Hanley, Daniel; Kevan, Peter G; Chittka, Lars

    2017-04-01

    Many pollinating insects acquire their entire nutrition from visiting flowers, and they must therefore be efficient both at detecting flowers and at recognizing familiar rewarding flower types. A crucial first step in recognition is the identification of edges and the segmentation of the visual field into areas that belong together. Honeybees and bumblebees acquire visual information through three types of photoreceptors; however, they only use a single receptor type-the one sensitive to longer wavelengths-for edge detection and movement detection. Here, we show that these long-wavelength receptors (peak sensitivity at ~544 nm, i.e., green) provide the most consistent signals in response to natural objects. Using our multispectral image database of flowering plants, we found that long-wavelength receptor responses had, depending on the specific scenario, up to four times higher signal-to-noise ratios than the short- and medium-wavelength receptors. The reliability of the long-wavelength receptors emerges from an intricate interaction between flower coloration and the bee's visual system. This finding highlights the adaptive significance of bees using only long-wavelength receptors to locate flowers among leaves, before using information provided by all three receptors to distinguish the rewarding flower species through trichromatic color vision.

  14. Comparative Analysis of Two Stress-Inducible tau Class Glutathione Transferases from Glycine max Revealed Significant Catalytic and Structural Diversification.

    Science.gov (United States)

    Pouliou, Fotini; Perperopoulou, Fereniki; Labrou, Nikolaos E

    2017-01-01

    Glutathione transferases (GSTs, EC. 2.5.1.18) form a large group of multifunctional enzymes that are involved in the metabolism and inactivation of a wide range of endogenous and xenobiotic compound as well as in cell regulation and response to several biotic and abiotic stresses. In the present work, we report the comparative analysis of the structural and functional features of two isoenzymes (GmGSTU5-5 and GmGSTU8-8) of the glutathione transferase (GST) family from Glycine max. Full-length cDNA clones of GmGSTU5-5 and GmGSTU8-8 were derived from RT-PCR of RNA isolated from soybean seedlings and were cloned into a T7 expression vector. Τhe recombinant enzymes were expressed in E. coli and purified by affinity chromatography. Substrate specificity, kinetic and inhibition analysis were carried out towards a range of different xenobiotic compounds and GSH analogues. The thermal stability of the enzymes was also evaluated using activity assays and differential scanning fluorimetry. Analysis of substrate specificity using a range of thiol substrates and electrophilic compounds suggested that both isoenzymes display broad and overlapping specificities. They are capable of detoxifying major stress-induced toxic products. Study of their ligandin-binding properties by kinetic analysis and molecular modelling indicated that both GmGSTU5-5 and GmGSTU8-8 bind a range of secondary metabolites and plant hormones, suggesting a role in transport or storage of bioactive compounds. Thermostability analysis showed that GmGSTU5-5 and GmGSTU8-8 display extraordinary thermal stability, compared to other plant GSTs. Our results suggest that GmGSTU5-5 and GmGSTU8-8 display different or overlapping substrate specificities and kinetic properties. The biological role of GmGSTU5-5 and GmGSTU8-8 may be relevant to the detoxification of toxic compounds or the binding of bioactive metabolites that function in cell regulation and stress defence mechanisms. Copyright© Bentham Science

  15. Oncogenomics of c-Myc transgenic mice reveal novel regulators of extracellular signaling, angiogenesis and invasion with clinical significance for human lung adenocarcinoma.

    Science.gov (United States)

    Ciribilli, Yari; Borlak, Jürgen

    2017-11-24

    The c-Myc transcription factor is frequently deregulated in cancers. To search for disease diagnostic and druggable targets a transgenic lung cancer disease model was investigated. Oncogenomics identified c-Myc target genes in lung tumors. These were validated by RT-PCR, Western Blotting, EMSA assays and ChIP-seq data retrieved from public sources. Gene reporter and ChIP assays verified functional importance of c-Myc binding sites. The clinical significance was established by RT-qPCR in tumor and matched healthy control tissues, by RNA-seq data retrieved from the TCGA Consortium and by immunohistochemistry recovered from the Human Protein Atlas repository. In transgenic lung tumors 25 novel candidate genes were identified. These code for growth factors, Wnt/β-catenin and inhibitors of death receptors signaling, adhesion and cytoskeleton dynamics, invasion and angiogenesis. For 10 proteins over-expression was confirmed by IHC thus demonstrating their druggability. Moreover, c-Myc over-expression caused complete gene silencing of 12 candidate genes, including Bmp6, Fbln1 and Ptprb to influence lung morphogenesis, invasiveness and cell signaling events. Conversely, among the 75 repressed genes TNFα and TGF-β pathways as well as negative regulators of IGF1 and MAPK signaling were affected. Additionally, anti-angiogenic, anti-invasive, adhesion and extracellular matrix remodeling and growth suppressive functions were repressed. For 15 candidate genes c-Myc-dependent DNA binding and transcriptional responses in human lung cancer samples were confirmed. Finally, Kaplan-Meier survival statistics revealed clinical significance for 59 out of 100 candidate genes, thus confirming their prognostic value. In conclusion, previously unknown c-Myc target genes in lung cancer were identified to enable the development of mechanism-based therapies.

  16. Analysis of CD7 expression in acute myelogenous leukemia: martingale residual plots combined with 'optimal' cutpoint analysis reveals absence of prognostic significance.

    Science.gov (United States)

    Kornblau, S M; Thall, P; Huh, Y O; Estey, E; Andreeff, M

    1995-10-01

    Conflicting results exist regarding the prognostic importance of CD7 expression in acute myelogenous leukemia (AML). Differences in the method of determining CD7 positivity, the antibody used, the therapy administered, and the CD7 level used as a cutoff point to reduce it to a binary variable have all been postulated to account for the discordant findings. We determined the level of CD7 expression by flow cytometric analysis using the Leu9 monoclonal antibody in 331 patients with newly diagnosed AML and attempted to determine the impact of CD7 on AML prognosis. This study used the same methodology and antibody as three of the four studies that reported a positive association between CD7 expression and prognosis in AML. Optimal cutpoint analysis was used to divide the population into CD7-positive (CD7+) (>10.5% expression) and CD7-negative (CD7-) (< 10.5% expression) groups with the largest survival difference. At the optimal cutpoint, the difference in survival was not statistically significantly different (P = 0.068 uncorrected, P = 0.244 corrected for optimal cutpoint search). There was a marked imbalance in the distribution of favorable cytogenetic abnormalities [t(8;21), inversion 16, t(15;17)], with 95% segregating to the CD7- group. Analysis excluding patients with favorable cytogenetic abnormalities revealed no prognostic importance for CD7 expression (P = 0.24 uncorrected). The response rate (CR) and survival experiences of CD7+ and CD7- patients were similar with six different regimens. CD7 expression was not a significant independent prognostic factor in a Cox regression model that included cytogenetics as a predictive variable, but it was marginally significant when cytogenetics was excluded. We conclude that regardless of the antibody used, the therapy received, or the cutoff point selected to determine CD7 expression, CD7 is not associated with response rate, prognosis, or survival in AML. The 'optimal cutoff point analysis' utilized in this study has

  17. Hidden symmetry in asymmetric morphology: significance of Hjortsjo's anatomical model in liver surgery.

    Science.gov (United States)

    Shindoh, Junichi; Satou, Shoichi; Aoki, Taku; Beck, Yoshifumi; Hasegawa, Kiyoshi; Sugawara, Yasuhiko; Kokudo, Norihiro

    2012-01-01

    Several studies have recently reappraised the liver classification proposed by Hjortsjo in the 1940's and reported it as a surgically relevant theory. However, its clinical relevance and significance in liver surgery have not yet been well documented. Three-dimensional (3D) simulations of the livers of 100 healthy donors for living donor liver transplantation were reviewed. The adequacy of Hjortsjo's model was evaluated using 3D simulations and its clinical relevance was demonstrated in donor surgery. Both portal and hepatic venous branches exhibited symmetrical configuration on either side of the Rex-Cantlie line on the 3D images. In terms of the symmetry, the right paramedian sector seemed to be subdivided into two longitudinal parts, namely the "ventral" and "dorsal" parts. Volume analysis revealed that these longitudinal parts occupied relatively large areas of the liver (the ventral part, 15.7% and the dorsal part, 20.9% of the whole livers, respectively). Postoperative CT imaging confirmed marked congestion and/or impaired regeneration of these areas due to deprivation of the middle or right hepatic veins. Considering the symmetry of intrahepatic vascular distributions and clinical relevance, Hjortsjo's classification offers important viewpoint for surgeons to handle the liver based on both the portal and venous distributions.

  18. Animal Model Reveals Potential Waterborne Transmission of Helicobacter pylori Infection.

    Science.gov (United States)

    Boehnke, Kevin F; Eaton, Kathryn A; Valdivieso, Manuel; Baker, Laurence H; Xi, Chuanwu

    2015-10-01

    Helicobacter pylori infection has been consistently associated with lack of access to clean water and proper sanitation, but no studies have demonstrated that the transmission of H. pylori can occur from drinking contaminated water. In this study, we used a laboratory mouse model to test whether waterborne H. pylori could cause gastric infection. Groups of immunocompetent C57/BL6 Helicobacter-free mice were exposed to static concentrations (1.29 × 10(5), 10(6), 10(7), 10(8), and 10(9) CFU/L) of H. pylori in their drinking water for 4 weeks. One group of Helicobacter-free mice was exposed to uncontaminated water as a negative control. H. pylori morphology changes in water were examined using microscopy Live/Dead staining. Following exposure, H. pylori infection and inflammation status in the stomach were evaluated using quantitative culture, PCR, the rapid urease test, and histology. None of the mice in the negative control or 10(5) groups were infected. One of 20 cages (one of 40 mice) of the 10(6) group, three of 19 cages (four of 38 mice) of the 10(7) CFU/L group, 19 of 20 cages (33 of 40 mice) of the 10(8) group, and 20 of 20 cages (39 of 40 mice) of the 10(9) CFU/L group were infected. Infected mice had significantly higher gastric inflammation than uninfected mice (27.86% higher inflammation, p pylori in water is infectious in mice, suggesting that humans drinking contaminated water may be at risk of contracting H. pylori infection. Much work needs to be performed to better understand the risk of infection from drinking H. pylori-contaminated water. © 2015 John Wiley & Sons Ltd.

  19. How Often Is the Misfit of Item Response Theory Models Practically Significant?

    Science.gov (United States)

    Sinharay, Sandip; Haberman, Shelby J.

    2014-01-01

    Standard 3.9 of the Standards for Educational and Psychological Testing ([, 1999]) demands evidence of model fit when item response theory (IRT) models are employed to data from tests. Hambleton and Han ([Hambleton, R. K., 2005]) and Sinharay ([Sinharay, S., 2005]) recommended the assessment of practical significance of misfit of IRT models, but…

  20. The Significance of the Bystander Effect: Modeling, Experiments, and More Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, David J.

    2009-07-22

    Non-targeted (bystander) effects of ionizing radiation are caused by intercellular signaling; they include production of DNA damage and alterations in cell fate (i.e. apoptosis, differentiation, senescence or proliferation). Biophysical models capable of quantifying these effects may improve cancer risk estimation at radiation doses below the epidemiological detection threshold. Understanding the spatial patterns of bystander responses is important, because it provides estimates of how many bystander cells are affected per irradiated cell. In a first approach to modeling of bystander spatial effects in a three-dimensional artificial tissue, we assumed the following: (1) The bystander phenomenon results from signaling molecules (S) that rapidly propagate from irradiated cells and decrease in concentration (exponentially in the case of planar symmetry) as distance increases. (2) These signals can convert cells to a long-lived epigenetically activated state, e.g. a state of oxidative stress; cells in this state are more prone to DNA damage and behavior alterations than normal and therefore exhibit an increased response (R) for many end points (e.g. apoptosis, differentiation, micronucleation). These assumptions were implemented by a mathematical formalism and computational algorithms. The model adequately described data on bystander responses in the 3D system using a small number of adjustable parameters. Mathematical models of radiation carcinogenesis are important for understanding mechanisms and for interpreting or extrapolating risk. There are two classes of such models: (1) long-term formalisms that track pre-malignant cell numbers throughout an entire lifetime but treat initial radiation dose-response simplistically and (2) short-term formalisms that provide a detailed initial dose-response even for complicated radiation protocols, but address its modulation during the subsequent cancer latency period only indirectly. We argue that integrating short- and long

  1. Significant uncertainty in global scale hydrological modeling from precipitation data erros

    NARCIS (Netherlands)

    Sperna Weiland, F.; Vrugt, J.A.; Beek, van P.H.; Weerts, A.H.; Bierkens, M.F.P.

    2015-01-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we

  2. Significant uncertainty in global scale hydrological modeling from precipitation data errors

    NARCIS (Netherlands)

    Weiland, Frederiek C. Sperna; Vrugt, Jasper A.; van Beek, Rens (L. ) P. H.|info:eu-repo/dai/nl/14749799X; Weerts, Albrecht H.; Bierkens, Marc F. P.|info:eu-repo/dai/nl/125022794

    2015-01-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we

  3. Mapping the Most Significant Computer Hacking Events to a Temporal Computer Attack Model

    OpenAIRE

    Heerden , Renier ,; Pieterse , Heloise; Irwin , Barry

    2012-01-01

    Part 4: Section 3: ICT for Peace and War; International audience; This paper presents eight of the most significant computer hacking events (also known as computer attacks). These events were selected because of their unique impact, methodology, or other properties. A temporal computer attack model is presented that can be used to model computer based attacks. This model consists of the following stages: Target Identification, Reconnaissance, Attack, and Post-Attack Reconnaissance stages. The...

  4. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    Science.gov (United States)

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

  5. Topic Modeling Reveals Distinct Interests within an Online Conspiracy Forum

    Science.gov (United States)

    Klein, Colin; Clutton, Peter; Polito, Vince

    2018-01-01

    Conspiracy theories play a troubling role in political discourse. Online forums provide a valuable window into everyday conspiracy theorizing, and can give a clue to the motivations and interests of those who post in such forums. Yet this online activity can be difficult to quantify and study. We describe a unique approach to studying online conspiracy theorists which used non-negative matrix factorization to create a topic model of authors' contributions to the main conspiracy forum on Reddit.com. This subreddit provides a large corpus of comments which spans many years and numerous authors. We show that within the forum, there are multiple sub-populations distinguishable by their loadings on different topics in the model. Further, we argue, these differences are interpretable as differences in background beliefs and motivations. The diversity of the distinct subgroups places constraints on theories of what generates conspiracy theorizing. We argue that traditional “monological” believers are only the tip of an iceberg of commenters. Neither simple irrationality nor common preoccupations can account for the observed diversity. Instead, we suggest, those who endorse conspiracies seem to be primarily brought together by epistemological concerns, and that these central concerns link an otherwise heterogenous group of individuals. PMID:29515501

  6. Topic Modeling Reveals Distinct Interests within an Online Conspiracy Forum.

    Science.gov (United States)

    Klein, Colin; Clutton, Peter; Polito, Vince

    2018-01-01

    Conspiracy theories play a troubling role in political discourse. Online forums provide a valuable window into everyday conspiracy theorizing, and can give a clue to the motivations and interests of those who post in such forums. Yet this online activity can be difficult to quantify and study. We describe a unique approach to studying online conspiracy theorists which used non-negative matrix factorization to create a topic model of authors' contributions to the main conspiracy forum on Reddit.com. This subreddit provides a large corpus of comments which spans many years and numerous authors. We show that within the forum, there are multiple sub-populations distinguishable by their loadings on different topics in the model. Further, we argue, these differences are interpretable as differences in background beliefs and motivations. The diversity of the distinct subgroups places constraints on theories of what generates conspiracy theorizing. We argue that traditional "monological" believers are only the tip of an iceberg of commenters. Neither simple irrationality nor common preoccupations can account for the observed diversity. Instead, we suggest, those who endorse conspiracies seem to be primarily brought together by epistemological concerns, and that these central concerns link an otherwise heterogenous group of individuals.

  7. Topic Modeling Reveals Distinct Interests within an Online Conspiracy Forum

    Directory of Open Access Journals (Sweden)

    Colin Klein

    2018-02-01

    Full Text Available Conspiracy theories play a troubling role in political discourse. Online forums provide a valuable window into everyday conspiracy theorizing, and can give a clue to the motivations and interests of those who post in such forums. Yet this online activity can be difficult to quantify and study. We describe a unique approach to studying online conspiracy theorists which used non-negative matrix factorization to create a topic model of authors' contributions to the main conspiracy forum on Reddit.com. This subreddit provides a large corpus of comments which spans many years and numerous authors. We show that within the forum, there are multiple sub-populations distinguishable by their loadings on different topics in the model. Further, we argue, these differences are interpretable as differences in background beliefs and motivations. The diversity of the distinct subgroups places constraints on theories of what generates conspiracy theorizing. We argue that traditional “monological” believers are only the tip of an iceberg of commenters. Neither simple irrationality nor common preoccupations can account for the observed diversity. Instead, we suggest, those who endorse conspiracies seem to be primarily brought together by epistemological concerns, and that these central concerns link an otherwise heterogenous group of individuals.

  8. Sandfish numerical model reveals optimal swimming in sand

    Science.gov (United States)

    Maladen, Ryan; Ding, Yang; Kamor, Adam; Slatton, Andrew; Goldman, Daniel

    2009-11-01

    Motivated by experiment and theory examining the undulatory swimming of the sandfish lizard within granular media footnotetextMaladen et. al, Science, 325, 314, 2009, we study a numerical model of the sandfish as it swims within a validated soft sphere Molecular Dynamics granular media simulation. We hypothesize that features of its morphology and undulatory kinematics, and the granular media contribute to effective sand swimming. Our results agree with a resistive force model of the sandfish and show that speed and transport cost are optimized at a ratio of wave amplitude to wavelength of 0.2, irrespective of media properties and preparation. At this ratio, the entry of the animal into the media is fastest at an angle of 20^o, close to the angle of repose. We also find that the sandfish cross-sectional body shape reduces motion induced buoyancy within the granular media and that wave efficiency is sensitive to body-particle friction but independent of particle-particle friction.

  9. Multiplex model of mental lexicon reveals explosive learning in humans.

    Science.gov (United States)

    Stella, Massimo; Beckage, Nicole M; Brede, Markus; De Domenico, Manlio

    2018-02-02

    Word similarities affect language acquisition and use in a multi-relational way barely accounted for in the literature. We propose a multiplex network representation of this mental lexicon of word similarities as a natural framework for investigating large-scale cognitive patterns. Our representation accounts for semantic, taxonomic, and phonological interactions and it identifies a cluster of words which are used with greater frequency, are identified, memorised, and learned more easily, and have more meanings than expected at random. This cluster emerges around age 7 through an explosive transition not reproduced by null models. We relate this explosive emergence to polysemy - redundancy in word meanings. Results indicate that the word cluster acts as a core for the lexicon, increasing both lexical navigability and robustness to linguistic degradation. Our findings provide quantitative confirmation of existing conjectures about core structure in the mental lexicon and the importance of integrating multi-relational word-word interactions in psycholinguistic frameworks.

  10. Significance of predictive models/risk calculators for HBV-related hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    DONG Jing

    2015-06-01

    Full Text Available Hepatitis B virus (HBV-related hepatocellular carcinoma (HCC is a major public health problem in Southeast Asia. In recent years, researchers from Hong Kong and Taiwan have reported predictive models or risk calculators for HBV-associated HCC by studying its natural history, which, to some extent, predicts the possibility of HCC development. Generally, risk factors of each model involve age, sex, HBV DNA level, and liver cirrhosis. This article discusses the evolution and clinical significance of currently used predictive models for HBV-associated HCC and assesses the advantages and limits of risk calculators. Updated REACH-B model and LSM-HCC model show better negative predictive values and have better performance in predicting the outcomes of patients with chronic hepatitis B (CHB. These models can be applied to stratified screening of HCC and, meanwhile, become an assessment tool for the management of CHB patients.

  11. Significance of categorization and the modeling of age related factors for radiation protection

    International Nuclear Information System (INIS)

    Matsuoka, Osamu

    1987-01-01

    It is proposed that the categorization and modelling are necessary with regard to age related factors of radionuclide metabolism for the radiation protection of the public. In order to utilize the age related information as a model for life time risk estimate of public, it is necessary to generalize and simplify it according to the categorized model patterns. Since the patterns of age related changes in various parameters of radionuclide metabolism seem to be rather simple, it is possible to categorize them into eleven types of model patterns. Among these models, five are selected as positively significant models to be considered. Examples are shown as to the fitting of representative parameters of both physiological and metabolic parameter of radionuclides into the proposed model. The range of deviation from adult standard value is also analyzed for each model. The fitting of each parameter to categorized models, and its comparative consideration provide the effective information as to the physiological basis of radionuclide metabolism. Discussions are made on the problems encountered in the application of available age related information to radiation protection of the public, i.e. distribution of categorized parameter, period of life covered, range of deviation from adult value, implication to other dosimetric and pathological models and to the final estimation. 5 refs.; 3 figs.; 4 tabs

  12. Laboratory simulation reveals significant impacts of ocean acidification on microbial community composition and host-pathogen interactions between the blood clam and Vibrio harveyi.

    Science.gov (United States)

    Zha, Shanjie; Liu, Saixi; Su, Wenhao; Shi, Wei; Xiao, Guoqiang; Yan, Maocang; Liu, Guangxu

    2017-12-01

    It has been suggested that climate change may promote the outbreaks of diseases in the sea through altering the host susceptibility, the pathogen virulence, and the host-pathogen interaction. However, the impacts of ocean acidification (OA) on the pathogen components of bacterial community and the host-pathogen interaction of marine bivalves are still poorly understood. Therefore, 16S rRNA high-throughput sequencing and host-pathogen interaction analysis between blood clam (Tegillarca granosa) and Vibrio harveyi were conducted in the present study to gain a better understanding of the ecological impacts of ocean acidification. The results obtained revealed a significant impact of ocean acidification on the composition of microbial community at laboratory scale. Notably, the abundance of Vibrio, a major group of pathogens to many marine organisms, was significantly increased under ocean acidification condition. In addition, the survival rate and haemolytic activity of V. harveyi were significantly higher in the presence of haemolymph of OA treated T. granosa, indicating a compromised immunity of the clam and enhanced virulence of V. harveyi under future ocean acidification scenarios. Conclusively, the results obtained in this study suggest that future ocean acidification may increase the risk of Vibrio pathogen infection for marine bivalve species, such as blood clams. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. ARMA modeling of stochastic processes in nuclear reactor with significant detection noise

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1992-01-01

    The theoretical basis of ARMA modelling of stochastic processes in nuclear reactor was presented in a previous paper, neglecting observational noise. The identification of real reactor data indicated that in some experiments the detection noise is significant. Thus a more rigorous theoretical modelling of stochastic processes in nuclear reactor is performed. Starting from the fundamental stochastic differential equations of the Langevin type for the interaction of the detector with neutron field, a new theoretical ARMA model is developed. preliminary identification results confirm the theoretical expectations. (author)

  14. Strategies for Testing Statistical and Practical Significance in Detecting DIF with Logistic Regression Models

    Science.gov (United States)

    Fidalgo, Angel M.; Alavi, Seyed Mohammad; Amirian, Seyed Mohammad Reza

    2014-01-01

    This study examines three controversial aspects in differential item functioning (DIF) detection by logistic regression (LR) models: first, the relative effectiveness of different analytical strategies for detecting DIF; second, the suitability of the Wald statistic for determining the statistical significance of the parameters of interest; and…

  15. Significance of kinetics for sorption on inorganic colloids: modeling and experiment interpretation issues.

    Science.gov (United States)

    Painter, S; Cvetkovic, V; Pickett, D; Turner, D R

    2002-12-15

    A two-site kinetic model for solute sorption on inorganic colloids is developed. The model quantifies linear first-order sorption on two types of sites ("fast" and "slow") characterized by two pairs of rates (forward and reverse). We use the model to explore data requirements for long-term predictive calculations of colloid-facilitated transport and to evaluate laboratory kinetic sorption data of Lu et al.. Five batch sorption data sets are considered with plutonium as the tracer and montmorillonite, hematite, silica, and smectite as colloids. Using asymptotic results applicable on the time scale of limited duration experiments, a robust estimation procedure is developed for the fast-site partitioning coefficient K(C) and the slow forward rate alpha. The estimated range of K(C) is 1.1-76 L/g, and the range for alpha is 0.0017-0.02 1/h. The fast reverse rate k(r) is estimated in the range 0.012-0.1 1/h. Comparison of one-site and two-site sorption interpretations reveals the difficulty in discriminating between the two models for montmorillonite and to a lesser extent for hematite. For silica and smectite, the two-site model clearly provides a better representation of the data as compared with a single site model. Kinetic data for silica are available for different colloid concentrations (0.2 g/L and 1 g/L). For the range of experimental conditions considered, alpha appears to be independent of colloid concentration.

  16. Clustering reveals limits of parameter identifiability in multi-parameter models of biochemical dynamics.

    Science.gov (United States)

    Nienałtowski, Karol; Włodarczyk, Michał; Lipniacki, Tomasz; Komorowski, Michał

    2015-09-29

    Compared to engineering or physics problems, dynamical models in quantitative biology typically depend on a relatively large number of parameters. Progress in developing mathematics to manipulate such multi-parameter models and so enable their efficient interplay with experiments has been slow. Existing solutions are significantly limited by model size. In order to simplify analysis of multi-parameter models a method for clustering of model parameters is proposed. It is based on a derived statistically meaningful measure of similarity between groups of parameters. The measure quantifies to what extend changes in values of some parameters can be compensated by changes in values of other parameters. The proposed methodology provides a natural mathematical language to precisely communicate and visualise effects resulting from compensatory changes in values of parameters. As a results, a relevant insight into identifiability analysis and experimental planning can be obtained. Analysis of NF-κB and MAPK pathway models shows that highly compensative parameters constitute clusters consistent with the network topology. The method applied to examine an exceptionally rich set of published experiments on the NF-κB dynamics reveals that the experiments jointly ensure identifiability of only 60% of model parameters. The method indicates which further experiments should be performed in order to increase the number of identifiable parameters. We currently lack methods that simplify broadly understood analysis of multi-parameter models. The introduced tools depict mutually compensative effects between parameters to provide insight regarding role of individual parameters, identifiability and experimental design. The method can also find applications in related methodological areas of model simplification and parameters estimation.

  17. Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin.

    Science.gov (United States)

    Cramer, Grant R; Ghan, Ryan; Schlauch, Karen A; Tillett, Richard L; Heymann, Hildegarde; Ferrarini, Alberto; Delledonne, Massimo; Zenoni, Sara; Fasoli, Marianna; Pezzotti, Mario

    2014-12-19

    Grapevine berry, a nonclimacteric fruit, has three developmental stages; the last one is when berry color and sugar increase. Flavors derived from terpenoid and fatty acid metabolism develop at the very end of this ripening stage. The transcriptomic response of pulp and skin of Cabernet Sauvignon berries in the late stages of ripening between 22 and 37 °Brix was assessed using whole-genome micorarrays. The transcript abundance of approximately 18,000 genes changed with °Brix and tissue type. There were a large number of changes in many gene ontology (GO) categories involving metabolism, signaling and abiotic stress. GO categories reflecting tissue differences were overrepresented in photosynthesis, isoprenoid metabolism and pigment biosynthesis. Detailed analysis of the interaction of the skin and pulp with °Brix revealed that there were statistically significantly higher abundances of transcripts changing with °Brix in the skin that were involved in ethylene signaling, isoprenoid and fatty acid metabolism. Many transcripts were peaking around known optimal fruit stages for flavor production. The transcript abundance of approximately two-thirds of the AP2/ERF superfamily of transcription factors changed during these developmental stages. The transcript abundance of a unique clade of ERF6-type transcription factors had the largest changes in the skin and clustered with genes involved in ethylene, senescence, and fruit flavor production including ACC oxidase, terpene synthases, and lipoxygenases. The transcript abundance of important transcription factors involved in fruit ripening was also higher in the skin. A detailed analysis of the transcriptome dynamics during late stages of ripening of grapevine berries revealed that these berries went through massive transcriptional changes in gene ontology categories involving chemical signaling and metabolism in both the pulp and skin, particularly in the skin. Changes in the transcript abundance of genes involved in

  18. Field significance of performance measures in the context of regional climate model evaluation. Part 2: precipitation

    Science.gov (United States)

    Ivanov, Martin; Warrach-Sagi, Kirsten; Wulfmeyer, Volker

    2018-04-01

    A new approach for rigorous spatial analysis of the downscaling performance of regional climate model (RCM) simulations is introduced. It is based on a multiple comparison of the local tests at the grid cells and is also known as `field' or `global' significance. The block length for the local resampling tests is precisely determined to adequately account for the time series structure. New performance measures for estimating the added value of downscaled data relative to the large-scale forcing fields are developed. The methodology is exemplarily applied to a standard EURO-CORDEX hindcast simulation with the Weather Research and Forecasting (WRF) model coupled with the land surface model NOAH at 0.11 ∘ grid resolution. Daily precipitation climatology for the 1990-2009 period is analysed for Germany for winter and summer in comparison with high-resolution gridded observations from the German Weather Service. The field significance test controls the proportion of falsely rejected local tests in a meaningful way and is robust to spatial dependence. Hence, the spatial patterns of the statistically significant local tests are also meaningful. We interpret them from a process-oriented perspective. While the downscaled precipitation distributions are statistically indistinguishable from the observed ones in most regions in summer, the biases of some distribution characteristics are significant over large areas in winter. WRF-NOAH generates appropriate stationary fine-scale climate features in the daily precipitation field over regions of complex topography in both seasons and appropriate transient fine-scale features almost everywhere in summer. As the added value of global climate model (GCM)-driven simulations cannot be smaller than this perfect-boundary estimate, this work demonstrates in a rigorous manner the clear additional value of dynamical downscaling over global climate simulations. The evaluation methodology has a broad spectrum of applicability as it is

  19. Significance of Various Experimental Models and Assay Techniques in Cancer Diagnosis.

    Science.gov (United States)

    Ghanghoria, Raksha; Kesharwani, Prashant; Jain, Narendra K

    2017-01-01

    The experimental models are of vital significance to provide information regarding biological as well as genetic factors that control the phenotypic characteristics of the disease and serve as the foundation for the development of rational intervention stratagem. This review highlights the importance of experimental models in the field of cancer management. The process of pathogenesis in cancer progression, invasion and metastasis can be successfully explained by employing clinically relevant laboratory models of the disease. Cancer cell lines have been used extensively to monitor the process of cancer pathogenesis process by controlling growth regulation and chemo-sensitivity for the evaluation of novel therapeutics in both in vitro and xenograft models. The experimental models have been used for the elaboration of diagnostic or therapeutic protocols, and thus employed in preclinical studies of bioactive agents relevant for cancer prevention. The outcome of this review should provide useful information in understanding and selection of various models in accordance with the stage of cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Scoping review identifies significant number of knowledge translation theories, models and frameworks with limited use.

    Science.gov (United States)

    Strifler, Lisa; Cardoso, Roberta; McGowan, Jessie; Cogo, Elise; Nincic, Vera; Khan, Paul A; Scott, Alistair; Ghassemi, Marco; MacDonald, Heather; Lai, Yonda; Treister, Victoria; Tricco, Andrea C; Straus, Sharon E

    2018-04-13

    To conduct a scoping review of knowledge translation (KT) theories, models and frameworks that have been used to guide dissemination or implementation of evidence-based interventions targeted to prevention and/or management of cancer or other chronic diseases. We used a comprehensive multistage search process from 2000-2016, which included traditional bibliographic database searching, searching using names of theories, models and frameworks, and cited reference searching. Two reviewers independently screened the literature and abstracted data. We found 596 studies reporting on the use of 159 KT theories, models or frameworks. A majority (87%) of the identified theories, models or frameworks were used in five or fewer studies, with 60% used once. The theories, models and frameworks were most commonly used to inform planning/design, implementation and evaluation activities, and least commonly used to inform dissemination and sustainability/scalability activities. Twenty-six were used across the full implementation spectrum (from planning/design to sustainability/scalability) either within or across studies. All were used for at least individual-level behavior change, while 48% were used for organization-level, 33% for community-level and 17% for system-level change. We found a significant number of KT theories, models and frameworks with a limited evidence base describing their use. Copyright © 2018. Published by Elsevier Inc.

  1. Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles.

    Science.gov (United States)

    Takebe, Jun; Ito, Shigeki; Miura, Shingo; Miyata, Kyohei; Ishibashi, Kanji

    2012-01-01

    A method of coating commercially pure titanium (cpTi) implants with a highly crystalline, thin hydroxyapatite (HA) layer using discharge anodic oxidation followed by hydrothermal treatment (Spark discharged Anodic oxidation treatment ; SA-treated cpTi) has been reported for use in clinical dentistry. We hypothesized that a thin HA layer with high crystallinity and nanostructured anodic titanium oxide film on such SA-treated cpTi implant surfaces might be a crucial function of their surface-specific potential energy. To test this, we analyzed anodic oxide (AO) cpTi and SA-treated cpTi disks by SEM and AFM. Contact angles and surface free energy of each disk surface was measured using FAMAS software. High-magnification SEM and AFM revealed the nanotopographic structure of the anodic titanium oxide film on SA-treated cpTi; however, this was not observed on the AO cpTi surface. The contact angle and surface free energy measurements were also significantly different between AO cpTi and SA-treated cpTi surfaces (Tukey's, P<0.05). These data indicated that the change of physicochemical properties of an anodic titanium oxide film with HA crystals on an SA-treated cpTi surface may play a key role in the phenomenon of osteoconduction during the process of osseointegration. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Comparative transcriptome analysis reveals significant differences in MicroRNA expression and their target genes between adipose and muscular tissues in cattle.

    Science.gov (United States)

    Sun, Jiajie; Zhang, Bowen; Lan, Xianyong; Zhang, Chunlei; Lei, Chuzhao; Chen, Hong

    2014-01-01

    The posttranscriptional gene regulation mediated by microRNAs (miRNAs) plays an important role in various species. However, to date limited miRNAs have been reported between fat and muscle tissues in beef cattle. In this paper, 412 known and 22 novel miRNAs in backfat as well as 334 known and 10 novel miRNAs in longissimus thoracis were identified in the Chinese Qinchuan beef cattle. Bta-miR-199a-3p, -154c, -320a and -432 were expressed at higher levels in backfat tissue, while bta-miR-1, -133a, -206, and -378 were also significantly enriched in muscle tissue. Functional analysis revealed that fat-enriched miRNAs targeted PRKAA1/2, PPARA and PPARG genes to modulate lipid and fatty acid metabolism, and muscle-enriched miRNAs targeted CSRP3 gene to present function involved in skeletal and muscular system development. The results obtained may help in the design of new selection strategies to improve beef quality.

  3. Incorporating representation of agricultural ecosystems and management within a dynamic biosphere model: Approach, validation, and significance

    Science.gov (United States)

    Kucharik, C.

    2004-12-01

    At the scale of individual fields, crop models have long been used to examine the interactions between soils, vegetation, the atmosphere and human management, using varied levels of numerical sophistication. While previous efforts have contributed significantly towards the advancement of modeling tools, the models themselves are not typically applied across larger continental scales due to a lack of crucial data. Furthermore, many times crop models are used to study a single quantity, process, or cycle in isolation, limiting their value in considering the important tradeoffs between competing ecosystem services such as food production, water quality, and sequestered carbon. In response to the need for a more integrated agricultural modeling approach across the continental scale, an updated agricultural version of a dynamic biosphere model (IBIS) now integrates representations of land-surface physics and soil physics, canopy physiology, terrestrial carbon and nitrogen balance, crop phenology, solute transport, and farm management into a single framework. This version of the IBIS model (Agro-IBIS) uses a short 20 to 60-minute timestep to simulate the rapid exchange of energy, carbon, water, and momentum between soils, vegetative canopies, and the atmosphere. The model can be driven either by site-specific meteorological data or by gridded climate datasets. Mechanistic crop models for corn, soybean, and wheat use physiologically-based representations of leaf photosynthesis, stomatal conductance, and plant respiration. Model validation has been performed using a variety of temporal scale data collected at the following spatial scales: (1) the precision-agriculture scale (5 m), (2) the individual field experiment scale (AmeriFlux), and (3) regional and continental scales using annual USDA county-level yield data and monthly satellite (AVHRR) observations of vegetation characteristics at 0.5 degree resolution. To date, the model has been used with great success to

  4. Computation of spatial significance of mountain objects extracted from multiscale digital elevation models

    International Nuclear Information System (INIS)

    Sathyamoorthy, Dinesh

    2014-01-01

    The derivation of spatial significance is an important aspect of geospatial analysis and hence, various methods have been proposed to compute the spatial significance of entities based on spatial distances with other entities within the cluster. This paper is aimed at studying the spatial significance of mountain objects extracted from multiscale digital elevation models (DEMs). At each scale, the value of spatial significance index SSI of a mountain object is the minimum number of morphological dilation iterations required to occupy all the other mountain objects in the terrain. The mountain object with the lowest value of SSI is the spatially most significant mountain object, indicating that it has the shortest distance to the other mountain objects. It is observed that as the area of the mountain objects reduce with increasing scale, the distances between the mountain objects increase, resulting in increasing values of SSI. The results obtained indicate that the strategic location of a mountain object at the centre of the terrain is more important than its size in determining its reach to other mountain objects and thus, its spatial significance

  5. RNA-Seq analysis during the life cycle of Cryptosporidium parvum reveals significant differential gene expression between proliferating stages in the intestine and infectious sporozoites.

    Science.gov (United States)

    Lippuner, Christoph; Ramakrishnan, Chandra; Basso, Walter U; Schmid, Marc W; Okoniewski, Michal; Smith, Nicholas C; Hässig, Michael; Deplazes, Peter; Hehl, Adrian B

    2018-05-01

    Cryptosporidium parvum is a major cause of diarrhoea in humans and animals. There are no vaccines and few drugs available to control C. parvum. In this study, we used RNA-Seq to compare gene expression in sporozoites and intracellular stages of C. parvum to identify genes likely to be important for successful completion of the parasite's life cycle and, thereby, possible targets for drugs or vaccines. We identified 3774 protein-encoding transcripts in C. parvum. Applying a stringent cut-off of eight fold for determination of differential expression, we identified 173 genes (26 coding for predicted secreted proteins) upregulated in sporozoites. On the other hand, expression of 1259 genes was upregulated in intestinal stages (merozoites/gamonts) with a gene ontology enrichment for 63 biological processes and upregulation of 117 genes in 23 metabolic pathways. There was no clear stage specificity of expression of AP2-domain containing transcription factors, although sporozoites had a relatively small repertoire of these important regulators. Our RNA-Seq analysis revealed a new calcium-dependent protein kinase, bringing the total number of known calcium-dependent protein kinases (CDPKs) in C. parvum to 11. One of these, CDPK1, was expressed in all stages, strengthening the notion that it is a valid drug target. By comparing parasites grown in vivo (which produce bona fide thick-walled oocysts) and in vitro (which are arrested in sexual development prior to oocyst generation) we were able to confirm that genes encoding oocyst wall proteins are expressed in gametocytes and that the proteins are stockpiled rather than generated de novo in zygotes. RNA-Seq analysis of C. parvum revealed genes expressed in a stage-specific manner and others whose expression is required at all stages of development. The functional significance of these can now be addressed through recent advances in transgenics for C. parvum, and may lead to the identification of viable drug and vaccine

  6. The significance of using satellite imagery data only in Ecological Niche Modelling of Iberian herps

    Directory of Open Access Journals (Sweden)

    Neftalí Sillero

    2012-12-01

    Full Text Available The environmental data used to calculate ecological niche models (ENM are obtained mainly from ground-based maps (e.g., climatic interpolated surfaces. These data are often not available for less developed areas, or may be at an inappropriate scale, and thus to obtain this information requires fieldwork. An alternative source of eco-geographical data comes from satellite imagery. Three sets of ENM were calculated exclusively with variables obtained (1 from optical and radar images only and (2 from climatic and altitude maps obtained by ground-based methods. These models were compared to evaluate whether satellite imagery can accurately generate ENM. These comparisons must be made in areas with well-known species distribution and with available satellite imagery and ground-based data. Thus, the study area was the south-western part of Salamanca (Spain, using amphibian and reptiles as species models. Models’ discrimination capacity was measured with ROC plots. Models’ covariation was measured with a Spatial Spearman correlation. Four modelling techniques were used (Bioclim, Mahalanobis distance, GARP and Maxent. The results of this comparison showed that there were no significant differences between models generated using remotely sensed imagery or ground-based data. However, the models built with satellite imagery data exhibited a larger diversity of values, probably related to the higher spatial resolution of the satellite imagery. Satellite imagery can produce accurate ENM, independently of the modelling technique or the dataset used. Therefore, biogeographical analysis of species distribution in remote areas can be accurately developed only with variables from satellite imagery.

  7. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors

    Directory of Open Access Journals (Sweden)

    Raymond Kiu

    2017-12-01

    Full Text Available Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an “open” pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens-associated exotoxins genes including α-toxin (plc, enterotoxin (cpe, and Perfringolysin O (pfo or pfoA, although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56 of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes (tet and anti-defensins genes (mprF were consistently detected in silico (tet: 75%; mprF: 100%. However, pre-antibiotic era strain genomes did not encode for tet, thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen.

  8. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks.

    Directory of Open Access Journals (Sweden)

    Prasanna Vidyasekar

    Full Text Available Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated and 2542 (downregulated genes (>2 fold in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated and 444 (downregulated genes (>2 fold under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2.

  9. Intriguing model significantly reduces boarding of psychiatric patients, need for inpatient hospitalization.

    Science.gov (United States)

    2015-01-01

    As new approaches to the care of psychiatric emergencies emerge, one solution is gaining particular traction. Under the Alameda model, which has been put into practice in Alameda County, CA, patients who are brought to regional EDs with emergency psychiatric issues are quickly transferred to a designated emergency psychiatric facility as soon as they are medically stabilized. This alleviates boarding problems in area EDs while also quickly connecting patients with specialized care. With data in hand on the model's effectiveness, developers believe the approach could alleviate boarding problems in other communities as well. The model is funded by through a billing code established by California's Medicaid program for crisis stabilization services. Currently, only 22% of the patients brought to the emergency psychiatric facility ultimately need to be hospitalized; the other 78% are able to go home or to an alternative situation. In a 30-day study of the model, involving five community hospitals in Alameda County, CA, researchers found that ED boarding times were as much as 80% lower than comparable ED averages, and that patients were stabilized at least 75% of the time, significantly reducing the need for inpatient hospitalization.

  10. Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.).

    Science.gov (United States)

    Auinger, Hans-Jürgen; Schönleben, Manfred; Lehermeier, Christina; Schmidt, Malthe; Korzun, Viktor; Geiger, Hartwig H; Piepho, Hans-Peter; Gordillo, Andres; Wilde, Peer; Bauer, Eva; Schön, Chris-Carolin

    2016-11-01

    Genomic prediction accuracy can be significantly increased by model calibration across multiple breeding cycles as long as selection cycles are connected by common ancestors. In hybrid rye breeding, application of genome-based prediction is expected to increase selection gain because of long selection cycles in population improvement and development of hybrid components. Essentially two prediction scenarios arise: (1) prediction of the genetic value of lines from the same breeding cycle in which model training is performed and (2) prediction of lines from subsequent cycles. It is the latter from which a reduction in cycle length and consequently the strongest impact on selection gain is expected. We empirically investigated genome-based prediction of grain yield, plant height and thousand kernel weight within and across four selection cycles of a hybrid rye breeding program. Prediction performance was assessed using genomic and pedigree-based best linear unbiased prediction (GBLUP and PBLUP). A total of 1040 S 2 lines were genotyped with 16 k SNPs and each year testcrosses of 260 S 2 lines were phenotyped in seven or eight locations. The performance gap between GBLUP and PBLUP increased significantly for all traits when model calibration was performed on aggregated data from several cycles. Prediction accuracies obtained from cross-validation were in the order of 0.70 for all traits when data from all cycles (N CS  = 832) were used for model training and exceeded within-cycle accuracies in all cases. As long as selection cycles are connected by a sufficient number of common ancestors and prediction accuracy has not reached a plateau when increasing sample size, aggregating data from several preceding cycles is recommended for predicting genetic values in subsequent cycles despite decreasing relatedness over time.

  11. A Parallelized Pumpless Artificial Placenta System Significantly Prolonged Survival Time in a Preterm Lamb Model.

    Science.gov (United States)

    Miura, Yuichiro; Matsuda, Tadashi; Usuda, Haruo; Watanabe, Shimpei; Kitanishi, Ryuta; Saito, Masatoshi; Hanita, Takushi; Kobayashi, Yoshiyasu

    2016-05-01

    An artificial placenta (AP) is an arterio-venous extracorporeal life support system that is connected to the fetal circulation via the umbilical vasculature. Previously, we published an article describing a pumpless AP system with a small priming volume. We subsequently developed a parallelized system, hypothesizing that the reduced circuit resistance conveyed by this modification would enable healthy fetal survival time to be prolonged. We conducted experiments using a premature lamb model to test this hypothesis. As a result, the fetal survival period was significantly prolonged (60.4 ± 3.8 vs. 18.2 ± 3.2 h, P lamb fetuses to survive for a significantly longer period when compared with previous studies. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals Inc.

  12. Field significance of performance measures in the context of regional climate model evaluation. Part 1: temperature

    Science.gov (United States)

    Ivanov, Martin; Warrach-Sagi, Kirsten; Wulfmeyer, Volker

    2018-04-01

    A new approach for rigorous spatial analysis of the downscaling performance of regional climate model (RCM) simulations is introduced. It is based on a multiple comparison of the local tests at the grid cells and is also known as "field" or "global" significance. New performance measures for estimating the added value of downscaled data relative to the large-scale forcing fields are developed. The methodology is exemplarily applied to a standard EURO-CORDEX hindcast simulation with the Weather Research and Forecasting (WRF) model coupled with the land surface model NOAH at 0.11 ∘ grid resolution. Monthly temperature climatology for the 1990-2009 period is analysed for Germany for winter and summer in comparison with high-resolution gridded observations from the German Weather Service. The field significance test controls the proportion of falsely rejected local tests in a meaningful way and is robust to spatial dependence. Hence, the spatial patterns of the statistically significant local tests are also meaningful. We interpret them from a process-oriented perspective. In winter and in most regions in summer, the downscaled distributions are statistically indistinguishable from the observed ones. A systematic cold summer bias occurs in deep river valleys due to overestimated elevations, in coastal areas due probably to enhanced sea breeze circulation, and over large lakes due to the interpolation of water temperatures. Urban areas in concave topography forms have a warm summer bias due to the strong heat islands, not reflected in the observations. WRF-NOAH generates appropriate fine-scale features in the monthly temperature field over regions of complex topography, but over spatially homogeneous areas even small biases can lead to significant deteriorations relative to the driving reanalysis. As the added value of global climate model (GCM)-driven simulations cannot be smaller than this perfect-boundary estimate, this work demonstrates in a rigorous manner the

  13. Relevance and clinical significance of serum resistin level in obese T2DM rhesus monkey models.

    Science.gov (United States)

    Qi, S-D; He, Z-L; Chen, Y; Ma, J; Yu, W-H; Li, Y-Y; Yang, F-M; Wang, J-B; Chen, L-X; Zhao, Y; Lu, S-Y

    2015-09-01

    Resistin is a type of hormone-like adipocytokines, which is secreted specifically by adipocytes. It may be a key factor in the development of type 2 diabetes mellitus (T2DM) from obesity- associated insulin resistance due to results that show that it has a close relationship with insulin resistance in rodents. We utilized the rhesus monkeys as study objects to preliminarily test the association with glucose metabolism and to conduct a correlation analysis for clinical parameters and serum resistin levels in obese rhesus monkey models of T2DM. The results suggested that resistin was significantly increased in T2DM monkeys (P insulin (FPI) and glycated hemoglobin (HbA1c), Insulin resistance index (HOA-IR), but a negative correlation with islet β-cell function (HOMA-β). In the course of glucose metabolism, reverse release change of resistin and insulin in T2DM monkeys occurred, but the phenomenon that was not observed in the control group, these findings indicated that resistin negatively regulated and interfered with carbohydrate metabolism in T2DM monkey models. The character of the releasing change of resistin might be a unique process in T2DM. Therefore, all of the results could provide references for clinical diagnostic criteria for human cases of T2DM, and could have clinical significance for obese T2DM diagnosis and degree of insulin resistance. © Georg Thieme Verlag KG Stuttgart · New York.

  14. VALORA: data base system for storage significant information used in the behavior modelling in the biosphere

    International Nuclear Information System (INIS)

    Valdes R, M.; Aguero P, A.; Perez S, D.; Cancio P, D.

    2006-01-01

    The nuclear and radioactive facilities can emit to the environment effluents that contain radionuclides, which are dispersed and/or its accumulate in the atmosphere, the terrestrial surface and the surface waters. As part of the evaluations of radiological impact, it requires to be carried out qualitative and quantitative analysis. In many of the cases it doesn't have the real values of the parameters that are used in the modelling, neither it is possible to carry out their measure, for that to be able to carry out the evaluation it needs to be carried out an extensive search of that published in the literature about the possible values of each parameter, under similar conditions to the object of study, this work can be extensive. In this work the characteristics of the VALORA Database System developed with the purpose of organizing and to automate significant information that it appears in different sources (scientific or technique literature) of the parameters that are used in the modelling of the behavior of the pollutants in the environment and the values assigned to these parameters that are used in the evaluation of the radiological impact potential is described; VALORA allows the consultation and selection of the characteristic parametric data of different situations and processes that are required by the calculation pattern implemented. The software VALORA it is a component of a group of tools computer that have as objective to help to the resolution of dispersion models and transfer of pollutants. (Author)

  15. Phasic firing in vasopressin cells: understanding its functional significance through computational models.

    Directory of Open Access Journals (Sweden)

    Duncan J MacGregor

    Full Text Available Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response

  16. Sentinel node positive melanoma patients: prediction and prognostic significance of nonsentinel node metastases and development of a survival tree model.

    Science.gov (United States)

    Wiener, Martin; Acland, Katharine M; Shaw, Helen M; Soong, Seng-Jaw; Lin, Hui-Yi; Chen, Dung-Tsa; Scolyer, Richard A; Winstanley, Julie B; Thompson, John F

    2010-08-01

    Completion lymph node dissection (CLND) following positive sentinel node biopsy (SNB) for melanoma detects additional nonsentinel node (NSN) metastases in approximately 20% of cases. This study aimed to establish whether NSN status can be predicted, to determine its effect on survival, and to develop survival tree models for the sentinel node (SN) positive population. Sydney Melanoma Unit (SMU) patients with at least 1 positive SN, meeting inclusion criteria and treated between October 1992 and June 2005, were identified from the Unit database. Survival characteristics, potential predictors of survival, and NSN status were assessed using the Kaplan-Meier method, Cox regression model, and logistic regression analyses, respectively. Classification tree analysis was performed to identify groups with distinctly different survival characteristics. A total of 323 SN-positive melanoma patients met the inclusion criteria. On multivariate analysis, age, gender, primary tumor thickness, mitotic rate, number of positive NSNs, or total number of positive nodes were statistically significant predictors of survival. NSN metastasis, found at CLND in 19% of patients, was only predicted to a statistically significant degree by ulceration. Multivariate analyses demonstrated that survival was more closely related to number of positive NSNs than total number of positive nodes. Classification tree analysis revealed 4 prognostically distinct survival groups. Patients with NSN metastases could not be reliably identified prior to CLND. Prognosis following CLND was more closely related to number of positive NSNs than total number of positive nodes. Classification tree analysis defined distinctly different survival groups more accurately than use of single-factor analysis.

  17. Models and Mechanisms of Acquired Antihormone Resistance in Breast Cancer: Significant Clinical Progress Despite Limitations

    Science.gov (United States)

    Sweeney, Elizabeth E.; McDaniel, Russell E.; Maximov, Philipp Y.; Fan, Ping; Jordan, V. Craig

    2012-01-01

    Translational research for the treatment and prevention of breast cancer depends upon the four Ms: models, molecules, and mechanisms in order to create medicines. The process, to target the estrogen receptor (ER) in estrogen-dependent breast cancer, has yielded significant advances in patient survivorship and the first approved medicines (tamoxifen and raloxifene) to reduce the incidence of any cancer in high- or low-risk women. This review focuses on the critical role of the few ER-positive cell lines (MCF-7, T47D, BT474, ZR-75) that continue to advance our understanding of the estrogen-regulated biology of breast cancer. More importantly, the model cell lines have provided an opportunity to document the development and evolution of acquired antihormone resistance. The description of this evolutionary process that occurs in micrometastatic disease during up to a decade of adjuvant therapy would not be possible in the patient. The use of the MCF-7 breast cancer cell line in particular has been instrumental in discovering a vulnerability of ER-positive breast cancer exhaustively treated with antihormone therapy. Physiologic estradiol acts as an apoptotic trigger to cause tumor regression. These unanticipated findings in the laboratory have translated to clinical advances in our knowledge of the paradoxical role of estrogen in the life and death of breast cancer. PMID:23308083

  18. Significance tests to determine the direction of effects in linear regression models.

    Science.gov (United States)

    Wiedermann, Wolfgang; Hagmann, Michael; von Eye, Alexander

    2015-02-01

    Previous studies have discussed asymmetric interpretations of the Pearson correlation coefficient and have shown that higher moments can be used to decide on the direction of dependence in the bivariate linear regression setting. The current study extends this approach by illustrating that the third moment of regression residuals may also be used to derive conclusions concerning the direction of effects. Assuming non-normally distributed variables, it is shown that the distribution of residuals of the correctly specified regression model (e.g., Y is regressed on X) is more symmetric than the distribution of residuals of the competing model (i.e., X is regressed on Y). Based on this result, 4 one-sample tests are discussed which can be used to decide which variable is more likely to be the response and which one is more likely to be the explanatory variable. A fifth significance test is proposed based on the differences of skewness estimates, which leads to a more direct test of a hypothesis that is compatible with direction of dependence. A Monte Carlo simulation study was performed to examine the behaviour of the procedures under various degrees of associations, sample sizes, and distributional properties of the underlying population. An empirical example is given which illustrates the application of the tests in practice. © 2014 The British Psychological Society.

  19. Analysis of significance of environmental factors in landslide susceptibility modeling: Case study Jemma drainage network, Ethiopia

    Directory of Open Access Journals (Sweden)

    Vít Maca

    2017-06-01

    Full Text Available Aim of the paper is to describe methodology for calculating significance of environmental factors in landslide susceptibility modeling and present result of selected one. As a study area part of a Jemma basin in Ethiopian Highland is used. This locality is highly affected by mass movement processes. In the first part all major factors and their influence are described briefly. Majority of the work focuses on research of other methodologies used in susceptibility models and design of own methodology. This method is unlike most of the methods used completely objective, therefore it is not possible to intervene in the results. In article all inputs and outputs of the method are described as well as all stages of calculations. Results are illustrated on specific examples. In study area most important factor for landslide susceptibility is slope, on the other hand least important is land cover. At the end of article landslide susceptibility map is created. Part of the article is discussion of results and possible improvements of the methodology.

  20. Multilevel linear modelling of the response-contingent learning of young children with significant developmental delays.

    Science.gov (United States)

    Raab, Melinda; Dunst, Carl J; Hamby, Deborah W

    2018-02-27

    The purpose of the study was to isolate the sources of variations in the rates of response-contingent learning among young children with multiple disabilities and significant developmental delays randomly assigned to contrasting types of early childhood intervention. Multilevel, hierarchical linear growth curve modelling was used to analyze four different measures of child response-contingent learning where repeated child learning measures were nested within individual children (Level-1), children were nested within practitioners (Level-2), and practitioners were nested within the contrasting types of intervention (Level-3). Findings showed that sources of variations in rates of child response-contingent learning were associated almost entirely with type of intervention after the variance associated with differences in practitioners nested within groups were accounted for. Rates of child learning were greater among children whose existing behaviour were used as the building blocks for promoting child competence (asset-based practices) compared to children for whom the focus of intervention was promoting child acquisition of missing skills (needs-based practices). The methods of analysis illustrate a practical approach to clustered data analysis and the presentation of results in ways that highlight sources of variations in the rates of response-contingent learning among young children with multiple developmental disabilities and significant developmental delays. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Urban Growth Causes Significant increase in Extreme Rainfall - A modelling study

    Science.gov (United States)

    Pathirana, Assela

    2010-05-01

    World's urban centers are growing rapidly causing the impact of extreme rainfall events felt much more severely due to relatively well unerstood phenomena like decreased infiltration and flow resistance. However, an increasing set of evidence (e.g. heavy rainfall event observed at Nerima, central part of Tokyo metropolitan area, on 21 July 1999) suggest that the extreme rainfall, the driving force itself increases as a result of the microclimatic changes due to urban growth. Urban heat islands(UHI) due to heat anomalies of urban sprawl act as virtual mountains resulting in a local atmosphere more conducive for heavy rainfall. In this study, we employ a popular mesoscale atmoshperic model to numerically simulate the UHI induced rainfall enhancement. Initial idealized experiments conducted under trophical atmospheric conditions indicated that the changes in landuse due to significant urban growth will indeed cause more intense rainfall events. This is largely due to increased convective breakup, causing a favourable situation for convective cloud systems. Five historical heavy rainfall events that caused floods in five urban centres (Dhaka, Mumbai, Colombo, Lyon and Taipei) were selected from historical records. Numerical simulations were setup to assertain what would be the amount of rainfall if the same large-scale atmospheric situations (forcings) occured under a hypothetical situation of doubled urbanization level these events. Significant increases (upto 50%) of extreme rainfall was indicated for many of the events. Under major assumptions, these simulations were used to estimate the anticipated changes in the Intensity-Duration-Frequency (IDF). The magnitude of the 30min event with 25 year return period increased by about 20 percent. Without considering any changes in the external forcing the urban growth alone could cause very significant increase in local rainfall.

  2. Cooperative Metabolism in a Three-Partner Insect-Bacterial Symbiosis Revealed by Metabolic Modeling.

    Science.gov (United States)

    Ankrah, Nana Y D; Luan, Junbo; Douglas, Angela E

    2017-08-01

    An important factor determining the impact of microbial symbionts on their animal hosts is the balance between the cost of nutrients consumed by the symbionts and the benefit of nutrients released back to the host, but the quantitative significance of nutrient exchange in symbioses involving multiple microbial partners has rarely been addressed. In this study on the association between two intracellular bacterial symbionts, " Candidatus Portiera aleyrodidarum" and " Candidatus Hamiltonella defensa," and their animal host, the whitefly Bemisia tabaci , we apply metabolic modeling to investigate host-symbiont nutrient exchange. Our in silico analysis revealed that >60% of the essential amino acids and related metabolites synthesized by " Candidatus Portiera aleyrodidarum" are utilized by the host, including a substantial contribution of nitrogen recycled from host nitrogenous waste, and that these interactions are required for host growth. In contrast, " Candidatus Hamiltonella defensa" retains most or all of the essential amino acids and B vitamins that it is capable of synthesizing. Furthermore, " Candidatus Hamiltonella defensa" suppresses host growth in silico by competition with " Candidatus Portiera aleyrodidarum" for multiple host nutrients, by suppressing " Candidatus Portiera aleyrodidarum" growth and metabolic function, and also by consumption of host nutrients that would otherwise be allocated to host growth. The interpretation from these modeling outputs that " Candidatus Hamiltonella defensa" is a nutritional parasite could not be inferred reliably from gene content alone but requires consideration of constraints imposed by the structure of the metabolic network. Furthermore, these quantitative models offer precise predictions for future experimental study and the opportunity to compare the functional organization of metabolic networks in different symbioses. IMPORTANCE The metabolic functions of unculturable intracellular bacteria with much reduced

  3. Evaluating the significance of paleophylogeographic species distribution models in reconstructing quaternary range-shifts of nearctic chelonians.

