WorldWideScience

Sample records for models providing dense

  1. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness they are no......Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness...... they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  2. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  3. About chiral models of dense matter and its magnetic properties

    International Nuclear Information System (INIS)

    Kutschera, M.

    1990-12-01

    The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)

  4. Improved models of dense anharmonic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rosenau, P., E-mail: rosenau@post.tau.ac.il; Zilburg, A.

    2017-01-15

    We present two improved quasi-continuous models of dense, strictly anharmonic chains. The direct expansion which includes the leading effect due to lattice dispersion, results in a Boussinesq-type PDE with a compacton as its basic solitary mode. Without increasing its complexity we improve the model by including additional terms in the expanded interparticle potential with the resulting compacton having a milder singularity at its edges. A particular care is applied to the Hertz potential due to its non-analyticity. Since, however, the PDEs of both the basic and the improved model are ill posed, they are unsuitable for a study of chains dynamics. Using the bond length as a state variable we manipulate its dispersion and derive a well posed fourth order PDE. - Highlights: • An improved PDE model of a Newtonian lattice renders compacton solutions. • Compactons are classical solutions of the improved model and hence amenable to standard analysis. • An alternative well posed model enables to study head on interactions of lattices' solitary waves. • Well posed modeling of Hertz potential.

  5. A review of flow modeling for dense medium cyclones

    Energy Technology Data Exchange (ETDEWEB)

    M. Narasimha; M.S. Brennan; P.N. Holtham [Tata Steel, Jamshedpur (India). R& amp; D Division

    2006-06-15

    A critical assessment is presented for the existing fluid flow models used for dense medium cyclones (DMCs) and hydrocyclones. As the present discussion indicates, the understanding of dense medium cyclone flow is still far from the complete. However, its similarity to the hydrocyclone provides a basis for improved understanding of fluid flow in DMCs. The complexity of fluid flow in DMCs is basically due to the existence of medium as well as the dominance of turbulent particle size and density effects on separation. Both the theoretical and experimental analysis is done with respect to two-phase motions and solid phase flow in hydrocyclones or DMCs. A detailed discussion is presented on the empirical, semiempirical, and the numerical models based upon both the vorticity-stream function approach and Navier-Stokes equations in their primitive variables and in cylindrical coordinates available in literature. The existing equations describing turbulence and multiphase flows in cyclone are also critically reviewed.

  6. Dense hydrogen plasma: Comparison between models

    International Nuclear Information System (INIS)

    Clerouin, J.G.; Bernard, S.

    1997-01-01

    Static and dynamical properties of the dense hydrogen plasma (ρ≥2.6gcm -3 , 0.1< T<5eV) in the strongly coupled regime are compared through different numerical approaches. It is shown that simplified density-functional molecular-dynamics simulations (DFMD), without orbitals, such as Thomas-Fermi Dirac or Thomas-Fermi-Dirac-Weiszaecker simulations give similar results to more sophisticated descriptions such as Car-Parrinello (CP), tight binding, or path-integral Monte Carlo, in a wide range of temperatures. At very low temperature, screening effects predicted by DFMD are still less pronounced than CP simulations. copyright 1997 The American Physical Society

  7. Shallow layer modelling of dense gas clouds

    Energy Technology Data Exchange (ETDEWEB)

    Ott, S.; Nielsen, M.

    1996-11-01

    The motivation for making shallow layer models is that they can deal with the dynamics of gravity driven flow in complex terrain at a modest computational cost compared to 3d codes. The main disadvantage is that the air-cloud interactions still have to be added `by hand`, where 3d models inherit the correct dynamics from the fundamental equations. The properties of the inviscid shallow water equations are discussed, focusing on existence and uniqueness of solutions. It is demonstrated that breaking waves and fronts pose severe problems, that can only be overcome if the hydrostatic approximation is given up and internal friction is added to the model. A set of layer integrated equations is derived starting from the Navier-Stokes equations. The various steps in the derivation are accompanied by plausibility arguments. These form the scientific basis of the model. The principle of least action is introduced as a means of generating consistent models, and as a tool for making discrete equations for numerical models, which automatically obey conservation laws. A numerical model called SLAM (Shallow LAyer Model) is presented. SLAM has some distinct features compared to other shallow layer models: A Lagrangian, moving grid; Explicit account for the turbulent kinetic energy budget; The entrainment rate is estimated on the basis of the local turbulent kinetic energy; Non-hydrostatic pressure; and Numerical methods respect conservation laws even for coarse grids. Thorney Island trial 8 is used as a reference case model tuning. The model reproduces the doughnut shape of the cloud and yield concentrations in reasonable agreement with observations, even when a small number of cells (e.g. 16) is used. It is concluded that lateral exchange of matter within the cloud caused by shear is important, and that the model should be improved on this point. (au) 16 ills., 38 refs.

  8. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    Science.gov (United States)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  9. Geophysical Age Dating of Seamounts using Dense Core Flexure Model

    Science.gov (United States)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-04-01

    Lithospheric flexure of oceanic plate is thermo-mechanical response of an elastic plate to the given volcanic construct (e.g., seamounts and ocean islands). If the shape and mass of such volcanic loads are known, the flexural response is governed by the thickness of elastic plate, Te. As the age of oceanic plate increases, the elastic thickness of oceanic lithosphere becomes thicker. Thus, we can relate Te with the age of plate at the time of loading. To estimate the amount of the driving force due to seamounts on elastic plate, one needs to approximate their density structure. The most common choice is uniform density model, which utilizes constant density value for a seamount. This approach simplifies computational processes for gravity prediction and error estimates. However, the uniform density model tends to overestimate the total mass of the seamount and hence produces more positive gravitational contributions from the load. Minimization of gravity misfits using uniform density, therefore, favors thinner Te in order to increase negative contributions from the lithospheric flexure, which can compensate for the excessive positives from the seamount. An alternative approach is dense core model, which approximate the heterogeneity nature of seamount density as three bodies of infill sediment, edifice, and dense core. In this study, we apply the dense core model to the Louisville Seamount Chain for constraining flexural deformation. We compare Te estimates with the loading time of the examined seamounts to redefine empirical geophysical age dating of seamounts.

  10. A constitutive model for simple shear of dense frictional suspensions

    Science.gov (United States)

    Singh, Abhinendra; Mari, Romain; Denn, Morton M.; Morris, Jeffrey F.

    2018-03-01

    Discrete particle simulations are used to study the shear rheology of dense, stabilized, frictional particulate suspensions in a viscous liquid, toward development of a constitutive model for steady shear flows at arbitrary stress. These suspensions undergo increasingly strong continuous shear thickening (CST) as solid volume fraction $\\phi$ increases above a critical volume fraction, and discontinuous shear thickening (DST) is observed for a range of $\\phi$. When studied at controlled stress, the DST behavior is associated with non-monotonic flow curves of the steady-state stress as a function of shear rate. Recent studies have related shear thickening to a transition between mostly lubricated to predominantly frictional contacts with the increase in stress. In this study, the behavior is simulated over a wide range of the dimensionless parameters $(\\phi,\\tilde{\\sigma}$, and $\\mu)$, with $\\tilde{\\sigma} = \\sigma/\\sigma_0$ the dimensionless shear stress and $\\mu$ the coefficient of interparticle friction: the dimensional stress is $\\sigma$, and $\\sigma_0 \\propto F_0/ a^2$, where $F_0$ is the magnitude of repulsive force at contact and $a$ is the particle radius. The data have been used to populate the model of the lubricated-to-frictional rheology of Wyart and Cates [Phys. Rev. Lett.{\\bf 112}, 098302 (2014)], which is based on the concept of two viscosity divergences or \\textquotedblleft jamming\\textquotedblright\\ points at volume fraction $\\phi_{\\rm J}^0 = \\phi_{\\rm rcp}$ (random close packing) for the low-stress lubricated state, and at $\\phi_{\\rm J} (\\mu) < \\phi_{\\rm J}^0$ for any nonzero $\\mu$ in the frictional state; a generalization provides the normal stress response as well as the shear stress. A flow state map of this material is developed based on the simulation results.

  11. A continuous stochastic model for non-equilibrium dense gases

    Science.gov (United States)

    Sadr, M.; Gorji, M. H.

    2017-12-01

    While accurate simulations of dense gas flows far from the equilibrium can be achieved by direct simulation adapted to the Enskog equation, the significant computational demand required for collisions appears as a major constraint. In order to cope with that, an efficient yet accurate solution algorithm based on the Fokker-Planck approximation of the Enskog equation is devised in this paper; the approximation is very much associated with the Fokker-Planck model derived from the Boltzmann equation by Jenny et al. ["A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion," J. Comput. Phys. 229, 1077-1098 (2010)] and Gorji et al. ["Fokker-Planck model for computational studies of monatomic rarefied gas flows," J. Fluid Mech. 680, 574-601 (2011)]. The idea behind these Fokker-Planck descriptions is to project the dynamics of discrete collisions implied by the molecular encounters into a set of continuous Markovian processes subject to the drift and diffusion. Thereby, the evolution of particles representing the governing stochastic process becomes independent from each other and thus very efficient numerical schemes can be constructed. By close inspection of the Enskog operator, it is observed that the dense gas effects contribute further to the advection of molecular quantities. That motivates a modelling approach where the dense gas corrections can be cast in the extra advection of particles. Therefore, the corresponding Fokker-Planck approximation is derived such that the evolution in the physical space accounts for the dense effects present in the pressure, stress tensor, and heat fluxes. Hence the consistency between the devised Fokker-Planck approximation and the Enskog operator is shown for the velocity moments up to the heat fluxes. For validation studies, a homogeneous gas inside a box besides Fourier, Couette, and lid-driven cavity flow setups is considered. The results based on the Fokker-Planck model are

  12. Radiative-Transfer Modeling of Spectra of Densely Packed Particulate Media

    Science.gov (United States)

    Ito, G.; Mishchenko, M. I.; Glotch, T. D.

    2017-12-01

    Remote sensing measurements over a wide range of wavelengths from both ground- and space-based platforms have provided a wealth of data regarding the surfaces and atmospheres of various solar system bodies. With proper interpretations, important properties, such as composition and particle size, can be inferred. However, proper interpretation of such datasets can often be difficult, especially for densely packed particulate media with particle sizes on the order of wavelength of light being used for remote sensing. Radiative transfer theory has often been applied to the study of densely packed particulate media like planetary regoliths and snow, but with difficulty, and here we continue to investigate radiative transfer modeling of spectra of densely packed media. We use the superposition T-matrix method to compute scattering properties of clusters of particles and capture the near-field effects important for dense packing. Then, the scattering parameters from the T-matrix computations are modified with the static structure factor correction, accounting for the dense packing of the clusters themselves. Using these corrected scattering parameters, reflectance (or emissivity via Kirchhoff's Law) is computed with the method of invariance imbedding solution to the radiative transfer equation. For this work we modeled the emissivity spectrum of the 3.3 µm particle size fraction of enstatite, representing some common mineralogical and particle size components of regoliths, in the mid-infrared wavelengths (5 - 50 µm). The modeled spectrum from the T-matrix method with static structure factor correction using moderate packing densities (filling factors of 0.1 - 0.2) produced better fits to the laboratory measurement of corresponding spectrum than the spectrum modeled by the equivalent method without static structure factor correction. Future work will test the method of the superposition T-matrix and static structure factor correction combination for larger particles

  13. Model-checking dense-time Duration Calculus

    DEFF Research Database (Denmark)

    Fränzle, Martin

    2004-01-01

    Since the seminal work of Zhou Chaochen, M. R. Hansen, and P. Sestoft on decidability of dense-time Duration Calculus [Zhou, Hansen, Sestoft, 1993] it is well-known that decidable fragments of Duration Calculus can only be obtained through withdrawal of much of the interesting vocabulary...... of this logic. While this was formerly taken as an indication that key-press verification of implementations with respect to elaborate Duration Calculus specifications were also impossible, we show that the model property is well decidable for realistic designs which feature natural constraints...... suitably sparser model classes we obtain model-checking procedures for rich subsets of Duration Calculus. Together with undecidability results also obtained, this sheds light upon the exact borderline between decidability and undecidability of Duration Calculi and related logics....

  14. Modelling compressible dense and dilute two-phase flows

    Science.gov (United States)

    Saurel, Richard; Chinnayya, Ashwin; Carmouze, Quentin

    2017-06-01

    Many two-phase flow situations, from engineering science to astrophysics, deal with transition from dense (high concentration of the condensed phase) to dilute concentration (low concentration of the same phase), covering the entire range of volume fractions. Some models are now well accepted at the two limits, but none are able to cover accurately the entire range, in particular regarding waves propagation. In the present work, an alternative to the Baer and Nunziato (BN) model [Baer, M. R. and Nunziato, J. W., "A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861 (1986)], initially designed for dense flows, is built. The corresponding model is hyperbolic and thermodynamically consistent. Contrarily to the BN model that involves 6 wave speeds, the new formulation involves 4 waves only, in agreement with the Marble model [Marble, F. E., "Dynamics of a gas containing small solid particles," Combustion and Propulsion (5th AGARD Colloquium) (Pergamon Press, 1963), Vol. 175] based on pressureless Euler equations for the dispersed phase, a well-accepted model for low particle volume concentrations. In the new model, the presence of pressure in the momentum equation of the particles and consideration of volume fractions in the two phases render the model valid for large particle concentrations. A symmetric version of the new model is derived as well for liquids containing gas bubbles. This model version involves 4 characteristic wave speeds as well, but with different velocities. Last, the two sub-models with 4 waves are combined in a unique formulation, valid for the full range of volume fractions. It involves the same 6 wave speeds as the BN model, but at a given point of space, 4 waves only emerge, depending on the local volume fractions. The non-linear pressure waves propagate only in the phase with dominant volume fraction. The new model is tested numerically on various

  15. Modelling the Multiphase Flow in Dense Medium Cyclones

    Directory of Open Access Journals (Sweden)

    Kaiwei Chu

    2010-12-01

    Full Text Available Dense medium cyclone (DMC is widely used in mineral industry to separate solids by density. It is simple in design but the flow pattern within it is complex due to the size and density distributions of the feed and process medium solids, and the turbulent vortex formed. Recently, the so-called combined computational fluid dynamics (CFD and discrete element method (DEM (CFD-DEM was extended from two-phase flow to model the flow in DMCs at the University of New South Wales (UNSW. In the CFD-DEM model, the flow of coal particles is modelled by DEM and that of medium flow by CFD, allowing consideration of medium-coal mutual interaction and particle-particle collisions. In the DEM model, Newton's laws of motion are applied to individual particles, and in the CFD model the local-averaged Navier-Stokes equations combined with the volume of fluid (VOF and mixture multiphase flow models are solved. The application to the DMC studies requires intensive computational effort. Therefore, various simplified versions have been proposed, corresponding to the approaches such as Lagrangian particle tracking (LPT method where dilute phase flow is assumed so that the interaction between particles can be ignored, one-way coupling where the effect of particle flow on fluid flow is ignored, and the use of the concept of parcel particles whose properties are empirically determined. In this paper, the previous works on the modelling of DMCs at UNSW are summarized and the features and applicability of the models used are discussed.

  16. Modeling of dilute and dense dispersed fluid-particle flow

    Energy Technology Data Exchange (ETDEWEB)

    Laux, Harald

    1998-08-01

    A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a

  17. 3D Face Modeling based on 3D Dense Morphable Face Shape Model

    OpenAIRE

    Yongsuk Jang Kim; Sun-Tae Chung; Boogyun Kim; Seongwon Cho

    2008-01-01

    Realistic 3D face model is more precise in representing pose, illumination, and expression of face than 2D face model so that it can be utilized usefully in various applications such as face recognition, games, avatars, animations, and etc. In this paper, we propose a 3D face modeling method based on 3D dense morphable shape model. The proposed 3D modeling method first constructs a 3D dense morphable shape model from 3D face scan data obtained using a 3D scanner. Next, th...

  18. CRUNCH, Dispersion Model for Continuous Dense Vapour Release in Atmosphere

    International Nuclear Information System (INIS)

    Jagger, S.F.

    1987-01-01

    1 - Description of program or function: The situation modelled is as follows. A dense gas emerges from a source such that it can be considered to emerge through a rectangular area, placed in the vertical plane and perpendicular to the plume direction, which assumes that of the ambient wind. The gas flux at the source, and in every plane perpendicular to the plume direction, is constant in time and a stationary flow field has been attained. For this to apply, the characteristic time of release must be much larger than that for dispersal of the contaminant. The plume can be thought to consist of a number of rectangular elements or 'puffs' emerging from the source at regular time intervals. The model follows the development of these puffs at a series of downwind points. These puffs are immediately assumed to advect with the ambient wind at their half-height. The plume also slumps due to the action of gravity and is allowed to entrain air through its sides and top surface. Spreading of a fluid element is caused by pressure differences across this element and since the pressure gradient in the wind direction is small, the resulting pressure differences and slumping velocities are small also, thus permitting this convenient approximation. Initially, as the plume slumps, its vertical dimension decreases and with it the slumping velocity and advection velocity. Thus the plume advection velocity varies as a function of downwind distance. With the present steady state modelling, and to satisfy continuity constraints, there must be consequent adjustment of plume height. Calculation of this parameter from the volume flux ensures this occurs. As the cloud height begins to grow, the advection velocity increases and the plume height decreases accordingly. With advection downwind, the cloud gains buoyancy by entraining air and, if the cloud is cold, by absorbing heat from the ground. Eventually the plume begins to disperse as would a passive pollutant, through the action of

  19. Free-free opacity in dense plasmas with an average atom model

    Science.gov (United States)

    Shaffer, N. R.; Ferris, N. G.; Colgan, J.; Kilcrease, D. P.; Starrett, C. E.

    2017-06-01

    A model for the free-free opacity of dense plasmas is presented. The model uses a previously developed average atom model, together with the Kubo-Greenwood model for optical conductivity. This, in turn, is used to calculate the opacity with the Kramers-Kronig dispersion relations. Comparisons to other methods for dense deuterium results in excellent agreement with DFT-MD simulations, and reasonable agreement with a simple Yukawa screening model corrected to satisfy the conductivity sum rule. Comparisons against the very recent experiments of Kettle et al. for dense aluminum also reveal very good agreement, in contrast to existing models. Weaknesses in the model are also highlighted.

  20. Gas migration mechanism of saturated dense bentonite and its modeling

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko; Kudo, Koji

    2007-01-01

    In the current concept of repository for nuclear waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Therefore it is necessary to investigate the following subjects: a) Effect of the accumulated gas pressure on surrounding objects such as concrete lining, rock mass. b) Effect of gas breakthrough on the barrier function of bentonite. c) Revealing and modeling gas migration mechanism for overcoming the scale effects in laboratory specimen test. Therefore in this study, gas migration tests for compacted and saturated bentonite to investigate and to model the mechanism of gas migration phenomenon. Firstly, the following conclusions were obtained through by the results of the gas migration tests which are conducted in this study: 1) Bubbles appear in the semitransparent drainage tube at first when the total gas is equal to the initial total axial stress or somewhat smaller. By increasing the gas pressure more, breakthrough of gas migration, which is defined as a sudden increase of amount of emission gas, occurred. When the total gas pressure exceeds the initial total axial stress, the total axial stress is always equal to the total gas pressure because specimens shrink in the axial direction with causing the clearance between the end of the specimen and porous metal. 2) Effective gas conductivity after breakthrough of gas migration is times larger than that

  1. An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows

    Science.gov (United States)

    Snider, D. M.

    2001-07-01

    A three-dimensional, incompressible, multiphase particle-in-cell method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to an Eulerian grid and then mapping back computed stress tensors to particle positions. A subgrid particle, normal stress model for discrete particles which is robust and eliminates the need for an implicit calculation of the particle normal stress on the grid is presented. Interpolation operators and their properties are defined which provide compact support, are conservative, and provide fast solution for a large particle population. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. Particles are implicitly coupled to the fluid phase, and the fluid momentum and pressure equations are implicitly solved, which gives a robust solution.

  2. Automatic Method for Building Indoor Boundary Models from Dense Point Clouds Collected by Laser Scanners

    Directory of Open Access Journals (Sweden)

    Enrique Valero

    2012-11-01

    Full Text Available In this paper we present a method that automatically yields Boundary Representation Models (B-rep for indoors after processing dense point clouds collected by laser scanners from key locations through an existing facility. Our objective is particularly focused on providing single models which contain the shape, location and relationship of primitive structural elements of inhabited scenarios such as walls, ceilings and floors. We propose a discretization of the space in order to accurately segment the 3D data and generate complete B-rep models of indoors in which faces, edges and vertices are coherently connected. The approach has been tested in real scenarios with data coming from laser scanners yielding promising results. We have deeply evaluated the results by analyzing how reliably these elements can be detected and how accurately they are modeled.

  3. Automatic Method for Building Indoor Boundary Models from Dense Point Clouds Collected by Laser Scanners

    Science.gov (United States)

    Valero, Enrique; Adán, Antonio; Cerrada, Carlos

    2012-01-01

    In this paper we present a method that automatically yields Boundary Representation Models (B-rep) for indoors after processing dense point clouds collected by laser scanners from key locations through an existing facility. Our objective is particularly focused on providing single models which contain the shape, location and relationship of primitive structural elements of inhabited scenarios such as walls, ceilings and floors. We propose a discretization of the space in order to accurately segment the 3D data and generate complete B-rep models of indoors in which faces, edges and vertices are coherently connected. The approach has been tested in real scenarios with data coming from laser scanners yielding promising results. We have deeply evaluated the results by analyzing how reliably these elements can be detected and how accurately they are modeled. PMID:23443369

  4. Modeling RF Emissions from Particle Showers in Dense Mediums

    Science.gov (United States)

    Hyneman, Rachel; Belov, Konstantin; Wissel, Stephanie

    2014-03-01

    The Antarctic Impulsive Transient Antenna (ANITA) experiment has recorded multiple Ultra High Energy Cosmic Ray (UHECR) events via radio-frequency emissions from secondary particle showers in the Earth's atmosphere. The energy of these UHECR particles is reconstructed using Monte Carlo simulations based on first principles. The goal of the SLAC T-510 experiment is to validate these simulations and to provide an energy calibration for ANITA data analysis. We incorporated an RF emission simulation based on ZHS code into the GEANT4 toolkit, used for modeling the passage of particles in accelerator experiments. We predict strong radio emissions at the Cherenkov angle from a cascade of secondary particles in a polyethylene target in moderate magnetic fields. We see a strong dependence of the horizontally polarized component of the electric field on top of the Cherenkov cone on the magnetic field strength. We also observe a skewing of the Cherenkov cone as the magnetic field increases, which we believe to be an indication of the Askaryan effect. Special thanks to the National Science Foundation and the Research Experience for Undergraduates program.

  5. Monitoring of oil palm plantations and growth variations with a dense vegetation model

    DEFF Research Database (Denmark)

    Teng, Khar Chun; Koay, Jun Yi; Tey, Seng Heng

    2014-01-01

    The development of microwave remote sensing models for the monitoring of vegetation has received wide attention in recent years. For vegetation in the tropics, it is necessary to consider a dense medium model for the theoretical modelling of the microwave interaction with the vegetation medium....... In this paper, a multilayer model based on the radiative transfer theory for a dense vegetation medium is developed where the coherence effects and near field interaction effects of closely spaced leaves and branches are considered by incorporating the Dense Medium Phase and Amplitude Correction Theory (DM......-PACT) and Fresnel Phase Corrections. The iterative solutions of the radiative transfer model are computed with input based on ground truth measurements of physical parameters of oil palm plantations in the state of Perak, Malaysia, and compared with the SAR images obtained from RADARSAT2. Preliminary results...

  6. Axisymmetric transient modelling of a suction caisson in dense sand

    OpenAIRE

    Cerfontaine, Benjamin; Levasseur, Séverine; Collin, Frédéric; Charlier, Robert

    2014-01-01

    Suction caisson are hollow cylinders open towards the bottom that are currently used as anchors for deep water offshore facilities. They recently turned out to be advantageously exploited as foundation for offshore wind turbines in shallow water (Senders 2009). The Prevost model for cohesionless soils (Prevost 1985) is currently used for the modelling of their cyclic behaviour. It’s able to reproduce plastic deformation in both loading and unloading, contractancy of the soil and p...

  7. A model of irreversible jam formation in dense traffic

    Science.gov (United States)

    Brankov, J. G.; Bunzarova, N. Zh.; Pesheva, N. C.; Priezzhev, V. B.

    2018-03-01

    We study an one-dimensional stochastic model of vehicular traffic on open segments of a single-lane road of finite size L. The vehicles obey a stochastic discrete-time dynamics which is a limiting case of the generalized Totally Asymmetric Simple Exclusion Process. This dynamics has been previously used by Bunzarova and Pesheva (2017) for an one-dimensional model of irreversible aggregation. The model was shown to have three stationary phases: a many-particle one, MP, a phase with completely filled configuration, CF, and a boundary perturbed MP+CF phase, depending on the values of the particle injection (α), ejection (β) and hopping (p) probabilities. Here we extend the results for the stationary properties of the MP+CF phase, by deriving exact expressions for the local density at the first site of the chain and the probability P(1) of a completely jammed configuration. The unusual phase transition, characterized by jumps in both the bulk density and the current (in the thermodynamic limit), as α crosses the boundary α = p from the MP to the CF phase, is explained by the finite-size behavior of P(1). By using a random walk theory, we find that, when α approaches from below the boundary α = p, three different regimes appear, as the size L → ∞: (i) the lifetime of the gap between the rightmost clusters is of the order O(L) in the MP phase; (ii) small jams, separated by gaps with lifetime O(1) , exist in the MP+CF phase close to the left chain boundary; and (iii) when β = p, the jams are divided by gaps with lifetime of the order O(L 1 / 2) . These results are supported by extensive Monte Carlo calculations.

  8. Single-particle model of a strongly driven, dense, nanoscale quantum ensemble

    Science.gov (United States)

    DiLoreto, C. S.; Rangan, C.

    2018-01-01

    We study the effects of interatomic interactions on the quantum dynamics of a dense, nanoscale, atomic ensemble driven by a strong electromagnetic field. We use a self-consistent, mean-field technique based on the pseudospectral time-domain method and a full, three-directional basis to solve the coupled Maxwell-Liouville equations. We find that interatomic interactions generate a decoherence in the state of an ensemble on a much faster time scale than the excited-state lifetime of individual atoms. We present a single-particle model of the driven, dense ensemble by incorporating interactions into a dephasing rate. This single-particle model reproduces the essential physics of the full simulation and is an efficient way of rapidly estimating the collective dynamics of a dense ensemble.

  9. Modeling dense-colloid and virus cotransport in three-dimensional porous media.

    Science.gov (United States)

    Katzourakis, Vasileios E; Chrysikopoulos, Constantinos V

    2015-10-01

    A three-dimensional numerical model was developed to investigate the simultaneous transport (cotransport) of dense colloids and viruses in homogeneous, water saturated, porous media with horizontal uniform flow. The dense colloids are assumed to exist in two different phases: suspended in the aqueous phase, and attached reversibly and/or irreversibly onto the solid matrix. The viruses are assumed to exist in four different phases: suspended in aqueous phase, attached onto the solid matrix, attached onto suspended colloids, and attached onto colloids already attached onto the solid matrix. The viruses in each of the four phases are assumed to undergo inactivation with different rates. Moreover, the suspended dense colloids as well as viruses attached onto suspended dense colloids are assumed to exhibit a "restricted" settling velocity as a consequence of the gravitational force; whereas, viruses due to their small sizes and densities are assumed to have negligible "restricted" settling velocity. The governing differential equations were solved numerically with the finite difference schemes, implicitly or explicitly implemented. Model simulations have shown that the presence of dense colloid particles can either enhance or hinder the horizontal transport of viruses, but also can increase the vertical migration of viruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Fusing range and intensity images for generating dense models of three-dimensional environments

    DEFF Research Database (Denmark)

    Ellekilde, Lars-Peter; Miró, Jaime Valls; Dissanayake., Gamini

    This paper presents a novel strategy for the construction of dense three-dimensional environment models by combining images from a conventional camera and a range imager. Ro- bust data association is ?rst accomplished by exploiting the Scale Invariant Feature Transformation (SIFT) technique...

  11. Ab initio calculation of the sound velocity of dense hydrogen: implications for models of Jupiter

    NARCIS (Netherlands)

    Alavi, A.; Parrinello, M.; Frenkel, D.

    1995-01-01

    First-principles molecular dynamics simulations were used to calculate the sound velocity of dense hydrogen, and the results were compared with extrapolations of experimental data that currently conflict with either astrophysical models or data obtained from recent global oscillation measurements of

  12. Evaluation of regional ionospheric grid model over China from dense GPS observations

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2016-09-01

    Full Text Available The current global or regional ionospheric models have been established for monitoring the ionospheric variations. However, the spatial and temporal resolutions are not enough to describe total electron content (TEC variations in small scales for China. In this paper, a regional ionospheric grid model (RIGM with high spatial-temporal resolution (0.5° × 0.5° and 10-min interval in China and surrounding areas is established based on spherical harmonics expansion from dense GPS measurements provided by Crustal Movement Observation Network of China (CMONOC and the International GNSS Service (IGS. The correlation coefficient between the estimated TEC from GPS and the ionosonde measurements is 0.97, and the root mean square (RMS with respect to Center for Orbit Determination in Europe (CODE Global Ionosphere Maps (GIMs is 4.87 TECU. In addition, the impact of different spherical harmonics orders and degrees on TEC estimations are evaluated and the degree/order 6 is better. Moreover, effective ionospheric shell heights from 300 km to 700 km are further assessed and the result indicates that 550 km is the most suitable for regional ionospheric modeling in China at solar maximum.

  13. Implementation and Re nement of a Comprehensive Model for Dense Granular Flows

    Energy Technology Data Exchange (ETDEWEB)

    Sundaresan, Sankaran [The Trustees Of Princeton University, Princeton, NJ (United States)

    2015-09-30

    Dense granular ows are ubiquitous in both natural and industrial processes. They manifest three di erent ow regimes, each exhibiting its own dependence on solids volume fraction, shear rate, and particle-level properties. This research project sought to develop continuum rheological models for dense granular ows that bridges multiple regimes of ow, implement them in open-source platforms for gas-particle ows and perform test simulations. The rst phase of the research covered in this project involved implementation of a steady- shear rheological model that bridges quasi-static, intermediate and inertial regimes of ow into MFIX (Multiphase Flow with Interphase eXchanges - a general purpose computer code developed at the National Energy Technology Laboratory). MFIX simulations of dense granular ows in hourglass-shaped hopper were then performed as test examples. The second phase focused on formulation of a modi ed kinetic theory for frictional particles that can be used over a wider range of particle volume fractions and also apply for dynamic, multi- dimensional ow conditions. To guide this work, simulations of simple shear ows of identical mono-disperse spheres were also performed using the discrete element method. The third phase of this project sought to develop and implement a more rigorous treatment of boundary e ects. Towards this end, simulations of simple shear ows of identical mono-disperse spheres con ned between parallel plates were performed and analyzed to formulate compact wall boundary conditions that can be used for dense frictional ows at at frictional boundaries. The fourth phase explored the role of modest levels of cohesive interactions between particles on the dense phase rheology. The nal phase of this project focused on implementation and testing of the modi ed kinetic theory in MFIX and running bin-discharge simulations as test examples.

  14. A shallow water model for dense gas simulation in urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Michael [Los Alamos National Laboratory; Williams, Mike D [Los Alamos National Laboratory; Gowardhan, Akshay [Los Alamos National Laboratory; Brambilla, Sara [POLITECNICO DI MILANO; Manca, Davide [POLITECNICO DI MILANO

    2009-01-01

    Large quantities of toxic chemicals are stored at industrial facilities and transported around the country via train and truck. In the event of an accidental release, many of these chemicals are released as heavier-than-air gases that stay low to the ground as they are transported by the wind . Breathing height concentrations can remain high due to reduced vertical mixing and hazard zone coverage area can be larger due to near-source gravitational slumping . A number of fast-response dense gas dispersion models have been developed and are routinely used to deal with heavier-than-air releases over unobstructed terrain. If a release were to occur in a built-up environment, however, the effects of buildings and other obstacles will significantly alter the initial spreading, the transport direction, and the amount of mixing of the dense gas cloud . We have developed a new fast-running dense gas dispersion model that is intended for handling releases in cities and at large industrial facilities. In this paper we describe the scheme employed and how the model has been integrated into the Quick Urban & Industrial Complex (QUIC) dispersion modeling system.

  15. Towards Dense Nuclear Matter in A Modified Sakai-Sugimoto Model

    Directory of Open Access Journals (Sweden)

    Rho Mannque

    2012-02-01

    Full Text Available As a part of the attempt to address dense baryonic matter, we first review holographic approaches to QCD. The big advantage of the holographic approaches is that they render strongly coupled 4D gauge theories as duals of certain weakly coupled string/supergravity that are well understood. Its relevance to real QCD is one of the central problems in hadron/nuclear physics as well as in the context of applied string theory. None of the models based on these holographic approaches presently available can adequately describe the system we are interested in, namely dense baryonic matter. Nevertheless, some aspects of the holographic approach are found to describe certain processes both in vacuum and in medium. In this talk we only present the structure of a model that appears to be closest to QCD, and has the potential to address the problem.

  16. Characterising and modelling extended conducted electromagnetic interference in densely packed DC-DC converter

    CSIR Research Space (South Africa)

    Grobler, Inus

    2013-09-01

    Full Text Available Extended Conducted Electromagnetic Interference in Densely Packed DC- DC Converter I Grobler1 and MN Gitau2 Department of Electrical, Electronic and Computer Engineering, University of Pretoria, South Africa. igrobler@csir.co.za1, mgitau.... This will improve the overall design efficiency and shorten the crucial time to market period [1]. It is of utmost importance to try and model the electromagnetic compatibility concurrent with the power processor design stage. The marketplace is in need...

  17. Modeling Turbulent Mixing/Combustion of Bio-Agents Behind Detonations: Effect of Instabilities, Dense Clustering, and Trace Survivability

    Science.gov (United States)

    2017-06-01

    kilogram per cubic meter (kg m –3 ) pound-force (lbf avoirdupois) 4.448 222 newton (N) Energy/Work/Power electron volt (eV) 1.602 177 × 10 –19...localized dynamic subgrid models for turbulence and reaction-di↵usion processes provide a unique strategy that contains no ad hoc parameters [7, 8...approach to account for the presence of large number (“dense cloud ”) of particles (in the nano-to-micron scale) in the domain. This report summarizes the

  18. An 18 Moments Model for Dense Gases: Entropy and Galilean Relativity Principles without Expansions

    Directory of Open Access Journals (Sweden)

    M. Cristina Carrisi

    2015-01-01

    Full Text Available The 14 moments model for dense gases, introduced in the last few years by Arima, Taniguchi, Ruggeri and Sugiyama, is here extended up to 18 moments. They have found the closure of the balance equations up to a finite order with respect to equilibrium; it is also possible to impose for that model the entropy and Galilean relativity principles up to whatever order with respect to equilibrium, but by using Taylor’s expansion. Here, the exact solution is found, without expansions, but a bigger number of moments has to be considered and reasons will be shown suggesting that this number is at least 18.

  19. Modeling shear-induced particle ordering and deformation in a dense soft particle suspension.

    Science.gov (United States)

    Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long

    2017-11-01

    We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca  =  0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ  =  0.61, the structure maintains layered HCP for Ca  =  0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.

  20. Model Intercomparison Study to Investigate a Dense Contaminant Plume in a Complex Hydrogeologic System

    International Nuclear Information System (INIS)

    Williams, Mark D.; Cole, Charles R.; Foley, Michael G.; Zinina, Galina A.; Zinin, Alexander I.; Vasil'Kova, Nelly A.; Samsonova, Lilia M.

    2001-01-01

    A joint Russian and U.S. model intercomparison study was undertaken for developing more realistic contaminant transport models of the Mayak Site, Southern Urals. The test problems were developed by the Russian Team based on their experience modeling contaminant migration near Lake Karachai. The intercomparison problems were designed to address lake and contaminant plume interactions, as well as river interactions and plume density effects. Different numerical codes were used. Overall there is good agreement between the results of both models. Features shown by both models include (1) the sinking of the plume below the lake, (2) the raising of the water table in the fresh water adjacent to the lake in response to the increased pressure from the dense plume, and (3) the formation of a second sinking plume in an area where evapotranspiration exceeded infiltration, thus increasing the solute concentrations above the source (i.e., lake) values

  1. Partial ionization in dense plasmas: comparisons among average-atom density functional models.

    Science.gov (United States)

    Murillo, Michael S; Weisheit, Jon; Hansen, Stephanie B; Dharma-wardana, M W C

    2013-06-01

    Nuclei interacting with electrons in dense plasmas acquire electronic bound states, modify continuum states, generate resonances and hopping electron states, and generate short-range ionic order. The mean ionization state (MIS), i.e, the mean charge Z of an average ion in such plasmas, is a valuable concept: Pseudopotentials, pair-distribution functions, equations of state, transport properties, energy-relaxation rates, opacity, radiative processes, etc., can all be formulated using the MIS of the plasma more concisely than with an all-electron description. However, the MIS does not have a unique definition and is used and defined differently in different statistical models of plasmas. Here, using the MIS formulations of several average-atom models based on density functional theory, we compare numerical results for Be, Al, and Cu plasmas for conditions inclusive of incomplete atomic ionization and partial electron degeneracy. By contrasting modern orbital-based models with orbital-free Thomas-Fermi models, we quantify the effects of shell structure, continuum resonances, the role of exchange and correlation, and the effects of different choices of the fundamental cell and boundary conditions. Finally, the role of the MIS in plasma applications is illustrated in the context of x-ray Thomson scattering in warm dense matter.

  2. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  3. The importance of modeling nonhydrostatic processes for dense water reproduction in the Southern Adriatic Sea

    Science.gov (United States)

    Bellafiore, Debora; McKiver, William J.; Ferrarin, Christian; Umgiesser, Georg

    2018-05-01

    Dense water (DW) formation commonly occurs in the shallow Northern Adriatic Sea during winter outbreaks, when there is a combination of the cooling of surface waters by the winds and high salinity as a result of reduced river inputs. These DWs subsequently propagate southwards over a period of weeks/months, eventually arriving in the Southern Adriatic Sea. The investigation is based on a new nonhydrostatic (NH) formulation of the 3D finite element model SHYFEM that is validated for a number of theoretical test cases. Subsequently this model is used to simulate, through high-resolution numerical simulations, an extreme DW event that occurred in the Adriatic Sea in 2012. We perform both hydrostatic (HY) and NH simulations in order to explicitly see the impact of NH processes on the DW dynamics. The modeled results are compared to observations collected in the field campaign of March-April 2012 in the Southern Adriatic Sea. The NH run correctly reproduces the across isobath bottom-trapped gravity current characterizing the canyon DW pathways. It also more accurately captures the frequency and intensity of dense water cascading pulsing events, as the inclusion of NH processes produces stronger currents with different DW mixing characteristics. Finally, the NH run simulates internal gravity waves (IGW), generated during the cascading at the edge of the canyon, which propagate downslope. This IGW activity is not captured in the HY case.

  4. Heat exchanger modelling in central receiver solar power plant using dense particle suspension

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Gómez-García, Fabrisio; González-Aguilar, José; Romero, Manuel; Benoit, Hadrien; Flamant, Gilles

    2017-06-01

    In this paper, a detailed thermodynamic model for a heat exchanger (HX) working with a dense particle suspension (DPS) as heat transfer fluid (HTF) in the solar loop and water-steam as working fluid is presented. HX modelling is based on fluidized bed (FB) technology and its design has been conceived to couple solar plant using DPS as HTF and storage media with Rankine cycle for power generation. Using DPS as heat transfer fluid allows extending operating temperature range what will help to reduce thermal energy storage costs favoring higher energy densities but will also allow running power cycle at higher temperature what will increase its efficiency. Besides HX modelling description, this model will be used to reproduce solar plant performance under steady state and transient conditions.

  5. A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids

    Science.gov (United States)

    Liang, Yingjie; Chen, Wen

    2018-03-01

    Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.

  6. Numerical investigation of influence on heat transfer characteristics to pneumatically conveyed dense phase flow by selecting models and boundary conditions

    Science.gov (United States)

    Zheng, Y.; Liu, Q.; Li, Y.

    2012-03-01

    Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with

  7. Dense gene physical maps of the non-model species Drosophila subobscura.

    Science.gov (United States)

    Orengo, Dorcas J; Puerma, Eva; Papaceit, Montserrat; Segarra, Carmen; Aguadé, Montserrat

    2017-06-01

    The comparative analysis of genetic and physical maps as well as of whole genome sequences had revealed that in the Drosophila genus, most structural rearrangements occurred within chromosomal elements as a result of paracentric inversions. Genome sequence comparison would seem the best method to estimate rates of chromosomal evolution, but the high-quality reference genomes required for this endeavor are still scanty. Here, we have obtained dense physical maps for Muller elements A, C, and E of Drosophila subobscura, a species with an extensively studied rich and adaptive chromosomal polymorphism. These maps are based on 462 markers: 115, 236, and 111 markers for elements A, C, and E, respectively. The availability of these dense maps will facilitate genome assembly and will thus greatly contribute to obtaining a good reference genome, which is a required step for D. subobscura to attain the model species status. The comparative analysis of these physical maps and those obtained from the D. pseudoobscura and D. melanogaster genomes allowed us to infer the number of fixed inversions and chromosomal evolutionary rates for each pairwise comparison. For all three elements, rates inferred from the more closely related species were higher than those inferred from the more distantly related species, which together with results of relative-rate tests point to an acceleration in the D. subobscura lineage at least for elements A and E.

  8. Modeling virtualized downlink cellular networks with ultra-dense small cells

    KAUST Repository

    Ibrahim, Hazem

    2015-09-11

    The unrelenting increase in the mobile users\\' populations and traffic demand drive cellular network operators to densify their infrastructure. Network densification increases the spatial frequency reuse efficiency while maintaining the signal-to-interference-plus-noise-ratio (SINR) performance, hence, increases the spatial spectral efficiency and improves the overall network performance. However, control signaling in such dense networks consumes considerable bandwidth and limits the densification gain. Radio access network (RAN) virtualization via control plane (C-plane) and user plane (U-plane) splitting has been recently proposed to lighten the control signaling burden and improve the network throughput. In this paper, we present a tractable analytical model for virtualized downlink cellular networks, using tools from stochastic geometry. We then apply the developed modeling framework to obtain design insights for virtualized RANs and quantify associated performance improvement. © 2015 IEEE.

  9. 3D modelling of trompe l'oeil decorated vaults using dense matching techniques

    Science.gov (United States)

    Chiabrando, F.; Lingua, A.; Noardo, F.; Spano, A.

    2014-05-01

    Dense matching techniques, implemented in many commercial and open source software, are useful instruments for carrying out a rapid and detailed analysis of complex objects, including various types of details and surfaces. For this reason these tools were tested in the metric survey of a frescoed ceiling in the hall of honour of a baroque building. The surfaces are covered with trompe-l'oeil paintings which theoretically can give a very good texture to automatic matching algorithms but in this case problems arise when attempting to reconstruct the correct geometry: in fact, in correspondence with the main architectonic painted details, the models present some irregularities, unexpectedly coherent with the painted drawing. The photogrammetric models have been compared with data deriving from a LIDAR survey of the same object, to evaluate the entity of this blunder: some profiles of selected sections have been extracted, verifying the different behaviours of the software tools.

  10. Modeling quantum processes in classical molecular dynamics simulations of dense plasmas

    Science.gov (United States)

    Hau-Riege, S. P.; Weisheit, J.; Castor, J. I.; London, R. A.; Scott, H.; Richards, D. F.

    2013-01-01

    We present a method for treating quantum processes in a classical molecular dynamics (MD) simulation. The computational approach, called ‘Small Ball’ (SB), was originally introduced to model emission and absorption of free-free radiation. Here, we extend this approach to handle ionization/recombination reactions as well as nuclear fusion events. This method exploits the short-range nature of screened-particle interactions in a dense plasma to restrict consideration of quantum processes to a small region about a given ion, and carefully accounts for the effects of the plasma environment on two-particle interaction rates within that region. The use of a reduced set of atomic rates, corresponding to the bottleneck approximation, simplifies their implementation within an MD code. We validate the extended MD code against a collisional-radiative code for model systems under two scenarios: (i) solid-density carbon at conditions encountered in recent experiments, and (ii) high-density Xe-doped hydrogen relevant for laser fusion. We find good agreement for the time-dependent ionization evolution for both systems. We also simulate fast protons stopping in warm, dense carbon plasmas. Here, reasonable agreement with recent experimental data requires contributions from both bound electrons, as modeled by SB in the extended MD code, and free electrons; for the latter, use of the classical random phase approximation (RPA) formula instead of the MD prediction yields better agreement with the experiment, a result that can be attributed to the use of modified Coulomb potentials in MD simulations of electron-ion plasmas. Finally, we confirm that the fusion reaction rate obtained from an MD simulation agrees with analytical expressions for the reaction rate in a weakly screened plasma.

  11. Numerical modelling of rise and fall of a dense layer in salt diapirs

    DEFF Research Database (Denmark)

    Chemia, Zurab; Koyi, H.; Schmeling, H.

    2008-01-01

    Numerical models are used to study the entrainment of a dense anhydrite layer by a diapir. The anhydrite layer is initially horizontally embedded within a viscous salt layer. The diapir is down-built by aggradation of non-Newtonian sediments (n = 4, constant temperature) placed on the top...... of the salt layer. Several parameters (sedimentation rate, salt viscosity, perturbation width and stratigraphic position of the anhydrite layer) are studied systematically to understand their role in governing the entrainment of the anhydrite layer. High sedimentation rates during the early stages...... of the diapir evolution bury the initial perturbation and, thus, no diapir forms. The anhydrite layer sinks within the buried salt layer. For the same sedimentation rate, increasing viscosity of the salt layer decreases the rise rate of the diapir and reduces the amount (volume) of the anhydrite layer...

  12. Dynamic modeling of a solar receiver/thermal energy storage system based on a compartmented dense gas fluidized bed

    Science.gov (United States)

    Solimene, Roberto; Chirone, Roberto; Chirone, Riccardo; Salatino, Piero

    2017-06-01

    Fluidized beds may be considered a promising option to collection and storage of thermal energy of solar radiation in Concentrated Solar Power (CSP) systems thanks to their excellent thermal properties in terms of bed-to-wall heat transfer coefficient and thermal diffusivity and to the possibility to operate at much higher temperature. A novel concept of solar receiver for combined heat and power (CHP) generation consisting of a compartmented dense gas fluidized bed has been proposed to effectively accomplish three complementary tasks: collection of incident solar radiation, heat transfer to the working fluid of the thermodynamic cycle and thermal energy storage. A dynamical model of the system laid the basis for optimizing collection of incident radiative power, heat transfer to the steam cycle, storage of energy as sensible heat of bed solids providing the ground for the basic design of a 700kWth demonstration CSP plant.

  13. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    Science.gov (United States)

    Christensen, Nikolaj K; Minsley, Burke J.; Christensen, Steen

    2017-01-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  14. An Ionization and Equation of State Model for Dense, Plasma Mixtures

    Science.gov (United States)

    Stanton, Liam; Argus, Robert; Dorabiala, Olga; Kelley, Zander; Sripimonwan, Brandon; Scullard, Christian; Graziani, Frank; Shen, Yannan; Murillo, Michael

    2017-10-01

    Almost all high energy-density physics experiments involve a multitude of species, which introduces nontrivial challenges to the models for both theoretical and practical reasons. To make matters worse, the ionic species will be composed of multiple ionization states themselves. The theoretical connection to the single-species properties, such as the transport coefficients or equations of state, is rarely as straightforward as a simple superposition. Additionally, our knowledge of such mixtures must span orders of magnitude in temperature and density, and impurities from higher-Z elements can fundamentally change the physical properties of the plasma as well. Here, we present a new model that can accurately and efficiently predict ionization, thermodynamic and correlational properties of dense plasma mixtures over a wide range parameter. This model is not only applicable to mixtures of an arbitrary number of ionic components, but it resolves properties of individual ionization states as well. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Characterizing urban hydrodynamic models in densely settled river-corridors: Lessons from Jakarta

    Science.gov (United States)

    Shaad, K.; Ninsalam, Y.; Padawangi, R.; Burlando, P.

    2016-12-01

    The nature and pace of urbanization in South and South-east Asia has created unique circumstances for the inter-action between social and ecological systems linked to water resources - with the growing density of population; frequent and extensive modification on the flood plain alongside governance challenges creating large segment of the settled regions exposed to water security issues and flooding risks. The densely-settled river corridor in Jakarta, with nearly 590 km of waterfront exposed to frequent flooding, captures the scale and complexity typical of these systems. Developing models that can help improve our insights into these urban areas remain a challenge. Here, we present our attempts to apply high-resolution aerial and ground based mapping methods, alongside shallow groundwater monitoring and household surveys, to characterize hydrodynamic models of varying complexity, for a 7 km stretch on the Ciliwung River in the center of Jakarta. We explore the uncertainty associated with obtaining "hydraulically representative" ground description and influence of representation of structures in flood propagation over the short-term, while linking it to the diffusive forcings from settlement acting on the floodplain-river interaction over the long-term. Connecting, thus, flooding with water availability and contamination, we speculate on the ability to scale these approaches and technologies beyond the limits of the test site.

  16. Modeling warm dense matter experiments using the 3D ALE-AMR code and the move toward exascale computing

    Directory of Open Access Journals (Sweden)

    Koniges Alice

    2013-11-01

    Full Text Available The Neutralized Drift Compression Experiment II (NDCX II is an induction accelerator planned for initial commissioning in 2012. The final design calls for a 3 MeV, Li+ ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The NDCX II will be used in studies of material in the warm dense matter (WDM regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. We discuss recent efforts to adapt the 3D ALE-AMR code to model WDM experiments on NDCX II. The code, which combines Arbitrary Lagrangian Eulerian (ALE hydrodynamics with Adaptive Mesh Refinement (AMR, has physics models that include ion deposition, radiation hydrodynamics, thermal diffusion, anisotropic material strength with material time history, and advanced models for fragmentation. Experiments at NDCX-II will explore the process of bubble and droplet formation (two-phase expansion of superheated metal solids using ion beams. Experiments at higher temperatures will explore equation of state and heavy ion fusion beam-to-target energy coupling efficiency. Ion beams allow precise control of local beam energy deposition providing uniform volumetric heating on a timescale shorter than that of hydrodynamic expansion. We also briefly discuss the effects of the move to exascale computing and related computational changes on general modeling codes in fusion.

  17. Low-Resolution Modeling of Dense Drainage Networks in Confining Layers.

    Science.gov (United States)

    Pauw, P S; Van der Zee, S E A T M; Leijnse, A; Delsman, J R; De Louw, P G B; De Lange, W J; Oude Essink, G H P

    2015-01-01

    Groundwater-surface water (GW-SW) interaction in numerical groundwater flow models is generally simulated using a Cauchy boundary condition, which relates the flow between the surface water and the groundwater to the product of the head difference between the node and the surface water level, and a coefficient, often referred to as the "conductance." Previous studies have shown that in models with a low grid resolution, the resistance to GW-SW interaction below the surface water bed should often be accounted for in the parameterization of the conductance, in addition to the resistance across the surface water bed. Three conductance expressions that take this resistance into account were investigated: two that were presented by Mehl and Hill (2010) and the one that was presented by De Lange (1999). Their accuracy in low-resolution models regarding salt and water fluxes to a dense drainage network in a confined aquifer system was determined. For a wide range of hydrogeological conditions, the influence of (1) variable groundwater density; (2) vertical grid discretization; and (3) simulation of both ditches and tile drains in a single model cell was investigated. The results indicate that the conductance expression of De Lange (1999) should be used in similar hydrogeological conditions as considered in this paper, as it is better taking into account the resistance to flow below the surface water bed. For the cases that were considered, the influence of variable groundwater density and vertical grid discretization on the accuracy of the conductance expression of De Lange (1999) is small. © 2014, National GroundWater Association.

  18. Predicting surface fuel models and fuel metrics using lidar and CIR imagery in a dense mixed conifer forest

    Science.gov (United States)

    Marek K. Jakubowksi; Qinghua Guo; Brandon Collins; Scott Stephens; Maggi. Kelly

    2013-01-01

    We compared the ability of several classification and regression algorithms to predict forest stand structure metrics and standard surface fuel models. Our study area spans a dense, topographically complex Sierra Nevada mixed-conifer forest. We used clustering, regression trees, and support vector machine algorithms to analyze high density (average 9 pulses/m

  19. Model test of wave forces on a structurally dense jacket platform

    Energy Technology Data Exchange (ETDEWEB)

    Gu, G.Z.; Parsley, M.A.; Berek, E.P.; Calvo, J.J.; Johnson, R.C.; Petruska, D.J. [Mobil Technology Co., Dallas, TX (United States)

    1996-12-31

    In the Gulf of Mexico, there are a significant number of jacket platforms built in the 1950`s and 60`s which are still in operation. Typically, these platforms have a large number of closely spaced legs and densely arranged bracing members. Since most of these platforms are beyond their design lives but the reservoirs are still producing, their safety, serviceability and fitness-for-purpose must be re-assessed in order to continue producing from them. During Mobil`s in-house re-qualification effort, it was found that the predictions by structural analysis programs (such as SACS and KARMA) were inconsistent with the platform inspection results. The programs predicted a large number of joint can failures during design storms (such as hurricane Andrew), but underwater inspections indicated only few failures had actually occurred. It was apparent that the procedure used for the assessment was conservative--either the wave loads the platforms experienced during the hurricanes were overestimated and/or the structural resistances were underestimated. This paper addresses the wave load issue. To calibrate the force algorithms typically used in structural analysis programs, a model test of a typical aging jacket platform was conducted in the wave basin.

  20. On the outflow of dense water from the Weddell and Ross Seas in OCCAM model

    Directory of Open Access Journals (Sweden)

    R. Kerr

    2012-06-01

    Full Text Available We describe the seasonal and interannual variability of volume transports in the Weddell and Ross Seas using the 1/12° 20-yr simulation of the OCCAM global ocean general circulation model. The average simulated full-depth cumulative volume transports were 28.5 ± 2.9 Sv (1 Sv ≡ 106 m3 s−1 and 13.4 ± 5.2 Sv, across the main export regions of the Weddell and Ross Seas, respectively. The values of mean outflow of Antarctic Bottom Water (AABW (defined by neutral density γn ≥ 28.27 kg m−3 from the Weddell and Ross Seas of 10.6 ± 3.1 Sv and 0.5 ± 0.7 Sv, respectively, agree with the range reported in historical observational studies. The export of Weddell Sea dense water in OCCAM is primarily determined by the strength of the Weddell Gyre. Variability in AABW export is predominantly at periods of ~1 yr and 2–4 yr.

  1. Cost Calculation Model for Logistics Service Providers

    Directory of Open Access Journals (Sweden)

    Zoltán Bokor

    2012-11-01

    Full Text Available The exact calculation of logistics costs has become a real challenge in logistics and supply chain management. It is essential to gain reliable and accurate costing information to attain efficient resource allocation within the logistics service provider companies. Traditional costing approaches, however, may not be sufficient to reach this aim in case of complex and heterogeneous logistics service structures. So this paper intends to explore the ways of improving the cost calculation regimes of logistics service providers and show how to adopt the multi-level full cost allocation technique in logistics practice. After determining the methodological framework, a sample cost calculation scheme is developed and tested by using estimated input data. Based on the theoretical findings and the experiences of the pilot project it can be concluded that the improved costing model contributes to making logistics costing more accurate and transparent. Moreover, the relations between costs and performances also become more visible, which enhances the effectiveness of logistics planning and controlling significantly

  2. Observations and model calculations of trace gas scavenging in a dense Saharan dust plume during MINATROC

    Directory of Open Access Journals (Sweden)

    M. de Reus

    2005-01-01

    Full Text Available An intensive field measurement campaign was performed in July/August 2002 at the Global Atmospheric Watch station Izaña on Tenerife to study the interaction of mineral dust aerosol and tropospheric chemistry (MINATROC. A dense Saharan dust plume, with aerosol masses exceeding 500 µg m-3, persisted for three days. During this dust event strongly reduced mixing ratios of ROx (HO2, CH3O2 and higher organic peroxy radicals, H2O2, NOx (NO and NO2 and O3 were observed. A chemistry boxmodel, constrained by the measurements, has been used to study gas phase and heterogeneous chemistry. It appeared to be difficult to reproduce the observed HCHO mixing ratios with the model, possibly related to the representation of precursor gas concentrations or the absence of dry deposition. The model calculations indicate that the reduced H2O2 mixing ratios in the dust plume can be explained by including the heterogeneous removal reaction of HO2 with an uptake coefficient of 0.2, or by assuming heterogeneous removal of H2O2 with an accommodation coefficient of 5x10-4. However, these heterogeneous reactions cannot explain the low ROx mixing ratios observed during the dust event. Whereas a mean daytime net ozone production rate (NOP of 1.06 ppbv/hr occurred throughout the campaign, the reduced ROx and NOx mixing ratios in the Saharan dust plume contributed to a reduced NOP of 0.14-0.33 ppbv/hr, which likely explains the relatively low ozone mixing ratios observed during this event.

  3. Modeling Warm Dense Matter Experiments using the 3D ALE-AMR Code and the Move Toward Exascale Computing

    International Nuclear Information System (INIS)

    Koniges, A.; Eder, E.; Liu, W.; Barnard, J.; Friedman, A.; Logan, G.; Fisher, A.; Masers, N.; Bertozzi, A.

    2011-01-01

    The Neutralized Drift Compression Experiment II (NDCX II) is an induction accelerator planned for initial commissioning in 2012. The final design calls for a 3 MeV, Li+ ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The NDCX II will be used in studies of material in the warm dense matter (WDM) regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. We discuss recent efforts to adapt the 3D ALE-AMR code to model WDM experiments on NDCX II. The code, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR), has physics models that include ion deposition, radiation hydrodynamics, thermal diffusion, anisotropic material strength with material time history, and advanced models for fragmentation. Experiments at NDCX-II will explore the process of bubble and droplet formation (two-phase expansion) of superheated metal solids using ion beams. Experiments at higher temperatures will explore equation of state and heavy ion fusion beam-to-target energy coupling efficiency. Ion beams allow precise control of local beam energy deposition providing uniform volumetric heating on a timescale shorter than that of hydrodynamic expansion. The ALE-AMR code does not have any export control restrictions and is currently running at the National Energy Research Scientific Computing Center (NERSC) at LBNL and has been shown to scale well to thousands of CPUs. New surface tension models that are being implemented and applied to WDM experiments. Some of the approaches use a diffuse interface surface tension model that is based on the advective Cahn-Hilliard equations, which allows for droplet breakup in divergent velocity fields without the need for imposed perturbations. Other methods require seeding or other methods for droplet breakup. We also briefly discuss the effects of the move to exascale computing and related

  4. D Recording and Modelling of Middle-Age Fortress in Dense Vegetation Environment

    Science.gov (United States)

    Koehl, M.; Courtois, Y.; Guillemin, S.

