WorldWideScience

Sample records for models produce logical

  1. From Logical to Distributional Models

    Directory of Open Access Journals (Sweden)

    Anne Preller

    2014-12-01

    Full Text Available The paper relates two variants of semantic models for natural language, logical functional models and compositional distributional vector space models, by transferring the logic and reasoning from the logical to the distributional models. The geometrical operations of quantum logic are reformulated as algebraic operations on vectors. A map from functional models to vector space models makes it possible to compare the meaning of sentences word by word.

  2. Classical Logic and Quantum Logic with Multiple and Common Lattice Models

    Directory of Open Access Journals (Sweden)

    Mladen Pavičić

    2016-01-01

    Full Text Available We consider a proper propositional quantum logic and show that it has multiple disjoint lattice models, only one of which is an orthomodular lattice (algebra underlying Hilbert (quantum space. We give an equivalent proof for the classical logic which turns out to have disjoint distributive and nondistributive ortholattices. In particular, we prove that both classical logic and quantum logic are sound and complete with respect to each of these lattices. We also show that there is one common nonorthomodular lattice that is a model of both quantum and classical logic. In technical terms, that enables us to run the same classical logic on both a digital (standard, two-subset, 0-1-bit computer and a nondigital (say, a six-subset computer (with appropriate chips and circuits. With quantum logic, the same six-element common lattice can serve us as a benchmark for an efficient evaluation of equations of bigger lattice models or theorems of the logic.

  3. A model system for targeted drug release triggered by biomolecular signals logically processed through enzyme logic networks.

    Science.gov (United States)

    Mailloux, Shay; Halámek, Jan; Katz, Evgeny

    2014-03-07

    A new Sense-and-Act system was realized by the integration of a biocomputing system, performing analytical processes, with a signal-responsive electrode. A drug-mimicking release process was triggered by biomolecular signals processed by different logic networks, including three concatenated AND logic gates or a 3-input OR logic gate. Biocatalytically produced NADH, controlled by various combinations of input signals, was used to activate the electrochemical system. A biocatalytic electrode associated with signal-processing "biocomputing" systems was electrically connected to another electrode coated with a polymer film, which was dissolved upon the formation of negative potential releasing entrapped drug-mimicking species, an enzyme-antibody conjugate, operating as a model for targeted immune-delivery and consequent "prodrug" activation. The system offers great versatility for future applications in controlled drug release and personalized medicine.

  4. Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic

    Science.gov (United States)

    Brandon, Jay M.; Morelli, Eugene A.

    2012-01-01

    Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.

  5. Multi-Valued Modal Fixed Point Logics for Model Checking

    Science.gov (United States)

    Nishizawa, Koki

    In this paper, I will show how multi-valued logics are used for model checking. Model checking is an automatic technique to analyze correctness of hardware and software systems. A model checker is based on a temporal logic or a modal fixed point logic. That is to say, a system to be checked is formalized as a Kripke model, a property to be satisfied by the system is formalized as a temporal formula or a modal formula, and the model checker checks that the Kripke model satisfies the formula. Although most existing model checkers are based on 2-valued logics, recently new attempts have been made to extend the underlying logics of model checkers to multi-valued logics. I will summarize these new results.

  6. Parametric Analysis of Flexible Logic Control Model

    Directory of Open Access Journals (Sweden)

    Lihua Fu

    2013-01-01

    Full Text Available Based on deep analysis about the essential relation between two input variables of normal two-dimensional fuzzy controller, we used universal combinatorial operation model to describe the logic relationship and gave a flexible logic control method to realize the effective control for complex system. In practical control application, how to determine the general correlation coefficient of flexible logic control model is a problem for further studies. First, the conventional universal combinatorial operation model has been limited in the interval [0,1]. Consequently, this paper studies a kind of universal combinatorial operation model based on the interval [a,b]. And some important theorems are given and proved, which provide a foundation for the flexible logic control method. For dealing reasonably with the complex relations of every factor in complex system, a kind of universal combinatorial operation model with unequal weights is put forward. Then, this paper has carried out the parametric analysis of flexible logic control model. And some research results have been given, which have important directive to determine the values of the general correlation coefficients in practical control application.

  7. On Witnessed Models in Fuzzy Logic III - Witnessed Gödel Logics

    Czech Academy of Sciences Publication Activity Database

    Hájek, Petr

    2010-01-01

    Roč. 56, č. 2 (2010), s. 171-174 ISSN 0942-5616 R&D Projects: GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504 Keywords : mathematical fuzzy logic * Gödel logic * witnessed models * arithmetical complexity Subject RIV: BA - General Mathematics Impact factor: 0.361, year: 2010

  8. Trimming a hazard logic tree with a new model-order-reduction technique

    Science.gov (United States)

    Porter, Keith; Field, Edward; Milner, Kevin R

    2017-01-01

    The size of the logic tree within the Uniform California Earthquake Rupture Forecast Version 3, Time-Dependent (UCERF3-TD) model can challenge risk analyses of large portfolios. An insurer or catastrophe risk modeler concerned with losses to a California portfolio might have to evaluate a portfolio 57,600 times to estimate risk in light of the hazard possibility space. Which branches of the logic tree matter most, and which can one ignore? We employed two model-order-reduction techniques to simplify the model. We sought a subset of parameters that must vary, and the specific fixed values for the remaining parameters, to produce approximately the same loss distribution as the original model. The techniques are (1) a tornado-diagram approach we employed previously for UCERF2, and (2) an apparently novel probabilistic sensitivity approach that seems better suited to functions of nominal random variables. The new approach produces a reduced-order model with only 60 of the original 57,600 leaves. One can use the results to reduce computational effort in loss analyses by orders of magnitude.

  9. Designing Experiments to Discriminate Families of Logic Models.

    Science.gov (United States)

    Videla, Santiago; Konokotina, Irina; Alexopoulos, Leonidas G; Saez-Rodriguez, Julio; Schaub, Torsten; Siegel, Anne; Guziolowski, Carito

    2015-01-01

    Logic models of signaling pathways are a promising way of building effective in silico functional models of a cell, in particular of signaling pathways. The automated learning of Boolean logic models describing signaling pathways can be achieved by training to phosphoproteomics data, which is particularly useful if it is measured upon different combinations of perturbations in a high-throughput fashion. However, in practice, the number and type of allowed perturbations are not exhaustive. Moreover, experimental data are unavoidably subjected to noise. As a result, the learning process results in a family of feasible logical networks rather than in a single model. This family is composed of logic models implementing different internal wirings for the system and therefore the predictions of experiments from this family may present a significant level of variability, and hence uncertainty. In this paper, we introduce a method based on Answer Set Programming to propose an optimal experimental design that aims to narrow down the variability (in terms of input-output behaviors) within families of logical models learned from experimental data. We study how the fitness with respect to the data can be improved after an optimal selection of signaling perturbations and how we learn optimal logic models with minimal number of experiments. The methods are applied on signaling pathways in human liver cells and phosphoproteomics experimental data. Using 25% of the experiments, we obtained logical models with fitness scores (mean square error) 15% close to the ones obtained using all experiments, illustrating the impact that our approach can have on the design of experiments for efficient model calibration.

  10. Learning Probabilistic Logic Models from Probabilistic Examples.

    Science.gov (United States)

    Chen, Jianzhong; Muggleton, Stephen; Santos, José

    2008-10-01

    We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.

  11. State–time spectrum of signal transduction logic models

    International Nuclear Information System (INIS)

    MacNamara, Aidan; Terfve, Camille; Henriques, David; Bernabé, Beatriz Peñalver; Saez-Rodriguez, Julio

    2012-01-01

    Despite the current wealth of high-throughput data, our understanding of signal transduction is still incomplete. Mathematical modeling can be a tool to gain an insight into such processes. Detailed biochemical modeling provides deep understanding, but does not scale well above relatively a few proteins. In contrast, logic modeling can be used where the biochemical knowledge of the system is sparse and, because it is parameter free (or, at most, uses relatively a few parameters), it scales well to large networks that can be derived by manual curation or retrieved from public databases. Here, we present an overview of logic modeling formalisms in the context of training logic models to data, and specifically the different approaches to modeling qualitative to quantitative data (state) and dynamics (time) of signal transduction. We use a toy model of signal transduction to illustrate how different logic formalisms (Boolean, fuzzy logic and differential equations) treat state and time. Different formalisms allow for different features of the data to be captured, at the cost of extra requirements in terms of computational power and data quality and quantity. Through this demonstration, the assumptions behind each formalism are discussed, as well as their advantages and disadvantages and possible future developments. (paper)

  12. Model Checking Temporal Logic Formulas Using Sticker Automata

    Science.gov (United States)

    Feng, Changwei; Wu, Huanmei

    2017-01-01

    As an important complex problem, the temporal logic model checking problem is still far from being fully resolved under the circumstance of DNA computing, especially Computation Tree Logic (CTL), Interval Temporal Logic (ITL), and Projection Temporal Logic (PTL), because there is still a lack of approaches for DNA model checking. To address this challenge, a model checking method is proposed for checking the basic formulas in the above three temporal logic types with DNA molecules. First, one-type single-stranded DNA molecules are employed to encode the Finite State Automaton (FSA) model of the given basic formula so that a sticker automaton is obtained. On the other hand, other single-stranded DNA molecules are employed to encode the given system model so that the input strings of the sticker automaton are obtained. Next, a series of biochemical reactions are conducted between the above two types of single-stranded DNA molecules. It can then be decided whether the system satisfies the formula or not. As a result, we have developed a DNA-based approach for checking all the basic formulas of CTL, ITL, and PTL. The simulated results demonstrate the effectiveness of the new method. PMID:29119114

  13. Logic integer programming models for signaling networks.

    Science.gov (United States)

    Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert

    2009-05-01

    We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.

  14. Forging Alliances in Interdisciplinary Rehabilitation Research (FAIRR): A Logic Model.

    Science.gov (United States)

    Gill, Simone V; Khetani, Mary A; Yinusa-Nyahkoon, Leanne; McManus, Beth; Gardiner, Paula M; Tickle-Degnen, Linda

    2017-07-01

    In a patient-centered care era, rehabilitation can benefit from researcher-clinician collaboration to effectively and efficiently produce the interdisciplinary science that is needed to improve patient-centered outcomes. The authors propose the use of the Forging Alliances in Interdisciplinary Rehabilitation Research (FAIRR) logic model to provide guidance to rehabilitation scientists and clinicians who are committed to growing their involvement in interdisciplinary rehabilitation research. We describe the importance and key characteristics of the FAIRR model for conducting interdisciplinary rehabilitation research.

  15. UTP and Temporal Logic Model Checking

    Science.gov (United States)

    Anderson, Hugh; Ciobanu, Gabriel; Freitas, Leo

    In this paper we give an additional perspective to the formal verification of programs through temporal logic model checking, which uses Hoare and He Unifying Theories of Programming (UTP). Our perspective emphasizes the use of UTP designs, an alphabetised relational calculus expressed as a pre/post condition pair of relations, to verify state or temporal assertions about programs. The temporal model checking relation is derived from a satisfaction relation between the model and its properties. The contribution of this paper is that it shows a UTP perspective to temporal logic model checking. The approach includes the notion of efficiency found in traditional model checkers, which reduced a state explosion problem through the use of efficient data structures

  16. Logic Models for Program Design, Implementation, and Evaluation: Workshop Toolkit. REL 2015-057

    Science.gov (United States)

    Shakman, Karen; Rodriguez, Sheila M.

    2015-01-01

    The Logic Model Workshop Toolkit is designed to help practitioners learn the purpose of logic models, the different elements of a logic model, and the appropriate steps for developing and using a logic model for program evaluation. Topics covered in the sessions include an overview of logic models, the elements of a logic model, an introduction to…

  17. Logical model for the control of a BWR turbine

    International Nuclear Information System (INIS)

    Vargas O, Y.; Amador G, R.; Ortiz V, J.; Castillo D, R.