    Directory of Open Access Journals (Sweden)

    Dennis Rödder

    Full Text Available The climatic cycles of the Quaternary, during which global mean annual temperatures have regularly changed by 5-10°C, provide a special opportunity for studying the rate, magnitude, and effects of geographic responses to changing climates. During the Quaternary, high- and mid-latitude species were extirpated from regions that were covered by ice or otherwise became unsuitable, persisting in refugial retreats where the environment was compatible with their tolerances. In this study we combine modern geographic range data, phylogeny, Pleistocene paleoclimatic models, and isotopic records of changes in global mean annual temperature, to produce a temporally continuous model of geographic changes in potential habitat for 59 species of North American turtles over the past 320 Ka (three full glacial-interglacial cycles. These paleophylogeographic models indicate the areas where past climates were compatible with the modern ranges of the species and serve as hypotheses for how their geographic ranges would have changed in response to Quaternary climate cycles. We test these hypotheses against physiological, genetic, taxonomic and fossil evidence, and we then use them to measure the effects of Quaternary climate cycles on species distributions. Patterns of range expansion, contraction, and fragmentation in the models are strongly congruent with (i phylogeographic differentiation; (ii morphological variation; (iii physiological tolerances; and (iv intraspecific genetic variability. Modern species with significant interspecific differentiation have geographic ranges that strongly fluctuated and repeatedly fragmented throughout the Quaternary. Modern species with low genetic diversity have geographic distributions that were highly variable and at times exceedingly small in the past. Our results reveal the potential for paleophylogeographic models to (i reconstruct past geographic range modifications, (ii identify geographic processes that result in

  4. Cyclosporin A significantly improves preeclampsia signs and suppresses inflammation in a rat model.

    Science.gov (United States)

    Hu, Bihui; Yang, Jinying; Huang, Qian; Bao, Junjie; Brennecke, Shaun Patrick; Liu, Huishu

    2016-05-01

    Preeclampsia is associated with an increased inflammatory response. Immune suppression might be an effective treatment. The aim of this study was to examine whether Cyclosporin A (CsA), an immunosuppressant, improves clinical characteristics of preeclampsia and suppresses inflammation in a lipopolysaccharide (LPS) induced preeclampsia rat model. Pregnant rats were randomly divided into 4 groups: group 1 (PE) rats each received LPS via tail vein on gestational day (GD) 14; group 2 (PE+CsA5) rats were pretreated with LPS (1.0 μg/kg) on GD 14 and were then treated with CsA (5mg/kg, ip) on GDs 16, 17 and 18; group 3 (PE+CsA10) rats were pretreated with LPS (1.0 μg/kg) on GD 14 and were then treated with CsA (10mg/kg, ip) on GDs 16, 17 and 18; group 4 (pregnant control, PC) rats were treated with the vehicle (saline) used for groups 1, 2 and 3. Systolic blood pressure, urinary albumin, biometric parameters and the levels of serum cytokines were measured on day 20. CsA treatment significantly reduced LPS-induced systolic blood pressure and the mean 24-h urinary albumin excretion. Pro-inflammatory cytokines IL-6, IL-17, IFN-γ and TNF-α were increased in the LPS treatment group but were reduced in (LPS+CsA) group (Ppreeclampsia signs and attenuated inflammatory responses in the LPS induced preeclampsia rat model which suggests that immunosuppressant might be an alternative management option for preeclampsia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Kernel density surface modelling as a means to identify significant concentrations of vulnerable marine ecosystem indicators.

    Directory of Open Access Journals (Sweden)

    Ellen Kenchington

    Full Text Available The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify "significant concentrations" of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores, and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here

  6. Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling

    Science.gov (United States)

    Vilà, M.; Fernández, M.; Jiménez-Munt, I.

    2010-07-01

    Determining the temperature distribution within the lithosphere requires the knowledge of the radiogenic heat production (RHP) distribution within the crust and the lithospheric mantle. RHP of crustal rocks varies considerably at different scales as a result of the petrogenetic processes responsible for their formation and therefore RHP depends on the considered lithologies. In this work we address RHP variability of some common lithological groups from a compilation of a total of 2188 representative U, Th and K concentrations of different worldwide rock types derived from 102 published studies. To optimize the use of the generated RHP database we have classified and renamed the rock-type denominations of the original works following a petrologic classification scheme with a hierarchical structure. The RHP data of each lithological group is presented in cumulative distribution plots, and we report a table with the mean, the standard deviation, the minimum and maximum values, and the significant percentiles of these lithological groups. We discuss the reported RHP distribution for the different igneous, sedimentary and metamorphic lithological groups from a petrogenetic viewpoint and give some useful guidelines to assign RHP values to lithospheric thermal modeling.

  7. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome.

    Science.gov (United States)

    Lai, Hao; Jia, Xiao; Yu, Qiuxiao; Zhang, Chenglu; Qiao, Jie; Guan, Youfei; Kang, Jihong

    2014-11-01

    Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy associated with both reproductive and metabolic disorders. Dehydroepiandrosterone (DHEA) is currently used to induce a PCOS mouse model. High-fat diet (HFD) has been shown to cause obesity and infertility in female mice. The possible effect of an HFD on the phenotype of DHEA-induced PCOS mice is unknown. The aim of the present study was to investigate both reproductive and metabolic features of DHEA-induced PCOS mice fed a normal chow or a 60% HFD. Prepubertal C57BL/6 mice (age 25 days) on the normal chow or an HFD were injected (s.c.) daily with the vehicle sesame oil or DHEA for 20 consecutive days. At the end of the experiment, both reproductive and metabolic characteristics were assessed. Our data show that an HFD did not affect the reproductive phenotype of DHEA-treated mice. The treatment of HFD, however, caused significant metabolic alterations in DHEA-treated mice, including obesity, glucose intolerance, dyslipidemia, and pronounced liver steatosis. These findings suggest that HFD induces distinct metabolic features in DHEA-induced PCOS mice. The combined DHEA and HFD treatment may thus serve as a means of studying the mechanisms involved in metabolic derangements of this syndrome, particularly in the high prevalence of hepatic steatosis in women with PCOS. © 2014 by the Society for the Study of Reproduction, Inc.

  8. Genome of the Asian longhorned beetle, Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface

    Science.gov (United States)

    The Asian longhorned beetle (Anoplophora glabripennis; AGLAB) is a globally significant invasive species capable of inflicting severe feeding damage on many important orchard, ornamental and forest trees. Genome sequencing, annotation, gene expression assays, and functional and comparative genomic s...

  9. More Use of Peritoneal Dialysis Gives Significant Savings: A Systematic Review and Health Economic Decision Model.

    Science.gov (United States)

    Pike, Eva; Hamidi, Vida; Ringerike, Tove; Wisloff, Torbjorn; Klemp, Marianne

    2017-02-01

    Patients with end-stage renal disease (ESRD) are in need of renal replacement therapy as dialysis and/or transplantation. The prevalence of ESRD and, thus, the need for dialysis are constantly growing. The dialysis modalities are either peritoneal performed at home or hemodialysis (HD) performed in-center (hospital or satellite) or home. We examined effectiveness and cost-effectiveness of HD performed at different locations (hospital, satellite, and home) and peritoneal dialysis (PD) at home in the Norwegian setting. We conducted a systematic review for patients above 18 years with end-stage renal failure requiring dialysis in several databases and performed several meta-analyses of existing literature. Mortality and major complications that required were our main clinical outcomes. The quality of the evidence for each outcome was evaluated using GRADE. Cost-effectiveness was assessed by developing a probabilistic Markov model. The analysis was carried out from a societal perspective, and effects were expressed in quality-adjusted life-years. Uncertainties in the base-case parameter values were explored with a probabilistic sensitivity analysis. Scenario analyses were conducted by increasing the proportion of patients receiving PD with a corresponding reduction in HD patients in-center both for Norway and Europian Union. We assumed an annual growth rate of 4% in the number of dialysis patients, and a relative distribution between PD and HD in-center of 30% and 70%, respectively. From a societal perspective and over a 5-year time horizon, PD was the most cost-effective dialysis alternative. We found no significant difference in mortality between peritoneal and HD modalities. Our scenario analyses showed that a shift toward more patients on PD (as a first choice) with a corresponding reduction in HD in-center gave a saving over a 5-year period of 32 and 10,623 million EURO, respectively, for Norway and the European Union. PD was the most cost-effective dialysis

  10. Theoretical models regarding factors influencing switching regimes and the hydrological and erosional significance of hydrophobicity

    Science.gov (United States)

    Walsh, Rory; Urbanek, Emilia; Ferreira, Carla; Shakesby, Richard; Bento, Celia; Ferreira, Antonio

    2013-04-01

    The influence which soil hydrophobicity may have on hillslope hydrology and erosion in any location will depend on the proportion of storm events in which it is spatially contiguous. This in turn is dependent upon (a) the speed and three-dimensional pattern with which it disappears in wet weather and (b) the speed, three-dimensional pattern and degree of re-establishment of hydrophobicity in dry weather following hydrophilic or partially hydrophilic episodes. This paper draws upon results of laboratory and field investigations of changes through time in hydrophobicity, as well as recent advances in knowledge of switching mechanisms, to develop theory relating to hydrophobicity, its three-dimensional temporal dynamics and controls and its influence on overland flow and slopewash. Particular attention is given to modelling temporal change following fire. Use is made of key findings from (1) a field study of changes over a 4.2-year period January 2009 to March 2013 in hydrophobicity at two 10 m x 10 m grids (270 points, surface and 5 cm depth) on heather moorland in Central Portugal, where one grid was burned by an experimental fire in February 2009 and the other was an immediately adjacent unburned control; (2) a laboratory study of three-dimensional change in hydrophobicity with wetting (by an 8 mm simulated rainfall) and at different stages in an 80-hour drying phase of three different but initially equally hydrophobic soils, each of which comprising variants with and without artificial vertical routeways (simulated roots or linear cracks) and with or without drainage impedance at 2.5 cm depth. A series of theoretical models are presented addressing 1) factors and mechanisms influencing post-fire temporal change in hydrophobicity and (2) factors and mechanisms controlling the significance and temporal dynamics of hydrophobicity influence on overland flow and erosion (i) in unburned terrain and (ii) following fire. The field evidence from Portugal suggests a three

  11. Comparison of Far-field Noise for Three Significantly Different Model Turbofans

    Science.gov (United States)

    Woodward, Richard P.

    2008-01-01

    Far-field noise sound power level (PWL) spectra and overall sound pressure level (OASPL) directivities were compared for three significantly different model fan stages which were tested in the NASA Glenn 9 15 Low Speed Wind Tunnel. The test fans included the Advanced Ducted Propulsor (ADP) Fan1, the baseline Source Diagnostic Test (SDT) fan, and the Quiet High Speed Fan2 (QHSF2). These fans had design rotor tangential tip speeds from 840 to 1474 ft/s and stage pressure ratios from 1.29 to 1.82. Additional parameters included rotor-stator spacing, stator sweep, and downstream support struts. Acoustic comparison points were selected on the basis of stage thrust. Acoustic results for the low tip speed/low pressure ratio fan (ADP Fan1) were thrust-adjusted to show how a geometrically-scaled version of this fan might compare at the higher design thrust levels of the other two fans. Lowest noise levels were typically observed for ADP Fan1 (which had a radial stator) and for the intermediate tip speed fan (Source Diagnostics Test, SDT, R4 rotor) with a swept stator. Projected noise levels for the ADP fan to the SDT swept stator configuration at design point conditions showed the fans to have similar noise levels. However, it is possible that the ADP fan could be 2 to 3 dB quieter with incorporation of a swept stator. Benefits of a scaled ADP fan include avoidance of multiple pure tones associated with transonic and higher blade tip speeds. Penalties of a larger size ADP fan would include increased nacelle size and drag.

  12. Trends in surface wind speed and significant wave height as revealed by ERA-Interim wind wave hindcast in the Central Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.

    to the coast. Journal of Energy and Power Engineering 5, 730-742. Bidlot J-R, Janssen P, Abdalla S. 2007. Impact of the revised formulation for ocean wave dissipation on the ECMWF operational wave model. Tech. Memo. 509, ECMWF: Reading, UK. Chandramohan P... of the basin (Shankar and Shetye, 2001). A comprehensive understanding of the properties of the waves and their potential changes represents the major knowledge necessary for sustainable management of the offshore and coastal region. Moreover, the wave...

  13. Oxygen and sulfur isotope geochemistry revealing a significant crustal signature in the genesis of the post-collisional granitoids in central Anatolia, Turkey

    Science.gov (United States)

    Boztuğ, Durmuş; Arehart, Greg B.

    2007-04-01

    Late Cretaceous granitoid rocks from central Anatolia comprise S-I-A-type plutons derived from the collisional stages of the Neo-Tethyan convergence system in central Turkey. These granitoids intrude the tectonic imbrication zone consisting of blocks of supra-subduction zone-type (SSZ-type) central Anatolian ophiolite and crustal metasediments which are present in the İzmir-Ankara-Erzincan suture zone. The plutons are overlain by Late Palaeocene-Early Eocene or younger detrital sediments. Granitoid formation is thought to be related to magma generation processes occurring in a post-collisional lithospheric detachment-related geodynamic setting that resulted from slab break-off or lithospheric delamination. Whole-rock S and quartz/feldspar O isotope data from these plutons yields a broad range of values, and both parameters indicate a nearly exclusively supracrustal origin for the S-type granites, as well as a significant crustal contribution in the genesis of the hybrid I-type and A-type granitoids. The more mafic I-type and A-type granitoid rocks of any given suite have lower S and O values, indicative of their larger degree of mantle component. The combined stable isotope geochemical compositions, when coupled with major, trace and REE geochemistry and regional geology, provide evidence that the significant crustal contribution originated from a metasomatized mantle layer which was affected by earlier SSZ-derived fluids, and then accreted into the subcontinental lithosphere as collision occurred. The partial melting of such a metasomatized mantle layer in a post-collisional extensional geodynamic setting, supplied either by the slab break-off or lithospheric delamination mechanisms, provided the significant crustal signature in the hybrid magmas of the Late Cretaceous I-type and A-type granitoids in central Anatolia, Turkey.

  14. Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis

    DEFF Research Database (Denmark)

    Skov, Vibe; Riley, Caroline Hasselbalch; Thomassen, Mads

    2013-01-01

    be down-regulation of major histocompatibility (MHC) class I and II genes, which are used by tumor cells to escape antitumor T-cell-mediated immune responses. We have performed whole blood transcriptional profiling of genes encoding human leukocyte antigen (HLA) class I and II molecules, β2-microglobulin...... and members of the antigen processing machinery of HLA class I molecules (LMP2, LMP7, TAP1, TAP2 and tapasin). The findings of significant down-regulation of several of these genes may possibly be of major importance for defective tumor immune surveillance. Since up-regulation of HLA genes is recorded during...

  15. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior

    DEFF Research Database (Denmark)

    Baek, Jean-Ha; Schmidt, Eva; Viceconte, Nikenza

    2015-01-01

    also been found in several tissues from normal individuals, but it is not clear if low levels of progerin contribute to the aging of the brain. In an attempt to clarify the origin of this phenomenon, we have developed an inducible transgenic mouse model with expression of the most common HGPS mutation......Hutchinson–Gilford progeria syndrome (HGPS) is a segmental progeroid syndrome with multiple features suggestive of premature accelerated aging. Accumulation of progerin is thought to underlie the pathophysiology of HGPS. However, despite ubiquitous expression of lamin A in all differentiated cells......, the HGPS mutation results in organ-specific defects. For example, bone and skin are strongly affected by HGPS, while the brain appears to be unaffected. There are no definite explanations as to the variable sensitivity to progeria disease among different organs. In addition, low levels of progerin have...

  16. A putative Lynch syndrome family carrying MSH2 and MSH6 variants of uncertain significance-functional analysis reveals the pathogenic one

    DEFF Research Database (Denmark)

    Kantelinen, Jukka; Hansen, Thomas V O; Kansikas, Minttu

    2011-01-01

    Inherited pathogenic mutations in the mismatch repair (MMR) genes, MSH2, MLH1, MSH6, and PMS2 predispose to Lynch syndrome (LS). However, the finding of a variant or variants of uncertain significance (VUS) in affected family members complicates the risk assessment. Here, we describe a putative LS...... and the tumor pathological data suggested that the missense variation in MSH2, the more common susceptibility gene in LS, would be the predisposing alteration. However, MSH2 VUS was surprisingly found to be MMR proficient in an in vitro MMR assay and a tolerant alteration in silico. By supplying evidence...... identified VUS before predictive gene testing and genetic counseling are offered to a family....

  17. Significance of predictive models/risk calculators for HBV-related hepatocellular carcinoma

    OpenAIRE

    DONG Jing

    2015-01-01

    Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is a major public health problem in Southeast Asia. In recent years, researchers from Hong Kong and Taiwan have reported predictive models or risk calculators for HBV-associated HCC by studying its natural history, which, to some extent, predicts the possibility of HCC development. Generally, risk factors of each model involve age, sex, HBV DNA level, and liver cirrhosis. This article discusses the evolution and clinical significa...

  18. Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR knockout mice: implications on anti-glucagon therapies for diabetes

    Directory of Open Access Journals (Sweden)

    Molloy Mark P

    2011-06-01

    Full Text Available Abstract Background Glucagon is an important hormone in the regulation of glucose homeostasis, particularly in the maintenance of euglycemia and prevention of hypoglycemia. In type 2 Diabetes Mellitus (T2DM, glucagon levels are elevated in both the fasted and postprandial states, which contributes to inappropriate hyperglycemia through excessive hepatic glucose production. Efforts to discover and evaluate glucagon receptor antagonists for the treatment of T2DM have been ongoing for approximately two decades, with the challenge being to identify an agent with appropriate pharmaceutical properties and efficacy relative to potential side effects. We sought to determine the hepatic & systemic consequence of full glucagon receptor antagonism through the study of the glucagon receptor knock-out mouse (Gcgr-/- compared to wild-type littermates. Results Liver transcriptomics was performed using Affymetric expression array profiling, and liver proteomics was performed by iTRAQ global protein analysis. To complement the transcriptomic and proteomic analyses, we also conducted metabolite profiling (~200 analytes using mass spectrometry in plasma. Overall, there was excellent concordance (R = 0.88 for changes associated with receptor knock-out between the transcript and protein analysis. Pathway analysis tools were used to map the metabolic processes in liver altered by glucagon receptor ablation, the most notable being significant down-regulation of gluconeogenesis, amino acid catabolism, and fatty acid oxidation processes, with significant up-regulation of glycolysis, fatty acid synthesis, and cholesterol biosynthetic processes. These changes at the level of the liver were manifested through an altered plasma metabolite profile in the receptor knock-out mice, e.g. decreased glucose and glucose-derived metabolites, and increased amino acids, cholesterol, and bile acid levels. Conclusions In sum, the results of this study suggest that the complete ablation

  19. Functional13C-urea and glucose hydrogen/methane breath tests reveal significant association of small intestinal bacterial overgrowth in individuals with active Helicobacter pylori infection.

    Science.gov (United States)

    Enko, Dietmar; Kriegshäuser, Gernot

    2017-01-01

    Helicobacter pylori infection is considered to alter the bacterial flora in the upper gastrointestinal tract. This study aimed at investigating the presence of small intestinal bacterial overgrowth (SIBO) in patients with active H. pylori infection assessed by functional breath testing. A total of 109 outpatients, who were referred for the H. pylori 13 C-urea breath test ( 13 C-UBT) by general practitioners and specialists, were also tested for the presence of SIBO by the glucose hydrogen (H 2 )/methane (CH 4 ) breath test (HMBT). A detailed anamnesis was carried out about the history of H. pylori infection, eradication therapies, proton pump inhibitor intake, and comorbidities. In total, 36/109 (33.0%) patients had a positive H. pylori 13 C-UBT, and 35/109 (32.1%) patients had a positive glucose HMBT, the latter being indicative of SIBO. Interestingly, individuals with a positive H. pylori 13 C-UBT were significantly more often associated with a positive glucose HMBT (p=0.002). Cohen's κ measuring agreement between the 13 C-UBT and the glucose HMBT was 0.31 (confidence intervals: 0.12-0.50) (p=0.001). Altogether, 19 of 54 (35.2%) patients, who had completed up to four eradication therapies, were diagnosed with SIBO by HMBT. H. pylori infection was found to be significantly associated with the presence of SIBO as determined by functional breath testing. In addition, SIBO rates appeared to have increased after completed eradication therapies. However, further longitudinal studies are warranted to fully elucidate the relationship and treatment modalities of coincident H. pylori infection and SIBO. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. A large scale survey reveals that chromosomal copy-number alterations significantly affect gene modules involved in cancer initiation and progression

    Directory of Open Access Journals (Sweden)

    Cigudosa Juan C

    2011-05-01

    Full Text Available Abstract Background Recent observations point towards the existence of a large number of neighborhoods composed of functionally-related gene modules that lie together in the genome. This local component in the distribution of the functionality across chromosomes is probably affecting the own chromosomal architecture by limiting the possibilities in which genes can be arranged and distributed across the genome. As a direct consequence of this fact it is therefore presumable that diseases such as cancer, harboring DNA copy number alterations (CNAs, will have a symptomatology strongly dependent on modules of functionally-related genes rather than on a unique "important" gene. Methods We carried out a systematic analysis of more than 140,000 observations of CNAs in cancers and searched by enrichments in gene functional modules associated to high frequencies of loss or gains. Results The analysis of CNAs in cancers clearly demonstrates the existence of a significant pattern of loss of gene modules functionally related to cancer initiation and progression along with the amplification of modules of genes related to unspecific defense against xenobiotics (probably chemotherapeutical agents. With the extension of this analysis to an Array-CGH dataset (glioblastomas from The Cancer Genome Atlas we demonstrate the validity of this approach to investigate the functional impact of CNAs. Conclusions The presented results indicate promising clinical and therapeutic implications. Our findings also directly point out to the necessity of adopting a function-centric, rather a gene-centric, view in the understanding of phenotypes or diseases harboring CNAs.

  1. Phage display-mediated discovery of novel tyrosinase-targeting tetrapeptide inhibitors reveals the significance of N-terminal preference of cysteine residues and their functional sulfur atom.

    Science.gov (United States)

    Lee, Yu-Ching; Hsiao, Nai-Wan; Tseng, Tien-Sheng; Chen, Wang-Chuan; Lin, Hui-Hsiung; Leu, Sy-Jye; Yang, Ei-Wen; Tsai, Keng-Chang

    2015-02-01

    Tyrosinase, a key copper-containing enzyme involved in melanin biosynthesis, is closely associated with hyperpigmentation disorders, cancer, and neurodegenerative diseases, and as such, it is an essential target in medicine and cosmetics. Known tyrosinase inhibitors possess adverse side effects, and there are no safety regulations; therefore, it is necessary to develop new inhibitors with fewer side effects and less toxicity. Peptides are exquisitely specific to their in vivo targets, with high potencies and relatively few off-target side effects. Thus, we systematically and comprehensively investigated the tyrosinase-inhibitory abilities of N- and C-terminal cysteine/tyrosine-containing tetrapeptides by constructing a phage-display random tetrapeptide library and conducting computational molecular docking studies on novel tyrosinase tetrapeptide inhibitors. We found that N-terminal cysteine-containing tetrapeptides exhibited the most potent tyrosinase-inhibitory abilities. The positional preference of cysteine residues at the N terminus in the tetrapeptides significantly contributed to their tyrosinase-inhibitory function. The sulfur atom in cysteine moieties of N- and C-terminal cysteine-containing tetrapeptides coordinated with copper ions, which then tightly blocked substrate-binding sites. N- and C-terminal tyrosine-containing tetrapeptides functioned as competitive inhibitors against mushroom tyrosinase by using the phenol ring of tyrosine to stack with the imidazole ring of His263, thus competing for the substrate-binding site. The N-terminal cysteine-containing tetrapeptide CRVI exhibited the strongest tyrosinase-inhibitory potency (with an IC50 of 2.7 ± 0.5 μM), which was superior to those of the known tyrosinase inhibitors (arbutin and kojic acid) and outperformed kojic acid-tripeptides, mimosine-FFY, and short-sequence oligopeptides at inhibiting mushroom tyrosinase. Copyright © 2014 by The American Society for Pharmacology and Experimental

  2. Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform

    Science.gov (United States)

    Klarenbeek, Alex; Mazouari, Khalil El; Desmyter, Aline; Blanchetot, Christophe; Hultberg, Anna; de Jonge, Natalie; Roovers, Rob C; Cambillau, Christian; Spinelli, Sylvia; Del-Favero, Jurgen; Verrips, Theo; de Haard, Hans J; Achour, Ikbel

    2015-01-01

    Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; however, the germline V repertoires of camelid heavy and light chains are still incomplete and their therapeutic potential is only beginning to be appreciated. We therefore leveraged the publicly available HTG and WGS databases of Lama pacos and Camelus ferus to retrieve the germline repertoire of V genes using human IGV genes as reference. In addition, we amplified IGKV and IGLV genes to uncover the V germline repertoire of Lama glama and sequenced BAC clones covering part of the Lama pacos IGK and IGL loci. Our in silico analysis showed that camelid counterparts of all human IGKV and IGLV families and most IGHV families could be identified, based on canonical structure and sequence homology. Interestingly, this sequence homology seemed largely restricted to the Ig V genes and was far less apparent in other genes: 6 therapeutically relevant target genes differed significantly from their human orthologs. This contributed to efficient immunization of llamas with the human proteins CD70, MET, interleukin (IL)-1β and IL-6, resulting in large panels of functional antibodies. The in silico predicted human-homologous canonical folds of camelid-derived antibodies were confirmed by X-ray crystallography solving the structure of 2 selected camelid anti-CD70 and anti-MET antibodies. These antibodies showed identical fold combinations as found in the corresponding human germline V families, yielding binding site structures closely similar to those occurring in human antibodies. In conclusion, our results indicate that active immunization of camelids can be a powerful therapeutic antibody platform. PMID:26018625

  3. Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming

    OpenAIRE

    Maladen, Ryan D.; Ding, Yang; Umbanhowar, Paul B.; Kamor, Adam; Goldman, Daniel I.

    2011-01-01

    We integrate biological experiment, empirical theory, numerical simulation and a physical model to reveal principles of undulatory locomotion in granular media. High-speed X-ray imaging of the sandfish lizard, Scincus scincus, in 3 mm glass particles shows that it swims within the medium without using its limbs by propagating a single-period travelling sinusoidal wave down its body, resulting in a wave efficiency, η, the ratio of its average forward speed to the wave speed, of approximately 0...

  4. Enlarging the collective model of household behaviour: a revealed preference analysis

    OpenAIRE

    d'Aspremont-Lynden, Claude; Dos Santos Ferreira, Rodolphe

    2017-01-01

    We use a comprehensive model of strategic household behaviour in which the spouses' expenditure on each public good is decomposed into autonomous spending and coordinated spending à la Lindahl. We obtain a continuum of semi-cooperative regimes parameterized by the relative weights put on autonomous spending, by each spouse and for each public good, nesting full cooperative and non-cooperative regimes as limit cases. Testing is approached through revealed preference analysis, by looking for ra...

  5. Significance of uncertainties derived from settling tank model structure and parameters on predicting WWTP performance - A global sensitivity analysis study

    DEFF Research Database (Denmark)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen

    2011-01-01

    Uncertainty derived from one of the process models – such as one-dimensional secondary settling tank (SST) models – can impact the output of the other process models, e.g., biokinetic (ASM1), as well as the integrated wastewater treatment plant (WWTP) models. The model structure and parameter...... uncertainty of settler models can therefore propagate, and add to the uncertainties in prediction of any plant performance criteria. Here we present an assessment of the relative significance of secondary settling model performance in WWTP simulations. We perform a global sensitivity analysis (GSA) based....... The outcome of this study contributes to a better understanding of uncertainty in WWTPs, and explicitly demonstrates the significance of secondary settling processes that are crucial elements of model prediction under dry and wet-weather loading conditions....

  6. An Ecological-Transactional Model of Significant Risk Factors for Child Psychopathology in Outer Mongolia

    Science.gov (United States)

    Kohrt, Holbrook E.; Kohrt, Brandon A.; Waldman, Irwin; Saltzman, Kasey; Carrion, Victor G.

    2004-01-01

    The present study examined significant risk factors, including child maltreatment, for child psychopathology in a cross-cultural setting. Ninety-nine Mongolian boys, ages 3-10 years, were assessed. Primary caregivers (PCG) completed structured interviews including the Emory Combined Rating Scale (ECRS) and the Mood and Feelings Questionnaire…

  7. A lesion model of envy and Schadenfreude: legal, deservingness and moral dimensions as revealed by neurodegeneration

    Science.gov (United States)

    Santamaría-García, Hernando; Baez, Sandra; Reyes, Pablo; Santamaría-García, José A; Santacruz-Escudero, José M; Matallana, Diana; Arévalo, Analía; Sigman, Mariano; García, Adolfo M; Ibáñez, Agustín

    2017-01-01

    Abstract The study of moral emotions (i.e. Schadenfreude and envy) is critical to understand the ecological complexity of everyday interactions between cognitive, affective, and social cognition processes. Most previous studies in this area have used correlational imaging techniques and framed Schadenfreude and envy as unified and monolithic emotional domains. Here, we profit from a relevant neurodegeneration model to disentangle the brain regions engaged in three dimensions of Schadenfreude and envy: deservingness, morality, and legality. We tested a group of patients with behavioural variant frontotemporal dementia (bvFTD), patients with Alzheimer’s disease, as a contrastive neurodegeneration model, and healthy controls on a novel task highlighting each of these dimensions in scenarios eliciting Schadenfreude and envy. Compared with the Alzheimer’s disease and control groups, patients with bvFTD obtained significantly higher scores on all dimensions for both emotions. Correlational analyses revealed an association between envy and Schadenfreude scores and greater deficits in social cognition, inhibitory control, and behaviour disturbances in bvFTD patients. Brain anatomy findings (restricted to bvFTD and controls) confirmed the partially dissociable nature of the moral emotions’ experiences and highlighted the importance of socio-moral brain areas in processing those emotions. In all subjects, an association emerged between Schadenfreude and the ventral striatum, and between envy and the anterior cingulate cortex. In addition, the results supported an association between scores for moral and legal transgression and the morphology of areas implicated in emotional appraisal, including the amygdala and the parahippocampus. By contrast, bvFTD patients exhibited a negative association between increased Schadenfreude and envy across dimensions and critical regions supporting social-value rewards and social-moral processes (dorsolateral prefrontal cortex, angular

  8. A lesion model of envy and Schadenfreude: legal, deservingness and moral dimensions as revealed by neurodegeneration.

    Science.gov (United States)

    Santamaría-García, Hernando; Baez, Sandra; Reyes, Pablo; Santamaría-García, José A; Santacruz-Escudero, José M; Matallana, Diana; Arévalo, Analía; Sigman, Mariano; García, Adolfo M; Ibáñez, Agustín

    2017-12-01

    The study of moral emotions (i.e. Schadenfreude and envy) is critical to understand the ecological complexity of everyday interactions between cognitive, affective, and social cognition processes. Most previous studies in this area have used correlational imaging techniques and framed Schadenfreude and envy as unified and monolithic emotional domains. Here, we profit from a relevant neurodegeneration model to disentangle the brain regions engaged in three dimensions of Schadenfreude and envy: deservingness, morality, and legality. We tested a group of patients with behavioural variant frontotemporal dementia (bvFTD), patients with Alzheimer's disease, as a contrastive neurodegeneration model, and healthy controls on a novel task highlighting each of these dimensions in scenarios eliciting Schadenfreude and envy. Compared with the Alzheimer's disease and control groups, patients with bvFTD obtained significantly higher scores on all dimensions for both emotions. Correlational analyses revealed an association between envy and Schadenfreude scores and greater deficits in social cognition, inhibitory control, and behaviour disturbances in bvFTD patients. Brain anatomy findings (restricted to bvFTD and controls) confirmed the partially dissociable nature of the moral emotions' experiences and highlighted the importance of socio-moral brain areas in processing those emotions. In all subjects, an association emerged between Schadenfreude and the ventral striatum, and between envy and the anterior cingulate cortex. In addition, the results supported an association between scores for moral and legal transgression and the morphology of areas implicated in emotional appraisal, including the amygdala and the parahippocampus. By contrast, bvFTD patients exhibited a negative association between increased Schadenfreude and envy across dimensions and critical regions supporting social-value rewards and social-moral processes (dorsolateral prefrontal cortex, angular gyrus and

  9. Research Pearls: The Significance of Statistics and Perils of Pooling. Part 2: Predictive Modeling.

    Science.gov (United States)

    Hohmann, Erik; Wetzler, Merrick J; D'Agostino, Ralph B

    2017-07-01

    The focus of predictive modeling or predictive analytics is to use statistical techniques to predict outcomes and/or the results of an intervention or observation for patients that are conditional on a specific set of measurements taken on the patients prior to the outcomes occurring. Statistical methods to estimate these models include using such techniques as Bayesian methods; data mining methods, such as machine learning; and classical statistical models of regression such as logistic (for binary outcomes), linear (for continuous outcomes), and survival (Cox proportional hazards) for time-to-event outcomes. A Bayesian approach incorporates a prior estimate that the outcome of interest is true, which is made prior to data collection, and then this prior probability is updated to reflect the information provided by the data. In principle, data mining uses specific algorithms to identify patterns in data sets and allows a researcher to make predictions about outcomes. Regression models describe the relations between 2 or more variables where the primary difference among methods concerns the form of the outcome variable, whether it is measured as a binary variable (i.e., success/failure), continuous measure (i.e., pain score at 6 months postop), or time to event (i.e., time to surgical revision). The outcome variable is the variable of interest, and the predictor variable(s) are used to predict outcomes. The predictor variable is also referred to as the independent variable and is assumed to be something the researcher can modify in order to see its impact on the outcome (i.e., using one of several possible surgical approaches). Survival analysis investigates the time until an event occurs. This can be an event such as failure of a medical device or death. It allows the inclusion of censored data, meaning that not all patients need to have the event (i.e., die) prior to the study's completion. Copyright © 2017 Arthroscopy Association of North America. Published by

  10. A significant advantage for trapped field magnet applications—A failure of the critical state model

    Science.gov (United States)

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad; Carpenter, Keith; Davey, Kent

    2015-10-01

    Ongoing research has increased achievable field in trapped field magnets (TFMs) to multi-Tesla levels. This has greatly increased the attractiveness of TFMs for applications. However, it also increases the already very difficult problem of in situ activation and reactivation of the TFMs. The pulsed zero-field-cool (ZFC) method of activation is used in most applications because it can be accomplished with much lower power and more modest equipment than field-cool activation. The critical state model (CSM) has been a reliable theoretical tool for experimental analysis and engineering design of TFMs and their applications for over a half-century. The activating field, BA, required to fully magnetize a TFM to its maximum trappable field, BT,max, using pulsed-ZFC is predicted by CSM to be R ≡ BA/BT,max ≥ 2.0. We report here experiments on R as a function of Jc, which find a monotonic decrease of R to 1.0 as Jc increases. The reduction to R = 1.0 reduces the power needed to magnetize TFMs by about an order of magnitude. This is a critical advantage for TFM applications. The results also indicate the limits of applicability of CSM, and shed light on the physics omitted from the model. The experimental results rule out heating effects and pinning center geometry as causes of the decrease in R. A possible physical cause is proposed.

  11. On the selection of significant variables in a model for the deteriorating process of facades

    Science.gov (United States)

    Serrat, C.; Gibert, V.; Casas, J. R.; Rapinski, J.

    2017-10-01

    In previous works the authors of this paper have introduced a predictive system that uses survival analysis techniques for the study of time-to-failure in the facades of a building stock. The approach is population based, in order to obtain information on the evolution of the stock across time, and to help the manager in the decision making process on global maintenance strategies. For the decision making it is crutial to determine those covariates -like materials, morphology and characteristics of the facade, orientation or environmental conditions- that play a significative role in the progression of different failures. The proposed platform also incorporates an open source GIS plugin that includes survival and test moduli that allow the investigator to model the time until a lesion taking into account the variables collected during the inspection process. The aim of this paper is double: a) to shortly introduce the predictive system, as well as the inspection and the analysis methodologies and b) to introduce and illustrate the modeling strategy for the deteriorating process of an urban front. The illustration will be focused on the city of L’Hospitalet de Llobregat (Barcelona, Spain) in which more than 14,000 facades have been inspected and analyzed.

  12. The significance of parks to physical activity and public health: a conceptual model.

    Science.gov (United States)

    Bedimo-Rung, Ariane L; Mowen, Andrew J; Cohen, Deborah A

    2005-02-01

    Park-based physical activity is a promising means to satisfy current physical activity requirements. However, there is little research concerning what park environmental and policy characteristics might enhance physical activity levels. This study proposes a conceptual model to guide thinking and suggest hypotheses. This framework describes the relationships between park benefits, park use, and physical activity, and the antecedents/correlates of park use. In this classification scheme, the discussion focuses on park environmental characteristics that could be related to physical activity, including park features, condition, access, aesthetics, safety, and policies. Data for these categories should be collected within specific geographic areas in or around the park, including activity areas, supporting areas, the overall park, and the surrounding neighborhood. Future research should focus on how to operationalize specific measures and methodologies for collecting data, as well as measuring associations between individual physical activity levels and specific park characteristics. Collaboration among many disciplines is needed.

  13. Breast cancer-associated metastasis is significantly increased in a model of autoimmune arthritis

    Science.gov (United States)

    Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku

    2009-01-01

    Introduction Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. Methods To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. Results We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor

  14. Breast-cancer-associated metastasis is significantly increased in a model of autoimmune arthritis.

    Science.gov (United States)

    Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku

    2009-01-01

    Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor-alpha (TNF-alpha) may contribute

  15. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis

    DEFF Research Database (Denmark)

    Huang, Sijia; Chong, Nicole; Lewis, Nathan

    2016-01-01

    diagnosis. We applied this method to predict breast cancer occurrence, in combination with correlation feature selection (CFS) and classification methods. Results: The resulting all-stage and early-stage diagnosis models are highly accurate in two sets of testing blood samples, with average AUCs (Area Under.......993. Moreover, important metabolic pathways, such as taurine and hypotaurine metabolism and the alanine, aspartate, and glutamate pathway, are revealed as critical biological pathways for early diagnosis of breast cancer. Conclusions: We have successfully developed a new type of pathway-based model to study...... metabolomics data for disease diagnosis. Applying this method to blood-based breast cancer metabolomics data, we have discovered crucial metabolic pathway signatures for breast cancer diagnosis, especially early diagnosis. Further, this modeling approach may be generalized to other omics data types for disease...

  16. Thermophysical modeling of asteroids from WISE thermal infrared data - Significance of the shape model and the pole orientation uncertainties

    Science.gov (United States)

    Hanuš, J.; Delbo', M.; Ďurech, J.; Alí-Lagoa, V.

    2015-08-01

    In the analysis of thermal infrared data of asteroids by means of thermophysical models (TPMs) it is a common practice to neglect the uncertainty of the shape model and the rotational state, which are taken as an input for the model. Here, we present a novel method of investigating the importance of the shape model and the pole orientation uncertainties in the thermophysical modeling - the varied shape TPM (VS-TPM). Our method uses optical photometric data to generate various shape models that map the uncertainty in the shape and the rotational state. The TPM procedure is then run for all these shape models. We apply the implementation of the classical TPM as well as our VS-TPM to the convex shape models of several asteroids together with their thermal infrared data acquired by the NASA's Wide-field Infrared Survey Explorer (WISE) and compare the results. These show that the uncertainties of the shape model and the pole orientation can be very important (e.g., for the determination of the thermal inertia) and should be considered in the thermophysical analyses. We present thermophysical properties for six asteroids - (624) Hektor, (771) Libera, (1036) Ganymed, (1472) Muonio, (1627) Ivar, and (2606) Odessa.

  17. Myriocin significantly increases the mortality of a non-mammalian model host during Candida pathogenesis.

    Directory of Open Access Journals (Sweden)

    Nadja Rodrigues de Melo

    Full Text Available Candida albicans is a major human pathogen whose treatment is challenging due to antifungal drug toxicity, drug resistance and paucity of antifungal agents available. Myrocin (MYR inhibits sphingosine synthesis, a precursor of sphingolipids, an important cell membrane and signaling molecule component. MYR also has dual immune suppressive and antifungal properties, potentially modulating mammalian immunity and simultaneously reducing fungal infection risk. Wax moth (Galleria mellonella larvae, alternatives to mice, were used to establish if MYR suppressed insect immunity and increased survival of C. albicans-infected insects. MYR effects were studied in vivo and in vitro, and compared alone and combined with those of approved antifungal drugs, fluconazole (FLC and amphotericin B (AMPH. Insect immune defenses failed to inhibit C. albicans with high mortalities. In insects pretreated with the drug followed by C. albicans inoculation, MYR+C. albicans significantly increased mortality to 93% from 67% with C. albicans alone 48 h post-infection whilst AMPH+C. albicans and FLC+C. albicans only showed 26% and 0% mortalities, respectively. MYR combinations with other antifungal drugs in vivo also enhanced larval mortalities, contrasting the synergistic antifungal effect of the MYR+AMPH combination in vitro. MYR treatment influenced immunity and stress management gene expression during C. albicans pathogenesis, modulating transcripts putatively associated with signal transduction/regulation of cytokines, I-kappaB kinase/NF-kappaB cascade, G-protein coupled receptor and inflammation. In contrast, all stress management gene expression was down-regulated in FLC and AMPH pretreated C. albicans-infected insects. Results are discussed with their implications for clinical use of MYR to treat sphingolipid-associated disorders.

  18. Myriocin Significantly Increases the Mortality of a Non-Mammalian Model Host during Candida Pathogenesis

    Science.gov (United States)

    de Melo, Nadja Rodrigues; Abdrahman, Ahmed; Greig, Carolyn; Mukherjee, Krishnendu; Thornton, Catherine; Ratcliffe, Norman A.; Vilcinskas, Andreas; Butt, Tariq M.

    2013-01-01

    Candida albicans is a major human pathogen whose treatment is challenging due to antifungal drug toxicity, drug resistance and paucity of antifungal agents available. Myrocin (MYR) inhibits sphingosine synthesis, a precursor of sphingolipids, an important cell membrane and signaling molecule component. MYR also has dual immune suppressive and antifungal properties, potentially modulating mammalian immunity and simultaneously reducing fungal infection risk. Wax moth (Galleria mellonella) larvae, alternatives to mice, were used to establish if MYR suppressed insect immunity and increased survival of C. albicans-infected insects. MYR effects were studied in vivo and in vitro, and compared alone and combined with those of approved antifungal drugs, fluconazole (FLC) and amphotericin B (AMPH). Insect immune defenses failed to inhibit C. albicans with high mortalities. In insects pretreated with the drug followed by C. albicans inoculation, MYR+C. albicans significantly increased mortality to 93% from 67% with C. albicans alone 48 h post-infection whilst AMPH+C. albicans and FLC+C. albicans only showed 26% and 0% mortalities, respectively. MYR combinations with other antifungal drugs in vivo also enhanced larval mortalities, contrasting the synergistic antifungal effect of the MYR+AMPH combination in vitro. MYR treatment influenced immunity and stress management gene expression during C. albicans pathogenesis, modulating transcripts putatively associated with signal transduction/regulation of cytokines, I-kappaB kinase/NF-kappaB cascade, G-protein coupled receptor and inflammation. In contrast, all stress management gene expression was down-regulated in FLC and AMPH pretreated C. albicans -infected insects. Results are discussed with their implications for clinical use of MYR to treat sphingolipid-associated disorders. PMID:24260135

  19. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions

    DEFF Research Database (Denmark)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen

    2014-01-01

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks...... (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D......) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution...

  20. Probabilistic Inference: Task Dependency and Individual Differences of Probability Weighting Revealed by Hierarchical Bayesian Modeling.

    Science.gov (United States)

    Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno

    2016-01-01

    Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  1. PhyloChip microarray analysis reveals altered gastrointestinal microbial communities in a rat model of colonic hypersensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, T.A.; Holmes, S.; Alekseyenko, A.V.; Shenoy, M.; DeSantis, T.; Wu, C.H.; Andersen, G.L.; Winston, J.; Sonnenburg, J.; Pasricha, P.J.; Spormann, A.

    2010-12-01

    Irritable bowel syndrome (IBS) is a chronic, episodic gastrointestinal disorder that is prevalent in a significant fraction of western human populations; and changes in the microbiota of the large bowel have been implicated in the pathology of the disease. Using a novel comprehensive, high-density DNA microarray (PhyloChip) we performed a phylogenetic analysis of the microbial community of the large bowel in a rat model in which intracolonic acetic acid in neonates was used to induce long lasting colonic hypersensitivity and decreased stool water content and frequency, representing the equivalent of human constipation-predominant IBS. Our results revealed a significantly increased compositional difference in the microbial communities in rats with neonatal irritation as compared with controls. Even more striking was the dramatic change in the ratio of Firmicutes relative to Bacteroidetes, where neonatally irritated rats were enriched more with Bacteroidetes and also contained a different composition of species within this phylum. Our study also revealed differences at the level of bacterial families and species. The PhyloChip is a useful and convenient method to study enteric microflora. Further, this rat model system may be a useful experimental platform to study the causes and consequences of changes in microbial community composition associated with IBS.

  2. A multiparametric magnetic resonance imaging-based risk model to determine the risk of significant prostate cancer prior to biopsy.

    Science.gov (United States)

    van Leeuwen, Pim J; Hayen, Andrew; Thompson, James E; Moses, Daniel; Shnier, Ron; Böhm, Maret; Abuodha, Magdaline; Haynes, Anne-Maree; Ting, Francis; Barentsz, Jelle; Roobol, Monique; Vass, Justin; Rasiah, Krishan; Delprado, Warick; Stricker, Phillip D

    2017-12-01

    To develop and externally validate a predictive model for detection of significant prostate cancer. Development of the model was based on a prospective cohort including 393 men who underwent multiparametric magnetic resonance imaging (mpMRI) before biopsy. External validity of the model was then examined retrospectively in 198 men from a separate institution whom underwent mpMRI followed by biopsy for abnormal prostate-specific antigen (PSA) level or digital rectal examination (DRE). A model was developed with age, PSA level, DRE, prostate volume, previous biopsy, and Prostate Imaging Reporting and Data System (PIRADS) score, as predictors for significant prostate cancer (Gleason 7 with >5% grade 4, ≥20% cores positive or ≥7 mm of cancer in any core). Probability was studied via logistic regression. Discriminatory performance was quantified by concordance statistics and internally validated with bootstrap resampling. In all, 393 men had complete data and 149 (37.9%) had significant prostate cancer. While the variable model had good accuracy in predicting significant prostate cancer, area under the curve (AUC) of 0.80, the advanced model (incorporating mpMRI) had a significantly higher AUC of 0.88 (P prostate cancer. Individualised risk assessment of significant prostate cancer using a predictive model that incorporates mpMRI PIRADS score and clinical data allows a considerable reduction in unnecessary biopsies and reduction of the risk of over-detection of insignificant prostate cancer at the cost of a very small increase in the number of significant cancers missed. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  3. Probabilistic inference: Task dependency and individual differences of probability weighting revealed by hierarchical Bayesian modelling

    Directory of Open Access Journals (Sweden)

    Moritz eBoos

    2016-05-01

    Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  4. Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming.

    Science.gov (United States)

    Maladen, Ryan D; Ding, Yang; Umbanhowar, Paul B; Kamor, Adam; Goldman, Daniel I

    2011-09-07

    We integrate biological experiment, empirical theory, numerical simulation and a physical model to reveal principles of undulatory locomotion in granular media. High-speed X-ray imaging of the sandfish lizard, Scincus scincus, in 3 mm glass particles shows that it swims within the medium without using its limbs by propagating a single-period travelling sinusoidal wave down its body, resulting in a wave efficiency, η, the ratio of its average forward speed to the wave speed, of approximately 0.5. A resistive force theory (RFT) that balances granular thrust and drag forces along the body predicts η close to the observed value. We test this prediction against two other more detailed modelling approaches: a numerical model of the sandfish coupled to a discrete particle simulation of the granular medium, and an undulatory robot that swims within granular media. Using these models and analytical solutions of the RFT, we vary the ratio of undulation amplitude to wavelength (A/λ) and demonstrate an optimal condition for sand-swimming, which for a given A results from the competition between η and λ. The RFT, in agreement with the simulated and physical models, predicts that for a single-period sinusoidal wave, maximal speed occurs for A/λ ≈ 0.2, the same kinematics used by the sandfish.

  5. A comparison of predictive models for the onset of significant void at low pressures in forced-convection subcooled boiling

    International Nuclear Information System (INIS)

    Lee, S. C.; Bankoff, S. G.

    1998-01-01

    The predictive models for the Onset of Significant Void (OSV) in forced-convection subcooled boiling are reviewed and compared with extensive data. Three analytical models and seven empirical correlations are considered in this paper. These models and correlations are put onto a common basis and are compared, again on a common basis, with a variety of data. The evaluation of their range of validity and applicability under various operating conditions are discussed. The results show that the correlations of Saha-Zuber (1974) seems to be the best model to predict OSV in vertical subcooled boiling flow

  6. Bayesian model reveals latent atrophy factors with dissociable cognitive trajectories in Alzheimer’s disease

    Science.gov (United States)

    Zhang, Xiuming; Mormino, Elizabeth C.; Sun, Nanbo; Sperling, Reisa A.; Sabuncu, Mert R.; Yeo, B. T. Thomas

    2016-01-01

    We used a data-driven Bayesian model to automatically identify distinct latent factors of overlapping atrophy patterns from voxelwise structural MRIs of late-onset Alzheimer’s disease (AD) dementia patients. Our approach estimated the extent to which multiple distinct atrophy patterns were expressed within each participant rather than assuming that each participant expressed a single atrophy factor. The model revealed a temporal atrophy factor (medial temporal cortex, hippocampus, and amygdala), a subcortical atrophy factor (striatum, thalamus, and cerebellum), and a cortical atrophy factor (frontal, parietal, lateral temporal, and lateral occipital cortices). To explore the influence of each factor in early AD, atrophy factor compositions were inferred in beta-amyloid–positive (Aβ+) mild cognitively impaired (MCI) and cognitively normal (CN) participants. All three factors were associated with memory decline across the entire clinical spectrum, whereas the cortical factor was associated with executive function decline in Aβ+ MCI participants and AD dementia patients. Direct comparison between factors revealed that the temporal factor showed the strongest association with memory, whereas the cortical factor showed the strongest association with executive function. The subcortical factor was associated with the slowest decline for both memory and executive function compared with temporal and cortical factors. These results suggest that distinct patterns of atrophy influence decline across different cognitive domains. Quantification of this heterogeneity may enable the computation of individual-level predictions relevant for disease monitoring and customized therapies. Factor compositions of participants and code used in this article are publicly available for future research. PMID:27702899

  7. A Multi-Scale Model of Hepcidin Promoter Regulation Reveals Factors Controlling Systemic Iron Homeostasis

    Science.gov (United States)

    Muckenthaler, Martina U.; Legewie, Stefan

    2014-01-01

    Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF) phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease. PMID:24391488

  8. A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Guillem Casanovas

    2014-01-01

    Full Text Available Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.

  9. Fibrinogen adsorption mechanisms at the gold substrate revealed by QCM-D measurements and RSA modeling.

    Science.gov (United States)

    Kubiak, Katarzyna; Adamczyk, Zbigniew; Cieśla, Michał

    2016-03-01

    Adsorption kinetics of fibrinogen at a gold substrate at various pHs was thoroughly studied using the QCM-D method. The experimental were interpreted in terms of theoretical calculations performed according to the random sequential adsorption model (RSA). In this way, the hydration functions and water factors of fibrinogen monolayers were quantitatively evaluated at various pHs. It was revealed that for the lower range of fibrinogen coverage the hydration function were considerably lower than previously obtained for the silica sensor [33]. The lower hydration of fibrinogen monolayers on the gold sensor was attributed to its higher roughness. However, for higher fibrinogen coverage the hydration functions for both sensors became identical exhibiting an universal behavior. By using the hydration functions, the fibrinogen adsorption/desorption runs derived from QCM-D measurements were converted to the Γd vs. the time relationships. This allowed to precisely determine the maximum coverage that varied between 1.6mgm(-2) at pH 3.5 and 4.5mgm(-2) at pH 7.4 (for ionic strength of 0.15M). These results agree with theoretical eRSA modeling and previous experimental data derived by using ellipsometry, OWLS and TIRF. Various fibrinogen adsorption mechanisms were revealed by exploiting the maximum coverage data. These results allow one to develop a method for preparing fibrinogen monolayers of well-controlled coverage and molecule orientation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Integrative demographic modeling reveals population level impacts of PCB toxicity to juvenile snapping turtles

    International Nuclear Information System (INIS)

    Salice, Christopher J.; Rowe, Christopher L.; Eisenreich, Karen M.

    2014-01-01

    A significant challenge in ecotoxicology and risk assessment lies in placing observed contaminant effects in a meaningful ecological context. Polychlorinated biphenyls (PCBs) have been shown to affect juvenile snapping turtle survival and growth but the ecological significance of these effects is difficult to discern without a formal, population-level assessment. We used a demographic matrix model to explore the potential population-level effects of PCBs on turtles. Our model showed that effects of PCBs on juvenile survival, growth and size at hatching could translate to negative effects at the population level despite the fact that these life cycle components do not typically contribute strongly to population level processes. This research points to the utility of using integrative demographic modeling approaches to better understand contaminant effects in wildlife. The results indicate that population-level effects are only evident after several years, suggesting that for long-lived species, detecting adverse contaminant effects could prove challenging. -- Highlights: • Previous studies have shown the PCBs can impact juvenile snapping turtles. • We used a demographic model of turtles to evaluate population-level PCB effects. • PCB effects on turtles may translate to negative population responses. • Long-term monitoring is needed to detect contaminant effects on natural turtle populations. • Demographic models can improve our understanding contaminant ecotoxicity. -- A demographic model was used to show that PCB induced effects on young snapping turtles can result in adverse effects at the population level

  11. Principles of proteome allocation are revealed using proteomic data and genome-scale models

    DEFF Research Database (Denmark)

    Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.

    2016-01-01

    , prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thus represents a generalist ME model reflecting both growth rate maximization and "hedging" against uncertain environments and stresses, as indicated by significant enrichment...... of these sectors for the general stress response sigma factor sigma(S). Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally......-related protein groups) as demonstrated here. This flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models....

  12. Floodplain forest succession reveals fluvial processes: A hydrogeomorphic model for temperate riparian woodlands.

    Science.gov (United States)

    Egger, Gregory; Politti, Emilio; Lautsch, Erwin; Benjankar, Rohan; Gill, Karen M; Rood, Stewart B

    2015-09-15

    River valley floodplains are physically-dynamic environments where fluvial processes determine habitat gradients for riparian vegetation. These zones support trees and shrubs whose life stages are adapted to specific habitat types and consequently forest composition and successional stage reflect the underlying hydrogeomorphic processes and history. In this study we investigated woodland vegetation composition, successional stage and habitat properties, and compared these with physically-based indicators of hydraulic processes. We thus sought to develop a hydrogeomorphic model to evaluate riparian woodland condition based on the spatial mosaic of successional phases of the floodplain forest. The study investigated free-flowing and dam-impacted reaches of the Kootenai and Flathead Rivers, in Idaho and Montana, USA and British Columbia, Canada. The analyses revealed strong correspondence between vegetation assessments and metrics of fluvial processes indicating morphodynamics (erosion and shear stress), inundation and depth to groundwater. The results indicated that common successional stages generally occupied similar hydraulic environments along the different river segments. Comparison of the spatial patterns between the free-flowing and regulated reaches revealed greater deviation from the natural condition for the braided channel segment than for the meandering segment. This demonstrates the utility of the hydrogeomorphic approach and suggests that riparian woodlands along braided channels could have lower resilience than those along meandering channels and might be more vulnerable to influences such as from river damming or climate change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Hydrothermal Fe cycling and deep ocean organic carbon scavenging: Model-based evidence for significant POC supply to seafloor sediments

    Digital Repository Service at National Institute of Oceanography (India)

    German, C.R.; Legendre, L.L.; Sander, S.G.;; Niquil, N.; Luther-III, G.W.; LokaBharathi, P.A.; Han, X.; LeBris, N.

    by more than ~10% over background values, what the model does indicate is that scavenging of carbon in association with Fe-rich hydrothermal plume particles should play a significant role in the delivery of particulate organic carbon to deep ocean...

  14. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation.

    Science.gov (United States)

    Schur, Florian K M; Obr, Martin; Hagen, Wim J H; Wan, William; Jakobi, Arjen J; Kirkpatrick, Joanna M; Sachse, Carsten; Kräusslich, Hans-Georg; Briggs, John A G

    2016-07-29

    Immature HIV-1 assembles at and buds from the plasma membrane before proteolytic cleavage of the viral Gag polyprotein induces structural maturation. Maturation can be blocked by maturation inhibitors (MIs), thereby abolishing infectivity. The CA (capsid) and SP1 (spacer peptide 1) region of Gag is the key regulator of assembly and maturation and is the target of MIs. We applied optimized cryo-electron tomography and subtomogram averaging to resolve this region within assembled immature HIV-1 particles at 3.9 angstrom resolution and built an atomic model. The structure reveals a network of intra- and intermolecular interactions mediating immature HIV-1 assembly. The proteolytic cleavage site between CA and SP1 is inaccessible to protease. We suggest that MIs prevent CA-SP1 cleavage by stabilizing the structure, and MI resistance develops by destabilizing CA-SP1. Copyright © 2016, American Association for the Advancement of Science.

  15. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis.

    Science.gov (United States)

    Huang, Sijia; Chong, Nicole; Lewis, Nathan E; Jia, Wei; Xie, Guoxiang; Garmire, Lana X

    2016-03-31

    More accurate diagnostic methods are pressingly needed to diagnose breast cancer, the most common malignant cancer in women worldwide. Blood-based metabolomics is a promising diagnostic method for breast cancer. However, many metabolic biomarkers are difficult to replicate among studies. We propose that higher-order functional representation of metabolomics data, such as pathway-based metabolomic features, can be used as robust biomarkers for breast cancer. Towards this, we have developed a new computational method that uses personalized pathway dysregulation scores for disease diagnosis. We applied this method to predict breast cancer occurrence, in combination with correlation feature selection (CFS) and classification methods. The resulting all-stage and early-stage diagnosis models are highly accurate in two sets of testing blood samples, with average AUCs (Area Under the Curve, a receiver operating characteristic curve) of 0.968 and 0.934, sensitivities of 0.946 and 0.954, and specificities of 0.934 and 0.918. These two metabolomics-based pathway models are further validated by RNA-Seq-based TCGA (The Cancer Genome Atlas) breast cancer data, with AUCs of 0.995 and 0.993. Moreover, important metabolic pathways, such as taurine and hypotaurine metabolism and the alanine, aspartate, and glutamate pathway, are revealed as critical biological pathways for early diagnosis of breast cancer. We have successfully developed a new type of pathway-based model to study metabolomics data for disease diagnosis. Applying this method to blood-based breast cancer metabolomics data, we have discovered crucial metabolic pathway signatures for breast cancer diagnosis, especially early diagnosis. Further, this modeling approach may be generalized to other omics data types for disease diagnosis.

  16. Identifying habitats at risk: simple models can reveal complex ecosystem dynamics.

    Science.gov (United States)

    Maxwell, Paul S; Pitt, Kylie A; Olds, Andrew D; Rissik, David; Connolly, Rod M

    2015-03-01

    The relationship between ecological impact and ecosystem structure is often strongly nonlinear, so that small increases in impact levels can cause a disproportionately large response in ecosystem structure. Nonlinear ecosystem responses can be difficult to predict because locally relevant data sets can be difficult or impossible to obtain. Bayesian networks (BN) are an emerging tool that can help managers to define ecosystem relationships using a range of data types from comprehensive quantitative data sets to expert opinion. We show how a simple BN can reveal nonlinear dynamics in seagrass ecosystems using ecological relationships sourced from the literature. We first developed a conceptual diagram by cataloguing the ecological responses of seagrasses to a range of drivers and impacts. We used the conceptual diagram to develop a BN populated with values sourced from published studies. We then applied the BN to show that the amount of initial seagrass biomass has a mitigating effect on the level of impact a meadow can withstand without loss, and that meadow recovery can often require disproportionately large improvements in impact levels. This mitigating effect resulted in the middle ranges of impact levels having a wide likelihood of seagrass presence, a situation known as bistability. Finally, we applied the model in a case study to identify the risk of loss and the likelihood of recovery for the conservation and management of seagrass meadows in Moreton Bay, Queensland, Australia. We used the model to predict the likelihood of bistability in 23 locations in the Bay. The model predicted bistability in seven locations, most of which have experienced seagrass loss at some stage in the past 25 years providing essential information for potential future restoration efforts. Our results demonstrate the capacity of simple, flexible modeling tools to facilitate collation and synthesis of disparate information. This approach can be adopted in the initial stages of

  17. Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions.

    Directory of Open Access Journals (Sweden)

    Weitao Chen

    2016-07-01

    Full Text Available Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and α-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between α-cells either making or not making α-factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell

  18. The geography of demography: long-term demographic studies and species distribution models reveal a species border limited by adaptation.

    Science.gov (United States)

    Eckhart, V M; Geber, M A; Morris, W F; Fabio, E S; Tiffin, P; Moeller, D A

    2011-10-01

    Potential causes of species' geographic distribution limits fall into two broad classes: (1) limited adaptation across spatially variable environments and (2) limited opportunities to colonize unoccupied areas. Combining demographic studies, analyses of demographic responses to environmental variation, and species distribution models, we investigated the causes of range limits in a model system, the eastern border of the California annual plant Clarkia xantiana ssp. xantiana. Vital rates of 20 populations varied with growing season temperature and precipitation: fruit number and overwinter survival of 1-year-old seeds declined steeply, while current-year seed germination increased modestly along west-to-east gradients in decreasing temperature, decreasing mean precipitation, and increasing variation in precipitation. Long-term stochastic finite rate of increase, λ(s), exhibited a fourfold range and varied among geologic surface materials as well as with temperature and precipitation. Growth rate declined significantly toward the eastern border, falling below 1 in three of the five easternmost populations. Distribution models employing demographically important environmental variables predicted low habitat favorability beyond the eastern border. Models that filtered or weighted population presences by λ(s) predicted steeper eastward declines in favorability and assigned greater roles in setting the distribution to among-year variation in precipitation and to geologic surface material. These analyses reveal a species border likely set by limited adaptation to declining environmental quality.