    2017-08-01

    The Schwartzenbourg castle is a Middle-Ages fortress which was built in 1261. It is situated above the valley of Munster in Alsace, France. It was mainly used as a fortified place and a jail. In the early 15th century, the structure has deteriorated. Even after some repairs, it fell into ruins during the Thirty Years' war (1618-1648) and stayed uninhabited. During World War I, the German army used the place as a vantage point and also built a blockhouse inside the ruins. Nowadays, the ruins are gradually collapsing and the remains of the old walls are completely covered by thick plants. The goal of this project was to create a 3D-model of the site before closing its access, which became too dangerous for people. This modelling is divided into two elements: on one hand, a digital terrain model (DTM) of the site in order to replace the castle and to analyze the background of its original environment; on the other hand, a 3D modelling of the ruins of the castle invaded by the vegetation. Indeed, the main difficulty of the measurement is obviously the dense vegetation which hides the castle. Held back for years outside the castle, it has now become an integral part of the ruins. This vegetation is finally today usually the first threat of heritage buildings. After a preliminary inspection of the site as well as difficulties of the project, the first step consisted of the survey of the whole environment of the site. We will therefore describe the different phases of the survey with the initial implementation of a georeferenced network on site. We will present the terrestrial laser scanning (TLS) surveys, then complementary surveys carried out by aerial photogrammetry. To be implemented, we had to wait for an advanced autumn in order to have as few leaves on trees as possible. The major step of processing of point clouds described in this paper is then the extraction of a DTM by using techniques to pass through the vegetation, or better to segment the points into

  5. Dense Breasts

    Science.gov (United States)

    ... may lose breast density as a result of hormonal changes experienced during menopause. However, some younger women may have fatty breasts while some elderly women have dense breasts. Much of what determines a woman's ... and hormonal factors also affect a woman's breast density. About ...

  6. Harmonic analysis of dense time series of landsat imagery for modeling change in forest conditions

    Science.gov (United States)

    Barry Tyler. Wilson

    2015-01-01

    This study examined the utility of dense time series of Landsat imagery for small area estimation and mapping of change in forest conditions over time. The study area was a region in north central Wisconsin for which Landsat 7 ETM+ imagery and field measurements from the Forest Inventory and Analysis program are available for the decade of 2003 to 2012. For the periods...

  7. Digital reconstruction of the cell body in dense neural circuits using a spherical-coordinated variational model

    Science.gov (United States)

    Quan, Tingwei; Li, Jing; Zhou, Hang; Li, Shiwei; Zheng, Ting; Yang, Zhongqing; Luo, Qingming; Gong, Hui; Zeng, Shaoqun

    2014-05-01

    Mapping the neuronal circuits is essential to understand brain function. Recent technological advancements have made it possible to acquire the brain atlas at single cell resolution. Digital reconstruction of the neural circuits down to this level across the whole brain would significantly facilitate brain studies. However, automatic reconstruction of the dense neural connections from microscopic image still remains a challenge. Here we developed a spherical-coordinate based variational model to reconstruct the shape of the cell body i.e. soma, as one of the procedures for this purpose. When intuitively processing the volumetric images in the spherical coordinate system, the reconstruction of somas with variational model is no longer sensitive to the interference of the complicated neuronal morphology, and could automatically and robustly achieve accurate soma shape regardless of the dense spatial distribution, and diversity in cell size, and morphology. We believe this method would speed drawing the neural circuits and boost brain studies.

  8. The Relative Effectiveness of Empirical and Physical Models for Simulating the Dense Undercurrent of Pyroclastic Flows under Different Emplacement Conditions

    Directory of Open Access Journals (Sweden)

    Sarah E. Ogburn

    2017-11-01

    Full Text Available High concentration pyroclastic density currents (PDCs are hot avalanches of volcanic rock and gas and are among the most destructive volcanic hazards due to their speed and mobility. Mitigating the risk associated with these flows depends upon accurate forecasting of possible impacted areas, often using empirical or physical models. TITAN2D, VolcFlow, LAHARZ, and ΔH/L or energy cone models each employ different rheologies or empirical relationships and therefore differ in appropriateness of application for different types of mass flows and topographic environments. This work seeks to test different statistically- and physically-based models against a range of PDCs of different volumes, emplaced under different conditions, over different topography in order to test the relative effectiveness, operational aspects, and ultimately, the utility of each model for use in hazard assessments. The purpose of this work is not to rank models, but rather to understand the extent to which the different modeling approaches can replicate reality in certain conditions, and to explore the dynamics of PDCs themselves. In this work, these models are used to recreate the inundation areas of the dense-basal undercurrent of all 13 mapped, land-confined, Soufrière Hills Volcano dome-collapse PDCs emplaced from 1996 to 2010 to test the relative effectiveness of different computational models. Best-fit model results and their input parameters are compared with results using observation- and deposit-derived input parameters. Additional comparison is made between best-fit model results and those using empirically-derived input parameters from the FlowDat global database, which represent “forward” modeling simulations as would be completed for hazard assessment purposes. Results indicate that TITAN2D is able to reproduce inundated areas well using flux sources, although velocities are often unrealistically high. VolcFlow is also able to replicate flow runout well, but

  9. Modeling the hot-dense plasma of the solar interior in and out of thermal equilibrium

    Science.gov (United States)

    Lin, Hsiao-Hsuan

    The developments in helioseismology ensure a wealth of studies in solar physics. In particular, with the high precision of the observations of helioseismology, a high-quality solar model is mandated, since even the tiny deviations between a model and the real Sun can be detected. One crucial ingredient of any solar model is the thermodynamics of hot-dense plasmas, in particular the equation of state. This has motivated efforts to develop sophisticated theoretical equations of state (EOS). It is important to realize that for the conditions of solar-interior plasmas, there are no terrestrial laboratory experiments; the only observational constraints come from helioseismology. Among the most successful EOS is so called OPAL EOS, which is part of the Opacity Project at Livermore. It is based on an activity expansion of the quantum plasma, and realized in the so-called "physical picture". One of its main competitor is the so called MHD EOS, which is part of the international Opacity Project (OP), a non-classified multi-country consortium. The approach of MHD is via the so-called "chemical picture". Since OPAL is the most accurate equation of state so far, there has been a call for a public-domain version of it. However, the OPAL code remains proprietary, and its "emulation" makes sense. An additional reason for such a project is that the results form OPAL can only be accessed via tables generated by the OPAL team. Their users do not have the flexibility to change the chemical composition from their end. The earlier MHD-based OPAL emulator worked well with its modifications of the MHD equation of state, which is the Planck-Larkin partition function and its corresponding scattering terms. With this modification, MHD can serve as a OPAL emulator with all the flexibility and accessibility. However, to build a really user-friendly OPAL emulator one should consider CEFF-based OPAL emulator. CEFF itself is already widely used practical EOS which can be easily implemented

  10. Optimal Sparse Matrix Dense Vector Multiplication in the I/O-Model

    DEFF Research Database (Denmark)

    Bender, Michael A.; Brodal, Gerth Stølting; Fagerberg, Rolf

    2010-01-01

      We study the problem of sparse-matrix dense-vector multiplication (SpMV) in external memory. The task of SpMV is to compute y:=Ax, where A is a sparse Nx N matrix and x is a vector. We express sparsity by a parameter k, and for each choice of k consider the class of matrices where the number...

  11. DENSE MEDIUM CYCLONE OPTIMIZATON

    Energy Technology Data Exchange (ETDEWEB)

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  12. Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes

    Science.gov (United States)

    McGrath, T.; St. Clair, J.; Balachandar, S.

    2017-06-01

    Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.

  13. Validation of a two-fluid model used for the simulation of dense fluidized beds; Validation d`un modele a deux fluides applique a la simulation des lits fluidises denses

    Energy Technology Data Exchange (ETDEWEB)

    Boelle, A.

    1997-02-17

    A two-fluid model applied to the simulation of gas-solid dense fluidized beds is validated on micro scale and on macro scale. Phase coupling is carried out in the momentum and energy transport equation of both phases. The modeling is built on the kinetic theory of granular media in which the gas action has been taken into account in order to get correct expressions of transport coefficients. A description of hydrodynamic interactions between particles in high Stokes number flow is also incorporated in the model. The micro scale validation uses Lagrangian numerical simulations viewed as numerical experiments. The first validation case refers to a gas particle simple shear flow. It allows to validate the competition between two dissipation mechanisms: drag and particle collisions. The second validation case is concerted with sedimenting particles in high Stokes number flow. It allows to validate our approach of hydrodynamic interactions. This last case had led us to develop an original Lagrangian simulation with a two-way coupling between the fluid and the particles. The macro scale validation uses the results of Eulerian simulations of dense fluidized bed. Bed height, particles circulation and spontaneous created bubbles characteristics are studied and compared to experimental measurement, both looking at physical and numerical parameters. (author) 159 refs.

  14. DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY

    Energy Technology Data Exchange (ETDEWEB)

    Moses Bogere

    2011-08-31

    The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.

  15. Numerically calibrated model for propagation of a relativistic unmagnetized jet in dense media

    Science.gov (United States)

    Harrison, Richard; Gottlieb, Ore; Nakar, Ehud

    2018-03-01

    Relativistic jets reside in high-energy astrophysical systems of all scales. Their interaction with the surrounding media is critical as it determines the jet evolution, observable signature, and feedback on the environment. During its motion the interaction of the jet with the ambient media inflates a highly pressurized cocoon, which under certain conditions collimates the jet and strongly affects its propagation. Recently, Bromberg et al. (2011b) derived a general simplified (semi)analytic solution for the evolution of the jet and the cocoon in case of an unmagnetized jet that propagates in a medium with a range of density profiles. In this work we use a large suite of 2D and 3D relativistic hydrodynamic simulations in order to test the validity and accuracy of this model. We discuss the similarities and differences between the analytic model and numerical simulations and also, to some extent, between 2D and 3D simulations. Our main finding is that although the analytic model is highly simplified, it properly predicts the evolution of the main ingredients of the jet-cocoon system, including its temporal evolution and the transition between various regimes (e.g., collimated to uncollimated). The analytic solution predicts a jet head velocity that is faster by a factor of about 3 compared to the simulations, as long as the head velocity is Newtonian. We use the results of the simulations to calibrate the analytic model which significantly increases its accuracy. We provide an applet that calculates semi-analytically the propagation of a jet in an arbitrary density profile defined by the user at http://www.astro.tau.ac.il/ ore/propagation.html.

  16. Mobility-Aware Modeling and Analysis of Dense Cellular Networks With $C$ -Plane/ $U$ -Plane Split Architecture

    KAUST Repository

    Ibrahim, Hazem

    2016-09-19

    The unrelenting increase in the population of mobile users and their traffic demands drive cellular network operators to densify their network infrastructure. Network densification shrinks the footprint of base stations (BSs) and reduces the number of users associated with each BS, leading to an improved spatial frequency reuse and spectral efficiency, and thus, higher network capacity. However, the densification gain comes at the expense of higher handover rates and network control overhead. Hence, user’s mobility can diminish or even nullifies the foreseen densification gain. In this context, splitting the control plane ( C -plane) and user plane ( U -plane) is proposed as a potential solution to harvest densification gain with reduced cost in terms of handover rate and network control overhead. In this paper, we use stochastic geometry to develop a tractable mobility-aware model for a two-tier downlink cellular network with ultra-dense small cells and C -plane/ U -plane split architecture. The developed model is then used to quantify the effect of mobility on the foreseen densification gain with and without C -plane/ U -plane split. To this end, we shed light on the handover problem in dense cellular environments, show scenarios where the network fails to support certain mobility profiles, and obtain network design insights.

  17. Parallel Algorithm for Solving TOV Equations for Sequence of Cold and Dense Nuclear Matter Models

    Science.gov (United States)

    Ayriyan, Alexander; Buša, Ján; Grigorian, Hovik; Poghosyan, Gevorg

    2018-04-01

    We have introduced parallel algorithm simulation of neutron star configurations for set of equation of state models. The performance of the parallel algorithm has been investigated for testing set of EoS models on two computational systems. It scales when using with MPI on modern CPUs and this investigation allowed us also to compare two different types of computational nodes.

  18. Simulation of the Microwave Emission of Multi-layered Snowpacks Using the Dense Media Radiative Transfer Theory: the DMRT-ML Model

    Science.gov (United States)

    Picard, G.; Brucker, Ludovic; Roy, A.; Dupont, F.; Fily, M.; Royer, A.; Harlow, C.

    2013-01-01

    DMRT-ML is a physically based numerical model designed to compute the thermal microwave emission of a given snowpack. Its main application is the simulation of brightness temperatures at frequencies in the range 1-200 GHz similar to those acquired routinely by spacebased microwave radiometers. The model is based on the Dense Media Radiative Transfer (DMRT) theory for the computation of the snow scattering and extinction coefficients and on the Discrete Ordinate Method (DISORT) to numerically solve the radiative transfer equation. The snowpack is modeled as a stack of multiple horizontal snow layers and an optional underlying interface representing the soil or the bottom ice. The model handles both dry and wet snow conditions. Such a general design allows the model to account for a wide range of snow conditions. Hitherto, the model has been used to simulate the thermal emission of the deep firn on ice sheets, shallow snowpacks overlying soil in Arctic and Alpine regions, and overlying ice on the large icesheet margins and glaciers. DMRT-ML has thus been validated in three very different conditions: Antarctica, Barnes Ice Cap (Canada) and Canadian tundra. It has been recently used in conjunction with inverse methods to retrieve snow grain size from remote sensing data. The model is written in Fortran90 and available to the snow remote sensing community as an open-source software. A convenient user interface is provided in Python.

  19. Simulation of the microwave emission of multi-layered snowpacks using the Dense Media Radiative transfer theory: the DMRT-ML model

    Directory of Open Access Journals (Sweden)

    G. Picard

    2013-07-01

    Full Text Available DMRT-ML is a physically based numerical model designed to compute the thermal microwave emission of a given snowpack. Its main application is the simulation of brightness temperatures at frequencies in the range 1–200 GHz similar to those acquired routinely by space-based microwave radiometers. The model is based on the Dense Media Radiative Transfer (DMRT theory for the computation of the snow scattering and extinction coefficients and on the Discrete Ordinate Method (DISORT to numerically solve the radiative transfer equation. The snowpack is modeled as a stack of multiple horizontal snow layers and an optional underlying interface representing the soil or the bottom ice. The model handles both dry and wet snow conditions. Such a general design allows the model to account for a wide range of snow conditions. Hitherto, the model has been used to simulate the thermal emission of the deep firn on ice sheets, shallow snowpacks overlying soil in Arctic and Alpine regions, and overlying ice on the large ice-sheet margins and glaciers. DMRT-ML has thus been validated in three very different conditions: Antarctica, Barnes Ice Cap (Canada and Canadian tundra. It has been recently used in conjunction with inverse methods to retrieve snow grain size from remote sensing data. The model is written in Fortran90 and available to the snow remote sensing community as an open-source software. A convenient user interface is provided in Python.

  20. Comparative study of dense plasma state equations obtained from different models of average-atom

    International Nuclear Information System (INIS)

    Fromy, Patrice

    1991-01-01

    This research thesis addresses the influence of temperature and density effects on magnitudes such as pressure, energy, ionisation, and on energy levels of a body described according to the approximation of an electrically neutral isolated atomic sphere. Starting from the general formalism of the functional density, with some approximations, the author deduces the Thomas-Fermi, Thomas-Fermi-Dirac, and Thomas-Fermi-Dirac-Weizsaecker models, and an average-atom approximated quantum model. For each of these models, the author presents an explicit method of resolution, as well as the determination of different magnitudes taken into account in this study. For the different studied magnitudes, the author highlights effects due to the influence of temperature and of density, as well as variations due to the different models [fr

  1. Ab initio model of optical properties of two-temperature warm dense matter

    International Nuclear Information System (INIS)

    Holst, B.; Recoules, V.; Mazevet, S.; Torrent, M.

    2014-01-01

    We present a model to describe thermophysical and optical properties of two-temperature systems consisted of heated electrons and cold ions in a solid lattice that occur during ultrafast heating experiments. Our model is based on ab initio simulations within the framework of density functional theory. The optical properties are obtained by evaluating the Kubo-Greenwood formula. By applying the material parameters of our ab initio model to a two-temperature model we are able to describe the temperature relaxation process of femtosecond-laser-heated gold and its optical properties within the same theoretical framework. Recent time-resolved measurements of optical properties of ultrafast heated gold revealed the dynamics of the interaction between femtosecond laser pulses and solid state matter. Different scenarios obtained from simulations of our study are compared with experimental data. (authors)

  2. Comparative validation of statistical and dynamical downscaling models on a dense grid in central Europe: temperature

    Czech Academy of Sciences Publication Activity Database

    Huth, Radan; Mikšovský, J.; Štěpánek, P.; Belda, M.; Farda, A.; Chládová, Zuzana; Pišoft, P.

    2015-01-01

    Roč. 120, 3-4 (2015), s. 533-553 ISSN 0177-798X R&D Projects: GA ČR(CZ) GAP209/11/2405 EU Projects: European Commission(XE) 37005 Institutional support: RVO:68378289 Keywords : statistical downscaling models * regional climate models * central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.433, year: 2015 http://link.springer.com/article/10.1007%2Fs00704-014-1190-3

  3. Comprehensive Care For Joint Replacement Model - Provider Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Comprehensive Care for Joint Replacement Model - provider data. This data set includes provider data for two quality measures tracked during an episode of care:...

  4. Low-resolution modeling of dense drainage networks in confining layers

    NARCIS (Netherlands)

    Pauw, P.S.; Zee, van der S.E.A.T.M.; Leijnse, A.; Delsman, J.R.; Louw, de P.G.B.; Lange, de W.J.; Oude Essink, G.H.P.

    2015-01-01

    Groundwater-surface water (GW-SW) interaction in numerical groundwater flow models is generally simulated using a Cauchy boundary condition, which relates the flow between the surface water and the groundwater to the product of the head difference between the node and the surface water level, and a

  5. Dense shelf water spreading from Antarctic coastal polynyas to the deep Southern Ocean: A regional circumpolar model study

    Science.gov (United States)

    Kusahara, Kazuya; Williams, Guy D.; Tamura, Takeshi; Massom, Robert; Hasumi, Hiroyasu

    2017-08-01

    The spreading of dense shelf water (DSW) from Antarctic coastal margins to lower latitudes plays a vital role in the ocean thermohaline circulation and the global climate system. Through enhanced localized sea ice production in Antarctic coastal polynyas, cold and saline DSW is formed over the continental shelf regions as a precursor to Antarctic Bottom Water (AABW). However, the detailed fate of coastal DSW over the Southern Ocean is still unclear. Here we conduct extensive passive tracer experiments using a circumpolar ocean-sea ice-ice shelf model to investigate pathways of the regional polynya-based DSW from the Antarctic margins to the deep Southern Ocean basins. In the numerical experiments, the Antarctic coastal margin is divided into nine regions, and a passive tracer is released from each region at the same rate as the local sea ice production. The modeled spatial distribution of the total concentration of the nine tracers is consistent with the observed AABW distribution and clearly demonstrates nine routes of the DSW over the Southern Ocean along its bottom topography. Furthermore, the model shows that while ˜50% of the total tracer is distributed northward from the continental shelf to the deep ocean, ˜7% is transported poleward beneath ice shelf cavities. The comprehensive tracer experiments allow us to estimate the contribution of local DSW to the total concentration along each of the pathways.

  6. Customer-Provider Strategic Alignment: A Maturity Model

    Science.gov (United States)

    Luftman, Jerry; Brown, Carol V.; Balaji, S.

    This chapter presents a new model for assessing the maturity of a ­customer-provider relationship from a collaborative service delivery perspective: the Customer-Provider Strategic Alignment Maturity (CPSAM) Model. This model builds on recent research for effectively managing the customer-provider relationship in IT service outsourcing contexts and a validated model for assessing alignment across internal IT service units and their business customers within the same organization. After reviewing relevant literature by service science and information systems researchers, the six overarching components of the maturity model are presented: value measurements, governance, partnership, communications, human resources and skills, and scope and architecture. A key assumption of the model is that all of the components need be addressed to assess and improve customer-provider alignment. Examples of specific metrics for measuring the maturity level of each component over the five levels of maturity are also presented.

  7. Quantum fluid model of coherent stimulated radiation by a dense relativistic cold electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, L. F.; Serbeto, A.; Tsui, K. H. [Instituto de Física, Universidade Federal Fluminense, Campus da Praia Vermelha, Niterói, RJ 24210-346 (Brazil); Mendonça, J. T.; Galvão, R. M. O. [Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508-090 (Brazil)

    2013-07-15

    Using a quantum fluid model, the linear dispersion relation for FEL pumped by a short wavelength laser wiggler is deduced. Subsequently, a new quantum corrected resonance condition is obtained. It is shown that, in the limit of low energy electron beam and low frequency pump, the quantum recoil effect can be neglected, recovering the classical FEL resonance condition, k{sub s}=4k{sub w}γ{sup 2}. On the other hand, for short wavelength and high energy electron beam, the quantum recoil effect becomes strong and the resonance condition turns into k{sub s}=2√(k{sub w}/λ{sub c})γ{sup 3/2}, with λ{sub c} being the reduced Compton wavelength. As a result, a set of nonlinear coupled equations, which describes the quantum FEL dynamics as a three-wave interaction, is obtained. Neglecting wave propagation effects, this set of equations is solved numerically and results are presented.

  8. A risk assessment model for selecting cloud service providers

    OpenAIRE

    Cayirci, Erdal; Garaga, Alexandr; Santana de Oliveira, Anderson; Roudier, Yves

    2016-01-01

    The Cloud Adoption Risk Assessment Model is designed to help cloud customers in assessing the risks that they face by selecting a specific cloud service provider. It evaluates background information obtained from cloud customers and cloud service providers to analyze various risk scenarios. This facilitates decision making an selecting the cloud service provider with the most preferable risk profile based on aggregated risks to security, privacy, and service delivery. Based on this model we ...

  9. Modeling interannual dense shelf water export in the region of the Mertz Glacier Tongue (1992-2007)

    Science.gov (United States)

    Cougnon, E. A.; Galton-Fenzi, B. K.; Meijers, A. J. S.; Legrésy, B.

    2013-10-01

    Ocean observations around the Australian-Antarctic basin show the importance of coastal latent heat polynyas near the Mertz Glacier Tongue (MGT) to the formation of Dense Shelf Water (DSW) and associated Antarctic Bottom Water (AABW). Here, we use a regional ocean/ice shelf model to investigate the interannual variability of the export of DSW from the Adélie (west of the MGT) and the Mertz (east of the MGT) depressions from 1992 to 2007. The variability in the model is driven by changes in observed surface heat and salt fluxes. The model simulates an annual mean export of DSW through the Adélie sill of about 0.07 ± 0.06 Sv. From 1992 to 1998, the export of DSW through the Adélie (Mertz) sills peaked at 0.14 Sv (0.29 Sv) during July to November. During periods of mean to strong polynya activity (defined by the surface ocean heat loss), DSW formed in the Adélie depression can spread into the Mertz depression via the cavity under the MGT. An additional simulation, where ocean/ice shelf thermodynamics have been disabled, highlights the fact that models without ocean/ice shelf interaction processes will significantly overestimate rates of DSW export. The melt rates of the MGT are 1.2 ± 0.4 m yr-1 during periods of average to strong polynya activity and can increase to 3.8 ± 1.5 m/yr during periods of sustained weak polynya activity, due to the increased presence of relatively warmer water interacting with the base of the ice shelf. The increased melting of the MGT during a weak polynya state can cause further freshening of the DSW and ultimately limits the production of AABW.

  10. Observation and Modeling of Storm Generated Acoustic Waves in the Ionosphere Revealed in a Dense Network of GPS Receivers

    Science.gov (United States)

    Walterscheid, R. L.; Azeem, S. I.

    2017-12-01

    Acoustic waves generated in the lower atmosphere may become an important source of variably in the upper atmosphere. Although they are excited with small amplitudes they are minimally subject to viscous dissipation and may reach significant amplitudes at F-region altitudes. A number of studies in the 1970s showed clear signatures in ionosonde data in the infrasonic period range attributable to thunder storm activity. We have examined Total Electron Content data from a dense network of over 4000 ground-based GPS receivers over the continental United States during an outbreak of severe weather, including tornados, over Kansas in May 2015. A sequence of GPS TEC images showed clear Traveling Ionospheric Disturbances (TIDs) in the form of concentric rings moving outward from the center of the storm region. The characteristics of the disturbance (phase speed and frequency) were consistent with acoustic waves in the infrasonic range. We have modeled the disturbance by including a tropospheric heat source representing latent heat release from a large thunderstorm. The disturbance at ionospheric altitudes resembles the observed disturbance in terms of phase speed, frequency and horizontal wavelength. We conclude that the observed TIDs in TEC were caused by an acoustic wave generated by deep convection.

  11. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-10

    Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics in a DPF and the associated instabilities and neutron production.

  12. Bring Your Own Device - Providing Reliable Model of Data Access

    Directory of Open Access Journals (Sweden)

    Stąpór Paweł

    2016-10-01

    Full Text Available The article presents a model of Bring Your Own Device (BYOD as a model network, which provides the user reliable access to network resources. BYOD is a model dynamically developing, which can be applied in many areas. Research network has been launched in order to carry out the test, in which as a service of BYOD model Work Folders service was used. This service allows the user to synchronize files between the device and the server. An access to the network is completed through the wireless communication by the 802.11n standard. Obtained results are shown and analyzed in this article.

  13. Refinement of the Kansas City Plant site conceptual model with respect to dense non-aqueous phase liquids (DNAPL)

    International Nuclear Information System (INIS)

    Korte, N.E.; Hall, S.C.; Baker, J.L.

    1995-01-01

    This document presents a refinement of the site conceptual model with respect to dense non-aqueous phase liquid (DNAPL) at the US Department of Energy Kansas City Plant (KCP). This refinement was prompted by a review of the literature and the results of a limited study that was conducted to evaluate whether pools of DNAPL were present in contaminated locations at the KCP. The field study relied on the micropurge method of sample collection. This method has been demonstrated as a successful approach for obtaining discrete samples within a limited aquifer zone. Samples were collected at five locations across 5-ft well screens located at the base of the alluvial aquifer at the KCP. The hypothesis was that if pools of DNAPL were present, the dissolved concentration would increase with depth. Four wells with highly contaminated groundwater were selected for the test. Three of the wells were located in areas where DNAPL was suspected, and one where no DNAPL was believed to be present. The results demonstrated no discernible pattern with depth for the four wells tested. A review of the data in light of the available technical literature suggests that the fine-grained nature of the aquifer materials precludes the formation of pools. Instead, DNAPL is trapped as discontinuous ganglia that are probably widespread throughout the aquifer. The discontinuous nature of the DNAPL distribution prevents the collection of groundwater samples with concentrations approaching saturation. Furthermore, the results indicate that attempts to remediate the aquifer with conventional approaches will not result in restoration to pristine conditions because the tortuous groundwater flow paths will inhibit the efficiency of fluid-flow-based treatments

  14. Reflectance model for densely packed media: Estimates of the surface properties of the high-albedo satellites of Saturn

    Science.gov (United States)

    Tishkovets, V. P.; Petrova, E. V.

    2017-07-01

    Interpretation of photometric and polarimetric observations of atmosphereless celestial bodies faces the problems connected with both the insufficient accuracy and level of details in groundbased observations and the current state of the theory of the multiple scattering of light. In application to sparse media, where the electromagnetic waves, propagating between the scatterers, can be considered as spherical (the socalled far-field approximation), this theory is rather well developed for both the diffuse and coherent components of the scattered radiation. In this paper, we show that this theory can be also successfully applied to the measurements of polarization of light scattered by densely packed, though nonabsorbing or weakly absorbing, media. For this purpose, we calculated the models for a semi-infinite layer of the medium composed of randomly oriented clusters of spherical particles and compared them with the data of laboratory and astronomical measurements. The potential of the present approach is illustrated by an example of the interpretation of the polarization measurements of the ice satellites of Saturn—Rhea and Enceladus—which allowed some properties of the surface of these celestial bodies to be estimated. In particular, the ratio of the surface area that makes no contribution to the negative polarization of light reflected at small phase angles to the area producing the negative polarization branch was found. Under the assumption of the same albedo of these areas, this ratio turned out to be 3.31-3.66 and 1.7-3.8 for Rhea and Enceladus, respectively. For Enceladus, it is difficult to obtain a sufficiently narrow range of the estimated parameters, since the number of measurement points in the phase dependence of polarization of this satellite is small. For the surface of Rhea, the estimated packing density of particles, participating in the opposition effects, is approximately 15%, while their smallest size is of the order of the wavelength of

  15. Levels of Interaction Provided by Online Distance Education Models

    Science.gov (United States)

    Alhih, Mohammed; Ossiannilsson, Ebba; Berigel, Muhammet

    2017-01-01

    Interaction plays a significant role to foster usability and quality in online education. It is one of the quality standard to reveal the evidence of practice in online distance education models. This research study aims to evaluate levels of interaction in the practices of distance education centres. It is aimed to provide online distance…

  16. Modelling of large-scale dense gas-solid bubbling fluidised beds using a novel discrete bubble model

    NARCIS (Netherlands)

    Bokkers, G.A.; Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.

    2006-01-01

    In order to model the complex hydrodynamic phenomena prevailing in industrial scale gas–solid bubbling fluidised bed reactors and especially the macro-scale emulsion phase circulation patterns induced by bubble–bubble interactions and bubble coalescence, a discrete bubble model (DBM) has been

  17. LNG vapor dispersion prediction with the DEGADIS dense-gas dispersion model. Topical report, April 1988-July 1990. Documentation

    International Nuclear Information System (INIS)

    Havens, J.; Spicer, T.

    1990-09-01

    The topical report is one of a series on the development of methods for LNG vapor dispersion prediction for regulatory application. The results indicate that the DEGADIS model is superior both phenomenologically and in performance to the Gaussian line source model promulgated in 49 CFR 193 for LNG vapor dispersion simulation. Availability of the DEGADIS model for VAX and IBM-PC formats provides for wider use of the model and greater potential for industry and regulatory acceptance. The acceptance is seen as an important interim objective while research continues on vapor dispersion estimation methods which provide for effects of vapor detention systems, turbulence induced by plant structure, and plant/area topographical features

  18. Model of Providing Assistive Technologies in Special Education Schools.

    Science.gov (United States)

    Lersilp, Suchitporn; Putthinoi, Supawadee; Chakpitak, Nopasit

    2015-05-14

    Most students diagnosed with disabilities in Thai special education schools received assistive technologies, but this did not guarantee the greatest benefits. The purpose of this study was to survey the provision, use and needs of assistive technologies, as well as the perspectives of key informants regarding a model of providing them in special education schools. The participants were selected by the purposive sampling method, and they comprised 120 students with visual, physical, hearing or intellectual disabilities from four special education schools in Chiang Mai, Thailand; and 24 key informants such as parents or caregivers, teachers, school principals and school therapists. The instruments consisted of an assistive technology checklist and a semi-structured interview. Results showed that a category of assistive technologies was provided for students with disabilities, with the highest being "services", followed by "media" and then "facilities". Furthermore, mostly students with physical disabilities were provided with assistive technologies, but those with visual disabilities needed it more. Finally, the model of providing assistive technologies was composed of 5 components: Collaboration; Holistic perspective; Independent management of schools; Learning systems and a production manual for users; and Development of an assistive technology center, driven by 3 major sources such as Government and Private organizations, and Schools.

  19. Comparison of Local Scale Measured and Modeled Brightness Temperatures and Snow Parameters from the CLPX 2003 by Means of a Dense Medium Radiative Transfer Theory Model

    Science.gov (United States)

    Tedescol, Marco; Kim, Edward J.; Cline, Don; Graf, Tobias; Koike, Toshio; Armstrong, Richard; Brodzik, Mary J.; Hardy, Janet

    2004-01-01

    Microwave remote sensing offers distinct advantages for observing the cryosphere. Solar illumination is not required, and spatial and temporal coverage are excellent from polar-orbiting satellites. Passive microwave measurements are sensitive to the two most useful physical quantities for many hydrological applications: physical temperature and water content/state. Sensitivity to the latter is a direct result of the microwave sensitivity to the dielectric properties of natural media, including snow, ice, soil (frozen or thawed), and vegetation. These considerations are factors motivating the development of future cryospheric satellite remote sensing missions, continuing and improving on a 26-year microwave measurement legacy. Perhaps the biggest issues regarding the use of such satellite measurements involve how to relate parameter values at spatial scales as small as a hectare to observations with sensor footprints that may be up to 25 x 25 km. The NASA Cold-land Processes Field Experiment (CLPX) generated a dataset designed to enhance understanding of such scaling issues. CLPX observations were made in February (dry snow) and March (wet snow), 2003 in Colorado, USA, at scales ranging from plot scale to 25 x 25 km satellite footprints. Of interest here are passive microwave observations from ground-based, airborne, and satellite sensors, as well as meteorological and snowpack measurements that will enable studies of the effects of spatial heterogeneity of surface conditions on the observations. Prior to performing such scaling studies, an evaluation of snowpack forward modelling at the plot scale (least heterogeneous scale) is in order. This is the focus of this paper. Many forward models of snow signatures (brightness temperatures) have been developed over the years. It is now recognized that a dense medium radiative transfer (DMRT) treatment represents a high degree of physical fidelity for snow modeling, yet dense medium models are particularly sensitive to

  20. A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes

    Science.gov (United States)

    McGrath, Thomas P.; St. Clair, Jeffrey G.; Balachandar, S.

    2016-05-01

    Multiphase flows are present in many important fields ranging from multiphase explosions to chemical processing. An important subset of multiphase flow applications involves dispersed materials, such as particles, droplets, and bubbles. This work presents an Eulerian-Eulerian model for multiphase flows containing dispersed particles surrounded by a continuous media such as air or water. Following a large body of multiphase literature, the driving force for particle acceleration is modeled as a direct function of both the continuous-phase pressure gradient and the gradient of intergranular stress existing within the particle phase. While the application of these two components of driving force is well accepted in much of the literature, other models exist in which the particle-phase pressure gradient itself drives particle motion. The multiphase model treats all phases as compressible and is derived to ensure adherence to the 2nd Law of Thermodynamics. The governing equations are presented and discussed, and a characteristic analysis shows the model to be hyperbolic, with a degeneracy in the case that the intergranular stress, which is modeled as a configuration pressure, is zero. Finally, results from a two sample problems involving shock-induced particle dispersion are presented. The results agree well with experimental measurements, providing initial confidence in the proposed model.

  1. A logical model provides insights into T cell receptor signaling.

    Directory of Open Access Journals (Sweden)

    Julio Saez-Rodriguez

    2007-08-01

    Full Text Available Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest. Here, a methodology relying on a logical formalism is applied to the functional analysis of the complex signaling network governing the activation of T cells via the T cell receptor, the CD4/CD8 co-receptors, and the accessory signaling receptor CD28. Our large-scale Boolean model, which comprises 94 nodes and 123 interactions and is based upon well-established qualitative knowledge from primary T cells, reveals important structural features (e.g., feedback loops and network-wide dependencies and recapitulates the global behavior of this network for an array of published data on T cell activation in wild-type and knock-out conditions. More importantly, the model predicted unexpected signaling events after antibody-mediated perturbation of CD28 and after genetic knockout of the kinase Fyn that were subsequently experimentally validated. Finally, we show that the logical model reveals key elements and potential failure modes in network functioning and provides candidates for missing links. In summary, our large-scale logical model for T cell activation proved to be a promising in silico tool, and it inspires immunologists to ask new questions. We think that it holds valuable potential in foreseeing the effects of drugs and network modifications.

  2. National Water Model: Providing the Nation with Actionable Water Intelligence

    Science.gov (United States)

    Aggett, G. R.; Bates, B.

    2017-12-01

    The National Water Model (NWM) provides national, street-level detail of water movement through time and space. Operating hourly, this flood of information offers enormous benefits in the form of water resource management, natural disaster preparedness, and the protection of life and property. The Geo-Intelligence Division at the NOAA National Water Center supplies forecasters and decision-makers with timely, actionable water intelligence through the processing of billions of NWM data points every hour. These datasets include current streamflow estimates, short and medium range streamflow forecasts, and many other ancillary datasets. The sheer amount of NWM data produced yields a dataset too large to allow for direct human comprehension. As such, it is necessary to undergo model data post-processing, filtering, and data ingestion by visualization web apps that make use of cartographic techniques to bring attention to the areas of highest urgency. This poster illustrates NWM output post-processing and cartographic visualization techniques being developed and employed by the Geo-Intelligence Division at the NOAA National Water Center to provide national actionable water intelligence.

  3. Governance, Government, and the Search for New Provider Models

    Directory of Open Access Journals (Sweden)

    Richard B. Saltman

    2016-01-01

    Full Text Available A central problem in designing effective models of provider governance in health systems has been to ensure an appropriate balance between the concerns of public sector and/or government decision-makers, on the one hand, and of non-governmental health services actors in civil society and private life, on the other. In tax-funded European health systems up to the 1980s, the state and other public sector decision-makers played a dominant role over health service provision, typically operating hospitals through national or regional governments on a command-and-control basis. In a number of countries, however, this state role has started to change, with governments first stepping out of direct service provision and now de facto pushed to focus more on steering provider organizations rather than on direct public management. In this new approach to provider governance, the state has pulled back into a regulatory role that introduces market-like incentives and management structures, which then apply to both public and private sector providers alike. This article examines some of the main operational complexities in implementing this new governance reality/strategy, specifically from a service provision (as opposed to mostly a financing or even regulatory perspective. After briefly reviewing some of the key theoretical dilemmas, the paper presents two case studies where this new approach was put into practice: primary care in Sweden and hospitals in Spain. The article concludes that good governance today needs to reflect practical operational realities if it is to have the desired effect on health sector reform outcome.

  4. Dense plasma. 1

    International Nuclear Information System (INIS)

    Kulik, P.P.

    1977-01-01

    The known data on dense plasma investigation are summarized and systemized. The dense plasma is created by joint effect of high temperatures, resulting in thermal substance ionization, and high densities, resulting in ionization by pressure. The state of investigations of plasma properties has been analysed and a contribution of static and kinetic theories to equilibrium plasma investigation has been shown

  5. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  6. Atoms in dense plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs

  7. Finding dense locations in indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2014-01-01

    Finding the dense locations in large indoor spaces is very useful for getting overloaded locations, security, crowd management, indoor navigation, and guidance. Indoor tracking data can be very large and are not readily available for finding dense locations. This paper presents a graph-based model...... of the mapping table, along with associated construction, query processing, and pruning techniques. The DLT-Index supports very efficient aggregate point queries, interval queries, and dense location queries. A comprehensive experimental study with real data shows that the proposed techniques can efficiently...... find dense locations in large amounts of indoor tracking data....

  8. Proposition of a multicriteria model to select logistics services providers

    Directory of Open Access Journals (Sweden)

    Miriam Catarina Soares Aharonovitz

    2014-06-01

    Full Text Available This study aims to propose a multicriteria model to select logistics service providers by the development of a decision tree. The methodology consists of a survey, which resulted in a sample of 181 responses. The sample was analyzed using statistic methods, descriptive statistics among them, multivariate analysis, variance analysis, and parametric tests to compare means. Based on these results, it was possible to obtain the decision tree and information to support the multicriteria analysis. The AHP (Analytic Hierarchy Process was applied to determine the data influence and thus ensure better consistency in the analysis. The decision tree categorizes the criteria according to the decision levels (strategic, tactical and operational. Furthermore, it allows to generically evaluate the importance of each criterion in the supplier selection process from the point of view of logistics services contractors.

  9. Testing sky brightness models against radial dependency: A dense two dimensional survey around the city of Madrid, Spain

    Science.gov (United States)

    Zamorano, J.; Sánchez de Miguel, A.; Ocaña, F.; Pila-Díez, B.; Gómez Castaño, J.; Pascual, S.; Tapia, C.; Gallego, J.; Fernández, A.; Nievas, M.

    2016-09-01

    We present a study of the night sky brightness around the extended metropolitan area of Madrid using Sky Quality Meter (SQM) photometers. The map is the first to cover the spatial distribution of the sky brightness in the centre of the Iberian peninsula. These surveys are necessary to test the light pollution models that predict night sky brightness as a function of the location and brightness of the sources of light pollution and the scattering of light in the atmosphere. We describe the data-retrieval methodology, which includes an automated procedure to measure from a moving vehicle in order to speed up the data collection, providing a denser and wider survey than previous works with similar time frames. We compare the night sky brightness map to the nocturnal radiance measured from space by the DMSP satellite. We find that (i) a single source model is not enough to explain the radial evolution of the night sky brightness, despite the predominance of Madrid in size and population and (ii) that the orography of the region should be taken into account when deriving geo-specific models from general first-principles models. We show the tight relationship between these two luminance measures. This finding sets up an alternative roadmap to extended studies over the globe that will not require the local deployment of photometers or trained personnel.

  10. Dense image correspondences for computer vision

    CERN Document Server

    Liu, Ce

    2016-01-01

    This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code, and data necessary for expediting the development of effective correspondence-based computer vision systems.   ·         Provides i...

  11. High-resolution air pollution modeling for urban environments in support of dense multi-platform networks

    Science.gov (United States)

    Berchet, Antoine; Zink, Katrin; Arfire, Adrian; Marjovi, Ali; Martinoli, Alcherio; Emmenegger, Lukas; Brunner, Dominik

    2015-04-01

    As the fraction of people living in urban areas is rapidly increasing worldwide, the impact of air quality on human health in cities is a growing concern not only in developing countries but also in Europe despite the achievements of European air quality legislation. One obstacle to the quantitative assessment of the connections between health and air quality is the very high temporal and spatial variability of air pollutant concentrations within cities. Yet, an important issue for obtaining accurate and spatially highly resolved air pollution data is the trade-off between the high costs of accurate air pollution sensors and the number of such devices required for succinctly monitoring a given geographical area. The OpenSense 2 project aims at establishing air quality data at very high temporal and spatial resolution in the cities of Lausanne and Zurich in Switzerland in order to provide reliable information for epidemiologic studies and for the design of air pollution controls and urban planning. Towards this goal, observations from both stationary reference monitoring stations and low-cost mobile sensors (including sensing platforms anchored on public transport vehicles) are combined with high-resolution air quality modeling throughout the two cities. As a first step, we simulate the 3-dimensional, high-resolution dispersion and distribution of key pollutants using the GRAMM/GRAL modeling system. The GRAMM meteorological meso-scale model calculates wind fields at 100 m resolution accounting for the complex topography and land use within and around the two cities. GRAMM outputs are then used to drive the building-resolving dispersion model GRAL at 5-10m resolution. Further key inputs for GRAL are high resolution emission inventories and the 3-D building structure which are available for both cities. Here, in order to evaluate the ability of the GRAMM/GRAL modeling system to reproduce air pollutant distributions within the two cities of Lausanne and Zurich, we

  12. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation of struct......This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation...... response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...

  13. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    2007-01-01

    This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil with focus on the horizontal sliding and rocking. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines......-parameter models with respect to the prediction of the maximum response during excitation and the geometrical damping related to free vibrations of a footing....

  14. Dense Matter Physics with Rare Isotopes

    Science.gov (United States)

    Kim, Youngman

    Terrestrial dense matter from heavy ion collisions with rare isotope beams offers much opportunity to study compact stars, exotic nuclei and also many facets of QCD phase diagram with non-zero isospin asymmetry. We first review some recent results with a parity doublet model in dense matter and in nuclei to discuss the origin of nucleon mass other than that from chiral symmetry breaking. To study dense matter created in heavy ion collisions, a transport model is almost the only available tool on the market. We present a brief summary of a new transport code, DaeJeon Boltzmann-Uehling-Uhlenbeck.

  15. Model organoids provide new research opportunities for ductal pancreatic cancer

    NARCIS (Netherlands)

    Boj, Sylvia F|info:eu-repo/dai/nl/304074799; Hwang, Chang-Il; Baker, Lindsey A; Engle, Dannielle D; Tuveson, David A; Clevers, Hans|info:eu-repo/dai/nl/07164282X

    We recently established organoid models from normal and neoplastic murine and human pancreas tissues. These organoids exhibit ductal- and disease stage-specific characteristics and, after orthotopic transplantation, recapitulate the full spectrum of tumor progression. Pancreatic organoid technology

  16. Statistical and RBF NN models : providing forecasts and risk assessment

    OpenAIRE

    Marček, Milan

    2009-01-01

    Forecast accuracy of economic and financial processes is a popular measure for quantifying the risk in decision making. In this paper, we develop forecasting models based on statistical (stochastic) methods, sometimes called hard computing, and on a soft method using granular computing. We consider the accuracy of forecasting models as a measure for risk evaluation. It is found that the risk estimation process based on soft methods is simplified and less critical to the question w...

  17. Satellite NO2 data improve national land use regression models for ambient NO2 in a small densely populated country

    NARCIS (Netherlands)

    Hoek, G.; Eeftens, M.; Beelen, R.; Fischer, P.; Brunekreef, B.; Boersma, K.F.; Veefkind, P.

    2015-01-01

    Land use regression (LUR) modelling has increasingly been applied to model fine scale spatial variation of outdoor air pollutants including nitrogen dioxide (NO2). Satellite observations of tropospheric NO2 improved LUR model in very large study areas, including Canada, United States and Australia.

  18. Satellite NO2 data improve national land use regression models for ambient NO2 in a small densely populated country

    NARCIS (Netherlands)

    Hoek, Gerard; Eeftens, Marloes; Beelen, Rob; Fischer, Paul; Brunekreef, Bert; Boersma, K. Folkert; Veefkind, Pepijn

    Land use regression (LUR) modelling has increasingly been applied to model fine scale spatial variation of outdoor air pollutants including nitrogen dioxide (NO2). Satellite observations of tropospheric NO2 improved LUR model in very large study areas, including Canada, United States and Australia.

  19. Suprathermal viscosity of dense matter

    International Nuclear Information System (INIS)

    Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai

    2010-01-01

    Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.

  20. Conceptual Models of the Individual Public Service Provider

    DEFF Research Database (Denmark)

    Andersen, Lotte Bøgh; Bhatti, Yosef; Petersen, Ole Helby

    Individual public service providers’ motivation can be conceptualized as either extrinsic, autonomous or prosocial, and the question is how we can best theoretically understand this complexity without losing too much coherence and parsimony. Drawing on Allison’s approach (1969), three perspectives...... are used to gain insight on the motivation of public service providers; namely principal-agent theory, self-determination theory and public service motivation theory. We situate the theoretical discussions in the context of public service providers being transferred to private organizations...... as a consequence of outsourcing by the public sector. Although this empirical setting is interesting in itself, here it serves primarily as grist for a wider discussion on strategies for applying multiple theoretical approaches and crafting a theoretical synthesis. The key contribution of the paper is thus...

  1. Experimental studies on power transformer model winding provided with MOVs

    Directory of Open Access Journals (Sweden)

    G.H. Kusumadevi

    2017-05-01

    Full Text Available Surge voltage distribution across a HV transformer winding due to appearance of very fast rise time (rise time of order 1 μs transient voltages is highly non-uniform along the length of the winding for initial time instant of occurrence of surge. In order to achieve nearly uniform initial time instant voltage distribution along the length of the HV winding, investigations have been carried out on transformer model winding. By connecting similar type of metal oxide varistors across sections of HV transformer model winding, it is possible to improve initial time instant surge voltage distribution across length of the HV transformer winding. Transformer windings with α values 5.3, 9.5 and 19 have been analyzed. The experimental studies have been carried out using high speed oscilloscope of good accuracy. The initial time instant voltage distribution across sections of winding with MOV remains nearly uniform along length of the winding. Also results of fault diagnostics carried out with and without connection of MOVs across sections of winding are reported.

  2. Modeling reduction of the Urban Heat Island effect to counter-act the effects of climate change in densely built-up areas

    Science.gov (United States)

    Andre, Konrad; Zuvela-Aloise, Maja; Lettmayer, Gudrun; Schwaiger, Hannes Peter; Kaltenegger, Ingrid; Bird, David Neil; Woess-Gallasch, Susanne

    2017-04-01

    The phenomenon of Urban Heat Islands (UHIs) observed in cities, caused by changes in energy balance due to the structural development of the city as well as by sealed surfaces and a lack of vegetation, is expected to strengthen in the future and will further contribute to heat stress, creating an increased need for energy for cooling and ventilation as well as lowering human comfort. Due to a changing climate, rising heat stress, pronounced by an increased intensity or frequency of heat waves, could have far reaching implications for major Austrian cities in the near future. Simultaneous to this expected increasing of the already existing UHI-effect, it is observable, that continuous densification of the core parts of cities is being intensified through implemented traditional urban planning measures. This is particular relevant for high densely populated districts of the city. Several possible counteractions how to address this challenge are already known, partly investigated in urban modeling studies on the effects of modifying the reflective properties of buildings and urban areas for the city of Vienna. On this experience, within the Austrian FFG and KLIEN Smart Cities project JACKY COOL CHECK (Project Nr. 855554), a wide set of measures to reduce heat stress, consisting of e.g. unsealed surfaces, green areas, green roofs, improve reflective properties of different surfaces etc., for the densely built-up residential and business district of Jakomini in the city of Graz/Styria is investigated, to gain decisive data pointing out the peculiarities of UHIs and the potential cooling effects of these target measures for this local specific area. These results serving as a basis for the selection of sustainable measures that will be implemented, in coordination with local stakeholders and considering their interests.

  3. Kinetic chemistry of dense interstellar clouds

    International Nuclear Information System (INIS)

    Graedel, T.E.; Langer, W.D.; Frerking, M.A.

    1982-01-01

    A detailed model of the time-dependent chemistry of dense interstellar clouds has been developed to study the dominant chemical processes in carbon and oxygen isotope fractionation, formation of nitrogen-containing molecules, evolution of product molecules as a function of cloud density and temperature, and other topics of interest. The full computation involves 328 individual reactions (expanded to 1067 to study carbon and oxygen isotope chemistry); photodegradation processes are unimportant in these dense clouds and are excluded

  4. A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds

    Science.gov (United States)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2017-07-01

    We present a collision model for phase-resolved Direct Numerical Simulations of sediment transport that couple the fluid and particles by the Immersed Boundary Method. Typically, a contact model for these types of simulations comprises a lubrication force for particles in close proximity to another solid object, a normal contact force to prevent particles from overlapping, and a tangential contact force to account for friction. Our model extends the work of previous authors to improve upon the time integration scheme to obtain consistent results for particle-wall collisions. Furthermore, we account for polydisperse spherical particles and introduce new criteria to account for enduring contact, which occurs in many sediment transport situations. This is done without using arbitrary values for physically-defined parameters and by maintaining the full momentum balance of a particle in enduring contact. We validate our model against several test cases for binary particle-wall collisions as well as the collective motion of a sediment bed sheared by a viscous flow, yielding satisfactory agreement with experimental data by various authors.

  5. Topology, Structure and Functionality: Analysis, Modelling and Experimentation of Dense Granular Deformation in 2D and 3D

    Science.gov (United States)

    2015-01-05

    in a research position that will apply her skills at granular experiment and modeling to important issues related to pharmaceutical processing...photoelastic techniques was part of an overall exhibit at the Mueseum of Science and Industry in Chicago that received a Gold medal. • Since September...organized an international Pan-American scientific program on granular materials in La Plata, Argentina in August, 2014. • The PI is co-founder and

  6. Love wave phase velocity models of the southeastern margin of Tibetan Plateau from a dense seismic array

    Science.gov (United States)

    Han, Fengqin; Jia, Ruizhi; Fu, Yuanyuan V.

    2017-08-01

    Love wave dispersion maps across the southeastern margin of the Tibetan Plateau are obtained using earthquake data recorded by the temporary ChinArray and permanent China Digital Seismic Array. Fundamental mode Love wave phase velocity curves are measured by inverting Love wave amplitude and phase with the two-plane-wave method. The phase velocity maps with resolution better than 150 km are presented at periods of 20-100 s, which is unprecedented in the study area. The maps agree well with each other and show clear correlations with major tectonic structures. The Love wave phase velocity could provide new information about structures in the crust and upper mantle beneath the southeast margin of Tibetan Plateau, like the radial anisotropy.

  7. Nucleon structure and properties of dense matter

    International Nuclear Information System (INIS)

    Kutschera, M.; Pethick, C.J.; Illinois Univ., Urbana, IL

    1988-01-01

    We consider the properties of dense matter in a framework of the Skyrme soliton model and the chiral bag model. The influence of the nucleon structure on the equation of state of dense matter is emphasized. We find that in both models the energy per unit volume is proportional to n 4/3 , n being the baryon number density. We discuss the properties of neutron stars with a derived equation of state. The role of many-body effects is investigated. The effect of including higher order terms in the chiral lagrangian is examined. The phase transition to quark matter is studied. 29 refs., 6 figs. (author)

  8. Dense ceramic articles

    International Nuclear Information System (INIS)

    Cockbain, A.G.

    1976-01-01

    A method is described for the manufacture of articles of substantially pure dense ceramic materials, for use in severe environments. Si N is very suitable for use in such environments, but suffers from the disadvantage that it is not amenable to sintering. Some disadvantages of the methods normally used for making articles of Si N are mentioned. The method described comprises mixing a powder of the substantially pure ceramic material with an additive that promotes densification, and which is capable of nuclear transmutation into a gas when exposed to radiation, and hot pressing the mixture to form a billet. The billet is then irradiated to convert the additive into a gas which is held captive in the billet, and it is then subjected to a hot forging operation, during which the captive gas escapes and an article of substantially pure dense ceramic material is forged. The method is intended primarily for use for Si N, but may be applied to other ceramic materials. The additive may be Li or Be or their compounds, to the extent of at least 5 ppm and not more than 5% by weight. Irradiation is effected by proton or neutron bombardment. (UK)

  9. Dense Axion Stars.

    Science.gov (United States)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-16

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4}  eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10^{-20}M_{⊙} to about M_{⊙}. If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  10. Hyperons in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Dapo, Haris

    2009-01-28

    The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three

  11. Predictions of x-ray scattering spectra in warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Starrett, Charles E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Saumon, Didier [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Souza, Andre N. [Univ. of Michigan, Ann Arbor, MI (United States); Perkins, David J. [Univ. of California, Los Angeles, CA (United States); Hansen, Stephanie B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-12

    This presentation gives an Introduction to our model of warm dense matter; How x-ray scattering spectra are calculated from it; Comparisons with experiments: Room temperature/pressure beryllium Warm dense beryllium Warm dense aluminum; Predictions for warm dense beryllium and titanium; and, Conclusions.

  12. Dense gas dispersion in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Morten

    1998-09-01

    Dense gas dispersion is characterized by buoyancy induced gravity currents and reduction of the vertical mixing. Liquefied gas releases from industrial accidents are cold because of the heat of evaporation which determines the density for a given concentration and physical properties. The temperature deficit is moderated by the heat flux from the ground, and this convection is an additional source of turbulence which affects the mixing. A simple model as the soil heat flux is used to estimate the ability of the ground to sustain the heat flux during release. The initial enthalpy, release rate, initial entrainment and momentum are discussed for generic source types and the interaction with obstacles is considered. In the MTH project BA experiments source with and without momentum were applied. The continuously released propane gas passed a two-dimensional removable obstacle perpendicular to the wind direction. Ground-level gas concentrations and vertical profiles of concentration, temperature, wind speed and turbulence were measured in front of and behind the obstacle. Ultrasonic anemometers providing fast velocity and concentration signals were mounted at three levels on the masts. The observed turbulence was influenced by the stability and the initial momentum of the jet releases. Additional information were taken from the `Dessert tortoise` ammonia jet releases, from the `Fladis` experiment with transition from dense to passive dispersion, and from the `Thorney Island` continuous releases of isothermal freon mixtures. The heat flux was found to moderate the negative buoyancy in both the propane and ammonia experiments. The heat flux measurements are compared to an estimate by analogy with surface layer theory. (au) 41 tabs., 146 ills., 189 refs.

  13. Dense MCA Sign

    Directory of Open Access Journals (Sweden)

    Richard J Chen

    2017-07-01

    Full Text Available History of present illness: A 77-year-old female presented to the emergency department after being found down at home, last seen normal 7 ½ hours prior to arrival. Patient had a history of hypertension, congestive heart failure, atrial fibrillation and breast cancer status post chemotherapy/radiation and lumpectomy. Physical exam showed right gaze preference, left facial droop and tongue deviation and flaccid left hemiplegia. Significant findings: A non-contrast computed tomography (CT scan showed a hyperdensity along the right middle cerebral artery (MCA consistent with acute thrombus. The red arrow highlights the hyperdensity in the annotated image. Discussion: The dense MCA sign can serve as an important tool in the diagnosis of acute stroke. It typically appears before other signs of infarct are apparent on CT imaging, and identifies an intracranial large artery occlusion and corresponding infarct, in the correct clinical setting.1 Calcifications in the same area of the brain could be mistaken for an MCA sign, but this sign carries a high specificity (95% and lower sensitivity (52% for arterial obstruction in ischemic stroke.2 Early identification allows for a wider array of treatment options for a patient with an ischemic stroke, including intra-venous or intra-arterial thrombolysis and mechanical thrombectomy. This patient was subsequently taken for mechanical thrombectomy. Mechanical thrombectomy was chosen for this patient because the resources were available, and recent clinical trials have shown that newer types of mechanical thrombectomy have a positive functional outcome in patients with an ischemic stroke from an intracranial large artery occlusion, as compared to intravenous tissue plasminogen activator (tPa alone.3,4,5,6 In facilities lacking the capability for mechanical thrombectomy, treatment considerations include rapid transfer to a facility with capability, or proceeding with intravenous tPa. After intervention, this

  14. Dense graph limits under respondent-driven sampling

    Indian Academy of Sciences (India)

    Siva Athreya

    Sub-graph count (fingerprints). Source: IUPUI Network Sampling course. Page 15. Aim and Result. • Motivation: provide a rigorous framework for Respondent. Driven Sampling on dense graphs. • Theorem : (in words). Limit of a dense graph sequence constructed via R.D.S., where the sequence of the vertex-sets is ergodic, ...

  15. Dynamics of dense direct-seeded stands of southern pines

    Science.gov (United States)

    J.C.G. Goelz

    2006-01-01

    Direct seeding of southern pines is an effective method of artificial regeneration, producing extremely dense stands when survival exceeds expectations. Long-term studies of dense direct-seeded stands provide ideal data for exploring development of stands as they approach the limit of maximum stand density. I present data from seven studies with ages of stands ranging...

  16. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O' Hern; Paul Tortora

    2008-02-29

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  17. Providing or designing? Constructing models in primary maths education (IF. 0.756)

    NARCIS (Netherlands)

    van Dijk, I.M.A.W.; van Oers, H.J.M.; Terwel, J.

    2003-01-01

    The goal of this exploratory study was to uncover the construction processes which occur when pupils are taught to work with models in primary maths education. Two approaches were studied: 'providing models' versus 'designing models in co-construction'. A qualitative observational study involved two

  18. New Provider Models for Sweden and Spain: Public, Private or Non-profit? Comment on "Governance, Government, and the Search for New Provider Models".

    Science.gov (United States)

    Jeurissen, Patrick P T; Maarse, Hans

    2016-06-29

    Sweden and Spain experiment with different provider models to reform healthcare provision. Both models have in common that they extend the role of the for-profit sector in healthcare. As the analysis of Saltman and Duran demonstrates, privatisation is an ambiguous and contested strategy that is used for quite different purposes. In our comment, we emphasize that their analysis leaves questions open on the consequences of privatisation for the performance of healthcare and the role of the public sector in healthcare provision. Furthermore, we briefly address the absence of the option of healthcare provision by not-for-profit providers in the privatisation strategy of Sweden and Spain. © 2016 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  19. The kinetic chemistry of dense interstellar clouds

    Science.gov (United States)

    Graedel, T. E.; Langer, W. D.; Frerking, M. A.