    2009-01-01

    In this work a design of a logical model is presented for the turbine control of a nuclear power plant with a BWR like energy source. The model is sought to implement later on inside the thermal hydraulics code of better estimate RELAP/SCDAPSIM. The logical model is developed for the control and protection of the turbine, and the consequent protection to the BWR, considering that the turbine control will be been able to use for one or several turbines in series. The quality of the present design of the logical model of the turbine control is that it considers the most important parameters in the operation of a turbine, besides that they have incorporated to the logical model the secondary parameters that will be activated originally as true when the turbine model is substituted by a detailed model. The development of the logical model of a turbine will be of utility in the short and medium term to carry out analysis on the turbine operation with different operation conditions, of vapor extraction, specific steps of the turbine to feed other equipment s, in addition to analyze the separate and the integrated effect. (Author)

  18. Data Logic

    DEFF Research Database (Denmark)

    Nilsson, Jørgen Fischer

    A Gentle introduction to logical languages, logical modeling, formal reasoning and computational logic for computer science and software engineering students......A Gentle introduction to logical languages, logical modeling, formal reasoning and computational logic for computer science and software engineering students...

  19. GRAPHIC REALIZATION FOUNDATIONS OF LOGIC-SEMANTIC MODELING IN DIDACTICS

    Directory of Open Access Journals (Sweden)

    V. E. Steinberg

    2017-01-01

    Full Text Available Introduction. Nowadays, there are not a lot of works devoted to a graphic method of logic-semantic modeling of knowledge. Meanwhile, an interest towards this method increases due to the fact of essential increase of the content of visual component in information and educational sources. The present publication is the authors’ contribution into the solution of the problem of search of new forms and means convenient for visual and logic perception of a training material, its assimilation, operating by elements of knowledge and their transformations.The aim of the research is to justify graphical implementation of the method of logic-semantic modeling of knowledge, presented by a natural language (training language and to show the possibilities of application of figurative and conceptual models in student teaching.Methodology and research methods. The research methodology is based on the specified activity-regulatory, system-multi-dimensional and structural-invariant approach and the principle of multidimensionality. The methodology the graphic realization of the logic-semantic models in learning technologies is based on didactic design using computer training programs.Results and scientific novelty. Social and anthropological-cultural adaptation bases of the method of logical-semantic knowledge modeling to the problems of didactics are established and reasoned: coordinate-invariant matrix structure is presented as the basis of logical-semantic models of figurative and conceptual nature; the possibilities of using such models as multifunctional didactic regulators – support schemes, navigation in the content of the educational material, educational activities carried out by navigators, etc., are shown. The characteristics of new teaching tools as objects of semiotics and didactic of regulators are considered; their place and role in the structure of the external and internal training curricula learning activities are pointed out

  20. Devil is in the details: Using logic models to investigate program process.

    Science.gov (United States)

    Peyton, David J; Scicchitano, Michael

    2017-12-01

    Theory-based logic models are commonly developed as part of requirements for grant funding. As a tool to communicate complex social programs, theory based logic models are an effective visual communication. However, after initial development, theory based logic models are often abandoned and remain in their initial form despite changes in the program process. This paper examines the potential benefits of committing time and resources to revising the initial theory driven logic model and developing detailed logic models that describe key activities to accurately reflect the program and assist in effective program management. The authors use a funded special education teacher preparation program to exemplify the utility of drill down logic models. The paper concludes with lessons learned from the iterative revision process and suggests how the process can lead to more flexible and calibrated program management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.

    Science.gov (United States)

    Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko

    2016-03-01

    In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Using logic models in a community-based agricultural injury prevention project.

    Science.gov (United States)

    Helitzer, Deborah; Willging, Cathleen; Hathorn, Gary; Benally, Jeannie

    2009-01-01

    The National Institute for Occupational Safety and Health has long promoted the logic model as a useful tool in an evaluator's portfolio. Because a logic model supports a systematic approach to designing interventions, it is equally useful for program planners. Undertaken with community stakeholders, a logic model process articulates the underlying foundations of a particular programmatic effort and enhances program design and evaluation. Most often presented as sequenced diagrams or flow charts, logic models demonstrate relationships among the following components: statement of a problem, various causal and mitigating factors related to that problem, available resources to address the problem, theoretical foundations of the selected intervention, intervention goals and planned activities, and anticipated short- and long-term outcomes. This article describes a case example of how a logic model process was used to help community stakeholders on the Navajo Nation conceive, design, implement, and evaluate agricultural injury prevention projects.

  3. Logic models as a tool for sexual violence prevention program development.

    Science.gov (United States)

    Hawkins, Stephanie R; Clinton-Sherrod, A Monique; Irvin, Neil; Hart, Laurie; Russell, Sarah Jane

    2009-01-01

    Sexual violence is a growing public health problem, and there is an urgent need to develop sexual violence prevention programs. Logic models have emerged as a vital tool in program development. The Centers for Disease Control and Prevention funded an empowerment evaluation designed to work with programs focused on the prevention of first-time male perpetration of sexual violence, and it included as one of its goals, the development of program logic models. Two case studies are presented that describe how significant positive changes can be made to programs as a result of their developing logic models that accurately describe desired outcomes. The first case study describes how the logic model development process made an organization aware of the importance of a program's environmental context for program success; the second case study demonstrates how developing a program logic model can elucidate gaps in organizational programming and suggest ways to close those gaps.

  4. Using logic model methods in systematic review synthesis: describing complex pathways in referral management interventions.

    Science.gov (United States)

    Baxter, Susan K; Blank, Lindsay; Woods, Helen Buckley; Payne, Nick; Rimmer, Melanie; Goyder, Elizabeth

    2014-05-10

    There is increasing interest in innovative methods to carry out systematic reviews of complex interventions. Theory-based approaches, such as logic models, have been suggested as a means of providing additional insights beyond that obtained via conventional review methods. This paper reports the use of an innovative method which combines systematic review processes with logic model techniques to synthesise a broad range of literature. The potential value of the model produced was explored with stakeholders. The review identified 295 papers that met the inclusion criteria. The papers consisted of 141 intervention studies and 154 non-intervention quantitative and qualitative articles. A logic model was systematically built from these studies. The model outlines interventions, short term outcomes, moderating and mediating factors and long term demand management outcomes and impacts. Interventions were grouped into typologies of practitioner education, process change, system change, and patient intervention. Short-term outcomes identified that may result from these interventions were changed physician or patient knowledge, beliefs or attitudes and also interventions related to changed doctor-patient interaction. A range of factors which may influence whether these outcomes lead to long term change were detailed. Demand management outcomes and intended impacts included content of referral, rate of referral, and doctor or patient satisfaction. The logic model details evidence and assumptions underpinning the complex pathway from interventions to demand management impact. The method offers a useful addition to systematic review methodologies. PROSPERO registration number: CRD42013004037.

  5. Logic flowgraph methodology - A tool for modeling embedded systems

    Science.gov (United States)

    Muthukumar, C. T.; Guarro, S. B.; Apostolakis, G. E.

    1991-01-01

    The logic flowgraph methodology (LFM), a method for modeling hardware in terms of its process parameters, has been extended to form an analytical tool for the analysis of integrated (hardware/software) embedded systems. In the software part of a given embedded system model, timing and the control flow among different software components are modeled by augmenting LFM with modified Petrinet structures. The objective of the use of such an augmented LFM model is to uncover possible errors and the potential for unanticipated software/hardware interactions. This is done by backtracking through the augmented LFM mode according to established procedures which allow the semiautomated construction of fault trees for any chosen state of the embedded system (top event). These fault trees, in turn, produce the possible combinations of lower-level states (events) that may lead to the top event.

  6. Mathematical modelling of Bit-Level Architecture using Reciprocal Quantum Logic

    Science.gov (United States)

    Narendran, S.; Selvakumar, J.

    2018-04-01

    Efficiency of high-performance computing is on high demand with both speed and energy efficiency. Reciprocal Quantum Logic (RQL) is one of the technology which will produce high speed and zero static power dissipation. RQL uses AC power supply as input rather than DC input. RQL has three set of basic gates. Series of reciprocal transmission lines are placed in between each gate to avoid loss of power and to achieve high speed. Analytical model of Bit-Level Architecture are done through RQL. Major drawback of reciprocal Quantum Logic is area, because of lack in proper power supply. To achieve proper power supply we need to use splitters which will occupy large area. Distributed arithmetic uses vector- vector multiplication one is constant and other is signed variable and each word performs as a binary number, they rearranged and mixed to form distributed system. Distributed arithmetic is widely used in convolution and high performance computational devices.

  7. Archive Design Based on Planets Inspired Logical Object Model

    DEFF Research Database (Denmark)

    Zierau, Eld; Johansen, Anders

    2008-01-01

    We describe a proposal for a logical data model based on preliminary work the Planets project In OAIS terms the main areas discussed are related to the introduction of a logical data model for representing the past, present and future versions of the digital object associated with the Archival St...... Storage Package for the publications deposited by our client repositories....

  8. Modeling Human Behaviour with Higher Order Logic: Insider Threats

    DEFF Research Database (Denmark)

    Boender, Jaap; Ivanova, Marieta Georgieva; Kammuller, Florian

    2014-01-01

    it to the sociological process of logical explanation. As a case study on modeling human behaviour, we present the modeling and analysis of insider threats as a Higher Order Logic theory in Isabelle/HOL. We show how each of the three step process of sociological explanation can be seen in our modeling of insider’s state......, its context within an organisation and the effects on security as outcomes of a theorem proving analysis....

  9. Cosmic logic: a computational model

    International Nuclear Information System (INIS)

    Vanchurin, Vitaly

    2016-01-01

    We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps

  10. Type-2 fuzzy logic uncertain systems’ modeling and control

    CERN Document Server

    Antão, Rómulo

    2017-01-01

    This book focuses on a particular domain of Type-2 Fuzzy Logic, related to process modeling and control applications. It deepens readers’understanding of Type-2 Fuzzy Logic with regard to the following three topics: using simpler methods to train a Type-2 Takagi-Sugeno Fuzzy Model; using the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on a locally linear n-step ahead predictor; and developing model-based control algorithms according to the Generalized Predictive Control principles using Type-2 Fuzzy Sets. Throughout the book, theory is always complemented with practical applications and readers are invited to take their learning process one step farther and implement their own applications using the algorithms’ source codes (provided). As such, the book offers avaluable referenceguide for allengineers and researchers in the field ofcomputer science who are interested in intelligent systems, rule-based systems and modeling uncertainty.

  11. A Description Logic Based Knowledge Representation Model for Concept Understanding

    DEFF Research Database (Denmark)

    Badie, Farshad

    2017-01-01

    This research employs Description Logics in order to focus on logical description and analysis of the phenomenon of ‘concept understanding’. The article will deal with a formal-semantic model for figuring out the underlying logical assumptions of ‘concept understanding’ in knowledge representation...... systems. In other words, it attempts to describe a theoretical model for concept understanding and to reflect the phenomenon of ‘concept understanding’ in terminological knowledge representation systems. Finally, it will design an ontology that schemes the structure of concept understanding based...

  12. Logic-based hierarchies for modeling behavior of complex dynamic systems with applications

    International Nuclear Information System (INIS)

    Hu, Y.S.; Modarres, M.

    2000-01-01

    Most complex systems are best represented in the form of a hierarchy. The Goal Tree Success Tree and Master Logic Diagram (GTST-MLD) are proven powerful hierarchic methods to represent complex snap-shot of plant knowledge. To represent dynamic behaviors of complex systems, fuzzy logic is applied to replace binary logic to extend the power of GTST-MLD. Such a fuzzy-logic-based hierarchy is called Dynamic Master Logic Diagram (DMLD). This chapter discusses comparison of the use of GTST-DMLD when applied as a modeling tool for systems whose relationships are modeled by either physical, binary logical or fuzzy logical relationships. This is shown by applying GTST-DMLD to the Direct Containment Heating (DCH) phenomenon at pressurized water reactors which is an important safety issue being addressed by the nuclear industry. (orig.)

  13. Extending Value Logic Thinking to Value Logic Portfolios

    DEFF Research Database (Denmark)

    Andersen, Poul Houman; Ritter, Thomas

    2014-01-01

    Based on value creation logic theory (Stabell & Fjeldstad, 1998), this paper suggests an extension of the original Stabell & Fjeldstad model by an additional fourth value logic, the value system logic. Furthermore, instead of only allowing one dominant value creation logic for a given firm...... or transaction, an understanding of firms and transactions as a portfolio of value logics (i.e. an interconnected coexistence of different value creation logics) is proposed. These additions to the original value creation logic theory imply interesting avenues for both, strategic decision making in firms...