  19. Spatial Structure of a Braided River: Metric Resolution Hydrodynamic Modeling Reveals What SWOT Might See

    Science.gov (United States)

    Schubert, J.; Sanders, B. F.; Andreadis, K.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) mission, currently under study by NASA (National Aeronautics and Space Administration) and CNES (Centre National d'Etudes Spatiales), is designed to provide global spatial measurements of surface water properties at resolutions better than 10 m and with centimetric accuracy. The data produced by SWOT will include irregularly spaced point clouds of the water surface height, with point spacings from roughly 2-50 m depending on a point's location within SWOT's swath. This could offer unprecedented insight into the spatial structure of rivers. Features that may be resolved include backwater profiles behind dams, drawdown profiles, uniform flow sections, critical flow sections, and even riffle-pool flow structures. In the event that SWOT scans a river during a major flood, it becomes possible to delineate the limits of the flood as well as the spatial structure of the water surface elevation, yielding insight into the dynamic interaction of channels and flood plains. The Platte River in Nebraska, USA, is a braided river with a width and slope of approximately 100 m and 100 cm/km, respectively. A 1 m resolution Digital Terrain Model (DTM) of the river basin, based on airborne lidar collected during low-flow conditions, was used to parameterize a two-dimensional, variable resolution, unstructured grid, hydrodynamic model that uses 3 m resolution triangles in low flow channels and 10 m resolution triangles in the floodplain. Use of a fine resolution mesh guarantees that local variability in topography is resolved, and after applying the hydrodynamic model, the effects of topographic variability are expressed as variability in the water surface height, depth-averaged velocity and flow depth. Flow is modeled over a reach length of 10 km for multi-day durations to capture both frequent (diurnal variations associated with regulated flow) and infrequent (extreme flooding) flow phenomena. Model outputs reveal a number of interesting

  20. A prognostic model for development of significant liver fibrosis in HIV-hepatitis C co-infection.

    Directory of Open Access Journals (Sweden)

    Nasheed Moqueet

    Full Text Available Liver fibrosis progresses rapidly in HIV-Hepatitis C virus (HCV co-infected individuals partially due to heightened inflammation. Immune markers targeting stages of fibrogenesis could aid in prognosis of fibrosis.A case-cohort study was nested in the prospective Canadian Co-infection Cohort (n = 1119. HCV RNA positive individuals without fibrosis, end-stage liver disease or chronic Hepatitis B at baseline (n = 679 were eligible. A random subcohort (n = 236 was selected from those eligible. Pro-fibrogenic markers and Interferon Lambda (IFNL rs8099917 genotype were measured from first available sample in all fibrosis cases (APRI ≥ 1.5 during follow-up and the subcohort. We used Cox proportional hazards and compared Model 1 (selected clinical predictors only to Model 2 (Model 1 plus selected markers for predicting 3-year risk of liver fibrosis using weighted Harrell's C and Net Reclassification Improvement indices.113 individuals developed significant liver fibrosis over 1300 person-years (8.63 per 100 person-years 95% CI: 7.08, 10.60. Model 1 (age, sex, current alcohol use, HIV RNA, baseline APRI, HCV genotype was nested in model 2, which also included IFNL genotype and IL-8, sICAM-1, RANTES, hsCRP, and sCD14. The C indexes (95% CI for model 1 vs. model 2 were 0.720 (0.649, 0.791 and 0.756 (0.688, 0.825, respectively. Model 2 classified risk more appropriately (overall net reclassification improvement, p<0.05.Including IFNL genotype and inflammatory markers IL-8, sICAM-1, RANTES, hs-CRP, and sCD14 enabled better prediction of the 3-year risk of significant liver fibrosis over clinical predictors alone. Whether this modest improvement in prediction justifies their additional cost requires further cost-benefit analyses.

  1. Differential chromosome conformations as hallmarks of cellular identity revealed by mathematical polymer modeling.

    Directory of Open Access Journals (Sweden)

    Imen Lassadi

    2015-06-01

    Full Text Available Inherently dynamic, chromosomes adopt many different conformations in response to DNA metabolism. Models of chromosome organization in the yeast nucleus obtained from genome-wide chromosome conformation data or biophysical simulations provide important insights into the average behavior but fail to reveal features from dynamic or transient events that are only visible in a fraction of cells at any given moment. We developed a method to determine chromosome conformation from relative positions of three fluorescently tagged DNA in living cells imaged in 3D. Cell type specific chromosome folding properties could be assigned based on positional combinations between three loci on yeast chromosome 3. We determined that the shorter left arm of chromosome 3 is extended in MATα cells, but can be crumpled in MATa cells. Furthermore, we implemented a new mathematical model that provides for the first time an estimate of the relative physical constraint of three linked loci related to cellular identity. Variations in this estimate allowed us to predict functional consequences from chromatin structural alterations in asf1 and recombination enhancer deletion mutant cells. The computational method is applicable to identify and characterize dynamic chromosome conformations in any cell type.

  2. Novel Polyurethane Matrix Systems Reveal a Particular Sustained Release Behavior Studied by Imaging and Computational Modeling.

    Science.gov (United States)

    Campiñez, María Dolores; Caraballo, Isidoro; Puchkov, Maxim; Kuentz, Martin

    2017-07-01

    The aim of the present work was to better understand the drug-release mechanism from sustained release matrices prepared with two new polyurethanes, using a novel in silico formulation tool based on 3-dimensional cellular automata. For this purpose, two polymers and theophylline as model drug were used to prepare binary matrix tablets. Each formulation was simulated in silico, and its release behavior was compared to the experimental drug release profiles. Furthermore, the polymer distributions in the tablets were imaged by scanning electron microscopy (SEM) and the changes produced by the tortuosity were quantified and verified using experimental data. The obtained results showed that the polymers exhibited a surprisingly high ability for controlling drug release at low excipient concentrations (only 10% w/w of excipient controlled the release of drug during almost 8 h). The mesoscopic in silico model helped to reveal how the novel biopolymers were controlling drug release. The mechanism was found to be a special geometrical arrangement of the excipient particles, creating an almost continuous barrier surrounding the drug in a very effective way, comparable to lipid or waxy excipients but with the advantages of a much higher compactability, stability, and absence of excipient polymorphism.

  3. Coordinating Role of RXRα in Downregulating Hepatic Detoxification during Inflammation Revealed by Fuzzy-Logic Modeling.

    Directory of Open Access Journals (Sweden)

    Roland Keller

    2016-01-01

    Full Text Available During various inflammatory processes circulating cytokines including IL-6, IL-1β, and TNFα elicit a broad and clinically relevant impairment of hepatic detoxification that is based on the simultaneous downregulation of many drug metabolizing enzymes and transporter genes. To address the question whether a common mechanism is involved we treated human primary hepatocytes with IL-6, the major mediator of the acute phase response in liver, and characterized acute phase and detoxification responses in quantitative gene expression and (phospho-proteomics data sets. Selective inhibitors were used to disentangle the roles of JAK/STAT, MAPK, and PI3K signaling pathways. A prior knowledge-based fuzzy logic model comprising signal transduction and gene regulation was established and trained with perturbation-derived gene expression data from five hepatocyte donors. Our model suggests a greater role of MAPK/PI3K compared to JAK/STAT with the orphan nuclear receptor RXRα playing a central role in mediating transcriptional downregulation. Validation experiments revealed a striking similarity of RXRα gene silencing versus IL-6 induced negative gene regulation (rs = 0.79; P<0.0001. These results concur with RXRα functioning as obligatory heterodimerization partner for several nuclear receptors that regulate drug and lipid metabolism.

  4. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential.

    Science.gov (United States)

    Bolton, Helen; Graham, Sarah J L; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena

    2016-03-29

    Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic.

  5. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential

    Science.gov (United States)

    Bolton, Helen; Graham, Sarah J. L.; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena

    2016-01-01

    Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic. PMID:27021558

  6. Methods for significance testing of categorical covariates in logistic regression models after multiple imputation: power and applicability analysis.

    Science.gov (United States)

    Eekhout, Iris; van de Wiel, Mark A; Heymans, Martijn W

    2017-08-22

    Multiple imputation is a recommended method to handle missing data. For significance testing after multiple imputation, Rubin's Rules (RR) are easily applied to pool parameter estimates. In a logistic regression model, to consider whether a categorical covariate with more than two levels significantly contributes to the model, different methods are available. For example pooling chi-square tests with multiple degrees of freedom, pooling likelihood ratio test statistics, and pooling based on the covariance matrix of the regression model. These methods are more complex than RR and are not available in all mainstream statistical software packages. In addition, they do not always obtain optimal power levels. We argue that the median of the p-values from the overall significance tests from the analyses on the imputed datasets can be used as an alternative pooling rule for categorical variables. The aim of the current study is to compare different methods to test a categorical variable for significance after multiple imputation on applicability and power. In a large simulation study, we demonstrated the control of the type I error and power levels of different pooling methods for categorical variables. This simulation study showed that for non-significant categorical covariates the type I error is controlled and the statistical power of the median pooling rule was at least equal to current multiple parameter tests. An empirical data example showed similar results. It can therefore be concluded that using the median of the p-values from the imputed data analyses is an attractive and easy to use alternative method for significance testing of categorical variables.

  7. Genome association study through nonlinear mixed models revealed new candidate genes for pig growth curves

    Directory of Open Access Journals (Sweden)

    Fabyano Fonseca e Silva

    Full Text Available ABSTRACT: Genome association analyses have been successful in identifying quantitative trait loci (QTLs for pig body weights measured at a single age. However, when considering the whole weight trajectories over time in the context of genome association analyses, it is important to look at the markers that affect growth curve parameters. The easiest way to consider them is via the two-step method, in which the growth curve parameters and marker effects are estimated separately, thereby resulting in a reduction of the statistical power and the precision of estimates. One efficient solution is to adopt nonlinear mixed models (NMM, which enables a joint modeling of the individual growth curves and marker effects. Our aim was to propose a genome association analysis for growth curves in pigs based on NMM as well as to compare it with the traditional two-step method. In addition, we also aimed to identify the nearest candidate genes related to significant SNP (single nucleotide polymorphism markers. The NMM presented a higher number of significant SNPs for adult weight (A and maturity rate (K, and provided a direct way to test SNP significance simultaneously for both the A and K parameters. Furthermore, all significant SNPs from the two-step method were also reported in the NMM analysis. The ontology of the three candidate genes (SH3BGRL2, MAPK14, and MYL9 derived from significant SNPs (simultaneously affecting A and K allows us to make inferences with regards to their contribution to the pig growth process in the population studied.

  8. Integrative demographic modeling reveals population level impacts of PCB toxicity to juvenile snapping turtles.

    Science.gov (United States)

    Salice, Christopher J; Rowe, Christopher L; Eisenreich, Karen M

    2014-01-01

    A significant challenge in ecotoxicology and risk assessment lies in placing observed contaminant effects in a meaningful ecological context. Polychlorinated biphenyls (PCBs) have been shown to affect juvenile snapping turtle survival and growth but the ecological significance of these effects is difficult to discern without a formal, population-level assessment. We used a demographic matrix model to explore the potential population-level effects of PCBs on turtles. Our model showed that effects of PCBs on juvenile survival, growth and size at hatching could translate to negative effects at the population level despite the fact that these life cycle components do not typically contribute strongly to population level processes. This research points to the utility of using integrative demographic modeling approaches to better understand contaminant effects in wildlife. The results indicate that population-level effects are only evident after several years, suggesting that for long-lived species, detecting adverse contaminant effects could prove challenging. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Empowering Yoruba Women in Nigeria to Prevent HIV/AIDS: The Relative Significance of Behavioural and Social Determinant Models

    Directory of Open Access Journals (Sweden)

    Oluwatosin Ige Alo

    2013-10-01

    Full Text Available This article uncovers the relevance to practice of behavioural and social determinant models of HIV prevention among Yoruba women in Nigeria. Exploring what factors influence health behaviour in heterosexual relationships, the key question raised was whether the women’s experiences support the assumptions and prescriptions for action of these two dominant public health models. Eight focus group discussions and 39 in-depth interviews were conducted, which involved 121 women and men who were chosen purposefully and through self-nomination technique. This study revealed that the women were very much constrained by social environments in negotiating safe sex, despite having at least a basic knowledge of HIV prevention. Limiting factors included the fear of relationship breakup, economic dependence, violence, and the difficulties in justifying why they feel the need to insist on condom use, especially since initiating condom use is antithetical to trust. Furthermore, evidence suggested that improved access to income and education might be vital but it does not automatically constitute a direct means of empowering women to prevent HIV infection. The limitations of both behavioural and social determinants perspectives thus suggests the need for a combination prevention model, which focuses on how social, behavioural and biomedical factors overlap in shaping health outcomes.

  10. Sexually dimorphic distribution of Prokr2 neurons revealed by the Prokr2-Cre mouse model.

    Science.gov (United States)

    Mohsen, Zaid; Sim, Hosung; Garcia-Galiano, David; Han, Xingfa; Bellefontaine, Nicole; Saunders, Thomas L; Elias, Carol F

    2017-12-01

    Prokineticin receptor 2 (PROKR2) is predominantly expressed in the mammalian central nervous system. Loss-of-function mutations of PROKR2 in humans are associated with Kallmann syndrome due to the disruption of gonadotropin releasing hormone neuronal migration and deficient olfactory bulb morphogenesis. PROKR2 has been also implicated in the neuroendocrine control of GnRH neurons post-migration and other physiological systems. However, the brain circuitry and mechanisms associated with these actions have been difficult to investigate mainly due to the widespread distribution of Prokr2-expressing cells, and the lack of animal models and molecular tools. Here, we describe the generation, validation and characterization of a new mouse model that expresses Cre recombinase driven by the Prokr2 promoter, using CRISPR-Cas9 technology. Cre expression was visualized using reporter genes, tdTomato and GFP, in males and females. Expression of Cre-induced reporter genes was found in brain sites previously described to express Prokr2, e.g., the paraventricular and the suprachiasmatic nuclei, and the area postrema. The Prokr2-Cre mouse model was further validated by colocalization of Cre-induced GFP and Prokr2 mRNA. No disruption of Prokr2 expression, GnRH neuronal migration or fertility was observed. Comparative analysis of Prokr2-Cre expression in male and female brains revealed a sexually dimorphic distribution confirmed by in situ hybridization. In females, higher Cre activity was found in the medial preoptic area, ventromedial nucleus of the hypothalamus, arcuate nucleus, medial amygdala and lateral parabrachial nucleus. In males, Cre was higher in the amygdalo-hippocampal area. The sexually dimorphic pattern of Prokr2 expression indicates differential roles in reproductive function and, potentially, in other physiological systems.

  11. Expression and clinical significance of rhubarb on serum amylase and TNF-alpha of rat model of acute pancreatitis.

    Science.gov (United States)

    Zhang, W F; Li, Z T; Fang, J J; Wang, G B; Yu, Y; Liu, Z Q; Wu, Y N; Zheng, S S; Cai, L

    2017-01-01

    The aim of this study was to evaluate the therapeutic effect of rhubarb extract on acute pancreatitis. Ninety-six healthy Sprague Dawley rats, weighing 301±5.12 g were randomly divided into 4 groups: sham surgery (group A), acute pancreatitis model (group B), acute pancreatitis with normal saline (group C), and acute pancreatitis model with rhubarb (group D). The levels of serum amylase (AMY) and TNF-α were measured at 1st, 6th, 12th and 24th hour after modeling, and the pancreatic tissue were used to observe the pathologic changes. Compared to the sham group, the serum AMY and serum tumor necrosis factor (TNF-α) levels were significantly increased in the other groups (p acute pancreatitis. The rhubarb reduced the serum AMY and TNF-α level in rats with acute pancreatitis and reduced the pathological changes of pancreas and other tissues.

  12. PD-0332991, a CDK4/6 Inhibitor, Significantly Prolongs Survival in a Genetically Engineered Mouse Model of Brainstem Glioma

    Science.gov (United States)

    Barton, Kelly L.; Misuraca, Katherine; Cordero, Francisco; Dobrikova, Elena; Min, Hooney D.; Gromeier, Matthias; Kirsch, David G.; Becher, Oren J.

    2013-01-01

    Diffuse intrinsic pontine glioma (DIPG) is an incurable tumor that arises in the brainstem of children. To date there is not a single approved drug to effectively treat these tumors and thus novel therapies are desperately needed. Recent studies suggest that a significant fraction of these tumors contain alterations in cell cycle regulatory genes including amplification of the D-type cyclins and CDK4/6, and less commonly, loss of Ink4a-ARF leading to aberrant cell proliferation. In this study, we evaluated the therapeutic approach of targeting the cyclin-CDK-Retinoblastoma (Rb) pathway in a genetically engineered PDGF-B-driven brainstem glioma (BSG) mouse model. We found that PD-0332991 (PD), a CDK4/6 inhibitor, induces cell-cycle arrest in our PDGF-B; Ink4a-ARF deficient model both in vitro and in vivo. By contrast, the PDGF-B; p53 deficient model was mostly resistant to treatment with PD. We noted that a 7-day treatment course with PD significantly prolonged survival by 12% in the PDGF-B; Ink4a-ARF deficient BSG model. Furthermore, a single dose of 10 Gy radiation therapy (RT) followed by 7 days of treatment with PD increased the survival by 19% in comparison to RT alone. These findings provide the rationale for evaluating PD in children with Ink4a-ARF deficient gliomas. PMID:24098593

  13. PD-0332991, a CDK4/6 inhibitor, significantly prolongs survival in a genetically engineered mouse model of brainstem glioma.

    Directory of Open Access Journals (Sweden)

    Kelly L Barton

    Full Text Available Diffuse intrinsic pontine glioma (DIPG is an incurable tumor that arises in the brainstem of children. To date there is not a single approved drug to effectively treat these tumors and thus novel therapies are desperately needed. Recent studies suggest that a significant fraction of these tumors contain alterations in cell cycle regulatory genes including amplification of the D-type cyclins and CDK4/6, and less commonly, loss of Ink4a-ARF leading to aberrant cell proliferation. In this study, we evaluated the therapeutic approach of targeting the cyclin-CDK-Retinoblastoma (Rb pathway in a genetically engineered PDGF-B-driven brainstem glioma (BSG mouse model. We found that PD-0332991 (PD, a CDK4/6 inhibitor, induces cell-cycle arrest in our PDGF-B; Ink4a-ARF deficient model both in vitro and in vivo. By contrast, the PDGF-B; p53 deficient model was mostly resistant to treatment with PD. We noted that a 7-day treatment course with PD significantly prolonged survival by 12% in the PDGF-B; Ink4a-ARF deficient BSG model. Furthermore, a single dose of 10 Gy radiation therapy (RT followed by 7 days of treatment with PD increased the survival by 19% in comparison to RT alone. These findings provide the rationale for evaluating PD in children with Ink4a-ARF deficient gliomas.

  14. Significance of hypoxia for tumor response to radiation: Mathematical modeling and analysis of local control and clonogenic assay data

    International Nuclear Information System (INIS)

    Buffa, Francesca Meteora

    2002-01-01

    Various hypotheses for radiation local tumor control probability (ltcp) were modeled, and assessed against local tumor control (LTC) and clonogenic assay (CA) data. For head-and-neck tumors receiving low-LET external-beam irradiation, the best model was a Poisson ltcp accounting for cell repopulation, hypoxia, and tumor volume dependence of radiosensitivity (α). This confirmed that hypoxia is limiting LTC of these tumors, with the magnitude depending upon tumor volume. However, LTC of cervical carcinoma receiving external-beam irradiation and brachytherapy was well described by a model not accounting for hypoxia. Furthermore, when the survival fraction at 2 Gy (SF 2 ) and colony forming efficiency (CFE) measured for individual patients were incorporated into this model, very good correlation with LTC was seen (p=0.0004). After multivariate analysis, this model was the best independent prognostic factor for LTC and patient survival. Furthermore, no difference in prediction was seen when a model based on birth-and-death stochastic theory was used. Two forms of hypoxia are known to be present in tumors: diffusion-limited, chronic hypoxia (CH), and acute, transient hypoxia (TH). A modeling study on WiDr multicellular spheroids showed that the CH effect on LTC is significantly lower than expected from CA. This could arise from energy charge depletion accompanying CH, reducing the number of proliferating clonogenic cells that can repair radiation damage, and thus mitigating the radioresistance of CH cells. This suggests that TH, rather than CH, may be the limiting factor for in vivo LTC. Finally, by computing ltcp using Monte Carlo calculated dose distributions, it was shown that Monte Carlo statistical noise can cause an underestimation of ltcp, with the magnitude depending upon the model hypotheses

  15. DIFFERENCES IN WATER VAPOR RADIATIVE TRANSFER AMONG 1D MODELS CAN SIGNIFICANTLY AFFECT THE INNER EDGE OF THE HABITABLE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Wang, Yuwei [Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing (China); Leconte, Jérémy; Forget, François [Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, CNRS, Paris (France); Wolf, Eric T. [Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder, CO (United States); Goldblatt, Colin [School of Earth and Ocean Sciences, University of Victoria, Victoria, BC (Canada); Feldl, Nicole [Division of Geological and Planetary Sciences, California Institute of Technology, CA (United States); Merlis, Timothy [Department of Atmospheric and Oceanic Sciences at McGill University, Montréal (Canada); Koll, Daniel D. B.; Ding, Feng; Abbot, Dorian S., E-mail: junyang@pku.edu.cn, E-mail: abbot@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, Chicago, IL (United States)

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4-Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μ m) and in the region between 0.2 and 1.5 μ m. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m{sup 2}; differences in shortwave reach up to 60 W m{sup 2}, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m{sup 2} in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  16. Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsis immune signaling.

    Directory of Open Access Journals (Sweden)

    Masanao Sato

    Full Text Available Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2. This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i the components of the network are highly interconnected; and (ii negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a "sector

  17. Dynamic habitat suitability modelling reveals rapid poleward distribution shift in a mobile apex predator.

    Science.gov (United States)

    Hill, Nicholas J; Tobin, Andrew J; Reside, April E; Pepperell, Julian G; Bridge, Tom C L

    2016-03-01

    Many taxa are undergoing distribution shifts in response to anthropogenic climate change. However, detecting a climate signal in mobile species is difficult due to their wide-ranging, patchy distributions, often driven by natural climate variability. For example, difficulties associated with assessing pelagic fish distributions have rendered fisheries management ill-equipped to adapt to the challenges posed by climate change, leaving pelagic species and ecosystems vulnerable. Here, we demonstrate the value of citizen science data for modelling the dynamic habitat suitability of a mobile pelagic predator (black marlin, Istiompax indica) within the south-west Pacific Ocean. The extensive spatial and temporal coverage of our occurrence data set (n = 18 717), collected at high resolution (~1.85 km(2) ), enabled identification of suitable habitat at monthly time steps over a 16-year period (1998-2013). We identified considerable monthly, seasonal and interannual variability in the extent and distribution of suitable habitat, predominately driven by chlorophyll a and sea surface height. Interannual variability correlated with El Nino Southern Oscillation (ENSO) events, with suitable habitat extending up to ~300 km further south during La Nina events. Despite the strong influence of ENSO, our model revealed a rapid poleward shift in the geometric mean of black marlin habitat, occurring at 88.2 km decade(-1) . By incorporating multiple environmental factors at monthly time steps, we were able to demonstrate a rapid distribution shift in a mobile pelagic species. Our findings suggest that the rapid velocity of climate change in the south-west Pacific Ocean is likely affecting mobile pelagic species, indicating that they may be more vulnerable to climate change than previously thought. © 2015 John Wiley & Sons Ltd.

  18. High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model.

    Directory of Open Access Journals (Sweden)

    Chiao-Ling Lo

    2016-08-01

    Full Text Available Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP. This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross resulted in small haplotype blocks (HB with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS, were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50% of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284 and intronic regions (169 with the least in exon's (4, suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a, excitatory receptors (Grin2a, Gria3, Grip1, neurotransmitters (Pomc, and synapses (Snap29. This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits.

  19. High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model.

    Science.gov (United States)

    Lo, Chiao-Ling; Lossie, Amy C; Liang, Tiebing; Liu, Yunlong; Xuei, Xiaoling; Lumeng, Lawrence; Zhou, Feng C; Muir, William M

    2016-08-01

    Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder) in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP). This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross) resulted in small haplotype blocks (HB) with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate) to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS), were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50%) of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284) and intronic regions (169) with the least in exon's (4), suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a), excitatory receptors (Grin2a, Gria3, Grip1), neurotransmitters (Pomc), and synapses (Snap29). This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits.

  20. Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles.

    Science.gov (United States)

    Jonsen, Ian D; Myers, Ransom A; James, Michael C

    2006-09-01

    1. Biological and statistical complexity are features common to most ecological data that hinder our ability to extract meaningful patterns using conventional tools. Recent work on implementing modern statistical methods for analysis of such ecological data has focused primarily on population dynamics but other types of data, such as animal movement pathways obtained from satellite telemetry, can also benefit from the application of modern statistical tools. 2. We develop a robust hierarchical state-space approach for analysis of multiple satellite telemetry pathways obtained via the Argos system. State-space models are time-series methods that allow unobserved states and biological parameters to be estimated from data observed with error. We show that the approach can reveal important patterns in complex, noisy data where conventional methods cannot. 3. Using the largest Atlantic satellite telemetry data set for critically endangered leatherback turtles, we show that the diel pattern in travel rates of these turtles changes over different phases of their migratory cycle. While foraging in northern waters the turtles show similar travel rates during day and night, but on their southward migration to tropical waters travel rates are markedly faster during the day. These patterns are generally consistent with diving data, and may be related to changes in foraging behaviour. Interestingly, individuals that migrate southward to breed generally show higher daytime travel rates than individuals that migrate southward in a non-breeding year. 4. Our approach is extremely flexible and can be applied to many ecological analyses that use complex, sequential data.

  1. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model.

    Science.gov (United States)

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-04-05

    Thrombin-binding aptamer (TBA) with the sequence 5'GGTTGGTGTGGTTGG3' could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.

  2. Fourier decomposition of spatial localization errors reveals an idiotropic dominance of an internal model of gravity.

    Science.gov (United States)

    De Sá Teixeira, Nuno Alexandre

    2014-12-01

    Given its conspicuous nature, gravity has been acknowledged by several research lines as a prime factor in structuring the spatial perception of one's environment. One such line of enquiry has focused on errors in spatial localization aimed at the vanishing location of moving objects - it has been systematically reported that humans mislocalize spatial positions forward, in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, spatial localization errors were found to evolve dynamically with time in a pattern congruent with an anticipated trajectory (representational trajectory). The present study attempts to ascertain the degree to which vestibular information plays a role in these phenomena. Human observers performed a spatial localization task while tilted to varying degrees and referring to the vanishing locations of targets moving along several directions. A Fourier decomposition of the obtained spatial localization errors revealed that although spatial errors were increased "downward" mainly along the body's longitudinal axis (idiotropic dominance), the degree of misalignment between the latter and physical gravity modulated the time course of the localization responses. This pattern is surmised to reflect increased uncertainty about the internal model when faced with conflicting cues regarding the perceived "downward" direction.

  3. Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented fine particulate matter source in global atmospheric models

    Science.gov (United States)

    Philip, Sajeev; Martin, Randall V.; Snider, Graydon; Weagle, Crystal L.; van Donkelaar, Aaron; Brauer, Michael; Henze, Daven K.; Klimont, Zbigniew; Venkataraman, Chandra; Guttikunda, Sarath K.; Zhang, Qiang

    2017-04-01

    Global measurements of the elemental composition of fine particulate matter across several urban locations by the Surface Particulate Matter Network reveal an enhanced fraction of anthropogenic dust compared to natural dust sources, especially over Asia. We develop a global simulation of anthropogenic fugitive, combustion, and industrial dust which, to our knowledge, is partially missing or strongly underrepresented in global models. We estimate 2-16 μg m-3 increase in fine particulate mass concentration across East and South Asia by including anthropogenic fugitive, combustion, and industrial dust emissions. A simulation including anthropogenic fugitive, combustion, and industrial dust emissions increases the correlation from 0.06 to 0.66 of simulated fine dust in comparison with Surface Particulate Matter Network measurements at 13 globally dispersed locations, and reduces the low bias by 10% in total fine particulate mass in comparison with global in situ observations. Global population-weighted PM2.5 increases by 2.9 μg m-3 (10%). Our assessment ascertains the urgent need of including this underrepresented fine anthropogenic dust source into global bottom-up emission inventories and global models.

  4. Anti-inflammatory Effects of Fungal Metabolites in Mouse Intestine as Revealed by In vitro Models

    Directory of Open Access Journals (Sweden)

    Dominik Schreiber

    2017-08-01

    Full Text Available Inflammatory bowel diseases (IBD, which include Crohn's disease and ulcerative colitis, are chronic inflammatory disorders that can affect the whole gastrointestinal tract or the colonic mucosal layer. Current therapies aiming to suppress the exaggerated immune response in IBD largely rely on compounds with non-satisfying effects or side-effects. Therefore, new therapeutical options are needed. In the present study, we investigated the anti-inflammatory effects of the fungal metabolites, galiellalactone, and dehydrocurvularin in both an in vitro intestinal inflammation model, as well as in isolated myenteric plexus and enterocyte cells. Administration of a pro-inflammatory cytokine mix through the mesenteric artery of intestinal segments caused an up-regulation of inflammatory marker genes. Treatment of the murine intestinal segments with galiellalactone or dehydrocurvularin by application through the mesenteric artery significantly prevented the expression of pro-inflammatory marker genes on the mRNA and the protein level. Comparable to the results in the perfused intestine model, treatment of primary enteric nervous system (ENS cells from the murine intestine with the fungal compounds reduced expression of cytokines such as IL-6, TNF-α, IL-1β, and inflammatory enzymes such as COX-2 and iNOS on mRNA and protein levels. Similar anti-inflammatory effects of the fungal metabolites were observed in the human colorectal adenocarcinoma cell line DLD-1 after stimulation with IFN-γ (10 ng/ml, TNF-α (10 ng/ml, and IL-1β (5 ng/ml. Our results show that the mesenterially perfused intestine model provides a reliable tool for the screening of new therapeutics with limited amounts of test compounds. Furthermore, we could characterize the anti-inflammatory effects of two novel active compounds, galiellalactone, and dehydrocurvularin which are interesting candidates for studies with chronic animal models of IBD.

  5. Crust and Mantle Deformation Revealed from High-Resolution Radially Anisotropic Velocity Models

    Science.gov (United States)

    Li, A.; Dave, R.; Yao, Y.

    2017-12-01

    Love wave tomography, which can achieve a similar model resolution as Rayleigh wave, so far has limited applications to the USArray data. Recently, we have developed high-resolution Love wave phase velocity maps in the Wyoming craton and Texas using data at the Transportable Array stations. 3-D, radially anisotropic velocity models are obtained by jointly inverting Love and Rayleigh wave phase velocities. A high-velocity anomaly extending to about 200 km depth beneath central Wyoming correlates with negative radial anisotropy (Vsv>Vsh), suggesting that mantle downwelling develops under the cratonic lithosphere. Surprisingly, the significantly low velocity beneath the Yellowstone hotspot, which has been interpreted as partial melting and asthenospheric upwelling, is associated with the largest radial anisotropy (Vsh>Vsv) in the area. This observation does not support mantle upwelling. Instead, it indicates that the upper mantle beneath the hotspot has experienced strong shear deformation probably by the plate motion and large-scale mantle flow. In Texas, positive radial anisotropy in the lower crust extends from the coast to the Ouachita belt, which is characterized by high velocity and negative radial anisotropy. In the upper mantle, large variations of velocity and anisotropy exit under the coastal plain. A common feature in these anisotropic models is that high-velocity anomalies in the upper mantle often correlate with negative anisotropy (Vsv>Vsh) while low-velocity anomalies are associated with positive anisotropy (Vsh>Vsv). The manifestation of mantle downweling as negative radial anisotropy is largely due to the relatively high viscosity of the high-velocity mantle block, which is less affected by the surrounding large-scale horizontal flow. However, mantle upwelling, which is often associated with low-velocity anomalies, presumably low-viscosity mantle blocks, is invisible in radial anisotropy models. Such upwelling may happen too quickly to make last

  6. In what root-zone N concentration does nitrate start to leach significantly? A reasonable answer from modeling Mediterranean field data and closed root-zone experiments

    Science.gov (United States)

    Kurtzman, D.; Kanner, B.; Levy, Y.; Shapira, R. H.; Bar-Tal, A.

    2017-12-01

    Closed-root-zone experiments (e.g. pots, lyzimeters) reveal in many cases a mineral-nitrogen (N) concentration from which the root-N-uptake efficiency reduces significantly and nitrate leaching below the root-zone increases dramatically. A les-direct way to reveal this threshold concentration in agricultural fields is to calibrate N-transport models of the unsaturated zone to nitrate data of the deep samples (under the root-zone) by fitting the threshold concentration of the nitrate-uptake function. Independent research efforts of these two types in light soils where nitrate problems in underlying aquifers are common reviled: 1) that the threshold exists for most crops (filed, vegetables and orchards); 2) nice agreement on the threshold value between the two very different research methodologies; and 3) the threshold lies within 20-50 mg-N/L. Focusing on being below the threshold is a relatively simple aim in the way to maintain intensive agriculture with limited effects on the nitrate concentration in the underlying water resource. Our experience show that in some crops this threshold coincides with the end-of-rise of the N-yield curve (e.g. corn); in this case, it is relatively easy to convince farmers to fertilize below threshold. In other crops, although significant N is lost to leaching the crop can still use higher N concentration to increase yield (e.g. potato).

  7. An automated nowcasting model of significant instability events in the flight terminal area of Rio de Janeiro, Brazil

    Science.gov (United States)

    Borges França, Gutemberg; Valdonel de Almeida, Manoel; Rosette, Alessana C.

    2016-05-01

    This paper presents a novel model, based on neural network techniques, to produce short-term and local-specific forecasts of significant instability for flights in the terminal area of Galeão Airport, Rio de Janeiro, Brazil. Twelve years of data were used for neural network training/validation and test. Data are originally from four sources: (1) hourly meteorological observations from surface meteorological stations at five airports distributed around the study area; (2) atmospheric profiles collected twice a day at the meteorological station at Galeão Airport; (3) rain rate data collected from a network of 29 rain gauges in the study area; and (4) lightning data regularly collected by national detection networks. An investigation was undertaken regarding the capability of a neural network to produce early warning signs - or as a nowcasting tool - for significant instability events in the study area. The automated nowcasting model was tested using results from five categorical statistics, indicated in parentheses in forecasts of the first, second, and third hours, respectively, namely proportion correct (0.99, 0.97, and 0.94), BIAS (1.10, 1.42, and 2.31), the probability of detection (0.79, 0.78, and 0.67), false-alarm ratio (0.28, 0.45, and 0.73), and threat score (0.61, 0.47, and 0.25). Possible sources of error related to the test procedure are presented and discussed. The test showed that the proposed model (or neural network) can grab the physical content inside the data set, and its performance is quite encouraging for the first and second hours to nowcast significant instability events in the study area.

  8. Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2015-07-01

    Full Text Available The RNA polymerase II (Pol II is a eukaryotic enzyme that catalyzes the synthesis of the messenger RNA using a DNA template. Despite numerous biochemical and biophysical studies, it remains elusive whether the "secondary channel" is the only route for NTP to reach the active site of the enzyme or if the "main channel" could be an alternative. On this regard, crystallographic structures of Pol II have been extremely useful to understand the structural basis of transcription, however, the conformation of the unpaired non-template DNA part of the full transcription bubble (TB is still unknown. Since diffusion routes of the nucleoside triphosphate (NTP substrate through the main channel might overlap with the TB region, gaining structural information of the full TB is critical for a complete understanding of Pol II transcription process. In this study, we have built a structural model of Pol II with a complete transcription bubble based on multiple sources of existing structural data and used Molecular Dynamics (MD simulations together with structural analysis to shed light on NTP entry pathways. Interestingly, we found that although both channels have enough space to allow NTP loading, the percentage of MD conformations containing enough space for NTP loading through the secondary channel is twice higher than that of the main channel. Further energetic study based on MD simulations with NTP loaded in the channels has revealed that the diffusion of the NTP through the main channel is greatly disfavored by electrostatic repulsion between the NTP and the highly negatively charged backbones of nucleotides in the non-template DNA strand. Taken together, our results suggest that the secondary channel is the major route for NTP entry during Pol II transcription.

  9. Integrated population modeling reveals the impact of climate on the survival of juvenile emperor penguins.

    Science.gov (United States)

    Abadi, Fitsum; Barbraud, Christophe; Gimenez, Olivier

    2017-03-01

    Early-life demographic traits are poorly known, impeding our understanding of population processes and sensitivity to climate change. Survival of immature individuals is a critical component of population dynamics and recruitment in particular. However, obtaining reliable estimates of juvenile survival (i.e., from independence to first year) remains challenging, as immatures are often difficult to observe and to monitor individually in the field. This is particularly acute for seabirds, in which juveniles stay at sea and remain undetectable for several years. In this work, we developed a Bayesian integrated population model to estimate the juvenile survival of emperor penguins (Aptenodytes forsteri), and other demographic parameters including adult survival and fecundity of the species. Using this statistical method, we simultaneously analyzed capture-recapture data of adults, the annual number of breeding females, and the number of fledglings of emperor penguins collected at Dumont d'Urville, Antarctica, for the period 1971-1998. We also assessed how climate covariates known to affect the species foraging habitats and prey [southern annular mode (SAM), sea ice concentration (SIC)] affect juvenile survival. Our analyses revealed that there was a strong evidence for the positive effect of SAM during the rearing period (SAMR) on juvenile survival. Our findings suggest that this large-scale climate index affects juvenile emperor penguins body condition and survival through its influence on wind patterns, fast ice extent, and distance to open water. Estimating the influence of environmental covariates on juvenile survival is of major importance to understand the impacts of climate variability and change on the population dynamics of emperor penguins and seabirds in general and to make robust predictions on the impact of climate change on marine predators. © 2016 John Wiley & Sons Ltd.

  10. Revealing transboundary and local air pollutant sources affecting Metro Manila through receptor modeling studies

    International Nuclear Information System (INIS)

    Pabroa, Preciosa Corazon B.; Bautista VII, Angel T.; Santos, Flora L.; Racho, Joseph Michael D.

    2011-01-01

    Ambient fine particulate matter (PM 2 .5) levels at the Metro Manila air sampling stations of the Philippine Nuclear Research Research Institute were found to be above the WHO guideline value of 10 μg m 3 indicating, in general, very poor air quality in the area. The elemental components of the fine particulate matter were obtained using the energy-dispersive x-ray fluorescence spectrometry. Positive matrix factorization, a receptor modelling tool, was used to identify and apportion air pollution sources. Location of probable transboundary air pollutants were evaluated using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) while location of probable local air pollutant sources were determined using the conditional probability function (CPF). Air pollutant sources can either be natural or anthropogenic. This study has shown natural air pollutant sources such as volcanic eruptions from Bulusan volcano in 2006 and from Anatahan volcano in 2005 to have impacted on the region. Fine soils was shown to have originated from China's Mu US Desert some time in 2004. Smoke in the fine fraction in 2006 show indications of coming from forest fires in Sumatra and Borneo. Fine particulate Pb in Valenzuela was shown to be coming from the surrounding area. Many more significant air pollution impacts can be evaluated with the identification of probable air pollutant sources with the use of elemental fingerprints and locating these sources with the use of HYSPLIT and CPF. (author)

  11. Evolutionary profiling reveals the heterogeneous origins of classes of human disease genes: implications for modeling disease genetics in animals.

    Science.gov (United States)

    Maxwell, Evan K; Schnitzler, Christine E; Havlak, Paul; Putnam, Nicholas H; Nguyen, Anh-Dao; Moreland, R Travis; Baxevanis, Andreas D

    2014-10-04

    The recent expansion of whole-genome sequence data available from diverse animal lineages provides an opportunity to investigate the evolutionary origins of specific classes of human disease genes. Previous studies have observed that human disease genes are of particularly ancient origin. While this suggests that many animal species have the potential to serve as feasible models for research on genes responsible for human disease, it is unclear whether this pattern has meaningful implications and whether it prevails for every class of human disease. We used a comparative genomics approach encompassing a broad phylogenetic range of animals with sequenced genomes to determine the evolutionary patterns exhibited by human genes associated with different classes of disease. Our results support previous claims that most human disease genes are of ancient origin but, more importantly, we also demonstrate that several specific disease classes have a significantly large proportion of genes that emerged relatively recently within the metazoans and/or vertebrates. An independent assessment of the synonymous to non-synonymous substitution rates of human disease genes found in mammals reveals that disease classes that arose more recently also display unexpected rates of purifying selection between their mammalian and human counterparts. Our results reveal the heterogeneity underlying the evolutionary origins of (and selective pressures on) different classes of human disease genes. For example, some disease gene classes appear to be of uncommonly recent (i.e., vertebrate-specific) origin and, as a whole, have been evolving at a faster rate within mammals than the majority of disease classes having more ancient origins. The novel patterns that we have identified may provide new insight into cases where studies using traditional animal models were unable to produce results that translated to humans. Conversely, we note that the larger set of disease classes do have ancient origins

  12. Future change of the global monsoon revealed from 19 CMIP5 models

    Science.gov (United States)

    Hsu, Pang-chi; Li, Tim; Murakami, Hiroyuki; Kitoh, Akio

    2013-02-01

    The variability of global monsoon area (GMA), global monsoon precipitation (GMP), and global monsoon intensity (GMI) in the present climate (1979-2003) and the future warmer climate (2075-2099) under Representative Concentration Pathways 4.5 (RCP4.5) scenario was examined based on 19 Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations. In the present-day simulations, the ensemble mean precipitation reproduces the observed GMA, GMP, and GMI, although the spread of individual models is large. In the RCP4.5 simulations, most (17 of 19) of the CMIP5 models project enhanced global monsoon activity, with the increases of GMA, GMP, and GMI by 1.9%, 3.2%, and 1.3%, respectively, per 1 K of surface warming. The diagnosis of a column-integrated moisture budget indicates that the increase in GMP is primarily attributed to the increases of moisture convergence and surface evaporation, whereas horizontal moisture advection has little effect. A further separation of dynamic and thermodynamic factors shows that increase of the moisture convergence comes mainly from the increase of water vapor, but is partly offset by the convergence effect. The increase of the surface evaporation is caused by the increase of sea-air specific humidity difference, while the change in surface wind speed plays a minor role. The GMP experiences a great year-to-year variation, and it is significantly negatively correlated with the Niño3.4 index averaged over a typical monsoon year (defined from May to the following April) in the pre-industrial control and present-day simulations, similar to observations. Under the RCP4.5 warming, such rainfall variability is intensified, and the relationship between monsoon and El Niño strengthens. A large proportion of intensification in the year-to-year monsoon rainfall variability arises from the land monsoon region.

  13. Mathematical modeling of atopic dermatitis reveals "double-switch" mechanisms underlying 4 common disease phenotypes.

    Science.gov (United States)

    Domínguez-Hüttinger, Elisa; Christodoulides, Panayiotis; Miyauchi, Kosuke; Irvine, Alan D; Okada-Hatakeyama, Mariko; Kubo, Masato; Tanaka, Reiko J

    2017-06-01

    The skin barrier acts as the first line of defense against constant exposure to biological, microbial, physical, and chemical environmental stressors. Dynamic interplay between defects in the skin barrier, dysfunctional immune responses, and environmental stressors are major factors in the development of atopic dermatitis (AD). A systems biology modeling approach can yield significant insights into these complex and dynamic processes through integration of prior biological data. We sought to develop a multiscale mathematical model of AD pathogenesis that describes the dynamic interplay between the skin barrier, environmental stress, and immune dysregulation and use it to achieve a coherent mechanistic understanding of the onset, progression, and prevention of AD. We mathematically investigated synergistic effects of known genetic and environmental risk factors on the dynamic onset and progression of the AD phenotype, from a mostly asymptomatic mild phenotype to a severe treatment-resistant form. Our model analysis identified a "double switch," with 2 concatenated bistable switches, as a key network motif that dictates AD pathogenesis: the first switch is responsible for the reversible onset of inflammation, and the second switch is triggered by long-lasting or frequent activation of the first switch, causing irreversible onset of systemic T H 2 sensitization and worsening of AD symptoms. Our mathematical analysis of the bistable switch predicts that genetic risk factors decrease the threshold of environmental stressors to trigger systemic T H 2 sensitization. This analysis predicts and explains 4 common clinical AD phenotypes from a mild and reversible phenotype through to severe and recalcitrant disease and provides a mechanistic explanation for clinically demonstrated preventive effects of emollient treatments against development of AD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state–space models

    Science.gov (United States)

    Polansky, Leo; Kilian, Werner; Wittemyer, George

    2015-01-01

    Spatial memory facilitates resource acquisition where resources are patchy, but how it influences movement behaviour of wide-ranging species remains to be resolved. We examined African elephant spatial memory reflected in movement decisions regarding access to perennial waterholes. State–space models of movement data revealed a rapid, highly directional movement behaviour almost exclusively associated with visiting perennial water. Behavioural change point (BCP) analyses demonstrated that these goal-oriented movements were initiated on average 4.59 km, and up to 49.97 km, from the visited waterhole, with the closest waterhole accessed 90% of the time. Distances of decision points increased when switching to different waterholes, during the dry season, or for female groups relative to males, while selection of the closest waterhole decreased when switching. Overall, our analyses indicated detailed spatial knowledge over large scales, enabling elephants to minimize travel distance through highly directional movement when accessing water. We discuss the likely cognitive and socioecological mechanisms driving these spatially precise movements that are most consistent with our findings. By applying modern analytic techniques to high-resolution movement data, this study illustrates emerging approaches for studying how cognition structures animal movement behaviour in different ecological and social contexts. PMID:25808888

  15. Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state-space models.

    Science.gov (United States)

    Polansky, Leo; Kilian, Werner; Wittemyer, George

    2015-04-22

    Spatial memory facilitates resource acquisition where resources are patchy, but how it influences movement behaviour of wide-ranging species remains to be resolved. We examined African elephant spatial memory reflected in movement decisions regarding access to perennial waterholes. State-space models of movement data revealed a rapid, highly directional movement behaviour almost exclusively associated with visiting perennial water. Behavioural change point (BCP) analyses demonstrated that these goal-oriented movements were initiated on average 4.59 km, and up to 49.97 km, from the visited waterhole, with the closest waterhole accessed 90% of the time. Distances of decision points increased when switching to different waterholes, during the dry season, or for female groups relative to males, while selection of the closest waterhole decreased when switching. Overall, our analyses indicated detailed spatial knowledge over large scales, enabling elephants to minimize travel distance through highly directional movement when accessing water. We discuss the likely cognitive and socioecological mechanisms driving these spatially precise movements that are most consistent with our findings. By applying modern analytic techniques to high-resolution movement data, this study illustrates emerging approaches for studying how cognition structures animal movement behaviour in different ecological and social contexts. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. A unifying mathematical model of lipid droplet metabolism reveals key molecular players in the development of hepatic steatosis.

    Science.gov (United States)

    Wallstab, Christin; Eleftheriadou, Dimitra; Schulz, Theresa; Damm, Georg; Seehofer, Daniel; Borlak, Jürgen; Holzhütter, Hermann-Georg; Berndt, Nikolaus

    2017-10-01

    The liver responds to elevated plasma concentrations of free fatty acids (FFAs) with an enhanced uptake of FFAs and their esterification to triacylglycerol (TAG). On the long term, this may result in massive hepatic TAG accumulation called steatosis hepatitis. In hepatocytes, the poor water-soluble TAG is packed in specialized organelles: Lipid droplets (LDs) serving as transient cellular deposit and lipoproteins (LPs) transporting TAG and cholesterol esters to extra-hepatic tissues. The dynamics of these organelles is controlled by a variety of regulatory surface proteins (RSPs). Assembly and export of VLDLs are mainly regulated by the microsomal transfer protein (MTP) and apoprotein B100. Formation and lipolysis of LDs are regulated by several RSPs. The best studied regulators belong to the PAT (Perilipin/Adipophilin/TIP47) and CIDE families. Knockdown or overexpression of SRPs may significantly affect the total number and size distribution of LDs. Intriguingly, a large cell-to-cell heterogeneity with respect to the number and size of LDs has been found in various cell types including hepatocytes. These findings suggest that the extent of cellular lipid accumulation is determined not only by the imbalance between lipid supply and utilization but also by variations in the expression of RSPs and metabolic enzymes. To better understand the relative regulatory impact of individual processes involved in the cellular TAG turnover, we developed a comprehensive kinetic model encompassing the pathways of the fatty acid and triglyceride metabolism and the main molecular processes governing the dynamics of LDs. The model was parametrized such that a large number of experimental in vitro and in vivo findings are correctly recapitulated. A control analysis of the model revealed that variations in the activity of FFA uptake, diacylglycerol acyltransferase (DGAT) 2, and adipose triglyceride lipase (ATGL) have the strongest influence on the cellular TAG level. We used the model

  17. How Significant is the Slope of the Sea-side Boundary for Modelling Seawater Intrusion in Coastal Aquifers?

    Science.gov (United States)

    Walther, Marc; Graf, Thomas; Kolditz, Olaf; Lield, Rudolf; Post, Vincent

    2017-04-01

    A large number of people live in coastal areas using the available water resources, which in (semi-)arid regions are often taken from groundwater resources as the only sufficient source. Compared to surface water, these usually provide a safe water supply due to the remediation and retention capabilities of the subsurface, their high yield, and potentially longer term stability. With a water withdrawal from a coastal aquifer, coastal water management, however, has to ensure that seawater intrusion is retained in order to keep the water salinity at an acceptable level for all water users (e.g. agriculture, industry, households). Besides monitoring of water levels and saline intrusion, it has become a common practice to use numerical modeling for evaluating the coastal water resources and projecting future scenarios. When applying a model, it is necessary for the simplifications implied during the conceptualization of the setup to include the relevant processes (here variable-density flow and mass transport) and sensitive parameters (for a steady state commonly hydraulic conductivity, density ratio, dispersivity). Additionally, the model's boundary conditions are essential to the simulation results. In order to reduce the number of elements, and thus, the computational burden, one simplification that is made in most regional scale saltwater intrusion applications, is to represent the sea-side boundary with a vertical geometry, contrary to the natural conditions, that usually show a very shallow decent of the interface between the aquifer and the open seawater. We use the scientific open-source modeling toolbox OpenGeoSys [1] to quantify the influence of this simplification on the saline intrusion, submarine groundwater discharge, and groundwater residence times. Using an ensemble of different shelf shapes for a steady state setup, we identified a significant dependency of saline intrusion length on the geometric parameters of the sea-side boundary. Results show that

  18. Genome-wide significant localization for working and spatial memory: Identifying genes for psychosis using models of cognition.

    Science.gov (United States)

    Knowles, Emma E M; Carless, Melanie A; de Almeida, Marcio A A; Curran, Joanne E; McKay, D Reese; Sprooten, Emma; Dyer, Thomas D; Göring, Harald H; Olvera, Rene; Fox, Peter; Almasy, Laura; Duggirala, Ravi; Kent, Jack W; Blangero, John; Glahn, David C

    2014-01-01

    It is well established that risk for developing psychosis is largely mediated by the influence of genes, but identifying precisely which genes underlie that risk has been problematic. Focusing on endophenotypes, rather than illness risk, is one solution to this problem. Impaired cognition is a well-established endophenotype of psychosis. Here we aimed to characterize the genetic architecture of cognition using phenotypically detailed models as opposed to relying on general IQ or individual neuropsychological measures. In so doing we hoped to identify genes that mediate cognitive ability, which might also contribute to psychosis risk. Hierarchical factor models of genetically clustered cognitive traits were subjected to linkage analysis followed by QTL region-specific association analyses in a sample of 1,269 Mexican American individuals from extended pedigrees. We identified four genome wide significant QTLs, two for working and two for spatial memory, and a number of plausible and interesting candidate genes. The creation of detailed models of cognition seemingly enhanced the power to detect genetic effects on cognition and provided a number of possible candidate genes for psychosis. © 2013 Wiley Periodicals, Inc.

  19. Application of the steepest slope model reveals different perfusion territories within the mouse placenta.

    Science.gov (United States)

    Remus, C C; Sedlacik, J; Wedegaertner, U; Arck, P; Hecher, K; Adam, G; Forkert, N D

    2013-10-01

    The steepest slope model is a numerically robust and fast method for perfusion quantification. The purpose of this study was to evaluate if the steepest slope model can be used for quantifying placental perfusion in mice based on dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) datasets. T1-weighted DCE MRI was performed in 5 pregnant BALB/c mice on gestation day (gd) 14.5 and in 5 mice on gd 16.5 using a 7T small animal MRI scanner. The placentas were manually delineated in the DCE datasets and the arterial input function (AIF) was selected from the kidney hilus. Placental perfusion was determined on a voxel-by-voxel basis using the steepest slope model. Perfusion was averaged over the entire placenta as well as separately calculated for the high-flow compartment within the central labyrinth zone and for the remaining low-flow placenta tissue. The AIF selection was independently performed by two observers for assessment of inter-observer differences. Mean perfusion on gd 14.5 was 135 ml/min/100 ml (standard deviation SD: 29 ml/min/100 ml placenta) and 112 ml/min/100 ml on gd 16.5 for the whole placenta (SD: 32 ml/min/100 ml). Perfusion in the high flow compartment in the central labyrinth was significantly higher (p ≤ 0.002) than in the low-flow compartment including the remaining placenta tissue: 184 ml/min/100 ml (SD: 39 ml/min/100 ml) vs. 119 ml/min/100 ml (SD 28 ml/min/100 ml) on gd 14.5 and 158 ml/min/100 ml (SD: 58 ml/min/100 ml) vs. 114 ml/min/100 ml (SD: 52 ml/min/100 ml of placenta) on gd 16.5. The mean relative inter-rater observer difference was 6%. The steepest slope model is a computationally simple method, which allows perfusion quantification in the mouse placenta. Furthermore, the results of this work indicate that the different placental compartments should be analyzed separately to prevent biased results due to averaging. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Empirical study of travel mode forecasting improvement for the combined revealed preference/stated preference data–based discrete choice model

    Directory of Open Access Journals (Sweden)

    Yanfu Qiao

    2016-01-01

    Full Text Available The combined revealed preference/stated preference data–based discrete choice model has provided the actual choice-making restraints as well as reduced the prediction errors. But the random error variance of alternatives belonging to different data would impact its universality. In this article, we studied the traffic corridor between Chengdu and Longquan with the revealed preference/stated preference joint model, and the single stated preference data model separately predicted the choice probability of each mode. We found the revealed preference/stated preference joint model is universal only when there is a significant difference between the random error terms in different data. The single stated preference data would amplify the travelers’ preference and cause prediction error. We proposed a universal way that uses revealed preference data to modify the single stated preference data parameter estimation results to achieve the composite utility and reduce the prediction error. And the result suggests that prediction results are more reasonable based on the composite utility than the results based on the single stated preference data, especially forecasting the mode share of bus. The future metro line will be the main travel mode in this corridor, and 45% of passenger flow will transfer to the metro.

  1. MicroRNA Profiling Reveals Marker of Motor Neuron Disease in ALS Models.

    Science.gov (United States)

    Hoye, Mariah L; Koval, Erica D; Wegener, Amy J; Hyman, Theodore S; Yang, Chengran; O'Brien, David R; Miller, Rebecca L; Cole, Tracy; Schoch, Kathleen M; Shen, Tao; Kunikata, Tomonori; Richard, Jean-Philippe; Gutmann, David H; Maragakis, Nicholas J; Kordasiewicz, Holly B; Dougherty, Joseph D; Miller, Timothy M

    2017-05-31

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder marked by the loss of motor neurons (MNs) in the brain and spinal cord, leading to fatally debilitating weakness. Because this disease predominantly affects MNs, we aimed to characterize the distinct expression profile of that cell type to elucidate underlying disease mechanisms and to identify novel targets that inform on MN health during ALS disease time course. microRNAs (miRNAs) are short, noncoding RNAs that can shape the expression profile of a cell and thus often exhibit cell-type-enriched expression. To determine MN-enriched miRNA expression, we used Cre recombinase-dependent miRNA tagging and affinity purification in mice. By defining the in vivo miRNA expression of MNs, all neurons, astrocytes, and microglia, we then focused on MN-enriched miRNAs via a comparative analysis and found that they may functionally distinguish MNs postnatally from other spinal neurons. Characterizing the levels of the MN-enriched miRNAs in CSF harvested from ALS models of MN disease demonstrated that one miRNA (miR-218) tracked with MN loss and was responsive to an ALS therapy in rodent models. Therefore, we have used cellular expression profiling tools to define the distinct miRNA expression of MNs, which is likely to enrich future studies of MN disease. This approach enabled the development of a novel, drug-responsive marker of MN disease in ALS rodents. SIGNIFICANCE STATEMENT Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons (MNs) in the brain and spinal cord are selectively lost. To develop tools to aid in our understanding of the distinct expression profiles of MNs and, ultimately, to monitor MN disease progression, we identified small regulatory microRNAs (miRNAs) that were highly enriched or exclusive in MNs. The signal for one of these MN-enriched miRNAs is detectable in spinal tap biofluid from an ALS rat model, where its levels change as disease

  2. Systems analysis of eleven rodent disease models reveals an inflammatome signature and key drivers.

    Science.gov (United States)

    Wang, I-Ming; Zhang, Bin; Yang, Xia; Zhu, Jun; Stepaniants, Serguei; Zhang, Chunsheng; Meng, Qingying; Peters, Mette; He, Yudong; Ni, Chester; Slipetz, Deborah; Crackower, Michael A; Houshyar, Hani; Tan, Christopher M; Asante-Appiah, Ernest; O'Neill, Gary; Luo, Mingjuan Jane; Thieringer, Rolf; Yuan, Jeffrey; Chiu, Chi-Sung; Lum, Pek Yee; Lamb, John; Boie, Yves; Wilkinson, Hilary A; Schadt, Eric E; Dai, Hongyue; Roberts, Christopher

    2012-07-17

    Common inflammatome gene signatures as well as disease-specific signatures were identified by analyzing 12 expression profiling data sets derived from 9 different tissues isolated from 11 rodent inflammatory disease models. The inflammatome signature significantly overlaps with known drug targets and co-expressed gene modules linked to metabolic disorders and cancer. A large proportion of genes in this signature are tightly connected in tissue-specific Bayesian networks (BNs) built from multiple independent mouse and human cohorts. Both the inflammatome signature and the corresponding consensus BNs are highly enriched for immune response-related genes supported as causal for adiposity, adipokine, diabetes, aortic lesion, bone, muscle, and cholesterol traits, suggesting the causal nature of the inflammatome for a variety of diseases. Integration of this inflammatome signature with the BNs uncovered 151 key drivers that appeared to be more biologically important than the non-drivers in terms of their impact on disease phenotypes. The identification of this inflammatome signature, its network architecture, and key drivers not only highlights the shared etiology but also pinpoints potential targets for intervention of various common diseases.

  3. Bacteriophage treatment significantly reduces viable Clostridium difficile and prevents toxin production in an in vitro model system.

    Science.gov (United States)

    Meader, Emma; Mayer, Melinda J; Gasson, Michael J; Steverding, Dietmar; Carding, Simon R; Narbad, Arjan

    2010-12-01

    Clostridium difficile is primarily a nosocomial pathogen, causing thousands of cases of antibiotic-associated diarrhoea in the UK each year. In this study, we used a batch fermentation model of a C. difficile colonised system to evaluate the potential of a prophylactic and a remedial bacteriophage treatment regime to control the pathogen. It is shown that the prophylaxis regime was effective at preventing the growth of C. difficile (p = viable C. difficile cells (p = <0.0001), but still resulted in a lower level of toxin production relative to the control. The numbers of commensal bacteria including total aerobes and anaerobes, Bifidobacterium sp., Bacteroides sp., Lactobacillus sp., total Clostridium sp., and Enterobacteriaceae were not significantly decreased by this therapy, whereas significant detrimental effects were observed with metronidazole treatment. Our study indicates that phage therapy has potential to be used for the control of C. difficile; it highlights the main benefits of this approach, and some future challenges. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Comprehensive analysis of ultrasonic vocalizations in a mouse model of fragile X syndrome reveals limited, call type specific deficits.