    1982-01-01

    A model of the time-dependent chemistry of dense interstellar clouds is formulated to study the dominant chemical processes in carbon and oxygen isotope fractionation, the formation of nitrogen-containing molecules, and the evolution of product molecules as a function of cloud density and temperature. The abundances of the dominant isotopes of the carbon- and oxygen-bearing molecules are calculated. The chemical abundances are found to be quite sensitive to electron concentration since the electron concentration determines the ratio of H3(+) to He(+), and the electron density is strongly influenced by the metals abundance. For typical metal abundances and for H2 cloud density not less than 10,000 molecules/cu cm, nearly all carbon exists as CO at late cloud ages. At high cloud density, many aspects of the chemistry are strongly time dependent. Finally, model calculations agree well with abundances deduced from observations of molecular line emission in cold dense clouds.

  20. Studies Of Infrasonic Propagation Using Dense Seismic Networks

    Science.gov (United States)

    Hedlin, M. A.; deGroot-Hedlin, C. D.; Drob, D. P.

    2011-12-01

    Although there are approximately 100 infrasonic arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Relatively large infrasonic signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasonic arrays. The dense sampling of the infrasonic wavefield has allowed us to observe complete travel-time branches of infrasound and address important research problems in infrasonic propagation. We present our analysis of infrasound created by a series of rocket motor detonations that occurred at the UTTR facility in Utah in 2007. These data were well recorded by the USArray seismometers. We use the precisely located blasts to assess the utility of G2S mesoscale models and methods to synthesize infrasonic propagation. We model the travel times of the branches using a ray-based approach and the complete wavefield using a FDTD algorithm. Although results from both rays and FDTD approaches predict the travel times to within several seconds, only about 40% of signals are predicted using rays largely due to penetration of sound into shadow zones. FDTD predicts some sound penetration into the shadow zone, but the observed shadow zones, as defined by the seismic data, have considerably narrower spatial extent than either method predicts, perhaps due to un-modeled small-scale structure in the atmosphere.

  1. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    Science.gov (United States)

    Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.

    2018-05-01

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.

  2. The LNT model provides the best approach for practical implementation of radiation protection.

    Science.gov (United States)

    Martin, C J

    2005-01-01

    This contribution argues the case that, at the present time, the linear-no-threshold (LNT) model provides the only rational framework on which practical radiation protection can be organized. Political, practical and healthcare difficulties with attempting to introduce an alternative approach, e.g. a threshold model, are discussed.

  3. Effectiveness of Video Modeling Provided by Mothers in Teaching Play Skills to Children with Autism

    Science.gov (United States)

    Besler, Fatma; Kurt, Onur

    2016-01-01

    Video modeling is an evidence-based practice that can be used to provide instruction to individuals with autism. Studies show that this instructional practice is effective in teaching many types of skills such as self-help skills, social skills, and academic skills. However, in previous studies, videos used in the video modeling process were…

  4. Dense interstellar cloud chemistry: Basic issues and possible dynamical solution

    International Nuclear Information System (INIS)

    Prasad, S.S.; Heere, K.R.; Tarafdar, S.P.

    1989-01-01

    Standing at crossroad of enthusiasm and frustration, dense intertellar cloud chemistry has a squarely posed fundamental problem: Why do the grains appear to play at best a minor role in the chemistry? Grain surface chemistry creates considerable difficulties when the authors treat dense clouds as static objects and ignore the implications of the processes by which the clouds became dense in the first place. A new generation of models which treat chemical and dynamical evolutions concurrently are therefore presented as possible solution to the current frustrations. The proposed modeling philosophy and agenda could make the next decade quite exciting for interstellar chemistry

  5. Improved understanding of the acoustophoretic focusing of dense suspensions in a microchannel

    Science.gov (United States)

    Karthick, S.; Sen, A. K.

    2017-11-01

    We provide improved understanding of acoustophoretic focusing of a dense suspension (volume fraction φ >10 % ) in a microchannel subjected to an acoustic standing wave using a proposed theoretical model and experiments. The model is based on the theory of interacting continua and utilizes a momentum transport equation for the mixture, continuity equation, and transport equation for the solid phase. The model demonstrates the interplay between acoustic radiation and shear-induced diffusion (SID) forces that is critical in the focusing of dense suspensions. The shear-induced particle migration model of Leighton and Acrivos, coupled with the acoustic radiation force, is employed to simulate the continuum behavior of particles. In the literature, various closures for the diffusion coefficient Dφ* are available for rigid spheres at high concentrations and nonspherical deformable particles [e.g., red blood cells (RBCs)] at low concentrations. Here we propose a closure for Dφ* for dense suspension of RBCs and validate the proposed model with experimental data. While the available closures for Dφ* fail to predict the acoustic focusing of a dense suspension of nonspherical deformable particles like RBCs, the predictions of the proposed model match experimental data within 15%. Both the model and experiments reveal a competition between acoustic radiation and SID forces that gives rise to an equilibrium width w* of a focused stream of particles at some distance Leq* along the flow direction. Using different shear rates, acoustic energy densities, and particle concentrations, we show that the equilibrium width is governed by Péclet number Pe and Strouhal number Stas w*=1.4(PeSt) -0.5 while the length required to obtain the equilibrium-focused width depends on St as Leq*=3.8 /(St)0.6 . The proposed model and correlations would find significance in the design of microchannels for acoustic focusing of dense suspensions such as undiluted blood.

  6. Fine coal processing with dense-medium cyclones

    CSIR Research Space (South Africa)

    De Korte, GJ

    2012-10-01

    Full Text Available . The paper provides a brief overview of past and current application of dense medium cyclones in the processing of fine coal and reviews some of the important considerations for the successful application of the technique....

  7. FRAMES-2.0 Software System: Providing Password Protection and Limited Access to Models and Simulations

    International Nuclear Information System (INIS)

    Whelan, Gene; Pelton, Mitch A.

    2007-01-01

    One of the most important concerns for regulatory agencies is the concept of reproducibility (i.e., reproducibility means credibility) of an assessment. One aspect of reproducibility deals with tampering of the assessment. In other words, when multiple groups are engaged in an assessment, it is important to lock down the problem that is to be solved and/or to restrict the models that are to be used to solve the problem. The objective of this effort is to provide the U.S. Nuclear Regulatory Commission (NRC) with a means to limit user access to models and to provide a mechanism to constrain the conceptual site models (CSMs) when appropriate. The purpose is to provide the user (i.e., NRC) with the ability to ''lock down'' the CSM (i.e., picture containing linked icons), restrict access to certain models, or both.

  8. Dense detector for baryon decay

    International Nuclear Information System (INIS)

    Courant, H.; Heller, K.; Marshak, M.L.; Peterson, E.A.; Ruddick, K.; Shupe, M.

    1981-01-01

    Our studies indicate that the dense detector represents a potentially powerful means to search for baryon decay and to study this process, if it occurs. The detector has good angular resolution and particle identification properties for both showering and non-showering events. Its energy resolution is particularly good for muons, but pion, electron and photon energies can also be measured with resolutions of at least 25 percent (standard deviation). The dense detector has strong logistical advantages over other proposed schemes. These advantages imply not only a lower cost but also faster construction and higher reliability. A particular advantage is that the dense detector can be prototyped in order to optimize its characteristics prior to the construction of a large module. Subsequent modules can also be added easily, while the initial detector continues operation

  9. What are healthcare providers' understandings and experiences of compassion? The healthcare compassion model: a grounded theory study of healthcare providers in Canada.

    Science.gov (United States)

    Sinclair, Shane; Hack, Thomas F; Raffin-Bouchal, Shelley; McClement, Susan; Stajduhar, Kelli; Singh, Pavneet; Hagen, Neil A; Sinnarajah, Aynharan; Chochinov, Harvey Max

    2018-03-14

    Healthcare providers are considered the primary conduit of compassion in healthcare. Although most healthcare providers desire to provide compassion, and patients and families expect to receive it, an evidence-based understanding of the construct and its associated dimensions from the perspective of healthcare providers is needed. The aim of this study was to investigate healthcare providers' perspectives and experiences of compassion in order to generate an empirically derived, clinically informed model. Data were collected via focus groups with frontline healthcare providers and interviews with peer-nominated exemplary compassionate healthcare providers. Data were independently and collectively analysed by the research team in accordance with Straussian grounded theory. 57 healthcare providers were recruited from urban and rural palliative care services spanning hospice, home care, hospital-based consult teams, and a dedicated inpatient unit within Alberta, Canada. Five categories and 13 associated themes were identified, illustrated in the Healthcare Provider Compassion Model depicting the dimensions of compassion and their relationship to one another. Compassion was conceptualised as-a virtuous and intentional response to know a person, to discern their needs and ameliorate their suffering through relational understanding and action. An empirical foundation of healthcare providers' perspectives on providing compassionate care was generated. While the dimensions of the Healthcare Provider Compassion Model were congruent with the previously developed Patient Model, further insight into compassion is now evident. The Healthcare Provider Compassion Model provides a model to guide clinical practice and research focused on developing interventions, measures and resources to improve it. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly

  10. Topological Surface States in Dense Solid Hydrogen.

    Science.gov (United States)

    Naumov, Ivan I; Hemley, Russell J

    2016-11-11

    Metallization of dense hydrogen and associated possible high-temperature superconductivity represents one of the key problems of physics. Recent theoretical studies indicate that before becoming a good metal, compressed solid hydrogen passes through a semimetallic stage. We show that such semimetallic phases predicted to be the most stable at multimegabar (∼300  GPa) pressures are not conventional semimetals: they exhibit topological metallic surface states inside the bulk "direct" gap in the two-dimensional surface Brillouin zone; that is, metallic surfaces may appear even when the bulk of the material remains insulating. Examples include hydrogen in the Cmca-12 and Cmca-4 structures; Pbcn hydrogen also has metallic surface states but they are of a nontopological nature. The results provide predictions for future measurements, including probes of possible surface superconductivity in dense hydrogen.

  11. Social models provide a norm of appropriate food intake for young women.

    Directory of Open Access Journals (Sweden)

    Lenny R Vartanian

    Full Text Available It is often assumed that social models influence people's eating behavior by providing a norm of appropriate food intake, but this hypothesis has not been directly tested. In three experiments, female participants were exposed to a low-intake model, a high-intake model, or no model (control condition. Experiments 1 and 2 used a remote-confederate manipulation and were conducted in the context of a cookie taste test. Experiment 3 used a live confederate and was conducted in the context of a task during which participants were given incidental access to food. Participants also rated the extent to which their food intake was influenced by a variety of factors (e.g., hunger, taste, how much others ate. In all three experiments, participants in the low-intake conditions ate less than did participants in the high-intake conditions, and also reported a lower perceived norm of appropriate intake. Furthermore, perceived norms of appropriate intake mediated the effects of the social model on participants' food intake. Despite the observed effects of the social models, participants were much more likely to indicate that their food intake was influenced by taste and hunger than by the behavior of the social models. Thus, social models appear to influence food intake by providing a norm of appropriate eating behavior, but people may be unaware of the influence of a social model on their behavior.

  12. Value-added strategy models to provide quality services in senior health business.

    Science.gov (United States)

    Yang, Ya-Ting; Lin, Neng-Pai; Su, Shyi; Chen, Ya-Mei; Chang, Yao-Mao; Handa, Yujiro; Khan, Hafsah Arshed Ali; Elsa Hsu, Yi-Hsin

    2017-06-20

    The rapid population aging is now a global issue. The increase in the elderly population will impact the health care industry and health enterprises; various senior needs will promote the growth of the senior health industry. Most senior health studies are focused on the demand side and scarcely on supply. Our study selected quality enterprises focused on aging health and analyzed different strategies to provide excellent quality services to senior health enterprises. We selected 33 quality senior health enterprises in Taiwan and investigated their excellent quality services strategies by face-to-face semi-structured in-depth interviews with CEO and managers of each enterprise in 2013. A total of 33 senior health enterprises in Taiwan. Overall, 65 CEOs and managers of 33 enterprises were interviewed individually. None. Core values and vision, organization structure, quality services provided, strategies for quality services. This study's results indicated four type of value-added strategy models adopted by senior enterprises to offer quality services: (i) residential care and co-residence model, (ii) home care and living in place model, (iii) community e-business experience model and (iv) virtual and physical portable device model. The common part in these four strategy models is that the services provided are elderly centered. These models offer virtual and physical integrations, and also offer total solutions for the elderly and their caregivers. Through investigation of successful strategy models for providing quality services to seniors, we identified opportunities to develop innovative service models and successful characteristics, also policy implications were summarized. The observations from this study will serve as a primary evidenced base for enterprises developing their senior market and, also for promoting the value co-creation possibility through dialogue between customers and those that deliver service. © The Author 2017. Published by Oxford

  13. A Complex of Business Process Management Models for a Service-Providing IT Company

    OpenAIRE

    Yatsenko Roman M.; Balykov Oleksii H.

    2017-01-01

    The article presents an analysis of a complex of business process management models that are designed to improve the performance of service-providing IT companies. This class of enterprises was selected because of their significant contribution to the Ukrainian economy: third place in the structure of exports, significant budget revenues, high development dynamics, and prospects in the global marketplace. The selected complex of models is designed as a sequence of stages that must be accompli...

  14. Dense Crowds of Virtual Humans

    NARCIS (Netherlands)

    Stüvel, S.A.

    2016-01-01

    This thesis presents a novel crowd simulation method `Torso Crowds', aimed at the simulation of dense crowds. The method is based on the results of user studies and a motion capture experiment, which are also described in this thesis. Torso Crowds introduces a capsule shape to represent people in

  15. Oscillating propagators in heavy-dense QCD

    CERN Document Server

    Akerlund, Oscar; Rindlisbacher, Tobias

    2016-10-11

    Using Monte Carlo simulations and extended mean field theory calculations we show that the $3$-dimensional $\\mathbb{Z}_3$ spin model with complex external fields has non-monotonic correlators in some regions of its parameter space. This model serves as a proxy for heavy-dense QCD in $(3+1)$ dimensions. Non-monotonic correlators are intrinsically related to a complex mass spectrum and a liquid-like (or crystalline) behavior. A liquid phase could have implications for heavy-ion experiments, where it could leave detectable signals in the spatial correlations of baryons.

  16. Dense Aluminum Plasma Equation of State Measurements

    Science.gov (United States)

    Workman, J.; Tierney, T.; Kyrala Benage, G., Jr.

    1997-11-01

    Knowledge of the equation of state for any material is essential to a full understanding of its intrinsic and dynamic properties. Accurate experimental measurements of the equation of state for strongly coupled plasmas (Γ >= 1), relevant to astrophysical, geologic and ICF applications, have been extremely difficult. We present preliminary results on a novel method for off-Hugoniot measurements of the equation of state for dense plasmas (3 Marx pulsed power device to create plasma densities of up to one-tenth solid and temperatures of a few eV from a 200 μm diameter aluminum wire. Density and temperature profiles of the dense aluminum plasma are determined using laser-produced temporally- and spatially-resolved x-ray backlighters and optical streak records. Simulations indicate that the use of a laser-generated shock wave in the dense plasma can provide megabar pressures at 10 eV temperatures with ion densities of up to 10 times the initial density. Future experiments will concentrate on the use of this laser-generated shock to determine the equation of state through accurate density and shock-speed measurements.

  17. Using Models to Provide Predicted Ranges for Building-Human Interfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Long, N.; Scheib, J.; Pless, S.; Schott, M.

    2013-09-01

    Most building energy consumption dashboards provide only a snapshot of building performance; whereas some provide more detailed historic data with which to compare current usage. This paper will discuss the Building Agent(tm) platform, which has been developed and deployed in a campus setting at the National Renewable Energy Laboratory as part of an effort to maintain the aggressive energyperformance achieved in newly constructed office buildings and laboratories. The Building Agent(tm) provides aggregated and coherent access to building data, including electric energy, thermal energy, temperatures, humidity, and lighting levels, and occupant feedback, which are displayed in various manners for visitors, building occupants, facility managers, and researchers. This paper focuseson the development of visualizations for facility managers, or an energy performance assurance role, where metered data are used to generate models that provide live predicted ranges of building performance by end use. These predicted ranges provide simple, visual context for displayed performance data without requiring users to also assess historical information or trends. Several energymodelling techniques were explored including static lookup-based performance targets, reduced-order models derived from historical data using main effect variables such as solar radiance for lighting performance, and integrated energy models using a whole-building energy simulation program.

  18. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Seshadhri, Comandur [The Ohio State Univ., Columbus, OH (United States); Pinar, Ali [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sariyuce, Ahmet Erdem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Catalyurek, Umit [The Ohio State Univ., Columbus, OH (United States)

    2014-11-01

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account for overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.

  19. Comparing consumer-directed and agency models for providing supportive services at home.

    Science.gov (United States)

    Benjamin, A E; Matthias, R; Franke, T M

    2000-04-01

    To examine the service experiences and outcomes of low-income Medicaid beneficiaries with disabilities under two different models for organizing home-based personal assistance services: agency-directed and consumer-directed. A survey of a random sample of 1,095 clients, age 18 and over, who receive services in California's In-Home Supportive Services (IHSS) program funded primarily by Medicaid. Other data were obtained from the California Management and Payrolling System (CMIPS). The sample was stratified by service model (agency-directed or consumer-directed), client age (over or under age 65), and severity. Data were collected on client demographics, condition/functional status, and supportive service experience. Outcome measures were developed in three areas: safety, unmet need, and service satisfaction. Factor analysis was used to reduce multiple outcome measures to nine dimensions. Multiple regression analysis was used to assess the effect of service model on each outcome dimension, taking into account the client-provider relationship, client demographics, and case mix. Recipients of IHSS services as of mid-1996 were interviewed by telephone. The survey was conducted in late 1996 and early 1997. On various outcomes, recipients in the consumer-directed model report more positive outcomes than those in the agency model, or they report no difference. Statistically significant differences emerge on recipient safety, unmet needs, and service satisfaction. A family member present as a paid provider is also associated with more positive reported outcomes within the consumer-directed model, but model differences persist even when this is taken into account. Although both models have strengths and weaknesses, from a recipient perspective the consumer-directed model is associated with more positive outcomes. Although health professionals have expressed concerns about the capacity of consumer direction to assure quality, particularly with respect to safety, meeting unmet

  20. MODEL OF PROVIDING WITH DEVELOPMENT STRATEGY FOR INFORMATION TECHNOLOGIES IN AN ORGANIZATION

    Directory of Open Access Journals (Sweden)

    A. A. Kuzkin

    2015-03-01

    Full Text Available Subject of research. The paper presents research and instructional tools for assessment of providing with the development strategy for information technologies in an organization. Method. The corresponding assessment model is developed which takes into consideration IT-processes equilibrium according to selected efficiency factors of information technologies application. Basic results. The model peculiarity resides in applying neuro-fuzzy approximators where the conclusion is drawn upon fuzzy logic, and membership functions are adjusted through the use of neural networks. For the adequacy testing of the suggested model, due diligence result analysis has been carried out for the IT-strategy executed in the “Navigator” group of companies at the stage of implementation and support of new technologies and production methods. Data visualization with a circle diagram is applied for the comparative evaluation of the analysis results. The chosen model adequacy is proved by the agreement between predictive assessments for IT-strategy performance targets derived by means of the fuzzy cognitive model over 12 months planning horizon and the real values of these targets upon the expiry of the given planning term. Practical significance. The developed model application gives the possibility to solve the problem of sustainability assessment for the process of providing the required IT-strategy realization level based upon the fuzzy cognitive map analysis and to reveal IT-objectives changing tendencies for an organization over the stated planning interval.

  1. Dense matter in compact stars a pedagogical introduction

    CERN Document Server

    Schmitt, Andreas

    2010-01-01

    Cold and dense nuclear and/or quark matter can be found in the interior of compact stars. It is very challenging to determine the ground state and properties of this matter because of the strong-coupling nature of QCD. I give a pedagogical introduction to microscopic calculations based on phenomenological models, effective theories, and perturbative QCD. I discuss how the results of these calculations can be related to astrophysical observations to potentially rule out or confirm candidate phases of dense matter.

  2. Integrals of motion for critical dense polymers and symplectic fermions

    International Nuclear Information System (INIS)

    Nigro, Alessandro

    2009-01-01

    We consider critical dense polymers L(1,2). We obtain for this model the eigenvalues of the local integrals of motion of the underlying conformal field theory by means of a thermodynamic Bethe ansatz. We give a detailed description of the relation between this model and symplectic fermions including some examples of the indecomposable structure of the transfer matrix in the continuum limit. Integrals of motion are defined directly on the lattice in terms of the Temperley–Lieb algebra and their eigenvalues are obtained and expressed as an infinite sum of the eigenvalues of the continuum integrals of motion. An elegant decomposition of the transfer matrix in terms of a finite number of lattice integrals of motion is obtained, thus providing a reason for their introduction

  3. Integrals of motion for critical dense polymers and symplectic fermions

    Science.gov (United States)

    Nigro, Alessandro

    2009-10-01

    We consider critical dense polymers \\mathcal {L}(1,2) . We obtain for this model the eigenvalues of the local integrals of motion of the underlying conformal field theory by means of a thermodynamic Bethe ansatz. We give a detailed description of the relation between this model and symplectic fermions including some examples of the indecomposable structure of the transfer matrix in the continuum limit. Integrals of motion are defined directly on the lattice in terms of the Temperley-Lieb algebra and their eigenvalues are obtained and expressed as an infinite sum of the eigenvalues of the continuum integrals of motion. An elegant decomposition of the transfer matrix in terms of a finite number of lattice integrals of motion is obtained, thus providing a reason for their introduction.

  4. Simulation model for transcervical laryngeal injection providing real-time feedback.

    Science.gov (United States)

    Ainsworth, Tiffiny A; Kobler, James B; Loan, Gregory J; Burns, James A

    2014-12-01

    This study aimed to develop and evaluate a model for teaching transcervical laryngeal injections. A 3-dimensional printer was used to create a laryngotracheal framework based on de-identified computed tomography images of a human larynx. The arytenoid cartilages and intrinsic laryngeal musculature were created in silicone from clay casts and thermoplastic molds. The thyroarytenoid (TA) muscle was created with electrically conductive silicone using metallic filaments embedded in silicone. Wires connected TA muscles to an electrical circuit incorporating a cell phone and speaker. A needle electrode completed the circuit when inserted in the TA during simulated injection, providing real-time feedback of successful needle placement by producing an audible sound. Face validation by the senior author confirmed appropriate tactile feedback and anatomical realism. Otolaryngologists pilot tested the model and completed presimulation and postsimulation questionnaires. The high-fidelity simulation model provided tactile and audio feedback during needle placement, simulating transcervical vocal fold injections. Otolaryngology residents demonstrated higher comfort levels with transcervical thyroarytenoid injection on postsimulation questionnaires. This is the first study to describe a simulator for developing transcervical vocal fold injection skills. The model provides real-time tactile and auditory feedback that aids in skill acquisition. Otolaryngologists reported increased confidence with transcervical injection after using the simulator. © The Author(s) 2014.

  5. Relationship between anaerobic parameters provided from MAOD and critical power model in specific table tennis test.

    Science.gov (United States)

    Zagatto, A M; Gobatto, C A

    2012-08-01

    The aim of this study was to verify the validity of the curvature constant parameter (W'), calculated from 2-parameter mathematical equations of critical power model, in estimating the anaerobic capacity and anaerobic work capacity from a table tennis-specific test. Specifically, we aimed to i) compare constants estimated from three critical intensity models in a table tennis-specific test (Cf); ii) correlate each estimated W' with the maximal accumulated oxygen deficit (MAOD); iii) correlate each W' with the total amount of anaerobic work (W ANAER) performed in each exercise bout performed during the Cf test. Nine national-standard male table tennis players participated in the study. MAOD was 63.0(10.8) mL · kg - 1 and W' values were 32.8(6.6) balls for the linear-frequency model, 38.3(6.9) balls for linear-total balls model, 48.7(8.9) balls for Nonlinear-2 parameter model. Estimated W' from the Nonlinear 2-parameter model was significantly different from W' from the other 2 models (P0.13). Thus, W' estimated from the 2-parameter mathematical equations did not correlate with MAOD or W ANAER in table tennis-specific tests, indicating that W' may not provide a strong and valid estimation of anaerobic capacity and anaerobic capacity work. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Reliability constrained decision model for energy service provider incorporating demand response programs

    International Nuclear Information System (INIS)

    Mahboubi-Moghaddam, Esmaeil; Nayeripour, Majid; Aghaei, Jamshid

    2016-01-01

    Highlights: • The operation of Energy Service Providers (ESPs) in electricity markets is modeled. • Demand response as the cost-effective solution is used for energy service provider. • The market price uncertainty is modeled using the robust optimization technique. • The reliability of the distribution network is embedded into the framework. • The simulation results demonstrate the benefits of robust framework for ESPs. - Abstract: Demand response (DR) programs are becoming a critical concept for the efficiency of current electric power industries. Therefore, its various capabilities and barriers have to be investigated. In this paper, an effective decision model is presented for the strategic behavior of energy service providers (ESPs) to demonstrate how to participate in the day-ahead electricity market and how to allocate demand in the smart distribution network. Since market price affects DR and vice versa, a new two-step sequential framework is proposed, in which unit commitment problem (UC) is solved to forecast the expected locational marginal prices (LMPs), and successively DR program is applied to optimize the total cost of providing energy for the distribution network customers. This total cost includes the cost of purchased power from the market and distributed generation (DG) units, incentive cost paid to the customers, and compensation cost of power interruptions. To obtain compensation cost, the reliability evaluation of the distribution network is embedded into the framework using some innovative constraints. Furthermore, to consider the unexpected behaviors of the other market participants, the LMP prices are modeled as the uncertainty parameters using the robust optimization technique, which is more practical compared to the conventional stochastic approach. The simulation results demonstrate the significant benefits of the presented framework for the strategic performance of ESPs.

  7. Wind farms providing secondary frequency regulation: Evaluating the performance of model-based receding horizon control

    International Nuclear Information System (INIS)

    Shapiro, Carl R.; Meneveau, Charles; Gayme, Dennice F.; Meyers, Johan

    2016-01-01

    We investigate the use of wind farms to provide secondary frequency regulation for a power grid. Our approach uses model-based receding horizon control of a wind farm that is tested using a large eddy simulation (LES) framework. In order to enable real-time implementation, the control actions are computed based on a time-varying one-dimensional wake model. This model describes wake advection and interactions, both of which play an important role in wind farm power production. This controller is implemented in an LES model of an 84-turbine wind farm represented by actuator disk turbine models. Differences between the velocities at each turbine predicted by the wake model and measured in LES are used for closed-loop feedback. The controller is tested on two types of regulation signals, “RegA” and “RegD”, obtained from PJM, an independent system operator in the eastern United States. Composite performance scores, which are used by PJM to qualify plants for regulation, are used to evaluate the performance of the controlled wind farm. Our results demonstrate that the controlled wind farm consistently performs well, passing the qualification threshold for all fastacting RegD signals. For the RegA signal, which changes over slower time scales, the controlled wind farm's average performance surpasses the threshold, but further work is needed to enable the controlled system to achieve qualifying performance all of the time. (paper)

  8. Biomass transformation webs provide a unified approach to consumer-resource modelling.

    Science.gov (United States)

    Getz, Wayne M

    2011-02-01

    An approach to modelling food web biomass flows among live and dead compartments within and among species is formulated using metaphysiological principles that characterise population growth in terms of basal metabolism, feeding, senescence and exploitation. This leads to a unified approach to modelling interactions among plants, herbivores, carnivores, scavengers, parasites and their resources. Also, dichotomising sessile miners from mobile gatherers of resources, with relevance to feeding and starvation time scales, suggests a new classification scheme involving 10 primary categories of consumer types. These types, in various combinations, rigorously distinguish scavenger from parasite, herbivory from phytophagy and detritivore from decomposer. Application of the approach to particular consumer-resource interactions is demonstrated, culminating in the construction of an anthrax-centred food web model, with parameters applicable to Etosha National Park, Namibia, where deaths of elephants and zebra from the bacterial pathogen, Bacillus anthracis, provide significant subsidies to jackals, vultures and other scavengers. © 2010 Blackwell Publishing Ltd/CNRS.

  9. Biomass transformation webs provide a unified approach to consumer–resource modelling

    Science.gov (United States)

    Getz, Wayne M.

    2011-01-01

    An approach to modelling food web biomass flows among live and dead compartments within and among species is formulated using metaphysiological principles that characterise population growth in terms of basal metabolism, feeding, senescence and exploitation. This leads to a unified approach to modelling interactions among plants, herbivores, carnivores, scavengers, parasites and their resources. Also, dichotomising sessile miners from mobile gatherers of resources, with relevance to feeding and starvation time scales, suggests a new classification scheme involving 10 primary categories of consumer types. These types, in various combinations, rigorously distinguish scavenger from parasite, herbivory from phytophagy and detritivore from decomposer. Application of the approach to particular consumer–resource interactions is demonstrated, culminating in the construction of an anthrax-centred food web model, with parameters applicable to Etosha National Park, Namibia, where deaths of elephants and zebra from the bacterial pathogen, Bacillus anthracis, provide significant subsidies to jackals, vultures and other scavengers. PMID:21199247

  10. Modeling Key Drivers of Cholera Transmission Dynamics Provides New Perspectives for Parasitology.

    Science.gov (United States)

    Rinaldo, Andrea; Bertuzzo, Enrico; Blokesch, Melanie; Mari, Lorenzo; Gatto, Marino

    2017-08-01

    Hydroclimatological and anthropogenic factors are key drivers of waterborne disease transmission. Information on human settlements and host mobility on waterways along which pathogens and hosts disperse, and relevant hydroclimatological processes, can be acquired remotely and included in spatially explicit mathematical models of disease transmission. In the case of epidemic cholera, such models allowed the description of complex disease patterns and provided insight into the course of ongoing epidemics. The inclusion of spatial information in models of disease transmission can aid in emergency management and the assessment of alternative interventions. Here, we review the study of drivers of transmission via spatially explicit approaches and argue that, because many parasitic waterborne diseases share the same drivers as cholera, similar principles may apply. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A Complex of Business Process Management Models for a Service-Providing IT Company

    Directory of Open Access Journals (Sweden)

    Yatsenko Roman M.

    2017-10-01

    Full Text Available The article presents an analysis of a complex of business process management models that are designed to improve the performance of service-providing IT companies. This class of enterprises was selected because of their significant contribution to the Ukrainian economy: third place in the structure of exports, significant budget revenues, high development dynamics, and prospects in the global marketplace. The selected complex of models is designed as a sequence of stages that must be accomplished in order to optimize business processes. The first stage is an analysis of the nature of the process approach, approaches to strategic management, and the characteristics of service-providing IT companies. The second stage is to build the formal and hierarchical models to define the characteristics of the business processes and their structure, respectively. The third stage is to evaluate individual business processes (information model and the entire business process system (multi-level assessment of business processes. The fourth stage is to optimize the business processes at each level: strategic, tactical and operational. The fifth stage is to restructure the business processes after optimization. The sixth (final stage is to analyze the efficiency of the restructured system of business processes.

  12. Pharmacists providing care in the outpatient setting through telemedicine models: a narrative review

    Directory of Open Access Journals (Sweden)

    Littauer SL

    2017-12-01

    Full Text Available Telemedicine refers to the delivery of clinical services using technology that allows two-way, real time, interactive communication between the patient and the clinician at a distant site. Commonly, telemedicine is used to improve access to general and specialty care for patients in rural areas. This review aims to provide an overview of existing telemedicine models involving the delivery of care by pharmacists via telemedicine (including telemonitoring and video, but excluding follow-up telephone calls and to highlight the main areas of chronic-disease management where these models have been applied. Studies within the areas of hypertension, diabetes, asthma, anticoagulation and depression were identified, but only two randomized controlled trials with adequate sample size demonstrating the positive impact of telemonitoring combined with pharmacist care in hypertension were identified. The evidence for the impact of pharmacist-based telemedicine models is sparse and weak, with the studies conducted presenting serious threats to internal and external validity. Therefore, no definitive conclusions about the impact of pharmacist-led telemedicine models can be made at this time. In the Unites States, the increasing shortage of primary care providers and specialists represents an opportunity for pharmacists to assume a more prominent role managing patients with chronic disease in the ambulatory care setting. However, lack of reimbursement may pose a barrier to the provision of care by pharmacists using telemedicine.

  13. Agent-based organizational modelling for analysis of safety culture at an air navigation service provider

    International Nuclear Information System (INIS)

    Stroeve, Sybert H.; Sharpanskykh, Alexei; Kirwan, Barry

    2011-01-01

    Assessment of safety culture is done predominantly by questionnaire-based studies, which tend to reveal attitudes on immaterial characteristics (values, beliefs, norms). There is a need for a better understanding of the implications of the material aspects of an organization (structures, processes, etc.) for safety culture and their interactions with the immaterial characteristics. This paper presents a new agent-based organizational modelling approach for integrated and systematic evaluation of material and immaterial characteristics of socio-technical organizations in safety culture analysis. It uniquely considers both the formal organization and the value- and belief-driven behaviour of individuals in the organization. Results are presented of a model for safety occurrence reporting at an air navigation service provider. Model predictions consistent with questionnaire-based results are achieved. A sensitivity analysis provides insight in organizational factors that strongly influence safety culture indicators. The modelling approach can be used in combination with attitude-focused safety culture research, towards an integrated evaluation of material and immaterial characteristics of socio-technical organizations. By using this approach an organization is able to gain a deeper understanding of causes of diverse problems and inefficiencies both in the formal organization and in the behaviour of organizational agents, and to systematically identify and evaluate improvement options.

  14. Modeling fMRI signals can provide insights into neural processing in the cerebral cortex.

    Science.gov (United States)

    Vanni, Simo; Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo

    2015-08-01

    Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. Copyright © 2015 the American Physiological Society.

  15. Monte Carlo modeling provides accurate calibration factors for radionuclide activity meters

    International Nuclear Information System (INIS)

    Zagni, F.; Cicoria, G.; Lucconi, G.; Infantino, A.; Lodi, F.; Marengo, M.

    2014-01-01

    Accurate determination of calibration factors for radionuclide activity meters is crucial for quantitative studies and in the optimization step of radiation protection, as these detectors are widespread in radiopharmacy and nuclear medicine facilities. In this work we developed the Monte Carlo model of a widely used activity meter, using the Geant4 simulation toolkit. More precisely the “PENELOPE” EM physics models were employed. The model was validated by means of several certified sources, traceable to primary activity standards, and other sources locally standardized with spectrometry measurements, plus other experimental tests. Great care was taken in order to accurately reproduce the geometrical details of the gas chamber and the activity sources, each of which is different in shape and enclosed in a unique container. Both relative calibration factors and ionization current obtained with simulations were compared against experimental measurements; further tests were carried out, such as the comparison of the relative response of the chamber for a source placed at different positions. The results showed a satisfactory level of accuracy in the energy range of interest, with the discrepancies lower than 4% for all the tested parameters. This shows that an accurate Monte Carlo modeling of this type of detector is feasible using the low-energy physics models embedded in Geant4. The obtained Monte Carlo model establishes a powerful tool for first instance determination of new calibration factors for non-standard radionuclides, for custom containers, when a reference source is not available. Moreover, the model provides an experimental setup for further research and optimization with regards to materials and geometrical details of the measuring setup, such as the ionization chamber itself or the containers configuration. - Highlights: • We developed a Monte Carlo model of a radionuclide activity meter using Geant4. • The model was validated using several

  16. The climate4impact platform: Providing, tailoring and facilitating climate model data access

    Science.gov (United States)

    Pagé, Christian; Pagani, Andrea; Plieger, Maarten; Som de Cerff, Wim; Mihajlovski, Andrej; de Vreede, Ernst; Spinuso, Alessandro; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Vega, Manuel; Cofiño, Antonio; d'Anca, Alessandro; Fiore, Sandro; Kolax, Michael

    2017-04-01

    One of the main objectives of climate4impact is to provide standardized web services and tools that are reusable in other portals. These services include web processing services, web coverage services and web mapping services (WPS, WCS and WMS). Tailored portals can be targeted to specific communities and/or countries/regions while making use of those services. Easier access to climate data is very important for the climate change impact communities. To fulfill this objective, the climate4impact (http://climate4impact.eu/) web portal and services has been developed, targeting climate change impact modellers, impact and adaptation consultants, as well as other experts using climate change data. It provides to users harmonized access to climate model data through tailored services. It features static and dynamic documentation, Use Cases and best practice examples, an advanced search interface, an integrated authentication and authorization system with the Earth System Grid Federation (ESGF), a visualization interface with ADAGUC web mapping tools. In the latest version, statistical downscaling services, provided by the Santander Meteorology Group Downscaling Portal, were integrated. An innovative interface to integrate statistical downscaling services will be released in the upcoming version. The latter will be a big step in bridging the gap between climate scientists and the climate change impact communities. The climate4impact portal builds on the infrastructure of an international distributed database that has been set to disseminate the results from the global climate model results of the Coupled Model Intercomparison project Phase 5 (CMIP5). This database, the ESGF, is an international collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of climate model data. The European FP7 project IS-ENES, Infrastructure for the European Network for Earth System modelling, supports the European

  17. A Stochastic Geometry Framework for LOS/NLOS Propagation in Dense Small Cell Networks

    DEFF Research Database (Denmark)

    Galiotto, Carlo; Kiilerich Pratas, Nuno; Marchetti, Nicola

    2015-01-01

    The need to carry out analytical studies of wireless systems often motivates the usage of simplified models which, despite their tractability, can easily lead to an overestimation of the achievable performance. In the case of dense small cells networks, the standard single slope path-loss model has......-loss model is taken into account. We first propose a stochastic geometry based framework for small cell networks where the signal propagation accounts for both the Line-of-Sight (LOS) and Non-Line-Of-Sight (NLOS) components, such as the model provided by the 3GPP for evaluation of pico-cells in Heterogeneous...

  18. Capabilities of stochastic rainfall models as data providers for urban hydrology

    Science.gov (United States)

    Haberlandt, Uwe

    2017-04-01

    For planning of urban drainage systems using hydrological models, long, continuous precipitation series with high temporal resolution are needed. Since observed time series are often too short or not available everywhere, the use of synthetic precipitation is a common alternative. This contribution compares three precipitation models regarding their suitability to provide 5 minute continuous rainfall time series for a) sizing of drainage networks for urban flood protection and b) dimensioning of combined sewage systems for pollution reduction. The rainfall models are a parametric stochastic model (Haberlandt et al., 2008), a non-parametric probabilistic approach (Bárdossy, 1998) and a stochastic downscaling of dynamically simulated rainfall (Berg et al., 2013); all models are operated both as single site and multi-site generators. The models are applied with regionalised parameters assuming that there is no station at the target location. Rainfall and discharge characteristics are utilised for evaluation of the model performance. The simulation results are compared against results obtained from reference rainfall stations not used for parameter estimation. The rainfall simulations are carried out for the federal states of Baden-Württemberg and Lower Saxony in Germany and the discharge simulations for the drainage networks of the cities of Hamburg, Brunswick and Freiburg. Altogether, the results show comparable simulation performance for the three models, good capabilities for single site simulations but low skills for multi-site simulations. Remarkably, there is no significant difference in simulation performance comparing the tasks flood protection with pollution reduction, so the models are finally able to simulate both the extremes and the long term characteristics of rainfall equally well. Bárdossy, A., 1998. Generating precipitation time series using simulated annealing. Wat. Resour. Res., 34(7): 1737-1744. Berg, P., Wagner, S., Kunstmann, H., Schädler, G

  19. Analytical modeling provides new insight into complex mutual coupling between surface loops at ultrahigh fields.

    Science.gov (United States)

    Avdievich, N I; Pfrommer, A; Giapitzakis, I A; Henning, A

    2017-10-01

    Ultrahigh-field (UHF) (≥7 T) transmit (Tx) human head surface loop phased arrays improve both the Tx efficiency (B 1 + /√P) and homogeneity in comparison with single-channel quadrature Tx volume coils. For multi-channel arrays, decoupling becomes one of the major problems during the design process. Further insight into the coupling between array elements and its dependence on various factors can facilitate array development. The evaluation of the entire impedance matrix Z for an array loaded with a realistic voxel model or phantom is a time-consuming procedure when performed using electromagnetic (EM) solvers. This motivates the development of an analytical model, which could provide a quick assessment of the Z-matrix. In this work, an analytical model based on dyadic Green's functions was developed and validated using an EM solver and bench measurements. The model evaluates the complex coupling, including both the electric (mutual resistance) and magnetic (mutual inductance) coupling. Validation demonstrated that the model does well to describe the coupling at lower fields (≤3 T). At UHFs, the model also performs well for a practical case of low magnetic coupling. Based on the modeling, the geometry of a 400-MHz, two-loop transceiver array was optimized, such that, by simply overlapping the loops, both the mutual inductance and the mutual resistance were compensated at the same time. As a result, excellent decoupling (below -40 dB) was obtained without any additional decoupling circuits. An overlapped array prototype was compared (signal-to-noise ratio, Tx efficiency) favorably to a gapped array, a geometry which has been utilized previously in designs of UHF Tx arrays. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Providing a more complete view of ice-age palaeoclimates using model inversion and data interpolation

    Science.gov (United States)

    Cleator, Sean; Harrison, Sandy P.; Roulstone, Ian; Nichols, Nancy K.; Prentice, Iain Colin

    2017-04-01

    Site-based pollen records have been used to provide quantitative reconstructions of Last Glacial Maximum (LGM) climates, but there are too few such records to provide continuous climate fields for the evaluation of climate model simulations. Furthermore, many of the reconstructions were made using modern-analogue techniques, which do not account for the direct impact of CO2 on water-use efficiency and therefore reconstruct considerably drier conditions under low CO2 at the LGM than indicated by other sources of information. We have shown that it is possible to correct analogue-based moisture reconstructions for this effect by inverting a simple light-use efficiency model of productivity, based on the principle that the rate of water loss per unit carbon gain of a plant is the same under conditions of the true moisture, palaeotemperature and palaeo CO2 concentration as under reconstructed moisture, modern CO2 concentration and modern temperature (Prentice et al., 2016). In this study, we use data from the Bartlein el al. (2011) dataset, which provides reconstructions of one or more of six climate variables (mean annual temperature, mean temperature of the warmest and coldest months, the length of the growing seasons, mean annual precipitation, and the ratio of actual to potential evapotranspiration) at individual LGM sites. We use the SPLASH water-balance model to derive a moisture index (MI) at each site from mean annual precipitation and monthly values of sunshine fraction and average temperature, and correct this MI using the Prentice et al. (2016) inversion approach. We then use a three-dimensional variational (3D-Var) data assimilation scheme with the SPLASH model and Prentice et al. (2016) inversion approach to derive reconstructions of all six climate variables at each site, using the Bartlein et al. (2011) data set as a target. We use two alternative background climate states (or priors): modern climate derived from the CRU CL v2.0 data set (New et al., 2002

  1. Family child care home providers as role models for children: Cause for concern?

    Directory of Open Access Journals (Sweden)

    Alison Tovar

    2017-03-01

    Full Text Available Health behaviors associated with chronic disease, particularly healthy eating and regular physical activity, are important role modeling opportunities for individuals working in child care programs. Prior studies have not explored these risk factors in family child care home (FCCH providers which care for vulnerable and at-risk populations. To address this gap, we describe the socio-demographic and health risk behavior profiles in a sample of providers (n = 166 FCCH taken from baseline data of an ongoing cluster-randomized controlled intervention (2011–2016 in North Carolina. Data were collected during on-site visits where providers completed self-administered questionnaires (socio-demographics, physical activity, fruit and vegetable consumption, number of hours of sleep per night and perceived stress and had their height and weight measured. A risk score (range: 0–6; 0 no risk to 6 high risk was calculated based on how many of the following were present: not having health insurance, being overweight/obese, not meeting physical activity, fruit and vegetable, and sleep recommendations, and having high stress. Mean and frequency distributions of participant and FCCH characteristics were calculated. Close to one third (29.3% of providers reported not having health insurance. Almost all providers (89.8% were overweight or obese with approximately half not meeting guidelines for physical activity, fruit and vegetable consumption, and sleep. Over half reported a “high” stress score. The mean risk score was 3.39 (±1.2, with close to half of the providers having a risk score of 4, 5 or 6 (45.7%. These results stress the need to promote the health of these important care providers.

  2. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  3. Phosphorus in the dense interstellar medium

    International Nuclear Information System (INIS)

    Turner, B.E.; Tsuji, T.; Bally, J.; Guelin, M.; Cernicharo, J.

    1990-01-01

    An observational study was made of interstellar (and circumstellar) phosphorus chemistry by means of (1) a survey of PN in energetic star-forming regions (several new detections); (2) a search for PN in cold cloud cores; and (3) a search for HPO, HCP, and PH3 in interstellar and circumstellar sources. The results are consistent with previously developed ion-molecule models of phosphorus chemistry and imply large depletion factors for P in dense clouds: about 1000 in warm star-forming cores and more than 10,000 in cold cloud cores. Thermochemical equilibrium models have been developed for the P chemistry in C-rich and O-rich environments, and it is found that HCP contains all the phosphorus in the C-rich case. The search for HCP in IRC 10216 yields an upper limit which, taken together with the recent detection of CP, implies significant depletion of HCP onto grains. Depletion factors for first- and second-row elements in diffuse and dense interstellar clouds are summarized, and an overall picture of circumstellar and interstellar grain and gas-phase processes is proposed to explain the depletions of N, O, C, S, Si, P, and in particular the high depletions of Si and P. 101 refs

  4. NSG Mice Provide a Better Spontaneous Model of Breast Cancer Metastasis than Athymic (Nude Mice.

    Directory of Open Access Journals (Sweden)

    Madhavi Puchalapalli

    Full Text Available Metastasis is the most common cause of mortality in breast cancer patients worldwide. To identify improved mouse models for breast cancer growth and spontaneous metastasis, we examined growth and metastasis of both estrogen receptor positive (T47D and negative (MDA-MB-231, SUM1315, and CN34BrM human breast cancer cells in nude and NSG mice. Both primary tumor growth and spontaneous metastases were increased in NSG mice compared to nude mice. In addition, a pattern of metastasis similar to that observed in human breast cancer patients (metastases to the lungs, liver, bones, brain, and lymph nodes was found in NSG mice. Furthermore, there was an increase in the metastatic burden in NSG compared to nude mice that were injected with MDA-MB-231 breast cancer cells in an intracardiac experimental metastasis model. This data demonstrates that NSG mice provide a better model for studying human breast cancer metastasis compared to the current nude mouse model.

  5. State and Alternative Fuel Provider Fleets - Fleet Compliance Annual Report: Model Year 2015, Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-01

    The U.S. Department of Energy (DOE) regulates covered state government and alternative fuel provider fleets, pursuant to the Energy Policy Act of 1992 (EPAct), as amended. Covered fleets may meet their EPAct requirements through one of two compliance methods: Standard Compliance or Alternative Compliance. For model year (MY) 2015, the compliance rate with this program for the more than 3011 reporting fleets was 100%. More than 294 fleets used Standard Compliance and exceeded their aggregate MY 2015 acquisition requirements by 8% through acquisitions alone. The seven covered fleets that used Alternative Compliance exceeded their aggregate MY 2015 petroleum use reduction requirements by 46%.

  6. A decision support model for waste management in support of developing low carbon, eco regions. Case studies of densely populated kampung settlements in urban areas in Jakarta

    Energy Technology Data Exchange (ETDEWEB)

    Candra Dewi, Ova

    2013-06-14

    Due to the various types of waste disposal, treatment, utilization and technologies, decision support model for waste management is needed to assist planners and decision makers in finding most suitable way to manage municipal solid waste efficiently. Many planners and decision makers in the area of municipal solid waste have a lack of thorough understanding of the complex chains of waste management system. Therefore the impact for the environment quality and the public health can only be judged at the rudimentary level. However, most existing models are primarily focusing on cost or environmental analysis. Only few consider other crucial factors such as the demographic condition, the characteristics of urban form and urban infrastructure, land transformation aspects due to urban development. Consequently, such models often meet difficulties to cope with cultural requirement. Based on those reasons, a decision support model to set up alternatives of most appropriate technology for sustainable waste management towards a low carbon eco-city on a regional basis is developed in this PhD study. The Low Carbon- and Eco-Region, in particular the contribution of waste management sector, is a vision of living in low rate of carbon generation, using fewer natural resources, and encouraging energy recovery and/or waste reduction at source by improving the used material quality (up-cycling). This decision support model is constructed mainly based on the cultural requirement and local context of a region and synergize the geographic, environmental, social capital and economics aspects in order to fulfill the needs of the respective region and its society. The method employed in this model is not solely a new developed model, but also an advanced model in material flow analysis (STAN), and life cycle assessment on solid waste system (EASEWASTE) and Geographic Information System (GIS). At the same time the model also assists the stakeholders in improving the environmental quality

  7. A decision support model for waste management in support of developing low carbon, eco regions. Case studies of densely populated kampung settlements in urban areas in Jakarta

    International Nuclear Information System (INIS)

    Candra Dewi, Ova

    2013-01-01

    Due to the various types of waste disposal, treatment, utilization and technologies, decision support model for waste management is needed to assist planners and decision makers in finding most suitable way to manage municipal solid waste efficiently. Many planners and decision makers in the area of municipal solid waste have a lack of thorough understanding of the complex chains of waste management system. Therefore the impact for the environment quality and the public health can only be judged at the rudimentary level. However, most existing models are primarily focusing on cost or environmental analysis. Only few consider other crucial factors such as the demographic condition, the characteristics of urban form and urban infrastructure, land transformation aspects due to urban development. Consequently, such models often meet difficulties to cope with cultural requirement. Based on those reasons, a decision support model to set up alternatives of most appropriate technology for sustainable waste management towards a low carbon eco-city on a regional basis is developed in this PhD study. The Low Carbon- and Eco-Region, in particular the contribution of waste management sector, is a vision of living in low rate of carbon generation, using fewer natural resources, and encouraging energy recovery and/or waste reduction at source by improving the used material quality (up-cycling). This decision support model is constructed mainly based on the cultural requirement and local context of a region and synergize the geographic, environmental, social capital and economics aspects in order to fulfill the needs of the respective region and its society. The method employed in this model is not solely a new developed model, but also an advanced model in material flow analysis (STAN), and life cycle assessment on solid waste system (EASEWASTE) and Geographic Information System (GIS). At the same time the model also assists the stakeholders in improving the environmental quality

  8. The DMRT-ML Model: Numerical Simulations of the Microwave Emission of Snowpacks Based on the Dense Media Radiative Transfer Theory

    Science.gov (United States)

    Brucker, Ludovic; Picard, Ghislain; Roy, Alexandre; Dupont, Florent; Fily, Michel; Royer, Alain

    2014-01-01

    Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer), and is available at http:lgge.osug.frpicarddmrtml.

  9. Evolution of dense spatially modulated electron bunches

    Science.gov (United States)

    Balal, N.; Bratman, V. L.; Friedman, A.

    2018-03-01

    An analytical theory describing the dynamics of relativistic moving 1D electron pulses (layers) with the density modulation affected by a space charge has been revised and generalized for its application to the formation of dense picosecond bunches from linear accelerators with laser-driven photo injectors, and its good agreement with General Particle Tracer simulations has been demonstrated. Evolution of quasi-one-dimensional bunches (disks), for which the derived formulas predict longitudinal expansion, is compared with that for thin and long electron cylinders (threads), for which the excitation of non-linear waves with density spikes was found earlier by Musumeci et al. [Phys. Rev. Lett. 106(18), 184801 (2011)] and Musumeci et al. [Phys. Rev. Spec. Top. -Accel. Beams 16(10), 100701 (2013)]. Both types of bunches can be used for efficiency enhancement of THz sources based on the Doppler frequency up-shifted coherent spontaneous radiation of electrons. Despite the strong Coulomb repulsion, the periodicity of a preliminary modulation in dense 1D layers persists during their expansion in the most interesting case of a relatively small change in particle energy. However, the period of modulation increases and its amplitude decreases in time. In the case of a large change in electron energy, the uniformity of periodicity is broken due to different relativistic changes in longitudinal scales along the bunch: the "period" of modulation decreases and its amplitude increases from the rear to the front boundary. Nevertheless, the use of relatively long electron bunches with a proper preliminary spatial modulation of density can provide a significantly higher power and a narrower spectrum of coherent spontaneous radiation of dense bunches than in the case of initially short single bunches with the same charge.

  10. Toward generalized continuum models of granular soil and granular soil-tire interaction: A combined discrete element and thermomicromechanical continuum analysis of densely packed assemblies

    Science.gov (United States)

    2007-04-30

    of papers containing this body of work have described this as a highly innovative approach at the cutting edge of international geomechanics research...for publication in world-leading journals in granular media mechanics, multi-scale modelling, and experimental and theoretical geomechanics research...international geomechanics research”  “an innovative direction for modelling particulate systems”  “should be very useful, enriching the knowledge

  11. Quantitative Hydraulic Models Of Early Land Plants Provide Insight Into Middle Paleozoic Terrestrial Paleoenvironmental Conditions

    Science.gov (United States)

    Wilson, J. P.; Fischer, W. W.

    2010-12-01

    Fossil plants provide useful proxies of Earth’s climate because plants are closely connected, through physiology and morphology, to the environments in which they lived. Recent advances in quantitative hydraulic models of plant water transport provide new insight into the history of climate by allowing fossils to speak directly to environmental conditions based on preserved internal anatomy. We report results of a quantitative hydraulic model applied to one of the earliest terrestrial plants preserved in three dimensions, the ~396 million-year-old vascular plant Asteroxylon mackei. This model combines equations describing the rate of fluid flow through plant tissues with detailed observations of plant anatomy; this allows quantitative estimates of two critical aspects of plant function. First and foremost, results from these models quantify the supply of water to evaporative surfaces; second, results describe the ability of plant vascular systems to resist tensile damage from extreme environmental events, such as drought or frost. This approach permits quantitative comparisons of functional aspects of Asteroxylon with other extinct and extant plants, informs the quality of plant-based environmental proxies, and provides concrete data that can be input into climate models. Results indicate that despite their small size, water transport cells in Asteroxylon could supply a large volume of water to the plant's leaves--even greater than cells from some later-evolved seed plants. The smallest Asteroxylon tracheids have conductivities exceeding 0.015 m^2 / MPa * s, whereas Paleozoic conifer tracheids do not reach this threshold until they are three times wider. However, this increase in conductivity came at the cost of little to no adaptations for transport safety, placing the plant’s vegetative organs in jeopardy during drought events. Analysis of the thickness-to-span ratio of Asteroxylon’s tracheids suggests that environmental conditions of reduced relative

  12. Quantum Control of Open Systems and Dense Atomic Ensembles

    Science.gov (United States)

    DiLoreto, Christopher

    . This effect motivates the need for using multi-directional basis sets in theoretical analysis of dense quantum systems. My results demonstrate the shortcomings of short-pulse techniques used in many recent studies. Based on my numerical studies, I hypothesize that the dense ensemble can be modelled by an effective single quantum system that has a decoherence rate that changes over time. My effective single particle model provides a way in which computational time can be reduced, and also a model in which the underlying physical processes involved in the system's evolution are much easier to understand. I then use this model to provide an elegant theoretical explanation for an unusual experimental result called "transverse optical magnetism''. My effective single particle model's predictions match very well with experimental data.

  13. High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption

    Science.gov (United States)

    Folch, Arnau; Barcons, Jordi; Kozono, Tomofumi; Costa, Antonio

    2017-06-01

    Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities if the terrain and meteorological conditions favour its accumulation in topographic depressions, thereby reaching toxic concentration levels. Numerical modelling of atmospheric gas dispersion constitutes a useful tool for gas hazard assessment studies, essential for planning risk mitigation actions. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behaviour, potentially leading to inaccurate results if not captured by coarser-scale modelling. We introduce a methodology for microscale wind field characterisation based on transfer functions that couple a mesoscale numerical weather prediction model with a microscale computational fluid dynamics (CFD) model for the atmospheric boundary layer. The resulting time-dependent high-resolution microscale wind field is used as input for a shallow-layer gas dispersal model (TWODEE-2.1) to simulate the time evolution of CO2 gas concentration at different heights above the terrain. The strategy is applied to review simulations of the 1986 Lake Nyos event in Cameroon, where a huge CO2 cloud released by a limnic eruption spread downslopes from the lake, suffocating thousands of people and animals across the Nyos and adjacent secondary valleys. Besides several new features introduced in the new version of the gas dispersal code (TWODEE-2.1), we have also implemented a novel impact criterion based on the percentage of human fatalities depending on CO2 concentration and exposure time. New model results are quantitatively validated using the reported percentage of fatalities at several locations. The comparison with previous simulations that assumed coarser-scale steady winds and topography illustrates the importance of high-resolution modelling in complex terrains.

  14. High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption

    Directory of Open Access Journals (Sweden)

    A. Folch

    2017-06-01

    Full Text Available Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities if the terrain and meteorological conditions favour its accumulation in topographic depressions, thereby reaching toxic concentration levels. Numerical modelling of atmospheric gas dispersion constitutes a useful tool for gas hazard assessment studies, essential for planning risk mitigation actions. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behaviour, potentially leading to inaccurate results if not captured by coarser-scale modelling. We introduce a methodology for microscale wind field characterisation based on transfer functions that couple a mesoscale numerical weather prediction model with a microscale computational fluid dynamics (CFD model for the atmospheric boundary layer. The resulting time-dependent high-resolution microscale wind field is used as input for a shallow-layer gas dispersal model (TWODEE-2.1 to simulate the time evolution of CO2 gas concentration at different heights above the terrain. The strategy is applied to review simulations of the 1986 Lake Nyos event in Cameroon, where a huge CO2 cloud released by a limnic eruption spread downslopes from the lake, suffocating thousands of people and animals across the Nyos and adjacent secondary valleys. Besides several new features introduced in the new version of the gas dispersal code (TWODEE-2.1, we have also implemented a novel impact criterion based on the percentage of human fatalities depending on CO2 concentration and exposure time. New model results are quantitatively validated using the reported percentage of fatalities at several locations. The comparison with previous simulations that assumed coarser-scale steady winds and topography illustrates the importance of high-resolution modelling in complex terrains.

  15. Providing Context for Complexity: Using Infographics and Conceptual Models to Teach Global Change Processes

    Science.gov (United States)

    Bean, J. R.; White, L. D.

    2015-12-01

    Understanding modern and historical global changes requires interdisciplinary knowledge of the physical and life sciences. The Understanding Global Change website from the UC Museum of Paleontology will use a focal infographic that unifies diverse content often taught in separate K-12 science units. This visualization tool provides scientists with a structure for presenting research within the broad context of global change, and supports educators with a framework for teaching and assessing student understanding of complex global change processes. This new approach to teaching the science of global change is currently being piloted and refined based on feedback from educators and scientists in anticipation of a 2016 website launch. Global change concepts are categorized within the infographic as causes of global change (e.g., burning of fossil fuels, volcanism), ongoing Earth system processes (e.g., ocean circulation, the greenhouse effect), and the changes scientists measure in Earth's physical and biological systems (e.g., temperature, extinctions/radiations). The infographic will appear on all website content pages and provides a template for the creation of flowcharts, which are conceptual models that allow teachers and students to visualize the interdependencies and feedbacks among processes in the atmosphere, hydrosphere, biosphere, and geosphere. The development of this resource is timely given that the newly adopted Next Generation Science Standards emphasize cross-cutting concepts, including model building, and Earth system science. Flowchart activities will be available on the website to scaffold inquiry-based lessons, determine student preconceptions, and assess student content knowledge. The infographic has already served as a learning and evaluation tool during professional development workshops at UC Berkeley, Stanford University, and the Smithsonian National Museum of Natural History. At these workshops, scientists and educators used the infographic

  16. Effective Field Theories for Hot and Dense Matter

    Directory of Open Access Journals (Sweden)

    Blaschke D.