  14. Research on uranium resource models. Part IV. Logic: a computer graphics program to construct integrated logic circuits for genetic-geologic models. Progress report

    International Nuclear Information System (INIS)

    Scott, W.A.; Turner, R.M.; McCammon, R.B.

    1981-01-01

    Integrated logic circuits were described as a means of formally representing genetic-geologic models for estimating undiscovered uranium resources. The logic circuits are logical combinations of selected geologic characteristics judged to be associated with particular types of uranium deposits. Each combination takes on a value which corresponds to the combined presence, absence, or don't know states of the selected characteristic within a specified geographic cell. Within each cell, the output of the logic circuit is taken as a measure of the favorability of occurrence of an undiscovered deposit of the type being considered. In this way, geological, geochemical, and geophysical data are incorporated explicitly into potential uranium resource estimates. The present report describes how integrated logic circuits are constructed by use of a computer graphics program. A user's guide is also included

  15. A Logic Model for Evaluating the Academic Health Department.

    Science.gov (United States)

    Erwin, Paul Campbell; McNeely, Clea S; Grubaugh, Julie H; Valentine, Jennifer; Miller, Mark D; Buchanan, Martha

    2016-01-01

    Academic Health Departments (AHDs) are collaborative partnerships between academic programs and practice settings. While case studies have informed our understanding of the development and activities of AHDs, there has been no formal published evaluation of AHDs, either singularly or collectively. Developing a framework for evaluating AHDs has potential to further aid our understanding of how these relationships may matter. In this article, we present a general theory of change, in the form of a logic model, for how AHDs impact public health at the community level. We then present a specific example of how the logic model has been customized for a specific AHD. Finally, we end with potential research questions on the AHD based on these concepts. We conclude that logic models are valuable tools, which can be used to assess the value and ultimate impact of the AHD.

  16. Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic

    OpenAIRE

    Nasser Mohamed Ramli; Mohamad Syafiq Mohamad

    2017-01-01

    Many types of controllers were applied on the continuous stirred tank reactor (CSTR) unit to control the temperature. In this research paper, Proportional-Integral-Derivative (PID) controller are compared with Fuzzy Logic controller for temperature control of CSTR. The control system for temperature non-isothermal of a CSTR will produce a stable response curve to its set point temperature. A mathematical model of a CSTR using the most general operating condition was developed through a set of...

  17. Modelling the oil producers: Capturing oil industry knowledge in a behavioural simulation model

    International Nuclear Information System (INIS)

    Morecroft, J.D.W.; Van der Heijden, K.A.J.M.

    1992-01-01

    A group of senior managers and planners from a major oil company met to discuss the changing structure of the oil industry with the purpose of improving group understanding of oil market behaviour for use in global scenarios. This broad ranging discussion led to a system dynamics simulation model of the oil producers. The model produced new insights into the power and stability of OPEC (the major oil producers' organization), the dynamic of oil prices, and the investment opportunities of non-OPEC producers. The paper traces the model development process, starting from group discussions and leading to working simulation models. Particular attention is paid to the methods used to capture team knowledge and to ensure that the computer models reflected opinions and ideas from the meetings. The paper describes how flip-chart diagrams were used to collect ideas about the logic of the principal producers' production decisions. A sub-group of the project team developed and tested an algebraic model. The paper shows partial model simulations used to build confidence and a sense of ownership in the algebraic formulations. Further simulations show how the full model can stimulate thinking about producers' behaviour and oil prices. The paper concludes with comments on the model building process. 11 figs., 37 refs

  18. ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An artificial neural network(ANN) and a self-adjusting fuzzy logic controller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented. The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and the intelligent control for weld seam tracking with FLC. The proposed neural network can produce highly complex nonlinear multi-variable model of the GTAW process that offers the accurate prediction of welding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts the control parameters on-line automatically according to the tracking errors so that the torch position can be controlled accurately.

  19. Logic Model Checking of Unintended Acceleration Claims in Toyota Vehicles

    Science.gov (United States)

    Gamble, Ed

    2012-01-01

    Part of the US Department of Transportation investigation of Toyota sudden unintended acceleration (SUA) involved analysis of the throttle control software, JPL Laboratory for Reliable Software applied several techniques including static analysis and logic model checking, to the software; A handful of logic models were build, Some weaknesses were identified; however, no cause for SUA was found; The full NASA report includes numerous other analyses

  20. Risk Management Technologies With Logic and Probabilistic Models

    CERN Document Server

    Solozhentsev, E D

    2012-01-01

    This book presents intellectual, innovative, information technologies (I3-technologies) based on logical and probabilistic (LP) risk models. The technologies presented here consider such models for structurally complex systems and processes with logical links and with random events in economics and technology.  The volume describes the following components of risk management technologies: LP-calculus; classes of LP-models of risk and efficiency; procedures for different classes; special software for different classes; examples of applications; methods for the estimation of probabilities of events based on expert information. Also described are a variety of training courses in these topics. The classes of risk models treated here are: LP-modeling, LP-classification, LP-efficiency, and LP-forecasting. Particular attention is paid to LP-models of risk of failure to resolve difficult economic and technical problems. Amongst the  discussed  procedures of I3-technologies  are the construction of  LP-models,...

  1. Consumer Behavior Modeling: Fuzzy Logic Model for Air Purifiers Choosing

    Directory of Open Access Journals (Sweden)

    Oleksandr Dorokhov

    2017-12-01

    Full Text Available At the beginning, the article briefly describes the features of the marketing complex household goods. Also provides an overview of some aspects of the market for indoor air purifiers. The specific subject of the study was the process of consumer choice of household appliances for cleaning air in living quarters. The aim of the study was to substantiate and develop a computer model for evaluating by the potential buyers devices for air purification in conditions of vagueness and ambiguity of their consumer preferences. Accordingly, the main consumer criteria are identified, substantiated and described when buyers choose air purifiers. As methods of research, approaches based on fuzzy logic, fuzzy sets theory and fuzzy modeling were chosen. It was hypothesized that the fuzzy-multiple model allows rather accurately reflect consumer preferences and potential consumer choice in conditions of insufficient and undetermined information. Further, a computer model for estimating the consumer qualities of air cleaners by customers is developed. A proposed approach based on the application of fuzzy logic theory and practical modeling in the specialized computer software MATLAB. In this model, the necessary membership functions and their terms are constructed, as well as a set of rules for fuzzy inference to make decisions on the estimation of a specific air purifier. A numerical example of a comparative evaluation of air cleaners presented on the Ukrainian market is made and is given. Numerical simulation results confirmed the applicability of the proposed approach and the correctness of the hypothesis advanced about the possibility of modeling consumer behavior using fuzzy logic. The analysis of the obtained results is carried out and the prospects of application, development, and improvement of the developed model and the proposed approach are determined.

  2. Using a logical information model-driven design process in healthcare.

    Science.gov (United States)

    Cheong, Yu Chye; Bird, Linda; Tun, Nwe Ni; Brooks, Colleen

    2011-01-01

    A hybrid standards-based approach has been adopted in Singapore to develop a Logical Information Model (LIM) for healthcare information exchange. The Singapore LIM uses a combination of international standards, including ISO13606-1 (a reference model for electronic health record communication), ISO21090 (healthcare datatypes), SNOMED CT (healthcare terminology) and HL7 v2 (healthcare messaging). This logic-based design approach also incorporates mechanisms for achieving bi-directional semantic interoperability.

  3. Human-Guided Learning for Probabilistic Logic Models

    Directory of Open Access Journals (Sweden)

    Phillip Odom

    2018-06-01

    Full Text Available Advice-giving has been long explored in the artificial intelligence community to build robust learning algorithms when the data is noisy, incorrect or even insufficient. While logic based systems were effectively used in building expert systems, the role of the human has been restricted to being a “mere labeler” in recent times. We hypothesize and demonstrate that probabilistic logic can provide an effective and natural way for the expert to specify domain advice. Specifically, we consider different types of advice-giving in relational domains where noise could arise due to systematic errors or class-imbalance inherent in the domains. The advice is provided as logical statements or privileged features that are thenexplicitly considered by an iterative learning algorithm at every update. Our empirical evidence shows that human advice can effectively accelerate learning in noisy, structured domains where so far humans have been merely used as labelers or as designers of the (initial or final structure of the model.

  4. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Directory of Open Access Journals (Sweden)

    Minh Vu Trieu

    2017-03-01

    Full Text Available This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS, Brazilian tensile strength (BTS, rock brittleness index (BI, the distance between planes of weakness (DPW, and the alpha angle (Alpha between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP. Four (4 statistical regression models (two linear and two nonlinear are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2 of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  5. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Science.gov (United States)

    Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno

    2017-03-01

    This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four (4) statistical regression models (two linear and two nonlinear) are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2) of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  6. Fuzzy logic model to quantify risk perception

    International Nuclear Information System (INIS)

    Bukh, Julia; Dickstein, Phineas

    2008-01-01

    The aim of this study is a quantification of public risk perception towards the nuclear field so as to be considered in decision making whenever the public involvement is sought. The proposed model includes both qualitative factors such as familiarity and voluntariness and numerical factors influencing risk perception, such as probability of occurrence and severity of consequence. Since part of these factors can be characterized only by qualitative expressions and the determination of them are linked with vagueness, imprecision and uncertainty, the most suitable method for the risk level assessment is Fuzzy Logic, which models qualitative aspects of knowledge and reasoning processes without employing precise quantitative analyses. This work, then, offers a Fuzzy-Logic based mean of representing the risk perception by a single numerical feature, which can be weighted and accounted for in decision making procedures. (author)

  7. Fibred Coalgebraic Logic and Quantum Protocols

    Directory of Open Access Journals (Sweden)

    Daniel Marsden

    2014-12-01

    Full Text Available Motivated by applications in modelling quantum systems using coalgebraic techniques, we introduce a fibred coalgebraic logic. Our approach extends the conventional predicate lifting semantics with additional modalities relating conditions on different fibres. As this fibred setting will typically involve multiple signature functors, the logic incorporates a calculus of modalities enabling the construction of new modalities using various composition operations. We extend the semantics of coalgebraic logic to this setting, and prove that this extension respects behavioural equivalence. We show how properties of the semantics of modalities are preserved under composition operations, and then apply the calculational aspect of our logic to produce an expressive set of modalities for reasoning about quantum systems, building these modalities up from simpler components. We then demonstrate how these modalities can describe some standard quantum protocols. The novel features of our logic are shown to allow for a uniform description of unitary evolution, and support local reasoning such as "Alice's qubit satisfies condition" as is common when discussing quantum protocols.

  8. Comparison of learning models based on mathematics logical intelligence in affective domain

    Science.gov (United States)

    Widayanto, Arif; Pratiwi, Hasih; Mardiyana

    2018-04-01

    The purpose of this study was to examine the presence or absence of different effects of multiple treatments (used learning models and logical-mathematical intelligence) on the dependent variable (affective domain of mathematics). This research was quasi experimental using 3x3 of factorial design. The population of this research was VIII grade students of junior high school in Karanganyar under the academic year 2017/2018. Data collected in this research was analyzed by two ways analysis of variance with unequal cells using 5% of significance level. The result of the research were as follows: (1) Teaching and learning with model TS lead to better achievement in affective domain than QSH, teaching and learning with model QSH lead to better achievement in affective domain than using DI; (2) Students with high mathematics logical intelligence have better achievement in affective domain than students with low mathematics logical intelligence have; (3) In teaching and learning mathematics using learning model TS, students with moderate mathematics logical intelligence have better achievement in affective domain than using DI; and (4) In teaching and learning mathematics using learning model TS, students with low mathematics logical intelligence have better achievement in affective domain than using QSH and DI.

  9. On Logical Characterisation of Human Concept Learning based on Terminological Systems

    DEFF Research Database (Denmark)

    Badie, Farshad

    2018-01-01

    The central focus of this article is the epistemological assumption that knowledge could be generated based on human beings' experiences and over their conceptions of the world. Logical characterisation of human inductive learning over their produced conceptions within terminological systems and ...... and analysis of actual human inductive reasoning (and learning). This research connects with the topics 'logic & learning', 'cognitive modelling' and 'terminological knowledge representation'.......The central focus of this article is the epistemological assumption that knowledge could be generated based on human beings' experiences and over their conceptions of the world. Logical characterisation of human inductive learning over their produced conceptions within terminological systems...