    Directory of Open Access Journals (Sweden)

    Snigdha Roy

    Full Text Available Fragile X syndrome (FXS is a well-recognized form of inherited mental retardation, caused by a mutation in the fragile X mental retardation 1 (Fmr1 gene. The gene is located on the long arm of the X chromosome and encodes fragile X mental retardation protein (FMRP. Absence of FMRP in fragile X patients as well as in Fmr1 knockout (KO mice results, among other changes, in abnormal dendritic spine formation and altered synaptic plasticity in the neocortex and hippocampus. Clinical features of FXS include cognitive impairment, anxiety, abnormal social interaction, mental retardation, motor coordination and speech articulation deficits. Mouse pups generate ultrasonic vocalizations (USVs when isolated from their mothers. Whether those social ultrasonic vocalizations are deficient in mouse models of FXS is unknown. Here we compared isolation-induced USVs generated by pups of Fmr1-KO mice with those of their wild type (WT littermates. Though the total number of calls was not significantly different between genotypes, a detailed analysis of 10 different categories of calls revealed that loss of Fmr1 expression in mice causes limited and call-type specific deficits in ultrasonic vocalization: the carrier frequency of flat calls was higher, the percentage of downward calls was lower and that the frequency range of complex calls was wider in Fmr1-KO mice compared to their WT littermates.

  5. Metabolite Profiling Reveals the Effect of Dietary Rubus coreanus Vinegar on Ovariectomy-Induced Osteoporosis in a Rat Model.

    Science.gov (United States)

    Lee, Mee Youn; Kim, Hyang Yeon; Singh, Digar; Yeo, Soo Hwan; Baek, Seong Yeol; Park, Yoo Kyoung; Lee, Choong Hwan

    2016-01-26

    The study was aimed at exploring the curative effects of Rubus coreanus (RC) vinegar against postmenopausal osteoporosis by using ovariectomized rats as a model. The investigations were performed in five groups: sham, ovariectomized (OVX) rats without treatment, low-dose RC vinegar (LRV)-treated OVX rats, high-dose RC vinegar (HRV)-treated OVX rats and alendronate (ALEN)-treated OVX rats. The efficacy of RC vinegar was evaluated using physical, biochemical, histological and metabolomic parameters. Compared to the OVX rats, the LRV and HRV groups showed positive effects on the aforementioned parameters, indicating estrogen regulation. Plasma metabolome analysis of the groups using gas chromatography-time of flight mass spectrometry (GC-TOF-MS) and ultra-performance liquid chromatography quadrupole-TOF-MS (UPLC-Q-TOF-MS) with multivariate analysis revealed 19 and 16 metabolites, respectively. Notably, the levels of butyric acid, phenylalanine, glucose, tryptophan and some lysophosphatidylcholines were marginally increased in RC vinegar-treated groups compared to OVX. However, the pattern of metabolite levels in RC vinegar-treated groups was found similar to ALEN, but differed significantly from that in sham group. The results highlight the prophylactic and curative potential of dietary vinegar against postmenopausal osteoporosis. RC vinegar could be an effective natural alternative for the prevention of postmenopausal osteoporosis.

  6. A Murine Model for Human ECO Syndrome Reveals a Critical Role of Intestinal Cell Kinase in Skeletal Development.

    Science.gov (United States)

    Ding, Mengmeng; Jin, Li; Xie, Lin; Park, So Hyun; Tong, Yixin; Wu, Di; Chhabra, A Bobby; Fu, Zheng; Li, Xudong

    2018-03-01

    An autosomal-recessive inactivating mutation R272Q in the human intestinal cell kinase (ICK) gene caused profound multiplex developmental defects in human endocrine-cerebro-osteodysplasia (ECO) syndrome. ECO patients exhibited a wide variety of skeletal abnormalities, yet the underlying mechanisms by which ICK regulates skeletal development remained largely unknown. The goal of this study was to understand the structural and mechanistic basis underlying skeletal anomalies caused by ICK dysfunction. Ick R272Q knock-in transgenic mouse model not only recapitulated major ECO skeletal defects such as short limbs and polydactyly but also revealed a deformed spine with defective intervertebral disk. Loss of ICK function markedly reduced mineralization in the spinal column, ribs, and long bones. Ick mutants showed a significant decrease in the proliferation zone of long bones and the number of type X collagen-expressing hypertrophic chondrocytes in the spinal column and the growth plate of long bones. These results implicate that ICK plays an important role in bone and cartilage development by promoting chondrocyte proliferation and maturation. Our findings provided new mechanistic insights into the skeletal phenotype of human ECO and ECO-like syndromes.

  7. Sparse Modeling Reveals miRNA Signatures for Diagnostics of Inflammatory Bowel Disease.

    Directory of Open Access Journals (Sweden)

    Matthias Hübenthal

    Full Text Available The diagnosis of inflammatory bowel disease (IBD still remains a clinical challenge and the most accurate diagnostic procedure is a combination of clinical tests including invasive endoscopy. In this study we evaluated whether systematic miRNA expression profiling, in conjunction with machine learning techniques, is suitable as a non-invasive test for the major IBD phenotypes (Crohn's disease (CD and ulcerative colitis (UC. Based on microarray technology, expression levels of 863 miRNAs were determined for whole blood samples from 40 CD and 36 UC patients and compared to data from 38 healthy controls (HC. To further discriminate between disease-specific and general inflammation we included miRNA expression data from other inflammatory diseases (inflammation controls (IC: 24 chronic obstructive pulmonary disease (COPD, 23 multiple sclerosis, 38 pancreatitis and 45 sarcoidosis cases as well as 70 healthy controls from previous studies. Classification problems considering 2, 3 or 4 groups were solved using different types of penalized support vector machines (SVMs. The resulting models were assessed regarding sparsity and performance and a subset was selected for further investigation. Measured by the area under the ROC curve (AUC the corresponding median holdout-validated accuracy was estimated as ranging from 0.75 to 1.00 (including IC and 0.89 to 0.98 (excluding IC, respectively. In combination, the corresponding models provide tools for the distinction of CD and UC as well as CD, UC and HC with expected classification error rates of 3.1 and 3.3%, respectively. These results were obtained by incorporating not more than 16 distinct miRNAs. Validated target genes of these miRNAs have been previously described as being related to IBD. For others we observed significant enrichment for IBD susceptibility loci identified in earlier GWAS. These results suggest that the proposed miRNA signature is of relevance for the etiology of IBD. Its diagnostic

  8. Automatic sleep classification using a data-driven topic model reveals latent sleep states

    DEFF Research Database (Denmark)

    Koch, Henriette; Christensen, Julie Anja Engelhard; Frandsen, Rune

    2014-01-01

    Background: The golden standard for sleep classification uses manual scoring of polysomnography despite points of criticism such as oversimplification, low inter-rater reliability and the standard being designed on young and healthy subjects. New method: To meet the criticism and reveal the laten...

  9. GeoSciML v3.0 - a significant upgrade of the CGI-IUGS geoscience data model

    Science.gov (United States)

    Raymond, O.; Duclaux, G.; Boisvert, E.; Cipolloni, C.; Cox, S.; Laxton, J.; Letourneau, F.; Richard, S.; Ritchie, A.; Sen, M.; Serrano, J.-J.; Simons, B.; Vuollo, J.

    2012-04-01

    GeoSciML version 3.0 (http://www.geosciml.org), released in late 2011, is the latest version of the CGI-IUGS* Interoperability Working Group geoscience data interchange standard. The new version is a significant upgrade and refactoring of GeoSciML v2 which was released in 2008. GeoSciML v3 has already been adopted by several major international interoperability initiatives, including OneGeology, the EU INSPIRE program, and the US Geoscience Information Network, as their standard data exchange format for geoscience data. GeoSciML v3 makes use of recently upgraded versions of several Open Geospatial Consortium (OGC) and ISO data transfer standards, including GML v3.2, SWE Common v2.0, and Observations and Measurements v2 (ISO 19156). The GeoSciML v3 data model has been refactored from a single large application schema with many packages, into a number of smaller, but related, application schema modules with individual namespaces. This refactoring allows the use and future development of modules of GeoSciML (eg; GeologicUnit, GeologicStructure, GeologicAge, Borehole) in smaller, more manageable units. As a result of this refactoring and the integration with new OGC and ISO standards, GeoSciML v3 is not backwardly compatible with previous GeoSciML versions. The scope of GeoSciML has been extended in version 3.0 to include new models for geomorphological data (a Geomorphology application schema), and for geological specimens, geochronological interpretations, and metadata for geochemical and geochronological analyses (a LaboratoryAnalysis-Specimen application schema). In addition, there is better support for borehole data, and the PhysicalProperties model now supports a wider range of petrophysical measurements. The previously used CGI_Value data type has been superseded in favour of externally governed data types provided by OGC's SWE Common v2 and GML v3.2 data standards. The GeoSciML v3 release includes worked examples of best practice in delivering geochemical

  10. Analysis of the Serotonergic System in a Mouse Model of Rett Syndrome Reveals Unusual Upregulation of Serotonin Receptor 5b.

    Science.gov (United States)

    Vogelgesang, Steffen; Niebert, Sabine; Renner, Ute; Möbius, Wiebke; Hülsmann, Swen; Manzke, Till; Niebert, Marcus

    2017-01-01

    Mutations in the transcription factor methyl-CpG-binding-protein 2 (MeCP2) cause a delayed-onset neurodevelopmental disorder known as Rett syndrome (RTT). Although alteration in serotonin levels have been reported in RTT patients, the molecular mechanisms underlying these defects are not well understood. Therefore, we chose to investigate the serotonergic system in hippocampus and brainstem of male Mecp2 -/y knock-out mice in the B6.129P2(C)-Mecp2(tm1.1Bird) mouse model of RTT. The serotonergic system in mouse is comprised of 16 genes, whose mRNA expression profile was analyzed by quantitative RT-PCR. Mecp2 -/y mice are an established animal model for RTT displaying most of the cognitive and physical impairments of human patients and the selected areas receive significant modulation through serotonin. Using anatomically and functional characterized areas, we found region-specific differential expression between wild type and Mecp2 -/y mice at post-natal day 40. In brainstem, we found five genes to be dysregulated, while in hippocampus, two genes were dysregulated. The one gene dysregulated in both brain regions was dopamine decarboxylase, but of special interest is the serotonin receptor 5b (5-ht 5b ), which showed 75-fold dysregulation in brainstem of Mecp2 -/y mice. This dysregulation was not due to upregulation, but due to failure of down-regulation in Mecp2 -/y mice during development. Detailed analysis of 5-ht 5b revealed a receptor that localizes to endosomes and interacts with G αi proteins.

  11. A mouse model of visual perceptual learning reveals alterations in neuronal coding and dendritic spine density in the visual cortex

    Directory of Open Access Journals (Sweden)

    Yan eWang

    2016-03-01

    Full Text Available Visual perceptual learning (VPL can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS and a 55% gain in visual acuity (VA. Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1 than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.

  12. Significance of myoglobin as an oxygen store and oxygen transporter in the intermittently perfused human heart: a model study.

    Science.gov (United States)

    Endeward, Volker; Gros, Gerolf; Jürgens, Klaus D

    2010-07-01

    The mechanisms by which the left ventricular wall escapes anoxia during the systolic phase of low blood perfusion are investigated, especially the role of myoglobin (Mb), which can (i) store oxygen and (ii) facilitate intracellular oxygen transport. The quantitative role of these two Mb functions is studied in the maximally working human heart. Because discrimination between Mb functions has not been achieved experimentally, we use a Krogh cylinder model here. At a heart rate of 200 beats/min and a 1:1 ratio of diastole/systole, the systole lasts for 150 ms. The basic model assumption is that, with mobile Mb, the oxygen stored in the end-diastolic left ventricle wall exactly meets the demand during the 150 ms of systolic cessation of blood flow. The coronary blood flow necessary to achieve this agrees with literature data. By considering Mb immobile or setting its concentration to zero, respectively, we find that, depending on Mb concentration, Mb-facilitated O(2) transport maintains O(2) supply to the left ventricle wall during 22-34 of the 150 ms, while Mb storage function accounts for a further 12-17 ms. When Mb is completely absent, anoxia begins to develop after 116-99 ms. While Mb plays no significant role during diastole, it supplies O(2) to the left ventricular wall for < or = 50 ms of the 150 ms systole, whereas capillary haemoglobin is responsible for approximately 80 ms. Slight increases in haemoglobin concentration, blood flow, or capillary density can compensate the absence of Mb, a finding which agrees well with the observations using Mb knockout mice.

  13. Intelligent system for statistically significant expertise knowledge on the basis of the model of self-organizing nonequilibrium dissipative system

    Directory of Open Access Journals (Sweden)

    E. A. Tatokchin

    2017-01-01

    Full Text Available Development of the modern educational technologies caused by broad introduction of comput-er testing and development of distant forms of education does necessary revision of methods of an examination of pupils. In work it was shown, need transition to mathematical criteria, exami-nations of knowledge which are deprived of subjectivity. In article the review of the problems arising at realization of this task and are offered approaches for its decision. The greatest atten-tion is paid to discussion of a problem of objective transformation of rated estimates of the ex-pert on to the scale estimates of the student. In general, the discussion this question is was con-cluded that the solution to this problem lies in the creation of specialized intellectual systems. The basis for constructing intelligent system laid the mathematical model of self-organizing nonequilibrium dissipative system, which is a group of students. This article assumes that the dissipative system is provided by the constant influx of new test items of the expert and non-equilibrium – individual psychological characteristics of students in the group. As a result, the system must self-organize themselves into stable patterns. This patern will allow for, relying on large amounts of data, get a statistically significant assessment of student. To justify the pro-posed approach in the work presents the data of the statistical analysis of the results of testing a large sample of students (> 90. Conclusions from this statistical analysis allowed to develop intelligent system statistically significant examination of student performance. It is based on data clustering algorithm (k-mean for the three key parameters. It is shown that this approach allows you to create of the dynamics and objective expertise evaluation.

  14. Diversity and distribution of nuclease bacteriocins in bacterial genomes revealed using Hidden Markov Models.

    Directory of Open Access Journals (Sweden)

    Connor Sharp

    2017-07-01

    Full Text Available Bacteria exploit an arsenal of antimicrobial peptides and proteins to compete with each other. Three main competition systems have been described: type six secretion systems (T6SS; contact dependent inhibition (CDI; and bacteriocins. Unlike T6SS and CDI systems, bacteriocins do not require contact between bacteria but are diffusible toxins released into the environment. Identified almost a century ago, our understanding of bacteriocin distribution and prevalence in bacterial populations remains poor. In the case of protein bacteriocins, this is because of high levels of sequence diversity and difficulties in distinguishing their killing domains from those of other competition systems. Here, we develop a robust bioinformatics pipeline exploiting Hidden Markov Models for the identification of nuclease bacteriocins (NBs in bacteria of which, to-date, only a handful are known. NBs are large (>60 kDa toxins that target nucleic acids (DNA, tRNA or rRNA in the cytoplasm of susceptible bacteria, usually closely related to the producing organism. We identified >3000 NB genes located on plasmids or on the chromosome from 53 bacterial species distributed across different ecological niches, including human, animals, plants, and the environment. A newly identified NB predicted to be specific for Pseudomonas aeruginosa (pyocin Sn was produced and shown to kill P. aeruginosa thereby validating our pipeline. Intriguingly, while the genes encoding the machinery needed for NB translocation across the cell envelope are widespread in Gram-negative bacteria, NBs are found exclusively in γ-proteobacteria. Similarity network analysis demonstrated that NBs fall into eight groups each with a distinct arrangement of protein domains involved in import. The only structural feature conserved across all groups was a sequence motif critical for cell-killing that is generally not found in bacteriocins targeting the periplasm, implying a specific role in translocating the

  15. Non-parametric Bayesian graph models reveal community structure in resting state fMRI

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Madsen, Kristoffer H.; Siebner, Hartwig Roman

    2014-01-01

    Modeling of resting state functional magnetic resonance imaging (rs-fMRI) data using network models is of increasing interest. It is often desirable to group nodes into clusters to interpret the communication patterns between nodes. In this study we consider three different nonparametric Bayesian...

  16. Seeing the forest and the trees: multilevel models reveal both species and community patterns

    Science.gov (United States)

    Michelle M. Jackson; Monica G. Turner; Scott M. Pearson; Anthony R. Ives

    2012-01-01

    Studies designed to understand species distributions and community assemblages typically use separate analytical approaches (e.g., logistic regression and ordination) to model the distribution of individual species and to relate community composition to environmental variation. Multilevel models (MLMs) offer a promising strategy for integrating species and community-...

  17. Different human gut models reveal the distinct fermentation patterns of arabinoxylan versus inulin

    NARCIS (Netherlands)

    Abbeele, P. van den; Venema, K.; Wiele, T. van de; Verstraete, W.; Possemiers, S.

    2013-01-01

    Different in vitro models have been developed to assess how food compounds affect the human gut microbiota. Using two such models (SHIME(R) and TIM-2), we compared how long-chain arabinoxylan (LC-AX), a wheat-derived potentially prebiotic fiber, and inulin (IN), a well-established prebiotic

  18. Transcriptional profiling reveals progeroid Ercc1-/Δ mice as a model system for glomerular aging

    NARCIS (Netherlands)

    B. Schumacher (Björn); V. Bartels (Valerie); P. Frommolt (Peter); B. Habermann (Bianca); F. Braun (Fabian); J.L. Schultze (Joachim); M. Roodbergen (Marianne); J.H.J. Hoeijmakers (Jan); P. Nürnberg (Peter); M.E.T. Dollé (Martijn); T. Benzing (Thomas); R.-U. Müller (Roman-Ulrich); C.E. Kurschat (Christine)

    2013-01-01

    textabstractBackground: Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome

  19. Spatial models reveal the microclimatic buffering capacity of old-growth forests

    Science.gov (United States)

    Sarah J. K. Frey; Adam S. Hadley; Sherri L. Johnson; Mark Schulze; Julia A. Jones; Matthew. G. Betts

    2016-01-01

    Climate change is predicted to cause widespread declines in biodiversity, but these predictions are derived from coarse-resolution climate models applied at global scales. Such models lack the capacity to incorporate microclimate variability, which is critical to biodiversity microrefugia. In forested montane regions, microclimate is thought to be influenced by...

  20. The effectiveness of the anti-CD11d treatment is reduced in rat models of spinal cord injury that produce significant levels of intraspinal hemorrhage.

    Science.gov (United States)

    Geremia, N M; Hryciw, T; Bao, F; Streijger, F; Okon, E; Lee, J H T; Weaver, L C; Dekaban, G A; Kwon, B K; Brown, A

    2017-09-01

    We have previously reported that administration of a CD11d monoclonal antibody (mAb) improves recovery in a clip-compression model of SCI. In this model the CD11d mAb reduces the infiltration of activated leukocytes into the injured spinal cord (as indicated by reduced intraspinal MPO). However not all anti-inflammatory strategies have reported beneficial results, suggesting that success of the CD11d mAb treatment may depend on the type or severity of the injury. We therefore tested the CD11d mAb treatment in a rat hemi-contusion model of cervical SCI. In contrast to its effects in the clip-compression model, the CD11d mAb treatment did not improve forelimb function nor did it significantly reduce MPO levels in the hemi-contused cord. To determine if the disparate results using the CD11d mAb were due to the biomechanical nature of the cord injury (compression SCI versus contusion SCI) or to the spinal level of the injury (12th thoracic level versus cervical) we further evaluated the CD11d mAb treatment after a T12 contusion SCI. In contrast to the T12 clip compression SCI, the CD11d mAb treatment did not improve locomotor recovery or significantly reduce MPO levels after T12 contusion SCI. Lesion analyses revealed increased levels of hemorrhage after contusion SCI compared to clip-compression SCI. SCI that is accompanied by increased intraspinal hemorrhage would be predicted to be refractory to the CD11d mAb therapy as this approach targets leukocyte diapedesis through the intact vasculature. These results suggest that the disparate results of the anti-CD11d treatment in contusion and clip-compression models of SCI are due to the different pathophysiological mechanisms that dominate these two types of spinal cord injuries. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  1. A non-traditional model of the metabolic syndrome: the adaptive significance of insulin resistance in fasting-adapted seals

    Directory of Open Access Journals (Sweden)

    Dorian S Houser

    2013-11-01

    Full Text Available Insulin resistance in modern society is perceived as a pathological consequence of excess energy consumption and reduced physical activity. Its presence in relation to the development of cardiovascular risk factors has been termed the metabolic syndrome, which produces increased mortality and morbidity and which is rapidly increasing in human populations. Ironically, insulin resistance likely evolved to assist animals during food shortages by increasing the availability of endogenous lipid for catabolism while protecting protein from use in gluconeogenesis and eventual oxidation. Some species that incorporate fasting as a predictable component of their life history demonstrate physiological traits similar to the metabolic syndrome during prolonged fasts. One such species is the northern elephant seal (Mirounga angustirostris, which fasts from food and water for periods of up to three months. During this time, ~90% of the seals metabolic demands are met through fat oxidation and circulating non-esterified fatty acids are high (0.7-3.2 mM. All life history stages of elephant seal studied to date demonstrate insulin resistance and fasting hyperglycemia as well as variations in hormones and adipocytokines that reflect the metabolic syndrome to some degree. Elephant seals demonstrate some intriguing adaptations with the potential for medical advancement; for example, ketosis is negligible despite significant and prolonged fatty acid oxidation and investigation of this feature might provide insight into the treatment of diabetic ketoacidosis. The parallels to the metabolic syndrome are likely reflected to varying degrees in other marine mammals, most of which evolved on diets high in lipid and protein content but essentially devoid of carbohydrate. Utilization of these natural models of insulin resistance may further our understanding of the pathophysiology of the metabolic syndrome in humans and better assist the development of preventative measures

  2. A non-traditional model of the metabolic syndrome: the adaptive significance of insulin resistance in fasting-adapted seals.

    Science.gov (United States)

    Houser, Dorian S; Champagne, Cory D; Crocker, Daniel E

    2013-11-01

    Insulin resistance in modern society is perceived as a pathological consequence of excess energy consumption and reduced physical activity. Its presence in relation to the development of cardiovascular risk factors has been termed the metabolic syndrome, which produces increased mortality and morbidity and which is rapidly increasing in human populations. Ironically, insulin resistance likely evolved to assist animals during food shortages by increasing the availability of endogenous lipid for catabolism while protecting protein from use in gluconeogenesis and eventual oxidation. Some species that incorporate fasting as a predictable component of their life history demonstrate physiological traits similar to the metabolic syndrome during prolonged fasts. One such species is the northern elephant seal (Mirounga angustirostris), which fasts from food and water for periods of up to 4 months. During this time, ∼90% of the seals metabolic demands are met through fat oxidation and circulating non-esterified fatty acids are high (0.7-3.2 mM). All life history stages of elephant seal studied to date demonstrate insulin resistance and fasting hyperglycemia as well as variations in hormones and adipocytokines that reflect the metabolic syndrome to some degree. Elephant seals demonstrate some intriguing adaptations with the potential for medical advancement; for example, ketosis is negligible despite significant and prolonged fatty acid oxidation and investigation of this feature might provide insight into the treatment of diabetic ketoacidosis. The parallels to the metabolic syndrome are likely reflected to varying degrees in other marine mammals, most of which evolved on diets high in lipid and protein content but essentially devoid of carbohydrate. Utilization of these natural models of insulin resistance may further our understanding of the pathophysiology of the metabolic syndrome in humans and better assist the development of preventative measures and therapies.

  3. Human disease modeling reveals integrated transcriptional and epigenetic mechanisms of NOTCH1 haploinsufficiency.

    Science.gov (United States)

    Theodoris, Christina V; Li, Molong; White, Mark P; Liu, Lei; He, Daniel; Pollard, Katherine S; Bruneau, Benoit G; Srivastava, Deepak

    2015-03-12

    The mechanisms by which transcription factor haploinsufficiency alters the epigenetic and transcriptional landscape in human cells to cause disease are unknown. Here, we utilized human induced pluripotent stem cell (iPSC)-derived endothelial cells (ECs) to show that heterozygous nonsense mutations in NOTCH1 that cause aortic valve calcification disrupt the epigenetic architecture, resulting in derepression of latent pro-osteogenic and -inflammatory gene networks. Hemodynamic shear stress, which protects valves from calcification in vivo, activated anti-osteogenic and anti-inflammatory networks in NOTCH1(+/+), but not NOTCH1(+/-), iPSC-derived ECs. NOTCH1 haploinsufficiency altered H3K27ac at NOTCH1-bound enhancers, dysregulating downstream transcription of more than 1,000 genes involved in osteogenesis, inflammation, and oxidative stress. Computational predictions of the disrupted NOTCH1-dependent gene network revealed regulatory nodes that, when modulated, restored the network toward the NOTCH1(+/+) state. Our results highlight how alterations in transcription factor dosage affect gene networks leading to human disease and reveal nodes for potential therapeutic intervention. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Solutions for Determining the Significance Region Using the Johnson-Neyman Type Procedure in Generalized Linear (Mixed) Models

    Science.gov (United States)

    Lazar, Ann A.; Zerbe, Gary O.

    2011-01-01

    Researchers often compare the relationship between an outcome and covariate for two or more groups by evaluating whether the fitted regression curves differ significantly. When they do, researchers need to determine the "significance region," or the values of the covariate where the curves significantly differ. In analysis of covariance (ANCOVA),…

  5. Commensurate comparisons of models with energy budget observations reveal consistent climate sensitivities

    Science.gov (United States)

    Armour, K.

    2017-12-01

    Global energy budget observations have been widely used to constrain the effective, or instantaneous climate sensitivity (ICS), producing median estimates around 2°C (Otto et al. 2013; Lewis & Curry 2015). A key question is whether the comprehensive climate models used to project future warming are consistent with these energy budget estimates of ICS. Yet, performing such comparisons has proven challenging. Within models, values of ICS robustly vary over time, as surface temperature patterns evolve with transient warming, and are generally smaller than the values of equilibrium climate sensitivity (ECS). Naively comparing values of ECS in CMIP5 models (median of about 3.4°C) to observation-based values of ICS has led to the suggestion that models are overly sensitive. This apparent discrepancy can partially be resolved by (i) comparing observation-based values of ICS to model values of ICS relevant for historical warming (Armour 2017; Proistosescu & Huybers 2017); (ii) taking into account the "efficacies" of non-CO2 radiative forcing agents (Marvel et al. 2015); and (iii) accounting for the sparseness of historical temperature observations and differences in sea-surface temperature and near-surface air temperature over the oceans (Richardson et al. 2016). Another potential source of discrepancy is a mismatch between observed and simulated surface temperature patterns over recent decades, due to either natural variability or model deficiencies in simulating historical warming patterns. The nature of the mismatch is such that simulated patterns can lead to more positive radiative feedbacks (higher ICS) relative to those engendered by observed patterns. The magnitude of this effect has not yet been addressed. Here we outline an approach to perform fully commensurate comparisons of climate models with global energy budget observations that take all of the above effects into account. We find that when apples-to-apples comparisons are made, values of ICS in models are

  6. Transcriptional profiling reveals progeroid Ercc1-/Δ mice as a model system for glomerular aging

    Science.gov (United States)

    2013-01-01

    Background Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1-/Δ progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. Results In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1-/Δ mice showed cluster formation between young WT and Ercc1-/Δ as well as old WT and Ercc1-/Δ samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1-/Δ mice (p aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1-/Δ mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies. PMID:23947592

  7. Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling

    Directory of Open Access Journals (Sweden)

    Dai Qiuxia

    2011-05-01

    Full Text Available Abstract Background Progressive remodeling of the left ventricle (LV following myocardial infarction (MI can lead to congestive heart failure, but the underlying initiation factors remain poorly defined. The objective of this study, accordingly, was to determine the key factors and elucidate the regulatory mechanisms of LV remodeling using integrated computational and experimental approaches. Results By examining the extracellular matrix (ECM gene expression and plasma analyte levels in C57/BL6J mice LV post-MI and ECM gene responses to transforming growth factor (TGF-β1 in cultured cardiac fibroblasts, we found that key factors in LV remodeling included macrophages, fibroblasts, transforming growth factor-β1, matrix metalloproteinase-9 (MMP-9, and specific collagen subtypes. We established a mathematical model to study LV remodeling post-MI by quantifying the dynamic balance between ECM construction and destruction. The mathematical model incorporated the key factors and demonstrated that TGF-β1 stimuli and MMP-9 interventions with different strengths and intervention times lead to different LV remodeling outcomes. The predictions of the mathematical model fell within the range of experimental measurements for these interventions, providing validation for the model. Conclusions In conclusion, our results demonstrated that the balance between ECM synthesis and degradation, controlled by interactions of specific key factors, determines the LV remodeling outcomes. Our mathematical model, based on the balance between ECM construction and destruction, provides a useful tool for studying the regulatory mechanisms and for predicting LV remodeling outcomes.

  8. A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle.

    Directory of Open Access Journals (Sweden)

    Maren Mönnich

    Full Text Available The human developmental diseases Cornelia de Lange Syndrome (CdLS and Roberts Syndrome (RBS are both caused by mutations in proteins responsible for sister chromatid cohesion. Cohesion is mediated by a multi-subunit complex called cohesin, which is loaded onto chromosomes by NIPBL. Once on chromosomes, cohesin binding is stabilized in S phase upon acetylation by ESCO2. CdLS is caused by heterozygous mutations in NIPBL or cohesin subunits SMC1A and SMC3, and RBS is caused by homozygous mutations in ESCO2. The genetic cause of both CdLS and RBS reside within the chromosome cohesion apparatus, and therefore they are collectively known as "cohesinopathies". However, the two syndromes have distinct phenotypes, with differences not explained by their shared ontology. In this study, we have used the zebrafish model to distinguish between developmental pathways downstream of cohesin itself, or its acetylase ESCO2. Esco2 depleted zebrafish embryos exhibit features that resemble RBS, including mitotic defects, craniofacial abnormalities and limb truncations. A microarray analysis of Esco2-depleted embryos revealed that different subsets of genes are regulated downstream of Esco2 when compared with cohesin subunit Rad21. Genes downstream of Rad21 showed significant enrichment for transcriptional regulators, while Esco2-regulated genes were more likely to be involved the cell cycle or apoptosis. RNA in situ hybridization showed that runx1, which is spatiotemporally regulated by cohesin, is expressed normally in Esco2-depleted embryos. Furthermore, myca, which is downregulated in rad21 mutants, is upregulated in Esco2-depleted embryos. High levels of cell death contributed to the morphology of Esco2-depleted embryos without affecting specific developmental pathways. We propose that cell proliferation defects and apoptosis could be the primary cause of the features of RBS. Our results show that mutations in different elements of the cohesion apparatus have

  9. Observations and operational model simulations reveal the impact of Hurricane Matthew (2016) on the Gulf Stream and coastal sea level

    Science.gov (United States)

    Ezer, Tal; Atkinson, Larry P.; Tuleya, Robert

    2017-12-01

    In October 7-9, 2016, Hurricane Matthew moved along the southeastern coast of the U.S., causing major flooding and significant damage, even to locations farther north well away from the storm's winds. Various observations, such as tide gauge data, cable measurements of the Florida Current (FC) transport, satellite altimeter data and high-frequency radar data, were analyzed to evaluate the impact of the storm. The data show a dramatic decline in the FC flow and increased coastal sea level along the U.S. coast. Weakening of the Gulf Stream (GS) downstream from the storm's area contributed to high coastal sea levels farther north. Analyses of simulations of an operational hurricane-ocean coupled model reveal the disruption that the hurricane caused to the GS flow, including a decline in transport of ∼20 Sv (1 Sv = 106 m3 s-1). In comparison, the observed FC reached a maximum transport of ∼40 Sv before the storm on September 10 and a minimum of ∼20 Sv after the storm on October 12. The hurricane impacts both the geostrophic part of the GS and the wind-driven currents, generating inertial oscillations with velocities of up to ±1 m s-1. Analysis of the observed FC transport since 1982 indicated that the magnitude of the current weakening in October 2016 was quite rare (outside 3 standard deviations from the mean). Such a large FC weakening in the past occurred more often in October and November, but is extremely rare in June-August. Similar impacts on the FC from past tropical storms and hurricanes suggest that storms may contribute to seasonal and interannual variations in the FC. The results also demonstrated the extended range of coastal impacts that remote storms can cause through their influence on ocean currents.

  10. Mechanistic Modeling Reveals the Critical Knowledge Gaps in Bile Acid-Mediated DILI.

    Science.gov (United States)

    Woodhead, J L; Yang, K; Brouwer, K L R; Siler, S Q; Stahl, S H; Ambroso, J L; Baker, D; Watkins, P B; Howell, B A

    2014-07-09

    Bile salt export pump (BSEP) inhibition has been proposed to be an important mechanism for drug-induced liver injury (DILI). Modeling can prioritize knowledge gaps concerning bile acid (BA) homeostasis and thus help guide experimentation. A submodel of BA homeostasis in rats and humans was constructed within DILIsym, a mechanistic model of DILI. In vivo experiments in rats with glibenclamide were conducted, and data from these experiments were used to validate the model. The behavior of DILIsym was analyzed in the presence of a simulated theoretical BSEP inhibitor. BSEP inhibition in humans is predicted to increase liver concentrations of conjugated chenodeoxycholic acid (CDCA) and sulfate-conjugated lithocholic acid (LCA) while the concentration of other liver BAs remains constant or decreases. On the basis of a sensitivity analysis, the most important unknowns are the level of BSEP expression, the amount of intestinal synthesis of LCA, and the magnitude of farnesoid-X nuclear receptor (FXR)-mediated regulation.

  11. Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits

    Science.gov (United States)

    Aoi, Shinya; Nachstedt, Timo; Manoonpong, Poramate; Wörgötter, Florentin; Matsuno, Fumitoshi

    2018-01-01

    Insects have various gaits with specific characteristics and can change their gaits smoothly in accordance with their speed. These gaits emerge from the embodied sensorimotor interactions that occur between the insect’s neural control and body dynamic systems through sensory feedback. Sensory feedback plays a critical role in coordinated movements such as locomotion, particularly in stick insects. While many previously developed insect models can generate different insect gaits, the functional role of embodied sensorimotor interactions in the interlimb coordination of insects remains unclear because of their complexity. In this study, we propose a simple physical model that is amenable to mathematical analysis to explain the functional role of these interactions clearly. We focus on a foot contact sensory feedback called phase resetting, which regulates leg retraction timing based on touchdown information. First, we used a hexapod robot to determine whether the distributed decoupled oscillators used for legs with the sensory feedback generate insect-like gaits through embodied sensorimotor interactions. The robot generated two different gaits and one had similar characteristics to insect gaits. Next, we proposed the simple model as a minimal model that allowed us to analyze and explain the gait mechanism through the embodied sensorimotor interactions. The simple model consists of a rigid body with massless springs acting as legs, where the legs are controlled using oscillator phases with phase resetting, and the governed equations are reduced such that they can be explained using only the oscillator phases with some approximations. This simplicity leads to analytical solutions for the hexapod gaits via perturbation analysis, despite the complexity of the embodied sensorimotor interactions. This is the first study to provide an analytical model for insect gaits under these interaction conditions. Our results clarified how this specific foot contact sensory

  12. Segmentation process significantly influences the accuracy of 3D surface models derived from cone beam computed tomography

    International Nuclear Information System (INIS)

    Fourie, Zacharias; Damstra, Janalt; Schepers, Rutger H.; Gerrits, Peter O.; Ren Yijin

    2012-01-01

    Aims: To assess the accuracy of surface models derived from 3D cone beam computed tomography (CBCT) with two different segmentation protocols. Materials and methods: Seven fresh-frozen cadaver heads were used. There was no conflict of interests in this study. CBCT scans were made of the heads and 3D surface models were created of the mandible using two different segmentation protocols. The one series of 3D models was segmented by a commercial software company, while the other series was done by an experienced 3D clinician. The heads were then macerated following a standard process. A high resolution laser surface scanner was used to make a 3D model of the macerated mandibles, which acted as the reference 3D model or “gold standard”. The 3D models generated from the two rendering protocols were compared with the “gold standard” using a point-based rigid registration algorithm to superimpose the three 3D models. The linear difference at 25 anatomic and cephalometric landmarks between the laser surface scan and the 3D models generate from the two rendering protocols was measured repeatedly in two sessions with one week interval. Results: The agreement between the repeated measurement was excellent (ICC = 0.923–1.000). The mean deviation from the gold standard by the 3D models generated from the CS group was 0.330 mm ± 0.427, while the mean deviation from the Clinician's rendering was 0.763 mm ± 0.392. The surface models segmented by both CS and DS protocols tend to be larger than those of the reference models. In the DS group, the biggest mean differences with the LSS models were found at the points ConLatR (CI: 0.83–1.23), ConMedR (CI: −3.16 to 2.25), CoLatL (CI: −0.68 to 2.23), Spine (CI: 1.19–2.28), ConAntL (CI: 0.84–1.69), ConSupR (CI: −1.12 to 1.47) and RetMolR (CI: 0.84–1.80). Conclusion: The Commercially segmented models resembled the reality more closely than the Doctor's segmented models. If 3D models are needed for surgical drilling

  13. Valuing snorkeling visits to the Florida Keys with stated and revealed preference models

    Science.gov (United States)

    Timothy Park; J. Michael Bowker; Vernon R. Leeworthy

    2002-01-01

    Coastal coral reefs, especially in the Florida Keys, are declining at a disturbing rate. Marine ecologists and reef scientists have emphasized the importance of establishing nonmarket values of coral reefs to assess the cost effectiveness of coral reef management and remediation programs. The purpose of this paper is to develop a travel cost--contingent valuation model...

  14. Revealing spatial pattern dynamics in aquatic ecosystem modelling with Multi-Agent Systems in Lake Veluwe

    NARCIS (Netherlands)

    Li, H.; Mynett, A.; Penning, E.; Qi, H.

    2010-01-01

    Aquatic ecosystems are among the most complex due to the highly nonlinearity, randomness, as well as interactive multi-processes in multi-scales. Besides, highly limited understanding and very limited measurement data make the modelling of such kind of systems a very challenging task, which needs to

  15. Gray box modeling of MSW degradation : Revealing its dominant (bio)chemical mechanism

    NARCIS (Netherlands)

    Van Turnhout, A.G.; Heimovaara, T.J.; Kleerebezem, R.

    2013-01-01

    In this paper we present an approach to describe organic degradation within immobile water regions of Municipal Solid Waste (MSW) landfills which is best described by the term “gray box” model. We use a simplified set of dominant (bio)chemical and physical reactions and realistic environmental

  16. Model-based reasoning: using visual tools to reveal student learning.

    Science.gov (United States)

    Luckie, Douglas; Harrison, Scott H; Ebert-May, Diane

    2011-03-01

    Using visual models is common in science and should become more common in classrooms. Our research group has developed and completed studies on the use of a visual modeling tool, the Concept Connector. This modeling tool consists of an online concept mapping Java applet that has automatic scoring functions we refer to as Robograder. The Concept Connector enables students in large introductory science courses to visualize their thinking through online model building. The Concept Connector's flexible scoring system, based on tested grading schemes as well as instructor input, has enabled >1,000 physiology students to build maps of their ideas about plant and animal physiology with the guidance of automatic and immediate online scoring of homework. Criterion concept maps developed by instructors in this project contain numerous expert-generated or "correct" propositions connecting two concept words together with a linking phrase. In this study, holistic algorithms were used to test automated methods of scoring concept maps that might work as well as a human grader.

  17. Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling

    NARCIS (Netherlands)

    Ettema, J.|info:eu-repo/dai/nl/304831913; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; van Meijgaard, E.; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; Bamber, Jonathan L.; Box, J.E.; Bales, R.C.

    2009-01-01

    High-resolution (∼11 km) regional climate modeling shows total annual precipitation on the Greenland ice sheet for 1958–2007 to be up to 24% and surface mass balance up to 63% higher than previously thought. The largest differences occur in coastal southeast Greenland, where the much higher

  18. Using fuzzy logic models to reveal farmers' motives to integrate livestock, fish, and crops

    NARCIS (Netherlands)

    Bosma, R.H.

    2007-01-01

    Rural extension services have changed paradigm and shifted to more participatory approaches, whereas in common mathematical models of farming systems, farmers’ motivation is solely represented by ‘utility maximisation’. While globally, farmers specialise, in Vietnam the rice-based systems have

  19. On the significance of the noise model for the performance of a linear MPC in closed-loop operation

    DEFF Research Database (Denmark)

    Hagdrup, Morten; Boiroux, Dimitri; Mahmoudi, Zeinab

    2016-01-01

    models typically means less parameters to identify. Systematic tuning of such controllers is discussed. Simulation studies are conducted for linear time-invariant systems showing that choosing a noise model of low order is beneficial for closed-loop performance. (C) 2016, IFAC (International Federation...

  20. Inclusion of the glucocorticoid receptor in a hypothalamic pituitary adrenal axis model reveals bistability

    Directory of Open Access Journals (Sweden)

    Vernon Suzanne D

    2007-02-01

    Full Text Available Abstract Background The body's primary stress management system is the hypothalamic pituitary adrenal (HPA axis. The HPA axis responds to physical and mental challenge to maintain homeostasis in part by controlling the body's cortisol level. Dysregulation of the HPA axis is implicated in numerous stress-related diseases. Results We developed a structured model of the HPA axis that includes the glucocorticoid receptor (GR. This model incorporates nonlinear kinetics of pituitary GR synthesis. The nonlinear effect arises from the fact that GR homodimerizes after cortisol activation and induces its own synthesis in the pituitary. This homodimerization makes possible two stable steady states (low and high and one unstable state of cortisol production resulting in bistability of the HPA axis. In this model, low GR concentration represents the normal steady state, and high GR concentration represents a dysregulated steady state. A short stress in the normal steady state produces a small perturbation in the GR concentration that quickly returns to normal levels. Long, repeated stress produces persistent and high GR concentration that does not return to baseline forcing the HPA axis to an alternate steady state. One consequence of increased steady state GR is reduced steady state cortisol, which has been observed in some stress related disorders such as Chronic Fatigue Syndrome (CFS. Conclusion Inclusion of pituitary GR expression resulted in a biologically plausible model of HPA axis bistability and hypocortisolism. High GR concentration enhanced cortisol negative feedback on the hypothalamus and forced the HPA axis into an alternative, low cortisol state. This model can be used to explore mechanisms underlying disorders of the HPA axis.

  1. Hypothalamus proteomics from mouse models with obesity and anorexia reveals therapeutic targets of appetite regulation.

    Science.gov (United States)

    Manousopoulou, A; Koutmani, Y; Karaliota, S; Woelk, C H; Manolakos, E S; Karalis, K; Garbis, S D

    2016-04-25

    This study examined the proteomic profile of the hypothalamus in mice exposed to a high-fat diet (HFD) or with the anorexia of acute illness. This comparison could provide insight on the effects of these two opposite states of energy balance on appetite regulation. Four to six-week-old male C56BL/6J mice were fed a normal (control 1 group; n=7) or a HFD (HFD group; n=10) for 8 weeks. The control 2 (n=7) and lipopolysaccharide (LPS) groups (n=10) were fed a normal diet for 8 weeks before receiving an injection of saline and LPS, respectively. Hypothalamic regions were analysed using a quantitative proteomics method based on a combination of techniques including iTRAQ stable isotope labeling, orthogonal two-dimensional liquid chromatography hyphenated with nanospray ionization and high-resolution mass spectrometry. Key proteins were validated with quantitative PCR. Quantitative proteomics of the hypothalamous regions profiled a total of 9249 protein groups (q<0.05). Of these, 7718 protein groups were profiled with a minimum of two unique peptides for each. Hierachical clustering of the differentiated proteome revealed distinct proteomic signatures for the hypothalamus under the HFD and LPS nutritional conditions. Literature research with in silico bioinformatics interpretation of the differentiated proteome identified key biological relevant proteins and implicated pathways. Furthermore, the study identified potential pharmacologic targets. In the LPS groups, the anorexigen pro-opiomelanocortin was downregulated. In mice with obesity, nuclear factor-κB, glycine receptor subunit alpha-4 (GlyR) and neuropeptide Y levels were elevated, whereas serotonin receptor 1B levels decreased. High-precision quantitative proteomics revealed that under acute systemic inflammation in the hypothalamus as a response to LPS, homeostatic mechanisms mediating loss of appetite take effect. Conversely, under chronic inflammation in the hypothalamus as a response to HFD, mechanisms

  2. Conserved intergenic sequences revealed by CTAG-profiling in Salmonella: thermodynamic modeling for function prediction

    Science.gov (United States)

    Tang, Le; Zhu, Songling; Mastriani, Emilio; Fang, Xin; Zhou, Yu-Jie; Li, Yong-Guo; Johnston, Randal N.; Guo, Zheng; Liu, Gui-Rong; Liu, Shu-Lin

    2017-03-01

    Highly conserved short sequences help identify functional genomic regions and facilitate genomic annotation. We used Salmonella as the model to search the genome for evolutionarily conserved regions and focused on the tetranucleotide sequence CTAG for its potentially important functions. In Salmonella, CTAG is highly conserved across the lineages and large numbers of CTAG-containing short sequences fall in intergenic regions, strongly indicating their biological importance. Computer modeling demonstrated stable stem-loop structures in some of the CTAG-containing intergenic regions, and substitution of a nucleotide of the CTAG sequence would radically rearrange the free energy and disrupt the structure. The postulated degeneration of CTAG takes distinct patterns among Salmonella lineages and provides novel information about genomic divergence and evolution of these bacterial pathogens. Comparison of the vertically and horizontally transmitted genomic segments showed different CTAG distribution landscapes, with the genome amelioration process to remove CTAG taking place inward from both terminals of the horizontally acquired segment.

  3. Discovery of Highly Potent Tyrosinase Inhibitor, T1, with Significant Anti-Melanogenesis Ability by zebrafish in vivo Assay and Computational Molecular Modeling

    Science.gov (United States)

    Chen, Wang-Chuan; Tseng, Tien-Sheng; Hsiao, Nai-Wan; Lin, Yun-Lian; Wen, Zhi-Hong; Tsai, Chin-Chuan; Lee, Yu-Ching; Lin, Hui-Hsiung; Tsai, Keng-Chang

    2015-01-01

    Tyrosinase is involved in melanin biosynthesis and the abnormal accumulation of melanin pigments leading to hyperpigmentation disorders that can be treated with depigmenting agents. A natural product T1, bis(4-hydroxybenzyl)sulfide, isolated from the Chinese herbal plant, Gastrodia elata, is a strong competitive inhibitor against mushroom tyrosinase (IC50 = 0.53 μM, Ki = 58 +/- 6 nM), outperforms than kojic acid. The cell viability and melanin quantification assay demonstrate that 50 μM of T1 apparently attenuates 20% melanin content of human normal melanocytes without significant cell toxicity. Moreover, the zebrafish in vivo assay reveals that T1 effectively reduces melanogenesis with no adverse side effects. The acute oral toxicity study evidently confirms that T1 molecule is free of discernable cytotoxicity in mice. Furthermore, the molecular modeling demonstrates that the sulfur atom of T1 coordinating with the copper ions in the active site of tyrosinase is essential for mushroom tyrosinase inhibition and the ability of diminishing the human melanin synthesis. These results evident that T1 isolated from Gastrodia elata is a promising candidate in developing pharmacological and cosmetic agents of great potency in skin-whitening.

  4. Integrative modeling reveals the principles of multi-scale chromatin boundary formation in human nuclear organization.

    Science.gov (United States)

    Moore, Benjamin L; Aitken, Stuart; Semple, Colin A

    2015-05-27

    Interphase chromosomes adopt a hierarchical structure, and recent data have characterized their chromatin organization at very different scales, from sub-genic regions associated with DNA-binding proteins at the order of tens or hundreds of bases, through larger regions with active or repressed chromatin states, up to multi-megabase-scale domains associated with nuclear positioning, replication timing and other qualities. However, we have lacked detailed, quantitative models to understand the interactions between these different strata. Here we collate large collections of matched locus-level chromatin features and Hi-C interaction data, representing higher-order organization, across three human cell types. We use quantitative modeling approaches to assess whether locus-level features are sufficient to explain higher-order structure, and identify the most influential underlying features. We identify structurally variable domains between cell types and examine the underlying features to discover a general association with cell-type-specific enhancer activity. We also identify the most prominent features marking the boundaries of two types of higher-order domains at different scales: topologically associating domains and nuclear compartments. We find parallel enrichments of particular chromatin features for both types, including features associated with active promoters and the architectural proteins CTCF and YY1. We show that integrative modeling of large chromatin dataset collections using random forests can generate useful insights into chromosome structure. The models produced recapitulate known biological features of the cell types involved, allow exploration of the antecedents of higher-order structures and generate testable hypotheses for further experimental studies.

  5. Interstitial void structure in Cu Sn liquid alloy as revealed from reverse Monte Carlo modelling

    Science.gov (United States)

    Hoyer, W.; Kleinhempel, R.; Lorinczi, A.; Pohlers, A.; Popescu, M.; Sava, F.

    2005-02-01

    A model for the structure of copper-tin liquid alloy has been developed using the standard reverse Monte Carlo method. The interstitial void structure (size distribution) was analysed. The effects of various kinds of voids (small size and large size) on the interference function and radial distribution function were investigated. Predictions related to the formation of some ternary alloys by filling the interstices of the basic alloy were advanced.

  6. State-space modelling reveals proximate causes of harbour seal population declines.

    Science.gov (United States)

    Matthiopoulos, Jason; Cordes, Line; Mackey, Beth; Thompson, David; Duck, Callan; Smout, Sophie; Caillat, Marjolaine; Thompson, Paul

    2014-01-01

    Declines in large vertebrate populations are widespread but difficult to detect from monitoring data and hard to understand due to a multiplicity of plausible biological explanations. In parts of Scotland, harbour seals (Phoca vitulina) have been in decline for 10 years. To evaluate the contributions of different proximate causes (survival, fecundity, observation artefacts) to this decline, we collated behavioural, demographic and population data from one intensively studied population in part of the Moray Firth (north-east Scotland). To these, we fit a state-space model comprising age-structured dynamics and a detailed account of observation errors. After accounting for culling (estimated by our model as 14% of total mortality), the main driver of the historical population decline was a decreasing trend in survival of young individuals combined with (previously unrecognised) low levels of pupping success. In more recent years, the model provides evidence for considerable increases in breeding success and consistently high levels of adult survival. However, breeding success remains the most volatile demographic component of the population. Forecasts from the model indicate a slow population recovery, providing cautious support for recent management measures. Such investigations of the proximate causes of population change (survival, fecundity and observation errors) provide valuable short-term support for the management of population declines, helping to focus future data collection on those ultimate causal mechanisms that are not excluded by the demographic evidence. The contribution of specific ultimate drivers (e.g. shooting mortality or competitors) can also be quantified by including them as covariates to survival or fecundity.

  7. Phylogenetic structural equation modelling reveals no need for an 'origin' of the leaf economics spectrum.

    Science.gov (United States)

    Mason, Chase M; Goolsby, Eric W; Humphreys, Devon P; Donovan, Lisa A

    2016-01-01

    The leaf economics spectrum (LES) is a prominent ecophysiological paradigm that describes global variation in leaf physiology across plant ecological strategies using a handful of key traits. Nearly a decade ago, Shipley et al. (2006) used structural equation modelling to explore the causal functional relationships among LES traits that give rise to their strong global covariation. They concluded that an unmeasured trait drives LES covariation, sparking efforts to identify the latent physiological trait underlying the 'origin' of the LES. Here, we use newly developed phylogenetic structural equation modelling approaches to reassess these conclusions using both global LES data as well as data collected across scales in the genus Helianthus. For global LES data, accounting for phylogenetic non-independence indicates that no additional unmeasured traits are required to explain LES covariation. Across datasets in Helianthus, trait relationships are highly variable, indicating that global-scale models may poorly describe LES covariation at non-global scales. © 2015 John Wiley & Sons Ltd/CNRS.

  8. Pollution history of a tropical estuary revealed by combined hydrodynamic modelling and sediment geochemistry

    Science.gov (United States)

    Andrews, J. E.; Greenaway, A. M.; Bigg, G. R.; Webber, D. F.; Dennis, P. F.; Guthrie, G. A.

    1999-01-01

    Hydrodynamic modelling of water movement in Hunts Bay, a protected part of Kingston Harbour, Jamaica, shows that depth averaged tidal flows are very low. In the northeast corner of Hunts Bay, water is essentially stagnant. Even under high flow conditions, much of the Bay bottom water is `bypassed' by buoyant, lower salinity surface flows. The muddy sediments of Hunts Bay reflect these sluggish to stagnant conditions; sediment cores from the northeast corner of the Bay contain progressively higher amounts of organic matter in their upper parts (˜last 15-20 years sedimentation). Combined C/N ratios and stable carbon isotope compositions of this organic matter imply a sewage origin. Both lead and chromium metal concentrations and enrichment factors relative to average crustal shales show geographically related patterns that reflect hydrodynamic circulation predicted by modelling. In particular, metal concentrations and enrichment factors are highest at the northern end of the bay, especially in the northeast corner. Modelling confirms that stagnant conditions would occur in the northeast part of the bay even without the presence of a major causeway. The causeway may contribute to low flow conditions, but is not the principal cause of organic contamination, which is simply an excessive input of sewage.

  9. The NMR-Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope.

    Science.gov (United States)

    Morag, Omry; Sgourakis, Nikolaos G; Baker, David; Goldbourt, Amir

    2015-01-27

    Filamentous phage are elongated semiflexible ssDNA viruses that infect bacteria. The M13 phage, belonging to the family inoviridae, has a length of ∼1 μm and a diameter of ∼7 nm. Here we present a structural model for the capsid of intact M13 bacteriophage using Rosetta model building guided by structure restraints obtained from magic-angle spinning solid-state NMR experimental data. The C5 subunit symmetry observed in fiber diffraction studies was enforced during model building. The structure consists of stacked pentamers with largely alpha helical subunits containing an N-terminal type II β-turn; there is a rise of 16.6-16.7 Å and a tilt of 36.1-36.6° between consecutive pentamers. The packing of the subunits is stabilized by a repeating hydrophobic stacking pocket; each subunit participates in four pockets by contributing different hydrophobic residues, which are spread along the subunit sequence. Our study provides, to our knowledge, the first magic-angle spinning NMR structure of an intact filamentous virus capsid and further demonstrates the strength of this technique as a method of choice to study noncrystalline, high-molecular-weight molecular assemblies.

  10. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    Science.gov (United States)

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  11. N-gram analysis of 970 microbial organisms reveals presence of biological language models

    Directory of Open Access Journals (Sweden)

    Ganapathiraju Madhavi K

    2011-01-01

    Full Text Available Abstract Background It has been suggested previously that genome and proteome sequences show characteristics typical of natural-language texts such as "signature-style" word usage indicative of authors or topics, and that the algorithms originally developed for natural language processing may therefore be applied to genome sequences to draw biologically relevant conclusions. Following this approach of 'biological language modeling', statistical n-gram analysis has been applied for comparative analysis of whole proteome sequences of 44 organisms. It has been shown that a few particular amino acid n-grams are found in abundance in one organism but occurring very rarely in other organisms, thereby serving as genome signatures. At that time proteomes of only 44 organisms were available, thereby limiting the generalization of this hypothesis. Today nearly 1,000 genome sequences and corresponding translated sequences are available, making it feasible to test the existence of biological language models over the evolutionary tree. Results We studied whole proteome sequences of 970 microbial organisms using n-gram frequencies and cross-perplexity employing the Biological Language Modeling Toolkit and Patternix Revelio toolkit. Genus-specific signatures were observed even in a simple unigram distribution. By taking statistical n-gram model of one organism as reference and computing cross-perplexity of all other microbial proteomes with it, cross-perplexity was found to be predictive of branch distance of the phylogenetic tree. For example, a 4-gram model from proteome of Shigellae flexneri 2a, which belongs to the Gammaproteobacteria class showed a self-perplexity of 15.34 while the cross-perplexity of other organisms was in the range of 15.59 to 29.5 and was proportional to their branching distance in the evolutionary tree from S. flexneri. The organisms of this genus, which happen to be pathotypes of E.coli, also have the closest perplexity values with

  12. Quality Circles: Determination of Significant Factors for Success an a General Model for Implementing a Quality Circle Process.

    Science.gov (United States)

    1981-06-01

    Quality Cir- cles?" First Annual IAQC Transactions, 1979, pp 59-65. 11. Beckhard , Richard . 0rganization Development: Strategies and Models. Reading...improve task accomplishment /57. Beckhard /T17 identifies three models that are commonly used in attempting to deal with a client’s problems. The...Jananese Challerfe. Addison-Wesley Publishing Co., Reading, Massachusetts, 1981. 84. Pascale, Richard T., Anthony G. Athos. The Art of Japaese

  13. Chick embryo xenograft model reveals a novel perineural niche for human adipose-derived stromal cells

    Directory of Open Access Journals (Sweden)

    Ingrid R. Cordeiro

    2015-09-01

    Full Text Available Human adipose-derived stromal cells (hADSC are a heterogeneous cell population that contains adult multipotent stem cells. Although it is well established that hADSC have skeletal potential in vivo in adult organisms, in vitro assays suggest further differentiation capacity, such as into glia. Thus, we propose that grafting hADSC into the embryo can provide them with a much more instructive microenvironment, allowing the human cells to adopt diverse fates or niches. Here, hADSC spheroids were grafted into either the presumptive presomitic mesoderm or the first branchial arch (BA1 regions of chick embryos. Cells were identified without previous manipulations via human-specific Alu probes, which allows efficient long-term tracing of heterogeneous primary cultures. When grafted into the trunk, in contrast to previous studies, hADSC were not found in chondrogenic or osteogenic territories up to E8. Surprisingly, 82.5% of the hADSC were associated with HNK1+ tissues, such as peripheral nerves. Human skin fibroblasts showed a smaller tropism for nerves. In line with other studies, hADSC also adopted perivascular locations. When grafted into the presumptive BA1, 74.6% of the cells were in the outflow tract, the final goal of cardiac neural crest cells, and were also associated with peripheral nerves. This is the first study showing that hADSC could adopt a perineural niche in vivo and were able to recognize cues for neural crest cell migration of the host. Therefore, we propose that xenografts of human cells into chick embryos can reveal novel behaviors of heterogeneous cell populations, such as response to migration cues.

  14. Mitochondrial dysfunction, oxidative stress and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Mark H.; Qian, Weijun; Wang, Haixing; Petyuk, Vladislav A.; Bloom, Joshua S.; Sforza, Daniel M.; Lacan, Goran; Liu, Dahai; Khan, Arshad H.; Cantor, Rita M.; Bigelow, Diana J.; Melega, William P.; Camp, David G.; Smith, Richard D.; Smith, Desmond J.

    2008-02-10

    The molecular mechanisms underlying the changes in the nigrostriatal pathway in Parkinson disease (PD) are not completely understood. Here we use mass spectrometry and microarrays to study the proteomic and transcriptomic changes in the striatum of two mouse models of PD, induced by the distinct neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (METH). Proteomic analyses resulted in the identification and relative quantification of 912 proteins with two or more unique peptides and 85 proteins with significant abundance changes following neurotoxin treatment. Similarly, microarray analyses revealed 181 genes with significant changes in mRNA following neurotoxin treatment. The combined protein and gene list provides a clearer picture of the potential mechanisms underlying neurodegeneration observed in PD. Functional analysis of this combined list revealed a number of significant categories, including mitochondrial dysfunction, oxidative stress response and apoptosis. Additionally, codon usage and miRNAs may play an important role in translational control in the striatum. These results constitute one of the largest datasets integrating protein and transcript changes for these neurotoxin models with many similar endpoint phenotypes but distinct mechanisms.

  15. Revealing the regime of shallow coral reefs at patch scale by continuous spatial modeling

    Directory of Open Access Journals (Sweden)

    Antoine eCollin

    2014-11-01

    Full Text Available Reliably translating real-world spatial patterns of ecosystems is critical for understanding processes susceptible to reinforce resilience. However the great majority of studies in spatial ecology use thematic maps to describe habitats and species in a binary scheme. By discretizing the transitional areas and neglecting the gradual replacement across a given space, the thematic approach may suffer from substantial limitations when interpreting patterns created by many continuous variables. Here, local and regional spectral proxies were used to design and spatially map at very fine scale a continuous index dedicated to one of the most complex seascapes, the coral reefscape. Through a groundbreaking merge of bottom-up and top-down approach, we demonstrate that three to seven-habitat continuous indices can be modeled by nine, six, four and three spectral proxies, respectively, at 0.5 m spatial resolution using hand- and spaceborne measurements. We map the seven-habitat continuous index, spanning major Indo-Pacific coral reef habitats through the far red-green normalized difference ratio over the entire lagoon of a low (Tetiaroa atoll and a high volcanic (Moorea island in French Polynesia with 84% and 82% accuracy, respectively. Further examinations of the two resulting spatial models using a customized histoscape (density function of model values distributed on a concentric strip across the reef crest-coastline distance show that Tetiaroa exhibits a greater variety of coral reef habitats than Moorea. By designing such easy-to-implement, transferrable spectral proxies of coral reef regime, this study initiates a framework for spatial ecologists tackling coral reef biodiversity, responses to stresses, perturbations and shifts. We discuss the limitations and contributions of our findings towards the study of worldwide coral reef resilience following stochastic environmental change.