    2010-10-01

    Full Text Available The lecture is divided in two parts. The first one deals with an introduction to the physics of hot, dense many-particle systems in quantum field theory [1, 2]. The basics of the path integral approach to the partition function are explained for the example of chiral quark models. The QCD phase diagram is discussed in the meanfield approximation while QCD bound states in the medium are treated in the rainbow-ladder approximation (Gaussian fluctuations. Special emphasis is devoted to the discussion of the Mott effect, i.e. the transition of bound states to unbound, but resonant scattering states in the continnum under the influence of compression and heating of the system. Three examples are given: (1 the QCD model phase diagram with chiral symmetry ¨ restoration and color superconductivity [3], (2 the Schrodinger equation for heavy-quarkonia [4], and (2 Pions [5] as well as Kaons and D-mesons in the finite-temperature Bethe-Salpeter equation [6]. We discuss recent applications of this quantum field theoretical approach to hot and dense quark matter for a description of anomalous J/ψ supression in heavy-ion collisions [7] and for the structure and cooling of compact stars with quark matter interiors [8]. The second part provides a detailed introduction to the Polyakov-loop Nambu–Jona-Lasinio model [9] for thermodynamics and mesonic correlations [10] in the phase diagram of quark matter. Important relationships of low-energy QCD like the Gell-Mann–Oakes–Renner relation are generalized to finite temperatures. The effect of including the coupling to the Polyakov-loop potential on the phase diagram and mesonic correlations is discussed. An outlook is given to effects of nonlocality of the interactions [11] and of mesonic correlations in the medium [12] which go beyond the meanfield description.

  17. MODEL REQUEST FOR PROPOSALS TO PROVIDE ENERGY AND OTHER ATTRIBUTES FROM AN OFFSHORE WIND POWER PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Jeremy Firestone; Dawn Kurtz Crompton

    2011-10-22

    This document provides a model RFP for new generation. The 'base' RFP is for a single-source offshore wind RFP. Required modifications are noted should a state or utility seek multi-source bids (e.g., all renewables or all sources). The model is premised on proposals meeting threshold requirements (e.g., a MW range of generating capacity and a range in terms of years), RFP issuer preferences (e.g., likelihood of commercial operation by a date certain, price certainty, and reduction in congestion), and evaluation criteria, along with a series of plans (e.g., site, environmental effects, construction, community outreach, interconnection, etc.). The Model RFP places the most weight on project risk (45%), followed by project economics (35%), and environmental and social considerations (20%). However, if a multi-source RFP is put forward, the sponsor would need to either add per-MWh technology-specific, life-cycle climate (CO2), environmental and health impact costs to bid prices under the 'Project Economics' category or it should increase the weight given to the 'Environmental and Social Considerations' category.

  18. Mathematical modeling provides kinetic details of the human immune response to vaccination

    Directory of Open Access Journals (Sweden)

    Dustin eLe

    2015-01-01

    Full Text Available With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combine mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response is determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increases slowly, the slow increase can still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model describes well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization are derived from the population of circulating antibody-secreting cells. Taken together, our analysis provides novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlight challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.

  19. Mathematical modeling provides kinetic details of the human immune response to vaccination.

    Science.gov (United States)

    Le, Dustin; Miller, Joseph D; Ganusov, Vitaly V

    2014-01-01

    With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.

  20. Guarana Provides Additional Stimulation over Caffeine Alone in the Planarian Model

    Science.gov (United States)

    Moustakas, Dimitrios; Mezzio, Michael; Rodriguez, Branden R.; Constable, Mic Andre; Mulligan, Margaret E.; Voura, Evelyn B.

    2015-01-01

    The stimulant effect of energy drinks is primarily attributed to the caffeine they contain. Many energy drinks also contain other ingredients that might enhance the tonic effects of these caffeinated beverages. One of these additives is guarana. Guarana is a climbing plant native to the Amazon whose seeds contain approximately four times the amount of caffeine found in coffee beans. The mix of other natural chemicals contained in guarana seeds is thought to heighten the stimulant effects of guarana over caffeine alone. Yet, despite the growing use of guarana as an additive in energy drinks, and a burgeoning market for it as a nutritional supplement, the science examining guarana and how it affects other dietary ingredients is lacking. To appreciate the stimulant effects of guarana and other natural products, a straightforward model to investigate their physiological properties is needed. The planarian provides such a system. The locomotor activity and convulsive response of planarians with substance exposure has been shown to provide an excellent system to measure the effects of drug stimulation, addiction and withdrawal. To gauge the stimulant effects of guarana we studied how it altered the locomotor activity of the planarian species Dugesia tigrina. We report evidence that guarana seeds provide additional stimulation over caffeine alone, and document the changes to this stimulation in the context of both caffeine and glucose. PMID:25880065

  1. Guarana provides additional stimulation over caffeine alone in the planarian model.

    Directory of Open Access Journals (Sweden)

    Dimitrios Moustakas

    Full Text Available The stimulant effect of energy drinks is primarily attributed to the caffeine they contain. Many energy drinks also contain other ingredients that might enhance the tonic effects of these caffeinated beverages. One of these additives is guarana. Guarana is a climbing plant native to the Amazon whose seeds contain approximately four times the amount of caffeine found in coffee beans. The mix of other natural chemicals contained in guarana seeds is thought to heighten the stimulant effects of guarana over caffeine alone. Yet, despite the growing use of guarana as an additive in energy drinks, and a burgeoning market for it as a nutritional supplement, the science examining guarana and how it affects other dietary ingredients is lacking. To appreciate the stimulant effects of guarana and other natural products, a straightforward model to investigate their physiological properties is needed. The planarian provides such a system. The locomotor activity and convulsive response of planarians with substance exposure has been shown to provide an excellent system to measure the effects of drug stimulation, addiction and withdrawal. To gauge the stimulant effects of guarana we studied how it altered the locomotor activity of the planarian species Dugesia tigrina. We report evidence that guarana seeds provide additional stimulation over caffeine alone, and document the changes to this stimulation in the context of both caffeine and glucose.

  2. Where’s the Ground Surface? – Elevation Bias in LIDAR-derived Digital Elevation Models Due to Dense Vegetation in Oregon Tidal Marshes

    Science.gov (United States)

    Light Detection and Ranging (LIDAR) is a powerful resource for coastal and wetland managers and its use is increasing. Vegetation density and other land cover characteristics influence the accuracy of LIDAR-derived ground surface digital elevation models; however the degree to wh...

  3. The Nordic welfare model providing energy transition? A political geography approach to the EU RES directive

    International Nuclear Information System (INIS)

    Westholm, Erik; Beland Lindahl, Karin

    2012-01-01

    The EU Renewable Energy Strategy (RES) Directive requires that each member state obtain 20% of its energy supply from renewable sources by 2020. If fully implemented, this implies major changes in institutions, infrastructure, land use, and natural resource flows. This study applies a political geography perspective to explore the transition to renewable energy use in the heating and cooling segment of the Swedish energy system, 1980–2010. The Nordic welfare model, which developed mainly after the Second World War, required relatively uniform, standardized local and regional authorities functioning as implementation agents for national politics. Since 1980, the welfare orientation has gradually been complemented by competition politics promoting technological change, innovation, and entrepreneurship. This combination of welfare state organization and competition politics provided the dynamics necessary for energy transition, which occurred in a semi-public sphere of actors at various geographical scales. However, our analysis, suggest that this was partly an unintended policy outcome, since it was based on a welfare model with no significant energy aims. Our case study suggests that state organization plays a significant role, and that the EU RES Directive implementation will be uneven across Europe, reflecting various welfare models with different institutional pre-requisites for energy transition. - Highlights: ► We explore the energy transition in the heating/cooling sector in Sweden 1980–2000. ► The role of the state is studied from a political geography perspective. ► The changing welfare model offered the necessary institutional framework. ► Institutional arrangements stand out as central to explain the relative success. ► The use of renewables in EU member states will continue to vary significantly.

  4. Biological Model Development as an Opportunity to Provide Content Auditing for the Foundational Model of Anatomy Ontology.

    Science.gov (United States)

    Wang, Lucy L; Grunblatt, Eli; Jung, Hyunggu; Kalet, Ira J; Whipple, Mark E

    2015-01-01

    Constructing a biological model using an established ontology provides a unique opportunity to perform content auditing on the ontology. We built a Markov chain model to study tumor metastasis in the regional lymphatics of patients with head and neck squamous cell carcinoma (HNSCC). The model attempts to determine regions with high likelihood for metastasis, which guides surgeons and radiation oncologists in selecting the boundaries of treatment. To achieve consistent anatomical relationships, the nodes in our model are populated using lymphatic objects extracted from the Foundational Model of Anatomy (FMA) ontology. During this process, we discovered several classes of inconsistencies in the lymphatic representations within the FMA. We were able to use this model building opportunity to audit the entities and connections in this region of interest (ROI). We found five subclasses of errors that are computationally detectable and resolvable, one subclass of errors that is computationally detectable but unresolvable, requiring the assistance of a content expert, and also errors of content, which cannot be detected through computational means. Mathematical descriptions of detectable errors along with expert review were used to discover inconsistencies and suggest concepts for addition and removal. Out of 106 organ and organ parts in the ROI, 8 unique entities were affected, leading to the suggestion of 30 concepts for addition and 4 for removal. Out of 27 lymphatic chain instances, 23 were found to have errors, with a total of 32 concepts suggested for addition and 15 concepts for removal. These content corrections are necessary for the accurate functioning of the FMA and provide benefits for future research and educational uses.

  5. Neutrino interactions in hot and dense matter

    International Nuclear Information System (INIS)

    Reddy, S.; Prakash, M.; Lattimer, J.M.

    1998-01-01

    We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star. copyright 1998 The American Physical Society

  6. Solids flow rate measurement in dense slurries

    Energy Technology Data Exchange (ETDEWEB)

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  7. Dense, layered, inclined flows of spheres

    Science.gov (United States)

    Jenkins, James T.; Larcher, Michele

    2017-12-01

    We consider dense, inclined flows of spheres in which the particles translate in layers, whose existence may be promoted by the presence of a rigid base and/or sidewalls. We imagine that in such flows a sphere of a layer is forced up the back of a sphere of the layer below, lifting a column of spheres above it, and then falls down the front of the lower sphere, until it bumps against the preceding sphere of the lower layer. We calculate the forces and rate of momentum transfer associated with this process of rub, lift, fall, and bump and determine a relation between the ratio of shear stress to normal stress and the rate of strain that may be integrated to obtain the velocity profile. The fall of a sphere and that of the column above it results in a linear increase in the magnitude of the velocity fluctuations with distance from the base of the flow. We compare the predictions of the model with measured profiles of velocity and granular temperature in several different dense, inclined flows.

  8. Ecosystem Services Provided by Agricultural Land as Modeled by Broad Scale Geospatial Analysis

    Science.gov (United States)

    Kokkinidis, Ioannis

    Agricultural ecosystems provide multiple services including food and fiber provision, nutrient cycling, soil retention and water regulation. Objectives of the study were to identify and quantify a selection of ecosystem services provided by agricultural land, using existing geospatial tools and preferably free and open source data, such as the Virginia Land Use Evaluation System (VALUES), the North Carolina Realistic Yield Expectations (RYE) database, and the land cover datasets NLCD and CDL. Furthermore I sought to model tradeoffs between provisioning and other services. First I assessed the accuracy of agricultural land in NLCD and CDL over a four county area in eastern Virginia using cadastral parcels. I uncovered issues concerning the definition of agricultural land. The area and location of agriculture saw little change in the 19 years studied. Furthermore all datasets have significant errors of omission (11.3 to 95.1%) and commission (0 to 71.3%). Location of agriculture was used with spatial crop yield databases I created and combined with models I adapted to calculate baseline values for plant biomass, nutrient composition and requirements, land suitability for and potential production of biofuels and the economic impact of agriculture for the four counties. The study area was then broadened to cover 97 counties in eastern Virginia and North Carolina, investigating the potential for increased regional grain production through intensification and extensification of agriculture. Predicted yield from geospatial crop models was compared with produced yield from the NASS Survey of Agriculture. Area of most crops in CDL was similar to that in the Survey of Agriculture, but a yield gap is present for most years, partially due to weather, thus indicating potential for yield increase through intensification. Using simple criteria I quantified the potential to extend agriculture in high yield land in other uses and modeled the changes in erosion and runoff should

  9. Finding dense locations in symbolic indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2017-01-01

    Finding the dense locations in large indoor spaces is very useful for many applications such as overloaded area detection, security control, crowd management, indoor navigation, and so on. Indoor tracking data can be enormous and are not immediately ready for finding dense locations. This paper...... presents two graph-based models for constrained and semi-constrained indoor movement, respectively, and then uses the models to map raw tracking records into mapping records that represent object entry and exit times in particular locations. Subsequently, an efficient indexing structure called Hierarchical...

  10. Oxygen permeation in thin, dense Ce0.9Gd0.1O 1.95- membranes I. Model study

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Søgaard, Martin; Hendriksen, Peter Vang

    2011-01-01

    at the feed and permeate side of the membrane, related to the gaseous oxygen reduction and fuel oxidation, respectively, as well as the gas conversion and gas diffusion resistances in the porous support structure at the permeate side. The temperature and oxygen activity dependence of the oxide ionic...... was analyzed by a separation of the various losses. The chemical expansion of Ce 0.9Gd0.1O1.95-δ under operation was estimated from the calculated oxygen activity and nonstoichiometry profiles inside the membrane. © 2011 The Electrochemical Society.......A model of a supported planar Ce0.9Gd0.1O 1.95-δ oxygen membrane in a plug-flow setup was constructed and a sensitivity analysis of its performance under varying operating conditions and membrane parameters was performed. The model takes into account the driving force losses at the catalysts...

  11. An integrated decision making model for the selection of sustainable forward and reverse logistic providers

    DEFF Research Database (Denmark)

    Govindan, Kannan; Agarwal, Vernika; Darbari, Jyoti Dhingra

    2017-01-01

    Due to rising concerns for environmental sustainability, the Indian electronic industry faces immense pressure to incorporate effective sustainable practices into the supply chain (SC) planning. Consequently, manufacturing enterprises (ME) are exploring the option of re-examining their SC...... hierarchy process and the technique for order performance by similarity to ideal solution. The integrated logistics network is modeled as a bi-objective mixed-integer programming problem with the objective of maximizing the profit of the manufacturer and maximizing the sustainable score of the selected...... improve the sustainable performance value of the SC network and secure reasonable profits. The managerial implications drawn from the result analysis provide a sustainable framework to the ME for enhancing its corporate image....

  12. Lipopolysaccharide from Burkholderia thailandensis E264 provides protection in a murine model of melioidosis.

    Science.gov (United States)

    Ngugi, Sarah A; Ventura, Valeria V; Qazi, Omar; Harding, Sarah V; Kitto, G Barrie; Estes, D Mark; Dell, Anne; Titball, Richard W; Atkins, Timothy P; Brown, Katherine A; Hitchen, Paul G; Prior, Joann L

    2010-11-03

    Burkholderia thailandensis is a less virulent close relative of Burkholderia pseudomallei, a CDC category B biothreat agent. We have previously shown that lipopolysaccharide (LPS) extracted from B. pseudomallei can provide protection against a lethal challenge of B. pseudomallei in a mouse model of melioidosis. Sugar analysis on LPS from B. thailandensis strain E264 confirmed that this polysaccharide has a similar structure to LPS from B. pseudomallei. Mice were immunised with LPS from B. thailandensis or B. pseudomallei and challenged with a lethal dose of B. pseudomallei strain K96243. Similar protection levels were observed when either LPS was used as the immunogen. This data suggests that B. thailandensis LPS has the potential to be used as part of a subunit based vaccine against pathogenic B. pseudomallei. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  13. Collaborative Care: a Pilot Study of a Child Psychiatry Outpatient Consultation Model for Primary Care Providers.

    Science.gov (United States)

    Fallucco, Elise M; Blackmore, Emma Robertson; Bejarano, Carolina M; Kozikowksi, Chelsea B; Cuffe, Steven; Landy, Robin; Glowinski, Anne

    2017-07-01

    A Child Psychiatry Consultation Model (CPCM) offering primary care providers (PCPs) expedited access to outpatient child psychiatric consultation regarding management in primary care would allow more children to access mental health services. Yet, little is known about outpatient CPCMs. This pilot study describes an outpatient CPCM for 22 PCPs in a large Northeast Florida county. PCPs referred 81 patients, of which 60 were appropriate for collaborative management and 49 were subsequently seen for outpatient psychiatric consultation. The most common psychiatric diagnoses following consultation were anxiety (57%), ADHD (53%), and depression (39%). Over half (57%) of the patients seen for consultation were discharged to their PCP with appropriate treatment recommendations, and only a small minority (10%) of patients required long-term care by a psychiatrist. This CPCM helped child psychiatrists collaborate with PCPs to deliver mental health services for youth. The CPCM should be considered for adaptation and dissemination.

  14. Creating high-resolution bare-earth digital elevation models (DEMs) from stereo imagery in an area of densely vegetated deciduous forest using combinations of procedures designed for lidar point cloud filtering

    Science.gov (United States)

    DeWitt, Jessica D.; Warner, Timothy A.; Chirico, Peter G.; Bergstresser, Sarah E.

    2017-01-01

    For areas of the world that do not have access to lidar, fine-scale digital elevation models (DEMs) can be photogrammetrically created using globally available high-spatial resolution stereo satellite imagery. The resultant DEM is best termed a digital surface model (DSM) because it includes heights of surface features. In densely vegetated conditions, this inclusion can limit its usefulness in applications requiring a bare-earth DEM. This study explores the use of techniques designed for filtering lidar point clouds to mitigate the elevation artifacts caused by above ground features, within the context of a case study of Prince William Forest Park, Virginia, USA. The influences of land cover and leaf-on vs. leaf-off conditions are investigated, and the accuracy of the raw photogrammetric DSM extracted from leaf-on imagery was between that of a lidar bare-earth DEM and the Shuttle Radar Topography Mission DEM. Although the filtered leaf-on photogrammetric DEM retains some artifacts of the vegetation canopy and may not be useful for some applications, filtering procedures significantly improved the accuracy of the modeled terrain. The accuracy of the DSM extracted in leaf-off conditions was comparable in most areas to the lidar bare-earth DEM and filtering procedures resulted in accuracy comparable of that to the lidar DEM.

  15. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Badea, Alexandra; Kane, Lauren; Anderson, Robert J; Qi, Yi; Foster, Mark; Cofer, Gary P; Medvitz, Neil; Buckley, Anne F; Badea, Andreas K; Wetsel, William C; Colton, Carol A

    2016-11-15

    Multivariate biomarkers are needed for detecting Alzheimer's disease (AD), understanding its etiology, and quantifying the effect of therapies. Mouse models provide opportunities to study characteristics of AD in well-controlled environments that can help facilitate development of early interventions. The CVN-AD mouse model replicates multiple AD hallmark pathologies, and we identified multivariate biomarkers characterizing a brain circuit disruption predictive of cognitive decline. In vivo and ex vivo magnetic resonance imaging (MRI) revealed that CVN-AD mice replicate the hippocampal atrophy (6%), characteristic of humans with AD, and also present changes in subcortical areas. The largest effect was in the fornix (23% smaller), which connects the septum, hippocampus, and hypothalamus. In characterizing the fornix with diffusion tensor imaging, fractional anisotropy was most sensitive (20% reduction), followed by radial (15%) and axial diffusivity (2%), in detecting pathological changes. These findings were strengthened by optical microscopy and ultrastructural analyses. Ultrastructual analysis provided estimates of axonal density, diameters, and myelination-through the g-ratio, defined as the ratio between the axonal diameter, and the diameter of the axon plus the myelin sheath. The fornix had reduced axonal density (47% fewer), axonal degeneration (13% larger axons), and abnormal myelination (1.5% smaller g-ratios). CD68 staining showed that white matter pathology could be secondary to neuronal degeneration, or due to direct microglial attack. In conclusion, these findings strengthen the hypothesis that the fornix plays a role in AD, and can be used as a disease biomarker and as a target for therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A stochastic simulation model for reliable PV system sizing providing for solar radiation fluctuations

    International Nuclear Information System (INIS)

    Kaplani, E.; Kaplanis, S.

    2012-01-01

    Highlights: ► Solar radiation data for European cities follow the Extreme Value or Weibull distribution. ► Simulation model for the sizing of SAPV systems based on energy balance and stochastic analysis. ► Simulation of PV Generator-Loads-Battery Storage System performance for all months. ► Minimum peak power and battery capacity required for reliable SAPV sizing for various European cities. ► Peak power and battery capacity reduced by more than 30% for operation 95% success rate. -- Abstract: The large fluctuations observed in the daily solar radiation profiles affect highly the reliability of the PV system sizing. Increasing the reliability of the PV system requires higher installed peak power (P m ) and larger battery storage capacity (C L ). This leads to increased costs, and makes PV technology less competitive. This research paper presents a new stochastic simulation model for stand-alone PV systems, developed to determine the minimum installed P m and C L for the PV system to be energy independent. The stochastic simulation model developed, makes use of knowledge acquired from an in-depth statistical analysis of the solar radiation data for the site, and simulates the energy delivered, the excess energy burnt, the load profiles and the state of charge of the battery system for the month the sizing is applied, and the PV system performance for the entire year. The simulation model provides the user with values for the autonomy factor d, simulating PV performance in order to determine the minimum P m and C L depending on the requirements of the application, i.e. operation with critical or non-critical loads. The model makes use of NASA’s Surface meteorology and Solar Energy database for the years 1990–2004 for various cities in Europe with a different climate. The results obtained with this new methodology indicate a substantial reduction in installed peak power and battery capacity, both for critical and non-critical operation, when compared to

  17. Cameroon mid-level providers offer a promising public health dentistry model

    Directory of Open Access Journals (Sweden)

    Achembong Leo

    2012-11-01

    Full Text Available Background Oral health services are inadequate and unevenly distributed in many developing countries, particularly those in sub-Saharan Africa. Rural areas in these countries and poorer sections of the population in urban areas often do not have access to oral health services mainly because of a significant shortage of dentists and the high costs of care. We reviewed Cameroon’s experience with deploying a mid-level cadre of oral health professionals and the feasibility of establishing a more formal and predictable role for these health workers. We anticipate that a task-shifting approach in the provision of dental care will significantly improve the uneven distribution of oral health services particularly in the rural areas of Cameroon, which is currently served by only 3% of the total number of dentists. Methods The setting of this study was the Cameroon Baptist Convention Health Board (BCHB, which has four dentists and 42 mid-level providers. De-identified data were collected manually from the registries of 10 Baptist Convention clinics located in six of Cameroon’s 10 regions and then entered into an Excel format before importing into STATA. A retrospective abstraction of all entries for patient visits starting October 2010, and going back in time until 1500 visits were extracted from each clinic. Results This study showed that mid-level providers in BCHB clinics are offering a full scope of dental work across the 10 clinics, with the exception of treatment for major facial injuries. Mid-level providers alone performed 93.5% of all extractions, 87.5% of all fillings, 96.5% of all root canals, 97.5% of all cleanings, and 98.1% of all dentures. The dentists also typically played a teaching role in training the mid-level providers. Conclusions The Ministry of Health in Cameroon has an opportunity to learn from the BCHB model to expand access to oral health care across the country. This study shows the benefits of using a simple, workable, low

  18. Immunization of stromal cell targeting fibroblast activation protein providing immunotherapy to breast cancer mouse model.

    Science.gov (United States)

    Meng, Mingyao; Wang, Wenju; Yan, Jun; Tan, Jing; Liao, Liwei; Shi, Jianlin; Wei, Chuanyu; Xie, Yanhua; Jin, Xingfang; Yang, Li; Jin, Qing; Zhu, Huirong; Tan, Weiwei; Yang, Fang; Hou, Zongliu

    2016-08-01

    Unlike heterogeneous tumor cells, cancer-associated fibroblasts (CAF) are genetically more stable which serve as a reliable target for tumor immunotherapy. Fibroblast activation protein (FAP) which is restrictively expressed in tumor cells and CAF in vivo and plays a prominent role in tumor initiation, progression, and metastasis can function as a tumor rejection antigen. In the current study, we have constructed artificial FAP(+) stromal cells which mimicked the FAP(+) CAF in vivo. We immunized a breast cancer mouse model with FAP(+) stromal cells to perform immunotherapy against FAP(+) cells in the tumor microenvironment. By forced expression of FAP, we have obtained FAP(+) stromal cells whose phenotype was CD11b(+)/CD34(+)/Sca-1(+)/FSP-1(+)/MHC class I(+). Interestingly, proliferation capacity of the fibroblasts was significantly enhanced by FAP. In the breast cancer-bearing mouse model, vaccination with FAP(+) stromal cells has significantly inhibited the growth of allograft tumor and reduced lung metastasis indeed. Depletion of T cell assays has suggested that both CD4(+) and CD8(+) T cells were involved in the tumor cytotoxic immune response. Furthermore, tumor tissue from FAP-immunized mice revealed that targeting FAP(+) CAF has induced apoptosis and decreased collagen type I and CD31 expression in the tumor microenvironment. These results implicated that immunization with FAP(+) stromal cells led to the disruption of the tumor microenvironment. Our study may provide a novel strategy for immunotherapy of a broad range of cancer.

  19. OpenClimateGIS - A Web Service Providing Climate Model Data in Commonly Used Geospatial Formats

    Science.gov (United States)

    Erickson, T. A.; Koziol, B. W.; Rood, R. B.

    2011-12-01

    The goal of the OpenClimateGIS project is to make climate model datasets readily available in commonly used, modern geospatial formats used by GIS software, browser-based mapping tools, and virtual globes.The climate modeling community typically stores climate data in multidimensional gridded formats capable of efficiently storing large volumes of data (such as netCDF, grib) while the geospatial community typically uses flexible vector and raster formats that are capable of storing small volumes of data (relative to the multidimensional gridded formats). OpenClimateGIS seeks to address this difference in data formats by clipping climate data to user-specified vector geometries (i.e. areas of interest) and translating the gridded data on-the-fly into multiple vector formats. The OpenClimateGIS system does not store climate data archives locally, but rather works in conjunction with external climate archives that expose climate data via the OPeNDAP protocol. OpenClimateGIS provides a RESTful API web service for accessing climate data resources via HTTP, allowing a wide range of applications to access the climate data.The OpenClimateGIS system has been developed using open source development practices and the source code is publicly available. The project integrates libraries from several other open source projects (including Django, PostGIS, numpy, Shapely, and netcdf4-python).OpenClimateGIS development is supported by a grant from NOAA's Climate Program Office.

  20. Modelling Water Uptake Provides a New Perspective on Grass and Tree Coexistence.

    Directory of Open Access Journals (Sweden)

    Michael G Mazzacavallo

    Full Text Available Root biomass distributions have long been used to infer patterns of resource uptake. These patterns are used to understand plant growth, plant coexistence and water budgets. Root biomass, however, may be a poor indicator of resource uptake because large roots typically do not absorb water, fine roots do not absorb water from dry soils and roots of different species can be difficult to differentiate. In a sub-tropical savanna, Kruger Park, South Africa, we used a hydrologic tracer experiment to describe the abundance of active grass and tree roots across the soil profile. We then used this tracer data to parameterize a water movement model (Hydrus 1D. The model accounted for water availability and estimated grass and tree water uptake by depth over a growing season. Most root biomass was found in shallow soils (0-20 cm and tracer data revealed that, within these shallow depths, half of active grass roots were in the top 12 cm while half of active tree roots were in the top 21 cm. However, because shallow soils provided roots with less water than deep soils (20-90 cm, the water movement model indicated that grass and tree water uptake was twice as deep as would be predicted from root biomass or tracer data alone: half of grass and tree water uptake occurred in the top 23 and 43 cm, respectively. Niche partitioning was also greater when estimated from water uptake rather than tracer uptake. Contrary to long-standing assumptions, shallow grass root distributions absorbed 32% less water than slightly deeper tree root distributions when grasses and trees were assumed to have equal water demands. Quantifying water uptake revealed deeper soil water uptake, greater niche partitioning and greater benefits of deep roots than would be estimated from root biomass or tracer uptake data alone.

  1. Experimental Studies of the Transport Parameters of Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)

    2014-12-01

    There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.

  2. Towards a conceptual model of online peer feedback: What about the provider?

    OpenAIRE

    Van Popta, Esther; Kral, Marijke; Camp, Gino; Martens, Rob; Simons, P.R.

    2018-01-01

    This paper reviews studies of peer feedback from the novel perspective of the providers of that feedback. The possible learning benefits of providing peer feedback in online learning have not been extensively studied. The goal of this study was therefore to explore the process of providing online peer feedback as a learning activity for the provider. We concluded that (1) providing online peer feedback has several potential learning benefits for the provider; (2) when providing online peer fe...

  3. A constitutive law for dense granular flows.

    Science.gov (United States)

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  4. Quantity of dates trumps quality of dates for dense Bayesian radiocarbon sediment chronologies - Gas ion source 14C dating instructed by simultaneous Bayesian accumulation rate modeling

    Science.gov (United States)

    Rosenheim, B. E.; Firesinger, D.; Roberts, M. L.; Burton, J. R.; Khan, N.; Moyer, R. P.

    2016-12-01

    Radiocarbon (14C) sediment core chronologies benefit from a high density of dates, even when precision of individual dates is sacrificed. This is demonstrated by a combined approach of rapid 14C analysis of CO2 gas generated from carbonates and organic material coupled with Bayesian statistical modeling. Analysis of 14C is facilitated by the gas ion source on the Continuous Flow Accelerator Mass Spectrometry (CFAMS) system at the Woods Hole Oceanographic Institution's National Ocean Sciences Accelerator Mass Spectrometry facility. This instrument is capable of producing a 14C determination of +/- 100 14C y precision every 4-5 minutes, with limited sample handling (dissolution of carbonates and/or combustion of organic carbon in evacuated containers). Rapid analysis allows over-preparation of samples to include replicates at each depth and/or comparison of different sample types at particular depths in a sediment or peat core. Analysis priority is given to depths that have the least chronologic precision as determined by Bayesian modeling of the chronology of calibrated ages. Use of such a statistical approach to determine the order in which samples are run ensures that the chronology constantly improves so long as material is available for the analysis of chronologic weak points. Ultimately, accuracy of the chronology is determined by the material that is actually being dated, and our combined approach allows testing of different constituents of the organic carbon pool and the carbonate minerals within a core. We will present preliminary results from a deep-sea sediment core abundant in deep-sea foraminifera as well as coastal wetland peat cores to demonstrate statistical improvements in sediment- and peat-core chronologies obtained by increasing the quantity and decreasing the quality of individual dates.

  5. Gas suspension flows of a moderately dense binary mixture of solid particles in vertical tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zamankhan, P.; Huotari, J. [VTT Energy, Jyvaeskylae (Finland). Combustion and Conversion Lab.

    1996-12-01

    The turbulent, steady, fully-developed flow of a moderately dense (solid volume faction >>0.001) binary mixture of spherical particles in a gaseous carrier is investigated for the case of flow in a vertical riser. The suspended particles are considered to be in turbulent motion, driven by random aerodynamic forces acting between the particle and the gaseous carrier as well as particle-particle interactive forces. A model is constructed based on the combination of the time-averaged after volume-averaged conservation equations of mass, momentum and mechanical energy of the gas phase in the continuum theory and the corresponding equations for the solid particles obtained using the recently developed Enskog theory for dense multi-component mixtures of slightly inelastic spherical particles. The model properly takes into account the contributions of particle-particle collisions, as well as the fluid-dynamic fluctuating forces on individual particles. To demonstrate the validity of this approach, the fully-developed steady-state mean velocity and concentration distributions of a moderately dense binary mixture of solid particles in a turbulent vertical flow calculated by the present model are compared with available experimental measurements. The results provide a qualitative description of the experimentally observed motion of coarse particles in a fast bed of fine solids. (author)

  6. The dynamics of dense galactic nuclei

    Science.gov (United States)

    Lee, Man Hoi

    In this thesis, two topics on the dynamics of dense galactic nuclei are studied. They are relevant to the formation of massive black holes and the observations of several nearby galactic nuclei. An overview of the observations is given in Chapter 1. In Chapter 2, the dynamical evolution of dense clusters of compact stars is studied. The formation of binaries and their subsequent merging by gravitational radiation emission is important to the evolution of such clusters. Aarseth's NBODY5 N-body simulation code, which is modified to include these processes, is used to simulate small N clusters with different initial velocity dispersions. The initial evolution is similar to previous results from Fokker-Planck simulations and shows orderly formation of heavy objects. However, the late evolution shows runaway growth for the most massive object in the cluster. We present arguments to show that merger by gravitational radiation (and possibly hydrodynamic merger of normal stars) is expected to be unstable to runaway growth. These results suggest that a seed massive black hole can be formed by runaway growth in a dense cluster of compact stars. In Chapter 3, the effects of stellar encounters on rotating stellar systems with central massive black holes are studied. For axisymmetric stellar systems with distribution functions that depend only on the energy E and the angular momentum about one axis Jx, the steady-state stellar distribution is found by directly integrating the Fokker-Planck equation in E, J subx) space. Two sets of models with simple assumptions about the loss cone in phase space (due to loss of stars to the central black hole) are presented: the loss cone in the Jx direction is either ignored or completely empty. We find that the depletion of stars due to an empty loss cone is significant. Density and kinematic profiles are also presented. The ratio of rotation velocity to velocity dispersion, V/sigma at small radii is higher than that of the background

  7. Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Eike Möhlmann

    2015-06-01

    Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.

  8. Estimated Nutritive Value of Low-Price Model Lunch Sets Provided to Garment Workers in Cambodia.

    Science.gov (United States)

    Makurat, Jan; Pillai, Aarati; Wieringa, Frank T; Chamnan, Chhoun; Krawinkel, Michael B

    2017-07-21

    The establishment of staff canteens is expected to improve the nutritional situation of Cambodian garment workers. The objective of this study is to assess the nutritive value of low-price model lunch sets provided at a garment factory in Phnom Penh, Cambodia. Exemplary lunch sets were served to female workers through a temporary canteen at a garment factory in Phnom Penh. Dish samples were collected repeatedly to examine mean serving sizes of individual ingredients. Food composition tables and NutriSurvey software were used to assess mean amounts and contributions to recommended dietary allowances (RDAs) or adequate intake of energy, macronutrients, dietary fiber, vitamin C (VitC), iron, vitamin A (VitA), folate and vitamin B12 (VitB12). On average, lunch sets provided roughly one third of RDA or adequate intake of energy, carbohydrates, fat and dietary fiber. Contribution to RDA of protein was high (46% RDA). The sets contained a high mean share of VitC (159% RDA), VitA (66% RDA), and folate (44% RDA), but were low in VitB12 (29% RDA) and iron (20% RDA). Overall, lunches satisfied recommendations of caloric content and macronutrient composition. Sets on average contained a beneficial amount of VitC, VitA and folate. Adjustments are needed for a higher iron content. Alternative iron-rich foods are expected to be better suited, compared to increasing portions of costly meat/fish components. Lunch provision at Cambodian garment factories holds the potential to improve food security of workers, approximately at costs of <1 USD/person/day at large scale. Data on quantitative total dietary intake as well as physical activity among workers are needed to further optimize the concept of staff canteens.

  9. Estimated Nutritive Value of Low-Price Model Lunch Sets Provided to Garment Workers in Cambodia

    Directory of Open Access Journals (Sweden)

    Jan Makurat

    2017-07-01

    Full Text Available Background: The establishment of staff canteens is expected to improve the nutritional situation of Cambodian garment workers. The objective of this study is to assess the nutritive value of low-price model lunch sets provided at a garment factory in Phnom Penh, Cambodia. Methods: Exemplary lunch sets were served to female workers through a temporary canteen at a garment factory in Phnom Penh. Dish samples were collected repeatedly to examine mean serving sizes of individual ingredients. Food composition tables and NutriSurvey software were used to assess mean amounts and contributions to recommended dietary allowances (RDAs or adequate intake of energy, macronutrients, dietary fiber, vitamin C (VitC, iron, vitamin A (VitA, folate and vitamin B12 (VitB12. Results: On average, lunch sets provided roughly one third of RDA or adequate intake of energy, carbohydrates, fat and dietary fiber. Contribution to RDA of protein was high (46% RDA. The sets contained a high mean share of VitC (159% RDA, VitA (66% RDA, and folate (44% RDA, but were low in VitB12 (29% RDA and iron (20% RDA. Conclusions: Overall, lunches satisfied recommendations of caloric content and macronutrient composition. Sets on average contained a beneficial amount of VitC, VitA and folate. Adjustments are needed for a higher iron content. Alternative iron-rich foods are expected to be better suited, compared to increasing portions of costly meat/fish components. Lunch provision at Cambodian garment factories holds the potential to improve food security of workers, approximately at costs of <1 USD/person/day at large scale. Data on quantitative total dietary intake as well as physical activity among workers are needed to further optimize the concept of staff canteens.

  10. Ocean sequestration of carbon dioxide: modeling the deep ocean release of a dense emulsion of liquid Co2-in-water stabilized by pulverized limestone particles.

    Science.gov (United States)

    Golomb, D; Pennell, S; Ryan, D; Barry, E; Swett, P

    2007-07-01

    The release into the deep ocean of an emulsion of liquid carbon dioxide-in-seawater stabilized by fine particles of pulverized limestone (CaCO3) is modeled. The emulsion is denser than seawater, hence, it will sink deeper from the injection point, increasing the sequestration period. Also, the presence of CaCO3 will partially buffer the carbonic acid that results when the emulsion eventually disintegrates. The distance that the plume sinks depends on the density stratification of the ocean, the amount of the released emulsion, and the entrainment factor. When released into the open ocean, a plume containing the CO2 output of a 1000 MW(el) coal-fired power plant will typically sink hundreds of meters below the injection point. When released from a pipe into a valley on the continental shelf, the plume will sink about twice as far because of the limited entrainment of ambient seawater when the plume flows along the valley. A practical system is described involving a static mixer for the in situ creation of the CO2/seawater/pulverized limestone emulsion. The creation of the emulsion requires significant amounts of pulverized limestone, on the order of 0.5 tons per ton of liquid CO2. That increases the cost of ocean sequestration by about $13/ ton of CO2 sequestered. However, the additional cost may be compensated by the savings in transportation costs to greater depth, and because the release of an emulsion will not acidify the seawater around the release point.

  11. Kaon condensation in dense stellar matter

    International Nuclear Information System (INIS)

    Lee, Chang-Hwan; Rho, M.; Washington Univ., Seattle, WA

    1995-03-01

    This article combines two talks given by the authors and is based on Works done in collaboration with G.E. Brown and D.P. Min on kaon condensation in dense baryonic medium treated in chiral perturbation theory using heavy-baryon formalism. It contains, in addition to what was recently published, astrophysical backgrounds for kaon condensation discussed by Brown and Bethe, a discussion on a renormalization-group analysis to meson condensation worked out together with H.K. Lee and S.J. Sin, and the recent results of K.M. Westerberg in the bound-state approach to the Skyrme model. Negatively charged kaons are predicted to condense at a critical density 2 approx-lt ρ/ρo approx-lt 4, in the range to allow the intriguing new phenomena predicted by Brown and Bethe to take place in compact star matter

  12. Frontiers and challenges in warm dense matter

    CERN Document Server

    Desjarlais, Michael; Redmer, Ronald; Trickey, Samuel

    2014-01-01

    Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent...

  13. Coherent neutrino interactions in a dense medium

    International Nuclear Information System (INIS)

    Kiers, K.; Weiss, N.

    1997-01-01

    Motivated by the effect of matter on neutrino oscillations (the MSW effect) we study in more detail the propagation of neutrinos in a dense medium. The dispersion relation for massive neutrinos in a medium is known to have a minimum at nonzero momentum p∼G F ρ/√(2). We study in detail the origin and consequences of this dispersion relation for both Dirac and Majorana neutrinos both in a toy model with only neutral currents and a single neutrino flavor and in a realistic open-quotes standard modelclose quotes with two neutrino flavors. We find that for a range of neutrino momenta near the minimum of the dispersion relation, Dirac neutrinos are trapped by their coherent interactions with the medium. This effect does not lead to the trapping of Majorana neutrinos. copyright 1997 The American Physical Society

  14. Medical device disinfection by dense carbon dioxide.

    Science.gov (United States)

    Bertoloni, G; Bertucco, A; Rassu, M; Vezzù, K

    2011-01-01

    The employment of disinfection-sterilisation processes for the re-use of medical devices without negative effects such as the presence of toxic residues, material degradation or other modifications is an important consideration for reducing the costs of surgical and medical procedures. Ethylene oxide is the most commonly used low temperature sterilisation technique in healthcare facilities, but its associated toxicity has reduced interest in this technology for the reprocessing of medical equipment. The aim of this study was to examine the disinfection efficiency of a novel low temperature approach, based on dense carbon dioxide on artificially contaminated catheters. The results obtained demonstrated that this method provided a complete inactivation of all bacteria and yeast strains tested, and that no obvious modifications to the surfaces tested were observed with multiple treatments. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  15. Particle Segregation in Dense Granular Flows

    Science.gov (United States)

    Gray, John Mark Nicholas Timm

    2018-01-01

    Granular materials composed of particles with differing grain sizes, densities, shapes, or surface properties may experience unexpected segregation during flow. This review focuses on kinetic sieving and squeeze expulsion, whose combined effect produces the dominant gravity-driven segregation mechanism in dense sheared flows. Shallow granular avalanches that form at the surface of more complex industrial flows such as heaps, silos, and rotating drums provide ideal conditions for particles to separate, with large particles rising to the surface and small particles percolating down to the base. When this is combined with erosion and deposition, amazing patterns can form in the underlying substrate. Gravity-driven segregation and velocity shear induce differential lateral transport, which may be thought of as a secondary segregation mechanism. This allows larger particles to accumulate at flow fronts, and if they are more frictional than the fine grains, they can feedback on the bulk flow, causing flow fingering, levee formation, and longer runout of geophysical mass flows.

  16. An integrated Biophysical CGE model to provide Sustainable Development Goal insights

    Science.gov (United States)

    Sanchez, Marko; Cicowiez, Martin; Howells, Mark; Zepeda, Eduardo

    2016-04-01

    Future projected changes in the energy system will inevitably result in changes to the level of appropriation of environmental resources, particularly land and water, and this will have wider implications for environmental sustainability, and may affect other sectors of the economy. An integrated climate, land, energy and water (CLEW) system will provide useful insights, particularly with regard to the environmental sustainability. However, it will require adequate integration with other tools to detect economic impacts and broaden the scope for policy analysis. A computable general equilibrium (CGE) model is a well suited tool to channel impacts, as detected in a CLEW analysis, onto all sectors of the economy, and evaluate trade-offs and synergies, including those of possible policy responses. This paper will show an application of such integration in a single-country CGE model with the following key characteristics. Climate is partly exogenous (as proxied by temperature and rainfall) and partly endogenous (as proxied by emissions generated by different sectors) and has an impact on endogenous variables such as land productivity and labor productivity. Land is a factor of production used in agricultural and forestry activities which can be of various types if land use alternatives (e.g., deforestation) are to be considered. Energy is an input to the production process of all economic sectors and a consumption good for households. Because it is possible to allow for substitution among different energy sources (e.g. renewable vs non-renewable) in the generation of electricity, the production process of energy products can consider the use of natural resources such as oil and water. Water, data permitting, can be considered as an input into the production process of agricultural sectors, which is particularly relevant in case of irrigation. It can also be considered as a determinant of total factor productivity in hydro-power generation. The integration of a CLEW

  17. Dense module enumeration in biological networks

    International Nuclear Information System (INIS)

    Tsuda, Koji; Georgii, Elisabeth

    2009-01-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  18. Could implantable cardioverter defibrillators provide a human model supporting the learned helplessness theory of depression?

    Science.gov (United States)

    Goodman, M; Hess, B

    1999-01-01

    Affective symptoms were examined retrospectively in 25 patients following placement of implantable cardioverter defibrillators (ICD) which can produce intermittent shocks without warning in response to cardiac ventricular arrhythmias. The number of ICD random, uncontrollable discharge shocks and pre-ICD history of psychological distress (i.e., depression and/or anxiety) were documented in all patients using a demographics questionnaire and a standardized behavioral/psychological symptoms questionnaire (i.e., Symptom Checklist-90 Revised). ICD patients were dichotomized into two groups: those without a history of psychological distress prior to ICD (n = 18) and those with a history of psychological distress prior to ICD (n = 7). In ICD patients without a prior history, results indicated that quantity of ICD discharge shocks was significantly predictive of current reported depression (r = 0.45, p = 0.03) and current reported anxiety (r = 0.51, p = 0.02). Conversely, in patients with a reported history of psychological distress, there was no significant relationship found between quantity of discharge shocks and current reported depression or anxiety. This study may provide evidence in support of a human model of learned helplessness in that it supports the notion that exposure to an unavoidable and inescapable aversive stimulus was found to be related to patients' reported depression. Further studies may wish to prospectively consider a larger sample as well as a more comprehensive assessment of premorbid psychological symptoms.

  19. Model for a reproducible curriculum infrastructure to provide international nurse anesthesia continuing education.

    Science.gov (United States)

    Collins, Shawn Bryant

    2011-12-01

    There are no set standards for nurse anesthesia education in developing countries, yet one of the keys to the standards in global professional practice is competency assurance for individuals. Nurse anesthetists in developing countries have difficulty obtaining educational materials. These difficulties include, but are not limited to, financial constraints, lack of anesthesia textbooks, and distance from educational sites. There is increasing evidence that the application of knowledge in developing countries is failing. One reason is that many anesthetists in developing countries are trained for considerably less than acceptable time periods and are often supervised by poorly trained practitioners, who then pass on less-than-desirable practice skills, thus exacerbating difficulties. Sustainability of development can come only through anesthetists who are both well trained and able to pass on their training to others. The international nurse anesthesia continuing education project was developed in response to the difficulty that nurse anesthetists in developing countries face in accessing continuing education. The purpose of this project was to develop a nonprofit, volunteer-based model for providing nurse anesthesia continuing education that can be reproduced and used in any developing country.

  20. Dense plasma focus powered by flux compression generators

    International Nuclear Information System (INIS)

    Fowler, C.M.; Freeman, B.L.; Caird, R.S.; Erickson, D.J.; Garn, W.B.

    1992-01-01

    A short summary is given of earlier Los Alamos work in which a Dense Plasma Focus was powered by Flux Compression Generators. Neutron yields obtained in the shot series scaled well with the fifth power of the current. The shot parameters were modeled surprisingly well through the plasma rundown phase by a simple snowplow model. It is shown, with the use of this model, that DPF currents in excess of 10 MA should be obtained with existing generators and initial energy sources. One new element is needed -- a high energy opening switch such as a fuse. Much more is known about fuse operation since the Los Alamos program was stopped, so development of this component should be relatively straightforward. If the yield-current scaling relation holds to this current level, then D-T neutron yields in excess of 10 16 per burst would result, sufficient for some interesting pulsed radiography applications that involve rapidly moving components. Finally, in a sheer flight of fancy, it is shown that D-T yields approaching 10 20 could be obtained, using FCGs not too much beyond the state of the art, provided the simple modeling and neutron-current scaling relations continue to hold, a rather unlikely supposition

  1. The equation of state of dense Skyrmion matter

    International Nuclear Information System (INIS)

    Walhout, T.S.

    1990-01-01

    In the context of effective topological soliton theories of baryonic interactions, methods for determining the thermodynamic properties of dense matter in the solid and liquid states are presented. In particular, simulation involving a face-centered cubic lattice of skyrmions are used to construct the equation of state for dense neutron matter. The implications for neutron star structure are discussed, and comparisons are made with previous calculations. These techniques are also applied with some success to both symmetric and asymmetric nuclear matter in the Skyrme model. Possibilities for further improvement are outlined. (orig.)

  2. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    International Nuclear Information System (INIS)

    Ali, S.; Ahmed, Z.; Mirza, Arshad M.; Ahmad, I.

    2009-01-01

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  3. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S., E-mail: shahid.ali@ncp.edu.p [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); IPFN, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ahmed, Z. [COMSATS Institute of Information Technology, Department of Physics, Wah Campus (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, I. [COMSATS Institute of Information Technology, Department of Physics, Islamabad Campus (Pakistan)

    2009-08-10

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  4. Multi-scaling of the dense plasma focus

    Science.gov (United States)

    Saw, S. H.; Lee, S.

    2015-03-01

    The dense plasma focus is a copious source of multi-radiations with many potential new applications of special interest such as in advanced SXR lithography, materials synthesizing and testing, medical isotopes and imaging. This paper reviews the series of numerical experiments conducted using the Lee model code to obtain the scaling laws of the multi-radiations.

  5. Filter-Dense Multicolor Microscopy.

    Directory of Open Access Journals (Sweden)

    Siavash Kijani

    Full Text Available Immunofluorescence microscopy is a unique method to reveal the spatial location of proteins in tissues and cells. By combining antibodies that are labeled with different fluorochromes, the location of several proteins can simultaneously be visualized in one sample. However, because of the risk of bleed-through signals between fluorochromes, standard multicolor microscopy is restricted to a maximum of four fluorescence channels, including one for nuclei staining. This is not always enough to address common scientific questions. In particular, the use of a rapidly increasing number of marker proteins to classify functionally distinct cell populations and diseased tissues emphasizes the need for more complex multistainings. Hence, multicolor microscopy should ideally offer more channels to meet the current needs in biomedical science. Here we present an enhanced multi-fluorescence setup, which we call Filter-Dense Multicolor Microscopy (FDMM. FDMM is based on condensed filter sets that are more specific for each fluorochrome and allow a more economic use of the light spectrum. FDMM allows at least six independent fluorescence channels and can be applied to any standard fluorescence microscope without changing any operative procedures for the user. In the present study, we demonstrate an FDMM setup of six channels that includes the most commonly used fluorochromes for histology. We show that the FDMM setup is specific and robust, and we apply the technique on typical biological questions that require more than four fluorescence microscope channels.

  6. Dense sheet Z-pinches

    International Nuclear Information System (INIS)

    Tetsu, Miyamoto

    1999-01-01

    The steady state and quasi-steady processes of infinite- and finite-width sheet z-pinches are studied. The relations corresponding to the Bennett relation and Pease-Braginskii current of cylindrical fiber z-pinches depend on a geometrical factor in the sheet z-pinches. The finite-width sheet z-pinch is approximated by a segment of infinite-width sheet z-pinch, if it is wide enough, and corresponds to a number of (width/thickness) times fiber z-pinch plasmas of the diameter that equals the sheet thickness. If the sheet current equals this number times the fiber current, the plasma created in the sheet z-pinches is as dense as in the fiber z-pinches. The total energy of plasma and magnetic field per unit mass is approximately equal in both pinches. Quasi-static transient processes are different in several aspects from the fiber z-pinch. No radiation collapse occurs in the sheet z-pinch. The stability is improved in the sheet z-pinches. The fusion criterions and the experimental arrangements to produce the sheet z-pinches are also discussed. (author)

  7. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    Science.gov (United States)

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-12-03

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  8. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chunyang Lei

    2015-12-01

    Full Text Available Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT, Machine-to-Machine (M2M communications, Vehicular-to-Vehicular (V2V communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  9. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye.

    Science.gov (United States)

    Marko, Christina K; Menon, Balaraj B; Chen, Gang; Whitsett, Jeffrey A; Clevers, Hans; Gipson, Ilene K

    2013-07-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. The EZ diffusion model provides a powerful test of simple empirical effects

    NARCIS (Netherlands)

    van Ravenzwaaij, Don; Donkin, Chris; Vandekerckhove, Joachim

    Over the last four decades, sequential accumulation models for choice response times have spread through cognitive psychology like wildfire. The most popular style of accumulator model is the diffusion model (Ratcliff Psychological Review, 85, 59–108, 1978), which has been shown to account for data

  11. Towards a conceptual model of online peer feedback: What about the provider?

    NARCIS (Netherlands)

    Van Popta, Esther; Kral, Marijke; Camp, Gino; Martens, Rob; Simons, P.R.

    2018-01-01

    This paper reviews studies of peer feedback from the novel perspective of the providers of that feedback. The possible learning benefits of providing peer feedback in online learning have not been extensively studied. The goal of this study was therefore to explore the process of providing online

  12. Dense suspensions: force response and jamming

    NARCIS (Netherlands)

    von Kann, S.

    2012-01-01

    The response of dense suspensions to an external force was studied using two different experiments. In the first experiment, objects were settled in a deep bath of a dense cornstarch suspension. This is the only suspension to result in two unexpected phenomena: Velocity oscillations in the bulk, and

  13. Providing Agility in C2 Environments Through Networked Information Processing: A Model of Expertise

    Science.gov (United States)

    2014-06-01

    individual being able to correctly identify the solution in various circumstances. A three-parameter logistic ( 3PL ) model is used, where the...difficulty. Based on this 3PL model, we choose to fit the parameters of the following expression for the probability of a correct response given...problem difficulty can predict accuracy of responses to specific questions • Three-parameter logistic ( 3PL ) model b – difficulty a

  14. Economic model of a cloud provider operating in a federated cloud

    OpenAIRE

    Goiri Presa, Íñigo; Guitart Fernández, Jordi; Torres Viñals, Jordi

    2012-01-01

    Resource provisioning in Cloud providers is a challenge because of the high variability of load over time. On the one hand, the providers can serve most of the requests owning only a restricted amount of resources, but this forces to reject customers during peak hours. On the other hand, valley hours incur in under-utilization of the resources, which forces the providers to increase their prices to be profitable. Federation overcomes these limitations and allows pro...

  15. Intrinsically secure fast reactors with dense cores

    International Nuclear Information System (INIS)

    Slessarev, Igor

    2007-01-01

    Secure safety, resistance to weapons material proliferation and problems of long-lived wastes remain the most important 'painful points' of nuclear power. Many innovative reactor concepts have been developed aimed at a radical enhancement of safety. The promising potential of innovative nuclear reactors allows for shifting accents in current reactor safety 'strategy' to reveal this worth. Such strategy is elaborated focusing on the priority for intrinsically secure safety features as well as on sure protection being provided by the first barrier of defence. Concerning the potential of fast reactors (i.e. sodium cooled, lead-cooled, etc.), there are no doubts that they are able to possess many favourable intrinsically secure safety features and to lay the proper foundation for a new reactor generation. However, some of their neutronic characteristics have to be radically improved. Among intrinsically secure safety properties, the following core parameters are significantly important: reactivity margin values, reactivity feed-back and coolant void effects. Ways of designing intrinsically secure safety features in fast reactors (titled hereafter as Intrinsically Secure Fast Reactors - ISFR) can be found in the frame of current reactor technologies by radical enhancement of core neutron economy and by optimization of core compositions. Simultaneously, respecting resistance to proliferation, by using non-enriched fuel feed as well as a core breeding gain close to zero, are considered as the important features (long-lived waste problems will be considered in a separate paper). This implies using the following reactor design options as well as closed fuel cycles with natural U as the reactor feed: ·Ultra-plate 'dense cores' of the ordinary (monolithic) type with negative total coolant void effects. ·Modular type cores. Multiple dense modules can be embedded in the common reflector for achieving the desired NPP total power. The modules can be used also independently (as

  16. A Distance Education Model for Training Substance Abuse Treatment Providers in Cognitive-Behavioral Therapy

    Science.gov (United States)

    Watson, Donnie W.; Rawson, Richard R.; Rataemane, Solomon; Shafer, Michael S.; Obert, Jeanne; Bisesi, Lorrie; Tanamly, Susie

    2003-01-01

    This paper presents a rationale for the use of a distance education approach in the clinical training of community substance abuse treatment providers. Developing and testing new approaches to the clinical training and supervision of providers is important in the substance abuse treatment field where new information is always available. A…

  17. A Dynamical Model of Pitch Memory Provides an Improved Basis for Implied Harmony Estimation

    Science.gov (United States)

    Kim, Ji Chul

    2017-01-01

    Tonal melody can imply vertical harmony through a sequence of tones. Current methods for automatic chord estimation commonly use chroma-based features extracted from audio signals. However, the implied harmony of unaccompanied melodies can be difficult to estimate on the basis of chroma content in the presence of frequent nonchord tones. Here we present a novel approach to automatic chord estimation based on the human perception of pitch sequences. We use cohesion and inhibition between pitches in auditory short-term memory to differentiate chord tones and nonchord tones in tonal melodies. We model short-term pitch memory as a gradient frequency neural network, which is a biologically realistic model of auditory neural processing. The model is a dynamical system consisting of a network of tonotopically tuned nonlinear oscillators driven by audio signals. The oscillators interact with each other through nonlinear resonance and lateral inhibition, and the pattern of oscillatory traces emerging from the interactions is taken as a measure of pitch salience. We test the model with a collection of unaccompanied tonal melodies to evaluate it as a feature extractor for chord estimation. We show that chord tones are selectively enhanced in the response of the model, thereby increasing the accuracy of implied harmony estimation. We also find that, like other existing features for chord estimation, the performance of the model can be improved by using segmented input signals. We discuss possible ways to expand the present model into a full chord estimation system within the dynamical systems framework. PMID:28522983

  18. 75 FR 2562 - Publication of Model Notices for Health Care Continuation Coverage Provided Pursuant to the...

    Science.gov (United States)

    2010-01-15

    ... DEPARTMENT OF LABOR Employee Benefits Security Administration Publication of Model Notices for... AGENCY: Employee Benefits Security Administration, Department of Labor. ACTION: Notice of the..., contact the Department's Employee Benefits Security Administration's Benefits Advisors at 1-866-444-3272...

  19. Ensemble modeling of the Baltic Sea ecosystem to provide scenarios for management.

    Science.gov (United States)

    Meier, H E Markus; Andersson, Helén C; Arheimer, Berit; Donnelly, Chantal; Eilola, Kari; Gustafsson, Bo G; Kotwicki, Lech; Neset, Tina-Simone; Niiranen, Susa; Piwowarczyk, Joanna; Savchuk, Oleg P; Schenk, Frederik; Węsławski, Jan Marcin; Zorita, Eduardo

    2014-02-01

    We present a multi-model ensemble study for the Baltic Sea, and investigate the combined impact of changing climate, external nutrient supply, and fisheries on the marine ecosystem. The applied regional climate system model contains state-of-the-art component models for the atmosphere, sea ice, ocean, land surface, terrestrial and marine biogeochemistry, and marine food-web. Time-dependent scenario simulations for the period 1960-2100 are performed and uncertainties of future projections are estimated. In addition, reconstructions since 1850 are carried out to evaluate the models sensitivity to external stressors on long time scales. Information from scenario simulations are used to support decision-makers and stakeholders and to raise awareness of climate change, environmental problems, and possible abatement strategies among the general public using geovisualization. It is concluded that the study results are relevant for the Baltic Sea Action Plan of the Helsinki Commission.

  20. A description of model 3B of the multipurpose ventricular actuating system. [providing controlled driving pressures

    Science.gov (United States)

    Webb, J. A., Jr.

    1974-01-01

    The multipurpose ventricular actuating system is a pneumatic signal generating device that provides controlled driving pressures for actuating pulsatile blood pumps. Overall system capabilities, the timing circuitry, and calibration instruction are included.