  10. Characterizing the EPODE logic model: unravelling the past and informing the future.

    Science.gov (United States)

    Van Koperen, T M; Jebb, S A; Summerbell, C D; Visscher, T L S; Romon, M; Borys, J M; Seidell, J C

    2013-02-01

    EPODE ('Ensemble Prévenons l'Obésité De Enfants' or 'Together let's Prevent Childhood Obesity') is a large-scale, centrally coordinated, capacity-building approach for communities to implement effective and sustainable strategies to prevent childhood obesity. Since 2004, EPODE has been implemented in over 500 communities in six countries. Although based on emergent practice and scientific knowledge, EPODE, as many community programs, lacks a logic model depicting key elements of the approach. The objective of this study is to gain insight in the dynamics and key elements of EPODE and to represent these in a schematic logic model. EPODE's process manuals and documents were collected and interviews were held with professionals involved in the planning and delivery of EPODE. Retrieved data were coded, themed and placed in a four-level logic model. With input from international experts, this model was scaled down to a concise logic model covering four critical components: political commitment, public and private partnerships, social marketing and evaluation. The EPODE logic model presented here can be used as a reference for future and follow-up research; to support future implementation of EPODE in communities; as a tool in the engagement of stakeholders; and to guide the construction of a locally tailored evaluation plan. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.

  11. Development of a Logic Model to Guide Evaluations of the ASCA National Model for School Counseling Programs

    Science.gov (United States)

    Martin, Ian; Carey, John

    2014-01-01

    A logic model was developed based on an analysis of the 2012 American School Counselor Association (ASCA) National Model in order to provide direction for program evaluation initiatives. The logic model identified three outcomes (increased student achievement/gap reduction, increased school counseling program resources, and systemic change and…

  12. Stochastic coalgebraic logic

    CERN Document Server

    Doberkat, Ernst-Erich

    2009-01-01

    Combining coalgebraic reasoning, stochastic systems and logic, this volume presents the principles of coalgebraic logic from a categorical perspective. Modal logics are also discussed, including probabilistic interpretations and an analysis of Kripke models.

  13. Fuzzy Logic vs. Neutrosophic Logic: Operations Logic

    Directory of Open Access Journals (Sweden)

    Salah Bouzina

    2016-12-01

    Full Text Available The goal of this research is first to show how different, thorough, widespread and effective are the operations logic of the neutrosophic logic compared to the fuzzy logic’s operations logical. The second aim is to observe how a fully new logic, the neutrosophic logic, is established starting by changing the previous logical perspective fuzzy logic, and by changing that, we mean changing changing the truth values from the truth and falsity degrees membership in fuzzy logic, to the truth, falsity and indeterminacy degrees membership in neutrosophic logic; and thirdly, to observe that there is no limit to the logical discoveries - we only change the principle, then the system changes completely.

  14. Exploring oil market dynamics: a system dynamics model and microworld of the oil producers

    Energy Technology Data Exchange (ETDEWEB)

    Morecroft, J.D.W. [London Business School (United Kingdom); Marsh, B. [St Andrews Management Institute, Fife (United Kingdom)

    1997-11-01

    This chapter focuses on the development of a simulation model of global oil markets by Royal Dutch/Shell Planners in order to explore the implications of different scenarios. The model development process, mapping the decision making logic of the oil producers, the swing producer making enough to defend the intended price, the independents, quota setting, the opportunists, and market oil price and demand are examined. Use of the model to generate scenarios development of the model as a gaming simulator for training, design of the user interface, and the value of the model are considered in detail. (UK)

  15. "Modeling" Youth Work: Logic Models, Neoliberalism, and Community Praxis

    Science.gov (United States)

    Carpenter, Sara

    2016-01-01

    This paper examines the use of logic models in the development of community initiatives within the AmeriCorps program. AmeriCorps is the civilian national service programme in the U.S., operating as a grants programme to local governments and not-for-profit organisations and providing low-cost labour to address pressing issues of social…

  16. Monitor-Based Statistical Model Checking for Weighted Metric Temporal Logic

    DEFF Research Database (Denmark)

    Bulychev, Petr; David, Alexandre; Larsen, Kim Guldstrand

    2012-01-01

    We present a novel approach and implementation for ana- lysing weighted timed automata (WTA) with respect to the weighted metric temporal logic (WMTL≤ ). Based on a stochastic semantics of WTAs, we apply statistical model checking (SMC) to estimate and test probabilities of satisfaction with desi......We present a novel approach and implementation for ana- lysing weighted timed automata (WTA) with respect to the weighted metric temporal logic (WMTL≤ ). Based on a stochastic semantics of WTAs, we apply statistical model checking (SMC) to estimate and test probabilities of satisfaction...

  17. Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Oliveira Ana

    2009-01-01

    Full Text Available Abstract Background In the yeast Saccharomyces cerevisiae, the presence of high levels of glucose leads to an array of down-regulatory effects known as glucose repression. This process is complex due to the presence of feedback loops and crosstalk between different pathways, complicating the use of intuitive approaches to analyze the system. Results We established a logical model of yeast glucose repression, formalized as a hypergraph. The model was constructed based on verified regulatory interactions and it includes 50 gene transcripts, 22 proteins, 5 metabolites and 118 hyperedges. We computed the logical steady states of all nodes in the network in order to simulate wildtype and deletion mutant responses to different sugar availabilities. Evaluation of the model predictive power was achieved by comparing changes in the logical state of gene nodes with transcriptome data. Overall, we observed 71% true predictions, and analyzed sources of errors and discrepancies for the remaining. Conclusion Though the binary nature of logical (Boolean models entails inherent limitations, our model constitutes a primary tool for storing regulatory knowledge, searching for incoherencies in hypotheses and evaluating the effect of deleting regulatory elements involved in glucose repression.

  18. A Hybrid Parallel Execution Model for Logic Based Requirement Specifications (Invited Paper

    Directory of Open Access Journals (Sweden)

    Jeffrey J. P. Tsai

    1999-05-01

    Full Text Available It is well known that undiscovered errors in a requirements specification is extremely expensive to be fixed when discovered in the software maintenance phase. Errors in the requirement phase can be reduced through the validation and verification of the requirements specification. Many logic-based requirements specification languages have been developed to achieve these goals. However, the execution and reasoning of a logic-based requirements specification can be very slow. An effective way to improve their performance is to execute and reason the logic-based requirements specification in parallel. In this paper, we present a hybrid model to facilitate the parallel execution of a logic-based requirements specification language. A logic-based specification is first applied by a data dependency analysis technique which can find all the mode combinations that exist within a specification clause. This mode information is used to support a novel hybrid parallel execution model, which combines both top-down and bottom-up evaluation strategies. This new execution model can find the failure in the deepest node of the search tree at the early stage of the evaluation, thus this new execution model can reduce the total number of nodes searched in the tree, the total processes needed to be generated, and the total communication channels needed in the search process. A simulator has been implemented to analyze the execution behavior of the new model. Experiments show significant improvement based on several criteria.

  19. Indoor signal attenuation assessment via fuzzy logic

    Directory of Open Access Journals (Sweden)

    Alexandre de Assis Mota

    2011-09-01

    Full Text Available This work focuses on the analysis of signal´s attenuation in indoor environments using a fuzzy logic approach based on the Shadowing Signal Propagation Model (SSPM. The SSPM allows the characterization of the attenuation caused by the environment through the ? parameter present in this model. In addition to this, the Fuzzy Logic provides a form of approximate reasoning that allows the treatment of problems with incomplete, vague and imprecise information. Also, it offers a simple way to obtain a possible solution for a problem using the heuristic knowledge about a particular situation. The results show that the methodology produced satisfactory results, close to the ones yielded by experimental methods.

  20. Logic and structure

    CERN Document Server

    Dalen, Dirk

    1983-01-01

    A book which efficiently presents the basics of propositional and predicate logic, van Dalen’s popular textbook contains a complete treatment of elementary classical logic, using Gentzen’s Natural Deduction. Propositional and predicate logic are treated in separate chapters in a leisured but precise way. Chapter Three presents the basic facts of model theory, e.g. compactness, Skolem-Löwenheim, elementary equivalence, non-standard models, quantifier elimination, and Skolem functions. The discussion of classical logic is rounded off with a concise exposition of second-order logic. In view of the growing recognition of constructive methods and principles, one chapter is devoted to intuitionistic logic. Completeness is established for Kripke semantics. A number of specific constructive features, such as apartness and equality, the Gödel translation, the disjunction and existence property have been incorporated. The power and elegance of natural deduction is demonstrated best in the part of proof theory cal...

  1. modelling room cooling capacity with fuzzy logic procedure

    African Journals Online (AJOL)

    The primary aim of this study is to develop a model for estimation of the cooling requirement of residential rooms. Fuzzy logic was employed to model four input variables (window area (m2), roof area (m2), external wall area (m2) and internal load (Watt). The algorithm of the inference engine applied sets of 81 linguistic ...

  2. Evaluating system behavior through Dynamic Master Logic Diagram (DMLD) modeling

    International Nuclear Information System (INIS)

    Hu, Y.-S.; Modarres, Mohammad

    1999-01-01

    In this paper, the Dynamic Master Logic Diagram (DMLD) is introduced for representing full-scale time-dependent behavior and uncertain behavior of complex physical systems. Conceptually, the DMLD allows one to decompose a complex system hierarchically to model and to represent: (1) partial success/failure of the system, (2) full-scale logical, physical and fuzzy connectivity relations, (3) probabilistic, resolutional or linguistic uncertainty, (4) multiple-state system dynamics, and (5) floating threshold and transition effects. To demonstrate the technique, examples of using DMLD to model, to diagnose and to control dynamic behavior of a system are presented. A DMLD-based expert system building tool, called Dynamic Reliability Expert System (DREXs), is introduced to automate the DMLD modeling process

  3. Petri Nets as Models of Linear Logic

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    1990-01-01

    The chief purpose of this paper is to appraise the feasibility of Girad's linear logic as a specification language for parallel processes. To this end we propose an interpretation of linear logic in Petri nets, with respect to which we investigate the expressive power of the logic...

  4. Fuzzy Logic Based Set-Point Weighting Controller Tuning for an Internal Model Control Based PID Controller

    Directory of Open Access Journals (Sweden)

    Maruthai Suresh

    2009-10-01

    Full Text Available Controller tuning is the process of adjusting the parameters of the selected controller to achieve optimum response for the controlled process. For many of the control problems, a satisfactory performance is obtained by using PID controllers. One of the main problems with mathematical models of physical systems is that the parameters used in the models cannot be determined with absolute accuracy. The values of the parameters may change with time or various effects. In these cases, conventional controller tuning methods suffer when trying a lot to produce optimum response. In order to overcome these difficulties a fuzzy logic based Set- Point weighting controller tuning method is proposed. The effectiveness of the proposed scheme is analyzed through computer simulation using SIMULINK software and the results are presented. The fuzzy logic based simulation results are compared with Cohen-Coon (CC, Ziegler- Nichols (ZN, Ziegler – Nichols with Set- Point weighting (ZN-SPW, Internal Model Control (IMC and Internal model based PID controller responses (IMC-PID. The effects of process modeling errors and the importance of controller tuning have been brought out using the proposed control scheme.

  5. Modeling of Some Chaotic Systems with AnyLogic Software

    Directory of Open Access Journals (Sweden)

    Biljana Zlatanovska

    2018-05-01

    Full Text Available The chaotic systems are already known in the theory of chaos. In our paper will be analyzed the following chaotic systems: Rossler, Chua and Chen systems. All of them are systems of ordinary differential equations. By mathematical software Mathematica and MatLab, their graphical representation as continuous dynamical systems is already known. By computer simulations, via examples, the systems will be analyzed using AnyLogic software. We would like to present the way how ordinary differential equations are modeling with AnyLogic software, as one of the simplest software for use.

  6. Breaking the fault tree circular logic

    International Nuclear Information System (INIS)

    Lankin, M.