  16. Active backstop faults in the Mentawai region of Sumatra, Indonesia, revealed by teleseismic broadband waveform modeling

    Science.gov (United States)

    Wang, Xin; Bradley, Kyle Edward; Wei, Shengji; Wu, Wenbo

    2018-02-01

    Two earthquake sequences that affected the Mentawai islands offshore of central Sumatra in 2005 (Mw 6.9) and 2009 (Mw 6.7) have been highlighted as evidence for active backthrusting of the Sumatran accretionary wedge. However, the geometry of the activated fault planes is not well resolved due to large uncertainties in the locations of the mainshocks and aftershocks. We refine the locations and focal mechanisms of medium size events (Mw > 4.5) of these two earthquake sequences through broadband waveform modeling. In addition to modeling the depth-phases for accurate centroid depths, we use teleseismic surface wave cross-correlation to precisely relocate the relative horizontal locations of the earthquakes. The refined catalog shows that the 2005 and 2009 "backthrust" sequences in Mentawai region actually occurred on steeply (∼60 degrees) landward-dipping faults (Masilo Fault Zone) that intersect the Sunda megathrust beneath the deepest part of the forearc basin, contradicting previous studies that inferred slip on a shallowly seaward-dipping backthrust. Static slip inversion on the newly-proposed fault fits the coseismic GPS offsets for the 2009 mainshock equally well as previous studies, but with a slip distribution more consistent with the mainshock centroid depth (∼20 km) constrained from teleseismic waveform inversion. Rupture of such steeply dipping reverse faults within the forearc crust is rare along the Sumatra-Java margin. We interpret these earthquakes as 'unsticking' of the Sumatran accretionary wedge along a backstop fault separating imbricated material from the stronger Sunda lithosphere. Alternatively, the reverse faults may have originated as pre-Miocene normal faults of the extended continental crust of the western Sunda margin. Our waveform modeling approach can be used to further refine global earthquake catalogs in order to clarify the geometries of active faults.

  17. REVEALING THE ACTIVATION PATHWAY FOR TMEM16A CHLORIDE CHANNELS FROM MACROSCOPIC CURRENTS AND KINETIC MODELS

    Science.gov (United States)

    Contreras-Vite, Juan A.; Cruz-Rangel, Silvia; De Jesús-Pérez, José J.; Aréchiga Figueroa, Iván A.; Rodríguez-Menchaca, Aldo A.; Pérez-Cornejo, Patricia; Hartzell, H. Criss; Arreola, Jorge

    2017-01-01

    TMEM16A (ANO1), the pore-forming subunit of calcium-activated chloride channels, regulates several physiological and pathophysiological processes such as smooth muscle contraction, cardiac and neuronal excitability, salivary secretion, tumour growth, and cancer progression. Gating of TMEM16A is complex because it involves the interplay between increases in intracellular calcium concentration ([Ca2+]i), membrane depolarization, extracellular Cl− or permeant anions, and intracellular protons. Our goal here was to understand how these variables regulate TMEM16A gating and to explain four observations. a) TMEM16A is activated by voltage in the absence of intracellular Ca2+. b) The Cl− conductance is decreased after reducing extracellular Cl− concentration ([Cl−]o). c) ICl is regulated by physiological concentrations of [Cl−]o. d) In cells dialyzed with 0.2 µM [Ca2+]i, Cl− has a bimodal effect: at [Cl−]o < 30 mM TMEM16A current activates with a monoexponential time course, but above 30 mM [Cl−]o ICl activation displays fast and slow kinetics. To explain the contribution of Vm, Ca2+ and Cl− to gating, we developed a 12-state Markov chain model. This model explains TMEM16A activation as a sequential, direct, and Vm-dependent binding of two Ca2+ ions coupled to a Vm-dependent binding of an external Cl− ion, with Vm-dependent transitions between states. Our model predicts that extracellular Cl− does not alter the apparent Ca2+ affinity of TMEM16A, which we corroborated experimentally. Rather, extracellular Cl− acts by stabilizing the open configuration induced by Ca2+ and by contributing to the Vm dependence of activation. PMID:27138167

  18. Large-scale Models Reveal the Two-component Mechanics of Striated Muscle

    Directory of Open Access Journals (Sweden)

    Robert Jarosch

    2008-12-01

    Full Text Available This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and α-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical “two-component model” of active muscle differentiated a “contractile component” which stretches the “series elastic component” during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit. Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation. Since each thin filament is anchored by four elastic α-actinin Z-filaments (provided with forceregulating sites for Ca2+ binding, the thin filament rotations change the torsional twist of the four Z-filaments as the “series elastic components”. Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments.

  19. Dynamic information processing states revealed through neurocognitive models of object semantics

    Science.gov (United States)

    Clarke, Alex

    2015-01-01

    Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations – a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time. PMID:25745632

  20. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.

    Science.gov (United States)

    Lin, Jong-Chin; Yoon, Jeseong; Hyeon, Changbong; Thirumalai, D

    2015-01-01

    Riboswitches, RNA elements found in the untranslated region, regulate gene expression by binding to target metaboloites with exquisite specificity. Binding of metabolites to the conserved aptamer domain allosterically alters the conformation in the downstream expression platform. The fate of gene expression is determined by the changes in the downstream RNA sequence. As the metabolite-dependent cotranscriptional folding and unfolding dynamics of riboswitches are the key determinant of gene expression, it is important to investigate both the thermodynamics and kinetics of riboswitches both in the presence and absence of metabolite. Single molecule force experiments that decipher the free energy landscape of riboswitches from their mechanical responses, theoretical and computational studies have recently shed light on the distinct mechanism of folding dynamics in different classes of riboswitches. Here, we first discuss the dynamics of water around riboswitch, highlighting that water dynamics can enhance the fluctuation of nucleic acid structure. To go beyond native state fluctuations, we used the Self-Organized Polymer model to predict the dynamics of add adenine riboswitch under mechanical forces. In addition to quantitatively predicting the folding landscape of add-riboswitch, our simulations also explain the difference in the dynamics between pbuE adenine- and add adenine-riboswitches. In order to probe the function in vivo, we use the folding landscape to propose a system level kinetic network model to quantitatively predict how gene expression is regulated for riboswitches that are under kinetic control. © 2015 Elsevier Inc. All rights reserved.

  1. Integrative Modeling Reveals Annexin A2-mediated Epigenetic Control of Mesenchymal Glioblastoma.

    Science.gov (United States)

    Kling, Teresia; Ferrarese, Roberto; Ó hAilín, Darren; Johansson, Patrik; Heiland, Dieter Henrik; Dai, Fangping; Vasilikos, Ioannis; Weyerbrock, Astrid; Jörnsten, Rebecka; Carro, Maria Stella; Nelander, Sven

    2016-10-01

    Glioblastomas are characterized by transcriptionally distinct subtypes, but despite possible clinical relevance, their regulation remains poorly understood. The commonly used molecular classification systems for GBM all identify a subtype with high expression of mesenchymal marker transcripts, strongly associated with invasive growth. We used a comprehensive data-driven network modeling technique (augmented sparse inverse covariance selection, aSICS) to define separate genomic, epigenetic, and transcriptional regulators of glioblastoma subtypes. Our model identified Annexin A2 (ANXA2) as a novel methylation-controlled positive regulator of the mesenchymal subtype. Subsequent evaluation in two independent cohorts established ANXA2 expression as a prognostic factor that is dependent on ANXA2 promoter methylation. ANXA2 knockdown in primary glioblastoma stem cell-like cultures suppressed known mesenchymal master regulators, and abrogated cell proliferation and invasion. Our results place ANXA2 at the apex of a regulatory cascade that determines glioblastoma mesenchymal transformation and validate aSICS as a general methodology to uncover regulators of cancer subtypes. Copyright © 2016. Published by Elsevier B.V.

  2. Integrative Modeling Reveals Annexin A2-mediated Epigenetic Control of Mesenchymal Glioblastoma

    Directory of Open Access Journals (Sweden)

    Teresia Kling

    2016-10-01

    Full Text Available Glioblastomas are characterized by transcriptionally distinct subtypes, but despite possible clinical relevance, their regulation remains poorly understood. The commonly used molecular classification systems for GBM all identify a subtype with high expression of mesenchymal marker transcripts, strongly associated with invasive growth. We used a comprehensive data-driven network modeling technique (augmented sparse inverse covariance selection, aSICS to define separate genomic, epigenetic, and transcriptional regulators of glioblastoma subtypes. Our model identified Annexin A2 (ANXA2 as a novel methylation-controlled positive regulator of the mesenchymal subtype. Subsequent evaluation in two independent cohorts established ANXA2 expression as a prognostic factor that is dependent on ANXA2 promoter methylation. ANXA2 knockdown in primary glioblastoma stem cell-like cultures suppressed known mesenchymal master regulators, and abrogated cell proliferation and invasion. Our results place ANXA2 at the apex of a regulatory cascade that determines glioblastoma mesenchymal transformation and validate aSICS as a general methodology to uncover regulators of cancer subtypes.

  3. Mammary-Stem-Cell-Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2016-09-01

    Full Text Available Cancer genomics has provided an unprecedented opportunity for understanding genetic causes of human cancer. However, distinguishing which mutations are functionally relevant to cancer pathogenesis remains a major challenge. We describe here a mammary stem cell (MaSC organoid-based approach for rapid generation of somatic genetically engineered mouse models (GEMMs. By using RNAi and CRISPR-mediated genome engineering in MaSC-GEMMs, we have discovered that inactivation of Ptpn22 or Mll3, two genes mutated in human breast cancer, greatly accelerated PI3K-driven mammary tumorigenesis. Using these tumor models, we have also identified genetic alterations promoting tumor metastasis and causing resistance to PI3K-targeted therapy. Both Ptpn22 and Mll3 inactivation resulted in disruption of mammary gland differentiation and an increase in stem cell activity. Mechanistically, Mll3 deletion enhanced stem cell activity through activation of the HIF pathway. Thus, our study has established a robust in vivo platform for functional cancer genomics and has discovered functional breast cancer mutations.

  4. Probabilistic modelling of chromatin code landscape reveals functional diversity of enhancer-like chromatin states

    Science.gov (United States)

    Zhou, Jian; Troyanskaya, Olga G.

    2016-01-01

    Interpreting the functional state of chromatin from the combinatorial binding patterns of chromatin factors, that is, the chromatin codes, is crucial for decoding the epigenetic state of the cell. Here we present a systematic map of Drosophila chromatin states derived from data-driven probabilistic modelling of dependencies between chromatin factors. Our model not only recapitulates enhancer-like chromatin states as indicated by widely used enhancer marks but also divides these states into three functionally distinct groups, of which only one specific group possesses active enhancer activity. Moreover, we discover a strong association between one specific enhancer state and RNA Polymerase II pausing, linking transcription regulatory potential and chromatin organization. We also observe that with the exception of long-intron genes, chromatin state transition positions in transcriptionally active genes align with an absolute distance to their corresponding transcription start site, regardless of gene length. Using our method, we provide a resource that helps elucidate the functional and spatial organization of the chromatin code landscape. PMID:26841971

  5. Generalized additive models reveal the intrinsic complexity of wood formation dynamics.

    Science.gov (United States)

    Cuny, Henri E; Rathgeber, Cyrille B K; Kiessé, Tristan Senga; Hartmann, Felix P; Barbeito, Ignacio; Fournier, Meriem

    2013-04-01

    The intra-annual dynamics of wood formation, which involves the passage of newly produced cells through three successive differentiation phases (division, enlargement, and wall thickening) to reach the final functional mature state, has traditionally been described in conifers as three delayed bell-shaped curves followed by an S-shaped curve. Here the classical view represented by the 'Gompertz function (GF) approach' was challenged using two novel approaches based on parametric generalized linear models (GLMs) and 'data-driven' generalized additive models (GAMs). These three approaches (GFs, GLMs, and GAMs) were used to describe seasonal changes in cell numbers in each of the xylem differentiation phases and to calculate the timing of cell development in three conifer species [Picea abies (L.), Pinus sylvestris L., and Abies alba Mill.]. GAMs outperformed GFs and GLMs in describing intra-annual wood formation dynamics, showing two left-skewed bell-shaped curves for division and enlargement, and a right-skewed bimodal curve for thickening. Cell residence times progressively decreased through the season for enlargement, whilst increasing late but rapidly for thickening. These patterns match changes in cell anatomical features within a tree ring, which allows the separation of earlywood and latewood into two distinct cell populations. A novel statistical approach is presented which renews our understanding of xylogenesis, a dynamic biological process in which the rate of cell production interplays with cell residence times in each developmental phase to create complex seasonal patterns.

  6. Active Tension Network model reveals an exotic mechanical state realized in epithelial tissues

    Science.gov (United States)

    Noll, Nicholas; Mani, Madhav; Heemskerk, Idse; Streicha, Sebastian; Shraiman, Boris

    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that mechanical balance of cells is dominated by cortical tension and introduces tension dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties: i) ATN behaves as a fluid at short times, but at long times it supports external tension, like a solid; ii) its mechanical equilibrium state has extensive degeneracy associated with a discrete conformal - ''isogonal'' - deformation of cells. ATN model predicts a constraint on equilibrium cell geometry, which we demonstrate to hold in certain epithelial tissues. We further show that isogonal modes are observed in a fruit fly embryo, accounting for the striking variability of apical area of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, understanding which helps understand biological phenomena.

  7. Computational models reveal a passive mechanism for cell migration in the crypt.

    Directory of Open Access Journals (Sweden)

    Sara-Jane Dunn

    Full Text Available Cell migration in the intestinal crypt is essential for the regular renewal of the epithelium, and the continued upward movement of cells is a key characteristic of healthy crypt dynamics. However, the driving force behind this migration is unknown. Possibilities include mitotic pressure, active movement driven by motility cues, or negative pressure arising from cell loss at the crypt collar. It is possible that a combination of factors together coordinate migration. Here, three different computational models are used to provide insight into the mechanisms that underpin cell movement in the crypt, by examining the consequence of eliminating cell division on cell movement. Computational simulations agree with existing experimental results, confirming that migration can continue in the absence of mitosis. Importantly, however, simulations allow us to infer mechanisms that are sufficient to generate cell movement, which is not possible through experimental observation alone. The results produced by the three models agree and suggest that cell loss due to apoptosis and extrusion at the crypt collar relieves cell compression below, allowing cells to expand and move upwards. This finding suggests that future experiments should focus on the role of apoptosis and cell extrusion in controlling cell migration in the crypt.

  8. Dissociable perceptual-learning mechanisms revealed by diffusion-model analysis.

    Science.gov (United States)

    Petrov, Alexander A; Van Horn, Nicholas M; Ratcliff, Roger

    2011-06-01

    Performance on perceptual tasks improves with practice. Most theories address only accuracy data and tacitly assume that perceptual learning is a monolithic phenomenon. The present study pioneers the use of response time distributions in perceptual learning research. The 27 observers practiced a visual motion-direction discrimination task with filtered-noise textures for four sessions with feedback. Session 5 tested whether the learning effects transferred to the orthogonal direction. The diffusion model (Ratcliff, Psychological Review, 85, 59-108, 1978) achieved good fits to the individual response time distributions from each session and identified two distinct learning mechanisms with markedly different specificities. A stimulus-specific increase in the drift-rate parameter indicated improved sensory input to the decision process, and a stimulus-general decrease in nondecision time variability suggested improved timing of the decision process onset relative to stimulus onset (which was preceded by a beep). A traditional d' analysis would miss the latter effect, but the diffusion-model analysis identified it in the response time data.

  9. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians

    KAUST Repository

    Wolfowicz, Iliona

    2016-09-01

    Symbiosis, defined as the persistent association between two distinct species, is an evolutionary and ecologically critical phenomenon facilitating survival of both partners in diverse habitats. The biodiversity of coral reef ecosystems depends on a functional symbiosis with photosynthetic dinoflagellates of the highly diverse genus Symbiodinium, which reside in coral host cells and continuously support their nutrition. The mechanisms underlying symbiont selection to establish a stable endosymbiosis in non-symbiotic juvenile corals are unclear. Here we show for the first time that symbiont selection patterns for larvae of two Acropora coral species and the model anemone Aiptasia are similar under controlled conditions. We find that Aiptasia larvae distinguish between compatible and incompatible symbionts during uptake into the gastric cavity and phagocytosis. Using RNA-Seq, we identify a set of candidate genes potentially involved in symbiosis establishment. Together, our data complement existing molecular resources to mechanistically dissect symbiont phagocytosis in cnidarians under controlled conditions, thereby strengthening the role of Aiptasia larvae as a powerful model for cnidarian endosymbiosis establishment.

  10. How causal analysis can reveal autonomy in models of biological systems

    Science.gov (United States)

    Marshall, William; Kim, Hyunju; Walker, Sara I.; Tononi, Giulio; Albantakis, Larissa

    2017-11-01

    Standard techniques for studying biological systems largely focus on their dynamical or, more recently, their informational properties, usually taking either a reductionist or holistic perspective. Yet, studying only individual system elements or the dynamics of the system as a whole disregards the organizational structure of the system-whether there are subsets of elements with joint causes or effects, and whether the system is strongly integrated or composed of several loosely interacting components. Integrated information theory offers a theoretical framework to (1) investigate the compositional cause-effect structure of a system and to (2) identify causal borders of highly integrated elements comprising local maxima of intrinsic cause-effect power. Here we apply this comprehensive causal analysis to a Boolean network model of the fission yeast (Schizosaccharomyces pombe) cell cycle. We demonstrate that this biological model features a non-trivial causal architecture, whose discovery may provide insights about the real cell cycle that could not be gained from holistic or reductionist approaches. We also show how some specific properties of this underlying causal architecture relate to the biological notion of autonomy. Ultimately, we suggest that analysing the causal organization of a system, including key features like intrinsic control and stable causal borders, should prove relevant for distinguishing life from non-life, and thus could also illuminate the origin of life problem. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  11. Structure of naturally hydrated ferrihydrite revealed through neutron diffraction and first-principles modeling

    Science.gov (United States)

    Chappell, Helen F.; Thom, William; Bowron, Daniel T.; Faria, Nuno; Hasnip, Philip J.; Powell, Jonathan J.

    2017-08-01

    Ferrihydrite, with a ``two-line'' x-ray diffraction pattern (2L-Fh), is the most amorphous of the iron oxides and is ubiquitous in both terrestrial and aquatic environments. It also plays a central role in the regulation and metabolism of iron in bacteria, algae, higher plants, and animals, including humans. In this study, we present a single-phase model for ferrihydrite that unifies existing analytical data while adhering to fundamental chemical principles. The primary particle is small (20-50 Å) and has a dynamic and variably hydrated surface, which negates long-range order; collectively, these features have hampered complete characterization and frustrated our understanding of the mineral's reactivity and chemical/biochemical function. Near and intermediate range neutron diffraction (NIMROD) and first-principles density functional theory (DFT) were employed in this study to generate and interpret high-resolution data of naturally hydrated, synthetic 2L-Fh at standard temperature. The structural optimization overcomes transgressions of coordination chemistry inherent within previously proposed structures, to produce a robust and unambiguous single-phase model.

  12. Multi-Analytical Approach Reveals Potential Microbial Indicators in Soil for Sugarcane Model Systems

    Science.gov (United States)

    Navarrete, Acacio Aparecido; Diniz, Tatiana Rosa; Braga, Lucas Palma Perez; Silva, Genivaldo Gueiros Zacarias; Franchini, Julio Cezar; Rossetto, Raffaella; Edwards, Robert Alan; Tsai, Siu Mui

    2015-01-01

    This study focused on the effects of organic and inorganic amendments and straw retention on the microbial biomass (MB) and taxonomic groups of bacteria in sugarcane-cultivated soils in a greenhouse mesocosm experiment monitored for gas emissions and chemical factors. The experiment consisted of combinations of synthetic nitrogen (N), vinasse (V; a liquid waste from ethanol production), and sugarcane-straw blankets. Increases in CO2-C and N2O-N emissions were identified shortly after the addition of both N and V to the soils, thus increasing MB nitrogen (MB-N) and decreasing MB carbon (MB-C) in the N+V-amended soils and altering soil chemical factors that were correlated with the MB. Across 57 soil metagenomic datasets, Actinobacteria (31.5%), Planctomycetes (12.3%), Deltaproteobacteria (12.3%), Alphaproteobacteria (12.0%) and Betaproteobacteria (11.1%) were the most dominant bacterial groups during the experiment. Differences in relative abundance of metagenomic sequences were mainly revealed for Acidobacteria, Actinobacteria, Gammaproteobacteria and Verrucomicrobia with regard to N+V fertilization and straw retention. Differential abundances in bacterial groups were confirmed using 16S rRNA gene-targeted phylum-specific primers for real-time PCR analysis in all soil samples, whose results were in accordance with sequence data, except for Gammaproteobacteria. Actinobacteria were more responsive to straw retention with Rubrobacterales, Bifidobacteriales and Actinomycetales related to the chemical factors of N+V-amended soils. Acidobacteria subgroup 7 and Opitutae, a verrucomicrobial class, were related to the chemical factors of soils without straw retention as a surface blanket. Taken together, the results showed that MB-C and MB-N responded to changes in soil chemical factors and CO2-C and N2O-N emissions, especially for N+V-amended soils. The results also indicated that several taxonomic groups of bacteria, such as Acidobacteria, Actinobacteria and

  13. Improving winter leaf area index estimation in evergreen coniferous forests and its significance in carbon and water fluxes modeling

    Science.gov (United States)

    Wang, R.; Chen, J. M.; Luo, X.

    2016-12-01

    Modeling of carbon and water fluxes at the continental and global scales requires remotely sensed LAI as inputs. For evergreen coniferous forests (ENF), severely underestimated winter LAI has been one of the issues for mostly available remote sensing products, which could cause negative bias in the modeling of Gross Primary Productivity (GPP) and evapotranspiration (ET). Unlike deciduous trees which shed all the leaves in winter, conifers retains part of their needles and the proportion of the retained needles depends on the needle longevity. In this work, the Boreal Ecosystem Productivity Simulator (BEPS) was used to model GPP and ET at eight FLUXNET Canada ENF sites. Two sets of LAI were used as the model inputs: the 250m 10-day University of Toronto (U of T) LAI product Version 2 and the corrected LAI based on the U of T LAI product and the needle longevity of the corresponding tree species at individual sites. Validating model daily GPP (gC/m2) against site measurements, the mean RMSE over eight sites decreases from 1.85 to 1.15, and the bias changes from -0.99 to -0.19. For daily ET (mm), mean RMSE decreases from 0.63 to 0.33, and the bias changes from -0.31 to -0.16. Most of the improvements occur in the beginning and at the end of the growing season when there is large correction of LAI and meanwhile temperature is still suitable for photosynthesis and transpiration. For the dormant season, the improvement in ET simulation mostly comes from the increased interception of precipitation brought by the elevated LAI during that time. The results indicate that model performance can be improved by the application the corrected LAI. Improving the winter RS LAI can make a large impact on land surface carbon and energy budget.

  14. Investigation of the chromosome regions with significant affinity for the nuclear envelope in fruit fly--a model based approach.

    Directory of Open Access Journals (Sweden)

    Nicholas Allen Kinney

    Full Text Available Three dimensional nuclear architecture is important for genome function, but is still poorly understood. In particular, little is known about the role of the "boundary conditions"--points of attachment between chromosomes and the nuclear envelope. We describe a method for modeling the 3D organization of the interphase nucleus, and its application to analysis of chromosome-nuclear envelope (Chr-NE attachments of polytene (giant chromosomes in Drosophila melanogaster salivary glands. The model represents chromosomes as self-avoiding polymer chains confined within the nucleus; parameters of the model are taken directly from experiment, no fitting parameters are introduced. Methods are developed to objectively quantify chromosome territories and intertwining, which are discussed in the context of corresponding experimental observations. In particular, a mathematically rigorous definition of a territory based on convex hull is proposed. The self-avoiding polymer model is used to re-analyze previous experimental data; the analysis suggests 33 additional Chr-NE attachments in addition to the 15 already explored Chr-NE attachments. Most of these new Chr-NE attachments correspond to intercalary heterochromatin--gene poor, dark staining, late replicating regions of the genome; however, three correspond to euchromatin--gene rich, light staining, early replicating regions of the genome. The analysis also suggests 5 regions of anti-contact, characterized by aversion for the NE, only two of these correspond to euchromatin. This composition of chromatin suggests that heterochromatin may not be necessary or sufficient for the formation of a Chr-NE attachment. To the extent that the proposed model represents reality, the confinement of the polytene chromosomes in a spherical nucleus alone does not favor the positioning of specific chromosome regions at the NE as seen in experiment; consequently, the 15 experimentally known Chr-NE attachment positions do not

  15. Model-based traction force microscopy reveals differential tension in cellular actin bundles.

    Science.gov (United States)

    Soiné, Jérôme R D; Brand, Christoph A; Stricker, Jonathan; Oakes, Patrick W; Gardel, Margaret L; Schwarz, Ulrich S

    2015-03-01

    Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.

  16. Model-based traction force microscopy reveals differential tension in cellular actin bundles.

    Directory of Open Access Journals (Sweden)

    Jérôme R D Soiné

    2015-03-01

    Full Text Available Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.

  17. Genetic models reveal historical patterns of sea lamprey population fluctuations within Lake Champlain

    Directory of Open Access Journals (Sweden)

    Cassidy C. D’Aloia

    2015-10-01

    Full Text Available The origin of sea lamprey (Petromyzon marinus in Lake Champlain has been heavily debated over the past decade. Given the lack of historical documentation, two competing hypotheses have emerged in the literature. First, it has been argued that the relatively recent population size increase and concomitant rise in wounding rates on prey populations are indicative of an invasive population that entered the lake through the Champlain Canal. Second, recent genetic evidence suggests a post-glacial colonization at the end of the Pleistocene, approximately 11,000 years ago. One limitation to resolving the origin of sea lamprey in Lake Champlain is a lack of historical and current measures of population size. In this study, the issue of population size was explicitly addressed using nuclear (nDNA and mitochondrial DNA (mtDNA markers to estimate historical demography with genetic models. Haplotype network analysis, mismatch analysis, and summary statistics based on mtDNA noncoding sequences for NCI (479 bp and NCII (173 bp all indicate a recent population expansion. Coalescent models based on mtDNA and nDNA identified two potential demographic events: a population decline followed by a very recent population expansion. The decline in effective population size may correlate with land-use and fishing pressure changes post-European settlement, while the recent expansion may be associated with the implementation of the salmonid stocking program in the 1970s. These results are most consistent with the hypothesis that sea lamprey are native to Lake Champlain; however, the credibility intervals around parameter estimates demonstrate that there is uncertainty regarding the magnitude and timing of past demographic events.

  18. Computational modeling of the hematopoietic erythroid-myeloid switch reveals insights into cooperativity, priming, and irreversibility.

    Directory of Open Access Journals (Sweden)

    Vijay Chickarmane

    2009-01-01

    Full Text Available Hematopoietic stem cell lineage choices are decided by genetic networks that are turned ON/OFF in a switch-like manner. However, prior to lineage commitment, genes are primed at low expression levels. Understanding the underlying molecular circuitry in terms of how it governs both a primed state and, at the other extreme, a committed state is of relevance not only to hematopoiesis but also to developmental systems in general. We develop a computational model for the hematopoietic erythroid-myeloid lineage decision, which is determined by a genetic switch involving the genes PU.1 and GATA-1. Dynamical models based upon known interactions between these master genes, such as mutual antagonism and autoregulation, fail to make the system bistable, a desired feature for robust lineage determination. We therefore suggest a new mechanism involving a cofactor that is regulated as well as recruited by one of the master genes to bind to the antagonistic partner that is necessary for bistability and hence switch-like behavior. An interesting fallout from this architecture is that suppression of the cofactor through external means can lead to a loss of cooperativity, and hence to a primed state for PU.1 and GATA-1. The PU.1-GATA-1 switch also interacts with another mutually antagonistic pair, C/EBPalpha-FOG-1. The latter pair inherits the state of its upstream master genes and further reinforces the decision due to several feedback loops, thereby leading to irreversible commitment. The genetic switch, which handles the erythroid-myeloid lineage decision, is an example of a network that implements both a primed and a committed state by regulating cooperativity through recruitment of cofactors. Perturbing the feedback between the master regulators and downstream targets suggests potential reprogramming strategies. The approach points to a framework for lineage commitment studies in general and could aid the search for lineage-determining genes.

  19. A mathematical model of mechanotransduction reveals how mechanical memory regulates mesenchymal stem cell fate decisions.

    Science.gov (United States)

    Peng, Tao; Liu, Linan; MacLean, Adam L; Wong, Chi Wut; Zhao, Weian; Nie, Qing

    2017-05-16

    Mechanical and biophysical properties of the cellular microenvironment regulate cell fate decisions. Mesenchymal stem cell (MSC) fate is influenced by past mechanical dosing (memory), but the mechanisms underlying this process have not yet been well defined. We have yet to understand how memory affects specific cell fate decisions, such as the differentiation of MSCs into neurons, adipocytes, myocytes, and osteoblasts. We study a minimal gene regulatory network permissive of multi-lineage MSC differentiation into four cell fates. We present a continuous model that is able to describe the cell fate transitions that occur during differentiation, and analyze its dynamics with tools from multistability, bifurcation, and cell fate landscape analysis, and via stochastic simulation. Whereas experimentally, memory has only been observed during osteogenic differentiation, this model predicts that memory regions can exist for each of the four MSC-derived cell lineages. We can predict the substrate stiffness ranges over which memory drives differentiation; these are directly testable in an experimental setting. Furthermore, we quantitatively predict how substrate stiffness and culture duration co-regulate the fate of a stem cell, and we find that the feedbacks from the differentiating MSC onto its substrate are critical to preserve mechanical memory. Strikingly, we show that re-seeding MSCs onto a sufficiently soft substrate increases the number of cell fates accessible. Control of MSC differentiation is crucial for the success of much-lauded regenerative therapies based on MSCs. We have predicted new memory regions that will directly impact this control, and have quantified the size of the memory region for osteoblasts, as well as the co-regulatory effects on cell fates of substrate stiffness and culture duration. Taken together, these results can be used to develop novel strategies to better control the fates of MSCs in vitro and following transplantation.

  20. Exogenous and Endogenous Learning Resources in the Actiotope Model of Giftedness and Its Significance for Gifted Education

    Science.gov (United States)

    Ziegler, Albert; Chandler, Kimberley L.; Vialle, Wilma; Stoeger, Heidrun

    2017-01-01

    Based on the Actiotope Model of Giftedness, this article introduces a learning-resource-oriented approach for gifted education. It provides a comprehensive categorization of learning resources, including five exogenous learning resources termed "educational capital" and five endogenous learning resources termed "learning…

  1. Segmentation process significantly influences the accuracy of 3D surface models derived from cone beam computed tomography

    NARCIS (Netherlands)

    Fourie, Zacharias; Damstra, Janalt; Schepers, Rutger H; Gerrits, Pieter; Ren, Yijin

    AIMS: To assess the accuracy of surface models derived from 3D cone beam computed tomography (CBCT) with two different segmentation protocols. MATERIALS AND METHODS: Seven fresh-frozen cadaver heads were used. There was no conflict of interests in this study. CBCT scans were made of the heads and 3D

  2. Dansgaard Oeschger Dynamics: Clearly Revealed in a Comprehensive Model of Glacial Climate

    Science.gov (United States)

    Peltier, W. Richard; Vettoretti, Guido

    2017-04-01

    More than 30 years ago, Willi Dansgaard in Copenhagen and Hans Oeschger in Bern established the existence of millennium timescale oscillations in oxygen isotope stratigraphies from Greenland ice cores. This isotopic signal was interpreted as implying large amplitude variations in surface air temperature. Until the publication of Peltier and Vettoretti (2014, GRL) the prevalent view had been that this exclusively ice-age phenomenon, thought to be linked to variability in the strength of the Atlantic MOC, was considered to be forced by the episodic release of freshwater from the continental ice sheets, each oscillation requiring its own freshwater input. In Peltier and Vettoretti (2014) this phenomenon was recovered for the first time in a comprehensive model of glacial climate, specifically the CESM1 model of the NCAR laboratory. Attention was drawn to the fact that individual D-O oscillations, or Bond Cycle clusters of such oscillations, were inevitably preceded by individual Heinrich events. In Peltier and Vettoretti (2014) it was shown that, following the "spin-up" of CESM1 into the glacial state, with continental ice sheet volume held fixed, a sequence of nonlinear unforced and therefor "free" oscillations of the MOC occurred, following a sharp Heinrich event-like sharp suppression of MOC strength. All of the salient characteristics of the D-O process inferred on the basis of ice core evidence from both hemispheres were fully captured in these high (CMIP5) resolution simulations, namely: (i) the pulse shape of the individual oscillations characterized by an extremely rapid shift from cold stadial to warm interstadial conditions followed by a slow return to the stadial state, (ii) the peak-to-peak variations in Greenland surface air temperature of 10-15 degrees Centigrade during individual oscillations, (iii) the "bi-polar see saw" connection between this Northern Hemisphere process and that recorded in the EDML and WAIS Divide ice cores from Antarctica, (iv) the

  3. Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality.

    Science.gov (United States)

    Riccelli, Roberta; Toschi, Nicola; Nigro, Salvatore; Terracciano, Antonio; Passamonti, Luca

    2017-04-01

    The five-factor model (FFM) is a widely used taxonomy of human personality; yet its neuro anatomical basis remains unclear. This is partly because past associations between gray-matter volume and FFM were driven by different surface-based morphometry (SBM) indices (i.e. cortical thickness, surface area, cortical folding or any combination of them). To overcome this limitation, we used Free-Surfer to study how variability in SBM measures was related to the FFM in n = 507 participants from the Human Connectome Project.Neuroticism was associated with thicker cortex and smaller area and folding in prefrontal-temporal regions. Extraversion was linked to thicker pre-cuneus and smaller superior temporal cortex area. Openness was linked to thinner cortex and greater area and folding in prefrontal-parietal regions. Agreeableness was correlated to thinner prefrontal cortex and smaller fusiform gyrus area. Conscientiousness was associated with thicker cortex and smaller area and folding in prefrontal regions. These findings demonstrate that anatomical variability in prefrontal cortices is linked to individual differences in the socio-cognitive dispositions described by the FFM. Cortical thickness and surface area/folding were inversely related each others as a function of different FFM traits (neuroticism, extraversion and consciousness vs openness), which may reflect brain maturational effects that predispose or protect against psychiatric disorders. © The Author (2017). Published by Oxford University Press.

  4. Fortune Favours the Bold: An Agent-Based Model Reveals Adaptive Advantages of Overconfidence in War

    Science.gov (United States)

    Johnson, Dominic D. P.; Weidmann, Nils B.; Cederman, Lars-Erik

    2011-01-01

    Overconfidence has long been considered a cause of war. Like other decision-making biases, overconfidence seems detrimental because it increases the frequency and costs of fighting. However, evolutionary biologists have proposed that overconfidence may also confer adaptive advantages: increasing ambition, resolve, persistence, bluffing opponents, and winning net payoffs from risky opportunities despite occasional failures. We report the results of an agent-based model of inter-state conflict, which allows us to evaluate the performance of different strategies in competition with each other. Counter-intuitively, we find that overconfident states predominate in the population at the expense of unbiased or underconfident states. Overconfident states win because: (1) they are more likely to accumulate resources from frequent attempts at conquest; (2) they are more likely to gang up on weak states, forcing victims to split their defences; and (3) when the decision threshold for attacking requires an overwhelming asymmetry of power, unbiased and underconfident states shirk many conflicts they are actually likely to win. These “adaptive advantages” of overconfidence may, via selection effects, learning, or evolved psychology, have spread and become entrenched among modern states, organizations and decision-makers. This would help to explain the frequent association of overconfidence and war, even if it no longer brings benefits today. PMID:21731627

  5. Revealing chemophoric sites in organophosphorus insecticides through the MIA-QSPR modeling of soil sorption data.

    Science.gov (United States)

    Daré, Joyce K; Silva, Cristina F; Freitas, Matheus P

    2017-10-01

    Soil sorption of insecticides employed in agriculture is an important parameter to probe the environmental fate of organic chemicals. Therefore, methods for the prediction of soil sorption of new agrochemical candidates, as well as for the rationalization of the molecular characteristics responsible for a given sorption profile, are extremely beneficial for the environment. A quantitative structure-property relationship method based on chemical structure images as molecular descriptors provided a reliable model for the soil sorption prediction of 24 widely used organophosphorus insecticides. By means of contour maps obtained from the partial least squares regression coefficients and the variable importance in projection scores, key molecular moieties were targeted for possible structural modification, in order to obtain novel and more environmentally friendly insecticide candidates. The image-based descriptors applied encode molecular arrangement, atoms connectivity, groups size, and polarity; consequently, the findings in this work cannot be achieved by a simple relationship with hydrophobicity, usually described by the octanol-water partition coefficient. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A spastic paraplegia mouse model reveals REEP1-dependent ER shaping.

    Science.gov (United States)

    Beetz, Christian; Koch, Nicole; Khundadze, Mukhran; Zimmer, Geraldine; Nietzsche, Sandor; Hertel, Nicole; Huebner, Antje-Kathrin; Mumtaz, Rizwan; Schweizer, Michaela; Dirren, Elisabeth; Karle, Kathrin N; Irintchev, Andrey; Alvarez, Victoria; Redies, Christoph; Westermann, Martin; Kurth, Ingo; Deufel, Thomas; Kessels, Michael M; Qualmann, Britta; Hübner, Christian A

    2013-10-01

    Axonopathies are a group of clinically diverse disorders characterized by the progressive degeneration of the axons of specific neurons. In hereditary spastic paraplegia (HSP), the axons of cortical motor neurons degenerate and cause a spastic movement disorder. HSP is linked to mutations in several loci known collectively as the spastic paraplegia genes (SPGs). We identified a heterozygous receptor accessory protein 1 (REEP1) exon 2 deletion in a patient suffering from the autosomal dominantly inherited HSP variant SPG31. We generated the corresponding mouse model to study the underlying cellular pathology. Mice with heterozygous deletion of exon 2 in Reep1 displayed a gait disorder closely resembling SPG31 in humans. Homozygous exon 2 deletion resulted in the complete loss of REEP1 and a more severe phenotype with earlier onset. At the molecular level, we demonstrated that REEP1 is a neuron-specific, membrane-binding, and membrane curvature-inducing protein that resides in the ER. We further show that Reep1 expression was prominent in cortical motor neurons. In REEP1-deficient mice, these neurons showed reduced complexity of the peripheral ER upon ultrastructural analysis. Our study connects proper neuronal ER architecture to long-term axon survival.

  7. Can representational trajectory reveal the nature of an internal model of gravity?

    Science.gov (United States)

    De Sá Teixeira, Nuno; Hecht, Heiko

    2014-05-01

    The memory for the vanishing location of a horizontally moving target is usually displaced forward in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, this downward displacement has been shown to increase with time (representational trajectory). However, the degree to which different kinematic events change the temporal profile of these displacements remains to be determined. The present article attempts to fill this gap. In the first experiment, we replicate the finding that representational momentum for downward-moving targets is bigger than for upward motions, showing, moreover, that it increases rapidly during the first 300 ms, stabilizing afterward. This temporal profile, but not the increased error for descending targets, is shown to be disrupted when eye movements are not allowed. In the second experiment, we show that the downward drift with time emerges even for static targets. Finally, in the third experiment, we report an increased error for upward-moving targets, as compared with downward movements, when the display is compatible with a downward ego-motion by including vection cues. Thus, the errors in the direction of gravity are compatible with the perceived event and do not merely reflect a retinotopic bias. Overall, these results provide further evidence for an internal model of gravity in the visual representational system.

  8. Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution.

    Science.gov (United States)

    Serrano, Francisco José; Chiappe, Luis María

    2017-07-01

    Several flight modes are thought to have evolved during the early evolution of birds. Here, we use a combination of computational modelling and morphofunctional analyses to infer the flight properties of the raven-sized, Early Cretaceous bird Sapeornis chaoyangensis -a likely candidate to have evolved soaring capabilities. Specifically, drawing information from (i) mechanical inferences of the deltopectoral crest of the humerus, (ii) wing shape (i.e. aspect ratio), (iii) estimations of power margin (i.e. difference between power required for flight and available power from muscles), (iv) gliding behaviour (i.e. forward speed and sinking speed), and (v) palaeobiological evidence, we conclude that S. chaoyangensis was a thermal soarer with an ecology similar to that of living South American screamers. Our results indicate that as early as 125 Ma, some birds evolved the morphological and aerodynamic requirements for soaring on continental thermals, a conclusion that highlights the degree of ecological, functional and behavioural diversity that resulted from the first major evolutionary radiation of birds. © 2017 The Author(s).

  9. Sector analysis and predictive modelling reveal iterative shoot-like development in fern fronds.

    Science.gov (United States)

    Sanders, Heather L; Darrah, Peter R; Langdale, Jane A

    2011-07-01

    Plants colonized the terrestrial environment over 450 million years ago. Since then, shoot architecture has evolved in response to changing environmental conditions. Our current understanding of the innovations that altered shoot morphology is underpinned by developmental studies in a number of plant groups. However, the least is known about mechanisms that operate in ferns--a key group for understanding the evolution of plant development. Using a novel combination of sector analysis, conditional probability modelling methods and histology, we show that shoots, fronds ('leaves') and pinnae ('leaflets') of the fern Nephrolepis exaltata all develop from single apical initial cells. Shoot initials cleave on three faces to produce a pool of cells from which individual frond apical initials are sequentially specified. Frond initials then cleave in two planes to produce a series of lateral merophyte initials that each contributes a unit of three pinnae to half of the mediolateral frond axis. Notably, this iterative pattern in both shoots and fronds is similar to the developmental process that operates in shoots of other plant groups. Pinnae initials first cleave in two planes to generate lateral marginal initials. The apical and marginal initials then divide in three planes to coordinately generate the determinate pinna. These findings impact both on our understanding of fundamental plant developmental processes and on our perspective of how shoot systems evolved.

  10. Endoglin: a novel target for therapeutic intervention in acute leukemias revealed in xenograft mouse models.

    Science.gov (United States)

    Dourado, Keina M C; Baik, June; Oliveira, Vanessa K P; Beltrame, Miriam; Yamamoto, Ami; Theuer, Charles P; Figueiredo, Camila A V; Verneris, Michael R; Perlingeiro, Rita C R

    2017-05-04

    Endoglin (CD105), a receptor of the transforming growth factor-β superfamily, has been reported to identify functional long-term repopulating hematopoietic stem cells, and has been detected in certain subtypes of acute leukemias. Whether this receptor plays a functional role in leukemogenesis remains unknown. We identified endoglin expression on the majority of blasts from patients with acute myeloid leukemia (AML) and acute B-lymphoblastic leukemia (B-ALL). Using a xenograft model, we find that CD105 + blasts are endowed with superior leukemogenic activity compared with the CD105 - population. We test the effect of targeting this receptor using the monoclonal antibody TRC105, and find that in AML, TRC105 prevented the engraftment of primary AML blasts and inhibited leukemia progression following disease establishment, but in B-ALL, TRC105 alone was ineffective due to the shedding of soluble CD105. However, in both B-ALL and AML, TRC105 synergized with reduced intensity myeloablation to inhibit leukemogenesis, indicating that TRC105 may represent a novel therapeutic option for B-ALL and AML. © 2017 by The American Society of Hematology.

  11. New insight into motor adaptation to pain revealed by a combination of modelling and empirical approaches.

    Science.gov (United States)

    Hodges, P W; Coppieters, M W; MacDonald, D; Cholewicki, J

    2013-09-01

    Movement changes in pain. Unlike the somewhat stereotypical response of limb muscles to pain, trunk muscle responses are highly variable when challenged by pain in that region. This has led many to question the existence of a common underlying theory to explain the adaptation. Here, we tested the hypotheses that (1) adaptation in muscle activation in acute pain leads to enhanced spine stability, despite variation in the pattern of muscle activation changes; and (2) individuals would use a similar 'signature' pattern for tasks with different mechanical demands. In 17 healthy individuals, electromyography recordings were made from a broad array of anterior and posterior trunk muscles while participants moved slowly between trunk flexion and extension with and without experimentally induced back pain. Hypotheses were tested by estimating spine stability (Stability Index) with an electromyography-driven spine model and analysis of individual and overall (net) adaptations in muscle activation. The Stability Index (P individuals used the same pattern of adaptation in muscle activity. For most, the adaptation was similar between movement directions despite opposite movement demands. These data provide the first empirical confirmation that, in most individuals, acute back pain leads to increased spinal stability and that the pattern of muscle activity is not stereotypical, but instead involves an individual-specific response to pain. This adaptation is likely to provide short-term benefit to enhance spinal protection, but could have long-term consequences for spinal health. © 2013 European Federation of International Association for the Study of Pain Chapters.

  12. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism[S

    Science.gov (United States)

    Palczewski, Grzegorz; Widjaja-Adhi, M. Airanthi K.; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-01-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. PMID:27389691

  13. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism.

    Science.gov (United States)

    Palczewski, Grzegorz; Widjaja-Adhi, M Airanthi K; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-09-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Mitogenomics and phylogenomics reveal priapulid worms as extant models of the ancestral Ecdysozoan.

    Science.gov (United States)

    Webster, Bonnie L; Copley, Richard R; Jenner, Ronald A; Mackenzie-Dodds, Jacqueline A; Bourlat, Sarah J; Rota-Stabelli, Omar; Littlewood, D T J; Telford, Maximilian J

    2006-01-01

    Research into arthropod evolution is hampered by the derived nature and rapid evolution of the best-studied out-group: the nematodes. We consider priapulids as an alternative out-group. Priapulids are a small phylum of bottom-dwelling marine worms; their tubular body with spiny proboscis or introvert has changed little over 520 million years and recognizable priapulids are common among exceptionally preserved Cambrian fossils. Using the complete mitochondrial genome and 42 nuclear genes from Priapulus caudatus, we show that priapulids are slowly evolving ecdysozoans; almost all these priapulid genes have evolved more slowly than nematode orthologs and the priapulid mitochondrial gene order may be unchanged since the Cambrian. Considering their primitive bodyplan and embryology and the great conservation of both nuclear and mitochondrial genomes, priapulids may deserve the popular epithet of "living fossil." Their study is likely to yield significant new insights into the early evolution of the Ecdysozoa and the origins of the arthropods and their kin as well as aiding inference of the morphology of ancestral Ecdysozoa and Bilateria and their genomes.

  15. A whole-body model for glycogen regulation reveals a critical role for substrate cycling in maintaining blood glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2011-12-01

    Full Text Available Timely, and sometimes rapid, metabolic adaptation to changes in food supply is critical for survival as an organism moves from the fasted to the fed state, and vice versa. These transitions necessitate major metabolic changes to maintain energy homeostasis as the source of blood glucose moves away from ingested carbohydrates, through hepatic glycogen stores, towards gluconeogenesis. The integration of hepatic glycogen regulation with extra-hepatic energetics is a key aspect of these adaptive mechanisms. Here we use computational modeling to explore hepatic glycogen regulation under fed and fasting conditions in the context of a whole-body model. The model was validated against previous experimental results concerning glycogen phosphorylase a (active and glycogen synthase a dynamics. The model qualitatively reproduced physiological changes that occur during transition from the fed to the fasted state. Analysis of the model reveals a critical role for the inhibition of glycogen synthase phosphatase by glycogen phosphorylase a. This negative regulation leads to high levels of glycogen synthase activity during fasting conditions, which in turn increases substrate (futile cycling, priming the system for a rapid response once an external source of glucose is restored. This work demonstrates that a mechanistic understanding of the design principles used by metabolic control circuits to maintain homeostasis can benefit from the incorporation of mathematical descriptions of these networks into "whole-body" contextual models that mimic in vivo conditions.

  16. Computational modeling reveals optimal strategy for kinase transport by microtubules to nerve terminals.

    Science.gov (United States)

    Koon, Yen Ling; Koh, Cheng Gee; Chiam, Keng-Hwee

    2014-01-01

    Intracellular transport of proteins by motors along cytoskeletal filaments is crucial to the proper functioning of many eukaryotic cells. Since most proteins are synthesized at the cell body, mechanisms are required to deliver them to the growing periphery. In this article, we use computational modeling to study the strategies of protein transport in the context of JNK (c-JUN NH2-terminal kinase) transport along microtubules to the terminals of neuronal cells. One such strategy for protein transport is for the proteins of the JNK signaling cascade to bind to scaffolds, and to have the whole protein-scaffold cargo transported by kinesin motors along microtubules. We show how this strategy outperforms protein transport by diffusion alone, using metrics such as signaling rate and signal amplification. We find that there exists a range of scaffold concentrations for which JNK transport is optimal. Increase in scaffold concentration increases signaling rate and signal amplification but an excess of scaffolds results in the dilution of reactants. Similarly, there exists a range of kinesin motor speeds for which JNK transport is optimal. Signaling rate and signal amplification increases with kinesin motor speed until the speed of motor translocation becomes faster than kinase/scaffold-motor binding. Finally, we suggest experiments that can be performed to validate whether, in physiological conditions, neuronal cells do indeed adopt such an optimal strategy. Understanding cytoskeletal-assisted protein transport is crucial since axonal and cell body accumulation of organelles and proteins is a histological feature in many human neurodegenerative diseases. In this paper, we have shown that axonal transport performance changes with altered transport component concentrations and transport speeds wherein these aspects can be modulated to improve axonal efficiency and prevent or slowdown axonal deterioration.

  17. Computational modeling reveals optimal strategy for kinase transport by microtubules to nerve terminals.

    Directory of Open Access Journals (Sweden)

    Yen Ling Koon

    Full Text Available Intracellular transport of proteins by motors along cytoskeletal filaments is crucial to the proper functioning of many eukaryotic cells. Since most proteins are synthesized at the cell body, mechanisms are required to deliver them to the growing periphery. In this article, we use computational modeling to study the strategies of protein transport in the context of JNK (c-JUN NH2-terminal kinase transport along microtubules to the terminals of neuronal cells. One such strategy for protein transport is for the proteins of the JNK signaling cascade to bind to scaffolds, and to have the whole protein-scaffold cargo transported by kinesin motors along microtubules. We show how this strategy outperforms protein transport by diffusion alone, using metrics such as signaling rate and signal amplification. We find that there exists a range of scaffold concentrations for which JNK transport is optimal. Increase in scaffold concentration increases signaling rate and signal amplification but an excess of scaffolds results in the dilution of reactants. Similarly, there exists a range of kinesin motor speeds for which JNK transport is optimal. Signaling rate and signal amplification increases with kinesin motor speed until the speed of motor translocation becomes faster than kinase/scaffold-motor binding. Finally, we suggest experiments that can be performed to validate whether, in physiological conditions, neuronal cells do indeed adopt such an optimal strategy. Understanding cytoskeletal-assisted protein transport is crucial since axonal and cell body accumulation of organelles and proteins is a histological feature in many human neurodegenerative diseases. In this paper, we have shown that axonal transport performance changes with altered transport component concentrations and transport speeds wherein these aspects can be modulated to improve axonal efficiency and prevent or slowdown axonal deterioration.

  18. The Intrinsic Dynamics and Unfolding Process of an Antibody Fab Fragment Revealed by Elastic Network Model

    Directory of Open Access Journals (Sweden)

    Ji-Guo Su

    2015-12-01

    Full Text Available Antibodies have been increasingly used as pharmaceuticals in clinical treatment. Thermal stability and unfolding process are important properties that must be considered in antibody design. In this paper, the structure-encoded dynamical properties and the unfolding process of the Fab fragment of the phosphocholine-binding antibody McPC603 are investigated by use of the normal mode analysis of Gaussian network model (GNM. Firstly, the temperature factors for the residues of the protein were calculated with GNM and then compared with the experimental measurements. A good result was obtained, which provides the validity for the use of GNM to study the dynamical properties of the protein. Then, with this approach, the mean-square fluctuation (MSF of the residues, as well as the MSF in the internal distance (MSFID between all pairwise residues, was calculated to investigate the mobility and flexibility of the protein, respectively. It is found that the mobility and flexibility of the constant regions are higher than those of the variable regions, and the six complementarity-determining regions (CDRs in the variable regions also exhibit relative large mobility and flexibility. The large amplitude motions of the CDRs are considered to be associated with the immune function of the antibody. In addition, the unfolding process of the protein was simulated by iterative use of the GNM. In our method, only the topology of protein native structure is taken into account, and the protein unfolding process is simulated through breaking the native contacts one by one according to the MSFID values between the residues. It is found that the flexible regions tend to unfold earlier. The sequence of the unfolding events obtained by our method is consistent with the hydrogen-deuterium exchange experimental results. Our studies imply that the unfolding behavior of the Fab fragment of antibody McPc603 is largely determined by the intrinsic dynamics of the protein.

  19. Spatially Explicit Modeling Reveals Cephalopod Distributions Match Contrasting Trophic Pathways in the Western Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Patricia Puerta

    Full Text Available Populations of the same species can experience different responses to the environment throughout their distributional range as a result of spatial and temporal heterogeneity in habitat conditions. This highlights the importance of understanding the processes governing species distribution at local scales. However, research on species distribution often averages environmental covariates across large geographic areas, missing variability in population-environment interactions within geographically distinct regions. We used spatially explicit models to identify interactions between species and environmental, including chlorophyll a (Chla and sea surface temperature (SST, and trophic (prey density conditions, along with processes governing the distribution of two cephalopods with contrasting life-histories (octopus and squid across the western Mediterranean Sea. This approach is relevant for cephalopods, since their population dynamics are especially sensitive to variations in habitat conditions and rarely stable in abundance and location. The regional distributions of the two cephalopod species matched two different trophic pathways present in the western Mediterranean Sea, associated with the Gulf of Lion upwelling and the Ebro river discharges respectively. The effects of the studied environmental and trophic conditions were spatially variant in both species, with usually stronger effects along their distributional boundaries. We identify areas where prey availability limited the abundance of cephalopod populations as well as contrasting effects of temperature in the warmest regions. Despite distributional patterns matching productive areas, a general negative effect of Chla on cephalopod densities suggests that competition pressure is common in the study area. Additionally, results highlight the importance of trophic interactions, beyond other common environmental factors, in shaping the distribution of cephalopod populations. Our study presents

  20. Local-scale models reveal ecological niche variability in amphibian and reptile communities from two contrasting biogeographic regions

    Directory of Open Access Journals (Sweden)

    Alberto Muñoz

    2016-10-01

    Full Text Available Ecological Niche Models (ENMs are widely used to describe how environmental factors influence species distribution. Modelling at a local scale, compared to a large scale within a high environmental gradient, can improve our understanding of ecological species niches. The main goal of this study is to assess and compare the contribution of environmental variables to amphibian and reptile ENMs in two Spanish national parks located in contrasting biogeographic regions, i.e., the Mediterranean and the Atlantic area. The ENMs were built with maximum entropy modelling using 11 environmental variables in each territory. The contributions of these variables to the models were analysed and classified using various statistical procedures (Mann–Whitney U tests, Principal Components Analysis and General Linear Models. Distance to the hydrological network was consistently the most relevant variable for both parks and taxonomic classes. Topographic variables (i.e., slope and altitude were the second most predictive variables, followed by climatic variables. Differences in variable contribution were observed between parks and taxonomic classes. Variables related to water availability had the larger contribution to the models in the Mediterranean park, while topography variables were decisive in the Atlantic park. Specific response curves to environmental variables were in accordance with the biogeographic affinity of species (Mediterranean and non-Mediterranean species and taxonomy (amphibians and reptiles. Interestingly, these results were observed for species located in both parks, particularly those situated at their range limits. Our findings show that ecological niche models built at local scale reveal differences in habitat preferences within a wide environmental gradient. Therefore, modelling at local scales rather than assuming large-scale models could be preferable for the establishment of conservation strategies for herptile species in natural

  1. Complex patterns of divergence among green-sensitive (RH2a African cichlid opsins revealed by Clade model analyses

    Directory of Open Access Journals (Sweden)

    Weadick Cameron J

    2012-10-01

    Full Text Available Abstract Background Gene duplications play an important role in the evolution of functional protein diversity. Some models of duplicate gene evolution predict complex forms of paralog divergence; orthologous proteins may diverge as well, further complicating patterns of divergence among and within gene families. Consequently, studying the link between protein sequence evolution and duplication requires the use of flexible substitution models that can accommodate multiple shifts in selection across a phylogeny. Here, we employed a variety of codon substitution models, primarily Clade models, to explore how selective constraint evolved following the duplication of a green-sensitive (RH2a visual pigment protein (opsin in African cichlids. Past studies have linked opsin divergence to ecological and sexual divergence within the African cichlid adaptive radiation. Furthermore, biochemical and regulatory differences between the RH2aα and RH2aβ paralogs have been documented. It thus seems likely that selection varies in complex ways throughout this gene family. Results Clade model analysis of African cichlid RH2a opsins revealed a large increase in the nonsynonymous-to-synonymous substitution rate ratio (ω following the duplication, as well as an even larger increase, one consistent with positive selection, for Lake Tanganyikan cichlid RH2aβ opsins. Analysis using the popular Branch-site models, by contrast, revealed no such alteration of constraint. Several amino acid sites known to influence spectral and non-spectral aspects of opsin biochemistry were found to be evolving divergently, suggesting that orthologous RH2a opsins may vary in terms of spectral sensitivity and response kinetics. Divergence appears to be occurring despite intronic gene conversion among the tandemly-arranged duplicates. Conclusions Our findings indicate that variation in selective constraint is associated with both gene duplication and divergence among orthologs in African

  2. [Different explanatory models for addictive behavior in Turkish and German youths in Germany: significance for prevention and treatment].

    Science.gov (United States)

    Penka, S; Krieg, S; Hunner, Ch; Heinz, A

    2003-07-01

    Due to cultural and social barriers, immigrants seldom frequent centers for information, counseling, and treatment of addictive disorders. We examine cultural differences in the explanatory models of addictive behavior among Turkish and German youths in Germany with statistical devices that map the concepts associated with problems of addiction. Relevant differences were found between the disorder concepts of Turkish and German youth. German but not Turkish youths classified eating disorders among severe addictive disorders and associated them with embarrassment and shame. Concerning substance abuse, German but not Turkish youths clearly differentiated between illegal drug abuse and the abuse of alcohol and nicotine. Nearly half of all Turkish youths rejected central medical concepts such as "physical dependence" or "reduced control of substance intake" as completely inadequate to characterize problems of addictive behavior. Preventive information programs must consider these differences and use concepts that are accepted and clearly associated with addictive behavior by immigrant populations.

  3. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava.

    Directory of Open Access Journals (Sweden)

    Isabel Ceballos

    Full Text Available The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF and plant roots. The fungi provide the plant with inorganic phosphate (P. The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future.

  4. Fusion protein comprised of the two schistosomal antigens, Sm14 and Sm29, provides significant protection against Schistosoma mansoni in murine infection model.

    Science.gov (United States)

    Mossallam, Shereen F; Amer, Eglal I; Ewaisha, Radwa E; Khalil, Amal M; Aboushleib, Hamida M; Bahey-El-Din, Mohammed

    2015-03-24

    Schistosoma mansoni infection represents a major cause of morbidity and mortality in many areas of the developing world. Effective vaccines against schistosomiasis are not available and disease management relies mainly on treatment with the anthelmintic drug praziquantel. Several promising schistosomal antigens have been evaluated for vaccine efficacy such as Sm14, Sm29 and tetraspanins. However, most investigators examine these promising antigens in animal models individually rather than in properly adjuvanted antigen combinations. In the present study, we made a recombinant fusion protein comprised of the promising schistosomal antigens Sm14 and Sm29. The fusion protein, FSm14/29, was administered to Swiss albino mice either unadjuvanted or adjuvanted with polyinosinic-polycytidylic acid adjuvant, poly(I:C). Mice were challenged with S. mansoni cercariae and different parasitological/immunological parameters were assessed seven weeks post-challenge. Data were analyzed using the ANOVA test with post-hoc Tukey-Kramer test. Mice pre-immunized with unadjuvanted or poly(I:C)-adjuvanted fusion protein showed reduction of adult worm burden of 44.7 and 48.4%, respectively. In addition, significant reduction of tissue egg burdens was observed in mice immunized with the fusion protein when compared with the infected saline/adjuvant negative control groups and groups immunized with the individual Sm14 and Sm29 antigens. Light microscope and scanning electron microscope (SEM) investigation of adult worms recovered from FSm14/29-immunized mice revealed appreciable morphological damage and tegumental deformities. Histopathological examination of liver sections of immunized mice demonstrated reduced granulomatous and inflammatory reactions when compared with infected unvaccinated mice or mice immunized with the individual Sm14 and Sm29 antigens. The findings presented in this study highlight the importance of the fusion protein FSm14/29 as a potential vaccine candidate that is

  5. Cloud Computing Security Model with Combination of Data Encryption Standard Algorithm (DES) and Least Significant Bit (LSB)

    Science.gov (United States)

    Basri, M.; Mawengkang, H.; Zamzami, E. M.

    2018-03-01

    Limitations of storage sources is one option to switch to cloud storage. Confidentiality and security of data stored on the cloud is very important. To keep up the confidentiality and security of such data can be done one of them by using cryptography techniques. Data Encryption Standard (DES) is one of the block cipher algorithms used as standard symmetric encryption algorithm. This DES will produce 8 blocks of ciphers combined into one ciphertext, but the ciphertext are weak against brute force attacks. Therefore, the last 8 block cipher will be converted into 8 random images using Least Significant Bit (LSB) algorithm which later draws the result of cipher of DES algorithm to be merged into one.