  1. Processes for making dense, spherical active materials for lithium-ion cells

    Science.gov (United States)

    Kang, Sun-Ho [Naperville, IL; Amine, Khalil [Downers Grove, IL

    2011-11-22

    Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

  2. Oxygen distribution in tumors: A qualitative analysis and modeling study providing a novel Monte Carlo approach

    International Nuclear Information System (INIS)

    Lagerlöf, Jakob H.; Kindblom, Jon; Bernhardt, Peter

    2014-01-01

    Purpose: To construct a Monte Carlo (MC)-based simulation model for analyzing the dependence of tumor oxygen distribution on different variables related to tumor vasculature [blood velocity, vessel-to-vessel proximity (vessel proximity), and inflowing oxygen partial pressure (pO 2 )]. Methods: A voxel-based tissue model containing parallel capillaries with square cross-sections (sides of 10 μm) was constructed. Green's function was used for diffusion calculations and Michaelis-Menten's kinetics to manage oxygen consumption. The model was tuned to approximately reproduce the oxygenational status of a renal carcinoma; the depth oxygenation curves (DOC) were fitted with an analytical expression to facilitate rapid MC simulations of tumor oxygen distribution. DOCs were simulated with three variables at three settings each (blood velocity, vessel proximity, and inflowing pO 2 ), which resulted in 27 combinations of conditions. To create a model that simulated variable oxygen distributions, the oxygen tension at a specific point was randomly sampled with trilinear interpolation in the dataset from the first simulation. Six correlations between blood velocity, vessel proximity, and inflowing pO 2 were hypothesized. Variable models with correlated parameters were compared to each other and to a nonvariable, DOC-based model to evaluate the differences in simulated oxygen distributions and tumor radiosensitivities for different tumor sizes. Results: For tumors with radii ranging from 5 to 30 mm, the nonvariable DOC model tended to generate normal or log-normal oxygen distributions, with a cut-off at zero. The pO 2 distributions simulated with the six-variable DOC models were quite different from the distributions generated with the nonvariable DOC model; in the former case the variable models simulated oxygen distributions that were more similar to in vivo results found in the literature. For larger tumors, the oxygen distributions became truncated in the lower

  3. The structure of protostellar dense cores: a millimeter continuum study

    International Nuclear Information System (INIS)

    Motte, Frederique

    1998-01-01

    A comprehensive theoretical scenario explains low-mass star formation and describes the gravitational collapse of an isolated 'ideal' dense core. The major aim of this thesis is to check the standard model predictions on the structure of protostellar dense cores (or envelopes). The earliest stages of star formation remain poorly known because the protostars are still deeply embedded in massive, opaque circumstellar cocoons. On the one hand, sensitive bolometer arrays very recently allow us to measure the millimeter continuum emission arising from dense cores. Such observations are a powerful tool to constrain the density structure of proto-stellar dense cores (on large length scale). In particular, we studied the structure of isolated proto-stellar envelopes in Taurus and protostars in the ρ Ophiuchi cluster. In order to accurately derive their envelope density power law, we simulated the observation of several envelope models. Then we show that most of the Taurus protostars present a density structure consistent with the standard model predictions. In contrast, dense cores in ρ Ophiuchi main cloud are highly fragmented and protostellar envelope have finite size. Moreover fragmentation appears to be essential in determining the final stellar mass of ρ Oph forming stars. In clusters, fragmentation may thus be at the origin of the stellar initial mass function (IMF). On the other hand, our interferometric millimeter continuum observations are tracing (with higher angular resolution) the inner part of protostellar envelopes. Our study show that disks during protostellar stages are not yet massive and thus do not perturb the analysis of envelope density structure. (author) [fr

  4. Detecting Stems in Dense and Homogeneous Forest Using Single-Scan TLS

    Directory of Open Access Journals (Sweden)

    Shaobo Xia

    2015-10-01

    Full Text Available Stem characteristics of plants are of great importance to both ecology study and forest management. Terrestrial laser scanning (TLS may provide an effective way to characterize the fine-scale structures of vegetation. However, clumping plants, dense foliage and thin structure could intensify the shadowing effect and pose a series of problems in identifying stems, distinguishing neighboring stems, and merging disconnected stem parts in point clouds. This paper presents a new method to automatically detect stems in dense and homogeneous forest using single-scan TLS data. Stem points are first identified with a two-scale classification method. Then a clustering approach is used to group the candidate stem points. Finally, a direction-growing algorithm based on a simple stem curve model is applied to merge stem points. Field experiments were carried out in two different bamboo plots with a stem density of about 7500 stems/ha. Overall accuracy of the stem detection is 88% and the quality of detected stems is mainly affected by the shadowing effect. Results indicate that the proposed method is feasible and effective in detection of bamboo stems using TLS data, and can be applied to other species of single-stem plants in dense forests.

  5. Vibron hopping and bond anharmonicity in hot dense hydrogen

    Science.gov (United States)

    Feldman, J. L.; Johnson, J. Karl; Hemley, Russell J.

    2009-02-01

    The Raman-active vibron of dense hydrogen has been shown to exhibit unexpected changes as a function of pressure and temperature to above 100GPa. To understand these results we have performed supercell-based calculations using Van Kranendonk theory taking into account the renormalization of the hopping parameter by the lattice vibrations. We find that the major temperature dependence at this level of theory comes from the differences in populations of rotational states. The theory provides a fair description of the experimental results up to 70GPa. We examine in detail a number of assumptions made in the application of the Van Kranendonk model to hydrogen as a function of pressure and temperature. We also present results of hybrid path integral molecular dynamics calculations in the fluid state at a low pressure (7GPa) near the melting temperature. An amorphous-solid model of the fluid predicts that the Raman vibron frequencies change little upon melting, in agreement with experiment. The Van Kranendonk theory with fixed rotational identities of the molecules tends to predict more peaks in the Raman spectrum than are observed experimentally.

  6. Can Earth System Model Provide Reasonable Natural Runoff Estimates to Support Water Management Studies?

    Science.gov (United States)

    Kao, S. C.; Shi, X.; Kumar, J.; Ricciuto, D. M.; Mao, J.; Thornton, P. E.

    2017-12-01

    With the concern of changing hydrologic regime, there is a crucial need to better understand how water availability may change and influence water management decisions in the projected future climate conditions. Despite that surface hydrology has long been simulated by land model within the Earth System modeling (ESM) framework, given the coarser horizontal resolution and lack of engineering-level calibration, raw runoff from ESM is generally discarded by water resource managers when conducting hydro-climate impact assessments. To identify a likely path to improve the credibility of ESM-simulated natural runoff, we conducted regional model simulation using the land component (ALM) of the Accelerated Climate Modeling for Energy (ACME) version 1 focusing on the conterminous United States (CONUS). Two very different forcing data sets, including (1) the conventional 0.5° CRUNCEP (v5, 1901-2013) and (2) the 1-km Daymet (v3, 1980-2013) aggregated to 0.5°, were used to conduct 20th century transient simulation with satellite phenology. Additional meteorologic and hydrologic observations, including PRISM precipitation and U.S. Geological Survey WaterWatch runoff, were used for model evaluation. For various CONUS hydrologic regions (such as Pacific Northwest), we found that Daymet can significantly improve the reasonableness of simulated ALM runoff even without intensive calibration. The large dry bias of CRUNCEP precipitation (evaluated by PRISM) in multiple CONUS hydrologic regions is believed to be the main reason causing runoff underestimation. The results suggest that when driving with skillful precipitation estimates, ESM has the ability to produce reasonable natural runoff estimates to support further water management studies. Nevertheless, model calibration will be required for regions (such as Upper Colorado) where ill performance is showed for multiple different forcings.

  7. The Roy Adaptation Model: A Theoretical Framework for Nurses Providing Care to Individuals With Anorexia Nervosa.

    Science.gov (United States)

    Jennings, Karen M

    Using a nursing theoretical framework to understand, elucidate, and propose nursing research is fundamental to knowledge development. This article presents the Roy Adaptation Model as a theoretical framework to better understand individuals with anorexia nervosa during acute treatment, and the role of nursing assessments and interventions in the promotion of weight restoration. Nursing assessments and interventions situated within the Roy Adaptation Model take into consideration how weight restoration does not occur in isolation but rather reflects an adaptive process within external and internal environments, and has the potential for more holistic care.

  8. Elemental nitrogen partitioning in dense interstellar clouds.

    Science.gov (United States)

    Daranlot, Julien; Hincelin, Ugo; Bergeat, Astrid; Costes, Michel; Loison, Jean-Christophe; Wakelam, Valentine; Hickson, Kevin M

    2012-06-26

    Many chemical models of dense interstellar clouds predict that the majority of gas-phase elemental nitrogen should be present as N(2), with an abundance approximately five orders of magnitude less than that of hydrogen. As a homonuclear diatomic molecule, N(2) is difficult to detect spectroscopically through infrared or millimeter-wavelength transitions. Therefore, its abundance is often inferred indirectly through its reaction product N(2)H(+). Two main formation mechanisms, each involving two radical-radical reactions, are the source of N(2) in such environments. Here we report measurements of the low temperature rate constants for one of these processes, the N + CN reaction, down to 56 K. The measured rate constants for this reaction, and those recently determined for two other reactions implicated in N(2) formation, are tested using a gas-grain model employing a critically evaluated chemical network. We show that the amount of interstellar nitrogen present as N(2) depends on the competition between its gas-phase formation and the depletion of atomic nitrogen onto grains. As the reactions controlling N(2) formation are inefficient, we argue that N(2) does not represent the main reservoir species for interstellar nitrogen. Instead, elevated abundances of more labile forms of nitrogen such as NH(3) should be present on interstellar ices, promoting the eventual formation of nitrogen-bearing organic molecules.

  9. Kinetic Simulations of Dense Plasma Focus Breakdown

    Science.gov (United States)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  10. Inference by replication in densely connected systems.

    Science.gov (United States)

    Neirotti, Juan P; Saad, David

    2007-10-01

    An efficient Bayesian inference method for problems that can be mapped onto dense graphs is presented. The approach is based on message passing where messages are averaged over a large number of replicated variable systems exposed to the same evidential nodes. An assumption about the symmetry of the solutions is required for carrying out the averages; here we extend the previous derivation based on a replica-symmetric- (RS)-like structure to include a more complex one-step replica-symmetry-breaking-like (1RSB-like) ansatz. To demonstrate the potential of the approach it is employed for studying critical properties of the Ising linear perceptron and for multiuser detection in code division multiple access (CDMA) under different noise models. Results obtained under the RS assumption in the noncritical regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical regime one observes a first-order transition line that ends in a continuous phase transition point. Finite size effects are also observed. While the 1RSB ansatz is not required for the original problems, it was applied to the CDMA signal detection problem with a more complex noise model that exhibits RSB behavior, resulting in an improvement in performance.

  11. The anti-human trafficking collaboration model and serving victims: Providers' perspectives on the impact and experience.

    Science.gov (United States)

    Kim, Hea-Won; Park, Taekyung; Quiring, Stephanie; Barrett, Diana

    2018-01-01

    A coalition model is often used to serve victims of human trafficking but little is known about whether the model is adequately meeting the needs of the victims. The purpose of this study was to examine anti-human trafficking collaboration model in terms of its impact and the collaborative experience, including challenges and lessons learned from the service providers' perspective. Mixed methods study was conducted to evaluate the impact of a citywide anti-trafficking coalition model from the providers' perspectives. Web-based survey was administered with service providers (n = 32) and focus groups were conducted with Core Group members (n = 10). Providers reported the coalition model has made important impacts in the community by increasing coordination among the key agencies, law enforcement, and service providers and improving quality of service provision. Providers identified the improved and expanded partnerships among coalition members as the key contributing factor to the success of the coalition model. Several key strategies were suggested to improve the coalition model: improved referral tracking, key partner and protocol development, and information sharing.

  12. An agent-based simulation model of patient choice of health care providers in accountable care organizations.

    Science.gov (United States)

    Alibrahim, Abdullah; Wu, Shinyi

    2018-03-01

    Accountable care organizations (ACO) in the United States show promise in controlling health care costs while preserving patients' choice of providers. Understanding the effects of patient choice is critical in novel payment and delivery models like ACO that depend on continuity of care and accountability. The financial, utilization, and behavioral implications associated with a patient's decision to forego local health care providers for more distant ones to access higher quality care remain unknown. To study this question, we used an agent-based simulation model of a health care market composed of providers able to form ACO serving patients and embedded it in a conditional logit decision model to examine patients capable of choosing their care providers. This simulation focuses on Medicare beneficiaries and their congestive heart failure (CHF) outcomes. We place the patient agents in an ACO delivery system model in which provider agents decide if they remain in an ACO and perform a quality improving CHF disease management intervention. Illustrative results show that allowing patients to choose their providers reduces the yearly payment per CHF patient by $320, reduces mortality rates by 0.12 percentage points and hospitalization rates by 0.44 percentage points, and marginally increases provider participation in ACO. This study demonstrates a model capable of quantifying the effects of patient choice in a theoretical ACO system and provides a potential tool for policymakers to understand implications of patient choice and assess potential policy controls.

  13. Retrieving Backbone String Neighbors Provides Insights Into Structural Modeling of Membrane Proteins*

    Science.gov (United States)

    Sun, Jiang-Ming; Li, Tong-Hua; Cong, Pei-Sheng; Tang, Sheng-Nan; Xiong, Wen-Wei

    2012-01-01

    Identification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space. The backbone string of a query can be accurately predicted by two innovative technologies: a knowledge-driven sequence alignment and encoding of a backbone string element profile. Then, the predicted backbone string is employed to align against a backbone string database and retrieve a set of backbone string neighbors. The backbone string neighbors were shown to be close to native structures of query proteins. BS-align was successfully employed to predict models of 10 membrane proteins with lengths ranging between 229 and 595 residues, and whose high-resolution structural determinations were difficult to elucidate both by experiment and prediction. The obtained TM-scores and root mean square deviations of the models confirmed that the models based on the backbone string neighbors retrieved by the BS-align were very close to the native membrane structures although the query and the neighbor shared a very low sequence identity. The backbone string system represents a new road for the prediction of protein structure from sequence, and suggests that the similarity of the backbone string would be more informative than describing a protein as belonging to a fold. PMID:22415040

  14. Retrieving backbone string neighbors provides insights into structural modeling of membrane proteins.

    Science.gov (United States)

    Sun, Jiang-Ming; Li, Tong-Hua; Cong, Pei-Sheng; Tang, Sheng-Nan; Xiong, Wen-Wei

    2012-07-01

    Identification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space. The backbone string of a query can be accurately predicted by two innovative technologies: a knowledge-driven sequence alignment and encoding of a backbone string element profile. Then, the predicted backbone string is employed to align against a backbone string database and retrieve a set of backbone string neighbors. The backbone string neighbors were shown to be close to native structures of query proteins. BS-align was successfully employed to predict models of 10 membrane proteins with lengths ranging between 229 and 595 residues, and whose high-resolution structural determinations were difficult to elucidate both by experiment and prediction. The obtained TM-scores and root mean square deviations of the models confirmed that the models based on the backbone string neighbors retrieved by the BS-align were very close to the native membrane structures although the query and the neighbor shared a very low sequence identity. The backbone string system represents a new road for the prediction of protein structure from sequence, and suggests that the similarity of the backbone string would be more informative than describing a protein as belonging to a fold.

  15. A Context-Aware Model to Provide Positioning in Disaster Relief Scenarios

    Directory of Open Access Journals (Sweden)

    Daniel Moreno

    2015-09-01

    Full Text Available The effectiveness of the work performed during disaster relief efforts is highly dependent on the coordination of activities conducted by the first responders deployed in the affected area. Such coordination, in turn, depends on an appropriate management of geo-referenced information. Therefore, enabling first responders to count on positioning capabilities during these activities is vital to increase the effectiveness of the response process. The positioning methods used in this scenario must assume a lack of infrastructure-based communication and electrical energy, which usually characterizes affected areas. Although positioning systems such as the Global Positioning System (GPS have been shown to be useful, we cannot assume that all devices deployed in the area (or most of them will have positioning capabilities by themselves. Typically, many first responders carry devices that are not capable of performing positioning on their own, but that require such a service. In order to help increase the positioning capability of first responders in disaster-affected areas, this paper presents a context-aware positioning model that allows mobile devices to estimate their position based on information gathered from their surroundings. The performance of the proposed model was evaluated using simulations, and the obtained results show that mobile devices without positioning capabilities were able to use the model to estimate their position. Moreover, the accuracy of the positioning model has been shown to be suitable for conducting most first response activities.

  16. Neutron Scattering Provides a New Model for Optimal Morphologies in Organic Photovoltaics: Rivers and Streams

    Science.gov (United States)

    Dadmun, Mark; Henry, Nathan; Yin, Wen; Xiao, Kai; Ankner, John

    2011-03-01

    The current model for the ideal morphology of a conjugated polymer bulk heterojunction organic photovoltaic (OPV) is a phase-separated structure that consists of two pure phases, one an electron donor, the other an acceptor, that form an interpenetrating, bicontinuous, network on the length scale of 10-20 nm. In this talk, neutron scattering experiments that demonstrate that this model is incorrect for the archetypal conjugated polymer bulk heterojunction, poly[3-hexylthiophene] (P3HT) and the fullerene 1-(3-methyloxycarbonyl)propy(1-phenyl [6,6]) C61 (PCBM) will be presented. These studies show that the miscibility of PCBM in P3HT approaches 20 wt%, a result that is counter to the standard model of efficient organic photovoltaics. The implications of this finding on the ideal morphology of conjugated polymer bulk heterojunctions will be discussed, where these results are interpreted to present a model that agrees with this data, and conforms to structural and functional information in the literature. Furthermore, the thermodynamics of conjugated polymer:fullerene mixtures dominate the formation of this hierarchical morphology and must be more thoroughly understood to rationally design and fabricate optimum morphologies for OPV activity.

  17. The Strategic Thinking and Learning Community: An Innovative Model for Providing Academic Assistance

    Science.gov (United States)

    Commander, Nannette Evans; Valeri-Gold, Maria; Darnell, Kim

    2004-01-01

    Today, academic assistance efforts are frequently geared to all students, not just the underprepared, with study skills offered in various formats. In this article, the authors describe a learning community model with the theme, "Strategic Thinking and Learning" (STL). Results of data analysis indicate that participants of the STL…

  18. Models Provide Specificity: Testing a Proposed Mechanism of Visual Working Memory Capacity Development

    Science.gov (United States)

    Simmering, Vanessa R.; Patterson, Rebecca

    2012-01-01

    Numerous studies have established that visual working memory has a limited capacity that increases during childhood. However, debate continues over the source of capacity limits and its developmental increase. Simmering (2008) adapted a computational model of spatial cognitive development, the Dynamic Field Theory, to explain not only the source…

  19. The "P2P" Educational Model Providing Innovative Learning by Linking Technology, Business and Research

    Science.gov (United States)

    Dickinson, Paul Gordon

    2017-01-01

    This paper evaluates the effect and potential of a new educational learning model called Peer to Peer (P2P). The study was focused on Laurea, Hyvinkaa's Finland campus and its response to bridging the gap between traditional educational methods and working reality, where modern technology plays an important role. The study describes and evaluates…

  20. Using Model-Based System Engineering to Provide Artifacts for NASA Project Life-Cycle and Technical Reviews Presentation

    Science.gov (United States)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    This is the presentation for the AIAA Space conference in September 2017. It highlights key information from Using Model-Based Systems Engineering to Provide Artifacts for NASA Project Life-cycle and Technical Reviews paper.

  1. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    Science.gov (United States)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  2. A Structural Model for a Self-Assembled Nanotube Provides Insight into Its Exciton Dynamics

    Science.gov (United States)

    2016-01-01

    The design and synthesis of functional self-assembled nanostructures is frequently an empirical process fraught with critical knowledge gaps about atomic-level structure in these noncovalent systems. Here, we report a structural model for a semiconductor nanotube formed via the self-assembly of naphthalenediimide-lysine (NDI-Lys) building blocks determined using experimental 13C–13C and 13C–15N distance restraints from solid-state nuclear magnetic resonance supplemented by electron microscopy and X-ray powder diffraction data. The structural model reveals a two-dimensional-crystal-like architecture of stacked monolayer rings each containing ∼50 NDI-Lys molecules, with significant π-stacking interactions occurring both within the confines of the ring and along the long axis of the tube. Excited-state delocalization and energy transfer are simulated for the nanotube based on time-dependent density functional theory and an incoherent hopping model. Remarkably, these calculations reveal efficient energy migration from the excitonic bright state, which is in agreement with the rapid energy transfer within NDI-Lys nanotubes observed previously using fluorescence spectroscopy. PMID:26120375

  3. Model of a multiverse providing the dark energy of our universe

    Science.gov (United States)

    Rebhan, E.

    2017-09-01

    It is shown that the dark energy presently observed in our universe can be regarded as the energy of a scalar field driving an inflation-like expansion of a multiverse with ours being a subuniverse among other parallel universes. A simple model of this multiverse is elaborated: Assuming closed space geometry, the origin of the multiverse can be explained by quantum tunneling from nothing; subuniverses are supposed to emerge from local fluctuations of separate inflation fields. The standard concept of tunneling from nothing is extended to the effect that in addition to an inflationary scalar field, matter is also generated, and that the tunneling leads to an (unstable) equilibrium state. The cosmological principle is assumed to pertain from the origin of the multiverse until the first subuniverses emerge. With increasing age of the multiverse, its spatial curvature decays exponentially so fast that, due to sharing the same space, the flatness problem of our universe resolves by itself. The dark energy density imprinted by the multiverse on our universe is time-dependent, but such that the ratio w = ϱ/(c2p) of its mass density and pressure (times c2) is time-independent and assumes a value - 1 + 𝜖 with arbitrary 𝜖 > 0. 𝜖 can be chosen so small, that the dark energy model of this paper can be fitted to the current observational data as well as the cosmological constant model.

  4. Concept for Generation of Warm Dense Matter of Insulator due to Flyer Impact Accelerated by Electron Beam Irradiation using Intense Pulsed Power Generator

    Science.gov (United States)

    TAMURA, Fumihiro; HAYASHI, Ryota; KUDO, Takahiro; WATABE, Arata; KASHINE, Kenji; TOKUCHI, Akira; KIKUCHI, Takashi; TAKAHASHI, Kazumasa; SASAKI, Toru; ASO, Tsukasa; HARADA, Nob.; JIANG, Weihua

    2016-03-01

    We have proposed a concept for generation method of warm dense matter (WDM) by using flyer impact accelerated by intense electron beams. To generate the warm dense matter by using flyer impact, the output current of electron beams generated by the intense pulsed-power generator as ETIGO-II is evaluated. The results denote that the beam current and the pulse duration are 11 kA and 50 ns, respectively. The achievable parameters of WDM by using flyer impact are estimated by the simplified model. It indicated that the sample temperature achieves the provided electron beams with lower conversion efficiency.

  5. Concept for Generation of Warm Dense Matter of Insulator due to Flyer Impact Accelerated by Electron Beam Irradiation using Intense Pulsed Power Generator

    International Nuclear Information System (INIS)

    TAMURA, Fumihiro; HAYASHI, Ryota; KUDO, Takahiro; WATABE, Arata; TOKUCHI, Akira; KIKUCHI, Takashi; TAKAHASHI, Kazumasa; SASAKI, Toru; ASO, Tsukasa; HARADA, Nob.; JIANG, Weihua; KASHINE, Kenji

    2016-01-01

    We have proposed a concept for generation method of warm dense matter (WDM) by using flyer impact accelerated by intense electron beams. To generate the warm dense matter by using flyer impact, the output current of electron beams generated by the intense pulsed-power generator as ETIGO-II is evaluated. The results denote that the beam current and the pulse duration are 11 kA and 50 ns, respectively. The achievable parameters of WDM by using flyer impact are estimated by the simplified model. It indicated that the sample temperature achieves the provided electron beams with lower conversion efficiency. (paper)

  6. Prevalence of mammographically dense breasts in the United States.

    Science.gov (United States)

    Sprague, Brian L; Gangnon, Ronald E; Burt, Veronica; Trentham-Dietz, Amy; Hampton, John M; Wellman, Robert D; Kerlikowske, Karla; Miglioretti, Diana L

    2014-10-01

    National legislation is under consideration that would require women with mammographically dense breasts to be informed of their breast density and encouraged to discuss supplemental breast cancer screening with their health care providers. The number of US women potentially affected by this legislation is unknown. We determined the mammographic breast density distribution by age and body mass index (BMI) using data from 1518 599 mammograms conducted from 2007 through 2010 at mammography facilities in the Breast Cancer Surveillance Consortium (BCSC). We applied these breast density distributions to age- and BMI-specific counts of the US female population derived from the 2010 US Census and the National Health and Nutrition Examination Survey (NHANES) to estimate the number of US women with dense breasts. Overall, 43.3% (95% confidence interval [CI] = 43.1% to 43.4%) of women 40 to 74 years of age had heterogeneously or extremely dense breasts, and this proportion was inversely associated with age and BMI. Based on the age and BMI distribution of US women, we estimated that 27.6 million women (95% CI = 27.5 to 27.7 million) aged 40 to 74 years in the United States have heterogeneously or extremely dense breasts. Women aged 40 to 49 years (N = 12.3 million) accounted for 44.3% of this group. The prevalence of dense breasts among US women of common breast cancer screening ages exceeds 25 million. Policymakers and healthcare providers should consider this large prevalence when debating breast density notification legislation and designing strategies to ensure that women who are notified have opportunities to evaluate breast cancer risk and discuss and pursue supplemental screening options if deemed appropriate. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Using an established telehealth model to train urban primary care providers on hypertension management.

    Science.gov (United States)

    Masi, Christopher; Hamlish, Tamara; Davis, Andrew; Bordenave, Kristine; Brown, Stephen; Perea, Brenda; Aduana, Glen; Wolfe, Marcus; Bakris, George; Johnson, Daniel

    2012-01-01

    The objective of this study was to determine whether a videoconference-based telehealth network can increase hypertension management knowledge and self-assessed competency among primary care providers (PCPs) working in urban Federally Qualified Health Centers (FQHCs). We created a telehealth network among 6 urban FQHCs and our institution to support a 12-session educational program designed to teach state-of-the-art hypertension management. Each 1-hour session included a brief lecture by a university-based hypertension specialist, case presentations by PCPs, and interactive discussions among the specialist and PCPs. Twelve PCPs (9 intervention and 3 controls) were surveyed at baseline and immediately following the curriculum. The mean number of correct answers on the 26-item hypertension knowledge questionnaire increased in the intervention group (13.11 [standard deviation (SD)]=3.06) to 17.44 [SD=1.59], Phypertension management self-assessed competency scale increased in the intervention group (4.68 [SD=0.94] to 5.41 [SD=0.89], Phypertension care provided by urban FQHC providers. © 2011 Wiley Periodicals, Inc.

  8. Do NHS walk-in centres in England provide a model of integrated care?

    Directory of Open Access Journals (Sweden)

    C. Salisbury

    2003-08-01

    Full Text Available Purpose: To undertake a comprehensive evaluation of NHS walk-in centres against criteria of improved access, quality, user satisfaction and efficiency. Context: Forty NHS walk-in centres have been opened in England, as part of the UK governments agenda to modernise the NHS. They are intended to improve access to primary care, provide high quality treatment at convenient times, and reduce inappropriate demand on other NHS providers. Care is provided by nurses rather than doctors, using computerised algorithms, and nurses use protocols to supply treatments previously only available from doctors. Data sources: Several linked studies were conducted using different sources of data and methodologies. These included routinely collected data, site visits, patient interviews, a survey of users of walk-in centres, a study using simulated patients to assess quality of care, analysis of consultation rates in NHS services near to walk-in centres, and audit of compliance with protocols. Conclusion & discussion: The findings illustrate many of the issues described in a recent WHO reflective paper on Integrated Care, including tensions between professional judgement and use of protocols, problems with incompatible IT systems, balancing users' demands and needs, the importance of understanding health professionals' roles and issues of technical versus allocative efficiency.

  9. Hugoniot measurements of double-shocked precompressed dense xenon plasmas.

    Science.gov (United States)

    Zheng, J; Chen, Q F; Gu, Y J; Chen, Z Y

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ∼6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  10. Hadronization of dense partonic matter

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2006-12-15

    The parton recombination model has turned out to be a valuable tool to describe hadronization in high-energy heavy-ion collisions. I review the model and revisit recent progress in our understanding of hadron correlations. I also discuss higher Fock states in the hadrons, possible violations of the elliptic flow scaling and recombination effects in more dilute systems.

  11. RESEARCH OF PROBLEMS OF DESIGN OF COMPLEX TECHNICAL PROVIDING AND THE GENERALIZED MODEL OF THEIR DECISION

    Directory of Open Access Journals (Sweden)

    A. V. Skrypnikov

    2015-01-01

    Full Text Available Summary. In this work the general ideas of a method of V. I. Skurikhin taking into account the specified features develop and questions of the analysis and synthesis of a complex of technical means, with finishing them to the level suitable for use in engineering practice of design of information management systems are in more detail considered. In work the general system approach to the solution of questions of a choice of technical means of the information management system is created, the general technique of the sys tem analysis and synthesis of a complex of the technical means and its subsystems providing achievement of extreme value of criterion of efficiency of functioning of a technical complex of the information management system is developed. The main attention is paid to the applied party of system researches of complex technical providing, in particular, to definition of criteria of quality of functioning of a technical complex, development of methods of the analysis of information base of the information management system and definition of requirements to technical means, and also methods of structural synthesis of the main subsystems of complex technical providing. Thus, the purpose is research on the basis of system approach of complex technical providing the information management system and development of a number of methods of the analysis and the synthesis of complex technical providing suitable for use in engineering practice of design of systems. The well-known paradox of development of management information consists of that parameters of the system, and consequently, and requirements to the complex hardware, can not be strictly reasonable to development of algorithms and programs, and vice versa. The possible method of overcoming of these difficulties is prognostication of structure and parameters of complex hardware for certain management informations on the early stages of development, with subsequent clarification and

  12. Rheological Behavior of Dense Assemblies of Granular Materials

    International Nuclear Information System (INIS)

    Sundaresan, Sankaran; Tardos, Gabriel I.; Subramaniam, Shankar

    2011-01-01

    Assemblies of granular materials behave differently when they are owing rapidly, from when they are slowly deforming. The behavior of rapidly owing granular materials, where the particle-particle interactions occur largely through binary collisions, is commonly related to the properties of the constituent particles through the kinetic theory of granular materials. The same cannot be said for slowly moving or static assemblies of granular materials, where enduring contacts between particles are prevalent. For instance, a continuum description of the yield characteristics of dense assemblies of particles in the quasistatic ow regime cannot be written explicitly on the basis of particle properties, even for cohesionless particles. Continuum models for this regime have been proposed and applied, but these models typically assume that the assembly is at incipient yield and they are expressed in terms of the yield function, which we do not yet know how to express in terms of particle-level properties. The description of the continuum rheology in the intermediate regime is even less understood. Yet, many practically important flows in nature and in a wide range of technological applications occur in the dense flow regime and at the transition between dilute and dense regimes; the lack of validated continuum rheological models for particle assemblies in these regimes limits predictive modeling of such flows. This research project is aimed at developing such rheological models.

  13. Astrophysics implication of dense matter phase diagram

    International Nuclear Information System (INIS)

    Sedrakian, A.

    2010-01-01

    I will discuss the ways that astrophysics can help us to understand the phase diagram of dense matter. The examples will include gravitational wave from compact stars, cooling of compact stars, and effects on vorticity on compact star dynamics. (author)

  14. Sunitinib malate provides activity against murine bladder tumor growth and invasion in a preclinical orthotopic model.

    Science.gov (United States)

    Chan, Eddie Shu-yin; Patel, Amit R; Hansel, Donna E; Larchian, William A; Heston, Warren D

    2012-09-01

    To evaluate the effects of sunitinib on localized bladder cancer in a mouse orthotopic bladder tumor model. We used an established orthotopic mouse bladder cancer model in syngeneic C3H/He mice. Treatment doses of 40 mg/kg of sunitinib or placebo sterile saline were administrated daily by oral gavage. Tumor volume, intratumoral perfusion, and in vivo vascular endothelial growth factor receptor-2 expression were measured using a targeted contrast-enhanced micro-ultrasound imaging system. The findings were correlated with the total bladder weight, tumor stage, and survival. The effects of sunitinib malate on angiogenesis and cellular proliferation were measured by immunostaining of CD31 and Ki-67. Significant inhibition of tumor growth was seen after sunitinib treatment compared with the control. The incidence of extravesical extension of the bladder tumor and hydroureter in the sunitinib-treated group (30% and 20%, respectively) was lower than the incidence in the control group (66.7% and 55.6%, respectively). Sunitinib therapy prolonged the survival in mice, with statistical significance (log-rank test, P = .03). On targeted contrast-enhanced micro-ultrasound imaging, in vivo vascular endothelial growth factor receptor-2 expression was reduced in the sunitinib group and correlated with a decrease in microvessel density. The results of our study have demonstrated the antitumor effects of sunitinib in the mouse localized bladder cancer model. Sunitinib inhibited the growth of bladder tumors and prolonged survival. Given that almost 30% of cases in our treatment arm developed extravesical disease, sunitinib might be suited as a part of a multimodal treatment regimen for bladder cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. A spirulina-enhanced diet provides neuroprotection in an α-synuclein model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Mibel M Pabon

    Full Text Available Inflammation in the brain plays a major role in neurodegenerative diseases. In particular, microglial cell activation is believed to be associated with the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD. An increase in microglia activation has been shown in the substantia nigra pars compacta (SNpc of PD models when there has been a decrease in tyrosine hydroxylase (TH positive cells. This may be a sign of neurotoxicity due to prolonged activation of microglia in both early and late stages of disease progression. Natural products, such as spirulina, derived from blue green algae, are believed to help reverse this effect due to its anti-inflammatory/anti-oxidant properties. An adeno-associated virus vector (AAV9 for α-synuclein was injected in the substantia nigra of rats to model Parkinson's disease and to study the effects of spirulina on the inflammatory response. One month prior to surgeries, rats were fed either a diet enhanced with spirulina or a control diet. Immunohistochemistry was analyzed with unbiased stereological methods to quantify lesion size and microglial activation. As hypothesized, spirulina was neuroprotective in this α-synuclein model of PD as more TH+ and NeuN+ cells were observed; spirulina concomitantly decreased the numbers of activated microglial cells as determined by MHCII expression. This decrease in microglia activation may have been due, in part, to the effect of spirulina to increase expression of the fractalkine receptor (CX3CR1 on microglia. With this study we hypothesize that α-synuclein neurotoxicity is mediated, at least in part, via an interaction with microglia. We observed a decrease in activated microglia in the rats that received a spirulina- enhanced diet concomitant to neuroprotection. The increase in CX3CR1 in the groups that received spirulina, suggests a potential mechanism of action.

  16. An artificial pancreas provided a novel model of blood glucose level variability in beagles.

    Science.gov (United States)

    Munekage, Masaya; Yatabe, Tomoaki; Kitagawa, Hiroyuki; Takezaki, Yuka; Tamura, Takahiko; Namikawa, Tsutomu; Hanazaki, Kazuhiro

    2015-12-01

    Although the effects on prognosis of blood glucose level variability have gained increasing attention, it is unclear whether blood glucose level variability itself or the manifestation of pathological conditions that worsen prognosis. Then, previous reports have not been published on variability models of perioperative blood glucose levels. The aim of this study is to establish a novel variability model of blood glucose concentration using an artificial pancreas. We maintained six healthy, male beagles. After anesthesia induction, a 20-G venous catheter was inserted in the right femoral vein and an artificial pancreas (STG-22, Nikkiso Co. Ltd., Tokyo, Japan) was connected for continuous blood glucose monitoring and glucose management. After achieving muscle relaxation, total pancreatectomy was performed. After 1 h of stabilization, automatic blood glucose control was initiated using the artificial pancreas. Blood glucose level varied for 8 h, alternating between the target blood glucose values of 170 and 70 mg/dL. Eight hours later, the experiment was concluded. Total pancreatectomy was performed for 62 ± 13 min. Blood glucose swings were achieved 9.8 ± 2.3 times. The average blood glucose level was 128.1 ± 5.1 mg/dL with an SD of 44.6 ± 3.9 mg/dL. The potassium levels after stabilization and at the end of the experiment were 3.5 ± 0.3 and 3.1 ± 0.5 mmol/L, respectively. In conclusion, the results of the present study demonstrated that an artificial pancreas contributed to the establishment of a novel variability model of blood glucose levels in beagles.

  17. Rat tibial osteotomy model providing a range of normal to impaired healing.

    Science.gov (United States)

    Miles, Joan D; Weinhold, Paul; Brimmo, Olubusola; Dahners, Laurence

    2011-01-01

    The purpose of this study was to develop an inexpensive and easily implemented rat tibial osteotomy model capable of producing a range of healing outcomes. A saw blade was used to create a transverse osteotomy of the tibia in 89 Sprague-Dawley rats. A 0.89 mm diameter stainless steel wire was then inserted as an intramedullary nail to stabilize the fracture. To impair healing, 1, 2, or 3 mm cylindrical polyetheretherketone (PEEK) spacer beads were threaded onto the wires, between the bone ends. Fracture healing was evaluated radiographically, biomechanically, and histologically at 5 weeks. Means were compared for statistical differences by one-way ANOVA and Holm-Sidak multiple comparison testing. The mean number of "cortices bridged" for the no spacer group was 3.4 (SD ± 0.8), which was significantly greater than in the 1 mm (2.3 ± 1.4), 2 mm (0.8 ± 0.7), and 3 mm (0.3 ± 0.4) groups (p < 0.003). Biomechanical results correlated with radiographic findings, with an ultimate torque of 172 ± 53, 137 ± 41, 90 ± 38, and 24 ± 23 N/mm with a 0, 1, 2, or 3 mm defect, respectively. In conclusion, we have demonstrated that this inexpensive, technically straightforward model can be used to create a range of outcomes from normal healing to impaired healing, to nonunions. This model may be useful for testing new therapeutic strategies to promote fracture healing, materials thought to be able to heal critical-sized defects, or evaluating agents suspected of impairing healing. Copyright © 2010 Orthopaedic Research Society.

  18. A Spirulina-Enhanced Diet Provides Neuroprotection in an α-Synuclein Model of Parkinson's Disease

    Science.gov (United States)

    Pabon, Mibel M.; Jernberg, Jennifer N.; Morganti, Josh; Contreras, Jessika; Hudson, Charles E.; Klein, Ronald L.; Bickford, Paula C.

    2012-01-01

    Inflammation in the brain plays a major role in neurodegenerative diseases. In particular, microglial cell activation is believed to be associated with the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD). An increase in microglia activation has been shown in the substantia nigra pars compacta (SNpc) of PD models when there has been a decrease in tyrosine hydroxylase (TH) positive cells. This may be a sign of neurotoxicity due to prolonged activation of microglia in both early and late stages of disease progression. Natural products, such as spirulina, derived from blue green algae, are believed to help reverse this effect due to its anti-inflammatory/anti-oxidant properties. An adeno-associated virus vector (AAV9) for α-synuclein was injected in the substantia nigra of rats to model Parkinson's disease and to study the effects of spirulina on the inflammatory response. One month prior to surgeries, rats were fed either a diet enhanced with spirulina or a control diet. Immunohistochemistry was analyzed with unbiased stereological methods to quantify lesion size and microglial activation. As hypothesized, spirulina was neuroprotective in this α-synuclein model of PD as more TH+ and NeuN+ cells were observed; spirulina concomitantly decreased the numbers of activated microglial cells as determined by MHCII expression. This decrease in microglia activation may have been due, in part, to the effect of spirulina to increase expression of the fractalkine receptor (CX3CR1) on microglia. With this study we hypothesize that α-synuclein neurotoxicity is mediated, at least in part, via an interaction with microglia. We observed a decrease in activated microglia in the rats that received a spirulina- enhanced diet concomitant to neuroprotection. The increase in CX3CR1 in the groups that received spirulina, suggests a potential mechanism of action. PMID:23028885

  19. User modeling and adaptation for daily routines providing assistance to people with special needs

    CERN Document Server

    Martín, Estefanía; Carro, Rosa M

    2013-01-01

    User Modeling and Adaptation for Daily Routines is motivated by the need to bring attention to how people with special needs can benefit from adaptive methods and techniques in their everyday lives. Assistive technologies, adaptive systems and context-aware applications are three well-established research fields. There is, in fact, a vast amount of literature that covers HCI-related issues in each area separately. However, the contributions in the intersection of these areas have been less visible, despite the fact that such synergies may have a great impact on improving daily living.Presentin

  20. Metabolomic perfusate analysis during kidney machine perfusion: the pig provides an appropriate model for human studies.

    Directory of Open Access Journals (Sweden)

    Jay Nath

    Full Text Available Hypothermic machine perfusion offers great promise in kidney transplantation and experimental studies are needed to establish the optimal conditions for this to occur. Pig kidneys are considered to be a good model for this purpose and share many properties with human organs. However it is not established whether the metabolism of pig kidneys in such hypothermic hypoxic conditions is comparable to human organs.Standard criteria human (n = 12 and porcine (n = 10 kidneys underwent HMP using the LifePort Kidney Transporter 1.0 (Organ Recovery Systems using KPS-1 solution. Perfusate was sampled at 45 minutes and 4 hours of perfusion and metabolomic analysis performed using 1-D 1H-NMR spectroscopy.There was no inter-species difference in the number of metabolites identified. Of the 30 metabolites analysed, 16 (53.3% were present in comparable concentrations in the pig and human kidney perfusates. The rate of change of concentration for 3-Hydroxybutyrate was greater for human kidneys (p<0.001. For the other 29 metabolites (96.7%, there was no difference in the rate of change of concentration between pig and human samples.Whilst there are some differences between pig and human kidneys during HMP they appear to be metabolically similar and the pig seems to be a valid model for human studies.

  1. Penerapan Model Multidimensional Scaling dalam Pemetaan Brand Positioning Internet Service Provider

    Directory of Open Access Journals (Sweden)

    Robertus Tang Herman

    2010-03-01

    Full Text Available In this high-tech era, there have been tremendous advances in tech-based products and services. Internet is one of them that have widened the world’s eyes to a new borderless marketplace. High competition among internet service providers has pushed companies to create competitive advantage and brilliant marketing strategies. They undertake positioning mapping to describe product or service’s positioning amongst many competitors. The right positioning strategy becomes a powerful weapon to win in the battle. This research is designed to create positioning mapping based on perceptual mapping. The researcher uses Multidimensional Scaling and image mapping to achieve this research goal. Sampling is using non-probability sampling in Jakarta. Based on non-attribute approach, the research findings show that there is similarity between two different brands. Thus, both brands are competing against one another. On the other hand, CBN and Netzap provider reflect some differences to others. And some brands require some improvements in terms of network reliability.

  2. Multiple imputation as one tool to provide longitudinal databases for modelling human height and weight development.

    Science.gov (United States)

    Aßmann, C

    2016-06-01

    Besides large efforts regarding field work, provision of valid databases requires statistical and informational infrastructure to enable long-term access to longitudinal data sets on height, weight and related issues. To foster use of longitudinal data sets within the scientific community, provision of valid databases has to address data-protection regulations. It is, therefore, of major importance to hinder identifiability of individuals from publicly available databases. To reach this goal, one possible strategy is to provide a synthetic database to the public allowing for pretesting strategies for data analysis. The synthetic databases can be established using multiple imputation tools. Given the approval of the strategy, verification is based on the original data. Multiple imputation by chained equations is illustrated to facilitate provision of synthetic databases as it allows for capturing a wide range of statistical interdependencies. Also missing values, typically occurring within longitudinal databases for reasons of item non-response, can be addressed via multiple imputation when providing databases. The provision of synthetic databases using multiple imputation techniques is one possible strategy to ensure data protection, increase visibility of longitudinal databases and enhance the analytical potential.

  3. METHOD OF PRODUCING DENSE CONSOLIDATED METALLIC REGULUS

    Science.gov (United States)

    Magel, T.T.

    1959-08-11

    A methcd is presented for reducing dense metal compositions while simultaneously separating impurities from the reduced dense metal and casting the reduced parified dense metal, such as uranium, into well consolidated metal ingots. The reduction is accomplished by heating the dense metallic salt in the presence of a reducing agent, such as an alkali metal or alkaline earth metal in a bomb type reacting chamber, while applying centrifugal force on the reacting materials. Separation of the metal from the impurities is accomplished essentially by the incorporation of a constricted passageway at the vertex of a conical reacting chamber which is in direct communication with a collecting chamber. When a centrifugal force is applled to the molten metal and slag from the reduction in a direction collinear with the axis of the constricted passage, the dense molten metal is forced therethrough while the less dense slag is retained within the reaction chamber, resulting in a simultaneous separation of the reduced molten metal from the slag and a compacting of the reduced metal in a homogeneous mass.

  4. Deuterium fractionation in dense interstellar clouds

    International Nuclear Information System (INIS)

    Millar, T.J.; Bennett, A.; Herbst, E.

    1989-01-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized. 60 refs

  5. Deuterium fractionation in dense interstellar clouds

    Science.gov (United States)

    Millar, T. J.; Bennett, A.; Herbst, Eric

    1989-05-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized.

  6. JSBML 1.0: providing a smorgasbord of options to encode systems biology models.

    Science.gov (United States)

    Rodriguez, Nicolas; Thomas, Alex; Watanabe, Leandro; Vazirabad, Ibrahim Y; Kofia, Victor; Gómez, Harold F; Mittag, Florian; Matthes, Jakob; Rudolph, Jan; Wrzodek, Finja; Netz, Eugen; Diamantikos, Alexander; Eichner, Johannes; Keller, Roland; Wrzodek, Clemens; Fröhlich, Sebastian; Lewis, Nathan E; Myers, Chris J; Le Novère, Nicolas; Palsson, Bernhard Ø; Hucka, Michael; Dräger, Andreas

    2015-10-15

    JSBML, the official pure Java programming library for the Systems Biology Markup Language (SBML) format, has evolved with the advent of different modeling formalisms in systems biology and their ability to be exchanged and represented via extensions of SBML. JSBML has matured into a major, active open-source project with contributions from a growing, international team of developers who not only maintain compatibility with SBML, but also drive steady improvements to the Java interface and promote ease-of-use with end users. Source code, binaries and documentation for JSBML can be freely obtained under the terms of the LGPL 2.1 from the website http://sbml.org/Software/JSBML. More information about JSBML can be found in the user guide at http://sbml.org/Software/JSBML/docs/. jsbml-development@googlegroups.com or andraeger@eng.ucsd.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  7. Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy

    Directory of Open Access Journals (Sweden)

    Antonio Cuadrado

    2018-04-01

    Full Text Available Tauopathies are a group of neurodegenerative disorders where TAU protein is presented as aggregates or is abnormally phosphorylated, leading to alterations of axonal transport, neuronal death and neuroinflammation. Currently, there is no treatment to slow progression of these diseases. Here, we have investigated whether dimethyl fumarate (DMF, an inducer of the transcription factor NRF2, could mitigate tauopathy in a mouse model. The signaling pathways modulated by DMF were also studied in mouse embryonic fibroblast (MEFs from wild type or KEAP1-deficient mice. The effect of DMF on neurodegeneration, astrocyte and microglial activation was examined in Nrf2+/+ and Nrf2−/− mice stereotaxically injected in the right hippocampus with an adeno-associated vector expressing human TAUP301L and treated daily with DMF (100 mg/kg, i.g during three weeks. DMF induces the NRF2 transcriptional through a mechanism that involves KEAP1 but also PI3K/AKT/GSK-3-dependent pathways. DMF modulates GSK-3β activity in mouse hippocampi. Furthermore, DMF modulates TAU phosphorylation, neuronal impairment measured by calbindin-D28K and BDNF expression, and inflammatory processes involved in astrogliosis, microgliosis and pro-inflammatory cytokines production. This study reveals neuroprotective effects of DMF beyond disruption of the KEAP1/NRF2 axis by inhibiting GSK3 in a mouse model of tauopathy. Our results support repurposing of this drug for treatment of these diseases. Keywords: DMF, Inflammation, Neurodegeneration, NRF2, Oxidative stress, TAU/ GSK-3

  8. Bridging the financial gap through providing contract services: a model for publicly funded clinical biobanks.

    Science.gov (United States)

    Kozlakidis, Zisis; Mant, Christine; Cason, John

    2012-08-01

    Biobanks offer translational researchers a novel method of obtaining clinical research materials, patient data, and relevant ethical and legal permissions. However, such tissue collections are expensive to establish and maintain. Current opinion is that such initiatives can only survive with core funding from Government or major funding bodies. Given the present climate of financial austerity, funding agencies may be tempted to invest in fast-return research projects rather than in maintaining tissue collections, whose benefits will only become apparent in much longer timescales. Thus, securing additional funding for biobanks could provide a valuable boost enabling an extension of core services. Here we suggest that using biobank expertise to offer contract services to clinicians and industry may be an alternative approach to obtaining such extra funding.

  9. Ionization equilibrium in dense plasmas

    International Nuclear Information System (INIS)

    Ying, R.

    1987-01-01

    The average degree of ionization for a strongly coupled plasma is investigated and calculated. Two widely used approaches: the Saha equation method and the Thomas-Fermi (TF) statistical atomic model are adopted to determine the degree of ionization. Both methods are modified in a number of ways to include the strong-coupling effect in the plasma. In the Saha equation approach, the strong-coupling effects are introduced through: (i) a replacement of the Coulomb potential by a screened Debye potential; (ii) adoption of the Planck-Larkin partition function; (iii) description of the electron component by Fermi-Dirac statistics. The calculated degree of ionization exceeds that obtained from the original Saha equation, exhibits a minimum as a function of the density and shows an abrupt phase transition from weakly ionized to a fully ionized state. The zero-temperature TF model for compressed ions and the finite-temperature TF model for ions are investigated for the first time. In order to take into account the strong-coupling effect in a systematic way, a strong-coupling TF model is set up. Favorable results with the relatively simple approximations indicate that the newly established strong-coupling TF model is a more systematic and physically consistent approach

  10. A case study of a team-based, quality-focused compensation model for primary care providers.

    Science.gov (United States)

    Greene, Jessica; Hibbard, Judith H; Overton, Valerie

    2014-06-01

    In 2011, Fairview Health Services began replacing their fee-for-service compensation model for primary care providers (PCPs), which included an annual pay-for-performance bonus, with a team-based model designed to improve quality of care, patient experience, and (eventually) cost containment. In-depth interviews and an online survey of PCPs early after implementation of the new model suggest that it quickly changed the way many PCPs practiced. Most PCPs reported a shift in orientation toward quality of care, working more collaboratively with their colleagues and focusing on their full panel of patients. The majority reported that their quality of care had improved because of the model and that their colleagues' quality had to. The comprehensive change did, however, result in lower fee-for-service billing and reductions in PCP satisfaction. While Fairview's compensation model is still a work in progress, their early experiences can provide lessons for other delivery systems seeking to reform PCP compensation.

  11. Hyperspectral Imaging Provides Early Prediction of Random Axial Flap Necrosis in a Preclinical Model.

    Science.gov (United States)

    Chin, Michael S; Chappell, Ava G; Giatsidis, Giorgio; Perry, Dylan J; Lujan-Hernandez, Jorge; Haddad, Anthony; Matsumine, Hajime; Orgill, Dennis P; Lalikos, Janice F

    2017-06-01

    Necrosis remains a significant complication in cutaneous flap procedures. Monitoring, and ideally prediction, of vascular compromise in the early postoperative period may allow surgeons to limit the impact of complications by prompt intervention. Hyperspectral imaging could be a reliable, effective, and noninvasive method for predicting flap survival postoperatively. In this preclinical study, the authors demonstrate that hyperspectral imaging is able to correlate early skin perfusion changes and ultimate flap survival in a preclinical model. Thirty-one hairless, immunocompetent, adult male mice were used. Random pattern dorsal skin flaps were elevated and sutured back into place with a silicone barrier. Hyperspectral imaging and digital images were obtained 30 minutes, 24 hours, or 72 hours after flap elevation and before sacrifice on postoperative day 7. Areas of high deoxygenated hemoglobin change (124; 95 percent CI, 118 to 129) seen at 30 minutes after surgery were associated with greater than 50 percent flap necrosis at postoperative day 7. Areas demarcated by high deoxygenated hemoglobin at 30 minutes postoperatively had a statistically significant correlation with areas of macroscopic necrosis on postoperative day 7. Analysis of images obtained at 24 and 72 hours did not show similar changes. These findings suggest that early changes in deoxygenated hemoglobin seen with hyperspectral imaging may predict the region and extent of flap necrosis. Further clinical studies are needed to determine whether hyperspectral imaging is applicable to the clinical setting.

  12. Assistance dogs provide a useful behavioral model to enrich communicative skills of assistance robots.

    Science.gov (United States)

    Gácsi, Márta; Szakadát, Sára; Miklósi, Adám

    2013-01-01

    These studies are part of a project aiming to reveal relevant aspects of human-dog interactions, which could serve as a model to design successful human-robot interactions. Presently there are no successfully commercialized assistance robots, however, assistance dogs work efficiently as partners for persons with disabilities. In Study 1, we analyzed the cooperation of 32 assistance dog-owner dyads performing a carrying task. We revealed typical behavior sequences and also differences depending on the dyads' experiences and on whether the owner was a wheelchair user. In Study 2, we investigated dogs' responses to unforeseen difficulties during a retrieving task in two contexts. Dogs displayed specific communicative and displacement behaviors, and a strong commitment to execute the insoluble task. Questionnaire data from Study 3 confirmed that these behaviors could successfully attenuate owners' disappointment. Although owners anticipated the technical competence of future assistance robots to be moderate/high, they could not imagine robots as emotional companions, which negatively affected their acceptance ratings of future robotic assistants. We propose that assistance dogs' cooperative behaviors and problem solving strategies should inspire the development of the relevant functions and social behaviors of assistance robots with limited manual and verbal skills.

  13. Planarians as models of cadmium-induced neoplasia provide measurable benchmarks for mechanistic studies.

    Science.gov (United States)

    Voura, Evelyn B; Montalvo, Melissa J; Dela Roca, Kevin T; Fisher, Julia M; Defamie, Virginie; Narala, Swami R; Khokha, Rama; Mulligan, Margaret E; Evans, Colleen A

    2017-08-01

    Bioassays of planarian neoplasia highlight the potential of these organisms as useful standards to assess whether environmental toxins such as cadmium promote tumorigenesis. These studies complement other investigations into the exceptional healing and regeneration of planarians - processes that are driven by a population of active stem cells, or neoblasts, which are likely transformed during planarian tumor growth. Our goal was to determine if planarian tumorigenesis assays are amenable to mechanistic studies of cadmium carcinogenesis. To that end we demonstrate, by examining both counts of cell populations by size, and instances of mitosis, that the activity of the stem cell population can be monitored. We also provide evidence that specific biomodulators can affect the potential of planarian neoplastic growth, in that an inhibitor of metalloproteinases effectively blocked the development of the lesions. From these results, we infer that neoblast activity does respond to cadmium-induced tumor growth, and that metalloproteinases are required for the progression of cancer in the planarian. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Directed evolution of a model primordial enzyme provides insights into the development of the genetic code.

    Directory of Open Access Journals (Sweden)

    Manuel M Müller

    Full Text Available The contemporary proteinogenic repertoire contains 20 amino acids with diverse functional groups and side chain geometries. Primordial proteins, in contrast, were presumably constructed from a subset of these building blocks. Subsequent expansion of the proteinogenic alphabet would have enhanced their capabilities, fostering the metabolic prowess and organismal fitness of early living systems. While the addition of amino acids bearing innovative functional groups directly enhances the chemical repertoire of proteomes, the inclusion of chemically redundant monomers is difficult to rationalize. Here, we studied how a simplified chorismate mutase evolves upon expanding its amino acid alphabet from nine to potentially 20 letters. Continuous evolution provided an enhanced enzyme variant that has only two point mutations, both of which extend the alphabet and jointly improve protein stability by >4 kcal/mol and catalytic activity tenfold. The same, seemingly innocuous substitutions (Ile→Thr, Leu→Val occurred in several independent evolutionary trajectories. The increase in fitness they confer indicates that building blocks with very similar side chain structures are highly beneficial for fine-tuning protein structure and function.

  15. Dilution in a Dense Bottom Jet in Cross Currents

    DEFF Research Database (Denmark)

    Petersen, O.; Larsen, Torben

    1998-01-01

    A 3-dimensional numerical model describing the dilution in the near field around dense vertical jets in a cross flow is formulated and validated against laboratory experiments. The validation shows that the model reproduces the flow pattern well, though the dilution is underestimated by 20......%. The model is applied to a case study where the dilution from two vertical jets at an angle in shallow water is described. It is demonstrated that a 20% increase in dilution is possible. It is concluded that the model may become a valuable tool in diffusor design....

  16. Overlapping gene expression profiles of model compounds provide opportunities for immunotoxicity screening

    International Nuclear Information System (INIS)

    Baken, Kirsten A.; Pennings, Jeroen L.A.; Jonker, Martijs J.; Schaap, Mirjam M.; Vries, Annemieke de; Steeg, Harry van; Breit, Timo M.; Loveren, Henk van

    2008-01-01

    In order to investigate immunotoxic effects of a set of model compounds in mice, a toxicogenomics approach was combined with information on macroscopical and histopathological effects on spleens and on modulation of immune function. Bis(tri-n-butyltin)oxide (TBTO), cyclosporin A (CsA), and benzo[a]pyrene (B[a]P) were administered to C57BL/6 mice at immunosuppressive dose levels. Acetaminophen (APAP) was included in the study since indications of immunomodulating properties of this compound have appeared in the literature. TBTO exposure caused the most pronounced effect on gene expression and also resulted in the most severe reduction of body weight gain and induction of splenic irregularities. All compounds caused inhibition of cell division in the spleen as shown by microarray analysis as well as by suppression of lymphocyte proliferation after application of a contact sensitizer as demonstrated in an immune function assay that was adapted from the local lymph node assay. The immunotoxicogenomics approach applied in this study thus pointed to immunosuppression through cell cycle arrest as a common mechanism of action of immunotoxicants, including APAP. Genes related to cell division such as Ccna2, Brca1, Birc5, Incenp, and Cdkn1a (p21) were identified as candidate genes to indicate anti-proliferative effects of xenobiotics in immune cells for future screening assays. The results of our experiments also show the value of group wise pathway analysis for detection of more subtle transcriptional effects and the potency of evaluation of effects in the spleen to demonstrate immunotoxicity

  17. The Charrette Design Model Provides a Means to Promote Collaborative Design in Higher Education

    Directory of Open Access Journals (Sweden)

    Webber Steven B.

    2016-02-01

    Full Text Available Higher education is typically compartmentalized by field and expertise level leading to a lack of collaboration across disciplines and reduced interaction among students of the same discipline that possess varying levels of expertise. The divisions between disciplines and expertise levels can be perforated through the use of a concentrated, short-term design problem called a charrette. The charrette is commonly used in architecture and interior design, and applications in other disciplines are possible. The use of the charrette in an educational context provides design students the opportunity to collaborate in teams where members have varying levels of expertise and consult with experts in allied disciplines in preparation for a profession that will expect the same. In the context of a competitive charrette, this study examines the effectiveness of forming teams of design students that possess a diversity of expertise. This study also looks at the effectiveness of integrating input from professional experts in design-allied disciplines (urban planning, architecture, mechanical and electrical engineering and a design-scenario-specific discipline (medicine into the students' design process. Using a chi-square test of goodness-of-fit, it is possible to determine student preferences in terms of the team configurations as well as their preferences on the experts. In this charrette context, the students indicated that the cross-expertise student team make-up had a positive effect for both the more experienced students and the less experienced students. Overall, the students placed high value on the input from experts in design-allied fields for the charrette. They also perceived a preference of input from external experts that had an immediate and practical implication to their design process. This article will also show student work examples as additional evidence of the successful cross-expertise collaboration among the design students and evidence

  18. The EOS and neutrino interactions in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, M.; Reddy, S. [Dept. of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY (United States)

    1998-06-01

    The deleptonization and cooling times of a newly born neutron star depend on the equation of state (EOS) and neutrino opacities in dense matter. Through model calculations we show that effects of Pauli blocking and many-body correlations due to strong interactions reduce both the neutral and charged current neutrino cross sections by large factors compared to the case in which these effects are ignored. (orig.)