    2000-01-01

    Event tree - fault tree approach to model failures of nuclear plants as well as of other complex facilities is noticeably dominant now. This approach implies modeling an object in form of unidirectional logical graph - tree, i.e. graph without circular logic. However, genuine nuclear plants intrinsically demonstrate quite a few logical loops (circular logic), especially where electrical systems are involved. This paper shows the incorrectness of existing practice of circular logic breaking by elimination of part of logical dependencies and puts forward a formal algorithm, which enables the analyst to correctly model the failure of complex object, which involves logical dependencies between system and components, in form of fault tree. (author)

  7. A Fuzzy Logic Framework for Integrating Multiple Learned Models

    Energy Technology Data Exchange (ETDEWEB)

    Hartog, Bobi Kai Den [Univ. of Nebraska, Lincoln, NE (United States)

    1999-03-01

    The Artificial Intelligence field of Integrating Multiple Learned Models (IMLM) explores ways to combine results from sets of trained programs. Aroclor Interpretation is an ill-conditioned problem in which trained programs must operate in scenarios outside their training ranges because it is intractable to train them completely. Consequently, they fail in ways related to the scenarios. We developed a general-purpose IMLM solution, the Combiner, and applied it to Aroclor Interpretation. The Combiner's first step, Scenario Identification (M), learns rules from very sparse, synthetic training data consisting of results from a suite of trained programs called Methods. S1 produces fuzzy belief weights for each scenario by approximately matching the rules. The Combiner's second step, Aroclor Presence Detection (AP), classifies each of three Aroclors as present or absent in a sample. The third step, Aroclor Quantification (AQ), produces quantitative values for the concentration of each Aroclor in a sample. AP and AQ use automatically learned empirical biases for each of the Methods in each scenario. Through fuzzy logic, AP and AQ combine scenario weights, automatically learned biases for each of the Methods in each scenario, and Methods' results to determine results for a sample.

  8. Detection of epistatic effects with logic regression and a classical linear regression model.

    Science.gov (United States)

    Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata

    2014-02-01

    To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.

  9. On the logical specification of probabilistic transition models

    CSIR Research Space (South Africa)

    Rens, G

    2013-05-01

    Full Text Available We investigate the requirements for specifying the behaviors of actions in a stochastic domain. That is, we propose how to write sentences in a logical language to capture a model of probabilistic transitions due to the execution of actions of some...

  10. A ternary logic model for recurrent neuromime networks with delay.

    Science.gov (United States)

    Hangartner, R D; Cull, P

    1995-07-01

    In contrast to popular recurrent artificial neural network (RANN) models, biological neural networks have unsymmetric structures and incorporate significant delays as a result of axonal propagation. Consequently, biologically inspired neural network models are more accurately described by nonlinear differential-delay equations rather than nonlinear ordinary differential equations (ODEs), and the standard techniques for studying the dynamics of RANNs are wholly inadequate for these models. This paper develops a ternary-logic based method for analyzing these networks. Key to the technique is the realization that a nonzero delay produces a bounded stability region. This result significantly simplifies the construction of sufficient conditions for characterizing the network equilibria. If the network gain is large enough, each equilibrium can be classified as either asymptotically stable or unstable. To illustrate the analysis technique, the swim central pattern generator (CPG) of the sea slug Tritonia diomedea is examined. For wide range of reasonable parameter values, the ternary analysis shows that none of the network equilibria are stable, and thus the network must oscillate. The results show that complex synaptic dynamics are not necessary for pattern generation.

  11. Embedding Term Similarity and Inverse Document Frequency into a Logical Model of Information Retrieval.

    Science.gov (United States)

    Losada, David E.; Barreiro, Alvaro

    2003-01-01

    Proposes an approach to incorporate term similarity and inverse document frequency into a logical model of information retrieval. Highlights include document representation and matching; incorporating term similarity into the measure of distance; new algorithms for implementation; inverse document frequency; and logical versus classical models of…

  12. Optimization and evaluation of probabilistic-logic sequence models

    DEFF Research Database (Denmark)

    Christiansen, Henning; Lassen, Ole Torp

    to, in principle, Turing complete languages. In general, such models are computationally far to complex for direct use, so optimization by pruning and approximation are needed. % The first steps are made towards a methodology for optimizing such models by approximations using auxiliary models......Analysis of biological sequence data demands more and more sophisticated and fine-grained models, but these in turn introduce hard computational problems. A class of probabilistic-logic models is considered, which increases the expressibility from HMM's and SCFG's regular and context-free languages...

  13. Eight-logic memory cell based on multiferroic junctions

    International Nuclear Information System (INIS)

    Yang Feng; Zhou, Y C; Tang, M H; Liu Fen; Ma Ying; Zheng, X J; Zhao, W F; Xu, H Y; Sun, Z H

    2009-01-01

    A model is proposed for a device combining a multiferroic tunnel junction with a magnetoelectric (ME) film in which the magnetic configuration is controlled by the electric field. Calculations embodying the Green's function approach show that the magnetic polarization can be switched on and off by an electric field in the ME film due to the effect of elastic coupling interaction. Using a model including the spin-filter effect and screening of polarization charges, we have produced eight logic states of tunnelling resistance in the tunnel junction and have obtained corresponding laws that control them. The results provide some insights into the realization of an eight-logic memory cell. (fast track communication)

  14. Concurrent weighted logic

    DEFF Research Database (Denmark)

    Xue, Bingtian; Larsen, Kim Guldstrand; Mardare, Radu Iulian

    2015-01-01

    We introduce Concurrent Weighted Logic (CWL), a multimodal logic for concurrent labeled weighted transition systems (LWSs). The synchronization of LWSs is described using dedicated functions that, in various concurrency paradigms, allow us to encode the compositionality of LWSs. To reflect these......-completeness results for this logic. To complete these proofs we involve advanced topological techniques from Model Theory....

  15. Against Logical Form

    Directory of Open Access Journals (Sweden)

    P N Johnson-Laird

    2010-10-01

    Full Text Available An old view in logic going back to Aristotle is that an inference is valid in virtue of its logical form. Many psychologists have adopted the same point of view about human reasoning: the first step is to recover the logical form of an inference, and the second step is to apply rules of inference that match these forms in order to prove that the conclusion follows from the premises. The present paper argues against this idea. The logical form of an inference transcends the grammatical forms of the sentences used to express it, because logical form also depends on context. Context is not readily expressed in additional premises. And the recovery of logical form leads ineluctably to the need for infinitely many axioms to capture the logical properties of relations. An alternative theory is that reasoning depends on mental models, and this theory obviates the need to recover logical form.

  16. Nanowire NMOS Logic Inverter Characterization.

    Science.gov (United States)

    Hashim, Yasir

    2016-06-01

    This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly.

  17. A fuzzy-logic-based approach to qualitative safety modelling for marine systems

    International Nuclear Information System (INIS)

    Sii, H.S.; Ruxton, Tom; Wang Jin

    2001-01-01

    Safety assessment based on conventional tools (e.g. probability risk assessment (PRA)) may not be well suited for dealing with systems having a high level of uncertainty, particularly in the feasibility and concept design stages of a maritime or offshore system. By contrast, a safety model using fuzzy logic approach employing fuzzy IF-THEN rules can model the qualitative aspects of human knowledge and reasoning processes without employing precise quantitative analyses. A fuzzy-logic-based approach may be more appropriately used to carry out risk analysis in the initial design stages. This provides a tool for working directly with the linguistic terms commonly used in carrying out safety assessment. This research focuses on the development and representation of linguistic variables to model risk levels subjectively. These variables are then quantified using fuzzy sets. In this paper, the development of a safety model using fuzzy logic approach for modelling various design variables for maritime and offshore safety based decision making in the concept design stage is presented. An example is used to illustrate the proposed approach

  18. Logical database design principles

    CERN Document Server

    Garmany, John; Clark, Terry

    2005-01-01

    INTRODUCTION TO LOGICAL DATABASE DESIGNUnderstanding a Database Database Architectures Relational Databases Creating the Database System Development Life Cycle (SDLC)Systems Planning: Assessment and Feasibility System Analysis: RequirementsSystem Analysis: Requirements Checklist Models Tracking and Schedules Design Modeling Functional Decomposition DiagramData Flow Diagrams Data Dictionary Logical Structures and Decision Trees System Design: LogicalSYSTEM DESIGN AND IMPLEMENTATION The ER ApproachEntities and Entity Types Attribute Domains AttributesSet-Valued AttributesWeak Entities Constraint

  19. Radiation tolerant combinational logic cell

    Science.gov (United States)

    Maki, Gary R. (Inventor); Gambles, Jody W. (Inventor); Whitaker, Sterling (Inventor)

    2009-01-01

    A system has a reduced sensitivity to Single Event Upset and/or Single Event Transient(s) compared to traditional logic devices. In a particular embodiment, the system includes an input, a logic block, a bias stage, a state machine, and an output. The logic block is coupled to the input. The logic block is for implementing a logic function, receiving a data set via the input, and generating a result f by applying the data set to the logic function. The bias stage is coupled to the logic block. The bias stage is for receiving the result from the logic block and presenting it to the state machine. The state machine is coupled to the bias stage. The state machine is for receiving, via the bias stage, the result generated by the logic block. The state machine is configured to retain a state value for the system. The state value is typically based on the result generated by the logic block. The output is coupled to the state machine. The output is for providing the value stored by the state machine. Some embodiments of the invention produce dual rail outputs Q and Q'. The logic block typically contains combinational logic and is similar, in size and transistor configuration, to a conventional CMOS combinational logic design. However, only a very small portion of the circuits of these embodiments, is sensitive to Single Event Upset and/or Single Event Transients.

  20. Modelling Imprecise Arguments in Description Logic

    Directory of Open Access Journals (Sweden)

    LETIA, I. A.

    2009-10-01

    Full Text Available Real arguments are a mixture of fuzzy linguistic variables and ontological knowledge. This paper focuses on modelling imprecise arguments in order to obtain a better interleaving of human and software agents argumentation, which might be proved useful for extending the number of real life argumentative-based applications. We propose Fuzzy Description Logic as the adequate technical instrumentation for filling the gap between human arguments and software agents arguments. A proof of concept scenario has been tested with the fuzzyDL reasoner.

  1. Integration of biomolecular logic gates with field-effect transducers

    Energy Technology Data Exchange (ETDEWEB)

    Poghossian, A., E-mail: a.poghossian@fz-juelich.de [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany); Malzahn, K. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Abouzar, M.H. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany); Mehndiratta, P. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Katz, E. [Department of Chemistry and Biomolecular Science, NanoBio Laboratory (NABLAB), Clarkson University, Potsdam, NY 13699-5810 (United States); Schoening, M.J. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany)

    2011-11-01

    Highlights: > Enzyme-based AND/OR logic gates are integrated with a capacitive field-effect sensor. > The AND/OR logic gates compose of multi-enzyme system immobilised on sensor surface. > Logic gates were activated by different combinations of chemical inputs (analytes). > The logic output (pH change) produced by the enzymes was read out by the sensor. - Abstract: The integration of biomolecular logic gates with field-effect devices - the basic element of conventional electronic logic gates and computing - is one of the most attractive and promising approaches for the transformation of biomolecular logic principles into macroscopically useable electrical output signals. In this work, capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensors based on a p-Si-SiO{sub 2}-Ta{sub 2}O{sub 5} structure modified with a multi-enzyme membrane have been used for electronic transduction of biochemical signals processed by enzyme-based OR and AND logic gates. The realised OR logic gate composes of two enzymes (glucose oxidase and esterase) and was activated by ethyl butyrate or/and glucose. The AND logic gate composes of three enzymes (invertase, mutarotase and glucose oxidase) and was activated by two chemical input signals: sucrose and dissolved oxygen. The developed integrated enzyme logic gates produce local pH changes at the EIS sensor surface as a result of biochemical reactions activated by different combinations of chemical input signals, while the pH value of the bulk solution remains unchanged. The pH-induced charge changes at the gate-insulator (Ta{sub 2}O{sub 5}) surface of the EIS transducer result in an electronic signal corresponding to the logic output produced by the immobilised enzymes. The logic output signals have been read out by means of a constant-capacitance method.