  6. Solvation properties of N-substituted cis and trans amides are not identical: significant enthalpy and entropy changes are revealed by the use of variable temperature 1H NMR in aqueous and chloroform solutions and ab initio calculations.

    Science.gov (United States)

    Troganis, Anastassios N; Sicilia, Emilia; Barbarossou, Klimentini; Gerothanassis, Ioannis P; Russo, Nino

    2005-12-29

    The cis/trans conformational equilibrium of N-methyl formamide (NMF) and the sterically hindered tert-butylformamide (TBF) was investigated by the use of variable temperature gradient 1H NMR in aqueous solution and in the low dielectric constant and solvation ability solvent CDCl3 and various levels of first principles calculations. The trans isomer of NMF in aqueous solution is enthalpically favored relative to the cis (deltaH(o) = -5.79 +/- 0.18 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = -0.23 +/- 0.17 kJ mol(-1)) playing a minor role. The experimental value of the enthalpy difference strongly decreases (deltaH(o) = -1.72 +/- 0.06 kJ mol(-1)), and the contribution of entropy at 298 K (298 x deltaS(o) = -1.87 +/- 0.06 kJ mol(-1)) increases in the case of the sterically hindered tert-butylformamide. The trans isomer of NMF in CDCl3 solution is enthalpically favored relative to the cis (deltaH(o) = -3.71 +/- 0.17 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = 1.02 +/- 0.19 kJ mol(-1)) playing a minor role. In the sterically hindered tert-butylformamide, the trans isomer is enthalpically disfavored (deltaH(o) = 1.60 +/- 0.09 kJ mol(-1)) but is entropically favored (298 x deltaS(o) = 1.71 +/- 0.10 kJ mol(-1)). The results are compared with literature data of model peptides. It is concluded that, in amide bonds at 298 K and in the absence of strongly stabilizing sequence-specific inter-residue interactions involving side chains, the free energy difference of the cis/trans isomers and both the enthalpy and entropy contributions are strongly dependent on the N-alkyl substitution and the solvent. The significant decreasing enthalpic benefit of the trans isomer in CDCl3 compared to that in H2O, in the case of NMF and TBF, is partially offset by an adverse entropy contribution. This is in agreement with the general phenomenon of enthalpy versus entropy compensation. B3LY/6-311++G** and MP2/6-311++G** quantum chemical calculations

  7. Expression profiling of a genetic animal model of depression reveals novel molecular pathways underlying depressive-like behaviours.

    Directory of Open Access Journals (Sweden)

    Ekaterini Blaveri

    2010-09-01

    Full Text Available The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression.In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL and control Flinders Depression Resistant (FRL lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7 and serotonergic receptors (Htr1a, Htr2a in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL.These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research.

  8. Complex mean circulation over the inner shelf south of Martha's Vineyard revealed by observations and a high-resolution model

    Science.gov (United States)

    Ganju, Neil K.; Lentz, Steven J.; Kirincich, Anthony R.; Farrar, J. Thomas

    2011-01-01

    Inner-shelf circulation is governed by the interaction between tides, baroclinic forcing, winds, waves, and frictional losses; the mean circulation ultimately governs exchange between the coast and ocean. In some cases, oscillatory tidal currents interact with bathymetric features to generate a tidally rectified flow. Recent observational and modeling efforts in an overlapping domain centered on the Martha's Vineyard Coastal Observatory (MVCO) provided an opportunity to investigate the spatial and temporal complexity of circulation on the inner shelf. ADCP and surface radar observations revealed a mean circulation pattern that was highly variable in the alongshore and cross-shore directions. Nested modeling incrementally improved representation of the mean circulation as grid resolution increased and indicated tidal rectification as the generation mechanism of a counter-clockwise gyre near the MVCO. The loss of model skill with decreasing resolution is attributed to insufficient representation of the bathymetric gradients (Δh/h), which is important for representing nonlinear interactions between currents and bathymetry. The modeled momentum balance was characterized by large spatial variability of the pressure gradient and horizontal advection terms over short distances, suggesting that observed inner-shelf momentum balances may be confounded. Given the available observational and modeling data, this work defines the spatially variable mean circulation and its formation mechanism—tidal rectification—and illustrates the importance of model resolution for resolving circulation and constituent exchange near the coast. The results of this study have implications for future observational and modeling studies near the MVCO and other inner-shelf locations with alongshore bathymetric variability.

  9. On the significance of contaminant plume-scale and dose-response models in defining hydrogeological characterization needs

    Science.gov (United States)

    de Barros, F.; Rubin, Y.; Maxwell, R.; Bai, H.

    2007-12-01

    Defining rational and effective hydrogeological data acquisition strategies is of crucial importance since financial resources available for such efforts are always limited. Usually such strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of the impacts of uncertainty. This paper presents an approach for determining site characterization needs based on human health risk factors. The main challenge is in striking a balance between improved definition of hydrogeological, behavioral and physiological parameters. Striking this balance can provide clear guidance on setting priorities for data acquisition and for better estimating adverse health effects in humans. This paper addresses this challenge through theoretical developments and numerical testing. We will report on a wide range of factors that affect the site characterization needs including contaminant plume's dimensions, travel distances and other length scales that characterize the transport problem, as well as health risk models. We introduce a new graphical tool that allows one to investigate the relative impact of hydrogeological and physiological parameters in risk. Results show that the impact of uncertainty reduction in the risk-related parameters decreases with increasing distances from the contaminant source. Also, results indicate that human health risk becomes less sensitive to hydrogeological measurements when dealing with ergodic plumes. This indicates that under ergodic conditions, uncertainty reduction in human health risk may benefit from better understanding of the physiological component as opposed to a detailed hydrogeological characterization

  10. Different Techniques of Respiratory Support Do Not Significantly Affect Gas Exchange during Cardiopulmonary Resuscitation in a Newborn Piglet Model.

    Science.gov (United States)

    Mendler, Marc R; Maurer, Miriam; Hassan, Mohammad A; Huang, Li; Waitz, Markus; Mayer, Benjamin; Hummler, Helmut D

    2015-01-01

    There are no evidence-based recommendations on the use of different techniques of respiratory support and chest compressions (CC) during neonatal cardiopulmonary resuscitation (CPR). We studied the short-term effects of different ventilatory support strategies along with CC representing clinical practice on gas exchange [arterial oxygen saturation (SaO2), arterial partial pressure of oxygen (PaO2) and arterial partial pressure of carbon dioxide (PaCO2)], hemodynamics and cerebral oxygenation. We hypothesized that in newborn piglets with cardiac arrest, use of a T-piece resuscitator (TPR) providing positive end-expiratory pressure (PEEP) improves gas exchange as measured by SaO2 during CPR as compared to using a self-inflating bag (SIB) without PEEP. Furthermore, we explored the effects of a mechanical ventilator without synchrony to CC. Thirty newborn piglets with asystole were randomized into three groups and resuscitated for 20 min [fraction of inspired oxygen (FiO2) = 0.21 for 10 min and 1.0 thereafter]. Group 1 received ventilation using a TPR [peak inspiratory pressure (PIP)/PEEP of 20/5 cm H2O, rate 30/min] with inflations interposed between CC (3:1 ratio). Group 2 received ventilation using a SIB (PIP of 20 cm H2O without PEEP, rate 30/min) with inflations interposed between CC (3:1 ratio). Group 3 received ventilation using a mechanical ventilator (PIP/PEEP of 20/5 cm H2O, rate 30/min). CC were applied with a rate of 120/min without synchrony to inflations. We found no significant differences in SaO2 between the three groups. However, there was a trend toward a higher SaO2 [TPR: 28.0% (22.3-40.0); SIB: 23.7% (13.4-52.3); ventilator: 44.1% (39.2-54.3); median (interquartile range)] and a lower PaCO2 [TPR: 95.6 mm Hg (82.1-113.6); SIB: 100.8 mm Hg (83.0-108.0); ventilator: 74.1 mm Hg (68.5-83.1); median (interquartile range)] in the mechanical ventilator group. We found no significant effect on gas exchange using different respiratory support strategies

  11. The Significance of Quality Assurance within Model Intercomparison Projects at the World Data Centre for Climate (WDCC)

    Science.gov (United States)

    Toussaint, F.; Hoeck, H.; Stockhause, M.; Lautenschlager, M.

    2014-12-01

    The classical goals of a quality assessment system in the data life cycle are (1) to encourage data creators to improve their quality assessment procedures to reach the next quality level and (2) enable data consumers to decide, whether a dataset has a quality that is sufficient for usage in the target application, i.e. to appraise the data usability for their own purpose.As the data volumes of projects and the interdisciplinarity of data usage grow, the need for homogeneous structure and standardised notation of data and metadata increases. This third aspect is especially valid for the data repositories, as they manage data through machine agents. So checks for homogeneity and consistency in early parts of the workflow become essential to cope with today's data volumes.Selected parts of the workflow in the model intercomparison project CMIP5 and the archival of the data for the interdiscipliary user community of the IPCC-DDC AR5 and the associated quality checks are reviewed. We compare data and metadata checks and relate different types of checks to their positions in the data life cycle.The project's data citation approach is included in the discussion, with focus on temporal aspects of the time necessary to comply with the project's requirements for formal data citations and the demand for the availability of such data citations.In order to make different quality assessments of projects comparable, WDCC developed a generic Quality Assessment System. Based on the self-assessment approach of a maturity matrix, an objective and uniform quality level system for all data at WDCC is derived which consists of five maturity quality levels.

  12. Macrophytes may not contribute significantly to removal of nutrients, pharmaceuticals, and antibiotic resistance in model surface constructed wetlands.

    Science.gov (United States)

    Cardinal, Pascal; Anderson, Julie C; Carlson, Jules C; Low, Jennifer E; Challis, Jonathan K; Beattie, Sarah A; Bartel, Caitlin N; Elliott, Ashley D; Montero, Oscar F; Lokesh, Sheetal; Favreau, Alex; Kozlova, Tatiana A; Knapp, Charles W; Hanson, Mark L; Wong, Charles S

    2014-06-01

    Outdoor shallow wetland mesocosms, designed to simulate surface constructed wetlands to improve lagoon wastewater treatment, were used to assess the role of macrophytes in the dissipation of wastewater nutrients, selected pharmaceuticals, and antibiotic resistance genes (ARGs). Specifically, mesocosms were established with or without populations of Typha spp. (cattails), Myriophyllum sibiricum (northern water milfoil), and Utricularia vulgaris (bladderwort). Following macrophyte establishment, mesocosms were seeded with ARG-bearing organisms from a local wastewater lagoon, and treated with a single pulse of artificial municipal wastewater with or without carbamazepine, clofibric acid, fluoxetine, and naproxen (each at 7.6μg/L), as well as sulfamethoxazole and sulfapyridine (each at 150μg/L). Rates of pharmaceutical dissipation over 28d ranged from 0.073 to 3.0d(-1), corresponding to half-lives of 0.23 to 9.4d. Based on calculated rate constants, observed dissipation rates were consistent with photodegradation driving clofibric acid, naproxen, sulfamethoxazole, and sulfapyridine removal, and with sorption also contributing to carbamazepine and fluoxetine loss. Of the seven gene determinants assayed, only two genes for both beta-lactam resistance (blaCTX and blaTEM) and sulfonamide resistance (sulI and sulII) were found in sufficient quantity for monitoring. Genes disappeared relatively rapidly from the water column, with half-lives ranging from 2.1 to 99d. In contrast, detected gene levels did not change in the sediment, with the exception of sulI, which increased after 28d in pharmaceutical-treated systems. These shallow wetland mesocosms were able to dissipate wastewater contaminants rapidly. However, no significant enhancement in removal of nutrients or pharmaceuticals was observed in mesocosms with extensive aquatic plant communities. This was likely due to three factors: first, use of naïve systems with an unchallenged capacity for nutrient assimilation and

  13. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  14. Cell type-specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models.

    Directory of Open Access Journals (Sweden)

    Chidambaram Ramanathan

    2014-04-01

    Full Text Available In animals, circadian rhythms in physiology and behavior result from coherent rhythmic interactions between clocks in the brain and those throughout the body. Despite the many tissue specific clocks, most understanding of the molecular core clock mechanism comes from studies of the suprachiasmatic nuclei (SCN of the hypothalamus and a few other cell types. Here we report establishment and genetic characterization of three cell-autonomous mouse clock models: 3T3 fibroblasts, 3T3-L1 adipocytes, and MMH-D3 hepatocytes. Each model is genetically tractable and has an integrated luciferase reporter that allows for longitudinal luminescence recording of rhythmic clock gene expression using an inexpensive off-the-shelf microplate reader. To test these cellular models, we generated a library of short hairpin RNAs (shRNAs against a panel of known clock genes and evaluated their impact on circadian rhythms. Knockdown of Bmal1, Clock, Cry1, and Cry2 each resulted in similar phenotypes in all three models, consistent with previous studies. However, we observed cell type-specific knockdown phenotypes for the Period and Rev-Erb families of clock genes. In particular, Per1 and Per2, which have strong behavioral effects in knockout mice, appear to play different roles in regulating period length and amplitude in these peripheral systems. Per3, which has relatively modest behavioral effects in knockout mice, substantially affects period length in the three cellular models and in dissociated SCN neurons. In summary, this study establishes new cell-autonomous clock models that are of particular relevance to metabolism and suitable for screening for clock modifiers, and reveals previously under-appreciated cell type-specific functions of clock genes.

  15. A standardized fold change method for microarray differential expression analysis used to reveal genes involved in acute rejection in murine allograft models.

    Science.gov (United States)

    Zhou, Weichen; Wang, Yi; Fujino, Masayuki; Shi, Leming; Jin, Li; Li, Xiao-Kang; Wang, Jiucun

    2018-03-01

    Murine transplantation models are used extensively to research immunological rejection and tolerance. Here we studied both murine heart and liver allograft models using microarray technology. We had difficulty in identifying genes related to acute rejections expressed in both heart and liver transplantation models using two standard methodologies: Student's t test and linear models for microarray data (Limma). Here we describe a new method, standardized fold change (SFC), for differential analysis of microarray data. We estimated the performance of SFC, the t test and Limma by generating simulated microarray data 100 times. SFC performed better than the t test and showed a higher sensitivity than Limma where there is a larger value for fold change of expression. SFC gave better reproducibility than Limma and the t test with real experimental data from the MicroArray Quality Control platform and expression data from a mouse cardiac allograft. Eventually, a group of significant overlapping genes was detected by SFC in the expression data of mouse cardiac and hepatic allografts and further validated with the quantitative RT-PCR assay. The group included genes for important reactions of transplantation rejection and revealed functional changes of the immune system in both heart and liver of the mouse model. We suggest that SFC can be utilized to stably and effectively detect differential gene expression and to explore microarray data in further studies.

  16. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model

    Directory of Open Access Journals (Sweden)

    Vanessa R. Yingling

    2016-01-01

    RH-a group compared to C, a similar deficit in BV/TV was also measured following recovery and post-OVX. The trabecular number and thickness were lower in the GnRH-a group compared to control.Conclusion. These data suggest that following a transient delay in pubertal onset, trabecular bone volume was significantly lower and no restoration of bone volume occurred following recovery or post-OVX surgery. However, cortical bone strength was maintained through architectural adaptations in the cortical bone envelope. An increase in the polar moment of inertia offset increased bone resorption. The current data are the first to suppress trabecular bone during growth, and then add an OVX protocol at maturity. Trabecular bone and cortical bone differed in their response to hypothalamic suppression during development; trabecular bone was more sensitive to the negative effects of hypothalamic suppression.

  17. Low-resolution molecular models reveal the oligomeric state of the PPAR and the conformational organization of its domains in solution.

    Directory of Open Access Journals (Sweden)

    Amanda Bernardes

    Full Text Available The peroxisome proliferator-activated receptors (PPARs regulate genes involved in lipid and carbohydrate metabolism, and are targets of drugs approved for human use. Whereas the crystallographic structure of the complex of full length PPARγ and RXRα is known, structural alterations induced by heterodimer formation and DNA contacts are not well understood. Herein, we report a small-angle X-ray scattering analysis of the oligomeric state of hPPARγ alone and in the presence of retinoid X receptor (RXR. The results reveal that, in contrast with other studied nuclear receptors, which predominantly form dimers in solution, hPPARγ remains in the monomeric form by itself but forms heterodimers with hRXRα. The low-resolution models of hPPARγ/RXRα complexes predict significant changes in opening angle between heterodimerization partners (LBD and extended and asymmetric shape of the dimer (LBD-DBD as compared with X-ray structure of the full-length receptor bound to DNA. These differences between our SAXS models and the high-resolution crystallographic structure might suggest that there are different conformations of functional heterodimer complex in solution. Accordingly, hydrogen/deuterium exchange experiments reveal that the heterodimer binding to DNA promotes more compact and less solvent-accessible conformation of the receptor complex.

  18. Modeling reveals bistability and low-pass filtering in the network module determining blood stem cell fate.

    Directory of Open Access Journals (Sweden)

    Jatin Narula

    2010-05-01

    Full Text Available Combinatorial regulation of gene expression is ubiquitous in eukaryotes with multiple inputs converging on regulatory control elements. The dynamic properties of these elements determine the functionality of genetic networks regulating differentiation and development. Here we propose a method to quantitatively characterize the regulatory output of distant enhancers with a biophysical approach that recursively determines free energies of protein-protein and protein-DNA interactions from experimental analysis of transcriptional reporter libraries. We apply this method to model the Scl-Gata2-Fli1 triad-a network module important for cell fate specification of hematopoietic stem cells. We show that this triad module is inherently bistable with irreversible transitions in response to physiologically relevant signals such as Notch, Bmp4 and Gata1 and we use the model to predict the sensitivity of the network to mutations. We also show that the triad acts as a low-pass filter by switching between steady states only in response to signals that persist for longer than a minimum duration threshold. We have found that the auto-regulation loops connecting the slow-degrading Scl to Gata2 and Fli1 are crucial for this low-pass filtering property. Taken together our analysis not only reveals new insights into hematopoietic stem cell regulatory network functionality but also provides a novel and widely applicable strategy to incorporate experimental measurements into dynamical network models.

  19. RNA Virus Evolution via a Quasispecies-Based Model Reveals a Drug Target with a High Barrier to Resistance

    Directory of Open Access Journals (Sweden)

    Richard J. Bingham

    2017-11-01

    Full Text Available The rapid occurrence of therapy-resistant mutant strains provides a challenge for anti-viral therapy. An ideal drug target would be a highly conserved molecular feature in the viral life cycle, such as the packaging signals in the genomes of RNA viruses that encode an instruction manual for their efficient assembly. The ubiquity of this assembly code in RNA viruses, including major human pathogens, suggests that it confers selective advantages. However, their impact on viral evolution cannot be assessed in current models of viral infection that lack molecular details of virus assembly. We introduce here a quasispecies-based model of a viral infection that incorporates structural and mechanistic knowledge of packaging signal function in assembly to construct a phenotype-fitness map, capturing the impact of this RNA code on assembly yield and efficiency. Details of viral replication and assembly inside an infected host cell are coupled with a population model of a viral infection, allowing the occurrence of therapy resistance to be assessed in response to drugs inhibiting packaging signal recognition. Stochastic simulations of viral quasispecies evolution in chronic HCV infection under drug action and/or immune clearance reveal that drugs targeting all RNA signals in the assembly code collectively have a high barrier to drug resistance, even though each packaging signal in isolation has a lower barrier than conventional drugs. This suggests that drugs targeting the RNA signals in the assembly code could be promising routes for exploitation in anti-viral drug design.

  20. RNA Virus Evolution via a Quasispecies-Based Model Reveals a Drug Target with a High Barrier to Resistance.

    Science.gov (United States)

    Bingham, Richard J; Dykeman, Eric C; Twarock, Reidun

    2017-11-17

    The rapid occurrence of therapy-resistant mutant strains provides a challenge for anti-viral therapy. An ideal drug target would be a highly conserved molecular feature in the viral life cycle, such as the packaging signals in the genomes of RNA viruses that encode an instruction manual for their efficient assembly. The ubiquity of this assembly code in RNA viruses, including major human pathogens, suggests that it confers selective advantages. However, their impact on viral evolution cannot be assessed in current models of viral infection that lack molecular details of virus assembly. We introduce here a quasispecies-based model of a viral infection that incorporates structural and mechanistic knowledge of packaging signal function in assembly to construct a phenotype-fitness map, capturing the impact of this RNA code on assembly yield and efficiency. Details of viral replication and assembly inside an infected host cell are coupled with a population model of a viral infection, allowing the occurrence of therapy resistance to be assessed in response to drugs inhibiting packaging signal recognition. Stochastic simulations of viral quasispecies evolution in chronic HCV infection under drug action and/or immune clearance reveal that drugs targeting all RNA signals in the assembly code collectively have a high barrier to drug resistance, even though each packaging signal in isolation has a lower barrier than conventional drugs. This suggests that drugs targeting the RNA signals in the assembly code could be promising routes for exploitation in anti-viral drug design.

  1. Intra-articular (IA) ropivacaine microparticle suspensions reduce pain, inflammation, cytokine, and substance p levels significantly more than oral or IA celecoxib in a rat model of arthritis.

    Science.gov (United States)

    Rabinow, Barrett; Werling, Jane; Bendele, Alison; Gass, Jerome; Bogseth, Roy; Balla, Kelly; Valaitis, Paul; Hutchcraft, Audrey; Graham, Sabine

    2015-02-01

    Current therapeutic treatment options for osteoarthritis entail significant safety concerns. A novel ropivacaine crystalline microsuspension for bolus intra-articular (IA) delivery was thus developed and studied in a peptidoglycan polysaccharide (PGPS)-induced ankle swelling rat model. Compared with celecoxib controls, both oral and IA, ropivacaine IA treatment resulted in a significant reduction of pain upon successive PGPS reactivation, as demonstrated in two different pain models, gait analysis and incapacitance testing. The reduction in pain was attended by a significant reduction in histological inflammation, which in turn was accompanied by significant reductions in the cytokines IL-18 and IL-1β. This may have been due to inhibition of substance P, which was also significantly reduced. Pharmacokinetic analysis indicated that the analgesic effects outlasted measurable ropivacaine levels in either blood or tissue. The results are discussed in the context of pharmacologic mechanisms both of local anesthetics as well as inflammatory arthritis.

  2. Mouse Genetic Models Reveal Surprising Functions of IκB Kinase Alpha in Skin Development and Skin Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaojun [The Methodist Hospital Research Institute, Houston, TX 77030 (United States); Park, Eunmi [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 (United States); Fischer, Susan M. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78967 (United States); Hu, Yinling, E-mail: huy2@mail.nih.gov [Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21701 (United States)

    2013-02-15

    Gene knockout studies unexpectedly reveal a pivotal role for IκB kinase alpha (IKKα) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikkα heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKα deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikkα floxed mice. On the other hand, transgenic mice overexpressing IKKα in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKα represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKα deletion mediated by a mutation, which generates a stop codon in the Ikkα gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKα and Ikkα mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKα in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside.

  3. Analysis of the cartilage proteome from three different mouse models of genetic skeletal diseases reveals common and discrete disease signatures

    Directory of Open Access Journals (Sweden)

    Peter A. Bell

    2013-06-01

    Pseudoachondroplasia and multiple epiphyseal dysplasia are genetic skeletal diseases resulting from mutations in cartilage structural proteins. Electron microscopy and immunohistochemistry previously showed that the appearance of the cartilage extracellular matrix (ECM in targeted mouse models of these diseases is disrupted; however, the precise changes in ECM organization and the pathological consequences remain unknown. Our aim was to determine the effects of matrilin-3 and COMP mutations on the composition and extractability of ECM components to inform how these detrimental changes might influence cartilage organization and degeneration. Cartilage was sequentially extracted using increasing denaturants and the extraction profiles of specific proteins determined using SDS-PAGE/Western blotting. Furthermore, the relative composition of protein pools was determined using mass spectrometry for a non-biased semi-quantitative analysis. Western blotting revealed changes in the extraction of matrilins, COMP and collagen IX in mutant cartilage. Mass spectrometry confirmed quantitative changes in the extraction of structural and non-structural ECM proteins, including proteins with roles in cellular processes such as protein folding and trafficking. In particular, genotype-specific differences in the extraction of collagens XII and XIV and tenascins C and X were identified; interestingly, increased expression of several of these genes has recently been implicated in susceptibility and/or progression of murine osteoarthritis. We demonstrated that mutation of matrilin-3 and COMP caused changes in the extractability of other cartilage proteins and that proteomic analyses of Matn3 V194D, Comp T585M and Comp DelD469 mouse models revealed both common and discrete disease signatures that provide novel insight into skeletal disease mechanisms and cartilage degradation.

  4. An empirical model of the Baltic Sea reveals the importance of social dynamics for ecological regime shifts.

    Science.gov (United States)

    Lade, Steven J; Niiranen, Susa; Hentati-Sundberg, Jonas; Blenckner, Thorsten; Boonstra, Wiebren J; Orach, Kirill; Quaas, Martin F; Österblom, Henrik; Schlüter, Maja

    2015-09-01

    Regime shifts triggered by human activities and environmental changes have led to significant ecological and socioeconomic consequences in marine and terrestrial ecosystems worldwide. Ecological processes and feedbacks associated with regime shifts have received considerable attention, but human individual and collective behavior is rarely treated as an integrated component of such shifts. Here, we used generalized modeling to develop a coupled social-ecological model that integrated rich social and ecological data to investigate the role of social dynamics in the 1980s Baltic Sea cod boom and collapse. We showed that psychological, economic, and regulatory aspects of fisher decision making, in addition to ecological interactions, contributed both to the temporary persistence of the cod boom and to its subsequent collapse. These features of the social-ecological system also would have limited the effectiveness of stronger fishery regulations. Our results provide quantitative, empirical evidence that incorporating social dynamics into models of natural resources is critical for understanding how resources can be managed sustainably. We also show that generalized modeling, which is well-suited to collaborative model development and does not require detailed specification of causal relationships between system variables, can help tackle the complexities involved in creating and analyzing social-ecological models.

  5. End-to-end models for marine ecosystems: Are we on the precipice of a significant advance or just putting lipstick on a pig?

    Directory of Open Access Journals (Sweden)

    Kenneth A. Rose

    2012-02-01

    Full Text Available There has been a rapid rise in the development of end-to-end models for marine ecosystems over the past decade. Some reasons for this rise include need for predicting effects of climate change on biota and dissatisfaction with existing models. While the benefits of a well-implemented end-to-end model are straightforward, there are many challenges. In the short term, my view is that the major role of end-to-end models is to push the modelling community forward, and to identify critical data so that these data can be collected now and thus be available for the next generation of end-to-end models. I think we should emulate physicists and build theoretically-oriented models first, and then collect the data. In the long-term, end-to-end models will increase their skill, data collection will catch up, and end-to-end models will move towards site-specific applications with forecasting and management capabilities. One pathway into the future is individual efforts, over-promise, and repackaging of poorly performing component submodels (“lipstick on a pig”. The other pathway is a community-based collaborative effort, with appropriate caution and thoughtfulness, so that the needed improvements are achieved (“significant advance”. The promise of end-to-end modelling is great. We should act now to avoid missing a great opportunity.

  6. A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning

    Science.gov (United States)

    Wang, Qixuan; Oh, Ji Won; Lee, Hye-Lim; Dhar, Anukriti; Peng, Tao; Ramos, Raul; Guerrero-Juarez, Christian Fernando; Wang, Xiaojie; Zhao, Ran; Cao, Xiaoling; Le, Jonathan; Fuentes, Melisa A; Jocoy, Shelby C; Rossi, Antoni R; Vu, Brian; Pham, Kim; Wang, Xiaoyang; Mali, Nanda Maya; Park, Jung Min; Choi, June-Hyug; Lee, Hyunsu; Legrand, Julien M D; Kandyba, Eve; Kim, Jung Chul; Kim, Moonkyu; Foley, John; Yu, Zhengquan; Kobielak, Krzysztof; Andersen, Bogi; Khosrotehrani, Kiarash; Nie, Qing; Plikus, Maksim V

    2017-01-01

    The control principles behind robust cyclic regeneration of hair follicles (HFs) remain unclear. Using multi-scale modeling, we show that coupling inhibitors and activators with physical growth of HFs is sufficient to drive periodicity and excitability of hair regeneration. Model simulations and experimental data reveal that mouse skin behaves as a heterogeneous regenerative field, composed of anatomical domains where HFs have distinct cycling dynamics. Interactions between fast-cycling chin and ventral HFs and slow-cycling dorsal HFs produce bilaterally symmetric patterns. Ear skin behaves as a hyper-refractory domain with HFs in extended rest phase. Such hyper-refractivity relates to high levels of BMP ligands and WNT antagonists, in part expressed by ear-specific cartilage and muscle. Hair growth stops at the boundaries with hyper-refractory ears and anatomically discontinuous eyelids, generating wave-breaking effects. We posit that similar mechanisms for coupled regeneration with dominant activator, hyper-refractory, and wave-breaker regions can operate in other actively renewing organs. DOI: http://dx.doi.org/10.7554/eLife.22772.001 PMID:28695824

  7. Systems biology modeling reveals a possible mechanism of the tumor cell death upon oncogene inactivation in EGFR addicted cancers.

    Directory of Open Access Journals (Sweden)

    Jian-Ping Zhou

    Full Text Available Despite many evidences supporting the concept of "oncogene addiction" and many hypotheses rationalizing it, there is still a lack of detailed understanding to the precise molecular mechanism underlying oncogene addiction. In this account, we developed a mathematic model of epidermal growth factor receptor (EGFR associated signaling network, which involves EGFR-driving proliferation/pro-survival signaling pathways Ras/extracellular-signal-regulated kinase (ERK and phosphoinositol-3 kinase (PI3K/AKT, and pro-apoptotic signaling pathway apoptosis signal-regulating kinase 1 (ASK1/p38. In the setting of sustained EGFR activation, the simulation results show a persistent high level of proliferation/pro-survival effectors phospho-ERK and phospho-AKT, and a basal level of pro-apoptotic effector phospho-p38. The potential of p38 activation (apoptotic potential due to the elevated level of reactive oxygen species (ROS is largely suppressed by the negative crosstalk between PI3K/AKT and ASK1/p38 pathways. Upon acute EGFR inactivation, the survival signals decay rapidly, followed by a fast increase of the apoptotic signal due to the release of apoptotic potential. Overall, our systems biology modeling together with experimental validations reveals that inhibition of survival signals and concomitant release of apoptotic potential jointly contribute to the tumor cell death following the inhibition of addicted oncogene in EGFR addicted cancers.

  8. Integrated biology approach reveals molecular and pathological interactions among Alzheimer's Aβ42, Tau, TREM2, and TYROBP in Drosophila models.

    Science.gov (United States)

    Sekiya, Michiko; Wang, Minghui; Fujisaki, Naoki; Sakakibara, Yasufumi; Quan, Xiuming; Ehrlich, Michelle E; De Jager, Philip L; Bennett, David A; Schadt, Eric E; Gandy, Sam; Ando, Kanae; Zhang, Bin; Iijima, Koichi M

    2018-03-29

    Cerebral amyloidosis, neuroinflammation, and tauopathy are key features of Alzheimer's disease (AD), but interactions among these features remain poorly understood. Our previous multiscale molecular network models of AD revealed TYROBP as a key driver of an immune- and microglia-specific network that was robustly associated with AD pathophysiology. Recent genetic studies of AD further identified pathogenic mutations in both TREM2 and TYROBP. In this study, we systematically examined molecular and pathological interactions among Aβ, tau, TREM2, and TYROBP by integrating signatures from transgenic Drosophila models of AD and transcriptome-wide gene co-expression networks from two human AD cohorts. Glial expression of TREM2/TYROBP exacerbated tau-mediated neurodegeneration and synergistically affected pathways underlying late-onset AD pathology, while neuronal Aβ42 and glial TREM2/TYROBP synergistically altered expression of the genes in synaptic function and immune modules in AD. The comprehensive pathological and molecular data generated through this study strongly validate the causal role of TREM2/TYROBP in driving molecular networks in AD and AD-related phenotypes in flies.

  9. Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells

    International Nuclear Information System (INIS)

    Askmyr, M; Ågerstam, H; Lilljebjörn, H; Hansen, N; Karlsson, C; Palffy, S von; Landberg, N; Högberg, C; Lassen, C; Rissler, M; Richter, J; Ehinger, M; Järås, M; Fioretos, T

    2014-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that, if not treated, will progress into blast crisis (BC) of either myeloid or B lymphoid phenotype. The BCR-ABL1 fusion gene, encoding a constitutively active tyrosine kinase, is thought to be sufficient to cause chronic phase (CP) CML, whereas additional genetic lesions are needed for progression into CML BC. To generate a humanized CML model, we retrovirally expressed BCR-ABL1 in the cord blood CD34 + cells and transplanted these into NOD-SCID (non-obese diabetic/severe-combined immunodeficient) interleukin-2-receptor γ-deficient mice. In primary mice, BCR-ABL1 expression induced an inflammatory-like state in the bone marrow and spleen, and mast cells were the only myeloid lineage specifically expanded by BCR-ABL1. Upon secondary transplantation, the pronounced inflammatory phenotype was lost and mainly human mast cells and macrophages were found in the bone marrow. Moreover, a striking block at the pre-B-cell stage was observed in primary mice, resulting in an accumulation of pre-B cells. A similar block in B-cell differentiation could be confirmed in primary cells from CML patients. Hence, this humanized mouse model of CML reveals previously unexplored features of CP CML and should be useful for further studies to understand the disease pathogenesis of CML

  10. Comparison of Methods of Initial Ascertainment in 58 Cases of Propionic Acidemia Enrolled in the Inborn Errors of Metabolism Information System Reveals Significant Differences in Time to Evaluation and Symptoms at Presentation.

    Science.gov (United States)

    McCrory, Nicholas M; Edick, Mathew J; Ahmad, Ayesha; Lipinski, Susan; Scott Schwoerer, Jessica A; Zhai, Shaohui; Justice, Kaitlin; Cameron, Cynthia A; Berry, Susan A; Pena, Loren D M

    2017-01-01

    To compare time to evaluation and symptoms at diagnosis of propionic acidemia (PA) by method of ascertainment, and to explore correlations between genotype and biochemical variables. Clinical symptoms, genotype, and biochemical findings were analyzed retrospectively in 58 individuals with PA enrolled in the Inborn Errors of Metabolism Information System (IBEM-IS) based on the type of initial ascertainment: abnormal newborn screening (NBS), clinical presentation (symptomatic), or family history. The average age at initial evaluation and treatment was significantly younger in patients ascertained via abnormal NBS compared with those referred for clinical symptoms. Furthermore, the majority of individuals ascertained because of abnormal NBS were asymptomatic at diagnosis, compared with a minority of clinical presentations. A notable difference in the frequency of metabolic acidosis at initial presentation was observed between those with abnormal NBS (12.5%; 2 of 16) and those with an abnormal clinical presentation (79%; 19 of 24). The frequency of hyperammonemia was similar in the 2 groups. Our data support the continued value of NBS to identify individuals with PA, who are diagnosed and treated earlier than for other modes of ascertainment. There were no statistically significant correlations between genotype and NBS for C3 acylcarnitines. Although expanded use of NBS has allowed for early diagnosis and treatment, long-term outcomes of individuals with PA, especially with respect to mode of ascertainment, remain unclear and would benefit from a longitudinal study. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Seismic tomography model reveals mantle magma sources of recent volcanic activity at El Hierro Island (Canary Islands, Spain)

    Science.gov (United States)

    García-Yeguas, Araceli; Ibáñez, Jesús M.; Koulakov, Ivan; Jakovlev, Andrey; Romero-Ruiz, M. Carmen; Prudencio, Janire

    2014-12-01

    We present a 3-D model of P and S velocities beneath El Hierro Island, constructed using the traveltime data of more than 13 000 local earthquakes recorded by the Instituto Geográfico Nacional (IGN, Spain) in the period from 2011 July to 2012 September. The velocity models were performed using the LOTOS code for iterative passive source tomography. The results of inversion were thoroughly verified using different resolution and robustness tests. The results reveal that the majority of the onshore area of El Hierro is associated with a high-velocity anomaly observed down to 10-12-km depth. This anomaly is interpreted as the accumulation of solid igneous rocks erupted during the last 1 Myr and intrusive magmatic bodies. Below this high-velocity pattern, we observe a low-velocity anomaly, interpreted as a batch of magma coming from the mantle located beneath El Hierro. The boundary between the low- and high-velocity anomalies is marked by a prominent seismicity cluster, thought to represent anomalous stresses due to the interaction of the batch of magma with crust material. The areas of recent eruptions, Orchilla and La Restinga, are associated with low-velocity anomalies surrounding the main high-velocity block. These eruptions took place around the island where the crust is much weaker than the onshore area and where the melted material cannot penetrate. These results put constraints on the geological model that could explain the origin of the volcanism in oceanic islands, such as in the Canaries, which is not yet clearly understood.

  12. Improved Culture Medium (TiKa) for Mycobacterium avium Subspecies Paratuberculosis (MAP) Matches qPCR Sensitivity and Reveals Significant Proportions of Non-viable MAP in Lymphoid Tissue of Vaccinated MAP Challenged Animals

    DEFF Research Database (Denmark)

    Bull, Tim J.; Munshil, Tulika; Melvang, Heidi Mikkelsen

    2017-01-01

    The quantitative detection of viable pathogen load is an important tool in determining the degree of infection in animals and contamination of foodstuffs. Current conventional culture methods are limited in their ability to determine these levels in Mycobacterium avium subspecies paratuberculosis...... in recoverability and an improved sensitivity of up to three logs when compared with conventional culture. Using TiKa culture, MAP clumping was minimal and produced visible colonies in half the time required by standard culture methods. Parallel quantitative evaluation of the TiKa culture approach and qPCR on MAP......, the relative fold changes in Geq and cfu from the TiKa culture approach suggests that non-mucosal tissue loads from MAP infected animals contained a reduced proportion of non-viable MAP (mean 19-fold) which was reduced significantly further (mean 190-fold) in vaccinated "reactor" calves. This study shows Ti...

  13. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria.

    Science.gov (United States)

    Taylor, Anne E; Giguere, Andrew T; Zoebelein, Conor M; Myrold, David D; Bottomley, Peter J

    2017-04-01

    Soil nitrification potential (NP) activities of ammonia-oxidizing archaea and bacteria (AOA and AOB, respectively) were evaluated across a temperature gradient (4-42 °C) imposed upon eight soils from four different sites in Oregon and modeled with both the macromolecular rate theory and the square root growth models to quantify the thermodynamic responses. There were significant differences in response by the dominant AOA and AOB contributing to the NPs. The optimal temperatures (T opt ) for AOA- and AOB-supported NPs were significantly different (P12 °C greater than AOB. The change in heat capacity associated with the temperature dependence of nitrification (ΔC P ‡ ) was correlated with T opt across the eight soils, and the ΔC P ‡ of AOB activity was significantly more negative than that of AOA activity (Ptemperature (T min ) and different, albeit very similar, maximum temperature (T max ) values for AOB than for AOA activity. The results also suggested that there may be different forms of AOA AMO that are active over different temperature ranges with different T min , but no evidence of multiple T min values within the AOB. Fundamental differences in temperature-influenced properties of nitrification driven by AOA and AOB provides support for the idea that the biochemical processes associated with NH 3 oxidation in AOA and AOB differ thermodynamically from each other, and that also might account for the difficulties encountered in attempting to model the response of nitrification to temperature change in soil environments.

  14. Key role of local regulation in chemosensing revealed by a new molecular interaction-based modeling method.

    Directory of Open Access Journals (Sweden)

    Martin Meier-Schellersheim

    2006-07-01

    Full Text Available The signaling network underlying eukaryotic chemosensing is a complex combination of receptor-mediated transmembrane signals, lipid modifications, protein translocations, and differential activation/deactivation of membrane-bound and cytosolic components. As such, it provides particularly interesting challenges for a combined computational and experimental analysis. We developed a novel detailed molecular signaling model that, when used to simulate the response to the attractant cyclic adenosine monophosphate (cAMP, made nontrivial predictions about Dictyostelium chemosensing. These predictions, including the unexpected existence of spatially asymmetrical, multiphasic, cyclic adenosine monophosphate-induced PTEN translocation and phosphatidylinositol-(3,4,5P3 generation, were experimentally verified by quantitative single-cell microscopy leading us to propose significant modifications to the current standard model for chemoattractant-induced biochemical polarization in this organism. Key to this successful modeling effort was the use of "Simmune," a new software package that supports the facile development and testing of detailed computational representations of cellular behavior. An intuitive interface allows user definition of complex signaling networks based on the definition of specific molecular binding site interactions and the subcellular localization of molecules. It automatically translates such inputs into spatially resolved simulations and dynamic graphical representations of the resulting signaling network that can be explored in a manner that closely parallels wet lab experimental procedures. These features of Simmune were critical to the model development and analysis presented here and are likely to be useful in the computational investigation of many aspects of cell biology.

  15. Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord.

    KAUST Repository

    Lovrics, Anna

    2014-11-14

    We have assembled a network of cell-fate determining transcription factors that play a key role in the specification of the ventral neuronal subtypes of the spinal cord on the basis of published transcriptional interactions. Asynchronous Boolean modelling of the network was used to compare simulation results with reported experimental observations. Such comparison highlighted the need to include additional regulatory connections in order to obtain the fixed point attractors of the model associated with the five known progenitor cell types located in the ventral spinal cord. The revised gene regulatory network reproduced previously observed cell state switches between progenitor cells observed in knock-out animal models or in experiments where the transcription factors were overexpressed. Furthermore the network predicted the inhibition of Irx3 by Nkx2.2 and this prediction was tested experimentally. Our results provide evidence for the existence of an as yet undescribed inhibitory connection which could potentially have significance beyond the ventral spinal cord. The work presented in this paper demonstrates the strength of Boolean modelling for identifying gene regulatory networks.

  16. The temporal-spatial dynamics of feature maps during monocular deprivation revealed by chronic imaging and self-organization model simulation.

    Science.gov (United States)

    Tong, Lei; Xie, Yang; Yu, Hongbo

    2016-12-17

    Experiments on the adult visual cortex of cats, ferrets and monkeys have revealed organized spatial relationships between multiple feature maps which can also be reproduced by the Kohonen and elastic net self-organization models. However, attempts to apply these models to simulate the temporal kinetics of monocular deprivation (MD) during the critical period, and their effects on the spatial arrangement of feature maps, have led to conflicting results. In this study, we performed MD and chronic imaging in the ferret visual cortex during the critical period of ocular dominance (OD) plasticity. We also used the Kohonen model to simulate the effects of MD on OD and orientation map development. Both the experiments and simulations demonstrated two general parameter-insensitive findings. Specifically, our first finding demonstrated that the OD index shift resulting from MD, and its subsequent recovery during binocular vision (BV), were both nonlinear, with a significantly stronger shift occurring during the initial period. Meanwhile, spatial reorganization of feature maps led to globally unchanged but locally shifted map patterns. In detail, we found that the periodicity of OD and orientation maps remained unchanged during, and after, deprivation. Relationships between OD and orientation maps remained similar but were significantly weakened due to OD border shifts. These results indicate that orthogonal gradient relationships between maps may be preset and are only mildly modifiable during the critical period. The Kohonen model was able to reproduce these experimental results, hence its role is further extended to the description of cortical feature map dynamics during development. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Revealing common disease mechanisms shared by tumors of different tissues of origin through semantic representation of genomic alterations and topic modeling.

    Science.gov (United States)

    Chen, Vicky; Paisley, John; Lu, Xinghua

    2017-03-14

    Cancer is a complex disease driven by somatic genomic alterations (SGAs) that perturb signaling pathways and consequently cellular function. Identifying patterns of pathway perturbations would provide insights into common disease mechanisms shared among tumors, which is important for guiding treatment and predicting outcome. However, identifying perturbed pathways is challenging, because different tumors can have the same perturbed pathways that are perturbed by different SGAs. Here, we designed novel semantic representations that capture the functional similarity of distinct SGAs perturbing a common pathway in different tumors. Combining this representation with topic modeling would allow us to identify patterns in altered signaling pathways. We represented each gene with a vector of words describing its function, and we represented the SGAs of a tumor as a text document by pooling the words representing individual SGAs. We applied the nested hierarchical Dirichlet process (nHDP) model to a collection of tumors of 5 cancer types from TCGA. We identified topics (consisting of co-occurring words) representing the common functional themes of different SGAs. Tumors were clustered based on their topic associations, such that each cluster consists of tumors sharing common functional themes. The resulting clusters contained mixtures of cancer types, which indicates that different cancer types can share disease mechanisms. Survival analysis based on the clusters revealed significant differences in survival among the tumors of the same cancer type that were assigned to different clusters. The results indicate that applying topic modeling to semantic representations of tumors identifies patterns in the combinations of altered functional pathways in cancer.

  18. Integrative modelling coupled with ion mobility mass spectrometry reveals structural features of the clamp loader in complex with single-stranded DNA binding protein.

    Science.gov (United States)

    Politis, Argyris; Park, Ah Young; Hall, Zoe; Ruotolo, Brandon T; Robinson, Carol V

    2013-11-29

    DNA polymerase III, a decameric 420-kDa assembly, simultaneously replicates both strands of the chromosome in Escherichia coli. A subassembly of this holoenzyme, the seven-subunit clamp loader complex, is responsible for loading the sliding clamp (β2) onto DNA. Here, we use structural information derived from ion mobility mass spectrometry (IM-MS) to build three-dimensional models of one form of the full clamp loader complex, γ3δδ'ψχ (254 kDa). By probing the interaction between the clamp loader and a single-stranded DNA (ssDNA) binding protein (SSB4) and by identifying two distinct conformational states, with and without ssDNA, we assemble models of ψχ-SSB4 (108 kDa) and the clamp loader-SSB4 (340 kDa) consistent with IM data. A significant increase in measured collision cross-section (~10%) of the clamp loader-SSB4 complex upon DNA binding suggests large conformational rearrangements. This DNA bound conformation represents the active state and, along with the presence of ψχ, stabilises the clamp loader-SSB4 complex. Overall, this study of a large heteromeric complex analysed by IM-MS, coupled with integrative modelling, highlights the potential of such an approach to reveal structural features of previously unknown complexes of high biological importance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Genome-Scale Co-Expression Network Comparison across Escherichia coli and Salmonella enterica Serovar Typhimurium Reveals Significant Conservation at the Regulon Level of Local Regulators Despite Their Dissimilar Lifestyles

    Science.gov (United States)

    Zarrineh, Peyman; Sánchez-Rodríguez, Aminael; Hosseinkhan, Nazanin; Narimani, Zahra; Marchal, Kathleen; Masoudi-Nejad, Ali

    2014-01-01

    Availability of genome-wide gene expression datasets provides the opportunity to study gene expression across different organisms under a plethora of experimental conditions. In our previous work, we developed an algorithm called COMODO (COnserved MODules across Organisms) that identifies conserved expression modules between two species. In the present study, we expanded COMODO to detect the co-expression conservation across three organisms by adapting the statistics behind it. We applied COMODO to study expression conservation/divergence between Escherichia coli, Salmonella enterica, and Bacillus subtilis. We observed that some parts of the regulatory interaction networks were conserved between E. coli and S. enterica especially in the regulon of local regulators. However, such conservation was not observed between the regulatory interaction networks of B. subtilis and the two other species. We found co-expression conservation on a number of genes involved in quorum sensing, but almost no conservation for genes involved in pathogenicity across E. coli and S. enterica which could partially explain their different lifestyles. We concluded that despite their different lifestyles, no significant rewiring have occurred at the level of local regulons involved for instance, and notable conservation can be detected in signaling pathways and stress sensing in the phylogenetically close species S. enterica and E. coli. Moreover, conservation of local regulons seems to depend on the evolutionary time of divergence across species disappearing at larger distances as shown by the comparison with B. subtilis. Global regulons follow a different trend and show major rewiring even at the limited evolutionary distance that separates E. coli and S. enterica. PMID:25101984

  20. pH imaging reveals worsened tissue acidification in diffusion kurtosis lesion than the kurtosis/diffusion lesion mismatch in an animal model of acute stroke.

    Science.gov (United States)

    Wang, Enfeng; Wu, Yin; Cheung, Jerry S; Zhou, Iris Yuwen; Igarashi, Takahiro; Zhang, XiaoAn; Sun, Phillip Zhe

    2017-10-01

    Diffusion weighted imaging (DWI) has been commonly used in acute stroke examination, yet a portion of DWI lesion may be salvageable. Recently, it has been shown that diffusion kurtosis imaging (DKI) defines the most severely damaged DWI lesion that does not renormalize following early reperfusion. We postulated that the diffusion and kurtosis lesion mismatch experience heterogeneous hemodynamic and/or metabolic injury. We investigated tissue perfusion, pH, diffusion, kurtosis and relaxation from regions of the contralateral normal area, diffusion lesion, kurtosis lesion and their mismatch in an animal model of acute stroke. Our study revealed significant kurtosis and diffusion lesion volume mismatch (19.7 ± 10.7%, P mismatch, we showed lower pH in the kurtosis lesion (pH = 6.64 ± 0.12) from that of the kurtosis/diffusion lesion mismatch (6.84 ± 0.11, P mismatch agreed well with literature values for regions of ischemic core and penumbra, respectively. Our work documented initial evidence that DKI may reveal the heterogeneous metabolic derangement within the commonly used DWI lesion.

  1. MicroRNA Expression Is Altered in an Ovalbumin-Induced Asthma Model and Targeting miR-155 with Antagomirs Reveals Cellular Specificity.

    Directory of Open Access Journals (Sweden)

    Maximilian W Plank

    Full Text Available MicroRNAs are post-transcriptional regulators of gene expression that are differentially regulated during development and in inflammatory diseases. A role for miRNAs in allergic asthma is emerging and further investigation is required to determine whether they may serve as potential therapeutic targets. We profiled miRNA expression in murine lungs from an ovalbumin-induced allergic airways disease model, and compared expression to animals receiving dexamethasone treatment and non-allergic controls. Our analysis identified 29 miRNAs that were significantly altered during allergic inflammation. Target prediction analysis revealed novel genes with altered expression in allergic airways disease and suggests synergistic miRNA regulation of target mRNAs. To assess the impacts of one induced miRNA on pathology, we targeted miR-155-5p using a specific antagomir. Antagomir administration successfully reduced miR-155-5p expression with high specificity, but failed to alter the disease phenotype. Interestingly, further investigation revealed that antagomir delivery has variable efficacy across different immune cell types, effectively targeting myeloid cell populations, but exhibiting poor uptake in lymphocytes. Our findings demonstrate that antagomir-based targeting of miRNA function in the lung is highly specific, but highlights cell-specificity as a key limitation to be considered for antagomir-based strategies as therapeutics.

  2. Visualization of atherosclerosis as detected by coronary artery calcium and carotid intima-media thickness reveals significant atherosclerosis in a cross-sectional study of psoriasis patients in a tertiary care center.

    Science.gov (United States)

    Santilli, S; Kast, D R; Grozdev, I; Cao, L; Feig, R L; Golden, J B; Debanne, S M; Gilkeson, R C; Orringer, C E; McCormick, T S; Ward, N L; Cooper, K D; Korman, N J

    2016-07-22

    Psoriasis is a chronic inflammatory disease of the skin and joints that may also have systemic inflammatory effects, including the development of cardiovascular disease (CVD). Multiple epidemiologic studies have demonstrated increased rates of CVD in psoriasis patients, although a causal link has not been established. A growing body of evidence suggests that sub-clinical systemic inflammation may develop in psoriasis patients, even from a young age. We aimed to evaluate the prevalence of atherosclerosis and identify specific clinical risk factors associated with early vascular inflammation. We conducted a cross-sectional study of a tertiary care cohort of psoriasis patients using coronary artery calcium (CAC) score and carotid intima-media thickness (CIMT) to detect atherosclerosis, along with high sensitivity C-reactive protein (hsCRP) to measure inflammation. Psoriasis patients and controls were recruited from our tertiary care dermatology clinic. Presence of atherosclerosis was defined using validated numeric values within CAC and CIMT imaging. Descriptive data comparing groups was analyzed using Welch's t test and Pearson Chi square tests. Logistic regression was used to analyze clinical factors associated with atherosclerosis, and linear regression to evaluate the relationship between psoriasis and hsCRP. 296 patients were enrolled, with 283 (207 psoriatic and 76 controls) having all data for the hsCRP and atherosclerosis analysis. Atherosclerosis was found in 67.6 % of psoriasis subjects versus 52.6 % of controls; Psoriasis patients were found to have a 2.67-fold higher odds of having atherosclerosis compared to controls [95 % CI (1.2, 5.92); p = 0.016], after adjusting for age, gender, race, BMI, smoking, HDL and hsCRP. In addition, a non-significant trend was found between HsCRP and psoriasis severity, as measured by PASI, PGA, or BSA, again after adjusting for confounders. A tertiary care cohort of psoriasis patients have a high prevalence of early

  3. Meta-analysis Reveals Genome-Wide Significance at 15q13 for Nonsyndromic Clefting of Both the Lip and the Palate, and Functional Analyses Implicate GREM1 As a Plausible Causative Gene

    Science.gov (United States)

    Ludwig, Kerstin U.; Ahmed, Syeda Tasnim; Böhmer, Anne C.; Sangani, Nasim Bahram; Varghese, Sheryil; Klamt, Johanna; Schuenke, Hannah; Gültepe, Pinar; Hofmann, Andrea; Rubini, Michele; Aldhorae, Khalid Ahmed; Steegers-Theunissen, Regine P.; Rojas-Martinez, Augusto; Reiter, Rudolf; Borck, Guntram; Knapp, Michael; Nakatomi, Mitsushiro; Graf, Daniel; Mangold, Elisabeth; Peters, Heiko

    2016-01-01

    Nonsyndromic orofacial clefts are common birth defects with multifactorial etiology. The most common type is cleft lip, which occurs with or without cleft palate (nsCLP and nsCLO, respectively). Although genetic components play an important role in nsCLP, the genetic factors that predispose to palate involvement are largely unknown. In this study, we carried out a meta-analysis on genetic and clinical data from three large cohorts and identified strong association between a region on chromosome 15q13 and nsCLP (P = 8.13×10−14 for rs1258763; relative risk (RR): 1.46, 95% confidence interval (CI): 1.32–1.61)) but not nsCLO (P = 0.27; RR: 1.09 (0.94–1.27)). The 5 kb region of strongest association maps downstream of Gremlin-1 (GREM1), which encodes a secreted antagonist of the BMP4 pathway. We show during mouse embryogenesis, Grem1 is expressed in the developing lip and soft palate but not in the hard palate. This is consistent with genotype-phenotype correlations between rs1258763 and a specific nsCLP subphenotype, since a more than two-fold increase in risk was observed in patients displaying clefts of both the lip and soft palate but who had an intact hard palate (RR: 3.76, CI: 1.47–9.61, Pdifflip or palate defects in Grem1-deficient mice, wild type embryonic palatal shelves developed divergent shapes when cultured in the presence of ectopic Grem1 protein (P = 0.0014). The present study identified a non-coding region at 15q13 as the second, genome-wide significant locus specific for nsCLP, after 13q31. Moreover, our data suggest that the closely located GREM1 gene contributes to a rare clinical nsCLP entity. This entity specifically involves abnormalities of the lip and soft palate, which develop at different time-points and in separate anatomical regions. PMID:26968009

  4. An evolutionary-network model reveals stratified interactions in the V3 loop of the HIV-1 envelope.

    Directory of Open Access Journals (Sweden)

    Art F Y Poon

    2007-11-01

    Full Text Available The third variable loop (V3 of the human immunodeficiency virus type 1 (HIV-1 envelope is a principal determinant of antibody neutralization and progression to AIDS. Although it is undoubtedly an important target for vaccine research, extensive genetic variation in V3 remains an obstacle to the development of an effective vaccine. Comparative methods that exploit the abundance of sequence data can detect interactions between residues of rapidly evolving proteins such as the HIV-1 envelope, revealing biological constraints on their variability. However, previous studies have relied implicitly on two biologically unrealistic assumptions: (1 that founder effects in the evolutionary history of the sequences can be ignored, and; (2 that statistical associations between residues occur exclusively in pairs. We show that comparative methods that neglect the evolutionary history of extant sequences are susceptible to a high rate of false positives (20%-40%. Therefore, we propose a new method to detect interactions that relaxes both of these assumptions. First, we reconstruct the evolutionary history of extant sequences by maximum likelihood, shifting focus from extant sequence variation to the underlying substitution events. Second, we analyze the joint distribution of substitution events among positions in the sequence as a Bayesian graphical model, in which each branch in the phylogeny is a unit of observation. We perform extensive validation of our models using both simulations and a control case of known interactions in HIV-1 protease, and apply this method to detect interactions within V3 from a sample of 1,154 HIV-1 envelope sequences. Our method greatly reduces the number of false positives due to founder effects, while capturing several higher-order interactions among V3 residues. By mapping these interactions to a structural model of the V3 loop, we find that the loop is stratified into distinct evolutionary clusters. We extend our model to

  5. Touchscreen-based cognitive tasks reveal age-related impairment in a primate aging model, the grey mouse lemur (Microcebus murinus).

    Science.gov (United States)

    Joly, Marine; Ammersdörfer, Sandra; Schmidtke, Daniel; Zimmermann, Elke

    2014-01-01

    Mouse lemurs are suggested to represent promising novel non-human primate models for aging research. However, standardized and cross-taxa cognitive testing methods are still lacking. Touchscreen-based testing procedures have proven high stimulus control and reliability in humans and rodents. The aim of this study was to adapt these procedures to mouse lemurs, thereby exploring the effect of age. We measured appetitive learning and cognitive flexibility of two age groups by applying pairwise visual discrimination (PD) and reversal learning (PDR) tasks. On average, mouse lemurs needed 24 days of training before starting with the PD task. Individual performances in PD and PDR tasks correlate significantly, suggesting that individual learning performance is unrelated to the respective task. Compared to the young, aged mouse lemurs showed impairments in both PD and PDR tasks. They needed significantly more trials to reach the task criteria. A much higher inter-individual variation in old than in young adults was revealed. Furthermore, in the PDR task, we found a significantly higher perseverance in aged compared to young adults, indicating an age-related deficit in cognitive flexibility. This study presents the first touchscreen-based data on the cognitive skills and age-related dysfunction in mouse lemurs and provides a unique basis to study mechanisms of inter-individual variation. It furthermore opens exciting perspectives for comparative approaches in aging, personality, and evolutionary research.

  6. Touchscreen-based cognitive tasks reveal age-related impairment in a primate aging model, the grey mouse lemur (Microcebus murinus.

    Directory of Open Access Journals (Sweden)

    Marine Joly

    Full Text Available Mouse lemurs are suggested to represent promising novel non-human primate models for aging research. However, standardized and cross-taxa cognitive testing methods are still lacking. Touchscreen-based testing procedures have proven high stimulus control and reliability in humans and rodents. The aim of this study was to adapt these procedures to mouse lemurs, thereby exploring the effect of age. We measured appetitive learning and cognitive flexibility of two age groups by applying pairwise visual discrimination (PD and reversal learning (PDR tasks. On average, mouse lemurs needed 24 days of training before starting with the PD task. Individual performances in PD and PDR tasks correlate significantly, suggesting that individual learning performance is unrelated to the respective task. Compared to the young, aged mouse lemurs showed impairments in both PD and PDR tasks. They needed significantly more trials to reach the task criteria. A much higher inter-individual variation in old than in young adults was revealed. Furthermore, in the PDR task, we found a significantly higher perseverance in aged compared to young adults, indicating an age-related deficit in cognitive flexibility. This study presents the first touchscreen-based data on the cognitive skills and age-related dysfunction in mouse lemurs and provides a unique basis to study mechanisms of inter-individual variation. It furthermore opens exciting perspectives for comparative approaches in aging, personality, and evolutionary research.

  7. Metabolic and transcriptomic analysis of Huntington’s disease model reveal changes in intracellular glucose levels and related genes

    Directory of Open Access Journals (Sweden)

    Gepoliano Chaves

    2017-08-01

    Full Text Available Huntington’s Disease (HD is a neurodegenerative disorder caused by an expansion in a CAG-tri-nucleotide repeat that introduces a poly-glutamine stretch into the huntingtin protein (mHTT. Mutant huntingtin (mHTT has been associated with several phenotypes including mood disorders and depression. Additionally, HD patients are known to be more susceptible to type II diabetes mellitus (T2DM, and HD mice model develops diabetes. However, the mechanism and pathways that link Huntington’s disease and diabetes have not been well established. Understanding the underlying mechanisms can reveal potential targets for drug development in HD. In this study, we investigated the transcriptome of mHTT cell populations alongside intracellular glucose measurements using a functionalized nanopipette. Several genes related to glucose uptake and glucose homeostasis are affected. We observed changes in intracellular glucose concentrations and identified altered transcript levels of certain genes including Sorcs1, Hh-II and Vldlr. Our data suggest that these can be used as markers for HD progression. Sorcs1 may not only have a role in glucose metabolism and trafficking but also in glutamatergic pathways affecting trafficking of synaptic components.