  19. Bayesian quantification of thermodynamic uncertainties in dense gas flows

    International Nuclear Information System (INIS)

    Merle, X.; Cinnella, P.

    2015-01-01

    A Bayesian inference methodology is developed for calibrating complex equations of state used in numerical fluid flow solvers. Precisely, the input parameters of three equations of state commonly used for modeling the thermodynamic behavior of the so-called dense gas flows, – i.e. flows of gases characterized by high molecular weights and complex molecules, working in thermodynamic conditions close to the liquid–vapor saturation curve – are calibrated by means of Bayesian inference from reference aerodynamic data for a dense gas flow over a wing section. Flow thermodynamic conditions are such that the gas thermodynamic behavior strongly deviates from that of a perfect gas. In the aim of assessing the proposed methodology, synthetic calibration data – specifically, wall pressure data – are generated by running the numerical solver with a more complex and accurate thermodynamic model. The statistical model used to build the likelihood function includes a model-form inadequacy term, accounting for the gap between the model output associated to the best-fit parameters and the true phenomenon. Results show that, for all of the relatively simple models under investigation, calibrations lead to informative posterior probability density distributions of the input parameters and improve the predictive distribution significantly. Nevertheless, calibrated parameters strongly differ from their expected physical values. The relationship between this behavior and model-form inadequacy is discussed. - Highlights: • Development of a Bayesian inference procedure for calibrating dense-gas flow solvers. • Complex thermodynamic models calibrated by using aerodynamic data for the flow. • Preliminary Sobol analysis used to reduce parameter space. • Piecewise polynomial surrogate model constructed to reduce computational cost. • Calibration results show the crucial role played by model-form inadequacies

  20. Dense pattern optical multipass cell

    Science.gov (United States)

    Silver, Joel A [Santa Fe, NM

    2009-01-13

    A multiple pass optical cell and method comprising providing a pair of opposed cylindrical mirrors having curved axes with substantially equal focal lengths, positioning an entrance hole for introducing light into the cell and an exit hole for extracting light from the cell, wherein the entrance hole and exit hole are coextensive or non-coextensive, introducing light into the cell through the entrance hole, and extracting light from the cell through the exit hole.

  1. A simple simulation model as a tool to assess alternative health care provider payment reform options in Vietnam.

    Science.gov (United States)

    Cashin, Cheryl; Phuong, Nguyen Khanh; Shain, Ryan; Oanh, Tran Thi Mai; Thuy, Nguyen Thi

    2015-01-01

    Vietnam is currently considering a revision of its 2008 Health Insurance Law, including the regulation of provider payment methods. This study uses a simple spreadsheet-based, micro-simulation model to analyse the potential impacts of different provider payment reform scenarios on resource allocation across health care providers in three provinces in Vietnam, as well as on the total expenditure of the provincial branches of the public health insurance agency (Provincial Social Security [PSS]). The results show that currently more than 50% of PSS spending is concentrated at the provincial level with less than half at the district level. There is also a high degree of financial risk on district hospitals with the current fund-holding arrangement. Results of the simulation model show that several alternative scenarios for provider payment reform could improve the current payment system by reducing the high financial risk currently borne by district hospitals without dramatically shifting the current level and distribution of PSS expenditure. The results of the simulation analysis provided an empirical basis for health policy-makers in Vietnam to assess different provider payment reform options and make decisions about new models to support health system objectives.

  2. Nuclear Probing of Dense Plasmas

    International Nuclear Information System (INIS)

    Richard Petrasso

    2007-01-01

    The object of inertial confinement fusion (ICF) is to compress a fuel capsule to a state with high enough density and temperature to ignite, starting a self-sustaining fusion burn that consumes much of the fuel and releases a large amount of energy. The national ICF research program is trying to reach this goal, especially through experiments at the OMEGA laser facility of the University of Rochester Laboratory of Laser Energetics (LLE), planned experiments at the National Ignition Facility (NIF) under construction at the Lawrence Livermore National Laboratory (LLNL), and experimental and theoretical work at other national laboratories. The work by MIT reported here has played several important roles in this national program. First, the development of new and improved charged-particle-based plasma diagnostics has allowed the gathering of new and unique diagnostic information about the implosions of fuel capsules in ICF experiments, providing new means for evaluating experiments and for studying capsule implosion dynamics. Proton spectrometers have become the standard for evaluating the mass assembly in compressed capsules in experiments at OMEGA; the measured energy downshift of either primary or secondary D3He fusion protons to determines the areal density, or ?R, of imploded capsules. The Proton Temporal Diagnostic measures the time history of fusion burn, and multiple proton emission imaging cameras reveal the 3-D spatial distribution of fusion burn. A new compact neutron spectrometer, for measuring fusion yield, is described here for the first time. And of especially high importance to future work is the Magnetic Recoil Spectrometer (MRS), which is a neutron spectrometer that will be used to study a range of important performance parameters in future experiments at the NIF. A prototype is currently being prepared for testing at OMEGA, using a magnet funded by this grant. Second, MIT has used these diagnostic instruments to perform its own physics experiments

  3. Nuclear Probing of Dense Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Richard Petrasso

    2007-02-14

    The object of inertial confinement fusion (ICF) is to compress a fuel capsule to a state with high enough density and temperature to ignite, starting a self-sustaining fusion burn that consumes much of the fuel and releases a large amount of energy. The national ICF research program is trying to reach this goal, especially through experiments at the OMEGA laser facility of the University of Rochester Laboratory of Laser Energetics (LLE), planned experiments at the National Ignition Facility (NIF) under construction at the Lawrence Livermore National Laboratory (LLNL), and experimental and theoretical work at other national laboratories. The work by MIT reported here has played several important roles in this national program. First, the development of new and improved charged-particle-based plasma diagnostics has allowed the gathering of new and unique diagnostic information about the implosions of fuel capsules in ICF experiments, providing new means for evaluating experiments and for studying capsule implosion dynamics. Proton spectrometers have become the standard for evaluating the mass assembly in compressed capsules in experiments at OMEGA; the measured energy downshift of either primary or secondary D3He fusion protons to determines the areal density, or ?R, of imploded capsules. The Proton Temporal Diagnostic measures the time history of fusion burn, and multiple proton emission imaging cameras reveal the 3-D spatial distribution of fusion burn. A new compact neutron spectrometer, for measuring fusion yield, is described here for the first time. And of especially high importance to future work is the Magnetic Recoil Spectrometer (MRS), which is a neutron spectrometer that will be used to study a range of important performance parameters in future experiments at the NIF. A prototype is currently being prepared for testing at OMEGA, using a magnet funded by this grant. Second, MIT has used these diagnostic instruments to perform its own physics experiments

  4. Constitutive law of dense granular matter

    International Nuclear Information System (INIS)

    Hatano, Takahiro

    2010-01-01

    The frictional properties of dense granular matter under steady shear flow are investigated using numerical simulation. Shear flow tends to localize near the driving boundary unless the coefficient of restitution is close to zero and the driving velocity is small. The bulk friction coefficient is independent of shear rate in dense and slow flow, whereas it is an increasing function of shear rate in rapid flow. The coefficient of restitution affects the friction coefficient only in such rapid flow. Contrastingly, in dense and slow regime, the friction coefficient is independent of the coefficient of restitution and mainly determined by the elementary friction coefficient and the rotation of grains. It is found that the mismatch between the vorticity of flow and the angular frequency of grains plays a key role to the frictional properties of sheared granular matter.

  5. Creation of a Collaborative Disaster Preparedness Video for Daycare Providers: Use of the Delphi Model for the Creation of a Comprehensive Disaster Preparedness Video for Daycare Providers.

    Science.gov (United States)

    Mar, Pamela; Spears, Robert; Reeb, Jeffrey; Thompson, Sarah B; Myers, Paul; Burke, Rita V

    2018-02-22

    Eight million American children under the age of 5 attend daycare and more than another 50 million American children are in school or daycare settings. Emergency planning requirements for daycare licensing vary by state. Expert opinions were used to create a disaster preparedness video designed for daycare providers to cover a broad spectrum of scenarios. Various stakeholders (17) devised the outline for an educational pre-disaster video for child daycare providers using the Delphi technique. Fleiss κ values were obtained for consensus data. A 20-minute video was created, addressing the physical, psychological, and legal needs of children during and after a disaster. Viewers completed an anonymous survey to evaluate topic comprehension. A consensus was attempted on all topics, ranging from elements for inclusion to presentation format. The Fleiss κ value of 0.07 was obtained. Fifty-seven of the total 168 video viewers completed the 10-question survey, with comprehension scores ranging from 72% to 100%. Evaluation of caregivers that viewed our video supports understanding of video contents. Ultimately, the technique used to create and disseminate the resources may serve as a template for others providing pre-disaster planning education. (Disaster Med Public Health Preparedness. 2018;page 1 of 5).

  6. The Role of Deposition in Limiting the Hazard Extent of Dense-Gas Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, M B

    2008-05-11

    Accidents that involve large (multi-ton) releases of toxic industrial chemicals and form dense-gas clouds often yield far fewer fatalities, casualties and environmental effects than standard assessment and emergency response models predict. This modeling study, which considers both dense-gas turbulence suppression and deposition to environmental objects (e.g. buildings), demonstrates that dry deposition to environmental objects may play a significant role in reducing the distance at which adverse impacts occur - particularly under low-wind, stable atmospheric conditions which are often considered to be the worst-case scenario for these types of releases. The degree to which the released chemical sticks to (or reacts with) environmental surfaces is likely a key parameter controlling hazard extents. In all modeled cases, the deposition to vertical surfaces of environmental objects (e.g. building walls) was more efficient in reducing atmospheric chemical concentrations than deposition to the earth's surface. This study suggests that (1) hazard extents may vary widely by release environment (e.g. grasslands vs. suburbia) and release conditions (e.g. sunlight or humidity may change the rate at which chemicals react with a surface) and (2) greenbelts (or similar structures) may dramatically reduce the impacts of large-scale releases. While these results are demonstrated to be qualitatively consistent with the downwind extent of vegetation damage in two chlorine releases, critical knowledge gaps exist and this study provides recommendations for additional experimental studies.

  7. Projective block Lanczos algorithm for dense, Hermitian eigensystems

    International Nuclear Information System (INIS)

    Webster, F.; Lo, G.C.

    1996-01-01

    Projection operators are used to effect open-quotes deflation by restrictionclose quotes and it is argued that this is an optimal Lanczos algorithm for memory minimization. Algorithmic optimization is constrained to dense, Hermitian eigensystems where a significant number of the extreme eigenvectors must be obtained reliably and completely. The defining constraints are operator algebra without a matrix representation and semi-orthogonalization without storage of Krylov vectors. other semi-orthogonalization strategies for Lanczos algorithms and conjugate gradient techniques are evaluated within these constraints. Large scale, sparse, complex numerical experiments are performed on clusters of magnetic dipoles, a quantum many-body system that is not block-diagonalizable. Plane-wave, density functional theory of beryllium clusters provides examples of dense complex eigensystems. Use of preconditioners and spectral transformations is evaluated in a preprocessor prior to a high accuracy self-consistent field calculation. 25 refs., 3 figs., 5 tabs

  8. Temperature Measurements of Dense Plasmas by Detailed Balance

    International Nuclear Information System (INIS)

    Holl, A; Redmer, R; Ropke, G; Reinholz, H; Thiele, R; Fortmann, C; Forster, E; Cao, L; Tschentscher, T; Toleikis, S; Glenzer, S H

    2006-01-01

    Plasmas at high electron densities of n e = 10 20 - 10 26 cm -3 and moderate temperatures T e = 1 - 20 eV are important for laboratory astrophysics, high energy density science and inertial confinement fusion. These plasmas are usually referred to as Warm Dense Matter (WDM) and are characterized by a coupling parameter of Λ ∼> 1 where correlations become important. The characterization of such plasmas is still a challenging task due to the lack of direct measurement techniques for temperatures and densities. They propose to measure the Thomson scattering spectrum of vacuum-UV radiation off density fluctuations in the plasma. Collective Thomson scattering provides accurate data for the electron temperature applying first principles. Further, this method takes advantage of the spectral asymmetry resulting from detailed balance and is independent of collisional effects in these dense systems

  9. Investigating Effective Components of Higher Education Marketing and Providing a Marketing Model for Iranian Private Higher Education Institutions

    Science.gov (United States)

    Kasmaee, Roya Babaee; Nadi, Mohammad Ali; Shahtalebi, Badri

    2016-01-01

    Purpose: The purpose of this paper is to study and identify the effective components of higher education marketing and providing a marketing model for Iranian higher education private sector institutions. Design/methodology/approach: This study is a qualitative research. For identifying the effective components of higher education marketing and…

  10. The Development of Mouse APECED Models Provides New Insight into the Role of AIRE in Immune Regulation

    OpenAIRE

    Pereira, Lara E.; Bostik, Pavel; Ansari, Aftab A.

    2005-01-01

    Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy is a rare recessive autoimmune disorder caused by a defect in a single gene called AIRE (autoimmune regulator). Characteristics of this disease include a variable combination of autoimmune endocrine tissue destruction, mucocutaneous candidiasis and ectodermal dystrophies. The development of Aire-knockout mice has provided an invaluable model for the st...

  11. Quantum Simulations for Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Ceperley, David M

    2010-06-07

    High pressure systems are important, for example, to understand the interiors of giant planets (Jupiter and Saturn), for experiments at NIF (the National Ignition Facility at Livermore) related to inertially confined fusion and for other interests of DOE. In this project, we are developing innovative simulation methods (Quantum Monte Carlo methods) to allow more accurate calculation of properties of systems under extreme conditions of pressure and temperature. These methods can use the power of current day supercomputers made of very many processors, starting from the basic equations of physics to model quantum phenomena important at the microscopic scale. During the grant period, we have settled two important questions of the physics of hydrogen and helium under extreme conditions. We have found the pressures and temperatures when hydrogen and helium mix together; this is important to understand the difference of the interiors of the planets Jupiter and Saturn. Secondly, we have shown that there exists a sharp transition as a function of pressure between molecular and atomic liquid hydrogen at temperatures below 2000K. This prediction can be confirmed with high pressure experiments.

  12. 16. Hot dense plasma atomic processes

    International Nuclear Information System (INIS)

    Werner, Dappen; Totsuji, H.; Nishii, Y.

    2002-01-01

    This document gathers 13 articles whose common feature is to deal with atomic processes in hot plasmas. Density functional molecular dynamics method is applied to the hydrogen plasma in the domain of liquid metallic hydrogen. The effects of the density gradient are taken into account in both the electronic kinetic energy and the exchange energy and it is shown that they almost cancel with each other, extending the applicability of the Thomas-Fermi-Dirac approximation to the cases where the density gradient is not negligible. Another article reports about space and time resolved M-shell X-ray measurements of a laser-produced gas jet xenon plasma. Plasma parameters have been measured by ion acoustic and electron plasma waves Thomson scattering. Photo-ionization becomes a dominant atomic process when the density and the temperature of plasmas are relatively low and when the plasma is submitted to intense external radiation. It is shown that 2 plasmas which have a very different density but have the same ionization parameters, are found in a similar ionization state. Most radiation hydrodynamics codes use radiative opacity data from available libraries of atomic data. Several articles are focused on the determination of one group Rosseland and Planck mean analytical formulas for several single elements used in inertial fusion targets. In another paper the plasma density effect on population densities, effective ionization, recombination rate coefficients and on emission lines from carbon and Al ions in hot dense plasma, is studied. The last article is devoted to a new atomic model in plasmas that considers the occupation probability of the bound state and free state density in the presence of the plasma micro-field. (A.C.)

  13. Improving sexual health communication between older women and their providers: how the integrative model of behavioral prediction can help.

    Science.gov (United States)

    Hughes, Anne K; Rostant, Ola S; Curran, Paul G

    2014-07-01

    Talking about sexual health can be a challenge for some older women. This project was initiated to identify key factors that improve communication between aging women and their primary care providers. A sample of women (aged 60+) completed an online survey regarding their intent to communicate with a provider about sexual health. Using the integrative model of behavioral prediction as a guide, the survey instrument captured data on attitudes, perceived norms, self-efficacy, and intent to communicate with a provider about sexual health. Data were analyzed using structural equation modeling. Self-efficacy and perceived norms were the most important factors predicting intent to communicate for this sample of women. Intent did not vary with race, but mean scores of the predictors of intent varied for African American and White women. Results can guide practice and intervention with ethnically diverse older women who may be struggling to communicate about their sexual health concerns. © The Author(s) 2013.

  14. Common Sense Model Factors Affecting African Americans' Willingness to Consult a Healthcare Provider Regarding Symptoms of Mild Cognitive Impairment.

    Science.gov (United States)

    Gleason, Carey E; Dowling, N Maritza; Benton, Susan Flowers; Kaseroff, Ashley; Gunn, Wade; Edwards, Dorothy Farrar

    2016-07-01

    Although at increased risk for developing dementia compared with white patients, older African Americans are diagnosed later in the course of dementia. Using the common sense model (CSM) of illness perception, we sought to clarify processes promoting timely diagnosis of mild cognitive impairment (MCI) for African American patients. In-person, cross-sectional survey data were obtained from 187 African American (mean age: 60.44 years). Data were collected at social and health-focused community events in three southern Wisconsin cities. The survey represented a compilation of published surveys querying CSM constructs focused on early detection of memory disorders, and willingness to discuss concerns about memory loss with healthcare providers. Derived CSM variables measuring perceived causes, consequences, and controllability of MCI were included in a structural equation model predicting the primary outcome: Willingness to discuss symptoms of MCI with a provider. Two CSM factors influenced willingness to discuss symptoms of MCI with providers: Anticipation of beneficial consequences and perception of low harm associated with an MCI diagnosis predicted participants' willingness to discuss concerns about cognitive changes. No association was found between perceived controllability and causes of MCI, and willingness to discuss symptoms with providers. These data suggest that allaying concerns about the deleterious effects of a diagnosis, and raising awareness of potential benefits, couldinfluence an African American patient's willingness to discuss symptoms of MCI with a provider. The findings offer guidance to designers of culturally congruent MCI education materials, and healthcare providers caring for older African Americans. . Published by Elsevier Inc.

  15. Evaluation of sound extinction and echo interference in densely aggregated zooplankton

    Directory of Open Access Journals (Sweden)

    Natalia Gorska

    2000-09-01

    Full Text Available The investigation of sound extinction and echo interference is important as regards the accurate assessment of the abundance of densely aggregated zooplankton. To study these effects,the analytical model describing sound backscattering by an aggregation of isotropic scatterers (Rytov et al. 1978, Sun & Gimenez 1992 has been extended to the case of densely aggregated elongated zooplankton. The evaluation of the effects in the case of a dense krill aggregation demonstrates that they can be significant and should be taken into account.

  16. Dense Alternating Sign Matrices and Extensions

    Czech Academy of Sciences Publication Activity Database

    Fiedler, Miroslav; Hall, F.J.; Stroev, M.

    2014-01-01

    Roč. 444, 1 March (2014), s. 219-226 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : alternating sign matrix * dense matrix * totally unimodular matrix * combined matrix * generalized complementary basic matrix Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

  17. Precision Neuroscience: Dense Sampling of Individual Brains.

    Science.gov (United States)

    Poldrack, Russell A

    2017-08-16

    In this issue, Gordon et al. (2017) use dense sampling of resting and task fMRI within individuals to demonstrate that patterns of correlation in resting fMRI are closely aligned with functional architecture as identified using task fMRI. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Eculizumab in Pediatric Dense Deposit Disease

    NARCIS (Netherlands)

    Oosterveld, Michiel J. S.; Garrelfs, Mark R.; Hoppe, Bernd; Florquin, Sandrine; Roelofs, Joris J. T. H.; van den Heuvel, L. P.; Amann, Kerstin; Davin, Jean-Claude; Bouts, Antonia H. M.; Schriemer, Pietrik J.; Groothoff, Jaap W.

    2015-01-01

    Dense deposit disease (DDD), a subtype of C3 glomerulopathy, is a rare disease affecting mostly children. Treatment options are limited. Debate exists whether eculizumab, a monoclonal antibody against complement factor C5, is effective in DDD. Reported data are scarce, especially in children. The

  19. Preparation of a dense, polycrystalline ceramic structure

    Science.gov (United States)

    Cooley, Jason; Chen, Ching-Fong; Alexander, David

    2010-12-07

    Ceramic nanopowder was sealed inside a metal container under a vacuum. The sealed evacuated container was forced through a severe deformation channel at an elevated temperature below the melting point of the ceramic nanopowder. The result was a dense nanocrystalline ceramic structure inside the metal container.

  20. Fluidized bed dry dense medium coal beneficiation

    CSIR Research Space (South Africa)

    North, Brian C

    2017-10-01

    Full Text Available Coal beneficiation in South Africa is currently conducted mostly on a wet “float and sink” basis. This process is heavily water intensive and also potentially polluting. Dry beneficiation alternatives are being sought. The alternative of dry dense...

  1. A Note on Strongly Dense Matrices

    Czech Academy of Sciences Publication Activity Database

    Fiedler, Miroslav; Hall, F.J.

    2015-01-01

    Roč. 1, č. 4 (2015), s. 721-730 ISSN 2199-675X Institutional support: RVO:67985807 Keywords : strongly dense matrix * Boolean matrix * nonnegative matrix * idempotent matrix * intrinsic product * generalized complementary basic matrix Subject RIV: BA - General Mathematics

  2. Modeling the growth and decline of pathogen effective population size provides insight into epidemic dynamics and drivers of antimicrobial resistance.

    Science.gov (United States)

    Volz, Erik M; Didelot, Xavier

    2018-02-07

    Non-parametric population genetic modeling provides a simple and flexible approach for studying demographic history and epidemic dynamics using pathogen sequence data. Existing Bayesian approaches are premised on stochastic processes with stationary increments which may provide an unrealistic prior for epidemic histories which feature extended period of exponential growth or decline. We show that non-parametric models defined in terms of the growth rate of the effective population size can provide a more realistic prior for epidemic history. We propose a non-parametric autoregressive model on the growth rate as a prior for effective population size, which corresponds to the dynamics expected under many epidemic situations. We demonstrate the use of this model within a Bayesian phylodynamic inference framework. Our method correctly reconstructs trends of epidemic growth and decline from pathogen genealogies even when genealogical data is sparse and conventional skyline estimators erroneously predict stable population size. We also propose a regression approach for relating growth rates of pathogen effective population size and time-varying variables that may impact the replicative fitness of a pathogen. The model is applied to real data from rabies virus and Staphylococcus aureus epidemics. We find a close correspondence between the estimated growth rates of a lineage of methicillin-resistant S. aureus and population-level prescription rates of β-lactam antibiotics. The new models are implemented in an open source R package called skygrowth which is available at https://github.com/mrc-ide/skygrowth. © The Author(s) 2018. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  3. [Barriers to the normalization of telemedicine in a healthcare system model based on purchasing of healthcare services using providers' contracts].

    Science.gov (United States)

    Roig, Francesc; Saigí, Francesc

    2011-01-01

    Despite the clear political will to promote telemedicine and the large number of initiatives, the incorporation of this modality in clinical practice remains limited. The objective of this study was to identify the barriers perceived by key professionals who actively participate in the design and implementation of telemedicine in a healthcare system model based on purchasing of healthcare services using providers' contracts. We performed a qualitative study based on data from semi-structured interviews with 17 key informants belonging to distinct Catalan health organizations. The barriers identified were grouped in four areas: technological, organizational, human and economic. The main barriers identified were changes in the healthcare model caused by telemedicine, problems with strategic alignment, resistance to change in the (re)definition of roles, responsibilities and new skills, and lack of a business model that incorporates telemedicine in the services portfolio to ensure its sustainability. In addition to suitable management of change and of the necessary strategic alignment, the definitive normalization of telemedicine in a mixed healthcare model based on purchasing of healthcare services using providers' contracts requires a clear and stable business model that incorporates this modality in the services portfolio and allows healthcare organizations to obtain reimbursement from the payer. 2010 SESPAS. Published by Elsevier Espana. All rights reserved.

  4. Exp6-polar thermodynamics of dense supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S; Fried, L E

    2007-12-13

    We introduce a simple polar fluid model for the thermodynamics of dense supercritical water based on a Buckingham (exp-6) core and point dipole representation of the water molecule. The proposed exp6-polar thermodynamics, based on ideas originally applied to dipolar hard spheres, performs very well when tested against molecular dynamics simulations. Comparisons of the model predictions with experimental data available for supercritical water yield excellent agreement for the shock Hugoniot, isotherms and sound speeds, and are also quite good for the self-diffusion constant and relative dielectric constant. We expect the present approach to be also useful for other small polar molecules and their mixtures.

  5. Molecules ionization at phase transition in warm dense hydrogen

    Science.gov (United States)

    Norman, G. E.; Saitov, I. M.

    2018-01-01

    An idea is suggested that the fluid–fluid phase transition in warm dense hydrogen is related to the partial ionization of molecules H2 with formation of molecular ions {{{H}}}2+ {{and}} {{{H}}}3+. Conventional ab initio quantum modeling is applied. Proton pair correlation functions (PCF) obtained are used for the nonconventional diagnostics of the phase transition and elucidation of its nature for temperatures 700–1500 K. Short- and long-range changes of PCFs are studied. H2 molecules ionization and molecular ions {{{H}}}2+ {{and}} {{{H}}}3+ appearance is revealed. The validity of the soft sphere model is tested for the long-range order.

  6. The Development of Mouse APECED Models Provides New Insight into the Role of AIRE in Immune Regulation

    Science.gov (United States)

    Pereira, Lara E.; Bostik, Pavel; Ansari, Aftab A.

    2005-01-01

    Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy is a rare recessive autoimmune disorder caused by a defect in a single gene called AIRE (autoimmune regulator). Characteristics of this disease include a variable combination of autoimmune endocrine tissue destruction, mucocutaneous candidiasis and ectodermal dystrophies. The development of Aire-knockout mice has provided an invaluable model for the study of this disease. The aim of this review is to briefly highlight the strides made in APECED research using these transgenic murine models, with a focus on known roles of Aire in autoimmunity. The findings thus far are compelling and prompt additional areas of study which are discussed. PMID:16295527

  7. The Development of Mouse APECED Models Provides New Insight into the Role of AIRE in Immune Regulation

    Directory of Open Access Journals (Sweden)

    Lara E. Pereira

    2005-01-01

    Full Text Available Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy is a rare recessive autoimmune disorder caused by a defect in a single gene called AIRE (autoimmune regulator. Characteristics of this disease include a variable combination of autoimmune endocrine tissue destruction, mucocutaneous candidiasis and ectodermal dystrophies. The development of Aire-knockout mice has provided an invaluable model for the study of this disease. The aim of this review is to briefly highlight the strides made in APECED research using these transgenic murine models, with a focus on known roles of Aire in autoimmunity. The findings thus far are compelling and prompt additional areas of study which are discussed.

  8. Locating sources within a dense sensor array using graph clustering

    Science.gov (United States)

    Gerstoft, P.; Riahi, N.

    2017-12-01

    We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.

  9. Exploring warm dense water by using Free-Electron-Laser

    Science.gov (United States)

    Sperling, P.; Kim, J.; Chen, Z.; French, M.; Curry, C.; Koralek, J.; Mo, M.; Nakatsutsumi, M.; Rodel, R.; Redmer, R.; Toleikis, S.; Zalden, P.; Glenzer, S. H.

    2017-10-01

    Warm dense water is predicted in the interior of giant planets and has an important impact on planetary evolutions. As such, the electrical and thermal properties in this regime are critically important for modelling astrophysical objects. We present electrical property measurements in warm dense water by using a novel planar water jet compatible with high repetition rate studies. The liquid density water is isochorically and uniformly heated to non-equilibrium warm dense matter by FLASH free-electron laser irradiation (5.5 nm, 0.1 - 20 μ J). The dielectric function can be extracted from optical transmission and reflection measurements on the picosecond timescale before significant expansion and subsequent relaxation occurs. The time-dependent dielectric function reveals the electronic properties of water at different temperatures of the electronic and ionic subsystem during the heating and relaxation process, that allow to infer the electron-ion energy coupling. Comparison with 2-temperature density-functional-theory molecular-dynamic simulations show good agreement, that can not be achieved by standard theories of plasma physics. This work is supported by DOE FES under FWP 100182.

  10. N-Body Evolution of Dense Clusters of Compact Stars

    Science.gov (United States)

    Lee, Man Hoi

    1993-11-01

    The dynamical evolution of dense clusters of compact stars is studied using direct N-body simulations. The formation of binaries and their subsequent merging by gravitational radiation emission is important to the evolution of such clusters. Aarseth's NBODY5 N-body simulation code is modified to include the lowest order gravitational radiation force during two-body encounters and to handle the decay and merger of radiating binaries. It is used to study the evolution of small-N (= 1000) clusters with different initial velocity dispersions. The initial evolution is similar to that obtained by Quinlan & Shapiro (1989) using a multimass Fokker-Planck code and shows orderly formation of heavy objects. However, the late evolution differs qualitatively from previous results. In particular, we find runaway growth for the most massive object in the cluster: it acquires a mass much larger than that of the other objects and is detached from the smooth mass spectrum of the rest of the objects. We discuss why the Fokker-Planck equation with a mean-rate approach to the merger process cannot model runaway growth, and we present arguments to show that merger by gravitational radiation is expected to be unstable to runaway growth. The results suggest that a seed massive black hole can be formed by runaway growth in a dense cluster of compact stars. The possibility of runaway growth in dense clusters of normal stars is also discussed.

  11. Compressible, Dense, Three-Dimensional Holey Graphene Monolithic Architecture.

    Science.gov (United States)

    Han, Xiaogang; Yang, Zhi; Zhao, Bin; Zhu, Shuze; Zhou, Lihui; Dai, Jiaqi; Kim, Jae-Woo; Liu, Boyang; Connell, John W; Li, Teng; Yang, Bao; Lin, Yi; Hu, Liangbing

    2017-03-28

    By creating holes in 2D nanosheets, tortuosity and porosity can be greatly tunable, which enables a fast manufacturing process (i.e., fast removal of gas and solvent) toward various nanostructures. We demonstrated outstanding compressibility of holey graphene nanosheets, which is impossible for pristine graphene. Holey graphene powder can be easily compressed into dense and strong monoliths with different shapes at room temperature without using any solvents or binders. The remarkable compressibility of holey graphene, which is in sharp contrast with pristine graphene, not only enables the fabrication of robust, dense graphene products that exhibit high density (1.4 g/cm 3 ), excellent specific mechanical strength [18 MPa/(g/cm 3 )], and good electrical (130 S/cm) and thermal (20 W/mK) conductivities, but also provides a binder-free dry process that overcomes the disadvantages of wet processes required for fabrication of three-dimensional graphene products. Fundamentally different from graphite, the holey graphene products are both dense and porous, which can enable possible broader applications such as energy storage and gas separation membranes.

  12. KBLAS: An Optimized Library for Dense Matrix-Vector Multiplication on GPU Accelerators

    KAUST Repository

    Abdelfattah, Ahmad

    2016-05-11

    KBLAS is an open-source, high-performance library that provides optimized kernels for a subset of Level 2 BLAS functionalities on CUDA-enabled GPUs. Since performance of dense matrix-vector multiplication is hindered by the overhead of memory accesses, a double-buffering optimization technique is employed to overlap data motion with computation. After identifying a proper set of tuning parameters, KBLAS efficiently runs on various GPU architectures while avoiding code rewriting and retaining compliance with the standard BLAS API. Another optimization technique allows ensuring coalesced memory access when dealing with submatrices, especially for high-level dense linear algebra algorithms. All KBLAS kernels have been leveraged to a multi-GPU environment, which requires the introduction of new APIs. Considering general matrices, KBLAS is very competitive with existing state-of-the-art kernels and provides a smoother performance across a wide range of matrix dimensions. Considering symmetric and Hermitian matrices, the KBLAS performance outperforms existing state-of-the-art implementations on all matrix sizes and achieves asymptotically up to 50% and 60% speedup against the best competitor on single GPU and multi-GPUs systems, respectively. Performance results also validate our performance model. A subset of KBLAS highperformance kernels have been integrated into NVIDIA\\'s standard BLAS implementation (cuBLAS) for larger dissemination, starting from version 6.0. © 2016 ACM.

  13. Fourier power, subjective distance, and object categories all provide plausible models of BOLD responses in scene-selective visual areas

    Science.gov (United States)

    Lescroart, Mark D.; Stansbury, Dustin E.; Gallant, Jack L.

    2015-01-01

    Perception of natural visual scenes activates several functional areas in the human brain, including the Parahippocampal Place Area (PPA), Retrosplenial Complex (RSC), and the Occipital Place Area (OPA). It is currently unclear what specific scene-related features are represented in these areas. Previous studies have suggested that PPA, RSC, and/or OPA might represent at least three qualitatively different classes of features: (1) 2D features related to Fourier power; (2) 3D spatial features such as the distance to objects in a scene; or (3) abstract features such as the categories of objects in a scene. To determine which of these hypotheses best describes the visual representation in scene-selective areas, we applied voxel-wise modeling (VM) to BOLD fMRI responses elicited by a set of 1386 images of natural scenes. VM provides an efficient method for testing competing hypotheses by comparing predictions of brain activity based on encoding models that instantiate each hypothesis. Here we evaluated three different encoding models that instantiate each of the three hypotheses listed above. We used linear regression to fit each encoding model to the fMRI data recorded from each voxel, and we evaluated each fit model by estimating the amount of variance it predicted in a withheld portion of the data set. We found that voxel-wise models based on Fourier power or the subjective distance to objects in each scene predicted much of the variance predicted by a model based on object categories. Furthermore, the response variance explained by these three models is largely shared, and the individual models explain little unique variance in responses. Based on an evaluation of previous studies and the data we present here, we conclude that there is currently no good basis to favor any one of the three alternative hypotheses about visual representation in scene-selective areas. We offer suggestions for further studies that may help resolve this issue. PMID:26594164

  14. Fourier power, subjective distance and object categories all provide plausible models of BOLD responses in scene-selective visual areas

    Directory of Open Access Journals (Sweden)

    Mark Daniel Lescroart

    2015-11-01

    Full Text Available Perception of natural visual scenes activates several functional areas in the human brain, including the Parahippocampal Place Area (PPA, Retrosplenial Complex (RSC, and the Occipital Place Area (OPA. It is currently unclear what specific scene-related features are represented in these areas. Previous studies have suggested that PPA, RSC, and/or OPA might represent at least three qualitatively different classes of features: (1 2D features related to Fourier power; (2 3D spatial features such as the distance to objects in a scene; or (3 abstract features such as the categories of objects in a scene. To determine which of these hypotheses best describes the visual representation in scene-selective areas, we applied voxel-wise modeling (VM to BOLD fMRI responses elicited by a set of 1,386 images of natural scenes. VM provides an efficient method for testing competing hypotheses by comparing predictions of brain activity based on encoding models that instantiate each hypothesis. Here we evaluated three different encoding models that instantiate each of the three hypotheses listed above. We used linear regression to fit each encoding model to the fMRI data recorded from each voxel, and we evaluated each fit model by estimating the amount of variance it predicted in a withheld portion of the data set. We found that voxel-wise models based on Fourier power or the subjective distance to objects in each scene predicted much of the variance predicted by a model based on object categories. Furthermore, the response variance explained by these three models is largely shared, and the individual models explain little unique variance in responses. Based on an evaluation of previous studies and the data we present here, we conclude that there is currently no good basis to favor any one of the three alternative hypotheses about visual representation in scene-selective areas. We offer suggestions for further studies that may help resolve this issue.

  15. Preliminary results of an attempt to provide soil moisture datasets in order to verify numerical weather prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Cassardo, C. [Torino Univ., Torino (Italy). Dipartimento di fisica generale Amedeo Avogadro; Loglisci, N. [ARPA, Torino (Italy). Servizio meteorologico regionale

    2005-03-15

    In the recent years, there has been a significant growth in the recognition of the soil moisture importance in large-scale hydrology and climate modelling. Soil moisture is a lower boundary condition, which rules the partitioning of energy in terms of sensible and latent heat flux. Wrong estimations of soil moisture lead to wrong simulation of the surface layer evolution and hence precipitations and cloud cover forecasts could be consequently affected. This is true for large scale medium-range weather forecasts as well as for local-scale short range weather forecasts, particularly in those situations in which local convection is well developed. Unfortunately; despite the importance of this physical parameter there are only few soil moisture data sets sparse in time and in space around in the world. Due to this scarcity of soil moisture observations, we developed an alternative method to provide soil moisture datasets in order to verify numerical weather prediction models. In this paper are presented the preliminary results of an attempt to verify soil moisture fields predicted by a mesoscale model. The data for the comparison were provided by the simulations of the diagnostic land surface scheme LSPM (Land Surface Process Model), widely used at the Piedmont Regional Weather Service for agro-meteorological purposes. To this end, LSPM was initialized and driven by Synop observations, while the surface (vegetation and soil) parameter values were initialized by ECOCLIMAP global dataset at 1km{sup 2} resolution.

  16. Preliminary results of an attempt to provide soil moisture datasets in order to verify numerical weather prediction models

    International Nuclear Information System (INIS)

    Cassardo, C.; Loglisci, N.

    2005-01-01

    In the recent years, there has been a significant growth in the recognition of the soil moisture importance in large-scale hydrology and climate modelling. Soil moisture is a lower boundary condition, which rules the partitioning of energy in terms of sensible and latent heat flux. Wrong estimations of soil moisture lead to wrong simulation of the surface layer evolution and hence precipitations and cloud cover forecasts could be consequently affected. This is true for large scale medium-range weather forecasts as well as for local-scale short range weather forecasts, particularly in those situations in which local convection is well developed. Unfortunately; despite the importance of this physical parameter there are only few soil moisture data sets sparse in time and in space around in the world. Due to this scarcity of soil moisture observations, we developed an alternative method to provide soil moisture datasets in order to verify numerical weather prediction models. In this paper are presented the preliminary results of an attempt to verify soil moisture fields predicted by a mesoscale model. The data for the comparison were provided by the simulations of the diagnostic land surface scheme LSPM (Land Surface Process Model), widely used at the Piedmont Regional Weather Service for agro-meteorological purposes. To this end, LSPM was initialized and driven by Synop observations, while the surface (vegetation and soil) parameter values were initialized by ECOCLIMAP global dataset at 1km 2 resolution

  17. A Mathematical Model of Metabolism and Regulation Provides a Systems-Level View of How Escherichia coli Responds to Oxygen

    Directory of Open Access Journals (Sweden)

    Michael eEderer

    2014-03-01

    Full Text Available The efficient redesign of bacteria for biotechnological purposes, such as biofuel production, waste disposal or specific biocatalytic functions, requires a quantitative systems-level understanding of energy supply, carbon and redox metabolism. The measurement of transcript levels, metabolite concentrations and metabolic fluxes per se gives an incomplete picture. An appreciation of the interdependencies between the different measurement values is essential for systems-level understanding. Mathematical modeling has the potential to provide a coherent and quantitative description of the interplay between gene expression, metabolite concentrations and metabolic fluxes. Escherichia coli undergoes major adaptations in central metabolism when the availability of oxygen changes. Thus, an integrated description of the oxygen response provides a benchmark of our understanding of carbon, energy and redox metabolism. We present the first comprehensive model of the central metabolism of E. coli that describes steady-state metabolism at different levels of oxygen availability. Variables of the model are metabolite concentrations, gene expression levels, transcription factor activities, metabolic fluxes and biomass concentration. We analyze the model with respect to the production capabilities of central metabolism of E. coli. In particular, we predict how precursor and biomass concentration are affected by product formation.

  18. Emerging Business Models in Education Provisioning: A Case Study on Providing Learning Support as Education-as-a-Service

    Directory of Open Access Journals (Sweden)

    Loina Prifti

    2017-09-01

    Full Text Available This study aims to give a deeper understanding on emerging business models in the context of education. Industry 4.0/the Industrial Internet in general and especially recent advances in cloud computing enable a new kind of service offering in the education sector and lead to new business models for education: Education-as-a-Service (EaaS. Within EaaS, learning, and teaching contents are delivered as services. By combining a literature review with a qualitative case study, this paper makes a three-fold contribution to the field of business models in education: First, we provide a theoretical definition for a common understanding of EaaS. Second, we present the state-of-the-art research on this new paradigm. Third, in the case study we describe a “best practices” business model of an existing EaaS provider. These insights build a theoretical foundation for further research in this area. The paper concludes with a research agenda for further research in this emerging field.

  19. A Hybrid Artificial Reputation Model Involving Interaction Trust, Witness Information and the Trust Model to Calculate the Trust Value of Service Providers

    Directory of Open Access Journals (Sweden)

    Gurdeep Singh Ransi

    2014-02-01

    Full Text Available Agent interaction in a community, such as the online buyer-seller scenario, is often uncertain, as when an agent comes in contact with other agents they initially know nothing about each other. Currently, many reputation models are developed that help service consumers select better service providers. Reputation models also help agents to make a decision on who they should trust and transact with in the future. These reputation models are either built on interaction trust that involves direct experience as a source of information or they are built upon witness information also known as word-of-mouth that involves the reports provided by others. Neither the interaction trust nor the witness information models alone succeed in such uncertain interactions. In this paper we propose a hybrid reputation model involving both interaction trust and witness information to address the shortcomings of existing reputation models when taken separately. A sample simulation is built to setup buyer-seller services and uncertain interactions. Experiments reveal that the hybrid approach leads to better selection of trustworthy agents where consumers select more reputable service providers, eventually helping consumers obtain more gains. Furthermore, the trust model developed is used in calculating trust values of service providers.

  20. The impact of pediatric neuropsychological consultation in mild traumatic brain injury: a model for providing feedback after invalid performance.

    Science.gov (United States)

    Connery, Amy K; Peterson, Robin L; Baker, David A; Kirkwood, Michael W

    2016-05-01

    In recent years, pediatric practitioners have increasingly recognized the importance of objectively measuring performance validity during clinical assessments. Yet, no studies have examined the impact of neuropsychological consultation when invalid performance has been identified in pediatric populations and little published guidance exists for clinical management. Here we provide a conceptual model for providing feedback after noncredible performance has been detected. In a pilot study, we examine caregiver satisfaction and postconcussive symptoms following provision of this feedback for patients seen through our concussion program. Participants (N = 70) were 8-17-year-olds with a history of mild traumatic brain injury who underwent an abbreviated neuropsychological evaluation between 2 and 12 months post-injury. We examined postconcussive symptom reduction and caregiver satisfaction after neuropsychological evaluation between groups of patients who were determined to have provided noncredible effort (n = 9) and those for whom no validity concerns were present (n = 61). We found similarly high levels of caregiver satisfaction between groups and greater reduction in self-reported symptoms after feedback was provided using the model with children with noncredible presentations compared to those with credible presentations. The current study lends preliminary support to the idea that the identification and communication of invalid performance can be a beneficial clinical intervention that promotes high levels of caregiver satisfaction and a reduction in self-reported and caregiver-reported symptoms.

  1. Theory of ultra dense matter and the dynamics of high energy interactions involving nuclei

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1993-01-01

    Progress in the areas of pQCD radiative processes in dense matter, QCD transport theories to describe the evolution of nonequilibrium phenomena in dense matter, and the development and testing of phenomenological models of high-energy nuclear collisions is summarized. The evolution of the total energy density of quarks and gluons with minijet initial conditions at RHIC energy is shown for Au+Au

  2. Stochastic entangled chain dynamics of dense polymer solutions.

    Science.gov (United States)

    Kivotides, Demosthenes; Wilkin, S Louise; Theofanous, Theo G

    2010-10-14

    We propose an adjustable-parameter-free, entangled chain dynamics model of dense polymer solutions. The model includes the self-consistent dynamics of molecular chains and solvent by describing the former via coarse-grained polymer dynamics that incorporate hydrodynamic interaction effects, and the latter via the forced Stokes equation. Real chain elasticity is modeled via the inclusion of a Pincus regime in the polymer's force-extension curve. Excluded volume effects are taken into account via the combined action of coarse-grained intermolecular potentials and explicit geometric tracking of chain entanglements. We demonstrate that entanglements are responsible for a new (compared to phantom chain dynamics), slow relaxation mode whose characteristic time scale agrees very well with experiment. Similarly good agreement between theory and experiment is also obtained for the equilibrium chain size. We develop methods for the solution of the model in periodic flow domains and apply them to the computation of entangled polymer solutions in equilibrium. We show that the number of entanglements Π agrees well with the number of entanglements expected on the basis of tube theory, satisfactorily reproducing the latter's scaling of Π with the polymer volume fraction φ. Our model predicts diminishing chain size with concentration, thus vindicating Flory's suggestion of excluded volume effects screening in dense solutions. The predicted scaling of chain size with φ is consistent with the heuristic, Flory theory based value.

  3. Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma

    OpenAIRE

    Liu, Wei; Hsu, Scott C.

    2010-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a uniform hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER and NSTX (National Spherical Torus Experiment). Unmagnetized dense plasma jet injection is similar to compact toroid injection but with much higher plasma density and total mass, and consequently lower required injection velocit...

  4. DENSE TRACKING AND MAPPING WITH A QUADROCOPTER

    Directory of Open Access Journals (Sweden)

    J. Sturm

    2013-08-01

    Full Text Available In this paper, we present an approach for acquiring textured 3D models of room-sized indoor spaces using a quadrocopter. Such room models are for example useful for architects and interior designers as well as for factory planners and construction managers. The model is internally represented by a signed distance function (SDF and the SDF is used to directly track the camera with respect to the model. Our solution enables accurate position control of the quadrocopter, so that it can automatically follow a pre-defined flight pattern. Our system provides live feedback of the acquired 3D model to the user. The final model consisting of a textured 3D triangle mesh can be saved in several standard CAD file formats.

  5. Salmonids, stream temperatures, and solar loading--modeling the shade provided to the Klamath River by vegetation and geomorphology

    Science.gov (United States)

    Forney, William M.; Soulard, Christopher E.; Chickadel, C. Christopher

    2013-01-01

    The U.S. Geological Survey is studying approaches to characterize the thermal regulation of water and the dynamics of cold water refugia. High temperatures have physiological impacts on anadromous fish species. Factors affecting the presence, variability, and quality of thermal refugia are known, such as riverine and watershed processes, hyporheic flows, deep pools and bathymetric factors, thermal stratification of reservoirs, and other broader climatic considerations. This research develops a conceptual model and methodological techniques to quantify the change in solar insolation load to the Klamath River caused by riparian and floodplain vegetation, the morphology of the river, and the orientation and topographic characteristics of its watersheds. Using multiple scales of input data from digital elevation models and airborne light detection and ranging (LiDAR) derivatives, different analysis methods yielded three different model results. These models are correlated with thermal infrared imagery for ground-truth information at the focal confluence with the Scott River. Results from nonparametric correlation tests, geostatistical cross-covariograms, and cross-correlograms indicate that statistical relationships between the insolation models and the thermal infrared imagery exist and are significant. Furthermore, the use of geostatistics provides insights to the spatial structure of the relationships that would not be apparent otherwise. To incorporate a more complete representation of the temperature dynamics in the river system, other variables including the factors mentioned above, and their influence on solar loading, are discussed. With similar datasets, these methods could be applied to any river in the United States—especially those listed as temperature impaired under Section 303(d) of the Clean Water Act—or international riverine systems. Considering the importance of thermal refugia for aquatic species, these methods can help investigate opportunities

  6. WARM EXTENDED DENSE GAS AT THE HEART OF A COLD COLLAPSING DENSE CORE

    International Nuclear Information System (INIS)

    Shinnaga, Hiroko; Phillips, Thomas G.; Furuya, Ray S.; Kitamura, Yoshimi

    2009-01-01

    In order to investigate when and how the birth of a protostellar core occurs, we made survey observations of four well-studied dense cores in the Taurus molecular cloud using CO transitions in submillimeter bands. We report here the detection of unexpectedly warm (∼30-70 K), extended (radius of ∼2400 AU), dense (a few times 10 5 cm -3 ) gas at the heart of one of the dense cores, L1521F (MC27), within the cold dynamically collapsing components. We argue that the detected warm, extended, dense gas may originate from shock regions caused by collisions between the dynamically collapsing components and outflowing/rotating components within the dense core. We propose a new stage of star formation, 'warm-in-cold core stage (WICCS)', i.e., the cold collapsing envelope encases the warm extended dense gas at the center due to the formation of a protostellar core. WICCS would constitute a missing link in evolution between a cold quiescent starless core and a young protostar in class 0 stage that has a large-scale bipolar outflow.

  7. A multi-objective location-inventory model for 3PL providers with sustainable considerations under uncertainty

    Directory of Open Access Journals (Sweden)

    R. Daghigh

    2016-09-01

    Full Text Available In recent years, logistics development is considered as an important aspect of any country’s development. Outsourcing logistics activities to third party logistics (3PL providers is a common way to achieve logistics development. On the other hand, globalization and increasing customers’ concern about the environmental impact of activities as well as the appearance of the issue of social responsibility have led companies employ sustainable supply chain management, which considers economic, environmental and social benefits, simultaneously. This paper proposes a multi-objective model to design logistics network for 3PL providers by considering sustainable objectives under uncertainty. Objective functions include minimizing the total cost, minimizing greenhouse gas emission and maximizing social responsibility subject to fair access to products, number of created job opportunities and local community development. It is worth mentioning that in the present paper the perishability of products is also considered. A numerical example is provided to solve and validate model using augmented Epsilon-Constraint method. The results show that three sustainable objectives were in conflict and as the one receives more desirable values, the others fall into more undesirable values. In addition, by increasing maximum perishable time periods and by considering lateral transshipment among facilities of a level one can improve sustainability indices of the problem, which indicates the necessity of such policy in improving network sustainability.

  8. Thermal and nonthermal motions in dense cores

    Energy Technology Data Exchange (ETDEWEB)

    Myers, P.C.; Ladd, E.F.; Fuller, G.A. (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (USA))

    1991-05-01

    Kinetic temperature and NH3 line width data for 61 dense cores with embedded IRAS sources show that the nonthermal component of the core motions increases with source luminosity more rapidly than does the thermal component. The trends cross in the luminosity range 7-22 solar luminosities, which divides the regimes of thermal and nonthermal motions. Maps of line widths in dense cores and their surrounding clouds indicate that nonthermal line broadening is due not only to stellar winds, but also to gas properties independent of the star. The 'initial conditions' for motions in cores forming lower-mass stars are primarily thermal, while those in cores forming higher mass stars are probably primarily nonthermal. These differences in core properties may arise from differences in the relative proportion of magnetic and gravitational energy in the condensing core. 30 refs.

  9. Deterministic dense coding with partially entangled states

    Science.gov (United States)

    Mozes, Shay; Oppenheim, Jonathan; Reznik, Benni

    2005-01-01

    The utilization of a d -level partially entangled state, shared by two parties wishing to communicate classical information without errors over a noiseless quantum channel, is discussed. We analytically construct deterministic dense coding schemes for certain classes of nonmaximally entangled states, and numerically obtain schemes in the general case. We study the dependency of the maximal alphabet size of such schemes on the partially entangled state shared by the two parties. Surprisingly, for d>2 it is possible to have deterministic dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by a single particle is between d and 2d . In general, we numerically find that the maximal alphabet size is any integer in the range [d,d2] with the possible exception of d2-1 . We also find that states with less entanglement can have a greater deterministic communication capacity than other more entangled states.

  10. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    -ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation......Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X...

  11. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2016-12-10

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step-size restriction as the method itself. A general recipe for first-order SSP dense output formulae for SSP methods is given, and second-order dense output formulae for several optimal SSP methods are developed. It is shown that SSP dense output formulae of order three and higher do not exist, and that in any method possessing a second-order SSP dense output, the coefficient matrix A has a zero row.

  12. Accelerating Dense Linear Algebra on the GPU

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    and matrix-vector operations on GPUs. Such operations form the backbone of level 1 and level 2 routines in the Basic Linear Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific applications. The target hardware is the most recent NVIDIA Tesla 20-series (Fermi...... architecture). Most of the techniques I discuss for accelerating dense linear algebra are applicable to memory-bound GPU algorithms in general....

  13. Particle identification system based on dense aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Barnyakov, A.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Barnyakov, M.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Beloborodov, K.I., E-mail: K.I.Beloborodov@inp.nsk.su [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Bobrovnikov, V.S.; Buzykaev, A.R. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Danilyuk, A.F. [Boreskov Institute of Catalysis, 5, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Golubev, V.B. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Gulevich, V.V. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Kononov, S.A.; Kravchenko, E.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Onuchin, A.P.; Martin, K.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Serednyakov, S.I. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); and others

    2013-12-21

    A threshold Cherenkov counter based on dense aerogel with refraction index n=1.13 is described. This counter is used for kaon identification at momenta below 1 GeV/c in the SND detector, which takes data at the VEPP-2000 e{sup +}e{sup −} collider. The results of measurements of the counter efficiency using electrons, muons, pions, and kaons produced in e{sup +}e{sup −} annihilation are presented.

  14. Formation and fragmentation of protostellar dense cores

    International Nuclear Information System (INIS)

    Maury, Anaelle

    2009-01-01

    Stars form in molecular clouds, when they collapse and fragment to produce protostellar dense cores. These dense cores are then likely to contract under their own gravity, and form young protostars, that further evolve while accreting their circumstellar mass, until they reach the main sequence. The main goal of this thesis was to study the formation and fragmentation of protostellar dense cores. To do so, two main studies, described in this manuscript, were carried out. First, we studied the formation of protostellar cores by quantifying the impact of protostellar outflows on clustered star formation. We carried out a study of the protostellar outflows powered by the young stellar objects currently formed in the NGc 2264-C proto-cluster, and we show that protostellar outflows seem to play a crucial role as turbulence progenitors in clustered star forming regions, although they seem unlikely to significantly modify the global infall processes at work on clump scales. Second, we investigated the formation of multiple systems by core fragmentation, by using high - resolution observations that allow to probe the multiplicity of young protostars on small scales. Our results suggest that the multiplicity rate of protostars on small scales increase while they evolve, and thus favor dynamical scenarios for the formation of multiple systems. Moreover, our results favor magnetized scenarios of core collapse to explain the small-scale properties of protostars at the earliest stages. (author) [fr

  15. Multishock Compression Properties of Warm Dense Argon

    Science.gov (United States)

    Zheng, Jun; Chen, Qifeng; Yunjun, Gu; Li, Zhiguo; Shen, Zhijun

    2015-10-01

    Warm dense argon was generated by a shock reverberation technique. The diagnostics of warm dense argon were performed by a multichannel optical pyrometer and a velocity interferometer system. The equations of state in the pressure-density range of 20-150 GPa and 1.9-5.3 g/cm3 from the first- to fourth-shock compression were presented. The single-shock temperatures in the range of 17.2-23.4 kK were obtained from the spectral radiance. Experimental results indicates that multiple shock-compression ratio (ηi = ρi/ρ0) is greatly enhanced from 3.3 to 8.8, where ρ0 is the initial density of argon and ρi (i = 1, 2, 3, 4) is the compressed density from first to fourth shock, respectively. For the relative compression ratio (ηi’ = ρi/ρi-1), an interesting finding is that a turning point occurs at the second shocked states under the conditions of different experiments, and ηi’ increases with pressure in lower density regime and reversely decreases with pressure in higher density regime. The evolution of the compression ratio is controlled by the excitation of internal degrees of freedom, which increase the compression, and by the interaction effects between particles that reduce it. A temperature-density plot shows that current multishock compression states of argon have distributed into warm dense regime.

  16. Can oral vitamin D prevent the cardiovascular diseases among migrants in Australia? Provider perspective using Markov modelling.

    Science.gov (United States)

    Ruwanpathirana, Thilanga; Owen, Alice; Renzaho, Andre M N; Zomer, Ella; Gambhir, Manoj; Reid, Christopher M

    2015-06-01

    The study was designed to model the effectiveness and cost effectiveness of oral Vitamin D supplementation as a primary prevention strategy for cardiovascular disease among a migrant population in Australia. It was carried out in the Community Health Service, Kensington, Melbourne. Best-case scenario analysis using a Markov model was employed to look at the health care providers' perspective. Adult migrants who were vitamin D deficient and free from cardiovascular disease visiting the medical centre at least once during the period from 1 January 2010 to 31 December 2012 were included in the study. The blood pressure-lowering effect of vitamin D was taken from a published meta-analysis and applied in the Framingham 10 year cardiovascular risk algorithm (with and without oral vitamin D supplements) to generate the probabilities of cardiovascular events. A Markov decision model was used to estimate the provider costs associated with the events and treatments. Uncertainties were derived by Monte Carlo simulation. Vitamin D oral supplementation (1000 IU/day) for 10 years could potentially prevent 31 (interquartile range (IQR) 26 to 37) non-fatal and 11 (IQR 10 to 15) fatal cardiovascular events in a migrant population of 10,000 assuming 100% compliance. The provider perspective incremental cost effectiveness per year of life saved was AU$3,992 (IQR 583 to 8558). This study suggests subsidised supplementation of oral vitamin D may be a cost effective intervention to reduce non-fatal and fatal cardiovascular outcomes in high-risk migrant populations. © 2015 Wiley Publishing Asia Pty Ltd.

  17. Plasmon-polariton modes of dense Au nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hongdan; Lemmens, Peter; Wulferding, Dirk; Cetin, Mehmet Fatih [IPKM, TU-BS, Braunschweig (Germany); Tornow, Sabine; Zwicknagl, Gertrud [IMP, TU-BS, Braunschweig (Germany); Krieg, Ulrich; Pfnuer, Herbert [IFP, LU Hannover (Germany); Daum, Winfried; Lilienkamp, Gerhard [IEPT, TU Clausthal (Germany); Schilling, Meinhard [EMG, TU-BS, Braunschweig (Germany)

    2011-07-01

    Using optical absorption and other techniques we study plasmon-polariton modes of dense Au nanowire arrays as function of geometrical parameters and coupling to molecular degrees of freedom. For this instance we electrochemically deposit Au nanowires in porous alumina with well controlled morphology and defect concentration. Transverse and longitudinal modes are observed in the absorption spectra resulting from the anisotropic plasmonic structure. The longitudinal mode shows a blue shift of energy with increasing length of the wires due to the more collective nature of this response. We compare our observations with model calculations and corresponding results on 2D Ag nanowire lattices.

  18. Reiterated inclusions of dipoles in a dense plasma

    International Nuclear Information System (INIS)

    Naouri, Gerard

    1983-01-01

    This thesis introduces a simple model made up for the calculation of pressure effects in dense and partially ionized 3 D two component plasma. The technic used is the description of the overlapping of atomic orbitals by means of interacting dipoles incased in one another. By iteration of this procedure we get an effective two-body potential which allows us to calculate line shifts of hydrogenic ions. In conclusion we suggest a possible improvement of the method by substituting a self consistent potential to the Debye one for the calculation of the wave functions. [fr

  19. Modeling the Ecosystem Services Provided by Trees in Urban Ecosystems: Using Biome-BGC to Improve i-Tree Eco

    Science.gov (United States)

    Brown, Molly E.; McGroddy, Megan; Spence, Caitlin; Flake, Leah; Sarfraz, Amna; Nowak, David J.; Milesi, Cristina

    2012-01-01

    As the world becomes increasingly urban, the need to quantify the effect of trees in urban environments on energy usage, air pollution, local climate and nutrient run-off has increased. By identifying, quantifying and valuing the ecological activity that provides services in urban areas, stronger policies and improved quality of life for urban residents can be obtained. Here we focus on two radically different models that can be used to characterize urban forests. The i-Tree Eco model (formerly UFORE model) quantifies ecosystem services (e.g., air pollution removal, carbon storage) and values derived from urban trees based on field measurements of trees and local ancillary data sets. Biome-BGC (Biome BioGeoChemistry) is used to simulate the fluxes and storage of carbon, water, and nitrogen in natural environments. This paper compares i-Tree Eco's methods to those of Biome-BGC, which estimates the fluxes and storage of energy, carbon, water and nitrogen for vegetation and soil components of the ecosystem. We describe the two models and their differences in the way they calculate similar properties, with a focus on carbon and nitrogen. Finally, we discuss the implications of further integration of these two communities for land managers such as those in Maryland.