  2. Integration of biomolecular logic gates with field-effect transducers

    International Nuclear Information System (INIS)

    Poghossian, A.; Malzahn, K.; Abouzar, M.H.; Mehndiratta, P.; Katz, E.; Schoening, M.J.

    2011-01-01

    Highlights: → Enzyme-based AND/OR logic gates are integrated with a capacitive field-effect sensor. → The AND/OR logic gates compose of multi-enzyme system immobilised on sensor surface. → Logic gates were activated by different combinations of chemical inputs (analytes). → The logic output (pH change) produced by the enzymes was read out by the sensor. - Abstract: The integration of biomolecular logic gates with field-effect devices - the basic element of conventional electronic logic gates and computing - is one of the most attractive and promising approaches for the transformation of biomolecular logic principles into macroscopically useable electrical output signals. In this work, capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensors based on a p-Si-SiO 2 -Ta 2 O 5 structure modified with a multi-enzyme membrane have been used for electronic transduction of biochemical signals processed by enzyme-based OR and AND logic gates. The realised OR logic gate composes of two enzymes (glucose oxidase and esterase) and was activated by ethyl butyrate or/and glucose. The AND logic gate composes of three enzymes (invertase, mutarotase and glucose oxidase) and was activated by two chemical input signals: sucrose and dissolved oxygen. The developed integrated enzyme logic gates produce local pH changes at the EIS sensor surface as a result of biochemical reactions activated by different combinations of chemical input signals, while the pH value of the bulk solution remains unchanged. The pH-induced charge changes at the gate-insulator (Ta 2 O 5 ) surface of the EIS transducer result in an electronic signal corresponding to the logic output produced by the immobilised enzymes. The logic output signals have been read out by means of a constant-capacitance method.

  3. Honesty in partial logic

    NARCIS (Netherlands)

    W. van der Hoek (Wiebe); J.O.M. Jaspars; E. Thijsse

    1995-01-01

    textabstractWe propose an epistemic logic in which knowledge is fully introspective and implies truth, although truth need not imply epistemic possibility. The logic is presented in sequential format and is interpreted in a natural class of partial models, called balloon models. We examine the

  4. A fuzzy logic approach to modeling the underground economy in Taiwan

    Science.gov (United States)

    Yu, Tiffany Hui-Kuang; Wang, David Han-Min; Chen, Su-Jane

    2006-04-01

    The size of the ‘underground economy’ (UE) is valuable information in the formulation of macroeconomic and fiscal policy. This study applies fuzzy set theory and fuzzy logic to model Taiwan's UE over the period from 1960 to 2003. Two major factors affecting the size of the UE, the effective tax rate and the degree of government regulation, are used. The size of Taiwan's UE is scaled and compared with those of other models. Although our approach yields different estimates, similar patterns and leading are exhibited throughout the period. The advantage of applying fuzzy logic is twofold. First, it can avoid the complex calculations in conventional econometric models. Second, fuzzy rules with linguistic terms are easy for human to understand.

  5. Neutrosophic Logic for Mental Model Elicitation and Analysis

    Directory of Open Access Journals (Sweden)

    Karina Pérez-Teruel

    2014-03-01

    Full Text Available Mental models are personal, internal representations of external reality that people use to interact with the world around them. They are useful in multiple situations such as muticriteria decision making, knowledge management, complex system learning and analysis. In this paper a framework for mental models elicitation and analysis based on neutrosophic Logic is presented. An illustrative example is provided to show the applicability of the proposal. The paper ends with conclusion future research directions.

  6. Application of fuzzy logic to determine the odour intensity of model gas mixtures using electronic nose

    Science.gov (United States)

    Szulczyński, Bartosz; Gębicki, Jacek; Namieśnik, Jacek

    2018-01-01

    The paper presents the possibility of application of fuzzy logic to determine the odour intensity of model, ternary gas mixtures (α-pinene, toluene and triethylamine) using electronic nose prototype. The results obtained using fuzzy logic algorithms were compared with the values obtained using multiple linear regression (MLR) model and sensory analysis. As the results of the studies, it was found the electronic nose prototype along with the fuzzy logic pattern recognition system can be successfully used to estimate the odour intensity of tested gas mixtures. The correctness of the results obtained using fuzzy logic was equal to 68%.

  7. Continuous Markovian Logics

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Cardelli, Luca; Larsen, Kim Guldstrand

    2012-01-01

    Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qualitative properties of continuous-time labelled Markov processes with arbitrary (analytic) state-spaces, henceforth called continuous Markov processes (CMPs). The modalities of CML evaluate the rates...... of the exponentially distributed random variables that characterize the duration of the labeled transitions of a CMP. In this paper we present weak and strong complete axiomatizations for CML and prove a series of metaproperties, including the finite model property and the construction of canonical models. CML...... characterizes stochastic bisimilarity and it supports the definition of a quantified extension of the satisfiability relation that measures the "compatibility" between a model and a property. In this context, the metaproperties allows us to prove two robustness theorems for the logic stating that one can...

  8. Exhaustively characterizing feasible logic models of a signaling network using Answer Set Programming.

    Science.gov (United States)

    Guziolowski, Carito; Videla, Santiago; Eduati, Federica; Thiele, Sven; Cokelaer, Thomas; Siegel, Anne; Saez-Rodriguez, Julio

    2013-09-15

    Logic modeling is a useful tool to study signal transduction across multiple pathways. Logic models can be generated by training a network containing the prior knowledge to phospho-proteomics data. The training can be performed using stochastic optimization procedures, but these are unable to guarantee a global optima or to report the complete family of feasible models. This, however, is essential to provide precise insight in the mechanisms underlaying signal transduction and generate reliable predictions. We propose the use of Answer Set Programming to explore exhaustively the space of feasible logic models. Toward this end, we have developed caspo, an open-source Python package that provides a powerful platform to learn and characterize logic models by leveraging the rich modeling language and solving technologies of Answer Set Programming. We illustrate the usefulness of caspo by revisiting a model of pro-growth and inflammatory pathways in liver cells. We show that, if experimental error is taken into account, there are thousands (11 700) of models compatible with the data. Despite the large number, we can extract structural features from the models, such as links that are always (or never) present or modules that appear in a mutual exclusive fashion. To further characterize this family of models, we investigate the input-output behavior of the models. We find 91 behaviors across the 11 700 models and we suggest new experiments to discriminate among them. Our results underscore the importance of characterizing in a global and exhaustive manner the family of feasible models, with important implications for experimental design. caspo is freely available for download (license GPLv3) and as a web service at http://caspo.genouest.org/. Supplementary materials are available at Bioinformatics online. santiago.videla@irisa.fr.

  9. THE EFFECT MODEL INQUIRY TRAINING MEDIA AND LOGICAL THINKING ABILITY TO STUDENT’S SCIENCE PROCESS SKILL

    Directory of Open Access Journals (Sweden)

    Dahrim Pohan

    2017-06-01

    Full Text Available The aim of the research is to analyz : student’s science process skill using inquiry training learning model is better than konvesional learning.Student’s science process skill who have logical thinking ability above average are better than under average,and the interaction between inquiry training media and logical thinking ability to increase student’s science process skill.The experiment was conducted in SMP 6 Medan as population and class VII-K and VII-J were chosen as sample through cluster random sampling.Science prosess skill used essay test and logical thinking used multiple choice as instrument.Result of the data was analyzed by using two ways ANAVA.Result show that : student’s science process skill using inquiry training learning model is better than konvesional learning,student’s science process skill who logical thinking ability above average are better than under average and the interaction between inquiry training learning model media and logical thinking ability to increase student’s science process skill.

  10. Logic model needs for diverse facility types

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1995-01-01

    This paper compares the characteristics of fault trees (where initiators are developed within the fault tree) vs. event trees (where the nodes are developed by fault trees). This comparison requires some additional discussion on the subtlety of initiators. Difficulties when analyzing various reactor-type and processing facilities are discussed to illustrate the particular characteristics of each type of logic. The intent is to allow probabilistic risk assessment (PRA) analysts to be open-quotes bi-logical,close quotes or equally comfortable with event-tree or fault-tree logic, knowing when to apply each

  11. Modern logic and quantum mechanics

    International Nuclear Information System (INIS)

    Garden, R.W.

    1984-01-01

    The book applies the methods of modern logic and probabilities to ''interpreting'' quantum mechanics. The subject is described and discussed under the chapter headings: classical and quantum mechanics, modern logic, the propositional logic of mechanics, states and measurement in mechanics, the traditional analysis of probabilities, the probabilities of mechanics and the model logic of predictions. (U.K.)

  12. First-Order Hybrid Logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Hybrid logic is an extension of modal logic which allows us to refer explicitly to points of the model in the syntax of formulas. It is easy to justify interest in hybrid logic on applied grounds, with the usefulness of the additional expressive power. For example, when reasoning about time one...... often wants to build up a series of assertions about what happens at a particular instant, and standard modal formalisms do not allow this. What is less obvious is that the route hybrid logic takes to overcome this problem often actually improves the behaviour of the underlying modal formalism....... For example, it becomes far simpler to formulate proof-systems for hybrid logic, and completeness results can be proved of a generality that is simply not available in modal logic. That is, hybridization is a systematic way of remedying a number of known deficiencies of modal logic. First-order hybrid logic...

  13. Pecan Research and Outreach in New Mexico: Logic Model Development and Change in Communication Paradigms

    Science.gov (United States)

    Sammis, Theodore W.; Shukla, Manoj K.; Mexal, John G.; Wang, Junming; Miller, David R.

    2013-01-01

    Universities develop strategic planning documents, and as part of that planning process, logic models are developed for specific programs within the university. This article examines the long-standing pecan program at New Mexico State University and the deficiencies and successes in the evolution of its logic model. The university's agricultural…

  14. Life-cycle assessment of computational logic produced from 1995 through 2010

    International Nuclear Information System (INIS)

    Boyd, S B; Horvath, A; Dornfeld, D A

    2010-01-01

    Determination of the life-cycle environmental and human health impacts of semiconductor logic is essential to a better understanding of the role information technology can play in achieving energy efficiency or global warming potential reduction goals. This study provides a life-cycle assessment for digital logic chips over seven technology generations, spanning from 1995 through 2010. Environmental indicators include global warming potential, acidification, eutrophication, ground-level ozone (smog) formation, potential human cancer and non-cancer health effects, ecotoxicity and water use. While impacts per device area related to fabrication infrastructure and use-phase electricity have increased steadily, those due to transportation and fabrication direct emissions have fallen as a result of changes in process technology, device and wafer sizes and yields over the generations. Electricity, particularly in the use phase, and direct emissions from fabrication are the most important contributors to life-cycle impacts. Despite the large quantities of water used in fabrication, across the life cycle, the largest fraction of water is consumed in generation of electricity for use-phase power. Reducing power consumption in the use phase is the most effective way to limit impacts, particularly for the more recent generations of logic.

  15. A modeling of fuzzy logic controller on gamma scanning device

    International Nuclear Information System (INIS)

    Arjoni Amir

    2010-01-01

    Modeling and simulation of controller to set the high position and direction of the source of gamma radiation isotope Co-60 and Nal(TL) detector of gamma scanning device by using fuzzy logic controller FLC have been done. The high positions and in the right direction of gamma radiation and Nal (TI) detector obtained the optimal enumeration. The counting data obtained from gamma scanning device counting system is affected by the instability of high position and direction of the gamma radiation source and Nal(TI) detector or the height and direction are not equal between the gamma radiation source and Nal(TI) detector. Assumed a high position and direction of radiation sources can be fixed while the high position detector h (2, 1,0, -1, -2) can be adjusted up and down and the detector can be changed direction to the left or right angle ω (2, 1 , 0, -1, -2) when the position and direction are no longer aligned with the direction of the source of gamma radiation, the counting results obtained will not be optimal. Movement detector direction towards the left or right and the high detector arranged by the DC motor using fuzzy logic control in order to obtain the amount of output fuzzy logic control which forms the optimal output quantity count. The variation of height difference h between the source position of the gamma radiation detector and change direction with the detector angle ω becomes the input variable membership function (member function) whereas the fuzzy logic for the output variable membership function of fuzzy logic control output is selected scale fuzzy logic is directly proportional to the amount of optimal counting. From the simulation results obtained by the relationship between the amount of data output variable of fuzzy logic controller and the amount of data input variable height h and direction detector ω is depicted in graphical form surface. (author)

  16. Application of linear logic to simulation

    Science.gov (United States)

    Clarke, Thomas L.