  8. A novel approach to PTSD modeling in rats reveals alternating patterns of limbic activity in different types of stress reaction.

    Science.gov (United States)

    Ritov, G; Boltyansky, B; Richter-Levin, G

    2016-05-01

    Human reactions to trauma exposure are extremely diverse, with some individuals exhibiting only time-limited distress and others qualifying for posttraumatic stress disorder diagnosis (PTSD). Furthermore, whereas most PTSD patients mainly display fear-based symptoms, a minority of patients display a co-morbid anhedonic phenotype. We employed an individual profiling approach to model these intriguing facets of the psychiatric condition in underwater-trauma exposed rats. Based on long-term assessments of anxiety-like and anhedonic behaviors, our analysis uncovered three separate phenotypes of stress response; an anxious, fear-based (38%), a co-morbid, fear-anhedonic (15%), and an exposed-unaffected group (47%). Immunohistochemical assessments for cellular activation (c-Fos) and activation of inhibition (c-Fos+GAD67) revealed a differential involvement of limbic regions and distinct co-activity patterns for each of these phenotypes, validating the behavioral categorization. In accordance with recent neurocognitive hypotheses for posttraumatic depression, we show that enhanced pretrauma anxiety predicts the progression of posttraumatic anhedonia only in the fear-anhedonic phenotype.

  9. Modeling human Coenzyme A synthase mutation in yeast reveals altered mitochondrial function, lipid content and iron metabolism

    Directory of Open Access Journals (Sweden)

    Camilla Ceccatelli Berti

    2015-04-01

    Full Text Available Mutations in nuclear genes associated with defective coenzyme A biosynthesis have been identified as responsible for some forms of neurodegeneration with brain iron accumulation (NBIA, namely PKAN and CoPAN. PKAN are defined by mutations in PANK2, encoding the pantothenate kinase 2 enzyme, that account for about 50% of cases of NBIA, whereas mutations in CoA synthase COASY have been recently reported as the second inborn error of CoA synthesis leading to CoPAN. As reported previously, yeast cells expressing the pathogenic mutation exhibited a temperature-sensitive growth defect in the absence of pantothenate and a reduced CoA content. Additional characterization revealed decreased oxygen consumption, reduced activities of mitochondrial respiratory complexes, higher iron content, increased sensitivity to oxidative stress and reduced amount of lipid droplets, thus partially recapitulating the phenotypes found in patients and establishing yeast as a potential model to clarify the pathogenesis underlying PKAN and CoPAN diseases.

  10. Hidden Markov model analysis reveals the advantage of analytic eye movement patterns in face recognition across cultures.

    Science.gov (United States)

    Chuk, Tim; Crookes, Kate; Hayward, William G; Chan, Antoni B; Hsiao, Janet H

    2017-12-01

    It remains controversial whether culture modulates eye movement behavior in face recognition. Inconsistent results have been reported regarding whether cultural differences in eye movement patterns exist, whether these differences affect recognition performance, and whether participants use similar eye movement patterns when viewing faces from different ethnicities. These inconsistencies may be due to substantial individual differences in eye movement patterns within a cultural group. Here we addressed this issue by conducting individual-level eye movement data analysis using hidden Markov models (HMMs). Each individual's eye movements were modeled with an HMM. We clustered the individual HMMs according to their similarities and discovered three common patterns in both Asian and Caucasian participants: holistic (looking mostly at the face center), left-eye-biased analytic (looking mostly at the two individual eyes in addition to the face center with a slight bias to the left eye), and right-eye-based analytic (looking mostly at the right eye in addition to the face center). The frequency of participants adopting the three patterns did not differ significantly between Asians and Caucasians, suggesting little modulation from culture. Significantly more participants (75%) showed similar eye movement patterns when viewing own- and other-race faces than different patterns. Most importantly, participants with left-eye-biased analytic patterns performed significantly better than those using either holistic or right-eye-biased analytic patterns. These results suggest that active retrieval of facial feature information through an analytic eye movement pattern may be optimal for face recognition regardless of culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Integrating fossils, phylogenies, and niche models into biogeography to reveal ancient evolutionary history: the case of Hypericum (hypericaceae).

    Science.gov (United States)

    Meseguer, Andrea S; Lobo, Jorge M; Ree, Richard; Beerling, David J; Sanmartín, Isabel

    2015-03-01

    In disciplines such as macroevolution that are not amenable to experimentation, scientists usually rely on current observations to test hypotheses about historical events, assuming that "the present is the key to the past." Biogeographers, for example, used this assumption to reconstruct ancestral ranges from the distribution of extant species. Yet, under scenarios of high extinction rates, the biodiversity we observe today might not be representative of the historical diversity and this could result in incorrect biogeographic reconstructions. Here, we introduce a new approach to incorporate into biogeographic inference the temporal, spatial, and environmental information provided by the fossil record, as a direct evidence of the extinct biodiversity fraction. First, inferences of ancestral ranges for those nodes in the phylogeny calibrated with the fossil record are constrained to include the geographic distribution of the fossil. Second, we use fossil distribution and past climate data to reconstruct the climatic preferences and potential distribution of ancestral lineages over time, and use this information to build a biogeographic model that takes into account "ecological connectivity" through time. To show the power of this approach, we reconstruct the biogeographic history of the large angiosperm genus Hypericum, which has a fossil record extending back to the Early Cenozoic. Unlike previous reconstructions based on extant species distributions, our results reveal that Hypericum stem lineages were already distributed in the Holarctic before diversification of its crown-group, and that the geographic distribution of the genus has been relatively stable throughout the climatic oscillations of the Cenozoic. Geographical movement was mediated by the existence of climatic corridors, like Beringia, whereas the equatorial tropical belt acted as a climatic barrier, preventing Hypericum lineages to reach the southern temperate regions. Our study shows that an

  12. News and Views: Herschel reveals a new swan in Cygnus-X; Two models of Type 1a supernovae are both right; Milky Way companions throw doubt on dark matter; Lightning can map volatiles

    Science.gov (United States)

    2012-06-01

    It appears that both models for the formation of Type 1a supernovae are correct, in different cases. The significance of these supernovae in measurements of cosmic distances and the acceleration of the expansion of the universe mean that the distinction is significant. Careful mapping of the arrangement of galaxies around the Milky Way has revealed that they lie in a plane at right angles to the galactic disc. The results pose a challenge to models of dark matter distribution and galactic structure. An electromagnetic resonance established by lightning could be used to map volatile molecules on other planets, thanks to their effects on the electrical conductivity of planetary atmospheres.

  13. Integrative proteomic analysis of the NMDA NR1 knockdown mouse model reveals effects on central and peripheral pathways associated with schizophrenia and autism spectrum disorders

    NARCIS (Netherlands)

    H. Wesseling (Hendrik); P.C. Guest (Paul); C.-M. Lee (Chi-Ming); E.H.F. Wong (Erik); H. Rahmoune (Hassan); S. Bahn (Sabine)

    2014-01-01

    textabstractBackground: Over the last decade, the transgenic N-methyl-D-aspartate receptor (NMDAR) NR1-knockdown mouse (NR1neo-/-) has been investigated as a glutamate hypofunction model for schizophrenia. Recent research has now revealed that the model also recapitulates cognitive and negative

  14. Modeling the effector - regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Torrealdea Javier

    2011-07-01

    Full Text Available Abstract Background The relapsing-remitting dynamics is a hallmark of autoimmune diseases such as Multiple Sclerosis (MS. Although current understanding of both cellular and molecular mechanisms involved in the pathogenesis of autoimmune diseases is significant, how their activity generates this prototypical dynamics is not understood yet. In order to gain insight about the mechanisms that drive these relapsing-remitting dynamics, we developed a computational model using such biological knowledge. We hypothesized that the relapsing dynamics in autoimmunity can arise through the failure in the mechanisms controlling cross-regulation between regulatory and effector T cells with the interplay of stochastic events (e.g. failure in central tolerance, activation by pathogens that are able to trigger the immune system. Results The model represents five concepts: central tolerance (T-cell generation by the thymus, T-cell activation, T-cell memory, cross-regulation (negative feedback between regulatory and effector T-cells and tissue damage. We enriched the model with reversible and irreversible tissue damage, which aims to provide a comprehensible link between autoimmune activity and clinical relapses and active lesions in the magnetic resonances studies in patients with Multiple Sclerosis. Our analysis shows that the weakness in this negative feedback between effector and regulatory T-cells, allows the immune system to generate the characteristic relapsing-remitting dynamics of autoimmune diseases, without the need of additional environmental triggers. The simulations show that the timing at which relapses appear is highly unpredictable. We also introduced targeted perturbations into the model that mimicked immunotherapies that modulate effector and regulatory populations. The effects of such therapies happened to be highly dependent on the timing and/or dose, and on the underlying dynamic of the immune system. Conclusion The relapsing dynamic in MS

  15. miR-155, identified as anti-metastatic by global miRNA profiling of a metastasis model, inhibits cancer cell extravasation and colonization in vivo and causes significant signaling alterations

    DEFF Research Database (Denmark)

    Gravgaard, Karina Hedelund; Terp, Mikkel G; Lund, Rikke R

    2015-01-01

    To gain insight into miRNA regulation in metastasis formation, we used a metastasis cell line model that allows investigation of extravasation and colonization of circulating cancer cells to lungs in mice. Using global miRNA profiling, 28 miRNAs were found to exhibit significantly altered...... in lungs when injected intravenously in immunodeficient mice. Our experiments addressing the underlying mechanism of the altered tumor burden revealed that miR-155-overexpressing CL16 cells were less invasive than CL16 control cells in vitro, while miR-155 overexpression had no effect on cancer cell...... proliferation or apoptosis in established lung tumors. To identify proteins regulated by miR-155 and thus delineate its function in our cell model, we compared the proteome of xenograft tumors derived from miR-155-overexpressing CL16 cells and CL16 control cells using mass spectrometry-based proteomics. >4...

  16. ‘Get in early’; biofilm and wax moth (Galleria mellonella models reveal new insights into the therapeutic potential of Clostridium difficile bacteriophages

    Directory of Open Access Journals (Sweden)

    Janet Yakubu Nale

    2016-08-01

    Full Text Available Clostridium difficile infection (CDI is a global health threat associated with high rates of morbidity and mortality. Conventional antibiotic CDI therapy can result in treatment failure and recurrent infection. C. difficile produces biofilms which contribute to its virulence and impair antimicrobial activity. Some bacteriophages (phages can penetrate biofilms and thus could be developed to either replace or supplement antibiotics. Here, we determined the impact of a previously optimized 4-phage cocktail on C. difficile ribotype 014/020 biofilms, and additionally as adjunct to vancomycin treatment in Galleria mellonella larva CDI model. The phages were applied before or after biofilm establishment in vitro, and the impact was analyzed according to turbidity, viability counts and topography as observed using scanning electron and confocal microscopy. The infectivity profiles and efficacies of orally administered phages and/or vancomycin were ascertained by monitoring colonization levels and larval survival rates. Phages prevented biofilm formation, and penetrated established biofilms. A single phage application reduced colonization causing extended longevity in the remedial treatment and prevented disease in the prophylaxis group. Multiple phage doses significantly improved the larval remedial regimen, and this treatment is comparable to vancomycin and the combined treatments. Taken together, our data suggest that the phages significantly reduce C. difficile biofilms, and prevent colonization in the G. mellonella model when used alone or in combination with vancomycin. The phages appear to be highly promising therapeutics in the targeted eradication of CDI and the use of these models has revealed that prophylactic use could be a propitious therapeutic option.

  17. Significance of the expression of matrix metalloproteinase-9 (MMP-9) in brain tissue of rat models of experimental intracerebral haemorrhage (ICH)

    International Nuclear Information System (INIS)

    Wu Jiami; Liu Shengda

    2005-01-01

    Objective: To study the relationship between the brain tissue expression of MMP-9 and brain water content in rat models of experimental ICH. Methods: Rat models of ICH were prepared with intracerebral (caudate nuclei) injection of autologous noncoagulated blood (50 μl). Animals were sacrificed at 6h, 12h, 24h, 48h, 72h, 120h, lw, 2w and the MMP-9 expressions at the periphery of intracerebral hematoma were examined with immunohisto chemistry. The brain water content was also determined at the same time. Control models were prepared with intracerebral sham injection of normal saline. Results: (1) In the ICH models, the number of MMP-9 positive capillaries at the periphery of hematoma began to rise at 6h (vs that of sham group, P < 0.01 ) with peak at 48h, then gradually dropped. At lwk, the number was still significantly higher than that in the sham group (P <0.01 ). However, there were no expression at 2wk. (2) The brain water content in the ICH group was significantly increased at 12h (vs sham group, P < 0.05) with peak at 72h. At lwk, the brain water content was still significantly higher in the ICH group (P <0.01 ) but at 2wk, the brain water content was about the same in both groups. (3) Animals injected with different amounts of blood (30 μl, 50 μl, 100 μl) showed increased expression of MMP-9 along with the increase of dose (P<0.01). (4) The MMP-9 expression was positively correlated with the brain water content (r=0.8291, P<0.05). Conclusion: In the rat models, MMP-9 expression was activated after ICH. The increase paralleled that of the amount of haemorrhage and brain water content. It was postulated that MMP-9 enhanced development of brain edema through degrading of the blood brain barrier component substances. (authors)

  18. The significance of the interception in a Thornthwaite-type monthly step water balance model in context of the climate change

    Science.gov (United States)

    Herceg, András; Kalicz, Péter; Kisfaludi, Balázs

    2017-04-01

    The hydrological impacts of the climate change can be dramatic. Our main purpose is the methodical improvement of a previously established Thornthwaite-type monthly step water balance model, which takes the interception item into account, and compare the results of the evapotranspiration and the soil moisture projections for the 21st century of the original and the upgraded models. Both of the models will be calibrated and validated (using remote-sensed actual evapotranspiration data, called CREMAP) and requires only temperature and precipitation time series as inputs. The projections based on 4 bias-corrected regional climate models databases (FORESEE), and the 3 investigation periods are: 2015-2045, 2045-2075, and 2070-2100. The key parameter is the water storage capacity of the soil, which can be also calibrated using the actual evapotranspiration data. The maximal rooting depth is determinable if the physical properties of the soil are available. The interception can be ranges from 5-40% of gross precipitation, which rate are differing in the various plant communities. Generally, the forests canopy intercepts considerable amounts of rainfall and evaporates back into the atmosphere during and after precipitation event. Leaf area index (LAI) is one of the most significant factor, which determine the canopies storage capacity. Here, MODIS sensor based LAI time series are applied to estimate the storage capacity. A forest covered experimental catchment is utilized for testing the models near to Sopron, Hungary. The projections will expected to demonstrate increasing actual evapotranspiration values, but decreasing trends for the 10 percentile minimum soil moisture values at the end of the 21st century in both model runs. The seasonal periodicity of evapotranspiration may demonstrates the maximums in June or July, while in case of the soil moisture it may shows minimum values in autumn. With the comparison of the two model runs, we expect lower soil water storage

  19. Mixture models reveal multiple positional bias types in RNA-Seq data and lead to accurate transcript concentration estimates.

    Directory of Open Access Journals (Sweden)

    Andreas Tuerk

    2017-05-01

    Full Text Available Accuracy of transcript quantification with RNA-Seq is negatively affected by positional fragment bias. This article introduces Mix2 (rd. "mixquare", a transcript quantification method which uses a mixture of probability distributions to model and thereby neutralize the effects of positional fragment bias. The parameters of Mix2 are trained by Expectation Maximization resulting in simultaneous transcript abundance and bias estimates. We compare Mix2 to Cufflinks, RSEM, eXpress and PennSeq; state-of-the-art quantification methods implementing some form of bias correction. On four synthetic biases we show that the accuracy of Mix2 overall exceeds the accuracy of the other methods and that its bias estimates converge to the correct solution. We further evaluate Mix2 on real RNA-Seq data from the Microarray and Sequencing Quality Control (MAQC, SEQC Consortia. On MAQC data, Mix2 achieves improved correlation to qPCR measurements with a relative increase in R2 between 4% and 50%. Mix2 also yields repeatable concentration estimates across technical replicates with a relative increase in R2 between 8% and 47% and reduced standard deviation across the full concentration range. We further observe more accurate detection of differential expression with a relative increase in true positives between 74% and 378% for 5% false positives. In addition, Mix2 reveals 5 dominant biases in MAQC data deviating from the common assumption of a uniform fragment distribution. On SEQC data, Mix2 yields higher consistency between measured and predicted concentration ratios. A relative error of 20% or less is obtained for 51% of transcripts by Mix2, 40% of transcripts by Cufflinks and RSEM and 30% by eXpress. Titration order consistency is correct for 47% of transcripts for Mix2, 41% for Cufflinks and RSEM and 34% for eXpress. We, further, observe improved repeatability across laboratory sites with a relative increase in R2 between 8% and 44% and reduced standard deviation.

  20. 3D gravity modelling reveals off-axis crustal thickness variations along the western Gakkel Ridge (Arctic Ocean)

    Science.gov (United States)

    Schmidt-Aursch, Mechita C.; Jokat, Wilfried

    2016-11-01

    Near-orthogonal ultra-slow (13.3 mm yr- 1 to 6.5 mm yr- 1) sea floor spreading in the absence of large transform faults make the Arctic Gakkel Ridge ideally suited for the study of magmatic processes. To enable this, we generated a three-dimensional gravity model of crustal thickness over the ridge and parts of the adjacent Nansen and Amundsen basins west of 65° E. The model shows that oceanic crust accreted prior to chrons C5/C6 is generally very thin (1-3 km). Magnetic anomalies over this thin crust are highly variable both parallel and perpendicular to the ridge axis. This is the result of amagmatic or weakly volcanic spreading that started with the opening of the basins 56 Ma ago. The separation of Greenland from Svalbard at chron C5/C6 led to the inflow of North Atlantic mantle into the western Eurasia Basin leading to a change in the mantle convection system and the establishment of a magmatic dichotomy along the Gakkel Ridge. Robust magmatism was established in the Western Volcanic Zone (6° 30‧ W-3° 30‧ E), leading to creation of a 6.6 km thick igneous crust, characterized by a strong positive axial magnetic anomaly, numerous volcanic cones, and widespread thick mid-ocean ridge basalts. The transition to the neighbouring Sparsely Magmatic (3° 30‧ E-29° E) and Eastern Volcanic (29° E-85° E) zones is sharp. Peridotites cover the central valley and the inner rift flanks, the central magnetic anomaly vanishes and crustal thickness decreases to 1-4 km. Transverse basement ridges, extending for as much as 100 km into the adjacent basins, intersect the central valley. Although partly of tectonic origin, the transverse ridges are also an expression of long-living magmatic centres, as revealed by increased magnetic anomaly intensities and local thickening of the crust to values as great as 5.9 km.

  1. Vascular Targeting in Pancreatic Cancer: The Novel Tubulin-Binding Agent ZD6126 Reveals Antitumor Activity in Primary and Metastatic Tumor Models

    Directory of Open Access Journals (Sweden)

    Axel Kleespies

    2005-10-01

    Full Text Available ZD6126 is a novel vascular-targeting agent that acts by disrupting the tubulin cytoskeleton of an immature tumor endothelium, leading to an occlusion of tumor blood vessels and a subsequent tumor necrosis. We wanted to evaluate ZD6126 in primary and metastatic tumor models of human pancreatic cancer. Nude mice were injected orthotopically with L3.6pl pancreatic cancer cells. In single and multiple dosing experiments, mice received ZD6126, gemcitabine, a combination of both agents, or no treatment. For the induction of metastatic disease, additional groups of mice were injected with L3.6pl cells into the spleen. Twenty-four hours after a single-dose treatment, ZD6126 therapy led to an extensive central tumor necrosis, which was not seen after gemcitabine treatment. Multiple dosing of ZD6126 resulted in a significant growth inhibition of primary tumors and a marked reduction of spontaneous liver and lymph node metastases. Experimental metastatic disease could be significantly controlled by a combination of ZD6126 and gemcitabine, as shown by a reduction of the number and size of established liver metastases. As shown by additional in vitro and in vivo experiments, possible mechanisms involve antivascular activities and subsequent antiproliferative and proapoptotic effects of ZD6126 on tumor cells, whereas direct activities against tumor cells seem unlikely. These data highlight the antitumor and antimetastatic effects of ZD6126 in human pancreatic cancer and reveal benefits of adding ZD6126 to standard gemcitabine therapy.

  2. A Preclinical Model of Chronic Alcohol Consumption Reveals Increased Metastatic Seeding of Colon Cancer Cells in the Liver.

    Science.gov (United States)

    Im, Hwi-Jin; Kim, Hyeong-Geug; Lee, Jin-Seok; Kim, Hyo-Seon; Cho, Jung-Hyo; Jo, Il-Joo; Park, Sung-Joo; Son, Chang-Gue

    2016-04-01

    Liver metastasis is the main cause of death from colorectal cancer. Alcohol consumption impacts liver function and is suggested to be an independent risk factor for liver metastasis of colorectal cancer, but no experimental evidence supporting this hypothesis has been demonstrated to date. In this study, we investigated the effect of alcohol intake on liver metastasis. We examined colon cancer cell spread from the spleen in mice provided with water (control group), alcohol for 4 weeks before tumor injection (prealcohol), alcohol for 3 weeks after tumor injection (postalcohol), or alcohol throughout the 7-week study (alcohol). Alcohol intake significantly increased hepatic metastatic burden in the prealcohol (2.4-fold, P < 0.001), postalcohol (2.0-fold, P < 0.01), and alcohol groups (2.2-fold, P < 0.001). A fluorescence-based metastasis tracking assay also confirmed an alcohol-induced increase in the abundance of tumor cells in the liver (2.5-fold, P < 0.001). Investigation of the host microenvironment revealed an alcohol-induced inflammatory response marked by elevated TNFα, IL1β, IL6, and IFNγ protein levels, as well as increased expression of intercellular molecule-1 (ICAM1) in hepatic tissues after 4 weeks of alcohol consumption. Moreover, the peripheral blood of mice provided with alcohol for 4 weeks exhibited reduced natural killer and CD8(+) T-cell counts. Collectively, our findings suggest that chronic alcohol consumption accelerates liver metastasis of colorectal cancer cells through alterations to the liver microenvironment and inactivation of immune surveillance. Cancer Res; 76(7); 1698-704. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Zebrafish models for dyskeratosis congenita reveal critical roles of p53 activation contributing to hematopoietic defects through RNA processing.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available Dyskeratosis congenita (DC is a rare bone marrow failure syndrome in which hematopoietic defects are the main cause of mortality. The most studied gene responsible for DC pathogenesis is DKC1 while mutations in several other genes encoding components of the H/ACA RNP telomerase complex, which is involved in ribosomal RNA(rRNA processing and telomere maintenance, have also been implicated. GAR1/nola1 is one of the four core proteins of the H/ACA RNP complex. Through comparative analysis of morpholino oligonucleotide induced knockdown of dkc1 and a retrovirus insertion induced mutation of GAR1/nola1 in zebrafish, we demonstrate that hematopoietic defects are specifically recapitulated in these models and that these defects are significantly reduced in a p53 null mutant background. We further show that changes in telomerase activity are undetectable at the early stages of DC pathogenesis but rRNA processing is clearly defective. Our data therefore support a model that deficiency in dkc1 and nola1 in the H/ACA RNP complex likely contributes to the hematopoietic phenotype through p53 activation associated with rRNA processing defects rather than telomerase deficiency during the initial stage of DC pathogenesis.

  4. Whole Genome and Global Gene Expression Analyses of the Model Mushroom Flammulina velutipes Reveal a High Capacity for Lignocellulose Degradation

    Science.gov (United States)

    Park, Young-Jin; Baek, Jeong Hun; Lee, Seonwook; Kim, Changhoon; Rhee, Hwanseok; Kim, Hyungtae; Seo, Jeong-Sun; Park, Hae-Ran; Yoon, Dae-Eun; Nam, Jae-Young; Kim, Hong-Il; Kim, Jong-Guk; Yoon, Hyeokjun; Kang, Hee-Wan; Cho, Jae-Yong; Song, Eun-Sung; Sung, Gi-Ho; Yoo, Young-Bok; Lee, Chang-Soo; Lee, Byoung-Moo; Kong, Won-Sik

    2014-01-01

    Flammulina velutipes is a fungus with health and medicinal benefits that has been used for consumption and cultivation in East Asia. F. velutipes is also known to degrade lignocellulose and produce ethanol. The overlapping interests of mushroom production and wood bioconversion make F. velutipes an attractive new model for fungal wood related studies. Here, we present the complete sequence of the F. velutipes genome. This is the first sequenced genome for a commercially produced edible mushroom that also degrades wood. The 35.6-Mb genome contained 12,218 predicted protein-encoding genes and 287 tRNA genes assembled into 11 scaffolds corresponding with the 11 chromosomes of strain KACC42780. The 88.4-kb mitochondrial genome contained 35 genes. Well-developed wood degrading machinery with strong potential for lignin degradation (69 auxiliary activities, formerly FOLymes) and carbohydrate degradation (392 CAZymes), along with 58 alcohol dehydrogenase genes were highly expressed in the mycelium, demonstrating the potential application of this organism to bioethanol production. Thus, the newly uncovered wood degrading capacity and sequential nature of this process in F. velutipes, offer interesting possibilities for more detailed studies on either lignin or (hemi-) cellulose degradation in complex wood substrates. The mutual interest in wood degradation by the mushroom industry and (ligno-)cellulose biomass related industries further increase the significance of F. velutipes as a new model. PMID:24714189

  5. A free-form lensing model of A370 revealing stellar mass dominated BCGs, in Hubble Frontier Fields images

    Science.gov (United States)

    Diego, Jose M.; Schmidt, Kasper B.; Broadhurst, Tom; Lam, Daniel; Vega-Ferrero, Jesús; Zheng, Wei; Lee, Slanger; Morishita, Takahiro; Bernstein, Gary; Lim, Jeremy; Silk, Joseph; Ford, Holland

    2018-02-01

    We derive a free-form mass distribution for the unrelaxed cluster A370 (z = 0.375), using the first release of the Hubble Frontier Fields images (76 orbits) and GLASS spectroscopy. Starting from a reliable set of 10 multiply lensed systems, we produce a free-form lens model that identifies ≈80 multiple images. Good consistency is found between models using independent subsamples of these lensed systems, with detailed agreement for the well-resolved arcs. The mass distribution has two very similar concentrations centred on the two prominent brightest cluster galaxies (or BCGs), with mass profiles that are accurately constrained by a uniquely useful system of long radially lensed images centred on both BCGs. We show that the lensing mass profiles of these BCGs are mainly accounted for by their stellar mass profiles, with a modest contribution from dark matter within r normal galaxies for which dark matter should dominate over stars. Growth via merging between BCGs is, however, consistent with this finding, so that stars still dominate over dark matter. We do not observe any significant offset between the positions of the peaks of the dark matter distribution and the light distribution.

  6. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    Science.gov (United States)

    Kristensen, Emil; Madsen-Østerbye, Mikkel; Massicotte, Philippe; Pedersen, Ole; Markager, Stiig; Kragh, Theis

    2018-02-01

    groundwater discharge sites located mainly in the eastern part of the lake with a single site in the southern part. Observations from the eastern part of the lake revealed an impermeable clay layer that promotes discharge during heavy precipitation events, which would otherwise be difficult to identify using traditional hydrological methods. In comparison to the lake concentrations, high tracer concentrations in the southern part showed that only a smaller fraction of water could originate from this area, thereby confirming the model results. A Euclidean cluster analysis of δ18O isotopes identified recharge sites corresponding to areas adjacent to drainage channels, and a cluster analysis of the microbially influenced FDOM component C4 further identified five sites that showed a tendency towards high groundwater recharge rate. In conclusion, it was found that this methodology can be applied to smaller lakes within a short time frame, providing useful information regarding the WRT of the lake and more importantly the groundwater recharge and discharge sites around the lake. Thus, it is a tool for specific management of the catchment.

  7. A new in vivo model of pantothenate kinase-associated neurodegeneration reveals a surprising role for transcriptional regulation in pathogenesis.

    Directory of Open Access Journals (Sweden)

    Varun ePandey

    2013-09-01

    Full Text Available Pantothenate Kinase-Associated Neurodegeneration (PKAN is a neurodegenerative disorder with a poorly understood molecular mechanism. It is caused by mutations in Pantothenate Kinase, the first enzyme in the Coenzyme A (CoA biosynthetic pathway. Here, we developed a Drosophila model of PKAN (tim-fbl flies that allows us to continuously monitor the modeled disease in the brain. In tim-fbl flies, downregulation of fumble, the Drosophila PanK homologue in the cells containing a circadian clock results in characteristic features of PKAN such as developmental lethality, hypersensitivity to oxidative stress, and diminished life span. Despite quasi-normal circadian transcriptional rhythms, tim-fbl flies display brain-specific aberrant circadian locomotor rhythms, and a unique transcriptional signature. Comparison with expression data from flies exposed to paraquat demonstrates that, as previously suggested, pathways others than oxidative stress are affected by PANK downregulation. Surprisingly we found a significant decrease in the expression of key components of the photoreceptor recycling pathways, which could lead to retinal degeneration, a hallmark of PKAN. Importantly, these defects are not accompanied by changes in structural components in eye genes suggesting that changes in gene expression in the eye precede and may cause the retinal degeneration. Indeed tim-fbl flies have diminished response to light transitions, and their altered day/night patterns of activity demonstrates defects in light perception. This suggest that retinal lesions are not solely due to oxidative stress and demonstrates a role for the transcriptional response to CoA deficiency underlying the defects observed in dPanK deficient flies. Moreover, in the present study we developed a new fly model that can be applied to other diseases and that allows the assessment of neurodegeneration in the brains of living flies.

  8. Estimation of torque on mechanical heart valves due to magnetic resonance imaging including an estimation of the significance of the Lenz effect using a computational model

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Neil M. [44 Ardgowan Street, Greenock PA16 8EL (United Kingdom). E-mail: neil.robertson at physics.org; Diaz-Gomez, Manuel [Plaza Alcalde Horacio Hermoso, 2, 3-A 41013 Seville (Spain). E-mail: manolo-diaz at latinmail.com; Condon, Barrie [Department of Clinical Physics, Institute of Neurological Sciences, Glasgow G51 4TF (United Kingdom). E-mail: barrie.condon at udcf.gla.ac.uk

    2000-12-01

    Mitral and aortic valve replacement is a procedure which is common in cardiac surgery. Some of these replacement valves are mechanical and contain moving metal parts. Should the patient in whom such a valve has been implanted be involved in magnetic resonance imaging, there is a possible dangerous interaction between the moving metal parts and the static magnetic field due to the Lenz effect. Mathematical models of two relatively common forms of single-leaflet valves have been derived and the magnitude of the torque which opposes the motion of the valve leaflet has been calculated for a valve disc of solid metal. In addition, a differential model of a ring-strengthener valve type has been considered to determine the likely significance of the Lenz effect in the context of the human heart. For common magnetic field strengths at present, i.e. 1 to 2 T, the effect is not particularly significant. However, there is a marked increase in back pressure as static magnetic field strength increases. There are concerns that, since field strengths in the range 3 to 4 T are increasingly being used, the Lenz effect could become significant. At 5 to 10 T the malfunction of the mechanical heart valve could cause the heart to behave as though it is diseased. For unhealthy or old patients this could possibly prove fatal. (author)

  9. Proteomics reveals changes in hepatic proteins during chicken embryonic development: an alternative model to study human obesity.

    Science.gov (United States)

    Peng, Mengling; Li, Shengnan; He, Qianian; Zhao, Jinlong; Li, Longlong; Ma, Haitian

    2018-01-08

    Chicken embryos are widely used as a model for studies of obesity; however, no detailed information is available about the dynamic changes of proteins during the regulation of adipose biology and metabolism. Thus, the present study used an isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic approach to identify the changes in protein abundance at different stages of chicken embryonic development. In this study, the abundances of 293 hepatic proteins in 19-day old of chicken embryos compared with 14-day old and 160 hepatic proteins at hatching compared with 19-day old embryos were significantly changed. Pathway analysis showed that fatty acid degradation (upregulated ACAA2, CPT1A, and ACOX1), protein folding (upregulated PDIs, CALR3, LMAN1, and UBQLN1) and gluconeogenesis (upregulated ACSS1, AKR1A1, ALDH3A2, ALDH7A1, and FBP2) were enhanced from embryonic day 14 (E14) to E19 of chicken embryo development. Analysis of the differentially abundant proteins indicated that glycolysis was not the main way to produce energy from E19 to hatching day during chicken embryo development. In addition, purine metabolism was enhanced, as deduced from increased IMPDH2, NT5C, PGM2, and XDH abundances, and the decrease of growth rate could be overcome by increasing the abundance of ribosomal proteins from E19 to the hatching day. The levels of certain proteins were coordinated with each other to regulate the changes in metabolic pathways to satisfy the requirement for growth and development at different stages of chicken embryo development. Importantly, ACAA2, CPT1A, and ACOX1 might be key factors to control fat deposition during chicken embryonic development. These results provided information showing that chicken is a useful model to further investigate the mechanism of obesity and insulin resistance in humans.

  10. Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism.

    Directory of Open Access Journals (Sweden)

    Ahmad A Mannan

    Full Text Available An understanding of the dynamics of the metabolic profile of a bacterial cell is sought from a dynamical systems analysis of kinetic models. This modelling formalism relies on a deterministic mathematical description of enzyme kinetics and their metabolite regulation. However, it is severely impeded by the lack of available kinetic information, limiting the size of the system that can be modelled. Furthermore, the subsystem of the metabolic network whose dynamics can be modelled is faced with three problems: how to parameterize the model with mostly incomplete steady state data, how to close what is now an inherently open system, and how to account for the impact on growth. In this study we address these challenges of kinetic modelling by capitalizing on multi-'omics' steady state data and a genome-scale metabolic network model. We use these to generate parameters that integrate knowledge embedded in the genome-scale metabolic network model, into the most comprehensive kinetic model of the central carbon metabolism of E. coli realized to date. As an application, we performed a dynamical systems analysis of the resulting enriched model. This revealed bistability of the central carbon metabolism and thus its potential to express two distinct metabolic states. Furthermore, since our model-informing technique ensures both stable states are constrained by the same thermodynamically feasible steady state growth rate, the ensuing bistability represents a temporal coexistence of the two states, and by extension, reveals the emergence of a phenotypically heterogeneous population.

  11. Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism

    Science.gov (United States)

    Mannan, Ahmad A.; Toya, Yoshihiro; Shimizu, Kazuyuki; McFadden, Johnjoe; Kierzek, Andrzej M.; Rocco, Andrea

    2015-01-01

    An understanding of the dynamics of the metabolic profile of a bacterial cell is sought from a dynamical systems analysis of kinetic models. This modelling formalism relies on a deterministic mathematical description of enzyme kinetics and their metabolite regulation. However, it is severely impeded by the lack of available kinetic information, limiting the size of the system that can be modelled. Furthermore, the subsystem of the metabolic network whose dynamics can be modelled is faced with three problems: how to parameterize the model with mostly incomplete steady state data, how to close what is now an inherently open system, and how to account for the impact on growth. In this study we address these challenges of kinetic modelling by capitalizing on multi-‘omics’ steady state data and a genome-scale metabolic network model. We use these to generate parameters that integrate knowledge embedded in the genome-scale metabolic network model, into the most comprehensive kinetic model of the central carbon metabolism of E. coli realized to date. As an application, we performed a dynamical systems analysis of the resulting enriched model. This revealed bistability of the central carbon metabolism and thus its potential to express two distinct metabolic states. Furthermore, since our model-informing technique ensures both stable states are constrained by the same thermodynamically feasible steady state growth rate, the ensuing bistability represents a temporal coexistence of the two states, and by extension, reveals the emergence of a phenotypically heterogeneous population. PMID:26469081

  12. Incorporating biologic measurements (SF2, CFE) into a tumor control probability model increases their prognostic significance: a study in cervical carcinoma treated with radiation therapy

    International Nuclear Information System (INIS)

    Buffa, Francesca Meteora; Davidson, Susan E.; Hunter, Robert D.; Nahum, Alan E.; West, Catharine M.L.

    2001-01-01

    Purpose: To assess whether incorporation of measurements of surviving fraction at 2 Gy (SF 2 ) and colony-forming efficiency (CFE) into a tumor control probability (tcp) model increases their prognostic significance. Methods and Materials: Measurements of SF 2 and CFE were available from a study on carcinoma of the cervix treated with radiation alone. These measurements, as well as tumor volume, dose, and treatment time, were incorporated into a Poisson tcp model (tcp α,ρ ). Regression analysis was performed to assess the prognostic power of tcp α,ρ vs. the use of either tcp models with biologic parameters fixed to best-fit estimates (but incorporating individual dose, volume, and treatment time) or the use of SF 2 and CFE measurements alone. Results: In a univariate regression analysis of 44 patients, tcp α,ρ was a better prognostic factor for both local control and survival (p 2 alone (p=0.009 for local control, p=0.29 for survival) or CFE alone (p=0.015 for local control, p=0.38 for survival). In multivariate analysis, tcp α,ρ emerged as the most important prognostic factor for local control (p α,ρ , CFE was still a significant independent prognostic factor for local control, whereas SF 2 was not. The sensitivities of tcp α,ρ and SF 2 as predictive tests for local control were 87% and 65%, respectively. Specificities were 70% and 77%, respectively. Conclusions: A Poisson tcp model incorporating individual SF 2 , CFE, dose, tumor volume, and treatment time was found to be the best independent prognostic factor for local control and survival in cervical carcinoma patients

  13. Gemtuzumab Ozogamicin (GO Inclusion to Induction Chemotherapy Eliminates Leukemic Initiating Cells and Significantly Improves Survival in Mouse Models of Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Cathy C Zhang

    2018-01-01

    Full Text Available Gemtuzumab ozogamicin (GO is an anti-CD33 antibody-drug conjugate for the treatment of acute myeloid leukemia (AML. Although GO shows a narrow therapeutic window in early clinical studies, recent reports detailing a modified dosing regimen of GO can be safely combined with induction chemotherapy, and the combination provides significant survival benefits in AML patients. Here we tested whether the survival benefits seen with the combination arise from the enhanced reduction of chemoresidual disease and leukemic initiating cells (LICs. Herein, we use cell line and patient-derived xenograft (PDX AML models to evaluate the combination of GO with daunorubicin and cytarabine (DA induction chemotherapy on AML blast growth and animal survival. DA chemotherapy and GO as separate treatments reduced AML burden but left significant chemoresidual disease in multiple AML models. The combination of GO and DA chemotherapy eliminated nearly all AML burden and extended overall survival. In two small subsets of AML models, chemoresidual disease following DA chemotherapy displayed hallmark markers of leukemic LICs (CLL1 and CD34. In vivo, the two chemoresistant subpopulations (CLL1+/CD117− and CD34+/CD38+ showed higher ability to self-renewal than their counterpart subpopulations, respectively. CD33 was coexpressed in these functional LIC subpopulations. We demonstrate that the GO and DA induction chemotherapy combination more effectively eliminates LICs in AML PDX models than either single agent alone. These data suggest that the survival benefit seen by the combination of GO and induction chemotherapy, nonclinically and clinically, may be attributed to the enhanced reduction of LICs.

  14. The Significance of Shifts in Precipitation Patterns: Modelling the Impacts of Climate Change and Glacier Retreat on Extreme Flood Events in Denali National Park, Alaska

    Science.gov (United States)

    Crossman, Jill; Futter, Martyn N.; Whitehead, Paul G.

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21st century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21st century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff. PMID

  15. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska.

    Science.gov (United States)

    Crossman, Jill; Futter, Martyn N; Whitehead, Paul G

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24 m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21(st) century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21(st) century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff.

  16. Murine xenograft model demonstrates significant radio-sensitising effect of liposomal doxorubicin in a combination therapy for Feline Injection Site Sarcoma.

    Science.gov (United States)

    Petznek, H; Kleiter, M; Tichy, A; Fuchs-Baumgartinger, A; Hohenadl, C

    2014-10-01

    Therapy of cats suffering from feline injection site sarcomas (FISS) is still a challenging problem, as the recurrence rate after surgery is up to 70%. Four FISS-derived primary tumour cell lines and corresponding xenograft tumour mouse models were established to evaluate the efficacy of a concomitant chemo-/radiation therapy with doxorubicin. In vitro, strongly depending upon the timing of administration, pre-treatment with 0.25 µmol doxorubicin resulted in a significant enhancement of radiation-induced (3.5 Gy) tumour cell death. This result was confirmed in vivo, where only the combined chemo-/radiation therapy resulted in a significant reduction in tumour growth compared to the respective mono-therapies with either doxorubicin or radiation. These results support the use of the concomitant chemo-/radiation therapy for adjuvant treatment of FISS, particularly in advanced or recurrent disease where surgery alone is no longer feasible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Adsorption of arsenic and phosphate onto the surface of calcite as revealed by batch experiments and surface complexation modelling

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt

    in sorption edges, pKa’s and geometry of the two anions. The adsorption of arsenate and phosphate in the single sorbate systems was modelled successfully using either the constant capacitance model (CCM) for calcite or the CD-MUSIC model for calcite. Generally the models capture the variation in arsenate...

  18. A translational murine model of sub-lethal intoxication with Shiga toxin 2 reveals novel ultrastructural findings in the brain striatum.

    Directory of Open Access Journals (Sweden)

    Carla Tironi-Farinati

    Full Text Available Infection by Shiga toxin-producing Escherichia coli causes hemorrhagic colitis, hemolytic uremic syndrome (HUS, acute renal failure, and also central nervous system complications in around 30% of the children affected. Besides, neurological deficits are one of the most unrepairable and untreatable outcomes of HUS. Study of the striatum is relevant because basal ganglia are one of the brain areas most commonly affected in patients that have suffered from HUS and since the deleterious effects of a sub-lethal dose of Shiga toxin have never been studied in the striatum, the purpose of this study was to attempt to simulate an infection by Shiga toxin-producing E. coli in a murine model. To this end, intravenous administration of a sub-lethal dose of Shiga toxin 2 (0.5 ηg per mouse was used and the correlation between neurological manifestations and ultrastructural changes in striatal brain cells was studied in detail. Neurological manifestations included significant motor behavior abnormalities in spontaneous motor activity, gait, pelvic elevation and hind limb activity eight days after administration of the toxin. Transmission electron microscopy revealed that the toxin caused early perivascular edema two days after administration, as well as significant damage in astrocytes four days after administration and significant damage in neurons and oligodendrocytes eight days after administration. Interrupted synapses and mast cell extravasation were also found eight days after administration of the toxin. We thus conclude that the chronological order of events observed in the striatum could explain the neurological disorders found eight days after administration of the toxin.

  19. Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2007-01-01

    Full Text Available In order to predict the physical properties of aerosol particles, it is necessary to adequately capture the behaviour of the ubiquitous complex organic components. One of the key properties which may affect this behaviour is the contribution of the organic components to the surface tension of aqueous particles in the moist atmosphere. Whilst the qualitative effect of organic compounds on solution surface tensions has been widely reported, our quantitative understanding on mixed organic and mixed inorganic/organic systems is limited. Furthermore, it is unclear whether models that exist in the literature can reproduce the surface tension variability for binary and higher order multi-component organic and mixed inorganic/organic systems of atmospheric significance. The current study aims to resolve both issues to some extent. Surface tensions of single and multiple solute aqueous solutions were measured and compared with predictions from a number of model treatments. On comparison with binary organic systems, two predictive models found in the literature provided a range of values resulting from sensitivity to calculations of pure component surface tensions. Results indicate that a fitted model can capture the variability of the measured data very well, producing the lowest average percentage deviation for all compounds studied. The performance of the other models varies with compound and choice of model parameters. The behaviour of ternary mixed inorganic/organic systems was unreliably captured by using a predictive scheme and this was dependent on the composition of the solutes present. For more atmospherically representative higher order systems, entirely predictive schemes performed poorly. It was found that use of the binary data in a relatively simple mixing rule, or modification of an existing thermodynamic model with parameters derived from binary data, was able to accurately capture the surface tension variation with concentration. Thus

  20. Pre-clinical evaluation of N-acetylcysteine reveals side effects in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Pinniger, Gavin J; Terrill, Jessica R; Assan, Evanna B; Grounds, Miranda D; Arthur, Peter G

    2017-12-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease associated with increased inflammation and oxidative stress. The antioxidant N-acetylcysteine (NAC) has been proposed as a therapeutic intervention for DMD boys, but potential adverse effects of NAC have not been widely investigated. We used young (6 weeks old) growing mdx mice to investigate the capacity of NAC supplementation (2% in drinking water for 6 weeks) to improve dystrophic muscle function and to explore broader systemic effects of NAC treatment. NAC treatment improved normalised measures of muscle function, and decreased inflammation and oxidative stress, but significantly reduced body weight gain, muscle weight and liver weight. Unexpected significant adverse effects of NAC on body and muscle weights indicate that interpretation of muscle function based on normalised force measures should be made with caution and careful consideration is needed when proposing the use of NAC as a therapeutic treatment for young DMD boys. Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle wasting disease characterised by severe muscle weakness, necrosis, inflammation and oxidative stress. The antioxidant N-acetylcysteine (NAC) has been proposed as a potential therapeutic intervention for DMD boys. We investigated the capacity of NAC to improve dystrophic muscle function in the mdx mouse model of DMD. Young (6 weeks old) mdx and non-dystrophic C57 mice receiving 2% NAC in drinking water for 6 weeks were compared with untreated mice. Grip strength and body weight were measured weekly, before the 12 week old mice were anaesthetised and extensor digitorum longus (EDL) muscles were excised for functional analysis and tissues were sampled for biochemical analyses. Compared to untreated mice, the mean (SD) normalised grip strength was significantly greater in NAC-treated mdx [3.13 (0.58) vs 4.87 (0.78) g body weight (bw) -1 ; P effects of NAC emphasise the need for caution when interpreting

  1. Observation and Modeling of Storm Generated Acoustic Waves in the Ionosphere Revealed in a Dense Network of GPS Receivers

    Science.gov (United States)

    Walterscheid, R. L.; Azeem, S. I.

    2017-12-01

    Acoustic waves generated in the lower atmosphere may become an important source of variably in the upper atmosphere. Although they are excited with small amplitudes they are minimally subject to viscous dissipation and may reach significant amplitudes at F-region altitudes. A number of studies in the 1970s showed clear signatures in ionosonde data in the infrasonic period range attributable to thunder storm activity. We have examined Total Electron Content data from a dense network of over 4000 ground-based GPS receivers over the continental United States during an outbreak of severe weather, including tornados, over Kansas in May 2015. A sequence of GPS TEC images showed clear Traveling Ionospheric Disturbances (TIDs) in the form of concentric rings moving outward from the center of the storm region. The characteristics of the disturbance (phase speed and frequency) were consistent with acoustic waves in the infrasonic range. We have modeled the disturbance by including a tropospheric heat source representing latent heat release from a large thunderstorm. The disturbance at ionospheric altitudes resembles the observed disturbance in terms of phase speed, frequency and horizontal wavelength. We conclude that the observed TIDs in TEC were caused by an acoustic wave generated by deep convection.

  2. The anti-tumor effect of HDAC inhibition in a human pancreas cancer model is significantly improved by the simultaneous inhibition of cyclooxygenase 2.

    Directory of Open Access Journals (Sweden)

    Olivier Peulen

    Full Text Available Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer death worldwide, with no satisfactory treatment to date. In this study, we tested whether the combined inhibition of cyclooxygenase-2 (COX-2 and class I histone deacetylase (HDAC may results in a better control of pancreatic ductal adenocarcinoma. The impact of the concomitant HDAC and COX-2 inhibition on cell growth, apoptosis and cell cycle was assessed first in vitro on human pancreas BxPC-3, PANC-1 or CFPAC-1 cells treated with chemical inhibitors (SAHA, MS-275 and celecoxib or HDAC1/2/3/7 siRNA. To test the potential antitumoral activity of this combination in vivo, we have developed and characterized, a refined chick chorioallantoic membrane tumor model that histologically and proteomically mimics human pancreatic ductal adenocarcinoma. The combination of HDAC1/3 and COX-2 inhibition significantly impaired proliferation of BxPC-3 cells in vitro and stalled entirely the BxPC-3 cells tumor growth onto the chorioallantoic membrane in vivo. The combination was more effective than either drug used alone. Consistently, we showed that both HDAC1 and HDAC3 inhibition induced the expression of COX-2 via the NF-kB pathway. Our data demonstrate, for the first time in a Pancreatic Ductal Adenocarcinoma (PDAC model, a significant action of HDAC and COX-2 inhibitors on cancer cell growth, which sets the basis for the development of potentially effective new combinatory therapies for pancreatic ductal adenocarcinoma patients.

  3. Clinical significance of changes of serum IL-6 and TNF-α levels in rat models of hypoxic-ischemia brain injury

    International Nuclear Information System (INIS)

    Niu Tingxian; Shi Zhiyong; Luo Jianjun

    2009-01-01

    Objective: To explore the clinical significance of changes of serum interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels in rat models of hypoxic-ischemia (HI) brain injury. Methods: Seventy five rat HI brain injury nodels were prepared with bilateral occlusion of common carotid artery for 24rs followed 2hrs later by hypoxia (breathing 8% oxygen) for 2hrs. One fifth of the animals were sacrificed at 4h, 8h, 12h, 24h and 48h later respectively, the serum and brain homogenate concentrations of IL-6 and TNF-α were determined with RIA and brain tissues were pathologically examined. Results: The concentrations of IL-6 and TNF-α were dynamically changed within 48h in serum and brain homogenate. Peak values occurred at 24h with serum and at 12h with brain homogenate. Meanwhile, levels of both cytokines were significantly higher in the models than those in controls (P<0.01 or P<0.05). Conclusion: The concentrations of IL-6 and TNF-α were dynamically(sham operation only, 15 animals) changed and might be regarded as the clinical markers of degree of HI brain injury. (authors)

  4. Towards general models of the three-dimensional occurrence of soil water-repellency, its hydrological significance, temporal dynamics and response to climatic change

    Science.gov (United States)

    Walsh, Rory; Urbanek, Emilia; Ferreira, Carla; Ferreira, Antonio; Shakesby, Rick

    2014-05-01

    Although it is well-established that soil water-repellency exists - at least transiently - in some vegetation/land-use types within a wide range of climatic zones, it varies greatly both in its four-dimensional character and the nature and significance of its hydrological effects. Thus within landscapes, soil water-repellency varies not only in severity, but also in percentage cover, spatial pattern and connectivity; in vertical position and vertical extent; in its temporal regime; and in the presence/absence and frequency of bypass routes through any hydrophobic layer. The nature and degree of significance of any hydrological impacts of hydrophobicity are very dependent on these variations. Assessments of the likely impacts of current and future climatic change on hydrophobic (or potentially hydrophobic) environments need to take these variations in the four-dimensional nature of hydrophobicity and their controlling factors and mechanisms into account. This poster paper presents and discusses a series of conceptual models that together attempt to understand the factors and mechanisms controlling soil water-repellency and its hydrological consequences. The paper draws on a combination of: (1) results of field measurements and experiments in burned and unburned scrub, pine and eucalyptus terrain in central Portugal; (2) laboratory experiments of the influence of the presence/absence of basal impedance and cracks, root-holes and stones on the temporal dynamics of three-dimensional patterns of repellency in wetting and drying cycles; and (3) findings from a wider range of environments and locations from the published literature. Three conceptual models are considered. The first addresses the environmental factors that control and influence the occurrence and three-dimensional structure of soil water-repellency within landscapes. Within this model, the emphasis is placed on vegetation, land-use and land management (including their influence - together with climate - on

  5. Integrative proteomic analysis of the NMDA NR1 knockdown mouse model reveals effects on central and peripheral pathways associated with schizophrenia and autism spectrum disorders

    OpenAIRE

    Wesseling, Hendrik; Guest, Paul; Lee, Chi-Ming; Wong, Erik; Rahmoune, Hassan; Bahn, Sabine

    2014-01-01

    textabstractBackground: Over the last decade, the transgenic N-methyl-D-aspartate receptor (NMDAR) NR1-knockdown mouse (NR1neo-/-) has been investigated as a glutamate hypofunction model for schizophrenia. Recent research has now revealed that the model also recapitulates cognitive and negative symptoms in the continuum of other psychiatric diseases, particularly autism spectrum disorders (ASD). As previous studies have mostly focussed on behavioural readouts, a molecular characterisation of ...

  6. Site-directed mutagenesis under the direction of in silico protein docking modeling reveals the active site residues of 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum.

    Science.gov (United States)

    Qin, Ning; Shen, Yanbing; Yang, Xu; Su, Liqiu; Tang, Rui; Li, Wei; Wang, Min

    2017-07-01

    3-Ketosteroid-Δ 1 -dehydrogenases (KsdD) from Mycobacterium neoaurum could transform androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione. This reaction has a significant effect on the product of pharmaceutical steroid. The crystal structure and active site residues information of KsdD from Mycobacterium is not yet available, which result in the engineering of KsdD is tedious. In this study, by the way of protein modeling and site-directed mutagenesis, we find that, Y122, Y125, S138, E140 and Y541 from the FAD-binding domain and Y365 from the catalytic domain play a key role in this transformation. Compared with the wild type, the decline in AD conversion for mutants illustrated that Y125, Y365, and Y541 were essential to the function of KsdD. Y122, S138 and E140 contributed to the catalysis of KsdD. The following analysis revealed the catalysis mechanism of these mutations in KsdD of Mycobacterium. These information presented here facilitate the manipulation of the catalytic properties of the enzyme to improve its application in the pharmaceutical steroid industry.

  7. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fichorova, Raina N., E-mail: rfichorova@rics.bwh.harvard.edu [Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States); Mendonca, Kevin; Yamamoto, Hidemi S.; Murray, Ryan [Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States); Chandra, Neelima; Doncel, Gustavo F. [CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA (United States)

    2015-06-15

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascular markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV + 2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P < 0.05), and decreased levels of TLR2 (P < 0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P < 0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product. - Highlights: • A transcriptome nuclease protection assay assessed microbicides for vaginal safety. • Biomarkers were

  8. Modeling autosomal recessive cutis laxa type 1C in mice reveals distinct functions for Ltbp-4 isoforms

    DEFF Research Database (Denmark)

    Bultmann-Mellin, Insa; Conradi, Anne; Maul, Alexandra C

    2015-01-01

    Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been...

  9. Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3T: testing inter- and intramethodical significance of ASL and DCE-MRI.

    Directory of Open Access Journals (Sweden)

    Fabian Zimmer

    Full Text Available OBJECTIVES: To establish arterial spin labelling (ASL for quantitative renal perfusion measurements in a rat model at 3 Tesla and to test the diagnostic significance of ASL and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI in a model of acute kidney injury (AKI. MATERIAL AND METHODS: ASL and DCE-MRI were consecutively employed on six Lewis rats, five of which had a unilateral ischaemic AKI. All measurements in this study were performed on a 3 Tesla MR scanner using a FAIR True-FISP approach and a TWIST sequence for ASL and DCE-MRI, respectively. Perfusion maps were calculated for both methods and the cortical perfusion of healthy and diseased kidneys was inter- and intramethodically compared using a region-of-interest based analysis. RESULTS/SIGNIFICANCE: Both methods produce significantly different values for the healthy and the diseased kidneys (P<0.01. The mean difference was 147±47 ml/100 g/min and 141±46 ml/100 g/min for ASL and DCE-MRI, respectively. ASL measurements yielded a mean cortical perfusion of 416±124 ml/100 g/min for the healthy and 316±102 ml/100 g/min for the diseased kidneys. The DCE-MRI values were systematically higher and the mean cortical renal blood flow (RBF was found to be 542±85 ml/100 g/min (healthy and 407±119 ml/100 g/min (AKI. CONCLUSION: Both methods are equally able to detect abnormal perfusion in diseased (AKI kidneys. This shows that ASL is a capable alternative to DCE-MRI regarding the detection of abnormal renal blood flow. Regarding absolute perfusion values, nontrivial differences and variations remain when comparing the two methods.

  10. Proton magnetic resonance spectroscopy reveals neuroprotection by oral minocycline in a nonhuman primate model of accelerated NeuroAIDS.

    Directory of Open Access Journals (Sweden)

    Eva-Maria Ratai

    2010-05-01

    Full Text Available Despite the advent of highly active anti-retroviral therapy (HAART, HIV-associated neurocognitive disorders continue to be a significant problem. In efforts to understand and alleviate neurocognitive deficits associated with HIV, we used an accelerated simian immunodeficiency virus (SIV macaque model of NeuroAIDS to test whether minocycline is neuroprotective against lentiviral-induced neuronal injury.Eleven rhesus macaques were infected with SIV, depleted of CD8+ lymphocytes, and studied until eight weeks post inoculation (wpi. Seven animals received daily minocycline orally beginning at 4 wpi. Neuronal integrity was monitored in vivo by proton magnetic resonance spectroscopy and post-mortem by immunohistochemistry for synaptophysin (SYN, microtubule-associated protein 2 (MAP2, and neuronal counts. Astrogliosis and microglial activation were quantified by measuring glial fibrillary acidic protein (GFAP and ionized calcium binding adaptor molecule 1 (IBA-1, respectively. SIV infection followed by CD8+ cell depletion induced a progressive decline in neuronal integrity evidenced by declining N-acetylaspartate/creatine (NAA/Cr, which was arrested with minocycline treatment. The recovery of this ratio was due to increases in NAA, indicating neuronal recovery, and decreases in Cr, likely reflecting downregulation of glial cell activation. SYN, MAP2, and neuronal counts were found to be higher in minocycline-treated animals compared to untreated animals while GFAP and IBA-1 expression were decreased compared to controls. CSF and plasma viral loads were lower in MN-treated animals.In conclusion, oral minocycline alleviates neuronal damage induced by the AIDS virus.

  11. Molecular data and ecological niche modelling reveal the Pleistocene history of a semi-aquatic bug (Microvelia douglasi douglasi) in East Asia.

    Science.gov (United States)

    Ye, Zhen; Zhu, Gengping; Chen, Pingping; Zhang, Danli; Bu, Wenjun

    2014-06-01

    This study investigated the Pleistocene history of a semi-aquatic bug, Microvelia douglasi douglasi Scott, 1874 (Hemiptera: Veliidae) in East Asia. We used M. douglasi douglasi as a model species to explore the effects of historical climatic fluctuations on montane semi-aquatic invertebrate species. Two hypotheses were developed using ecological niche models (ENMs). First, we hypothesized that M. douglasi douglasi persisted in suitable habitats in southern Guizhou, southern Yunnan, Hainan, Taiwan and southeast China during the LIG. After that, the populations expanded (Hypothesis 1). As the spatial prediction in the LGM was significantly larger than in the LIG, we then hypothesized that the population expanded during the LIG to LGM transition (Hypothesis 2). We tested these hypotheses using mitochondrial data (COI+COII) and nuclear data (ITS1+5.8S+ITS2). Young lineages, relatively deep splits, lineage differentiation among mountain ranges in central, south and southwest China and high genetic diversities were observed in these suitable habitats. Evidence of mismatch distributions and neutrality tests indicate that a population expansion occurred in the late Pleistocene. The Bayesian skyline plot (BSP) revealed an unusual population expansion that likely happened during the cooling transition between LIG and LGM. The results of genetic data were mostly consistent with the spatial predictions from ENM, a finding that can profoundly improve phylogeographic research. The ecological requirements of M. douglasi douglasi, together with the geographical heterogeneity and climatic fluctuations of Pleistocene in East Asia, could have shaped this unusual demographic history. Our study contributes to our knowledge of semi-aquatic bug/invertebrate responses to Pleistocene climatic fluctuations in East Asia. © 2014 John Wiley & Sons Ltd.

  12. An integrated Drosophila model system reveals unique properties for F14512, a novel polyamine-containing anticancer drug that targets topoisomerase II.