  20. Using Model-Based Systems Engineering To Provide Artifacts for NASA Project Life-Cycle and Technical Reviews

    Science.gov (United States)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    The ability of systems engineers to use model-based systems engineering (MBSE) to generate self-consistent, up-to-date systems engineering products for project life-cycle and technical reviews is an important aspect for the continued and accelerated acceptance of MBSE. Currently, many review products are generated using labor-intensive, error-prone approaches based on documents, spreadsheets, and chart sets; a promised benefit of MBSE is that users will experience reductions in inconsistencies and errors. This work examines features of SysML that can be used to generate systems engineering products. Model elements, relationships, tables, and diagrams are identified for a large number of the typical systems engineering artifacts. A SysML system model can contain and generate most systems engineering products to a significant extent and this paper provides a guide on how to use MBSE to generate products for project life-cycle and technical reviews. The use of MBSE can reduce the schedule impact usually experienced for review preparation, as in many cases the review products can be auto-generated directly from the system model. These approaches are useful to systems engineers, project managers, review board members, and other key project stakeholders.

  1. NOAA People Empowered Products (PeEP): Combining social media with scientific models to provide eye-witness confirmed products

    Science.gov (United States)

    Codrescu, S.; Green, J. C.; Redmon, R. J.; Minor, K.; Denig, W. F.; Kihn, E. A.

    2013-12-01

    NOAA products and alerts rely on combinations of models and data to provide the public with information regarding space and terrestrial weather phenomena and hazards. This operational paradigm, while effective, neglects an abundant free source of measurements: millions of eyewitnesses viewing weather events. We demonstrate the capabilities of a prototype People Empowered Product (PeEP) that combines the OVATION prime auroral model running at the NOAA National Geophysical Data Center with Twitter reports of observable aurora. We introduce an algorithm for scoring Tweets based on keywords to improve the signal to noise of this dynamic data source. We use the location of the aurora derived from this new database of crowd sourced observations to validate the OVATION model for use in auroral forecasting. The combined product displays the model aurora in real time with markers showing the location and text of tweets from people actually observing the aurora. We discuss how the application might be extended to other space weather products such as radiation related satellite anomalies.

  2. Low energy antiprotons from supernova exploding in dense clouds

    Science.gov (United States)

    Stephens, S. A.; Mauger, B. G.

    1984-01-01

    The antiproton spectrum resulting from a supernova, which exploded inside a dense cloud, is calculated by taking into account all energy loss processes including adiabatic deceleration during the expansion phase. The influence of various energy loss processes on the evolution of the spectrum as the supernova expands is investigated. It is shown that if about 25 percent of the cosmic ray nucleons are from such sources, the observed low energy antiprotons can be explained, provided the effect of solar modulation is not very large. The possibility of obtaining enhanced low energy spectrum by this process is also examined.

  3. Interaction of CO2 laser radiation with dense plasma

    OpenAIRE

    Abdel-Raoof, Wasfi Sharkawy

    1980-01-01

    The instabilities which occur in the interaction of CO2 laser radiation with a dense plasma have been studied. A TEA CO2 laser provided pulses of up to 30 joules of energy with a duration of 50 nanoseconds. By focussing the radiation on to a plane target a focal spot of about 180 micrometers diameter was formed with a irradiance of 10 to 10 W cm. The scattered radiation was collected by a laser focussing lens and analysed with a grating spectrometer. Linear relationships have been found betwe...

  4. The influence of socioeconomic status on women's preferences for modern contraceptive providers in Nigeria: a multilevel choice modeling

    Directory of Open Access Journals (Sweden)

    Aremu O

    2013-12-01

    Full Text Available Olatunde Aremu School of Health, Sport, and Bioscience, Health Studies Field, University of East London, London, United Kingdom Background: Contraceptives are one of the most cost effective public health interventions. An understanding of the factors influencing users' preferences for contraceptives sources, in addition to their preferred methods of contraception, is an important factor in increasing contraceptive uptake. This study investigates the effect of women’s contextual and individual socioeconomic positions on their preference for contraceptive sources among current users in Nigeria. Methods: A multilevel modeling analysis was conducted using the most recent 2008 Nigerian Demographic and Health Surveys data of women aged between 15 and 49 years old. The analysis included 1,834 ever married women from 888 communities across the 36 states of the federation, including the Federal Capital Territory of Abuja. Three outcome variables, private, public, and informal provisions of contraceptive sources, were considered in the modeling. Results: There was variability in women's preferences for providers across communities. The result shows that change in variance accounted for about 31% and 19% in the odds of women's preferences for both private and public providers across communities. Younger age and being from the richest households are strongly associated with preference for both private and public providers. Living in rural areas and economically deprived neighborhoods were the community level determinants of women's preferences. Conclusion: This study documents the independent association of contextual socioeconomic characteristics and individual level socioeconomic factors with women's preferences for contraceptive commodity providers in Nigeria. Initiatives that seek to improve modern contraceptive uptake should jointly consider users’ preferences for sources of these commodities in addition to their preference for contraceptive type

  5. An investigation on characterizing dense coal-water slurry with ultrasound: theoretical and experimental method

    Energy Technology Data Exchange (ETDEWEB)

    Xue, M.H.; Su, M.X.; Dong, L.L.; Shang, Z.T.; Cai, X.S. [Shanghai University of Science & Technology, Shanghai (China)

    2010-07-01

    Particle size distribution and concentration in particulate two-phase flow are important parameters in a wide variety of industrial areas. For the purpose of online characterization in dense coal-water slurries, ultrasonic methods have many advantages such as avoiding dilution, the capability for being used in real time, and noninvasive testing, while light-based techniques are not capable of providing information because optical methods often require the slurry to be diluted. In this article, the modified Urick equation including temperature modification, which can be used to determine the concentration by means of the measurement of ultrasonic velocity in a coal-water slurry, is evaluated on the basis of theoretical analysis and experimental study. A combination of the coupled-phase model and the Bouguer-Lambert-Beer law is employed in this work, and the attenuation spectrum is measured within the frequency region from 3 to 12 MHz. Particle size distributions of the coal-water slurry at different volume fractions are obtained with the optimum regularization technique. Therefore, the ultrasonic technique presented in this work brings the possibility of using ultrasound for online measurements of dense slurries.

  6. First Characterization of the Neospora caninum Dense Granule Protein GRA9

    Directory of Open Access Journals (Sweden)

    Margret Leineweber

    2017-01-01

    Full Text Available The obligate intracellular apicomplexan parasite Neospora caninum (N. caninum is closely related to Toxoplasma gondii (T. gondii. The dense granules, which are present in all apicomplexan parasites, are important secretory organelles. Dense granule (GRA proteins are released into the parasitophorous vacuole (PV following host cell invasion and are known to play important roles in the maintenance of the host-parasite relationship and in the acquisition of nutrients. Here, we provide a detailed characterization of the N. caninum dense granule protein NcGRA9. The in silico genomic organization and key protein characteristics are described. Immunofluorescence-based localization studies revealed that NcGRA9 is located in the dense granules and is released into the interior of the PV following host cell invasion. Immunogold-electron microscopy confirmed the dense granule localization and showed that NcGRA9 is associated with the intravacuolar network. In addition, NcGRA9 is found in the “excreted secreted antigen” (ESA fraction of N. caninum. Furthermore, by analysing the distribution of truncated versions of NcGRA9, we provide evidence that the C-terminal region of this protein is essential for the targeting of NcGRA9 into the dense granules of N. caninum, and the truncated proteins show reduced secretion.

  7. Orbital free molecular dynamics; Approche sans orbitale des plasmas denses

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, F

    2007-08-15

    The microscopic properties of hot and dense plasmas stay a field essentially studied thanks to classical theories like the One Component Plasma, models which rely on free parameters, particularly ionization. In order to investigate these systems, we have used, in this PhD work, a semi-classical model, without free parameters, that is based on coupling consistently classical molecular dynamics for the nuclei and orbital free density functional theory for the electrons. The electronic fluid is represented by a free energy entirely determined by the local density. This approximation was validated by a comparison with an ab initio technique, quantum molecular dynamics. This one is identical to the previous except for the description of the free energy that depends on a quantum-independent-particle model. Orbital free molecular dynamics was then used to compute equation of state of boron and iron plasmas in the hot and dense regime. Furthermore, comparisons with classical theories were performed on structural and dynamical properties. Finally, equation of state and transport coefficients mixing laws were studied by direct simulation of a plasma composed of deuterium and copper. (author)

  8. Thermophysical properties of multi-shock compressed dense argon.

    Science.gov (United States)

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  9. Parallel Access of Out-Of-Core Dense Extendible Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Otoo, Ekow J; Rotem, Doron

    2007-07-26

    Datasets used in scientific and engineering applications are often modeled as dense multi-dimensional arrays. For very large datasets, the corresponding array models are typically stored out-of-core as array files. The array elements are mapped onto linear consecutive locations that correspond to the linear ordering of the multi-dimensional indices. Two conventional mappings used are the row-major order and the column-major order of multi-dimensional arrays. Such conventional mappings of dense array files highly limit the performance of applications and the extendibility of the dataset. Firstly, an array file that is organized in say row-major order causes applications that subsequently access the data in column-major order, to have abysmal performance. Secondly, any subsequent expansion of the array file is limited to only one dimension. Expansions of such out-of-core conventional arrays along arbitrary dimensions, require storage reorganization that can be very expensive. Wepresent a solution for storing out-of-core dense extendible arrays that resolve the two limitations. The method uses a mapping function F*(), together with information maintained in axial vectors, to compute the linear address of an extendible array element when passed its k-dimensional index. We also give the inverse function, F-1*() for deriving the k-dimensional index when given the linear address. We show how the mapping function, in combination with MPI-IO and a parallel file system, allows for the growth of the extendible array without reorganization and no significant performance degradation of applications accessing elements in any desired order. We give methods for reading and writing sub-arrays into and out of parallel applications that run on a cluster of workstations. The axial-vectors are replicated and maintained in each node that accesses sub-array elements.

  10. Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model.

    Directory of Open Access Journals (Sweden)

    Hong J Lee

    Full Text Available BACKGROUND: Intracerebral hemorrhage (ICH is a lethal stroke type. As mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs selectively migrate to the brain and induce behavioral recovery in rat ICH model, and that combined administration of NSCs and vascular endothelial growth factor (VEGF results in improved structural and functional outcome from cerebral ischemia. METHODS AND FINDINGS: We postulated that human NSCs overexpressing VEGF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs, increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by unilateral injection of bacterial collagenase into striatum. HB1.F3.VEGF human NSC line produced an amount of VEGF four times higher than parental F3 cell line in vitro, and induced behavioral improvement and 2-3 fold increase in cell survival at two weeks and eight weeks post-transplantation. CONCLUSIONS: Brain transplantation of F3 human NSCs over-expressing VEGF near ICH lesion sites provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results suggest a possible application of the human neural stem cell line, which is genetically modified to over-express VEGF, as a therapeutic agent for ICH-stroke.

  11. Improvement of AEP Predictions Using Diurnal CFD Modelling with Site-Specific Stability Weightings Provided from Mesoscale Simulation

    Science.gov (United States)

    Hristov, Y.; Oxley, G.; Žagar, M.

    2014-06-01

    The Bolund measurement campaign, performed by Danish Technical University (DTU) Wind Energy Department (also known as RISØ), provided significant insight into wind flow modeling over complex terrain. In the blind comparison study several modelling solutions were submitted with the vast majority being steady-state Computational Fluid Dynamics (CFD) approaches with two equation k-epsilon turbulence closure. This approach yielded the most accurate results, and was identified as the state-of-the-art tool for wind turbine generator (WTG) micro-siting. Based on the findings from Bolund, further comparison between CFD and field measurement data has been deemed essential in order to improve simulation accuracy for turbine load and long-term Annual Energy Production (AEP) estimations. Vestas Wind Systems A/S is a major WTG original equipment manufacturer (OEM) with an installed base of over 60GW in over 70 countries accounting for 19% of the global installed base. The Vestas Performance and Diagnostic Centre (VPDC) provides online live data to more than 47GW of these turbines allowing a comprehensive comparison between modelled and real-world energy production data. In previous studies, multiple sites have been simulated with a steady neutral CFD formulation for the atmospheric surface layer (ASL), and wind resource (RSF) files have been generated as a base for long-term AEP predictions showing significant improvement over predictions performed with the industry standard linear WAsP tool. In this study, further improvements to the wind resource file generation with CFD are examined using an unsteady diurnal cycle approach with a full atmospheric boundary layer (ABL) formulation, with the unique stratifications throughout the cycle weighted according to mesoscale simulated sectorwise stability frequencies.

  12. Xenon and sevoflurane provide analgesia during labor and fetal brain protection in a perinatal rat model of hypoxia-ischemia.

    Directory of Open Access Journals (Sweden)

    Ting Yang

    Full Text Available It is not possible to identify all pregnancies at risk of neonatal hypoxic-ischemic encephalopathy (HIE. Many women use some form of analgesia during childbirth and some anesthetic agents have been shown to be neuroprotective when used as analgesics at subanesthetic concentrations. In this study we sought to understand the effects of two anesthetic agents with presumptive analgesic activity and known preconditioning-neuroprotective properties (sevoflurane or xenon, in reducing hypoxia-induced brain damage in a model of intrauterine perinatal asphyxia. The analgesic and neuroprotective effects at subanesthetic levels of sevoflurane (0.35% or xenon (35% were tested in a rat model of intrauterine perinatal asphyxia. Analgesic effects were measured by assessing maternal behavior and spinal cord dorsal horn neuronal activation using c-Fos. In separate experiments, intrauterine fetal asphyxia was induced four hours after gas exposure; on post-insult day 3 apoptotic cell death was measured by caspase-3 immunostaining in hippocampal neurons and correlated with the number of viable neurons on postnatal day (PND 7. A separate cohort of pups was nurtured by a surrogate mother for 50 days when cognitive testing with Morris water maze was performed. Both anesthetic agents provided analgesia as reflected by a reduction in the number of stretching movements and decreased c-Fos expression in the dorsal horn of the spinal cord. Both agents also reduced the number of caspase-3 positive (apoptotic neurons and increased cell viability in the hippocampus at PND7. These acute histological changes were mirrored by improved cognitive function measured remotely after birth on PND 50 compared to control group. Subanesthetic doses of sevoflurane or xenon provided both analgesia and neuroprotection in this model of intrauterine perinatal asphyxia. These data suggest that anesthetic agents with neuroprotective properties may be effective in preventing HIE and should be

  13. Examining the Support Peer Supporters Provide Using Structural Equation Modeling: Nondirective and Directive Support in Diabetes Management.

    Science.gov (United States)

    Kowitt, Sarah D; Ayala, Guadalupe X; Cherrington, Andrea L; Horton, Lucy A; Safford, Monika M; Soto, Sandra; Tang, Tricia S; Fisher, Edwin B

    2017-12-01

    Little research has examined the characteristics of peer support. Pertinent to such examination may be characteristics such as the distinction between nondirective support (accepting recipients' feelings and cooperative with their plans) and directive (prescribing "correct" choices and feelings). In a peer support program for individuals with diabetes, this study examined (a) whether the distinction between nondirective and directive support was reflected in participants' ratings of support provided by peer supporters and (b) how nondirective and directive support were related to depressive symptoms, diabetes distress, and Hemoglobin A1c (HbA1c). Three hundred fourteen participants with type 2 diabetes provided data on depressive symptoms, diabetes distress, and HbA1c before and after a diabetes management intervention delivered by peer supporters. At post-intervention, participants reported how the support provided by peer supporters was nondirective or directive. Confirmatory factor analysis (CFA), correlation analyses, and structural equation modeling examined the relationships among reports of nondirective and directive support, depressive symptoms, diabetes distress, and measured HbA1c. CFA confirmed the factor structure distinguishing between nondirective and directive support in participants' reports of support delivered by peer supporters. Controlling for demographic factors, baseline clinical values, and site, structural equation models indicated that at post-intervention, participants' reports of nondirective support were significantly associated with lower, while reports of directive support were significantly associated with greater depressive symptoms, altogether (with control variables) accounting for 51% of the variance in depressive symptoms. Peer supporters' nondirective support was associated with lower, but directive support was associated with greater depressive symptoms.

  14. THE MODEL OF PREVENTION OF VANDAL BEHAVIOR PROVIDED BY THE DEFORMATIONS AND DESTRUCTIONS OF VALUABLE SPHERE OF YOUTH

    Directory of Open Access Journals (Sweden)

    Irina V. Vorobyeva

    2015-01-01

    model involves personal values that are considered as a dynamic system. Fundamentally new approach to prevention interventions is realised: the model focuses not so much on sanctions actions as on technologies of psychological influences on the problem personality; and formation of steady prosocial strategy of person’s behaviour. Practical significance. The research findings and the application of the proposed model can be useful while planning of educative work in terms of educational institutions by the teachers, administrators and parents, as it provides the possibility to organize selective and point events to prevent destructive behavior of pupils and students, taking into account the characteristics of their value and the scope of actual problems in the manifestation of activity.  

  15. Medicare Provider Data - Hospice Providers

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Hospice Utilization and Payment Public Use File provides information on services provided to Medicare beneficiaries by hospice providers. The Hospice PUF...

  16. Transonic aerodynamics of dense gases. M.S. Thesis - Virginia Polytechnic Inst. and State Univ., Apr. 1990

    Science.gov (United States)

    Morren, Sybil Huang

    1991-01-01

    Transonic flow of dense gases for two-dimensional, steady-state, flow over a NACA 0012 airfoil was predicted analytically. The computer code used to model the dense gas behavior was a modified version of Jameson's FL052 airfoil code. The modifications to the code enabled modeling the dense gas behavior near the saturated vapor curve and critical pressure region where the fundamental derivative, Gamma, is negative. This negative Gamma region is of interest because the nonclassical gas behavior such as formation and propagation of expansion shocks, and the disintegration of inadmissible compression shocks may exist. The results indicated that dense gases with undisturbed thermodynamic states in the negative Gamma region show a significant reduction in the extent of the transonic regime as compared to that predicted by the perfect gas theory. The results support existing theories and predictions of the nonclassical, dense gas behavior from previous investigations.

  17. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease

    Directory of Open Access Journals (Sweden)

    Wendy Westbroek

    2016-07-01

    Full Text Available Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1. Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1. To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba−/− mice and the control littermate (gba+/+ by infecting differentiated primary cortical neurons in culture with an EF1α-SV40T lentivirus. Immortalized gba−/− neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba+/+ neurons. This null allele gba−/− mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies.

  18. Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism.

    Science.gov (United States)

    Shipley, Mackenzie M; Mangold, Colleen A; Kuny, Chad V; Szpara, Moriah L

    2017-12-01

    Neuron-virus interactions that occur during herpes simplex virus (HSV) infection are not fully understood. Neurons are the site of lifelong latency and are a crucial target for long-term suppressive therapy or viral clearance. A reproducible neuronal model of human origin would facilitate studies of HSV and other neurotropic viruses. Current neuronal models in the herpesvirus field vary widely and have caveats, including incomplete differentiation, nonhuman origins, or the use of dividing cells that have neuropotential but lack neuronal morphology. In this study, we used a robust approach to differentiate human SH-SY5Y neuroblastoma cells over 2.5 weeks, producing a uniform population of mature human neuronal cells. We demonstrate that terminally differentiated SH-SY5Y cells have neuronal morphology and express proteins with subcellular localization indicative of mature neurons. These neuronal cells are able to support a productive HSV-1 infection, with kinetics and overall titers similar to those seen in undifferentiated SH-SY5Y cells and the related SK-N-SH cell line. However, terminally differentiated, neuronal SH-SY5Y cells release significantly less extracellular HSV-1 by 24 h postinfection (hpi), suggesting a unique neuronal response to viral infection. With this model, we are able to distinguish differences in neuronal spread between two strains of HSV-1. We also show expression of the antiviral protein cyclic GMP-AMP synthase (cGAS) in neuronal SH-SY5Y cells, which is the first demonstration of the presence of this protein in nonepithelial cells. These data provide a model for studying neuron-virus interactions at the single-cell level as well as via bulk biochemistry and will be advantageous for the study of neurotropic viruses in vitro IMPORTANCE Herpes simplex virus (HSV) affects millions of people worldwide, causing painful oral and genital lesions, in addition to a multitude of more severe symptoms such as eye disease, neonatal infection, and, in rare

  19. The Hispanic Clinic for Pediatric Surgery: A model to improve parent-provider communication for Hispanic pediatric surgery patients.

    Science.gov (United States)

    Jaramillo, Joshua; Snyder, Elizabeth; Dunlap, Jonathan L; Wright, Robert; Mendoza, Fernando; Bruzoni, Matias

    2016-04-01

    26 million Americans have limited English proficiency (LEP). It is well established that language barriers adversely affect health and health care. Despite growing awareness of language barriers, there is essentially a void in the medical literature regarding the influence of language disparity on pediatric surgery patients. This study was designed to assess the impact of patient-provider language concordance on question-asking behavior and patient satisfaction for pediatric surgery patients. Participants included families of patients in a General Pediatric Surgery Clinic categorized into 3 groups by patient-provider language concordance: concordant English-speaking, LEP concordant Spanish-speaking, and LEP discordant Spanish-speaking using an interpreter. Clinical visits were audio recorded and the number of patient-initiated questions and the length of clinical encounter were measured. Families were administered a surgery-specific, 5-point Likert scale questionnaire modeled after validated surveys concerning communication, trust, perceived discrimination and patient-provider language concordance. Regression models were performed to analyze associations between language concordance and patient's question-asking behavior and between language concordance and survey results. A total of 156 participants were enrolled including 57 concordant-English, 52 LEP concordant-Spanish and 47 LEP-discordant-Spanish. There was significant variation in the mean number of patient-initiated questions among the groups (p=0.002). Both the English and Spanish concordant groups asked a similar number of questions (p=0.9), and they both asked more questions compared to the Spanish-discordant participants (p=0.002 and p=0.001). Language discordance was associated with fewer questions asked after adjustment for socioeconomic status. Language concordant participants rated higher scores of communication. Both Spanish-concordant and Spanish-discordant patients reported significantly increased

  20. Statistical mechanics of dense plasmas: numerical simulation and theory

    International Nuclear Information System (INIS)

    DeWitt, H.E.

    1977-10-01

    Recent Monte Carlo calculations from Paris and from Livermore for dense one and two component plasmas have led to systematic and accurate results for the thermodynamic properties of dense Coulombic fluids. This talk will summarize the results of these numerical experiments, and the simple analytic expressions for the equation of state and other thermodynamic functions that have been obtained. The thermal energy for the one component plasma has a simple power law dependence on temperature that is identical to Monte Carlo results on strongly coupled fluids governed by l/r/sup n/ potentials. A universal model for fluids governed by simple repulsive forces is suggested. For two component plasmas the ion-sphere model is shown to accurately reproduce the Monte Carlo data for the static portion of the energy. Electron screening is included using the Lindhard dielectric function and linear response theory. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions

  1. Dense neuron clustering explains connectivity statistics in cortical microcircuits.

    Directory of Open Access Journals (Sweden)

    Vladimir V Klinshov

    Full Text Available Local cortical circuits appear highly non-random, but the underlying connectivity rule remains elusive. Here, we analyze experimental data observed in layer 5 of rat neocortex and suggest a model for connectivity from which emerge essential observed non-random features of both wiring and weighting. These features include lognormal distributions of synaptic connection strength, anatomical clustering, and strong correlations between clustering and connection strength. Our model predicts that cortical microcircuits contain large groups of densely connected neurons which we call clusters. We show that such a cluster contains about one fifth of all excitatory neurons of a circuit which are very densely connected with stronger than average synapses. We demonstrate that such clustering plays an important role in the network dynamics, namely, it creates bistable neural spiking in small cortical circuits. Furthermore, introducing local clustering in large-scale networks leads to the emergence of various patterns of persistent local activity in an ongoing network activity. Thus, our results may bridge a gap between anatomical structure and persistent activity observed during working memory and other cognitive processes.

  2. Signatures of personality on dense 3D facial images.

    Science.gov (United States)

    Hu, Sile; Xiong, Jieyi; Fu, Pengcheng; Qiao, Lu; Tan, Jingze; Jin, Li; Tang, Kun

    2017-03-06

    It has long been speculated that cues on the human face exist that allow observers to make reliable judgments of others' personality traits. However, direct evidence of association between facial shapes and personality is missing from the current literature. This study assessed the personality attributes of 834 Han Chinese volunteers (405 males and 429 females), utilising the five-factor personality model ('Big Five'), and collected their neutral 3D facial images. Dense anatomical correspondence was established across the 3D facial images in order to allow high-dimensional quantitative analyses of the facial phenotypes. In this paper, we developed a Partial Least Squares (PLS) -based method. We used composite partial least squares component (CPSLC) to test association between the self-tested personality scores and the dense 3D facial image data, then used principal component analysis (PCA) for further validation. Among the five personality factors, agreeableness and conscientiousness in males and extraversion in females were significantly associated with specific facial patterns. The personality-related facial patterns were extracted and their effects were extrapolated on simulated 3D facial models.

  3. Time evolution of cell size distributions in dense cell cultures

    Science.gov (United States)

    Khain, Evgeniy

    2015-03-01

    Living cells in a dense system are all in contact with each other. The common assumption is that such cells stop dividing due to a lack of space. Recent experimental observations have shown, however, that cells continue dividing for a while, but other cells in the system must shrink, to allow the newborn cells to grow to a normal size. Due to these ``pressure'' effects, the average cell size dramatically decreases with time, and the dispersion in cell sizes decreases, too. The collective cell behavior becomes even more complex when the system is expanding: cells near the edges are larger and migrate faster, while cells deep inside the colony are smaller and move slower. This exciting experimental data still needs to be described theoretically, incorporating the distribution of cell sizes in the system. We propose a mathematical model for time evolution of cell size distribution both in a closed and open system. The model incorporates cell proliferation, cell growth after division, cell shrinking due to ``pressure'' from other cells, and possible cell detachment from the interface of a growing colony. This research sheds light on physical and biological mechanisms of cell response to a dense environment and on the role of mechanical stresses in determining the distribution of cell sizes in the system.

  4. Molecular dynamics simulations of temperature equilibration in dense hydrogen

    Science.gov (United States)

    Glosli, J. N.; Graziani, F. R.; More, R. M.; Murillo, M. S.; Streitz, F. H.; Surh, M. P.; Benedict, L. X.; Hau-Riege, S.; Langdon, A. B.; London, R. A.

    2008-08-01

    The temperature equilibration rate between electrons and protons in dense hydrogen has been calculated with molecular dynamics simulations for temperatures between 10 and 600eV and densities between 1020cm-3to1024cm-3 . Careful attention has been devoted to convergence of the simulations, including the role of semiclassical potentials. We find that for Coulomb logarithms L≳1 , a model by Gericke-Murillo-Schlanges (GMS) [D. O. Gericke , Phys. Rev. E 65, 036418 (2002)] based on a T -matrix method and the approach by Brown-Preston-Singleton [L. S. Brown , Phys. Rep. 410, 237 (2005)] agrees with the simulation data to within the error bars of the simulation. For smaller Coulomb logarithms, the GMS model is consistent with the simulation results. Landau-Spitzer models are consistent with the simulation data for L>4 .

  5. Thermal conductivity study of warm dense matter by differential heating on LCLS and Titan

    Science.gov (United States)

    Hill, M.; McKelvey, A.; Jiang, S.; Shepherd, R.; Hau-Riege, S.; Whitley, H.; Sterne, P.; Hamel, S.; Collins, G.; Ping, Y.; Brown, C.; Floyd, E.; Fyrth, J.; Hoarty, D.; Hua, R.; Bailly-Grandvaux, M.; Beg, F.; Cho, B.; Kim, M.; Lee, J.; Lee, H.; Galtier, E.

    2017-10-01

    A differential heating platform has been developed for thermal conduction study, where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. Multiple experiment using this platform have been carried out at LCLS-MEC and Titan laser facilities for warm dense Al, Fe, amorphous carbon and diamond. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Both diagnostics provided excellent data to constrain release equation-of-state (EOS) and thermal conductivity. Data sets with varying target thickness and comparison between simulations with different thermal conductivity models are presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from DOE OFES Early Career program and LLNL LDRD program.

  6. Gravity-driven dense granular flows

    Energy Technology Data Exchange (ETDEWEB)

    ERTAS,DENIZ; GREST,GARY S.; HALSEY,THOMAS C.; DEVINE,DOV; SILBERT,LEONARDO E.

    2000-03-29

    The authors report and analyze the results of numerical studies of dense granular flows in two and three dimensions, using both linear damped springs and Hertzian force laws between particles. Chute flow generically produces a constant density profile that satisfies scaling relations suggestive of a Bagnold grain inertia regime. The type for force law has little impact on the behavior of the system. Failure is not initiated at the surface, consistent with the absence of surface flows and different principal stress directions at vs. below the surface.

  7. Graph Quasicontinuous Functions and Densely Continuous Forms

    Directory of Open Access Journals (Sweden)

    Lubica Hola

    2017-07-01

    Full Text Available Let $X, Y$ be topological spaces. A function $f: X \\to Y$ is said to be graph quasicontinuous if there is a quasicontinuous function $g: X \\to Y$ with the graph of $g$ contained in the closure of the graph of $f$. There is a close relation between the notions of graph quasicontinuous functions and minimal usco maps as well as the notions of graph quasicontinuous functions and densely continuous forms. Every function with values in a compact Hausdorff space is graph quasicontinuous; more generally every locally compact function is graph quasicontinuous.

  8. Fabrication of dense panels in lithium fluoride

    International Nuclear Information System (INIS)

    Farcy, P.; Roger, J.; Pointud, R.

    1958-04-01

    The authors report a study aimed at the fabrication of large and dense lithium fluoride panels. This sintered lithium fluoride is then supposed to be used for the construction of barriers of protection against a flow of thermal neutrons. They briefly present the raw material which is used under the form of chamotte obtained through a pre-sintering process which is also described. Grain size measurements and sample preparation are indicated. Shaping, drying, and thermal treatment are briefly described, and characteristics of the sintered product are indicated

  9. Leeuwpan fine coal dense medium plant

    CSIR Research Space (South Africa)

    Lundt, M

    2010-11-01

    Full Text Available Introduction Leeuwpan Colliery is located close to Delmas in the Mpumalanga Province, and is one of eight coal mines in the Exxaro Resources group. The dense media separation (DMS) plant at Leeuwpan was commissioned in 1997. The plant originally treated... three Witbank coal seams, namely seams no. 2, 4 and 5. A coal jig plant was built in 2005 to treat the top layer of coal—Seams 4 and 5—to supply a 30% ash coal to power stations. When the jig plant was commissioned, it increased the DMS plant...

  10. Star formation: study of the collapse of pre-stellar dense cores

    International Nuclear Information System (INIS)

    Commercon, Benoit

    2009-01-01

    One of the priorities of contemporary astrophysics remains to understand the mechanisms which lead to star formation. In the dense cores where star formation occurs, temperature, pressure, etc... are such that it is impossible to reproduce them in the laboratory. Numerical calculations remain the only mean to study physical phenomena that are involved in the star formation process. The focus of this thesis has been on the numerical methods that are used in the star formation context to describe highly non-linear and multi-scale phenomena. In particular, I have concentrated my work on the first stages of the pre-stellar dense cores collapse. This work is divided in 4 linked part. In a first study, I use a 1D Lagrangian code in spherical symmetry (Audit et al. 2002) to compare three models that incorporate radiative transfer and matter-radiation interactions. This comparison was based on simple gravitational collapse calculations which lead to the first Larson core formation. It was found that the Flux Limited Diffusion model is appropriate for star formation calculations. I also took benefit from this first work to study the properties of the accretion shock on the first Larson core. We developed a semi-analytic model based on well-known assumptions, which reproduces the jump properties at the shock. The second study consisted in implementing the Flux Limited Diffusion model with the radiation-hydrodynamics equations in the RAMSES code (Teyssier 2002). After a first step of numerical tests that validate the scheme, we used RAMSES to perform the first multidimensional collapse calculations that combine magnetic field and radiative transfer effects at small scales with a high numerical resolution. Our results show that the radiative transfer has a significant impact on the fragmentation in the collapse of pre-stellar dense cores. I also present a comparison we made between the RAMSES code (Eulerian approach) and the SPH code DRAGON (Goodwin 2004, Lagrangian approach

  11. A model for determining when an analysis contains sufficient detail to provide adequate NEPA coverage for a proposed action

    International Nuclear Information System (INIS)

    Eccleston, C.H.

    1994-11-01

    Neither the National Environmental Policy Act (NEPA) nor its subsequent regulations provide substantive guidance for determining the Level of detail, discussion, and analysis that is sufficient to adequately cover a proposed action. Yet, decisionmakers are routinely confronted with the problem of making such determinations. Experience has shown that no two decisionmakers are Likely to completely agree on the amount of discussion that is sufficient to adequately cover a proposed action. one decisionmaker may determine that a certain Level of analysis is adequate, while another may conclude the exact opposite. Achieving a consensus within the agency and among the public can be problematic. Lacking definitive guidance, decisionmakers and critics alike may point to a universe of potential factors as the basis for defending their claim that an action is or is not adequately covered. Experience indicates that assertions are often based on ambiguous opinions that can be neither proved nor disproved. Lack of definitive guidance slows the decisionmaking process and can result in project delays. Furthermore, it can also Lead to inconsistencies in decisionmaking, inappropriate Levels of NEPA documentation, and increased risk of a project being challenged for inadequate coverage. A more systematic and less subjective approach for making such determinations is obviously needed. A paradigm for reducing the degree of subjectivity inherent in such decisions is presented in the following paper. The model is specifically designed to expedite the decisionmaking process by providing a systematic approach for making these determination. In many cases, agencies may find that using this model can reduce the analysis and size of NEPA documents

  12. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel

  13. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-03-23

    Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance

  14. Inhomogeneous quasistationary state of dense fluids of inelastic hard spheres.

    Science.gov (United States)

    Fouxon, Itzhak

    2014-05-01

    We study closed dense collections of freely cooling hard spheres that collide inelastically with constant coefficient of normal restitution. We find inhomogeneous states (ISs) where the density profile is spatially nonuniform but constant in time. The states are exact solutions of nonlinear partial differential equations that describe the coupled distributions of density and temperature valid when inelastic losses of energy per collision are small. The derivation is performed without modeling the equations' coefficients that are unknown in the dense limit (such as the equation of state) using only their scaling form specific for hard spheres. Thus the IS is the exact state of this dense many-body system. It captures a fundamental property of inelastic collections of particles: the possibility of preserving nonuniform temperature via the interplay of inelastic cooling and heat conduction that generalizes previous results. We perform numerical simulations to demonstrate that arbitrary initial state evolves to the IS in the limit of long times where the container has the geometry of the channel. The evolution is like a gas-liquid transition. The liquid condenses in a vanishing part of the total volume but takes most of the mass of the system. However, the gaseous phase, which mass grows only logarithmically with the system size, is relevant because its fast particles carry most of the energy of the system. Remarkably, the system self-organizes to dissipate no energy: The inelastic decay of energy is a power law [1+t/t(c)](-2), where t(c) diverges in the thermodynamic limit. This is reinforced by observing that for supercritical systems the IS coincide in most of the space with the steady states of granular systems heated at one of the walls. We discuss the relation of our results to the recently proposed finite-time singularity in other container's geometries.

  15. Non-Model-Based Control of a Wheeled Vehicle Pulling Two Trailers to Provide Early Powered Mobility and Driving Experiences.

    Science.gov (United States)

    Sanders Td Vr, David A

    2018-01-01

    Non-model-based control of a wheeled vehicle pulling two trailers is proposed. It is a fun train for disabled children consisting of a locomotive and two carriages. The fun train has afforded opportunities for both disabled and able bodied young people to share an activity and has provided early driving experiences for disabled children; it has introduced them to assistive and powered mobility. The train is a nonlinear system and subject to nonholonomic kinematic constraints, so that position and state depend on the path taken to get there. The train is described, and then, a robust control algorithm using proportional-derivative filtered errors is proposed to control the locomotive. The controller was not dependent on an accurate model of the train, because the mass of the vehicle and two carriages changed depending on the number, size, and shape of children and wheelchair seats on the train. The controller was robust and stable in uncertainty. Results are presented to show the effectiveness of the approach, and the suggested control algorithm is shown to be acceptable without knowing the exact plant dynamics.

  16. A New Model for Providing Cell-Free DNA and Risk Assessment for Chromosome Abnormalities in a Public Hospital Setting

    Directory of Open Access Journals (Sweden)

    Robert Wallerstein

    2014-01-01

    Full Text Available Objective. Cell-free DNA (cfDNA offers highly accurate noninvasive screening for Down syndrome. Incorporating it into routine care is complicated. We present our experience implementing a novel program for cfDNA screening, emphasizing patient education, genetic counseling, and resource management. Study Design. Beginning in January 2013, we initiated a new patient care model in which high-risk patients for aneuploidy received genetic counseling at 12 weeks of gestation. Patients were presented with four pathways for aneuploidy risk assessment and diagnosis: (1 cfDNA; (2 integrated screening; (3 direct-to-invasive testing (chorionic villus sampling or amniocentesis; or (4 no first trimester diagnostic testing/screening. Patients underwent follow-up genetic counseling and detailed ultrasound at 18–20 weeks to review first trimester testing and finalize decision for amniocentesis. Results. Counseling and second trimester detailed ultrasound were provided to 163 women. Most selected cfDNA screening (69% over integrated screening (0.6%, direct-to-invasive testing (14.1%, or no screening (16.6%. Amniocentesis rates decreased following implementation of cfDNA screening (19.0% versus 13.0%, P<0.05. Conclusion. When counseled about screening options, women often chose cfDNA over integrated screening. This program is a model for patient-directed, efficient delivery of a newly available high-level technology in a public health setting. Genetic counseling is an integral part of patient education and determination of plan of care.

  17. A Multi-Period Optimization Model for Service Providers Using Online Reservation Systems: An Application to Hotels

    Science.gov (United States)

    Xu, Ming; Jiao, Yan; Li, Xiaoming; Cao, Qingfeng; Wang, Xiaoyang

    2015-01-01

    This paper presents a multi-period optimization model for high margin and zero salvage products in online distribution channels with classifying customers based on number of products required. Taking hotel customers as an example, one is regular customers who reserve rooms for one day, and the other is long term stay (LTS) customers who reserve rooms for a number of days. LTS may guarantee a specific amount of demand and generate opportunity income for a certain number of periods, meanwhile with risk of punishment incurred by overselling. By developing an operational optimization model and exploring the effects of parameters on optimal decisions, we suggest that service providers should make decisions based on the types of customers, number of products required, and duration of multi-period to reduce the loss of reputation and obtain more profit; at the same time, multi-period buying customers should buy products early. Finally, the paper conducts a numerical experiment, and the results are consistent with prevailing situations. PMID:26147663

  18. Formative evaluation of a telemedicine model for delivering clinical neurophysiology services part I: Utility, technical performance and service provider perspective

    Directory of Open Access Journals (Sweden)

    Breen Patricia

    2010-09-01

    Full Text Available Abstract Background Formative evaluation is conducted in the early stages of system implementation to assess how it works in practice and to identify opportunities for improving technical and process performance. A formative evaluation of a teleneurophysiology service was conducted to examine its technical and sociological dimensions. Methods A teleneurophysiology service providing routine EEG investigation was established. Service use, technical performance and satisfaction of clinical neurophysiology personnel were assessed qualitatively and quantitatively. These were contrasted with a previously reported analysis of the need for teleneurophysiology, and examination of expectation and satisfaction with clinical neurophysiology services in Ireland. A preliminary cost-benefit analysis was also conducted. Results Over the course of 40 clinical sessions during 20 weeks, 142 EEG investigations were recorded and stored on a file server at a satellite centre which was 130 miles away from the host clinical neurophysiology department. Using a virtual private network, the EEGs were accessed by a consultant neurophysiologist at the host centre for interpretation. The model resulted in a 5-fold increase in access to EEG services as well as reducing average waiting times for investigation by a half. Technically the model worked well, although a temporary loss of virtual private network connectivity highlighted the need for clarity in terms of responsibility for troubleshooting and repair of equipment problems. Referral quality, communication between host and satellite centres, quality of EEG recordings, and ease of EEG review and reporting indicated that appropriate organisational processes were adopted by the service. Compared to traditional CN service delivery, the teleneurophysiology model resulted in a comparable unit cost per EEG. Conclusion Observations suggest that when traditional organisational boundaries are crossed challenges associated with the

  19. Integration of Dense Velocity Fields in the ITRF: Quantification and Mitigation of Inconsistencies Between Individual Solutions

    Science.gov (United States)

    Legrand, Juliette; Bruyninx, Carine; Saria, Elifuraha; Griffiths, Jake; Craymer, Michael; Dawson, John; Kenyeres, Ambrus; Santamaría-Gómez, Alvaro; Sanchez, Laura; Altamimi, Zuheir

    2013-04-01

    The objective of the IAG Working Group "Integration of Dense Velocity Fields in the ITRF" is to provide a GNSS-based dense, unified and reliable velocity field globally referenced in the ITRF (International Terrestrial Reference Frame) and useful for geodynamical and geophysical interpretations. The WG is embedded in IAG Sub-Commission 1.3 "Regional Reference Frames" where it coexists with the Regional Reference Frame Sub-Commissions AFREF (Africa), APREF (Asia & Pacific), EUREF (Europe), NAREF (North America), SCAR (Antarctica), SIRGAS (Latin America & Caribbean). These IAG Regional Reference Frame sub-commissions are responsible for providing GNSS-based densified weekly solutions for their region. In addition, the ULR consortium is also a contributor to the WG. To obtain such a densified velocity field, the WG will combine the individual weekly solutions from different contributors and then stack these weekly combined solutions in order to derive a cumulative position and velocity solution as well as the associated residual position time series. The preliminary weekly combinations include 8 individual solutions (AFREF, APREF, EUREF, NAREF (NGS, GSB), SIRGAS, IGS, ULR) and contain about two thousand stations in addition to the ITRF2008. The agreement between the solutions is promising and leads to weekly RMS ranging from 2 to 8 mm. However, this agreement is presently limited by inconsistencies at the modeling and meta data level: 1) the meta data need to be verified as systematic biases occur, probably due to wrong antenna eccentricities and 2) different antenna calibration models have been used by the contributors: some solutions use igs08.atx, while others use igs05.atx or even individual calibrations. In addition, an optimal rescaling of the covariance matrices during the weekly combination is still under investigation. This poster will focus on the quantification and, if possible, the mitigation of these inconsistencies and on the improvement of the

  20. Redesigning Triangular Dense Matrix Computations on GPUs

    KAUST Repository

    Charara, Ali

    2016-08-09

    A new implementation of the triangular matrix-matrix multiplication (TRMM) and the triangular solve (TRSM) kernels are described on GPU hardware accelerators. Although part of the Level 3 BLAS family, these highly computationally intensive kernels fail to achieve the percentage of the theoretical peak performance on GPUs that one would expect when running kernels with similar surface-to-volume ratio on hardware accelerators, i.e., the standard matrix-matrix multiplication (GEMM). The authors propose adopting a recursive formulation, which enriches the TRMM and TRSM inner structures with GEMM calls and, therefore, reduces memory traffic while increasing the level of concurrency. The new implementation enables efficient use of the GPU memory hierarchy and mitigates the latency overhead, to run at the speed of the higher cache levels. Performance comparisons show up to eightfold and twofold speedups for large dense matrix sizes, against the existing state-of-the-art TRMM and TRSM implementations from NVIDIA cuBLAS, respectively, across various GPU generations. Once integrated into high-level Cholesky-based dense linear algebra algorithms, the performance impact on the overall applications demonstrates up to fourfold and twofold speedups, against the equivalent native implementations, linked with cuBLAS TRMM and TRSM kernels, respectively. The new TRMM/TRSM kernel implementations are part of the open-source KBLAS software library (http://ecrc.kaust.edu.sa/Pages/Res-kblas.aspx) and are lined up for integration into the NVIDIA cuBLAS library in the upcoming v8.0 release.

  1. Predicting diffusivities in dense fluid mixtures

    Directory of Open Access Journals (Sweden)

    C. DARIVA

    1999-09-01

    Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.

  2. Quantum Linear System Algorithm for Dense Matrices

    Science.gov (United States)

    Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam

    2018-02-01

    Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that A x =b . We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O (κ2√{n }polylog(n )/ɛ ) for an n ×n dimensional A with bounded spectral norm, where κ denotes the condition number of A , and ɛ is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A .

  3. INTERNAL MOTIONS IN STARLESS DENSE CORES

    International Nuclear Information System (INIS)

    Lee, Chang Won; Myers, Philip C.

    2011-01-01

    This paper discusses the statistics of internal motions in starless dense cores and the relation of these motions to core density and evolution. Four spectral lines from three molecular species are analyzed from single-pointing and mapped observations of several tens of starless cores. Blue asymmetric profiles are dominant, indicating that inward motions are prevalent in sufficiently dense starless cores. These blue profiles are found to be more abundant, and their asymmetry is bluer, at core positions with stronger N 2 H + line emission or higher column density. Thirty-three starless cores are classified into four different types according to the blueshift and redshift of the lines in their molecular line maps. Among these cores, contracting motions dominate: 19 are classified as contracting, 3 as oscillating, 3 as expanding, and 8 as static. Contracting cores have inward motions all over the core with those motions predominating near the region of peak density. Cores with the bluest asymmetry tend to have greater column density than other cores and all five cores with peak column density >6 x 10 21 cm -2 are found to be contracting. This suggests that starless cores are likely to have contracting motions if they are sufficiently condensed. Our classification of the starless cores may indicate a sequence of core evolution in the sense that column density increases from static to contracting cores: the static cores in the earliest stage, the expanding and/or the oscillating cores in the next, and the contracting cores in the latest stage.

  4. Wireless Fractal Ultra-Dense Cellular Networks.

    Science.gov (United States)

    Hao, Yixue; Chen, Min; Hu, Long; Song, Jeungeun; Volk, Mojca; Humar, Iztok

    2017-04-12

    With the ever-growing number of mobile devices, there is an explosive expansion in mobile data services. This represents a challenge for the traditional cellular network architecture to cope with the massive wireless traffic generated by mobile media applications. To meet this challenge, research is currently focused on the introduction of a small cell base station (BS) due to its low transmit power consumption and flexibility of deployment. However, due to a complex deployment environment and low transmit power of small cell BSs, the coverage boundary of small cell BSs will not have a traditional regular shape. Therefore, in this paper, we discuss the coverage boundary of an ultra-dense small cell network and give its main features: aeolotropy of path loss fading and fractal coverage boundary. Simple performance analysis is given, including coverage probability and transmission rate, etc., based on stochastic geometry theory and fractal theory. Finally, we present an application scene and discuss challenges in the ultra-dense small cell network.

  5. Three body dynamics in dense gravitational systems

    Science.gov (United States)

    Moody, Kenneth

    galactic black hole binaries as a background source. I also found that the binaries are ejected from the cluster with, for the most part, a velocity just above the escape speed of the cluster which is a few tens of km/sec. These gravitational wave sources are thus constrained in their host galaxies as the galactic escape velocity is some hundreds of km/sec which only a very few binaries achieve in special cases. I studied the effect of the Kozai mechanism on two pulsars, one in the globular cluster M4, and the other J1903+0327. The M4 pulsar pulsar was found to have an unusually large orbital eccentricity, given that it is in a binary with a period of nearly 200 days. This unusual behavior led to the conclusion that a planet-like third body of much less than a solar mass was orbiting the binary. I used my own code to integrate the secular evolution equations with a broad set of initial conditions to determine the first detailed properties of the third body; namely that the mass of the planet is about that of Jupiter. The second pulsar J1903+0327 consists of a 2.15ms pulsar and a near solar mass companion in an e = 0.44 orbit. A preliminary study of this pulsar showed that the high eccentricity can be reproduced by my models, and there are three candidate clusters from which this pulsar could have originated. My third project was a study of the effect of a planet at 50 AU on the inner solar system. The origin of this planet is assumed to be from an exchange with another solar system in the early stages of the sun's life while it was still in the dense star forming region where it was born. Similar studies have been done with the exchange of stars among binaries by Malmberg et al. (2007b). The exchange once again allows the Kozai effect to bring about drastic change in the inner system. A planet is chosen as the outer object as, unlike a stellar companion, it would remain unseen by current radial velocity and direct observation methods, although it could be detected by

  6. Study of warm dense plasma electronic dynamics by optical interferometry

    International Nuclear Information System (INIS)

    Deneuville, F.

    2013-01-01

    The Warm Dense Matter (WDM) regime is characterised by a density close to the solid density and an electron temperature close to the Fermi temperature. In this work, the nonequilibrium Warm Dense Matter is studied during the solid to liquid phase transition induced by an ultra short laser interacting with a solid. A 30 femtosecond time resolution pump-probe experiment (FDI) is set up, yielding to the measurement of the heated sample complex reflectivity for both S and P polarisation. We have determined a criterion based on the measured reflectivities, which permits to control the interface shape of the probed matter. For pump laser fluences around 1 J/cm 2 , the hydrodynamics of the heated matter is studied and experimental results are compared to the two-temperatures code ESTHER. Furthermore, the evolution of the dielectric function at 800 nm and 400 nm is inferred from our measurements on a sub-picosecond time-scale. Within the Drude-Lorentz model for the conduction electrons, the dielectric function yields information such as ionisation state, electronic temperature and electron collision frequency. (author) [fr

  7. Measuring the Quality of Services Provided for Outpatients in Kowsar Clinic in Ardebil City Based on the SERVQUAL Model

    Directory of Open Access Journals (Sweden)

    Hasan Ghobadi

    2014-12-01

    Full Text Available Background & objectives: Today, the concept of q uality of services is particularly important in health care and customer satisfaction can be defined by comparing the expectations of the services with perception of provided services. The aim of this study was to evaluate the quality of services provided for outpatients in clinic of Ardebil city based on the SERVQUAL model.   Methods: This descriptive study was conducted on 650 patients referred to outpatient clinic since July to September 201 3 using a standardized SERVQUAL questionnaire (1988 with confirmed reliability and validity. The paired t-test and Friedman test were used for analysis of data by SPSS software.   Results: 56.1 % of respondents were male and 43.9 % of them were female . The mean age of patients was 33 ± 11.91 , 68.9 % of patients were in Ardabil and 27.3 % of them had bachelor's or higher. The results showed that there is a significant difference between perceptions and expectations of the patients about five dimensions of the service quality (tangibility, reliability, assurance, responsiveness, and empathy in the studied clinic (P< 0.001. The highest mean gap and minimum gap were related to empathy and assurance, respectively.   Conclusion: Regarding to observed differences in quality , the managers and also planners have to evaluate their performance more accurately in order to have better planning for future actions. In fact, any efforts to reduce the gap between expectation and perception of patients result in greater satisfaction, loyalty and further visits to organizations.

  8. SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species.

    Directory of Open Access Journals (Sweden)

    Rebekah E Oliver

    Full Text Available A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42 has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources.

  9. Aire-deficient mice provide a model of corneal and lacrimal gland neuropathy in Sjögren's syndrome.

    Directory of Open Access Journals (Sweden)

    Feeling Y Chen

    Full Text Available Sjögren's syndrome (SS is a chronic, autoimmune exocrinopathy that leads to severe dryness of the mouth and eyes. Exocrine function is highly regulated by neuronal mechanisms but little is known about the link between chronic inflammation, innervation and altered exocrine function in the diseased eyes and exocrine glands of SS patients. To gain a better understanding of neuronal regulation in the immunopathogenesis of autoimmune exocrinopathy, we profiled a mouse model of spontaneous, autoimmune exocrinopathy that possess key characteristics of peripheral neuropathy experienced by SS patients. Mice deficient in the autoimmune regulator (Aire gene developed spontaneous, CD4+ T cell-mediated exocrinopathy and aqueous-deficient dry eye that were associated with loss of nerves innervating the cornea and lacrimal gland. Changes in innervation and tear secretion were accompanied by increased proliferation of corneal epithelial basal cells, limbal expansion of KRT19-positive progenitor cells, increased vascularization of the peripheral cornea and reduced nerve function in the lacrimal gland. In addition, we found extensive loss of MIST1+ secretory acinar cells in the Aire -/- lacrimal gland suggesting that acinar cells are a primary target of the disease, Finally, topical application of ophthalmic steroid effectively restored corneal innervation in Aire -/- mice thereby functionally linking nerve loss with local inflammation in the aqueous-deficient dry eye. These data provide important insight regarding the relationship between chronic inflammation and neuropathic changes in autoimmune-mediated dry eye. Peripheral neuropathies characteristic of SS appear to be tightly linked with the underlying immunopathological mechanism and Aire -/- mice provide an excellent tool to explore the interplay between SS-associated immunopathology and peripheral neuropathy.

  10. Aire-deficient mice provide a model of corneal and lacrimal gland neuropathy in Sjögren's syndrome.

    Science.gov (United States)

    Chen, Feeling Y; Lee, Albert; Ge, Shaokui; Nathan, Sara; Knox, Sarah M; McNamara, Nancy A

    2017-01-01

    Sjögren's syndrome (SS) is a chronic, autoimmune exocrinopathy that leads to severe dryness of the mouth and eyes. Exocrine function is highly regulated by neuronal mechanisms but little is known about the link between chronic inflammation, innervation and altered exocrine function in the diseased eyes and exocrine glands of SS patients. To gain a better understanding of neuronal regulation in the immunopathogenesis of autoimmune exocrinopathy, we profiled a mouse model of spontaneous, autoimmune exocrinopathy that possess key characteristics of peripheral neuropathy experienced by SS patients. Mice deficient in the autoimmune regulator (Aire) gene developed spontaneous, CD4+ T cell-mediated exocrinopathy and aqueous-deficient dry eye that were associated with loss of nerves innervating the cornea and lacrimal gland. Changes in innervation and tear secretion were accompanied by increased proliferation of corneal epithelial basal cells, limbal expansion of KRT19-positive progenitor cells, increased vascularization of the peripheral cornea and reduced nerve function in the lacrimal gland. In addition, we found extensive loss of MIST1+ secretory acinar cells in the Aire -/- lacrimal gland suggesting that acinar cells are a primary target of the disease, Finally, topical application of ophthalmic steroid effectively restored corneal innervation in Aire -/- mice thereby functionally linking nerve loss with local inflammation in the aqueous-deficient dry eye. These data provide important insight regarding the relationship between chronic inflammation and neuropathic changes in autoimmune-mediated dry eye. Peripheral neuropathies characteristic of SS appear to be tightly linked with the underlying immunopathological mechanism and Aire -/- mice provide an excellent tool to explore the interplay between SS-associated immunopathology and peripheral neuropathy.

  11. A novel double patterning approach for 30nm dense holes

    Science.gov (United States)

    Hsu, Dennis Shu-Hao; Wang, Walter; Hsieh, Wei-Hsien; Huang, Chun-Yen; Wu, Wen-Bin; Shih, Chiang-Lin; Shih, Steven

    2011-04-01

    Double Patterning Technology (DPT) was commonly accepted as the major workhorse beyond water immersion lithography for sub-38nm half-pitch line patterning before the EUV production. For dense hole patterning, classical DPT employs self-aligned spacer deposition and uses the intersection of horizontal and vertical lines to define the desired hole patterns. However, the increase in manufacturing cost and process complexity is tremendous. Several innovative approaches have been proposed and experimented to address the manufacturing and technical challenges. A novel process of double patterned pillars combined image reverse will be proposed for the realization of low cost dense holes in 30nm node DRAM. The nature of pillar formation lithography provides much better optical contrast compared to the counterpart hole patterning with similar CD requirements. By the utilization of a reliable freezing process, double patterned pillars can be readily implemented. A novel image reverse process at the last stage defines the hole patterns with high fidelity. In this paper, several freezing processes for the construction of the double patterned pillars were tested and compared, and 30nm double patterning pillars were demonstrated successfully. A variety of different image reverse processes will be investigated and discussed for their pros and cons. An economic approach with the optimized lithography performance will be proposed for the application of 30nm DRAM node.

  12. Shrinkage/swelling of compacted clayey loose and dense soils

    Science.gov (United States)

    Nowamooz, Hossein; Masrouri, Farimah

    2009-11-01

    This Note presents an experimental study performed on expansive compacted loose and dense samples using osmotic oedometers. Several successive wetting and drying cycles were applied in a suction range between 0 and 8 MPa under different values of constant net vertical stress (15, 30, and 60 kPa). During the suction cycles, the dense samples showed cumulative swelling strains, while the loose samples showed volumetric shrinkage accumulation. At the end of the suction cycles, the volumetric strains converged to an equilibrium stage that indicated elastic behavior of the swelling soil for any further hydraulic variations. At this stage, the compression curves for the studied soil at the different imposed suctions (0, 2, and 8 MPa) converged towards the saturated state curve for the high applied vertical stresses. We defined this pressure as the saturation stress(P). The compression curves provided sufficient data to examine the soil mechanical behavior at the equilibrium stage. To cite this article: H. Nowamooz, F. Masrouri, C. R. Mecanique 337 (2009).

  13. TEXTURE-AWARE DENSE IMAGE MATCHING USING TERNARY CENSUS TRANSFORM

    Directory of Open Access Journals (Sweden)

    H. Hu

    2016-06-01

    Full Text Available Textureless and geometric discontinuities are major problems in state-of-the-art dense image matching methods, as they can cause visually significant noise and the loss of sharp features. Binary census transform is one of the best matching cost methods but in textureless areas, where the intensity values are similar, it suffers from small random noises. Global optimization for disparity computation is inherently sensitive to parameter tuning in complex urban scenes, and must compromise between smoothness and discontinuities. The aim of this study is to provide a method to overcome these issues in dense image matching, by extending the industry proven Semi-Global Matching through 1 developing a ternary census transform, which takes three outputs in a single order comparison and encodes the results in two bits rather than one, and also 2 by using texture-information to self-tune the parameters, which both preserves sharp edges and enforces smoothness when necessary. Experimental results using various datasets from different platforms have shown that the visual qualities of the triangulated point clouds in urban areas can be largely improved by these proposed methods.