    1998-08-01

    Linear logic, since its introduction by Girard in 1987 has proven expressive and powerful. Linear logic has provided natural encodings of Turing machines, Petri nets and other computational models. Linear logic is also capable of naturally modeling resource dependent aspects of reasoning. The distinguishing characteristic of linear logic is that it accounts for resources; two instances of the same variable are considered differently from a single instance. Linear logic thus must obey a form of the linear superposition principle. A proportion can be reasoned with only once, unless a special operator is applied. Informally, linear logic distinguishes two kinds of conjunction, two kinds of disjunction, and also introduces a modal storage operator that explicitly indicates propositions that can be reused. This paper discuses the application of linear logic to simulation. A wide variety of logics have been developed; in addition to classical logic, there are fuzzy logics, affine logics, quantum logics, etc. All of these have found application in simulations of one sort or another. The special characteristics of linear logic and its benefits for simulation will be discussed. Of particular interest is a connection that can be made between linear logic and simulated dynamics by using the concept of Lie algebras and Lie groups. Lie groups provide the connection between the exponential modal storage operators of linear logic and the eigen functions of dynamic differential operators. Particularly suggestive are possible relations between complexity result for linear logic and non-computability results for dynamical systems.

  17. A note on the translation of conceptual data models into description logics: disjointness and covering assumptions

    CSIR Research Space (South Africa)

    Casini, G

    2012-10-01

    Full Text Available possibilities for conceptual data modeling. It also raises the question of how existing conceptual models using ER, UML or ORM could be translated into Description Logics (DLs), a family of logics that have proved to be particularly appropriate for formalizing...

  18. Pedagogy of the logic model: teaching undergraduates to work together to change their communities.

    Science.gov (United States)

    Zimmerman, Lindsey; Kamal, Zohra; Kim, Hannah

    2013-01-01

    Undergraduate community psychology courses can empower students to address challenging problems in their local communities. Creating a logic model is an experiential way to learn course concepts by "doing." Throughout the semester, students work with peers to define a problem, develop an intervention, and plan an evaluation focused on an issue of concern to them. This report provides an overview of how to organize a community psychology course around the creation of a logic model in order for students to develop this applied skill. Two undergraduate student authors report on their experience with the logic model assignment, describing the community problem they chose to address, what they learned from the assignment, what they found challenging, and what they are doing now in their communities based on what they learned.

  19. Bi-directional approach for logical traffic isolation forensic model

    CSIR Research Space (South Africa)

    Dlamini, I

    2009-08-01

    Full Text Available -it-as-you-can" system, which seizes all packets passing through a certain traffic point, captures and writes them to the storage. The main aim of this paper is to address some of the challenges faced by the Logical Traffic Isolation (LTI) model, more specifically...

  20. Fuzzy logic control of water level in advanced boiling water reactor

    International Nuclear Information System (INIS)

    Lin, Chaung; Lee, Chi-Szu; Raghavan, R.; Fahrner, D.M.

    1995-01-01

    The feedwater control system in the Advanced Boiling Water Reactor (ABWR) is more challenging to design compared to other control systems in the plant, due to the possible change in level from void collapses and swells during transient events. A basic fuzzy logic controller is developed using a simplified ABWR mathematical model to demonstrate and compare the performance of this controller with a simplified conventional controller. To reduce the design effort, methods are developed to automatically tune the scaling factors and control rules. As a first step in developing the fuzzy controller, a fuzzy controller with a limited number of rules is developed to respond to normal plant transients such as setpoint changes of plant parameters and load demand changes. Various simulations for setpoint and load demand changes of plant performances were conducted to evaluate the modeled fuzzy logic design against the simplified ABWR model control system. The simulation results show that the performance of the fuzzy logic controller is comparable to that of the Proportional-Integral (PI) controller, However, the fuzzy logic controller produced shorter settling time for step setpoint changes compared to the simplified conventional controller

  1. Logic-based models in systems biology: a predictive and parameter-free network analysis method.

    Science.gov (United States)

    Wynn, Michelle L; Consul, Nikita; Merajver, Sofia D; Schnell, Santiago

    2012-11-01

    Highly complex molecular networks, which play fundamental roles in almost all cellular processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a consequence, there is a critical need to develop practical methodologies for constructing and analysing molecular networks at a systems level. Mathematical models built with continuous differential equations are an ideal methodology because they can provide a detailed picture of a network's dynamics. To be predictive, however, differential equation models require that numerous parameters be known a priori and this information is almost never available. An alternative dynamical approach is the use of discrete logic-based models that can provide a good approximation of the qualitative behaviour of a biochemical system without the burden of a large parameter space. Despite their advantages, there remains significant resistance to the use of logic-based models in biology. Here, we address some common concerns and provide a brief tutorial on the use of logic-based models, which we motivate with biological examples.

  2. Embedding Logics into Product Logic

    Czech Academy of Sciences Publication Activity Database

    Baaz, M.; Hájek, Petr; Krajíček, Jan; Švejda, David

    1998-01-01

    Roč. 61, č. 1 (1998), s. 35-47 ISSN 0039-3215 R&D Projects: GA AV ČR IAA1030601 Grant - others:COST(XE) Action 15 Keywords : fuzzy logic * Lukasiewicz logic * Gödel logic * product logic * computational complexity * arithmetical hierarchy Subject RIV: BA - General Mathematics

  3. Explicit logic circuits predict local properties of the neocortex's physiology and anatomy.

    Directory of Open Access Journals (Sweden)

    Lane Yoder

    Full Text Available BACKGROUND: Two previous articles proposed an explicit model of how the brain processes information by its organization of synaptic connections. The family of logic circuits was shown to generate neural correlates of complex psychophysical phenomena in different sensory systems. METHODOLOGY/PRINCIPAL FINDINGS: Here it is shown that the most cost-effective architectures for these networks produce correlates of electrophysiological brain phenomena and predict major aspects of the anatomical structure and physiological organization of the neocortex. The logic circuits are markedly efficient in several respects and provide the foundation for all of the brain's combinational processing of information. CONCLUSIONS/SIGNIFICANCE: At the local level, these networks account for much of the physical structure of the neocortex as well its organization of synaptic connections. Electronic implementations of the logic circuits may be more efficient than current electronic logic arrays in generating both Boolean and fuzzy logic.

  4. On the Complexity of Model-Checking Branching and Alternating-Time Temporal Logics in One-Counter Systems

    DEFF Research Database (Denmark)

    Vester, Steen

    2015-01-01

    We study the complexity of the model-checking problem for the branching-time logic CTL ∗  and the alternating-time temporal logics ATL/ATL ∗  in one-counter processes and one-counter games respectively. The complexity is determined for all three logics when integer weights are input in unary (non...

  5. FAST TRACK COMMUNICATION: Eight-logic memory cell based on multiferroic junctions

    Science.gov (United States)

    Yang, Feng; Zhou, Y. C.; Tang, M. H.; Liu, Fen; Ma, Ying; Zheng, X. J.; Zhao, W. F.; Xu, H. Y.; Sun, Z. H.

    2009-04-01

    A model is proposed for a device combining a multiferroic tunnel junction with a magnetoelectric (ME) film in which the magnetic configuration is controlled by the electric field. Calculations embodying the Green's function approach show that the magnetic polarization can be switched on and off by an electric field in the ME film due to the effect of elastic coupling interaction. Using a model including the spin-filter effect and screening of polarization charges, we have produced eight logic states of tunnelling resistance in the tunnel junction and have obtained corresponding laws that control them. The results provide some insights into the realization of an eight-logic memory cell.

  6. A Logic for Choreographies

    DEFF Research Database (Denmark)

    Lopez, Hugo Andres; Carbone, Marco; Hildebrandt, Thomas

    2010-01-01

    We explore logical reasoning for the global calculus, a coordination model based on the notion of choreography, with the aim to provide a methodology for specification and verification of structured communications. Starting with an extension of Hennessy-Milner logic, we present the global logic (GL...... ), a modal logic describing possible interactions among participants in a choreography. We illustrate its use by giving examples of properties on service specifications. Finally, we show that, despite GL is undecidable, there is a significant decidable fragment which we provide with a sound and complete proof...

  7. Linear Logic on Petri Nets

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...

  8. Logical Theories for Agent Introspection

    DEFF Research Database (Denmark)

    Bolander, Thomas

    2004-01-01

    Artificial intelligence systems (agents) generally have models of the environments they inhabit which they use for representing facts, for reasoning about these facts and for planning actions. Much intelligent behaviour seems to involve an ability to model not only one's external environment...... by self-reference. In the standard approach taken in artificial intelligence, the model that an agent has of its environment is represented as a set of beliefs. These beliefs are expressed as logical formulas within a formal, logical theory. When the logical theory is expressive enough to allow...... introspective reasoning, the presence of self-reference causes the theory to be prone to inconsistency. The challenge therefore becomes to construct logical theories supporting introspective reasoning while at the same time ensuring that consistency is retained. In the thesis, we meet this challenge by devising...

  9. EFFECTS OF SCIENTIFIC INQUIRY LEARNING MODEL AND LOGICAL THINKING ABILITY OF HIGH SCHOOL STUDENTS SCIENCE PROCESS SKILLS

    Directory of Open Access Journals (Sweden)

    M. Akhyar Lubis

    2017-09-01

    Full Text Available This study aimed to analyze whether the results of science process skills of students. Who are taught by the teaching model scientific inquiry better than conventional learning, to analyze whether the results of science process skills of students? Who can think logically high is better than the students who have the potential to think logically low, analyze whether there is an interaction between scientific inquiry learning model with logical thinking skills to students' science process skills. This research is a quasi-experimental design with the two-group pretest-posttest design. The study population is all students of class X SMA Negeri 4 Padangsidimpuan semester II academic year 2016/2017. The The research instrument consists of two types: science process skills instrument consists of 10 questions in essay form which has been declared valid and reliable, and the instrument ability to think logically in the form of multiple choice is entirely groundless and complements (combination. The resulting data, analyzed by using two path Anava. The results showed that science process skills of students who are taught by the teaching model scientific inquiry better than conventional learning. Science process skills of students who can think logically high are better than the students who can think logically low, and there is an interaction between learning model scientific inquiry and conventional learning with the ability to think logically to improve students' science process skills.

  10. THE EFFECT OF INQUIRY TRAINING MODEL USE THE MEDIA PHET AGAINST SCIENCE PROCESS SKILLS AND LOGICAL THINKING SKILLS STUDENTS

    Directory of Open Access Journals (Sweden)

    Fajrul Wahdi Ginting

    2015-12-01

    Full Text Available The Purpose of The study: science process skills and logical thinking ability of students who use inquiry learning model training using PhET media; science process skills and logical thinking ability of students who use conventional learning model; and the difference science process skills and logical thinking ability of students to use learning model Inquiry Training using PhET media and conventional learning models. This research is a quasi experimental. Sample selection is done by cluster random sampling are two classes of classes VIII-E and class VIII-B, where the class VIII-E is taught by inquiry training model using media PhET and VIII-B with conventional learning model. The instrument used consisted of tests science process skills such as essay tests and tests of the ability to think logically in the form of multiple-choice tests. The data were analyzed using t test. The results showed that physics science process skills use Inquiry Training models using PhET media is different and showed better results compared with conventional learning model, and logical thinking skills students use Inquiry Training model using PhET media is different and show better results compared with conventional learning, and there is a difference between the ability to think logically and science process skills of students who use Inquiry Training model using PhET media and conventional learning models.

  11. Logic-based models in systems biology: a predictive and parameter-free network analysis method†

    Science.gov (United States)

    Wynn, Michelle L.; Consul, Nikita; Merajver, Sofia D.