    Directory of Open Access Journals (Sweden)

    Sonia Chelouah

    Full Text Available F14512 is a novel anti-tumor molecule based on an epipodophyllotoxin core coupled to a cancer-cell vectoring spermine moiety. This polyamine linkage is assumed to ensure the preferential uptake of F14512 by cancer cells, strong interaction with DNA and potent inhibition of topoisomerase II (Topo II. The antitumor activity of F14512 in human tumor models is significantly higher than that of other epipodophyllotoxins in spite of a lower induction of DNA breakage. Hence, the demonstrated superiority of F14512 over other Topo II poisons might not result solely from its preferential uptake by cancer cells, but could also be due to unique effects on Topo II interactions with DNA. To further dissect the mechanism of action of F14512, we used Drosophila melanogaster mutants whose genetic background leads to an easily scored phenotype that is sensitive to changes in Topo II activity and/or localization. F14512 has antiproliferative properties in Drosophila cells and stabilizes ternary Topo II/DNA cleavable complexes at unique sites located in moderately repeated sequences, suggesting that the drug specifically targets a select and limited subset of genomic sequences. Feeding F14512 to developing mutant Drosophila larvae led to the recovery of flies expressing a striking phenotype, "Eye wide shut," where one eye is replaced by a first thoracic segment. Other recovered F14512-induced gain- and loss-of-function phenotypes similarly correspond to precise genetic dysfunctions. These complex in vivo results obtained in a whole developing organism can be reconciled with known genetic anomalies and constitute a remarkable instance of specific alterations of gene expression by ingestion of a drug. "Drosophila-based anticancer pharmacology" hence reveals unique properties for F14512, demonstrating the usefulness of an assay system that provides a low-cost, rapid and effective complement to mammalian models and permits the elucidation of fundamental mechanisms of

  13. A novel mouse model of Warburg Micro syndrome reveals roles for RAB18 in eye development and organisation of the neuronal cytoskeleton

    Directory of Open Access Journals (Sweden)

    Sarah M. Carpanini

    2014-06-01

    Full Text Available Mutations in RAB18 have been shown to cause the heterogeneous autosomal recessive disorder Warburg Micro syndrome (WARBM. Individuals with WARBM present with a range of clinical symptoms, including ocular and neurological abnormalities. However, the underlying cellular and molecular pathogenesis of the disorder remains unclear, largely owing to the lack of any robust animal models that phenocopy both the ocular and neurological features of the disease. We report here the generation and characterisation of a novel Rab18-mutant mouse model of WARBM. Rab18-mutant mice are viable and fertile. They present with congenital nuclear cataracts and atonic pupils, recapitulating the characteristic ocular features that are associated with WARBM. Additionally, Rab18-mutant cells exhibit an increase in lipid droplet size following treatment with oleic acid. Lipid droplet abnormalities are a characteristic feature of cells taken from WARBM individuals, as well as cells taken from individuals with other neurodegenerative conditions. Neurological dysfunction is also apparent in Rab18-mutant mice, including progressive weakness of the hind limbs. We show that the neurological defects are, most likely, not caused by gross perturbations in synaptic vesicle recycling in the central or peripheral nervous system. Rather, loss of Rab18 is associated with widespread disruption of the neuronal cytoskeleton, including abnormal accumulations of neurofilament and microtubule proteins in synaptic terminals, and gross disorganisation of the cytoskeleton in peripheral nerves. Global proteomic profiling of peripheral nerves in Rab18-mutant mice reveals significant alterations in several core molecular pathways that regulate cytoskeletal dynamics in neurons. The apparent similarities between the WARBM phenotype and the phenotype that we describe here indicate that the Rab18-mutant mouse provides an important platform for investigation of the disease pathogenesis and therapeutic

  14. Primordial germ cell development in the marmoset monkey as revealed by pluripotency factor expression: suggestion of a novel model of embryonic germ cell translocation.

    Science.gov (United States)

    Aeckerle, N; Drummer, C; Debowski, K; Viebahn, C; Behr, R

    2015-01-01

    Primordial germ cells (PGCs) are the embryonic progenitors of sperm and egg cells. Mammalian PGCs are thought to actively migrate from the yolk sac endoderm over long distances across the embryo to reach the somatic genital ridges. The general principles of mammalian PGC development were discovered in mice. In contrast, little is known about PGC development in primates due to extremely limited access to primate embryos. Here, we analyzed 12 well preserved marmoset monkey (Callithrix jacchus) embryos covering the phase from PGC emergence in the endoderm to the formation of the sexually differentiated gonad (embryonic day (E) 50 to E95). We show using immunohistochemistry that the pluripotency factors OCT4A and NANOG specifically mark PGCs throughout the period studied. In contrast, SALL4 and LIN28 were first expressed ubiquitously and only later down-regulated in somatic tissues. We further show, for the first time, that PGCs are located in the endoderm in E50 embryos in close spatial proximity to the prospective genital ridge, making a long-range migration of PGCs dispensable. At E65, PGCs are already present in the primitive gonad, while significantly later embryonic stages still exhibit PGCs at their original endodermal site, revealing a wide spatio-temporal window of PGC distribution. Our findings challenge the 'dogma' of active long-range PGC migration from the endoderm to the gonads. We therefore favor an alternative model based primarily on passive translocation of PGCs from the mesenchyme that surrounds the gut to the prospective gonad through the intercalar expansion of mesenchymal tissue which contains the PGCs. In summary, we (i) show differential pluripotency factor expression during primate embryo development and (ii) provide a schematic model for embryonic PGC translocation. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  15. Trial-by-Trial Modulation of Associative Memory Formation by Reward Prediction Error and Reward Anticipation as Revealed by a Biologically Plausible Computational Model.

    Science.gov (United States)

    Aberg, Kristoffer C; Müller, Julia; Schwartz, Sophie

    2017-01-01

    Anticipation and delivery of rewards improves memory formation, but little effort has been made to disentangle their respective contributions to memory enhancement. Moreover, it has been suggested that the effects of reward on memory are mediated by dopaminergic influences on hippocampal plasticity. Yet, evidence linking memory improvements to actual reward computations reflected in the activity of the dopaminergic system, i.e., prediction errors and expected values, is scarce and inconclusive. For example, different previous studies reported that the magnitude of prediction errors during a reinforcement learning task was a positive, negative, or non-significant predictor of successfully encoding simultaneously presented images. Individual sensitivities to reward and punishment have been found to influence the activation of the dopaminergic reward system and could therefore help explain these seemingly discrepant results. Here, we used a novel associative memory task combined with computational modeling and showed independent effects of reward-delivery and reward-anticipation on memory. Strikingly, the computational approach revealed positive influences from both reward delivery, as mediated by prediction error magnitude, and reward anticipation, as mediated by magnitude of expected value, even in the absence of behavioral effects when analyzed using standard methods, i.e., by collapsing memory performance across trials within conditions. We additionally measured trait estimates of reward and punishment sensitivity and found that individuals with increased reward (vs. punishment) sensitivity had better memory for associations encoded during positive (vs. negative) prediction errors when tested after 20 min, but a negative trend when tested after 24 h. In conclusion, modeling trial-by-trial fluctuations in the magnitude of reward, as we did here for prediction errors and expected value computations, provides a comprehensive and biologically plausible description of

  16. Mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1979-01-01

    Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

  17. Gillespie eco-evolutionary models (GEMs) reveal the role of heritable trait variation in eco-evolutionary dynamics.

    Science.gov (United States)

    DeLong, John P; Gibert, Jean P

    2016-02-01

    Heritable trait variation is a central and necessary ingredient of evolution. Trait variation also directly affects ecological processes, generating a clear link between evolutionary and ecological dynamics. Despite the changes in variation that occur through selection, drift, mutation, and recombination, current eco-evolutionary models usually fail to track how variation changes through time. Moreover, eco-evolutionary models assume fitness functions for each trait and each ecological context, which often do not have empirical validation. We introduce a new type of model, Gillespie eco-evolutionary models (GEMs), that resolves these concerns by tracking distributions of traits through time as eco-evolutionary dynamics progress. This is done by allowing change to be driven by the direct fitness consequences of model parameters within the context of the underlying ecological model, without having to assume a particular fitness function. GEMs work by adding a trait distribution component to the standard Gillespie algorithm - an approach that models stochastic systems in nature that are typically approximated through ordinary differential equations. We illustrate GEMs with the Rosenzweig-MacArthur consumer-resource model. We show not only how heritable trait variation fuels trait evolution and influences eco-evolutionary dynamics, but also how the erosion of variation through time may hinder eco-evolutionary dynamics in the long run. GEMs can be developed for any parameter in any ordinary differential equation model and, furthermore, can enable modeling of multiple interacting traits at the same time. We expect GEMs will open the door to a new direction in eco-evolutionary and evolutionary modeling by removing long-standing modeling barriers, simplifying the link between traits, fitness, and dynamics, and expanding eco-evolutionary treatment of a greater diversity of ecological interactions. These factors make GEMs much more than a modeling advance, but an important

  18. The dimensions and role of commensality: A theoretical model drawn from the significance of communal eating among adults in Santiago, Chile.

    Science.gov (United States)

    Giacoman, Claudia

    2016-12-01

    This article examines the significance of communal eating among adults from Santiago, Chile, by elaborating on a theoretical model for commensality that is based on empirical material. Based on this objective, 24 group interviews were conducted in Santiago with family members, coworkers, and friends who shared meals with one another. The results showed that the practice of commensality strengthens the cohesion among the members of a group, providing an interactive space in which communal belonging is symbolized and shared norms are respected. However, eating together also is assigned an ambiguous value: On the one hand, commensality is viewed as positive in enabling connections with others. On the other hand, participating in commensality can be viewed as negative, causing tensions depending on the characteristics of the commensal group and the context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Computer Modeling Reveals that Modifications of the Histone Tail Charges Define Salt-Dependent Interaction of the Nucleosome Core Particles

    OpenAIRE

    Yang, Ye; Lyubartsev, Alexander P.; Korolev, Nikolay; Nordenskiöld, Lars

    2009-01-01

    Coarse-grained Langevin molecular dynamics computer simulations were conducted for systems that mimic solutions of nucleosome core particles (NCPs). The NCP was modeled as a negatively charged spherical particle representing the complex of DNA and the globular part of the histones combined with attached strings of connected charged beads modeling the histone tails. The size, charge, and distribution of the tails relative to the core were built to match real NCPs. Three models of NCPs were con...

  20. [Change and Significance of RhoA/ROCK signaling pathway in the model with natural degeneration of the rat endplate chondrocytes].

    Science.gov (United States)

    Ma, Mingming; Xu, Hongguang; Zhang, Xiaoling; Wang, Hong; Zheng, Quan; Xu, Jiajia; Shen, Xiang; Zhang, Shufeng

    2015-11-03

    To explore the change and Significance of RhoA/ROCK signaling pathway in the model with natural degeneration of the rat endplate chondrocytes. Endplate chondrocytes were selected by enzyme digestion and cultured in vitro to divided into control (P2 cells), naturally passaged (P5 cells) groups and treatment group (P5+ROCK Inhibitor Y27632). The phenotype of endplate chondrocytes were identified by toluidine blue stains and F-actin stains. Type II collagen, aggrecan and SOX9 genes were examed by Real-time RT-PCR to verify the degeneration model. The RhoA/ROCK signaling pathway related gene ROCK-1, ROCK-2 were detected by RT-PCR and Western blot. The actived RhoA was examed by active-RhoA detection and Western blot. With the passaging,endplate chondrocytes completely lost the original cell morphology, the levels of type II collagen (P5/P2=0.248, PROCK-1 (P5/P2=0.652, PROCK-2 (P5/P2=2.527, PROCK-1 AND ROCK-2 were down-regulated in the treatment group. And type II collagen, aggrecan, SOX9 significantly increased. The degeneration of endplate chondrocytes with decreased ROCK-1 expression but increased active-RhoA and ROCK-2 expression suggest that RhoA/ROCK signaling pathway play an important role in the in vitro degeneration of endplate chondrocytes.Modulating the expression of RhoA/ROCK signaling pathway may be a new method of solving the problem of the degeneration of intervertebral disc.

  1. Motavizumab, A Neutralizing Anti-Respiratory Syncytial Virus (Rsv Monoclonal Antibody Significantly Modifies The Local And Systemic Cytokine Responses Induced By Rsv In The Mouse Model

    Directory of Open Access Journals (Sweden)

    Jafri Hasan S

    2007-10-01

    Full Text Available Abstract Motavizumab (MEDI-524 is a monoclonal antibody with enhanced neutralizing activity against RSV. In mice, motavizumab suppressed RSV replication which resulted in significant reduction of clinical parameters of disease severity. We evaluated the effect of motavizumab on the local and systemic immune response induced by RSV in the mouse model. Balb/c mice were intranasally inoculated with 106.5 PFU RSV A2 or medium. Motavizumab was given once intraperitoneally (1.25 mg/mouse as prophylaxis, 24 h before virus inoculation. Bronchoalveolar lavage (BAL and serum samples were obtained at days 1, 5 (acute and 28 (long-term post inoculation and analyzed with a multiplex assay (Beadlyte Upstate, NY for simultaneous quantitation of 18 cytokines: IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, KC (similar to human IL-8, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, TNF-α, MCP-1, RANTES, IFN-γ and GM-CSF. Overall, cytokine concentrations were lower in serum than in BAL samples. By day 28, only KC was detected in BAL specimens at low concentrations in all groups. Administration of motavizumab significantly reduced (p

  2. Two-step grafting significantly enhances the survival of foetal dopaminergic transplants and induces graft-derived vascularisation in a 6-OHDA model of Parkinson's disease.

    Science.gov (United States)

    Büchele, Fabian; Döbrössy, Máté; Hackl, Christina; Jiang, Wei; Papazoglou, Anna; Nikkhah, Guido

    2014-08-01

    Following transplantation of foetal primary dopamine (DA)-rich tissue for neurorestaurative treatment of Parkinson's disease (PD), only 5-10% of the functionally relevant DAergic cells survive both in experimental models and in clinical studies. The current work tested how a two-step grafting protocol could have a positive impact on graft survival. DAergic tissue is divided in two portions and grafted in two separate sessions into the same target area within a defined time interval. We hypothesized that the first graft creates a "DAergic" microenvironment or "nest" similar to the perinatal substantia nigra that stimulates and protects the second graft. 6-OHDA-lesioned rats were sequentially transplanted with wild-type (GFP-, first graft) and transgenic (GFP+, second graft) DAergic cells in time interims of 2, 5 or 9days. Each group was further divided into two sub-groups receiving either 200k (low cell number groups: 2dL, 5dL, 9dL) or 400k cells (high cell number groups: 2dH, 5dH, 9dH) as first graft. During the second transplantation, all groups received the same amount of 200k GFP+ cells. Controls received either low or high cell numbers in one single session (standard protocol). Drug-induced rotations, at 2 and 6weeks after grafting, showed significant improvement compared to the baseline lesion levels without significant differences between the groups. Rats were sacrificed 8weeks after transplantation for post-mortem histological assessment. Both two-step groups with the time interval of 2days (2dL and 2dH) showed a significantly higher survival of DAergic cells compared to their respective standard control group (2dL, +137%; 2dH, +47%). Interposing longer intervals of 5 or 9days resulted in the loss of statistical significance, neutralising the beneficial two-step grafting effect. Furthermore, the transplants in the 2dL and 2dH groups had higher graft volume and DA-fibre-density values compared to all other two-step groups. They also showed intense growth of

  3. A Geometrically-Constrained Mathematical Model of Mammary Gland Ductal Elongation Reveals Novel Cellular Dynamics within the Terminal End Bud.

    Directory of Open Access Journals (Sweden)

    Ingrid Paine

    2016-04-01

    Full Text Available Mathematics is often used to model biological systems. In mammary gland development, mathematical modeling has been limited to acinar and branching morphogenesis and breast cancer, without reference to normal duct formation. We present a model of ductal elongation that exploits the geometrically-constrained shape of the terminal end bud (TEB, the growing tip of the duct, and incorporates morphometrics, region-specific proliferation and apoptosis rates. Iterative model refinement and behavior analysis, compared with biological data, indicated that the traditional metric of nipple to the ductal front distance, or percent fat pad filled to evaluate ductal elongation rate can be misleading, as it disregards branching events that can reduce its magnitude. Further, model driven investigations of the fates of specific TEB cell types confirmed migration of cap cells into the body cell layer, but showed their subsequent preferential elimination by apoptosis, thus minimizing their contribution to the luminal lineage and the mature duct.

  4. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at

  5. Data-driven modeling of sleep EEG and EOG reveals characteristics indicative of pre-Parkinson's and Parkinson's disease

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Zoetmulder, Marielle; Koch, Henriette

    2014-01-01

    Background: Manual scoring of sleep relies on identifying certain characteristics in polysomnograph (PSG) signals. However, these characteristics are disrupted in patients with neurodegenerative diseases. New method: This study evaluates sleep using a topic modeling and unsupervised learning appr...

  6. Marine geophysics. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure.

    Science.gov (United States)

    Sandwell, David T; Müller, R Dietmar; Smith, Walter H F; Garcia, Emmanuel; Francis, Richard

    2014-10-03

    Gravity models are powerful tools for mapping tectonic structures, especially in the deep ocean basins where the topography remains unmapped by ships or is buried by thick sediment. We combined new radar altimeter measurements from satellites CryoSat-2 and Jason-1 with existing data to construct a global marine gravity model that is two times more accurate than previous models. We found an extinct spreading ridge in the Gulf of Mexico, a major propagating rift in the South Atlantic Ocean, abyssal hill fabric on slow-spreading ridges, and thousands of previously uncharted seamounts. These discoveries allow us to understand regional tectonic processes and highlight the importance of satellite-derived gravity models as one of the primary tools for the investigation of remote ocean basins. Copyright © 2014, American Association for the Advancement of Science.

  7. Complex network models reveal correlations among network metrics, exercise intensity and role of body changes in the fatigue process.

    Science.gov (United States)

    Pereira, Vanessa Helena; Gama, Maria Carolina Traina; Sousa, Filipe Antônio Barros; Lewis, Theodore Gyle; Gobatto, Claudio Alexandre; Manchado-Gobatto, Fúlvia Barros

    2015-05-21

    The aims of the present study were analyze the fatigue process at distinct intensity efforts and to investigate its occurrence as interactions at distinct body changes during exercise, using complex network models. For this, participants were submitted to four different running intensities until exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were selected according to critical power model. Mechanical (force, peak power, mean power, velocity and work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were obtained during exercises and it was used to construction of four complex network models. Such models have both, theoretical and mathematical value, and enables us to perceive new insights that go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue process. Our results shows that nodes, links and network metrics are sensibility according to increase of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables in the exhaustion occurrence and even training prescription applications.

  8. Complex network models reveal correlations among network metrics, exercise intensity and role of body changes in the fatigue process

    Science.gov (United States)

    Pereira, Vanessa Helena; Gama, Maria Carolina Traina; Sousa, Filipe Antônio Barros; Lewis, Theodore Gyle; Gobatto, Claudio Alexandre; Manchado-Gobatto, Fúlvia Barros

    2015-05-01

    The aims of the present study were analyze the fatigue process at distinct intensity efforts and to investigate its occurrence as interactions at distinct body changes during exercise, using complex network models. For this, participants were submitted to four different running intensities until exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were selected according to critical power model. Mechanical (force, peak power, mean power, velocity and work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were obtained during exercises and it was used to construction of four complex network models. Such models have both, theoretical and mathematical value, and enables us to perceive new insights that go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue process. Our results shows that nodes, links and network metrics are sensibility according to increase of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables in the exhaustion occurrence and even training prescription applications.

  9. Gene expression profiling in a mouse model of retinal vein occlusion induced by laser treatment reveals a predominant inflammatory and tissue damage response.

    Science.gov (United States)

    Martin, Gottfried; Conrad, David; Cakir, Bertan; Schlunck, Günther; Agostini, Hansjürgen T

    2018-01-01

    Retinal vein occlusion (RVO) has been investigated in several laser-induced animal models using pigs, rabbits and rats. However, laser-induced RVO has been rarely reported in mice, despite the impressive number of available mutants, ease of handling and cost effectiveness. The aim of this study was to further assess the feasibility of a RVO mouse model for gene expression analysis and its possible use to investigate effects of hypoxia. C57Bl/6J mice were injected with eosin Y for photo-sensitization. Subsequently, large retinal veins were laser-treated in one eye to induce vascular occlusion. Contralateral control eyes received non-occlusive retinal laser treatment sparing large vessels. The animals were followed for up to eight days and assessed by funduscopy, angiography, hypoxyprobe staining, histopathology and gene expression analysis by qPCR and RNA sequencing (RNAseq). Another group of mice was left untreated and studied at a single time point to determine baseline characteristics. Laser-induced RVO persisted in half of the treated veins for three days, and in a third of the veins for the whole observation period of 8 days. Funduscopy revealed large areas of retinal swelling in all laser-treated eyes, irrespective of vascular targeting or occlusion status. Damage of the outer retina, retinal pigment epithelium (RPE), and even choroid and sclera at the laser site was observed in histological sections. Genes associated with inflammation or cell damage were highly up-regulated in all laser-treated eyes as detected by RNAseq and qPCR. Retinal hypoxia was observed by hypoxyprobe staining in all RVO eyes for up to 5 days with a maximal extension at days 2 and 3, but no significant RVO-dependent changes in gene expression were detected for angiogenesis- or hypoxia-related genes. The laser-induced RVO mouse model is characterized by a predominant general inflammatory and tissue damage response, which may obscure distinct hypoxia- and angiogenesis-related effects. A

  10. Striatal and Hippocampal Entropy and Recognition Signals in Category Learning: Simultaneous Processes Revealed by Model-Based fMRI

    Science.gov (United States)

    Davis, Tyler; Love, Bradley C.; Preston, Alison R.

    2012-01-01

    Category learning is a complex phenomenon that engages multiple cognitive processes, many of which occur simultaneously and unfold dynamically over time. For example, as people encounter objects in the world, they simultaneously engage processes to determine their fit with current knowledge structures, gather new information about the objects, and adjust their representations to support behavior in future encounters. Many techniques that are available to understand the neural basis of category learning assume that the multiple processes that subserve it can be neatly separated between different trials of an experiment. Model-based functional magnetic resonance imaging offers a promising tool to separate multiple, simultaneously occurring processes and bring the analysis of neuroimaging data more in line with category learning’s dynamic and multifaceted nature. We use model-based imaging to explore the neural basis of recognition and entropy signals in the medial temporal lobe and striatum that are engaged while participants learn to categorize novel stimuli. Consistent with theories suggesting a role for the anterior hippocampus and ventral striatum in motivated learning in response to uncertainty, we find that activation in both regions correlates with a model-based measure of entropy. Simultaneously, separate subregions of the hippocampus and striatum exhibit activation correlated with a model-based recognition strength measure. Our results suggest that model-based analyses are exceptionally useful for extracting information about cognitive processes from neuroimaging data. Models provide a basis for identifying the multiple neural processes that contribute to behavior, and neuroimaging data can provide a powerful test bed for constraining and testing model predictions. PMID:22746951

  11. Revealing the burden of maternal mortality: a probabilistic model for determining pregnancy-related causes of death from verbal autopsies

    Directory of Open Access Journals (Sweden)

    Desta Teklay

    2007-02-01

    Full Text Available Abstract Background Substantial reductions in maternal mortality are called for in Millennium Development Goal 5 (MDG-5, thus assuming that maternal mortality is measurable. A key difficulty is attributing causes of death for the many women who die unaided in developing countries. Verbal autopsy (VA can elicit circumstances of death, but data need to be interpreted reliably and consistently to serve as global indicators. Recent developments in probabilistic modelling of VA interpretation are adapted and assessed here for the specific circumstances of pregnancy-related death. Methods A preliminary version of the InterVA-M probabilistic VA interpretation model was developed and refined with adult female VA data from several sources, and then assessed against 258 additional VA interviews from Burkina Faso. Likely causes of death produced by the model were compared with causes previously determined by local physicians. Distinction was made between free-text and closed-question data in the VA interviews, to assess the added value of free-text material on the model's output. Results Following rationalisation between the model and physician interpretations, cause-specific mortality fractions were broadly similar. Case-by-case agreement between the model and any of the reviewing physicians reached approximately 60%, rising to approximately 80% when cases with a discrepancy were reviewed by an additional physician. Cardiovascular disease and malaria showed the largest differences between the methods, and the attribution of infections related to pregnancy also varied. The model estimated 30% of deaths to be pregnancy-related, of which half were due to direct causes. Data derived from free-text made no appreciable difference. Conclusion InterVA-M represents a potentially valuable new tool for measuring maternal mortality in an efficient, consistent and standardised way. Further development, refinement and validation are planned. It could become a routine

  12. Systemic antibiotic therapy does not significantly improve outcome in a rat model of implant-associated osteomyelitis induced by Methicillin susceptible Staphylococcus aureus.

    Science.gov (United States)

    Fölsch, Christian; Federmann, Maike; Lakemeier, Stefan; Kuehn, Klaus D; Kittinger, Clemens; Kerwat, Martina; Fuchs-Winkelmann, Susanne; Paletta, Jürgen R J; Roessler, Philip P

    2016-04-01

    Treatment of implant-associated osteomyelitis regularly involves the use of systemic antibiotics in addition to surgical intervention. However, it remains unclear if perioperative systemic application of bactericide substances can improve overall outcome in models of severe intramedullary infection. The present study investigated the use of systemic gentamicin in addition to a controlled local release from a highly lipophilic gentamicinpalmitate compound while the previous study showed efficacy of sole antibiotic implant-coating. Forty male Sprague-Dawley rats were divided into two groups receiving an intramedullary femoral injection of 10(2) CFU of a common methicillin susceptible Staphylococcus aureus strain (MSSA Rosenbach). Group I received an uncoated implant whereas group II received a coated implant. All animals received a single shot intraperitoneal application of gentamicinsulfate directly after wound closure while the historical control group III (n = 20) had no antibiotic treatment at all. Animals were observed for 28 and 42 days. Serum haptoglobin and relative weight gain were assessed as well as roll over cultures of explanted femur nails and histological scores of periprosthetic infection in dissected femora. Systemic application of gentamicin combined with antibiotic-coated implant did not further reduce bacterial growth significantly compared with systemic or local antibiotic application alone. Combined local and systemic therapy reduced serum haptoglobin significantly after day 7, 28 and 42 whereas systemic application alone did not compare to controls. Systemic perioperative and implant-associated application of antibiotics were both comparably effective to treat implant-associated infections whereas the combined antibiotic therapy further reduced systemic signs of infection time dependent.

  13. In vivo imaging reveals rapid astrocyte depletion and axon damage in a model of neuromyelitis optica-related pathology

    DEFF Research Database (Denmark)

    Herwerth, Marina; Kalluri, Sudhakar Reddy; Srivastava, Rajneesh

    2016-01-01

    OBJECTIVE: Neuromyelitis optica (NMO) is an autoimmune disease of the CNS, which resembles multiple sclerosis (MS). NMO differs from MS, however, in the distribution and histology of neuroinflammatory lesions and shows a more aggressive clinical course. Moreover, the majority of NMO patients carry...... of astrocyte injury in NMO and the mechanisms by which toxicity spreads to axons are not understood. METHODS: Here, we establish in vivo imaging of the spinal cord, one of the main sites of NMO pathology, as a powerful tool to study the formation of experimental NMO-related lesions caused by human AQP4...... antibody concentration and complement, specifically C1q. INTERPRETATION: In vivo imaging of the spinal cord reveals the swift development of NMO-related acute axon injury following AQP4 antibody-mediated astrocyte depletion. This approach will be useful in studying the mechanisms underlying the spread...

  14. Integrative analysis and expression profiling of secondary cell wall genes in C4 biofuel model Setaria italica reveals targets for lignocellulose bioengineering

    Directory of Open Access Journals (Sweden)

    Mehanathan eMuthamilarasan

    2015-11-01

    Full Text Available Several underutilized grasses have excellent potential for use as bioenergy feedstock due to their lignocellulosic biomass. Genomic tools have enabled identification of lignocellulose biosynthesis genes in several sequenced plants. However, the non-availability of whole genome sequence of bioenergy grasses hinders the study on bioenergy genomics and their genomics-assisted crop improvement. Foxtail millet (Setaria italica L.; Si is a model crop for studying systems biology of bioenergy grasses. In the present study, a systematic approach has been used for identification of gene families involved in cellulose (CesA/Csl, callose (Gsl and monolignol biosynthesis (PAL, C4H, 4CL, HCT, C3H, CCoAOMT, F5H, COMT, CCR, CAD and construction of physical map of foxtail millet. Sequence alignment and phylogenetic analysis of identified proteins showed that monolignol biosynthesis proteins were highly diverse, whereas CesA/Csl and Gsl proteins were homologous to rice and Arabidopsis. Comparative mapping of foxtail millet lignocellulose biosynthesis genes with other C4 panicoid genomes revealed maximum homology with switchgrass, followed by sorghum and maize. Expression profiling of candidate lignocellulose genes in response to different abiotic stresses and hormone treatments showed their differential expression pattern, with significant higher expression of SiGsl12, SiPAL2, SiHCT1, SiF5H2 and SiCAD6 genes. Further, due to the evolutionary conservation of grass genomes, the insights gained from the present study could be extrapolated for identifying genes involved in lignocellulose biosynthesis in other biofuel species for further characterization.

  15. Mitochondrial DNA analyses and ecological niche modeling reveal post-LGM expansion of the Assam macaque (Macaca assamensis) in the foothills of Nepal Himalaya.

    Science.gov (United States)

    Khanal, Laxman; Chalise, Mukesh K; He, Kai; Acharya, Bipin K; Kawamoto, Yoshi; Jiang, Xuelong

    2018-03-01

    Genetic diversity of a species is influenced by multiple factors, including the Quaternary glacial-interglacial cycles and geophysical barriers. Such factors are not yet well documented for fauna from the southern border of the Himalayan region. This study used mitochondrial DNA (mtDNA) sequences and ecological niche modeling (ENM) to explore how the late Pleistocene climatic fluctuations and complex geography of the Himalayan region have shaped genetic diversity, population genetic structure, and demographic history of the Nepalese population of Assam macaques (Macaca assamensis) in the Himalayan foothills. A total of 277 fecal samples were collected from 39 wild troops over almost the entire distribution of the species in Nepal. The mtDNA fragment encompassing the complete control region (1121 bp) was recovered from 208 samples, thus defining 54 haplotypes. Results showed low nucleotide diversity (0.0075 ± SD 0.0001) but high haplotype diversity (0.965 ± SD 0.004). The mtDNA sequences revealed a shallow population genetic structure with a moderate but statistically significant effect of isolation by distance. Demographic history analyses using mtDNA sequences suggested a post-pleistocene population expansion. Paleodistribution reconstruction projected that the potential habitat of the Assam macaque was confined to the lower elevations of central Nepal during the Last Glacial Maximum. With the onset of the Holocene climatic optimum, the glacial refugia population experienced eastward range expansion to higher elevations. We conclude that the low genetic diversity and shallow population genetic structure of the Assam macaque population in the Nepal Himalaya region are the consequence of recent demographic and spatial expansion. © 2018 Wiley Periodicals, Inc.

  16. Bifurcation Analysis of an Existing Mathematical Model Reveals Novel Treatment Strategies and Suggests Potential Cure for Type 1 Diabetes

    DEFF Research Database (Denmark)

    Nielsen, Kenneth Hagde Mandrup; Ottesen, Johnny T.; Pociot, Flemming

    2014-01-01

    Type 1 diabetes is a disease with serious personal and socioeconomic consequences that has attracted the attention of modellers recently. But as models of this disease tend to be complicated, there has been only limited mathematical analysis to date. Here we address this problem by providing...... a bifurcation analysis of a previously published mathematical model for the early stages of type 1 diabetes in diabetes-prone NOD mice, which is based on the data available in the literature. We also show positivity and the existence of a family of attracting trapping regions in the positive 5D cone, converging...... towards a smaller trapping region, which is the intersection over the family. All these trapping regions are compact sets, and thus, practical weak persistence is guaranteed. We conclude our analysis by proposing 4 novel treatment strategies: increasing the phagocytic ability of resting macrophages...

  17. Chronic administration of ethanol leaf extract of Moringa oleifera Lam. (Moringaceae) may compromise glycaemic efficacy of Sitagliptin with no significant effect in retinopathy in a diabetic rat model.

    Science.gov (United States)

    Olurishe, Comfort; Kwanashie, Helen; Zezi, Abdulkadiri; Danjuma, Nuhu; Mohammed, Bisalla

    2016-12-24

    Moringa oleifera Lam. (Moringaceae) has gained awareness for its antidiabetic effect, and is used as alternative therapy or concurrently with orthodox medicines such as sitagliptin in diabetes mellitus. This is without ascertaining the possibility of drug-herb interactions, which could either lead to enhanced antidiabetic efficacy, increased toxicity, or compromised glycaemic control with negative consequence in diabetic retinopathy. To investigate the effect, of sitagliptin (50mg/kg), Moringa oleifera (300mg/kg) leaf extract, and a combination of both on glycaemic control parameters, lenticular opacity and changes in retinal microvasculature in alloxan (150mg/kg i.p) induced diabetic rat model. Seven groups of eight rats per group were used, with groups I, II and VII as normal (NC), diabetic (DC) and post-prandial controls (PPC). Groups III to VI were diabetic rats on sitagliptin (III), M. oleifera (IV), sitagliptin and M. oleifera (SM) (V), for 42 days with 2 weeks delayed treatment in a post-prandial hyperglycaemic group (PPSM) (VI). Glycaemic control parameters, insulin levels, body weights, and effects of retinal microvasculature on lenticular opacity/morphology were investigated. A significant decrease in fasting blood glucose (FBG) levels was displayed in SM group from day 14(60%) (poleifera showed a progressive decrease in anti-hyperglycaemic effect of sitagliptin, and although it delayed the onset of lenticular opacity (i.e. cataract-like changes) it did not prevent the progression nor ameliorated pathologic lesions in the retina. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. A structure-based model of energy transfer reveals the principles of light harvesting in photosystem II supercomplexes.

    Science.gov (United States)

    Bennett, Doran I G; Amarnath, Kapil; Fleming, Graham R

    2013-06-19

    Photosystem II (PSII) initiates photosynthesis in plants through the absorption of light and subsequent conversion of excitation energy to chemical energy via charge separation. The pigment binding proteins associated with PSII assemble in the grana membrane into PSII supercomplexes and surrounding light harvesting complex II trimers. To understand the high efficiency of light harvesting in PSII requires quantitative insight into energy transfer and charge separation in PSII supercomplexes. We have constructed the first structure-based model of energy transfer in PSII supercomplexes. This model shows that the kinetics of light harvesting cannot be simplified to a single rate limiting step. Instead, substantial contributions arise from both excitation diffusion through the antenna pigments and transfer from the antenna to the reaction center (RC), where charge separation occurs. Because of the lack of a rate-limiting step, fitting kinetic models to fluorescence lifetime data cannot be used to derive mechanistic insight on light harvesting in PSII. This model will clarify the interpretation of chlorophyll fluorescence data from PSII supercomplexes, grana membranes, and leaves.

  19. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability

    Science.gov (United States)

    Ball, David A.

    2016-01-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally. PMID:27935947

  20. A general model of distant hybridization reveals the conditions for extinction in Atlantic salmon and brown trout.

    Directory of Open Access Journals (Sweden)

    Claudio S Quilodrán

    Full Text Available Interspecific hybridization is common in nature but can be increased in frequency or even originated by human actions, such as species introduction or habitat modification, which may threaten species persistence. When hybridization occurs between distantly related species, referred to as "distant hybridization," the resulting hybrids are generally infertile or fertile but do not undergo chromosomal recombination during gametogenesis. Here, we present a model describing this frequent but poorly studied interspecific hybridization to assess its consequences on parental species and to anticipate the conditions under which they can reach extinction. Our general model fully incorporates three important processes: density-dependent competition, dominance/recessivity inheritance of traits and assortative mating. We demonstrate its use and flexibility by assessing population extinction risk between Atlantic salmon and brown trout in Norway, whose interbreeding has recently increased due to farmed fish releases into the wild. We identified the set of conditions under which hybridization may threaten salmonid species. Thanks to the flexibility of our model, we evaluated the effect of an additional risk factor, a parasitic disease, and showed that the cumulative effects dramatically increase the extinction risk. The consequences of distant hybridization are not genetically, but demographically mediated. Our general model is useful to better comprehend the evolution of such hybrid systems and we demonstrated its importance in the field of conservation biology to set up management recommendations when this increasingly frequent type of hybridization is in action.

  1. The mass balance of the Greenland ice sheet: sensitivity to climate change as revealed by energy-balance modelling

    NARCIS (Netherlands)

    Oerlemans, J.

    1991-01-01

    The sensitivity of the mass balance of the Greenland ice sheet to climate change is studied with an energy-balance model of the ice/snow surface, applied at 200 m elevation intervals for four characteristic regions of the ice sheet. Solar radiation, longwave radiation, turbulent heat fluxes

  2. Mathematical model reveals role of nucleotide signaling in airway surface liquid homeostasis and its dysregulation in cystic fibrosis.

    Science.gov (United States)

    Sandefur, Conner I; Boucher, Richard C; Elston, Timothy C

    2017-08-29

    Mucociliary clearance is composed of three components (i.e., mucin secretion, airway surface hydration, and ciliary-activity) which function coordinately to clear inhaled microbes and other foreign particles from airway surfaces. Airway surface hydration is maintained by water fluxes driven predominantly by active chloride and sodium ion transport. The ion channels that mediate electrogenic ion transport are regulated by extracellular purinergic signals that signal through G protein-coupled receptors. These purinoreceptors and the signaling pathways they activate have been identified as possible therapeutic targets for treating lung disease. A systems-level description of airway surface liquid (ASL) homeostasis could accelerate development of such therapies. Accordingly, we developed a mathematical model to describe the dynamic coupling of ion and water transport to extracellular purinergic signaling. We trained our model from steady-state and time-dependent experimental measurements made using normal and cystic fibrosis (CF) cultured human airway epithelium. To reproduce CF conditions, reduced chloride secretion, increased potassium secretion, and increased sodium absorption were required. The model accurately predicted ASL height under basal normal and CF conditions and the collapse of surface hydration due to the accelerated nucleotide metabolism associated with CF exacerbations. Finally, the model predicted a therapeutic strategy to deliver nucleotide receptor agonists to effectively rehydrate the ASL of CF airways.

  3. Rat models of 17β-estradiol-induced mammary cancer reveal novel insights into breast cancer etiology and prevention.

    Science.gov (United States)

    Shull, James D; Dennison, Kirsten L; Chack, Aaron C; Trentham-Dietz, Amy

    2018-03-01

    Numerous laboratory and epidemiologic studies strongly implicate endogenous and exogenous estrogens in the etiology of breast cancer. Data summarized herein suggest that the ACI rat model of 17β-estradiol (E2)-induced mammary cancer is unique among rodent models in the extent to which it faithfully reflects the etiology and biology of luminal types of breast cancer, which together constitute ~70% of all breast cancers. E2 drives cancer development in this model through mechanisms that are largely dependent upon estrogen receptors and require progesterone and its receptors. Moreover, mammary cancer development appears to be associated with generation of oxidative stress and can be modified by multiple dietary factors, several of which may attenuate the actions of reactive oxygen species. Studies of susceptible ACI rats and resistant COP or BN rats provide novel insights into the genetic bases of susceptibility and the biological processes regulated by genetic determinants of susceptibility. This review summarizes research progress resulting from use of these physiologically relevant rat models to advance understanding of breast cancer etiology and prevention.

  4. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses

    Directory of Open Access Journals (Sweden)

    Li Chuan

    2012-05-01

    Full Text Available Abstract Background Little is known about the potential of Brachypodium distachyon as a model for low temperature stress responses in Pooideae. The ice recrystallization inhibition protein (IRIP genes, fructosyltransferase (FST genes, and many C-repeat binding factor (CBF genes are Pooideae specific and important in low temperature responses. Here we used comparative analyses to study conservation and evolution of these gene families in B. distachyon to better understand its potential as a model species for agriculturally important temperate grasses. Results Brachypodium distachyon contains cold responsive IRIP genes which have evolved through Brachypodium specific gene family expansions. A large cold responsive CBF3 subfamily was identified in B. distachyon, while CBF4 homologs are absent from the genome. No B. distachyon FST gene homologs encode typical core Pooideae FST-motifs and low temperature induced fructan accumulation was dramatically different in B. distachyon compared to core Pooideae species. Conclusions We conclude that B. distachyon can serve as an interesting model for specific molecular mechanisms involved in low temperature responses in core Pooideae species. However, the evolutionary history of key genes involved in low temperature responses has been different in Brachypodium and core Pooideae species. These differences limit the use of B. distachyon as a model for holistic studies relevant for agricultural core Pooideae species.

  5. High-speed video gait analysis reveals early and characteristic locomotor phenotypes in mouse models of neurodegenerative movement disorders.

    Science.gov (United States)

    Preisig, Daniel F; Kulic, Luka; Krüger, Maik; Wirth, Fabian; McAfoose, Jordan; Späni, Claudia; Gantenbein, Pascal; Derungs, Rebecca; Nitsch, Roger M; Welt, Tobias

    2016-09-15

    Neurodegenerative diseases of the central nervous system frequently affect the locomotor system resulting in impaired movement and gait. In this study we performed a whole-body high-speed video gait analysis in three different mouse lines of neurodegenerative movement disorders to investigate the motor phenotype. Based on precise computerized motion tracking of all relevant joints and the tail, a custom-developed algorithm generated individual and comprehensive locomotor profiles consisting of 164 spatial and temporal parameters. Gait changes observed in the three models corresponded closely to the classical clinical symptoms described in these disorders: Muscle atrophy due to motor neuron loss in SOD1 G93A transgenic mice led to gait characterized by changes in hind-limb movement and positioning. In contrast, locomotion in huntingtin N171-82Q mice modeling Huntington's disease with basal ganglia damage was defined by hyperkinetic limb movements and rigidity of the trunk. Harlequin mutant mice modeling cerebellar degeneration showed gait instability and extensive changes in limb positioning. Moreover, model specific gait parameters were identified and were shown to be more sensitive than conventional motor tests. Altogether, this technique provides new opportunities to decipher underlying disease mechanisms and test novel therapeutic approaches. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A systems biology model of the regulatory network in Populus leaves reveals interacting regulators and conserved regulation

    Directory of Open Access Journals (Sweden)

    Hvidsten Torgeir R

    2011-01-01

    Full Text Available Abstract Background Green plant leaves have always fascinated biologists as hosts for photosynthesis and providers of basic energy to many food webs. Today, comprehensive databases of gene expression data enable us to apply increasingly more advanced computational methods for reverse-engineering the regulatory network of leaves, and to begin to understand the gene interactions underlying complex emergent properties related to stress-response and development. These new systems biology methods are now also being applied to organisms such as Populus, a woody perennial tree, in order to understand the specific characteristics of these species. Results We present a systems biology model of the regulatory network of Populus leaves. The network is reverse-engineered from promoter information and expression profiles of leaf-specific genes measured over a large set of conditions related to stress and developmental. The network model incorporates interactions between regulators, such as synergistic and competitive relationships, by evaluating increasingly more complex regulatory mechanisms, and is therefore able to identify new regulators of leaf development not found by traditional genomics methods based on pair-wise expression similarity. The approach is shown to explain available gene function information and to provide robust prediction of expression levels in new data. We also use the predictive capability of the model to identify condition-specific regulation as well as conserved regulation between Populus and Arabidopsis. Conclusions We outline a computationally inferred model of the regulatory network of Populus leaves, and show how treating genes as interacting, rather than individual, entities identifies new regulators compared to traditional genomics analysis. Although systems biology models should be used with care considering the complexity of regulatory programs and the limitations of current genomics data, methods describing interactions

  7. Human and ecotoxicological impacts assessment from the Mexican oil industry in the Coatzacoalcos region, as revealed by the USEtox model.

    Science.gov (United States)

    Morales-Mora, M A; Rodríguez-Pérez, B; Martínez-Delgadillo, S A; Rosa-Domínguez, E; Nolasco-Hipólito, C

    2014-01-01

    Human and ecotoxicological impacts were analyzed in the lower basin of the Coatzacoalcos River (Veracruz, State in Mexico). High pollution levels of contaminants from the oil industry have been reported in natural streams and the Coatzacoalcos River and in their sediments. USEtox model was employed to evaluate environmental fate, exposure, and effect of nine organic compounds (polycyclic aromatic hydrocarbons and one of which was in the group of polychlorinated biphenyls), a heavy metal (lead), and the effect of the industrial wastewater emitted into the river, on the Coatzacoalcos region. Most of these compounds are highly toxic; they bioaccumulate in human and animal tissue, mainly in the fatty tissues and can damage different organs and systemic targets such as the liver, kidney, hormonal system, nervous system, etc., of both humans and wildlife. The model estimates that 96% (3,247 kg/day) of organic compounds is transferred from the water into air, whereas only 4% (151 kg/day) remains in the water. In addition, it predicts that humans are mainly exposed to polychlorinated biphenyls (PCBs) congeners (28 and 153) by eating contaminated fish, due to PCBs accumulating in the fish fat tissue. The number of cases of cancer and noncancer (1 in 862 habitants per additional kilogram) is expected to have an increment due to the higher PCBs exposure of human population. Genetic damages in fishes, earthworms, and toads have been observed and related to higher exposure to organic compounds. The relationship between the field reported data and those one predicted by the USEtox model have been confirmed empirically by using the nonparametric correlation analysis (Spearman's rho). Based on the USEtox model, the environmental stress in the Coatzacoalcos industrial zone is between 2 and 6 orders of magnitude over geometric mean of acute aquatic EC₅₀s. We think that USEtox model can be used to expand the number of substances that have the current water quality guidelines to

  8. qDNAmod: a statistical model-based tool to reveal intercellular heterogeneity of DNA modification from SMRT sequencing data

    Science.gov (United States)

    Feng, Zhixing; Li, Jing; Zhang, Jing-Ren; Zhang, Xuegong

    2014-01-01

    In an isogenic cell population, phenotypic heterogeneity among individual cells is common and critical for survival of the population under different environment conditions. DNA modification is an important epigenetic factor that can regulate phenotypic heterogeneity. The single molecule real-time (SMRT) sequencing technology provides a unique platform for detecting a wide range of DNA modifications, including N6-methyladenine (6-mA), N4-methylcytosine (4-mC) and 5-methylcytosine (5-mC). Here we present qDNAmod, a novel bioinformatic tool for genome-wide quantitative profiling of intercellular heterogeneity of DNA modification from SMRT sequencing data. It is capable of estimating proportion of isogenic haploid cells, in which the same loci of the genome are differentially modified. We tested the reliability of qDNAmod with the SMRT sequencing data of Streptococcus pneumoniae strain ST556. qDNAmod detected extensive intercellular heterogeneity of DNA methylation (6-mA) in a clonal population of ST556. Subsequent biochemical analyses revealed that the recognition sequences of two type I restriction–modification (R-M) systems are responsible for the intercellular heterogeneity of DNA methylation initially identified by qDNAmod. qDNAmod thus represents a valuable tool for studying intercellular phenotypic heterogeneity from genome-wide DNA modification. PMID:25404133

  9. Musical groove is correlated with properties of the audio signal as revealed by computational modelling, depending on musical style

    OpenAIRE

    Madison, Guy; Gouyon, Fabien; Ullén, Fredrik

    2009-01-01

    With groove we mean the subjective experience of wanting to move rhythmically when listening to music. Previous research has indicated that physical properties of the sound signal contribute to groove - as opposed to mere association due to previous exposure, for example. Here, a number of quantitative descriptors of rhythmic and temporal properties were derived from the audio signal by means of computational modelling methods. The music examples were 100 samples from 5 distinct music styles,...

  10. Multistage Core Formation in Planetesimals Revealed by Numerical Modeling and Hf-W Chronometry of Iron Meteorites

    Science.gov (United States)

    Neumann, W.; Kruijer, T. S.; Breuer, D.; Kleine, T.

    2018-02-01

    Iron meteorites provide some of the most direct insights into the processes and timescales of core formation in planetesimals. Of these, group IVB irons stand out by having one of the youngest 182Hf-182W model ages for metal segregation (2.9 ± 0.6 Ma after solar system formation), as well as the lowest bulk sulfur content and hence highest liquidus temperature. Here, using a new model for the internal evolution of the IVB parent body, we show that a single stage of metal-silicate separation cannot account for the complete melting of pure Fe metal at the relatively late time given by the Hf-W model age. Instead, a complex metal-silicate separation scenario is required that includes migration of partial silicate melts, formation of a shallow magma ocean, and core formation in two distinct stages of metal segregation. In the first stage, a protocore formed at ≈1.5 Ma via settling of metal particles in a mantle magma ocean, followed by metal segregation from a shallow magma ocean at ≈5.4 Ma. As these stages of metal segregation occurred at different times, the two metal fractions had different 182W compositions. Consequently, the final 182W composition of the IVB core does not correspond to a single differentiation event, but represents the average composition of early- and late-segregated core fractions. Our best fit model indicates an ≈100 km radius for the IVB parent body and provides an accretion age of ≈0.1-0.5 Ma after solar system formation. The computed solidification time is, furthermore, consistent with the Re-Os age for crystallization of the IVB core.

  11. Proteomics reveals changes in hepatic proteins during chicken embryonic development: an alternative model to study human obesity

    OpenAIRE

    Peng, Mengling; Li, Shengnan; He, Qianian; Zhao, Jinlong; Li, Longlong; Ma, Haitian

    2018-01-01

    Background Chicken embryos are widely used as a model for studies of obesity; however, no detailed information is available about the dynamic changes of proteins during the regulation of adipose biology and metabolism. Thus, the present study used an isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic approach to identify the changes in protein abundance at different stages of chicken embryonic development. Results In this study, the abundances of 293 hepatic proteins...

  12. DIGE proteome analysis reveals suitability of ischemic cardiac in vitro model for studying cellular response to acute ischemia and regeneration.

    Directory of Open Access Journals (Sweden)

    Sina Haas

    Full Text Available Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy.With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research.

  13. Recent progress in econophysics: Chaos, leverage, and business cycles as revealed by agent-based modeling and human experiments

    Science.gov (United States)

    Xin, Chen; Huang, Ji-Ping

    2017-12-01

    Agent-based modeling and controlled human experiments serve as two fundamental research methods in the field of econophysics. Agent-based modeling has been in development for over 20 years, but how to design virtual agents with high levels of human-like "intelligence" remains a challenge. On the other hand, experimental econophysics is an emerging field; however, there is a lack of experience and paradigms related to the field. Here, we review some of the most recent research results obtained through the use of these two methods concerning financial problems such as chaos, leverage, and business cycles. We also review the principles behind assessments of agents' intelligence levels, and some relevant designs for human experiments. The main theme of this review is to show that by combining theory, agent-based modeling, and controlled human experiments, one can garner more reliable and credible results on account of a better verification of theory; accordingly, this way, a wider range of economic and financial problems and phenomena can be studied.

  14. Fibre recruitment and shape changes of knee ligaments during motion: as revealed by a computer graphics-based model.

    Science.gov (United States)

    Lu, T W; O'Connor, J J

    1996-01-01

    A computer graphics-based model of the knee ligaments in the sagittal plane was developed for the simulation and visualization of the shape changes and fibre recruitment process of the ligaments during motion under unloaded and loaded conditions. The cruciate and collateral ligaments were modelled as ordered arrays of fibres which link attachment areas on the tibia and femur. Fibres slacken and tighten as the ligament attachment areas on the bones rotate and translate relative to each other. A four-bar linkage, composed of the femur, tibia and selected isometric fibres of the two cruciates, was used to determine the motion of the femur relative to the tibia during passive (unloaded) movement. Fibres were assumed to slacken in a Euler buckling mode when the distances between their attachments are less than chosen reference lengths. The ligament shape changes and buckling patterns are demonstrated with computer graphics. When the tibia is translated anteriorly or posteriorly relative to the femur by muscle forces and external loads, some ligament fibres tighten and are recruited progressively to transmit increasing shear forces. The shape changes and fibre recruitment patterns predicted by the model compare well qualitatively with experimental results reported in the literature. The computer graphics approach provides insight into the micro behaviour of the knee ligaments. It may help to explain ligament injury mechanisms and provide useful information to guide the design of ligament replacements.

  15. SU-E-T-580: On the Significance of Model Based Dosimetry for Breast and Head and Neck 192Ir HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Peppa, V; Pappas, E; Pantelis, E; Papagiannis, P [Medical Physics Laboratory, Medical School, University of Athens, Athens (Greece); Major, T; Polgar, C [National Institute of Oncology, Budapest (Hungary)

    2015-06-15

    Purpose: To assess the dosimetric and radiobiological differences between TG43-based and model-based dosimetry in the treatment planning of {sup 192}Ir HDR brachytherapy for breast and head and neck cancer. Methods: Two cohorts of 57 Accelerated Partial Breast Irradiation (APBI) and 22 head and neck (H&N) patients with oral cavity carcinoma were studied. Dosimetry for the treatment plans was performed using the TG43 algorithm of the Oncentra Brachy v4.4 treatment planning system (TPS). Corresponding Monte Carlo (MC) simulations were performed using MCNP6 with input files automatically prepared by the BrachyGuide software tool from DICOM RT plan data. TG43 and MC data were compared in terms of % dose differences, Dose Volume Histograms (DVHs) and related indices of clinical interest for the Planning Target Volume (PTV) and the Organs-At-Risk (OARs). A radiobiological analysis was also performed using the Equivalent Uniform Dose (EUD), mean survival fraction (S) and Tumor Control Probability (TCP) for the PTV, and the Normal Tissue Control Probability (N TCP) and the generalized EUD (gEUD) for the OARs. Significance testing of the observed differences performed using the Wilcoxon paired sample test. Results: Differences between TG43 and MC DVH indices, associated with the increased corresponding local % dose differences observed, were statistically significant. This is mainly attributed to their consistency however, since TG43 agrees closely with MC for the majority of DVH and radiobiological parameters in both patient cohorts. Differences varied considerably among patients only for the ipsilateral lung and ribs in the APBI cohort, with a strong correlation to target location. Conclusion: While the consistency and magnitude of differences in the majority of clinically relevant DVH indices imply that no change is needed in the treatment planning practice, individualized dosimetry improves accuracy and addresses instances of inter-patient variability observed. Research

  16. SU-E-T-580: On the Significance of Model Based Dosimetry for Breast and Head and Neck 192Ir HDR Brachytherapy

    International Nuclear Information System (INIS)

    Peppa, V; Pappas, E; Pantelis, E; Papagiannis, P; Major, T; Polgar, C

    2015-01-01

    Purpose: To assess the dosimetric and radiobiological differences between TG43-based and model-based dosimetry in the treatment planning of 192 Ir HDR brachytherapy for breast and head and neck cancer. Methods: Two cohorts of 57 Accelerated Partial Breast Irradiation (APBI) and 22 head and neck (H&N) patients with oral cavity carcinoma were studied. Dosimetry for the treatment plans was performed using the TG43 algorithm of the Oncentra Brachy v4.4 treatment planning system (TPS). Corresponding Monte Carlo (MC) simulations were performed using MCNP6 with input files automatically prepared by the BrachyGuide software tool from DICOM RT plan data. TG43 and MC data were compared in terms of % dose differences, Dose Volume Histograms (DVHs) and related indices of clinical interest for the Planning Target Volume (PTV) and the Organs-At-Risk (OARs). A radiobiological analysis was also performed using the Equivalent Uniform Dose (EUD), mean survival fraction (S) and Tumor Control Probability (TCP) for the PTV, and the Normal Tissue Control Probability (N TCP) and the generalized EUD (gEUD) for the OARs. Significance testing of the observed differences performed using the Wilcoxon paired sample test. Results: Differences between TG43 and MC DVH indices, associated with the increased corresponding local % dose differences observed, were statistically significant. This is mainly attributed to their consistency however, since TG43 agrees closely with MC for the majority of DVH and radiobiological parameters in both patient cohorts. Differences varied considerably among patients only for the ipsilateral lung and ribs in the APBI cohort, with a strong correlation to target location. Conclusion: While the consistency and magnitude of differences in the majority of clinically relevant DVH indices imply that no change is needed in the treatment planning practice, individualized dosimetry improves accuracy and addresses instances of inter-patient variability observed. Research co

  17. Ground deformation source model at Kuchinoerabu-jima volcano during 2006-2014 as revealed by campaign GPS observation

    Science.gov (United States)

    Hotta, Kohei; Iguchi, Masato

    2017-12-01

    We analyzed campaign Global Positioning System observation data in Kuchinoerabu-jima during 2006-2014. Most benchmarks located around Shin-dake crater showed crater-centered radial horizontal displacements. Horizontal displacements at western rim of the Shin-dake crater were tended to be larger compared to those at eastern rim. In addition, benchmark KUC14 which locates near the cliff at Furu-dake showed westward horizontal displacement rather than crater-centered radial (southward) one. Meanwhile, small displacements were detected at the benchmarks located at the foot of Kuchinoerabu-jima. We modeled the observed displacements applying a finite element method. We set entire FE domain as 100 × 100 × 50 km3. We set top of the domain as a free surface, and sides and bottom to be fixed boundaries. Topography was introduced in the area within Kuchinoerabu-jima using digital elevation model data provided by Kagoshima prefecture and elevation information from Google earth, and elevation of the outside area was assumed to be sea level. We assumed a stratified structure based on a one-dimensional P-wave velocity structure. We applied a vertical spheroid source model and searched optimal values of horizontal location, depth, equatorial and polar radiuses, and internal pressure change of the source using the forward modeling method. A spherical source with a radius of 50 m was obtained beneath the Shin-dake crater at a depth of 400 m above sea level. The internal pressure increase of 361 MPa yields its volume increase of 31,700 m3. Taking effects of topography and heterogeneity of ground into account allowed reproduction of overall deformation in Kuchinoerabu-jima. The location of deformation source coincides with hypocenters of shallow volcano-tectonic (VT) earthquakes and the aquifer estimated from a two-dimensional resistivity model by audio-frequency magnetotellurics method. The obtained deformation source may be corresponding to the pressurized aquifer, and shallow VT

  18. Neuraminidase-1 contributes significantly to the degradation of neuronal B-series gangliosides but not to the bypass of the catabolic block in Tay–Sachs mouse models

    Directory of Open Access Journals (Sweden)

    Z.K. Timur

    2015-09-01

    Full Text Available Tay–Sachs disease is a severe lysosomal storage disorder caused by mutations in the HEXA gene coding for α subunit of lysosomal β-Hexosaminidase A enzyme, which converts GM2 to GM3 ganglioside. HexA−/− mice, depleted of the β-Hexosaminidase A iso-enzyme, remain asymptomatic up to 1 year of age because of a metabolic bypass by neuraminidase(s. These enzymes remove a sialic acid residue converting GM2 to GA2, which is further degraded by the still intact β-Hexosaminidase B iso-enzyme into lactosylceramide. A previously identified ganglioside metabolizing neuraminidase, Neu4, is abundantly expressed in the mouse brain and has activity against gangliosides like GM2 in vitro. Neu4−/− mice showed increased GD1a and decreased GM1 ganglioside in the brain suggesting the importance of the Neu4 in ganglioside catabolism. Mice with targeted disruption of both HexA and Neu4 genes showed accumulating GM2 ganglioside and epileptic seizures with 40% penetrance, indicating that the neuraminidase Neu4 is a modulatory gene, but may not be the only neuraminidase contributing to the metabolic bypass in HexA−/− mice. Therefore, we elucidated the biological role of neuraminidase-1 in ganglioside degradation in mouse. Analysis of HexA−/−Neu1−/− and HexA−/−Neu4−/−Neu1−/− mice models showed significant contribution of neuraminidase-1 on B-series ganglioside degradation in the brain. Therefore, we speculate that other neuraminidase/neuraminidases such as Neu2 and/or Neu3 might be also involved in the ganglioside degradation pathway in HexA−/− mice.

  19. iTRAQ-based proteomic analysis reveals alterations in the liver induced by restricted meal frequency in a pig model.

    Science.gov (United States)

    Liu, Jingbo; Liu, Zhengqun; Chen, Liang; Zhang, Hongfu

    2016-01-01

    The present study was conducted to investigate the effects of meal frequency on metabolite levels in pig plasma and hepatic proteome by isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Twenty-four pigs (60.7 ± 1.0 kg) consumed the same amount of feed either in 2 (M2, n = 12) or 12 (M12, n = 12) meals per day. After an 8-wk feeding period, plasma concentrations of metabolites and hormones, hepatic biochemical traits, and proteome (n = 4 per group) were measured. Pigs on the M12 regimen had lower average daily gain and gain-to-feed ratio than pigs fed the M2 regimen. The M2 regimen resulted in lower total lipid, glycogen, and triacylglycerol content in the liver and circulating triacylglycerol concentration than that in the M12 pigs. The metabolic hormone concentrations were not affected by meal frequency, with the exception of elevated fibroblast growth factor 21 concentrations in the M2 regimen compared with the M12 regimen. The iTRAQ-based proteomic analysis revealed 35 differentially expressed proteins in the liver between pigs fed two and 12 meals per day, and these differentially expressed proteins were involved in the regulation of general biological process such as glucose and energy metabolism, lipid metabolism, protein and amino acid metabolism, stress response, and cell redox homeostasis. Altogether, the proteomic results provide insights into the mechanism mediating the beneficial effects of restricted meal frequency on the metabolic fitness. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A novel mouse model reveals that polycystin-1 deficiency in ependyma and choroid plexus results in dysfunctional cilia and hydrocephalus.

    Directory of Open Access Journals (Sweden)

    Claas Wodarczyk

    2009-09-01

    Full Text Available Polycystin-1 (PC-1, the product of the PKD1 gene, mutated in the majority of cases of Autosomal Dominant Polycystic Kidney Disease (ADPKD, is a very large (approximately 520 kDa plasma membrane receptor localized in several subcellular compartments including cell-cell