  14. Practice Paper of the Academy of Nutrition and Dietetics: Selecting Nutrient-Dense Foods for Good Health.

    Science.gov (United States)

    Hingle, Melanie D; Kandiah, Jayanthi; Maggi, Annette

    2016-09-01

    The 2015 Dietary Guidelines for Americans encourage selection of nutrient-dense foods for health promotion and disease prevention and management. The purpose of this Academy of Nutrition and Dietetics practice paper is to provide an update regarding the science and practice of nutrient-dense food identification and selection. Characterization of tools used to identify nutrient density of foods is provided and recommendations for how registered dietitian nutritionists and nutrition and dietetics technicians, registered, might use available profiling tools to help consumers select nutrient-dense foods is discussed. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  15. A proxy for variance in dense matching over homogeneous terrain

    Science.gov (United States)

    Altena, Bas; Cockx, Liesbet; Goedemé, Toon

    2014-05-01

    Automation in photogrammetry and avionics have brought highly autonomous UAV mapping solutions on the market. These systems have great potential for geophysical research, due to their mobility and simplicity of work. Flight planning can be done on site and orientation parameters are estimated automatically. However, one major drawback is still present: if contrast is lacking, stereoscopy fails. Consequently, topographic information cannot be obtained precisely through photogrammetry for areas with low contrast. Even though more robustness is added in the estimation through multi-view geometry, a precise product is still lacking. For the greater part, interpolation is applied over these regions, where the estimation is constrained by uniqueness, its epipolar line and smoothness. Consequently, digital surface models are generated with an estimate of the topography, without holes but also without an indication of its variance. Every dense matching algorithm is based on a similarity measure. Our methodology uses this property to support the idea that if only noise is present, no correspondence can be detected. Therefore, the noise level is estimated in respect to the intensity signal of the topography (SNR) and this ratio serves as a quality indicator for the automatically generated product. To demonstrate this variance indicator, two different case studies were elaborated. The first study is situated at an open sand mine near the village of Kiezegem, Belgium. Two different UAV systems flew over the site. One system had automatic intensity regulation, and resulted in low contrast over the sandy interior of the mine. That dataset was used to identify the weak estimations of the topography and was compared with the data from the other UAV flight. In the second study a flight campaign with the X100 system was conducted along the coast near Wenduine, Belgium. The obtained images were processed through structure-from-motion software. Although the beach had a very low

  16. Analysis of Thermal Environment over a Small-Scale Landscape in a Densely Built-Up Asian Megacity

    Directory of Open Access Journals (Sweden)

    Younha Kim

    2016-04-01

    Full Text Available Many studies have found that larger parks might be needed to counteract the Urban Heat Island effects typical in densely populated Asian megacities. However, it is not easy to establish large parks to serve as urban cool islands in Asian megacities, where little space exists for large urban neighborhood parks. Officials in these cities would rather use small areas by replacing heat-absorbing artificial land cover with natural cover. The main objective of this study was to understand the cooling effect of changes in land cover on surface and air temperatures in urban micro-scale environments for supporting sustainable green-space planning and policy in densely built-up areas. This was achieved using measurements at different heights (ground surface, 0.1 m, and 1.5 m for five land cover types (LCTs and modeling with the micro-scale climate model ENVI-met. At all vertical measuring points, the average temperature over the entire measurement period had the same hot-to-cold order: asphalt > soil > grass > water > forest. However, the value dramatically decreased as the measuring points became higher. The intensity of hot and cool spots showed the highest value at surface by 18.2 °C, and declined with the height, showing 4.1 °C at 0.1 m and 3.1 °C at 1.5 m. The modeling results indicated that the well-known diurnal variation in surface insolation also occurred in our small domain, among the various LCTs. Based on these findings, providing small-scale green infrastructure in densely built-up areas could be an effective way to improve urban micro-scale thermal conditions.

  17. Anomalous effects of dense matter under rotation

    Science.gov (United States)

    Huang, Xu-Guang; Nishimura, Kentaro; Yamamoto, Naoki

    2018-02-01

    We study the anomaly induced effects of dense baryonic matter under rotation. We derive the anomalous terms that account for the chiral vortical effect in the low-energy effective theory for light Nambu-Goldstone modes. The anomalous terms lead to new physical consequences, such as the anomalous Hall energy current and spontaneous generation of angular momentum in a magnetic field (or spontaneous magnetization by rotation). In particular, we show that, due to the presence of such anomalous terms, the ground state of the quantum chromodynamics (QCD) under sufficiently fast rotation becomes the "chiral soliton lattice" of neutral pions that has lower energy than the QCD vacuum and nuclear matter. We briefly discuss the possible realization of the chiral soliton lattice induced by a fast rotation in noncentral heavy ion collisions.

  18. Charmonium propagation through a dense medium

    Directory of Open Access Journals (Sweden)

    Kopeliovich B.Z.

    2015-01-01

    Full Text Available Attenuation of a colourless c̄c dipole propagating with a large momentum through a hot medium originates from two sources, Debye screening (melting, and inelastic collisions with surrounding scattering centres (absorption. The former never terminates completely production of a bound charmonium in heavy ion collisions, even at very high temperatures. The latter, is controlled my the magnitude of the dipole cross section, related to the transport coefficient, which is the rate of transverse momentum broadening in the medium. A novel procedure of Lorentz boosting of the Schrödinger equation is developed, which allows to calculate the charmonium survival probability employing the path-integral technique, incorporating both melting and absorption. A novel mechanism of charmonium regeneration in a dense medium is proposed.

  19. Origin of polar order in dense suspensions of phototactic micro-swimmers.

    Directory of Open Access Journals (Sweden)

    Silvano Furlan

    Full Text Available A main question for the study of collective motion in living organisms is the origin of orientational polar order, i.e., how organisms align and what are the benefits of such collective behaviour. In the case of micro-organisms swimming at a low Reynolds number, steric repulsion and long-range hydrodynamic interactions are not sufficient to explain a homogeneous polar order state in which the direction of motion is aligned. An external symmetry-breaking guiding field such as a mechanism of taxis appears necessary to understand this phonemonon. We have investigated the onset of polar order in the velocity field induced by phototaxis in a suspension of a motile micro-organism, the algae Chlamydomonas reinhardtii, for density values above the limit provided by the hydrodynamic approximation of a force dipole model. We show that polar order originates from a combination of both the external guiding field intensity and the population density. In particular, we show evidence for a linear dependence of a phototactic guiding field on cell density to determine the polar order for dense suspensions and demonstrate the existence of a density threshold for the origin of polar order. This threshold represents the density value below which cells undergoing phototaxis are not able to maintain a homogeneous polar order state and marks the transition to ordered collective motion. Such a transition is driven by a noise dominated phototactic reorientation where the noise is modelled as a normal distribution with a variance that is inversely proportional to the guiding field strength. Finally, we discuss the role of density in dense suspensions of phototactic micro-swimmers.

  20. X-ray Thomson scattering in warm dense matter at low frequencies.

    Science.gov (United States)

    Murillo, Michael S

    2010-03-01

    The low-frequency portion of the x-ray Thomson scattering spectrum is determined by electrons that follow the slow ion motion. This ion motion is characterized by the ion-ion dynamic structure factor, which contains a wealth of information about the ions, including structure and collective modes. The frequency-integrated (diffraction) contribution is considered first. An effective dressed-particle description of warm dense matter is derived from the quantum Ornstein-Zernike equations, and this is used to identify a Yukawa model for warm dense matter. The efficacy of this approach is validated by comparing a predicted structure with data from the extreme case of a liquid metal; good agreement is found. A Thomas-Fermi model is then introduced to allow the separation of bound and free states at finite temperatures, and issues with the definition of the ionization state in warm dense matter are discussed. For applications, analytic structure factors are given on either side of the Kirkwood line. Finally, several models are constructed for describing the slow dynamics of warm dense matter. Two classes of models are introduced that both satisfy the basic sum rules. One class of models is the "plasmon-pole"-like class, which yields the dispersion of ion-acoustic waves. Damping is then included via generalized hydrodynamics models that incorporate viscous contributions.

  1. An Integral Model to Provide Reactive and Proactive Services in an Academic CSIRT Based on Business Intelligence

    Directory of Open Access Journals (Sweden)

    Walter Fuertes

    2017-11-01

    Full Text Available Cyber-attacks have increased in severity and complexity. That requires, that the CERT/CSIRT research and develops new security tools. Therefore, our study focuses on the design of an integral model based on Business Intelligence (BI, which provides reactive and proactive services in a CSIRT, in order to alert and reduce any suspicious or malicious activity on information systems and data networks. To achieve this purpose, a solution has been assembled, that generates information stores, being compiled from a continuous network transmission of several internal and external sources of an organization. However, it contemplates a data warehouse, which is focused like a correlator of logs, being formed by the information of feeds with diverse formats. Furthermore, it analyzed attack detection and port scanning, obtained from sensors such as Snort and Passive Vulnerability Scanner, which are stored in a database, where the logs have been generated by the systems. With such inputs, we designed and implemented BI systems using the phases of the Ralph Kimball methodology, ETL and OLAP processes. In addition, a software application has been implemented using the SCRUM methodology, which allowed to link the obtained logs to the BI system for visualization in dynamic dashboards, with the purpose of generating early alerts and constructing complex queries using the user interface through objects structures. The results demonstrate, that this solution has generated early warnings based on the level of criticality and level of sensitivity of malware and vulnerabilities as well as monitoring efficiency, increasing the level of security of member institutions.

  2. Breast cancer detection using sonography in women with mammographically dense breasts

    International Nuclear Information System (INIS)

    Okello, Jimmy; Kisembo, Harriet; Bugeza, Sam; Galukande, Moses

    2014-01-01

    Mammography, the gold standard for breast cancer screening misses some cancers, especially in women with dense breasts. Breast ultrasonography as a supplementary imaging tool for further evaluation of symptomatic women with mammographically dense breasts may improve the detection of mass lesions otherwise missed at mammography. The purpose of this study was to determine the incremental breast cancer detection rate using US scanning in symptomatic women with mammographically dense breasts in a resource poor environment. A cross sectional descriptive study. Women referred for mammography underwent bilateral breast ultrasound, and mammography for symptom evaluation. The lesions seen by both modalities were described using sonographic BI-RADS lexicon and categorized. Ultrasound guided core biopsies were performed. IRB approval was obtained and all participants provided informed written consent. In total 148 women with mammographically dense breasts were recruited over six months. The prevalence of breast cancer in symptomatic women with mammographically dense breasts was 22/148 (15%). Mammography detected 16/22 (73%) of these cases and missed 6/22 (27%). The six breast cancer cases missed were correctly diagnosed on breast ultrasonography. Sonographic features typical of breast malignancy were irregular shape, non-parallel orientation, non circumscribed margin, echogenic halo, and increased lesion vascularity (p values < 0.005). Typical sonofeatures of benign mass lesions were: oval shape, parallel orientation and circumscribed margin (p values <0.005). Breast ultrasound scan as a supplementary imaging tool detected 27% more malignant mass lesions otherwise missed by mammography among these symptomatic women with mammographically dense breasts. We recommend that ultra sound scanning in routine evaluation of symptomatic women with mammographically dense breasts

  3. THE UNIFICATION OF THE CODE LISTS PROVIDED WITHIN THE DATA MODEL ORIGINATING FROM THE INSPIRE TECHNICAL GUIDELINES AND THE ONES PROVIDED FOR GESUT DATABASES IN THE CONTEXT OF POTENTIAL EXPLOITATION IN THE MINING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Andrzej ZYGMUNIAK

    2016-07-01

    Full Text Available This study is aimed at exposing differences between two data models in case of code lists values provided there. The first of them is an obligatory one for managing Geodesic Register of Utility Networks databases in Poland [9] and the second is the model originating from the Technical Guidelines issued to the INSPIRE Directive. Since the second one mentioned is the basis for managing spatial databases among European parties, correlating these two data models has an effect in easing the way of harmonizing and, in consequence, exchanging spatial data. Therefore, the study presents the possibilities of increasing compatibility between the values of the code lists concerning attributes for objects provid-ed in both models. In practice, it could lead to an increase of the competitiveness of entities managing or processing such databases and to greater involvement in scientific or research projects when it comes to the mining industry. More-over, since utility networks located on mining areas are under particular protection, the ability of making them more fitted to their own needs will make it possible for mining plants to exchange spatial data in a more efficient way.

  4. ON THE FORMATION OF GLYCOLALDEHYDE IN DENSE MOLECULAR CORES

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Paul M.; Kelly, George; Viti, Serena [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Slater, Ben; Brown, Wendy A.; Puletti, Fabrizio; Burke, Daren J.; Raza, Zamaan, E-mail: paul.woods@ucl.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2012-05-01

    Glycolaldehyde is a simple monosaccharide sugar linked to prebiotic chemistry. Recently, it was detected in a molecular core in the star-forming region G31.41+0.31 at a reasonably high abundance. We investigate the formation of glycolaldehyde at 10 K to determine whether it can form efficiently under typical dense core conditions. Using an astrochemical model, we test five different reaction mechanisms that have been proposed in the astrophysical literature, finding that a gas-phase formation route is unlikely. Of the grain-surface formation routes, only two are efficient enough at very low temperatures to produce sufficient glycolaldehyde to match the observational estimates, with the mechanism culminating in CH{sub 3}OH + HCO being favored. However, when we consider the feasibility of these mechanisms from a reaction chemistry perspective, the second grain-surface route looks more promising, H{sub 3}CO + HCO.

  5. Simultaneous dense coding affected by fluctuating massless scalar field

    Science.gov (United States)

    Huang, Zhiming; Ye, Yiyong; Luo, Darong

    2018-04-01

    In this paper, we investigate the simultaneous dense coding (SDC) protocol affected by fluctuating massless scalar field. The noisy model of SDC protocol is constructed and the master equation that governs the SDC evolution is deduced. The success probabilities of SDC protocol are discussed for different locking operators under the influence of vacuum fluctuations. We find that the joint success probability is independent of the locking operators, but other success probabilities are not. For quantum Fourier transform and double controlled-NOT operators, the success probabilities drop with increasing two-atom distance, but SWAP operator is not. Unlike the SWAP operator, the success probabilities of Bob and Charlie are different. For different noisy interval values, different locking operators have different robustness to noise.

  6. Adaptive Probabilistic Broadcasting over Dense Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Victor Gau

    2010-01-01

    Full Text Available We propose an idle probability-based broadcasting method, iPro, which employs an adaptive probabilistic mechanism to improve performance of data broadcasting over dense wireless ad hoc networks. In multisource one-hop broadcast scenarios, the modeling and simulation results of the proposed iPro are shown to significantly outperform the standard IEEE 802.11 under saturated condition. Moreover, the results also show that without estimating the number of competing nodes and changing the contention window size, the performance of the proposed iPro can still approach the theoretical bound. We further apply iPro to multihop broadcasting scenarios, and the experiment results show that within the same elapsed time after the broadcasting, the proposed iPro has significantly higher Packet-Delivery Ratios (PDR than traditional methods.

  7. Localisation accuracy of semi-dense monocular SLAM

    Science.gov (United States)

    Schreve, Kristiaan; du Plessies, Pieter G.; Rätsch, Matthias

    2017-06-01

    Understanding the factors that influence the accuracy of visual SLAM algorithms is very important for the future development of these algorithms. So far very few studies have done this. In this paper, a simulation model is presented and used to investigate the effect of the number of scene points tracked, the effect of the baseline length in triangulation and the influence of image point location uncertainty. It is shown that the latter is very critical, while the other all play important roles. Experiments with a well known semi-dense visual SLAM approach are also presented, when used in a monocular visual odometry mode. The experiments shows that not including sensor bias and scale factor uncertainty is very detrimental to the accuracy of the simulation results.

  8. Dynamical density functional theory for dense atomic liquids

    International Nuclear Information System (INIS)

    Archer, A J

    2006-01-01

    Starting from Newton's equations of motion, we derive a dynamical density functional theory (DDFT) applicable to atomic liquids. The theory has the feature that it requires as input the Helmholtz free energy functional from equilibrium density functional theory. This means that, given a reliable equilibrium free energy functional, the correct equilibrium fluid density profile is guaranteed. We show that when the isothermal compressibility is small, the DDFT generates the correct value for the speed of sound in a dense liquid. We also interpret the theory as a dynamical equation for a coarse grained fluid density and show that the theory can be used (making further approximations) to derive the standard mode coupling theory that is used to describe the glass transition. The present theory should provide a useful starting point for describing the dynamics of inhomogeneous atomic fluids

  9. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  10. Breast cancer screening in Korean woman with dense breast tissue

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Jung [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Ko, Eun Sook [Dept. of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Yi, Ann [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-11-15

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results.

  11. Breast cancer screening in Korean woman with dense breast tissue

    International Nuclear Information System (INIS)

    Shin, Hee Jung; Ko, Eun Sook; Yi, Ann

    2015-01-01

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results

  12. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    Directory of Open Access Journals (Sweden)

    A. I. Khader

    2013-05-01

    Full Text Available Groundwater contaminated with nitrate poses a serious health risk to infants when this contaminated water is used for culinary purposes. To avoid this health risk, people need to know whether their culinary water is contaminated or not. Therefore, there is a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management options. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision-maker and the expected outcomes from these alternatives. The alternatives include (i ignore the health risk of nitrate-contaminated water, (ii switch to alternative water sources such as bottled water, or (iii implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, contaminant transport processes, and climate (Khader, 2012. The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine, where methemoglobinemia (blue baby syndrome is the main health problem associated with the principal contaminant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not use aquifer water, and whether people get sick from drinking contaminated water

  13. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    Science.gov (United States)

    Khader, A. I.; Rosenberg, D. E.; McKee, M.

    2013-05-01

    Groundwater contaminated with nitrate poses a serious health risk to infants when this contaminated water is used for culinary purposes. To avoid this health risk, people need to know whether their culinary water is contaminated or not. Therefore, there is a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management options. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision-maker and the expected outcomes from these alternatives. The alternatives include (i) ignore the health risk of nitrate-contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, contaminant transport processes, and climate (Khader, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine, where methemoglobinemia (blue baby syndrome) is the main health problem associated with the principal contaminant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs

  14. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    Science.gov (United States)

    Khader, A.; Rosenberg, D.; McKee, M.

    2012-12-01

    Nitrate pollution poses a health risk for infants whose freshwater drinking source is groundwater. This risk creates a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision maker and the expected outcomes from these alternatives. The alternatives include: (i) ignore the health risk of nitrate contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, pollution transport processes, and climate (Khader and McKee, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine where methemoglobinemia is the main health problem associated with the principal pollutant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not-use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current

  15. Ultrafast visualization of the structural evolution of dense hydrogen towards warm dense matter

    Science.gov (United States)

    Fletcher, Luke

    2016-10-01

    Hot dense hydrogen far from equilibrium is ubiquitous in nature occurring during some of the most violent and least understood events in our universe such as during star formation, supernova explosions, and the creation of cosmic rays. It is also a state of matter important for applications in inertial confinement fusion research and in laser particle acceleration. Rapid progress occurred in recent years characterizing the high-pressure structural properties of dense hydrogen under static or dynamic compression. Here, we show that spectrally and angularly resolved x-ray scattering measure the thermodynamic properties of dense hydrogen and resolve the ultrafast evolution and relaxation towards thermodynamic equilibrium. These studies apply ultra-bright x-ray pulses from the Linac Coherent Light (LCLS) source. The interaction of rapidly heated cryogenic hydrogen with a high-peak power optical laser is visualized with intense LCLS x-ray pulses in a high-repetition rate pump-probe setting. We demonstrate that electron-ion coupling is affected by the small number of particles in the Debye screening cloud resulting in much slower ion temperature equilibration than predicted by standard theory. This work was supported by the DOE Office of Science, Fusion Energy Science under FWP 100182.

  16. Dense surface seismic data confirm non-double-couple source mechanisms induced by hydraulic fracturing

    Science.gov (United States)

    Pesicek, Jeremy; Cieślik, Konrad; Lambert, Marc-André; Carrillo, Pedro; Birkelo, Brad

    2016-01-01

    We have determined source mechanisms for nine high-quality microseismic events induced during hydraulic fracturing of the Montney Shale in Canada. Seismic data were recorded using a dense regularly spaced grid of sensors at the surface. The design and geometry of the survey are such that the recorded P-wave amplitudes essentially map the upper focal hemisphere, allowing the source mechanism to be interpreted directly from the data. Given the inherent difficulties of computing reliable moment tensors (MTs) from high-frequency microseismic data, the surface amplitude and polarity maps provide important additional confirmation of the source mechanisms. This is especially critical when interpreting non-shear source processes, which are notoriously susceptible to artifacts due to incomplete or inaccurate source modeling. We have found that most of the nine events contain significant non-double-couple (DC) components, as evident in the surface amplitude data and the resulting MT models. Furthermore, we found that source models that are constrained to be purely shear do not explain the data for most events. Thus, even though non-DC components of MTs can often be attributed to modeling artifacts, we argue that they are required by the data in some cases, and can be reliably computed and confidently interpreted under favorable conditions.

  17. MAGNETIC FIELD IN THE ISOLATED MASSIVE DENSE CLUMP IRAS 20126+4104

    International Nuclear Information System (INIS)

    Shinnaga, Hiroko; Phillips, Thomas G.; Novak, Giles; Vaillancourt, John E.; Machida, Masahiro N.; Kataoka, Akimasa; Tomisaka, Kohji; Davidson, Jacqueline; Houde, Martin; Dowell, C. Darren; Leeuw, Lerothodi

    2012-01-01

    We measured polarized dust emission at 350 μm toward the high-mass star-forming massive dense clump IRAS 20126+4104 using the SHARC II Polarimeter, SHARP, at the Caltech Submillimeter Observatory. Most of the observed magnetic field vectors agree well with magnetic field vectors obtained from a numerical simulation for the case when the global magnetic field lines are inclined with respect to the rotation axis of the dense clump. The results of the numerical simulation show that rotation plays an important role on the evolution of the massive dense clump and its magnetic field. The direction of the cold CO 1-0 bipolar outflow is parallel to the observed magnetic field within the dense clump as well as the global magnetic field, as inferred from optical polarimetry data, indicating that the magnetic field also plays a critical role in an early stage of massive star formation. The large-scale Keplerian disk of the massive (proto)star rotates in an almost opposite sense to the clump's envelope. The observed magnetic field morphology and the counterrotating feature of the massive dense clump system provide hints to constrain the role of magnetic fields in the process of high-mass star formation.

  18. Left ventricular strain and its pattern estimated from cine CMR and validation with DENSE

    International Nuclear Information System (INIS)

    Gao, Hao; Luo, Xiaoyu; Allan, Andrew; McComb, Christie; Berry, Colin

    2014-01-01

    Measurement of local strain provides insight into the biomechanical significance of viable myocardium. We attempted to estimate myocardial strain from cine cardiovascular magnetic resonance (CMR) images by using a b-spline deformable image registration method. Three healthy volunteers and 41 patients with either recent or chronic myocardial infarction (MI) were studied at 1.5 Tesla with both cine and DENSE CMR. Regional circumferential and radial left ventricular strains were estimated from cine and DENSE acquisitions. In all healthy volunteers, there was no difference for peak circumferential strain (− 0.18 ± 0.04 versus − 0.18 ± 0.03, p = 0.76) between cine and DENSE CMR, however peak radial strain was overestimated from cine (0.84 ± 0.37 versus 0.49 ± 0.2, p < 0.01). In the patient study, the peak strain patterns predicted by cine were similar to the patterns from DENSE, including the strain evolution related to recovery time and strain patterns related to MI scar extent. Furthermore, cine-derived strain disclosed different strain patterns in MI and non-MI regions, and regions with transmural and non-transmural MI as DENSE. Although there were large variations with radial strain measurements from cine CMR images, useful circumferential strain information can be obtained from routine clinical CMR imaging. Cine strain analysis has potential to improve the diagnostic yield from routine CMR imaging in clinical practice. (paper)

  19. Left ventricular strain and its pattern estimated from cine CMR and validation with DENSE.

    Science.gov (United States)

    Gao, Hao; Allan, Andrew; McComb, Christie; Luo, Xiaoyu; Berry, Colin

    2014-07-07

    Measurement of local strain provides insight into the biomechanical significance of viable myocardium. We attempted to estimate myocardial strain from cine cardiovascular magnetic resonance (CMR) images by using a b-spline deformable image registration method. Three healthy volunteers and 41 patients with either recent or chronic myocardial infarction (MI) were studied at 1.5 Tesla with both cine and DENSE CMR. Regional circumferential and radial left ventricular strains were estimated from cine and DENSE acquisitions. In all healthy volunteers, there was no difference for peak circumferential strain (- 0.18 ± 0.04 versus - 0.18 ± 0.03, p = 0.76) between cine and DENSE CMR, however peak radial strain was overestimated from cine (0.84 ± 0.37 versus 0.49 ± 0.2, p cine were similar to the patterns from DENSE, including the strain evolution related to recovery time and strain patterns related to MI scar extent. Furthermore, cine-derived strain disclosed different strain patterns in MI and non-MI regions, and regions with transmural and non-transmural MI as DENSE. Although there were large variations with radial strain measurements from cine CMR images, useful circumferential strain information can be obtained from routine clinical CMR imaging. Cine strain analysis has potential to improve the diagnostic yield from routine CMR imaging in clinical practice.

  20. Measuring the EOS of a Dense, Strongly Coupled Plasma; Description of the Technique

    International Nuclear Information System (INIS)

    Benage, John F. Jr.; Kyraka, George; Workman, Jonathan; Tierney, Thomas

    1997-08-01

    This paper describes a new experimental design which we believe can produce reasonably accurate data for the equation of state (EOS) of a dense plasma. This design takes advantage of the standard shock technique used for determining the high pressure EOS of solids. It also utilizes recently developed experimental techniques for producing dense, strongly coupled plasmas as well as new diagnostic techniques for measuring the properties of these plasmas. The results should be able to distinguish among theoretical models for plasmas at just under solid density and temperatures of 10's of eV

  1. Providing High-Quality Support Services to Home-Based Child Care: A Conceptual Model and Literature Review

    Science.gov (United States)

    Bromer, Juliet; Korfmacher, Jon

    2017-01-01

    Research Findings: Home-based child care accounts for a significant proportion of nonparental child care arrangements for young children in the United States. Yet the early care and education field lacks clear models or pathways for how to improve quality in these settings. The conceptual model presented here articulates the components of…

  2. Does brain slices from pentylenetetrazole-kindled mice provide a more predictive screening model for antiepileptic drugs?

    DEFF Research Database (Denmark)

    Hansen, Suzanne L.; Sterjev, Zoran; Werngreen, Marie

    2012-01-01

    screening model for AEDs. To this end, we compared the in vitro and in vivo pharmacological profile of several selected AEDs (phenobarbital, phenytoin, tiagabine, fosphenytoin, valproate, and carbamazepine) along with citalopram using the PTZ-kindled model and brain slices from naïve, saline...

  3. Learning to Measure Biodiversity: Two Agent-Based Models that Simulate Sampling Methods & Provide Data for Calculating Diversity Indices

    Science.gov (United States)

    Jones, Thomas; Laughlin, Thomas

    2009-01-01

    Nothing could be more effective than a wilderness experience to demonstrate the importance of conserving biodiversity. When that is not possible, though, there are computer models with several features that are helpful in understanding how biodiversity is measured. These models are easily used when natural resources, transportation, and time…

  4. Provider communication and role modeling related to patients' perceptions and use of a federally qualified health center-based farmers' market.

    Science.gov (United States)

    Friedman, Daniela B; Freedman, Darcy A; Choi, Seul Ki; Anadu, Edith C; Brandt, Heather M; Carvalho, Natalia; Hurley, Thomas G; Young, Vicki M; Hébert, James R

    2014-03-01

    Farmers' markets have the potential to improve the health of underserved communities, shape people's perceptions, values, and behaviors about healthy eating, and serve as a social space for both community members and vendors. This study explored the influence of health care provider communication and role modeling for diabetic patients within the context of a farmers' market located at a federally qualified health center. Although provider communication about diet decreased over time, communication strategies included: providing patients with "prescriptions" and vouchers for market purchases; educating patients about diet; and modeling healthy purchases. Data from patient interviews and provider surveys revealed that patients enjoyed social aspects of the market including interactions with their health care provider, and providers distributed prescriptions and vouchers to patients, shopped at the market, and believed that the market had potential to improve the health of staff and patients of the federally qualified health center. Provider modeling of healthy behaviors may influence patients' food-related perceptions and dietary behaviors.

  5. Progress towards an ab initio real-time treatment of warm dense matter

    Science.gov (United States)

    Baczewski, Andrew; Cangi, Attila; Hansen, Stephanie; Jensen, Daniel

    2017-10-01

    Time-dependent density functional theory (TDDFT) provides an accurate description of equilibrium properties of warm dense matter, such as the dynamic structure factor (Baczewski et al., Phys. Rev. Lett., 116(11), 2016). While non-equilibrium properties, such as stopping power, have also been demonstrated to be within the grasp of TDDFT, the ultrafast isochoric heating of condensed matter into the warm dense state, enabled by recent advances in XFELs, remains beyond its capabilities. In this talk, we will describe the successes of and continuing challenges for TDDFT for warm dense matter, and present progress towards a more complete ab initio treatment of isochoric x-ray heating. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the DOE's National Nuclear Security Administration under contract DE-NA0003525.

  6. Microscopic and thermodynamic properties of dense semiclassical partially ionized hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T S; Dzhumagulova, K N; Gabdullin, M T [IETP, Al-Farabi Kazakh National University, 96a, Tole Bi St, Almaty, 050012 (Kazakhstan)

    2006-04-28

    Microscopic and thermodynamic properties of dense semiclassical partially ionized hydrogen plasma were investigated on the basis of pseudopotential models. Radial distribution functions (RDF) of particles were obtained using a system of the Ornstein-Zernike integral equations. The corrections to internal energy and the equation of state were calculated using RDF.

  7. Theoretical research of electron-ion direct impact excitation cross sections for hot dense plasma

    International Nuclear Information System (INIS)

    Tian Mingfeng

    2003-01-01

    An average-atom (AA) model, Younger formula and partial wave method are employed to study the electron- ion direct impact excitation cross sections for hot dense plasma. The phenomenon of electron resonance near the excitation threshold and its mechanism are discussed. (author)

  8. On the use of locally dense basis sets in the calculation of EPR hyperfine couplings

    DEFF Research Database (Denmark)

    Milhøj, Birgitte Olai; Hedegård, Erik D.; Sauer, Stephan P. A.

    2013-01-01

    The usage of locally dense basis sets in the calculation of Electron Paramagnetic Resonance (EPR) hyperne coupling constants is investigated at the level of Density Functional Theory (DFT) for two model systems of biologically important transition metal complexes: One for the active site in the c...

  9. Accelerating Scientific Applications using High Performance Dense and Sparse Linear Algebra Kernels on GPUs

    KAUST Repository

    Abdelfattah, Ahmad

    2015-01-15

    High performance computing (HPC) platforms are evolving to more heterogeneous configurations to support the workloads of various applications. The current hardware landscape is composed of traditional multicore CPUs equipped with hardware accelerators that can handle high levels of parallelism. Graphical Processing Units (GPUs) are popular high performance hardware accelerators in modern supercomputers. GPU programming has a different model than that for CPUs, which means that many numerical kernels have to be redesigned and optimized specifically for this architecture. GPUs usually outperform multicore CPUs in some compute intensive and massively parallel applications that have regular processing patterns. However, most scientific applications rely on crucial memory-bound kernels and may witness bottlenecks due to the overhead of the memory bus latency. They can still take advantage of the GPU compute power capabilities, provided that an efficient architecture-aware design is achieved. This dissertation presents a uniform design strategy for optimizing critical memory-bound kernels on GPUs. Based on hierarchical register blocking, double buffering and latency hiding techniques, this strategy leverages the performance of a wide range of standard numerical kernels found in dense and sparse linear algebra libraries. The work presented here focuses on matrix-vector multiplication kernels (MVM) as repre- sentative and most important memory-bound operations in this context. Each kernel inherits the benefits of the proposed strategies. By exposing a proper set of tuning parameters, the strategy is flexible enough to suit different types of matrices, ranging from large dense matrices, to sparse matrices with dense block structures, while high performance is maintained. Furthermore, the tuning parameters are used to maintain the relative performance across different GPU architectures. Multi-GPU acceleration is proposed to scale the performance on several devices. The

  10. Whole eggs enhance antioxidant activity when combined with energy dense, cooked breakfast foods

    Science.gov (United States)

    Acute metabolic changes following the consumption of energy dense foods high in saturated fat (SFA) and glycemic load (GL) may contribute to the pathogenesis of several chronic diseases. Eggs provide highly digestible protein, unsaturated fatty acids, carotenoids, and other antioxidant compounds tha...

  11. DESIGN PROBLEMS OF THE BUILDINGS FOUNDATIONS AND STRUCTURES CONSTRUCTED IN DENSE URBAN AREAS

    Directory of Open Access Journals (Sweden)

    O. Yu. Prokopov

    2007-10-01

    Full Text Available The urgency of methodical provision of planning of foundations for buildings erected next to existing ones is сonsidered. It is based on studying the causes of extension of deformations of structures in conditions of dense city building system. Some recommendations providing safety of buildings are given.

  12. DESIGN PROBLEMS OF THE BUILDINGS FOUNDATIONS AND STRUCTURES CONSTRUCTED IN DENSE URBAN AREAS

    OpenAIRE

    O. Yu. Prokopov; M. V. Prokopova

    2007-01-01

    The urgency of methodical provision of planning of foundations for buildings erected next to existing ones is сonsidered. It is based on studying the causes of extension of deformations of structures in conditions of dense city building system. Some recommendations providing safety of buildings are given.

  13. Dense Gravity Currents with Breaking Internal Waves

    Science.gov (United States)

    Tanimoto, Yukinobu; Hogg, Charlie; Ouellette, Nicholas; Koseff, Jeffrey

    2017-11-01

    Shoaling and breaking internal waves along a pycnocline may lead to mixing and dilution of dense gravity currents, such as cold river inflows into lakes or brine effluent from desalination plants in near-coastal environments. In order to explore the interaction between gravity currents and breaking interfacial waves a series of laboratory experiments was performed in which a sequence of internal waves impinge upon a shelf-slope gravity current. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents. The mixing of the gravity current is measured through both intrusive (CTD probe) and nonintrusive (Planar-laser inducted fluorescence) techniques. We will present results over a full range of Froude number (characterizing the waves) and Richardson number (characterizing the gravity current) conditions, and will discuss the mechanisms by which the gravity current is mixed into the ambient environment including the role of turbulence in the process. National Science Foundation.

  14. Thermochemistry of dense hydrous magnesium silicates

    Science.gov (United States)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  15. Characterisation of Ferrosilicon Dense Medium Separation Material

    International Nuclear Information System (INIS)

    Waanders, F. B.; Mans, A.

    2003-01-01

    Ferrosilicon is used in the dense medium separation of iron ore at Kumba resources, Sishen, South Africa. Due to high cost and losses that occur during use, maximum recovery by means of magnetic separation is aimed for. The purpose of this project was to determine the characteristics of the unused Fe-Si and then to characterise the changes that occur during storage and use thereof. Scanning electron microscopy was used to determine the composition of each sample, whilst Moessbauer spectroscopy yielded a two-sextet spectrum with hyperfine magnetic field strengths of 20 and 31 T, respectively, for the fresh samples. Additional hematite oxide peaks appeared in the Moessbauer spectra after use of the Fe-Si over a length of time, but this did not result in a dramatic degradation of the medium. No definite changes occurred during correct storage methods. It was, however, found that the biggest loss of Fe-Si was due to the abrasion of the particles, which resulted in the formation of an oxihydroxide froth, during the process.

  16. Load Designs For MJ Dense Plasma Foci

    Science.gov (United States)

    Link, A.; Povlius, A.; Anaya, R.; Anderson, M. G.; Angus, J. R.; Cooper, C. M.; Falabella, S.; Goerz, D.; Higginson, D.; Holod, I.; McMahon, M.; Mitrani, J.; Koh, E. S.; Pearson, A.; Podpaly, Y. A.; Prasad, R.; van Lue, D.; Watson, J.; Schmidt, A. E.

    2017-10-01

    Dense plasma focus (DPF) Z-pinches are compact pulse power driven devices with coaxial electrodes. The discharge of DPF consists of three distinct phases: first generation of a plasma sheath, plasma rail gun phase where the sheath is accelerated down the electrodes and finally an implosion phase where the plasma stagnates into a z-pinch geometry. During the z-pinch phase, DPFs can produce MeV ion beams, x-rays and neutrons. Megaampere class DPFs with deuterium fills have demonstrated neutron yields in the 1012 neutrons/shot range with pulse durations of 10-100 ns. Kinetic simulations using the code Chicago are being used to evaluate various load configurations from initial sheath formation to the final z-pinch phase for DPFs with up to 5 MA and 1 MJ coupled to the load. Results will be presented from the preliminary design simulations. LLNL-ABS-734785 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and with support from the Computing Grand Challenge program at LLNL.

  17. Packing frustration in dense confined fluids.

    Science.gov (United States)

    Nygård, Kim; Sarman, Sten; Kjellander, Roland

    2014-09-07

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile--each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  18. A comparison of earthquake backprojection imaging methods for dense local arrays

    Science.gov (United States)

    Beskardes, G. D.; Hole, J. A.; Wang, K.; Michaelides, M.; Wu, Q.; Chapman, M. C.; Davenport, K. K.; Brown, L. D.; Quiros, D. A.

    2018-03-01

    Backprojection imaging has recently become a practical method for local earthquake detection and location due to the deployment of densely sampled, continuously recorded, local seismograph arrays. While backprojection sometimes utilizes the full seismic waveform, the waveforms are often pre-processed and simplified to overcome imaging challenges. Real data issues include aliased station spacing, inadequate array aperture, inaccurate velocity model, low signal-to-noise ratio, large noise bursts and varying waveform polarity. We compare the performance of backprojection with four previously used data pre-processing methods: raw waveform, envelope, short-term averaging/long-term averaging and kurtosis. Our primary goal is to detect and locate events smaller than noise by stacking prior to detection to improve the signal-to-noise ratio. The objective is to identify an optimized strategy for automated imaging that is robust in the presence of real-data issues, has the lowest signal-to-noise thresholds for detection and for location, has the best spatial resolution of the source images, preserves magnitude, and considers computational cost. Imaging method performance is assessed using a real aftershock data set recorded by the dense AIDA array following the 2011 Virginia earthquake. Our comparisons show that raw-waveform backprojection provides the best spatial resolution, preserves magnitude and boosts signal to detect events smaller than noise, but is most sensitive to velocity error, polarity error and noise bursts. On the other hand, the other methods avoid polarity error and reduce sensitivity to velocity error, but sacrifice spatial resolution and cannot effectively reduce noise by stacking. Of these, only kurtosis is insensitive to large noise bursts while being as efficient as the raw-waveform method to lower the detection threshold; however, it does not preserve the magnitude information. For automatic detection and location of events in a large data set, we

  19. Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory

    International Nuclear Information System (INIS)

    Ma, L.X.; Tan, J.Y.; Zhao, J.M.; Wang, F.Q.; Wang, C.A.

    2017-01-01

    The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus–Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus–Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied. - Highlights: • The Muller matrix of randomly distributed, densely packed spheres are investigated. • The effects of multiple scattering and dependent scattering are analyzed. • The accuracy of radiative transfer theory for densely packed spheres is discussed. • Dependent scattering correction takes effect at medium size parameter or smaller. • Performance of dependent scattering correction

  20. Observations during static and cyclic undrained loading of dense Aalborg University sand no. 1

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Diaz, Alberto Troya; Ibsen, Lars Bo

    . Soil strength and stiffness are found to change depending on the type of loading applied. Effective friction angle is found to be changing during various phases of loading. Linear Mohr Coulomb model could potentially be sufficient for modeling the full spectrum of dense sand behavior if extended...... with a changing friction angle following the examined patterns of response. A total stress path based material model is presented in this paper....

  1. PIC Simulations of Dense Plasma Focus Z-pinch

    Science.gov (United States)

    Schmidt, A.; Blackfield, D.; Tang, V.; Welch, D.; Rose, D.

    2011-10-01

    Dense Plasma Focus (DPF) Z-pinches are abundant sources of radiation, including neutrons, x-rays, and energetic electron and ion beams. Energetic protons and deuterons up to 10 MeV have been observed from cm-scale-length pinches, implying average acceleration gradients up to 1 GV/m. Gradients of this magnitude could potentially be exploited in the design of a compact accelerator. However, the physical mechanisms behind these immense electric fields are not well understood and thus DPF design cannot currently be optimized to maximize these gradients. At LLNL, we have assembled a DPF Z-pinch experiment and will be using a 4 MV ion probe beam to directly measure pinch-induced gradients. LSP, a fully relativistic electromagnetic Particle-In-Cell (PIC) code is used to perform time-dependent simulations of the pinch phase of the DPF and to gain insight into the origin and evolution of the large accelerating fields. LSP can be used in 2D or 3D geometries and can model the ions kinetically with fluid electrons (hybrid model) or model both species kinetically (fully kinetic model). We present results from both pressure and sheath width scans using LSP. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) at LLNL.

  2. Consequences of the Solar System passage through dense interstellar clouds

    Directory of Open Access Journals (Sweden)

    A. G. Yeghikyan

    2003-06-01

    Full Text Available Several consequences of the passage of the solar system through dense interstellar molecular clouds are discussed. These clouds, dense (more than 100 cm-3, cold (10–50 K and extended (larger than 1 pc, are characterized by a gas-to-dust mass ratio of about 100, by a specific power grain size spectrum (grain radii usually cover the range 0.001–3 micron and by an average dust-to-gas number density ratio of about 10-12. Frequently these clouds contain small-scale (10–100 AU condensations with gas concentrations ranging up to 10 5 cm-3. At their casual passage over the solar system they exert pressures very much enhanced with respect to today’s standards. Under these conditions it will occur that the Earth is exposed directly to the interstellar flow. It is shown first that even close to the Sun, at 1 AU, the cloud’s matter is only partly ionized and should mainly interact with the solar wind by charge exchange processes. Dust particles of the cloud serve as a source of neutrals, generated by the solar UV irradiation of dust grains, causing the evaporation of icy materials. The release of neutral atoms from dust grains is then followed by strong influences on the solar wind plasma flow. The behavior of the neutral gas inflow parameters is investigated by a 2-D hydrodynamic approach to model the interaction processes. Because of a reduction of the heliospheric dimension down to 1 AU, direct influence of the cloud’s matter to the terrestrial environment and atmosphere could be envisaged.Key words. Interplanetary physics (heliopause and solar wind termination; interplanetary dust; interstellar gas

  3. Mapping topographic plant location properties using a dense matching approach

    Science.gov (United States)

    Niederheiser, Robert; Rutzinger, Martin; Lamprecht, Andrea; Bardy-Durchhalter, Manfred; Pauli, Harald; Winkler, Manuela

    2017-04-01

    Within the project MEDIALPS (Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs. Mediterranean mountains) six regions in Alpine and in Mediterranean mountain regions are investigated to assess how plant species respond to climate change. The project is embedded in the Global Observation Research Initiative in Alpine Environments (GLORIA), which is a well-established global monitoring initiative for systematic observation of changes in the plant species composition and soil temperature on mountain summits worldwide to discern accelerating climate change pressures on these fragile alpine ecosystems. Close-range sensing techniques such as terrestrial photogrammetry are well suited for mapping terrain topography of small areas with high resolution. Lightweight equipment, flexible positioning for image acquisition in the field, and independence on weather conditions (i.e. wind) make this a feasible method for in-situ data collection. New developments of dense matching approaches allow high quality 3D terrain mapping with less requirements for field set-up. However, challenges occur in post-processing and required data storage if many sites have to be mapped. Within MEDIALPS dense matching is used for mapping high resolution topography for 284 3x3 meter plots deriving information on vegetation coverage, roughness, slope, aspect and modelled solar radiation. This information helps identifying types of topography-dependent ecological growing conditions and evaluating the potential for existing refugial locations for specific plant species under climate change. This research is conducted within the project MEDIALPS - Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs. Mediterranean mountains funded by the Earth System Sciences Programme of the Austrian Academy of Sciences.

  4. Regulation-Structured Dynamic Metabolic Model Provides a Potential Mechanism for Delayed Enzyme Response in Denitrification Process

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun-Seob; Thomas, Dennis G.; Stegen, James C.; Li, Minjing; Liu, Chongxuan; Song, Xuehang; Chen, Xingyuan; Fredrickson, Jim K.; Zachara, John M.; Scheibe, Timothy D.

    2017-09-29

    In a recent study of denitrification dynamics in hyporheic zone sediments, we observed a significant time lag (up to several days) in enzymatic response to the changes in substrate concentration. To explore an underlying mechanism and understand the interactive dynamics between enzymes and nutrients, we developed a trait-based model that associates a community’s traits with functional enzymes, instead of typically used species guilds (or functional guilds). This enzyme-based formulation allows to collectively describe biogeochemical functions of microbial communities without directly parameterizing the dynamics of species guilds, therefore being scalable to complex communities. As a key component of modeling, we accounted for microbial regulation occurring through transcriptional and translational processes, the dynamics of which was parameterized based on the temporal profiles of enzyme concentrations measured using a new signature peptide-based method. The simulation results using the resulting model showed several days of a time lag in enzymatic responses as observed in experiments. Further, the model showed that the delayed enzymatic reactions could be primarily controlled by transcriptional responses and that the dynamics of transcripts and enzymes are closely correlated. The developed model can serve as a useful tool for predicting biogeochemical processes in natural environments, either independently or through integration with hydrologic flow simulators.

  5. Dense matter in strong gravitational field of neutron star

    Indian Academy of Sciences (India)

    Sajad A. Bhat

    2018-02-10

    Feb 10, 2018 ... Abstract. Mass, radius and moment of inertia are direct probes of compositions and Equation of State (EoS) of dense matter in neutron star interior. These are computed for novel phases of dense matter involving hyperons and antikaon condensate and their observable consequences are discussed in this ...

  6. Mining connected global and local dense subgraphs for bigdata

    Science.gov (United States)

    Wu, Bo; Shen, Haiying

    2016-01-01

    The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.

  7. Interparticle interaction and transport processes in dense semiclassical plasmas

    International Nuclear Information System (INIS)

    Baimbetov, F.B.; Giniyatova, Sh.G.

    2005-01-01

    On the basis of the density response formalism an expression for the pseudopotential of dense semiclassical plasma, which takes account of quantum-mechanical effects, local field corrections, and electronic screening effects is obtained. The static structure factors taking into account both local fields and quantum-mechanical effects are calculated. An electrical conductivity, thermal conductivity, and viscosity of dense semiclassical plasma are studied

  8. Body-wave retrieval and imaging from ambient seismic fields with very dense arrays

    Science.gov (United States)

    Nakata, N.; Boué, P.; Beroza, G. C.

    2015-12-01

    Correlation-based analyses of ambient seismic wavefields is a powerful tool for retrieving subsurface information such as stiffness, anisotropy, and heterogeneity at a variety of scales. These analyses can be considered to be data-driven wavefield modeling. Studies of ambient-field tomography have been mostly focused on the surface waves, especially fundamental-mode Rayleigh waves. Although the surface-wave tomography is useful to model 3D velocities, the spatial resolution is limited due to the extended depth sensitivity of the surface wave measurements. Moreover, to represent elastic media, we need at least two stiffness parameters (e.g., shear and bulk moduli). We develop a technique to retrieve P diving waves from the ambient field observed by the dense geophone network (~2500 receivers with 100-m spacing) at Long Beach, California. With two-step filtering, we improve the signal-to-noise ratio of body waves to extract P wave observations that we use for tomography to estimate 3D P-wave velocity structure. The small scale-length heterogeneity of the velocity model follows a power law with ellipsoidal anisotropy. We also discuss possibilities to retrieve reflected waves from the ambient field and show other applications of the body-wave extraction at different locations and scales. Note that reflected waves penetrate deeper than diving waves and have the potential to provide much higher spatial resolution.

  9. Mengukur Kesiapan Implementasi Customer Relationship Management (CRM Model Application Service Provider (ASP pada Usaha Mikro Kecil Menengah (UMKM di Indonesia

    Directory of Open Access Journals (Sweden)

    Rianto

    2017-04-01

    Full Text Available UMKM menjadi penyumbang utama pendapatan nasional untuk suatu Negara, khususnya Negara berkembang. UMKM tumbuh dan menyerap banyak tenaga kerja dan menjadi roda perekonomian utama. Indonesia menjadi salah satu dari banyak negara, dimana UMKM memberikan banyak kontribusi pendapatan nasional dan penyerapan tenaga kerja. Dalam bisnis, perubahan diperlukan agar tetap hidup dan berkembang, dalam hal ini perubahan bisnis yang bersifat konvensional ke e-bisnis. Salah satunya adalah CRM, CRM telah banyak digunakan oleh perusahaan-perusahaan besar untuk mengembangkan bisnis mereka. Implementasi CRM membutuhkan modal yang besar, khususnya aplikasi CRM model tradisional. Dibandingkan dengan Model ASP, CRM model ini sangat sesuai untuk UMKM khususnya di Indonesia karena dari segi keuangan dapat dijangkau oleh UMKM di Indonesia. Pada penelitian ini sebanyak 30 UMKM tingkat menengah digunakan sebagai koresponden dan digunakan untuk mengukur kesiapan UMKM di Indonesia menggunakan teknologi CRM dengan model ASP. Dimana pada hasil penelitian mengenai kegiatan yang berhubungan dengan CRM dilihat dari dimensi intelektual, sosial dan teknologi masih terlihat sangat rendah.

  10. Hydrogeological modeling constraints provided by geophysical and geochemical mapping of a chlorinated ethenes plume in northern France

    Science.gov (United States)

    Razafindratsima, Stephen; Guérin, Roger; Bendjoudi, Hocine; de Marsily, Ghislain

    2014-09-01

    A methodological approach is described which combines geophysical and geochemical data to delineate the extent of a chlorinated ethenes plume in northern France; the methodology was used to calibrate a hydrogeological model of the contaminants' migration and degradation. The existence of strong reducing conditions in some parts of the aquifer is first determined by measuring in situ the redox potential and dissolved oxygen, dissolved ferrous iron and chloride concentrations. Electrical resistivity imaging and electromagnetic mapping, using the Slingram method, are then used to determine the shape of the pollutant plume. A decreasing empirical exponential relation between measured chloride concentrations in the water and aquifer electrical resistivity is observed; the resistivity formation factor calculated at a few points also shows a major contribution of chloride concentration in the resistivity of the saturated porous medium. MODFLOW software and MT3D99 first-order parent-daughter chain reaction and the RT3D aerobic-anaerobic model for tetrachloroethene (PCE)/trichloroethene (TCE) dechlorination are finally used for a first attempt at modeling the degradation of the chlorinated ethenes. After calibration, the distribution of the chlorinated ethenes and their degradation products simulated with the model approximately reflects the mean measured values in the observation wells, confirming the data-derived image of the plume.

  11. Mobilized peripheral blood stem cells provide rapid reconstitution but impaired long-term engraftment in a mouse model

    NARCIS (Netherlands)

    Yeoh, J. S. G.; Ausema, A.; Wierenga, P.; de Haan, G.; van Os, R.

    In this study, we use competitive repopulation to compare the quality and frequency of stem cells isolated from mobilized blood with stem cells isolated from bone marrow (BM) in a mouse model. Lin(-)Sca-1(+)c-Kit(+) (LSK) cells were harvested from control BM and peripheral blood of mice following

  12. Parameterizing road construction in route-based road weather models: can ground-penetrating radar provide any answers?

    Science.gov (United States)

    Hammond, D. S.; Chapman, L.; Thornes, J. E.

    2011-05-01

    A ground-penetrating radar (GPR) survey of a 32 km mixed urban and rural study route is undertaken to assess the usefulness of GPR as a tool for parameterizing road construction in a route-based road weather forecast model. It is shown that GPR can easily identify even the smallest of bridges along the route, which previous thermal mapping surveys have identified as thermal singularities with implications for winter road maintenance. Using individual GPR traces measured at each forecast point along the route, an inflexion point detection algorithm attempts to identify the depth of the uppermost subsurface layers at each forecast point for use in a road weather model instead of existing ordinal road-type classifications. This approach has the potential to allow high resolution modelling of road construction and bridge decks on a scale previously not possible within a road weather model, but initial results reveal that significant future research will be required to unlock the full potential that this technology can bring to the road weather industry.

  13. Parameterizing road construction in route-based road weather models: can ground-penetrating radar provide any answers?

    International Nuclear Information System (INIS)

    Hammond, D S; Chapman, L; Thornes, J E

    2011-01-01

    A ground-penetrating radar (GPR) survey of a 32 km mixed urban and rural study route is undertaken to assess the usefulness of GPR as a tool for parameterizing road construction in a route-based road weather forecast model. It is shown that GPR can easily identify even the smallest of bridges along the route, which previous thermal mapping surveys have identified as thermal singularities with implications for winter road maintenance. Using individual GPR traces measured at each forecast point along the route, an inflexion point detection algorithm attempts to identify the depth of the uppermost subsurface layers at each forecast point for use in a road weather model instead of existing ordinal road-type classifications. This approach has the potential to allow high resolution modelling of road construction and bridge decks on a scale previously not possible within a road weather model, but initial results reveal that significant future research will be required to unlock the full potential that this technology can bring to the road weather industry. (technical design note)

  14. Eculizumab in Pediatric Dense Deposit Disease.

    Science.gov (United States)

    Oosterveld, Michiel J S; Garrelfs, Mark R; Hoppe, Bernd; Florquin, Sandrine; Roelofs, Joris J T H; van den Heuvel, L P; Amann, Kerstin; Davin, Jean-Claude; Bouts, Antonia H M; Schriemer, Pietrik J; Groothoff, Jaap W

    2015-10-07

    Dense deposit disease (DDD), a subtype of C3 glomerulopathy, is a rare disease affecting mostly children. Treatment options are limited. Debate exists whether eculizumab, a monoclonal antibody against complement factor C5, is effective in DDD. Reported data are scarce, especially in children. The authors analyzed clinical and histologic data of five pediatric patients with a native kidney biopsy diagnosis of DDD. Patients received eculizumab as therapy of last resort for severe nephritic or nephrotic syndrome with alternative pathway complement activation; this therapy was given only when the patients had not or only marginally responded to immunosuppressive therapy. Outcome measures were kidney function, proteinuria, and urine analysis. In all, seven disease episodes were treated with eculizumab (six episodes of severe nephritic syndrome [two of which required dialysis] and one nephrotic syndrome episode). Median age at treatment start was 8.4 (range, 5.9-13) years. For three treatment episodes, eculizumab was the sole immunosuppressive treatment. In all patients, both proteinuria and renal function improved significantly within 12 weeks of treatment (median urinary protein-to-creatinine ratio of 8.5 [range, 2.2-17] versus 1.1 [range, 0.2-2.0] g/g, P<0.005, and eGFR of 58 [range, 17-114] versus 77 [range, 50-129] ml/min per 1.73 m(2), P<0.01). A striking finding was the disappearance of leukocyturia within 1 week after the first eculizumab dose in all five episodes with leukocyturia at treatment initiation. In this case series of pediatric patients with DDD, eculizumab treatment was associated with reduction in proteinuria and increase in eGFR. Leukocyturia resolved within 1 week of initiation of eculizumab treatment. These results underscore the need for a randomized trial of eculizumab in DDD. Copyright © 2015 by the American Society of Nephrology.

  15. Development of Model Systematic Trilateral Approach to Provide Continuing Education for Nursing Home and Small Hospital Personnel. Final Report.

    Science.gov (United States)

    Schrader, Marvin A.; And Others

    The project was designed to determine the feasibility of having a vocational technical adult education (VTAE) district provide continuing education inservice training for health care facilities using videotape equipment so that employees could gain knowledge and skills without leaving the facility or having to involve time outside the normal…

  16. A friction model for cold forging of aluminum, steel and stainless steel provided with conversion coating and solid film lubricant

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2011-01-01

    Adopting a simulative tribology test system for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...

  17. A Critical Subset Model Provides a Conceptual Basis for the High Antiviral Activity of Major HIV Drugs**

    Science.gov (United States)

    Shen, Lin; Rabi, S. Alireza; Sedaghat, Ahmad R.; Shan, Liang; Lai, Jun; Xing, Sifei; Siliciano, Robert F.

    2012-01-01

    Control of HIV-1 replication was first achieved with regimens that included a nonnucleoside reverse transcriptase inhibitor (NNRTI) or a protease inhibitor (PI); however, an explanation for the high antiviral activity of these drugs has been lacking. Indeed, conventional pharmacodynamic measures like IC50 (drug concentration causing 50% inhibition) do not differentiate NNRTIs and PIs from less active nucleoside reverse transcriptase inhibitors (NRTIs). Drug inhibitory potential depends on the slope of the dose-response curve (m), which represents how inhibition increases as a function of increasing drug concentration and is related to the Hill coefficient, a measure of intramolecular cooperativity in ligand binding to a multivalent receptor. Although NNRTIs and PIs bind univalent targets, they unexpectedly exhibit cooperative dose-response curves (m > 1). We show that this cooperative inhibition can be explained by a model in which infectivity requires participation of multiple copies of a drug target in an individual life cycle stage. A critical subset of these target molecules must be in the unbound state. Consistent with experimental observations, this model predicts m > 1 for NNRTIs and PIs and m = 1 in situations where a single drug target/virus mediates a step in the life cycle, as is the case with NRTIs and integrase strand transfer inhibitors. This model was tested experimentally by modulating the number of functional drug targets per virus, and dose-response curves for modulated virus populations fit model predictions. This model explains the high antiviral activity of two drug classes important for successful HIV-1 treatment and defines a characteristic of good targets for antiviral drugs in general, namely, intermolecular cooperativity. PMID:21753122

  18. A parallel solver for huge dense linear systems

    Science.gov (United States)

    Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.

    2011-11-01

    HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system

  19. The primary care prescribing psychologist model: medical provider ratings of the safety, impact and utility of prescribing psychology in a primary care setting.

    Science.gov (United States)

    Shearer, David S; Harmon, S Cory; Seavey, Brian M; Tiu, Alvin Y

    2012-12-01

    Family medicine providers at a large family medicine clinic were surveyed regarding their impression of the impact, utility and safety of the Primary Care Prescribing Psychologist (PCPP) model in which a prescribing psychologist is embedded in a primary care clinic. This article describes the model and provides indications of its strengths and weaknesses as reported by medical providers who have utilized the model for the past 2 years. A brief history of prescribing psychology and the challenges surrounding granting psychologists the authority to prescribe psychotropic medication is summarized. Results indicate family medicine providers agree that having a prescribing psychologist embedded in the family medicine clinic is helpful to their practice, safe for patients, convenient for providers and for patients, and improves patient care. Potential benefits of integrating prescribing psychology into primary care are considered and directions for future research are discussed.

  20. Status study of knowledge management in universities and to provide a suitable model (Case Study: Ferdowsi University of Mashhad)

    Science.gov (United States)

    Jahangir, Mustafa; Asadi, M. Mahdi

    2010-05-01

    During the past two decades to increase the volume of information and knowledge in organizations and the necessity of effective use of it in Organizational decisions is led to the emerging phenomenon of knowledge management. Knowledge management, including all the ways the organization manage their knowledge assets that include how collection, storage, transfer, deployment, update and create knowledge. Universities that type of knowledge based organizations are important sources of knowledge and therefore can be considered as strategic in universities and higher education centers of knowledge management will be more important. In this research The status of knowledge management in universities and a case study of Mashhad University are checked are the problems and challenges are identified and finally as for the features, requirements and conditions to implement a model for universities and deployment of knowledge management is presented in it.Therefore, basic research problem is: the status of knowledge management in universities and the case Mashhad University is how and which model for implementation and deployment of knowledge management is recommended? Importance and necessity of research topicare: Knowledge management experts in the emergence of knowledge management consider four major factors:1) passing the material tangible assets dominated era to the domination of capital in non-palpable, nonetheless organizations. 2) increase the extraordinary volume of information, the electronic storage and increased access to information 3) risk to the story of institutional knowledge due to retirement or exit from the crew 4) become more specialized activities in the organization 5) the emergence of knowledge based organizations and incidence of the most important capital is its knowledge. Knowledge management solutions focus on the entire system, including organization, human resources and technology in the take-the most important tools for solving problems and