    2012-01-01

    Highly complex molecular networks, which play fundamental roles in almost all cellular processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a consequence, there is a critical need to develop practical methodologies for constructing and analysing molecular networks at a systems level. Mathematical models built with continuous differential equations are an ideal methodology because they can provide a detailed picture of a network’s dynamics. To be predictive, however, differential equation models require that numerous parameters be known a priori and this information is almost never available. An alternative dynamical approach is the use of discrete logic-based models that can provide a good approximation of the qualitative behaviour of a biochemical system without the burden of a large parameter space. Despite their advantages, there remains significant resistance to the use of logic-based models in biology. Here, we address some common concerns and provide a brief tutorial on the use of logic-based models, which we motivate with biological examples. PMID:23072820

  12. A Logic for Choreographies

    Directory of Open Access Journals (Sweden)

    Marco Carbone

    2011-10-01

    Full Text Available We explore logical reasoning for the global calculus, a coordination model based on the notion of choreography, with the aim to provide a methodology for specification and verification of structured communications. Starting with an extension of Hennessy-Milner logic, we present the global logic (GL, a modal logic describing possible interactions among participants in a choreography. We illustrate its use by giving examples of properties on service specifications. Finally, we show that, despite GL is undecidable, there is a significant decidable fragment which we provide with a sound and complete proof system for checking validity of formulae.

  13. A logical treatment of secondary storage

    International Nuclear Information System (INIS)

    Foster, I.T.; Kusalik, A.J.

    1986-01-01

    Existing logic programming environments usually rely on highly imperative primitives and side-effects to achieve I/O with peripheral devices such as disks. This paper describes an alternate approach where the concepts of information input and output are described declarativley. Using a model of a logic-based open system, independent logic systems communicate their beliefs by means of ground logic clauses. The interface to a physical disk is defined as a node in such a system. The contents of the disk are treated as a knowledge base. The model provides the disk with a simple inference mechanism that allows it to assimilate (or reject) assertions made to it by other nodes of the logic system. This disk can also process queries about its contents. An executable specification for such a storage model is given in the parallel logic programming language PARLOG, as well as an actual implementation that uses very low-level term I/O primitives. It is also shown how this model can be extended so that the disk records entity histories, rather than simple clauses. This enables file systems to be constructed very naturally, and allows garbage collection of ''old'' knowledge

  14. Fuzzy logic

    CERN Document Server

    Smets, P

    1995-01-01

    We start by describing the nature of imperfect data, and giving an overview of the various models that have been proposed. Fuzzy sets theory is shown to be an extension of classical set theory, and as such has a proeminent role or modelling imperfect data. The mathematic of fuzzy sets theory is detailled, in particular the role of the triangular norms. The use of fuzzy sets theory in fuzzy logic and possibility theory,the nature of the generalized modus ponens and of the implication operator for approximate reasoning are analysed. The use of fuzzy logic is detailled for application oriented towards process control and database problems.

  15. Logic analysis and verification of n-input genetic logic circuits

    DEFF Research Database (Denmark)

    Baig, Hasan; Madsen, Jan

    2017-01-01

    . In this paper, we present an approach to analyze and verify the Boolean logic of a genetic circuit from the data obtained through stochastic analog circuit simulations. The usefulness of this analysis is demonstrated through different case studies illustrating how our approach can be used to verify the expected......Nature is using genetic logic circuits to regulate the fundamental processes of life. These genetic logic circuits are triggered by a combination of external signals, such as chemicals, proteins, light and temperature, to emit signals to control other gene expressions or metabolic pathways...... accordingly. As compared to electronic circuits, genetic circuits exhibit stochastic behavior and do not always behave as intended. Therefore, there is a growing interest in being able to analyze and verify the logical behavior of a genetic circuit model, prior to its physical implementation in a laboratory...

  16. Parametric Linear Dynamic Logic

    Directory of Open Access Journals (Sweden)

    Peter Faymonville

    2014-08-01

    Full Text Available We introduce Parametric Linear Dynamic Logic (PLDL, which extends Linear Dynamic Logic (LDL by temporal operators equipped with parameters that bound their scope. LDL was proposed as an extension of Linear Temporal Logic (LTL that is able to express all ω-regular specifications while still maintaining many of LTL's desirable properties like an intuitive syntax and a translation into non-deterministic Büchi automata of exponential size. But LDL lacks capabilities to express timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to express all ω-regular properties and that subsumes parameterized extensions of LTL like Parametric LTL and PROMPT-LTL. Our main technical contribution is a translation of PLDL formulas into non-deterministic Büchi word automata of exponential size via alternating automata. This yields a PSPACE model checking algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give tight upper and lower bounds on optimal parameter values for both problems. These results show that PLDL model checking and realizability are not harder than LTL model checking and realizability.

  17. Logic Model Checking of Time-Periodic Real-Time Systems

    Science.gov (United States)

    Florian, Mihai; Gamble, Ed; Holzmann, Gerard

    2012-01-01

    In this paper we report on the work we performed to extend the logic model checker SPIN with built-in support for the verification of periodic, real-time embedded software systems, as commonly used in aircraft, automobiles, and spacecraft. We first extended the SPIN verification algorithms to model priority based scheduling policies. Next, we added a library to support the modeling of periodic tasks. This library was used in a recent application of the SPIN model checker to verify the engine control software of an automobile, to study the feasibility of software triggers for unintended acceleration events.

  18. Logic from A to Z the Routledge encyclopedia of philosophy glossary of logical and mathematical terms

    CERN Document Server

    Bacon, John B; McCarty, David Charles; Bacon, John B

    1999-01-01

    First published in the most ambitious international philosophy project for a generation; the Routledge Encyclopedia of Philosophy. Logic from A to Z is a unique glossary of terms used in formal logic and the philosophy of mathematics. Over 500 entries include key terms found in the study of: * Logic: Argument, Turing Machine, Variable * Set and model theory: Isomorphism, Function * Computability theory: Algorithm, Turing Machine * Plus a table of logical symbols. Extensively cross-referenced to help comprehension and add detail, Logic from A to Z provides an indispensable reference source for students of all branches of logic.

  19. A retrospective review of the Honduras AIN-C program guided by a community health worker performance logic model.

    Science.gov (United States)

    Rodríguez, Daniela C; Peterson, Lauren A

    2016-05-06

    Factors that influence performance of community health workers (CHWs) delivering health services are not well understood. A recent logic model proposed categories of support from both health sector and communities that influence CHW performance and program outcomes. This logic model has been used to review a growth monitoring program delivered by CHWs in Honduras, known as Atención Integral a la Niñez en la Comunidad (AIN-C). A retrospective review of AIN-C was conducted through a document desk review and supplemented with in-depth interviews. Documents were systematically coded using the categories from the logic model, and gaps were addressed through interviews. Authors reviewed coded data for each category to analyze program details and outcomes as well as identify potential issues and gaps in the logic model. Categories from the logic model were inconsistently represented, with more information available for health sector than community. Context and input activities were not well documented. Information on health sector systems-level activities was available for governance but limited for other categories, while not much was found for community systems-level activities. Most available information focused on program-level activities with substantial data on technical support. Output, outcome, and impact data were drawn from various resources and suggest mixed results of AIN-C on indicators of interest. Assessing CHW performance through a desk review left gaps that could not be addressed about the relationship of activities and performance. There were critical characteristics of program design that made it contextually appropriate; however, it was difficult to identify clear links between AIN-C and malnutrition indicators. Regarding the logic model, several categories were too broad (e.g., technical support, context) and some aspects of AIN-C did not fit neatly in logic model categories (e.g., political commitment, equity, flexibility in implementation). The

  20. Fuzzy Logic-Based Model That Incorporates Personality Traits for Heterogeneous Pedestrians

    Directory of Open Access Journals (Sweden)

    Zhuxin Xue

    2017-10-01

    Full Text Available Most models designed to simulate pedestrian dynamical behavior are based on the assumption that human decision-making can be described using precise values. This study proposes a new pedestrian model that incorporates fuzzy logic theory into a multi-agent system to address cognitive behavior that introduces uncertainty and imprecision during decision-making. We present a concept of decision preferences to represent the intrinsic control factors of decision-making. To realize the different decision preferences of heterogeneous pedestrians, the Five-Factor (OCEAN personality model is introduced to model the psychological characteristics of individuals. Then, a fuzzy logic-based approach is adopted for mapping the relationships between the personality traits and the decision preferences. Finally, we have developed an application using our model to simulate pedestrian dynamical behavior in several normal or non-panic scenarios, including a single-exit room, a hallway with obstacles, and a narrowing passage. The effectiveness of the proposed model is validated with a user study. The results show that the proposed model can generate more reasonable and heterogeneous behavior in the simulation and indicate that individual personality has a noticeable effect on pedestrian dynamical behavior.

  1. Logic-statistic modeling and analysis of biological sequence data

    DEFF Research Database (Denmark)

    Christiansen, Henning

    2007-01-01

    We describe here the intentions and plans of a newly started, funded research project in order to further the dialogue with the international research in the field. The purpose is to obtain experiences for realistic applications of flexible and powerful modeling tools that integrate logic and sta...

  2. Logic Model Checking of Unintended Acceleration Claims in the 2005 Toyota Camry Electronic Throttle Control System

    Science.gov (United States)

    Gamble, Ed; Holzmann, Gerard

    2011-01-01

    Part of the US DOT investigation of Toyota SUA involved analysis of the throttle control software. JPL LaRS applied several techniques, including static analysis and logic model checking, to the software. A handful of logic models were built. Some weaknesses were identified; however, no cause for SUA was found. The full NASA report includes numerous other analyses

  3. Fuzzy logic of Aristotelian forms

    Energy Technology Data Exchange (ETDEWEB)

    Perlovsky, L.I. [Nichols Research Corp., Lexington, MA (United States)

    1996-12-31

    Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties. In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.

  4. People Like Logical Truth: Testing the Intuitive Detection of Logical Value in Basic Propositions.

    Directory of Open Access Journals (Sweden)

    Hiroko Nakamura

    Full Text Available Recent studies on logical reasoning have suggested that people are intuitively aware of the logical validity of syllogisms or that they intuitively detect conflict between heuristic responses and logical norms via slight changes in their feelings. According to logical intuition studies, logically valid or heuristic logic no-conflict reasoning is fluently processed and induces positive feelings without conscious awareness. One criticism states that such effects of logicality disappear when confounding factors such as the content of syllogisms are controlled. The present study used abstract propositions and tested whether people intuitively detect logical value. Experiment 1 presented four logical propositions (conjunctive, biconditional, conditional, and material implications regarding a target case and asked the participants to rate the extent to which they liked the statement. Experiment 2 tested the effects of matching bias, as well as intuitive logic, on the reasoners' feelings by manipulating whether the antecedent or consequent (or both of the conditional was affirmed or negated. The results showed that both logicality and matching bias affected the reasoners' feelings, and people preferred logically true targets over logically false ones for all forms of propositions. These results suggest that people intuitively detect what is true from what is false during abstract reasoning. Additionally, a Bayesian mixed model meta-analysis of conditionals indicated that people's intuitive interpretation of the conditional "if p then q" fits better with the conditional probability, q given p.

  5. FUZZY LOGIC CONTROLLER AS MODELING TOOL FOR THE BURNING PROCESS OF A CEMENT PRODUCTION PLANT

    Directory of Open Access Journals (Sweden)

    P.B. Osofisan

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: A comprehensive optimisation of the cement production process presents a problem since the input variables as well as the output variables are non-linear, interdependent and contain uncertainties. To arrive at a solution, a Fuzzy Logic controller has been designed to achieve a well-defined relationship between the main and vital variables through the instrumentality of a Fuzzy Model. The Fuzzy Logic controller has been simulated on a digital computer using MATLAB 5.0 Fuzzy Logic Tool Box, using data from a local cement production plant.

    AFRIKAANSE OPSOMMING: Die omvattende optimisering van 'n proses wat sement vervaardig, word beskryf deur nie-linieêre inset- en uitsetveranderlikes wat onderling afhanklik is, en ook van onsekere aard is. Om 'n optimum oplossing te verkry, word 'n Wasigheidsmodel gebruik. Die model word getoets deur gebruik te maak van die MATLAB 5.0 Fuzzy Logic Tool Box en data vanaf 'n lokale sementvervaardigingsaanleg.

  6. Toward a Structural Model of Organizational-level Institutional Pluralism and Logic Interconnectedness

    DEFF Research Database (Denmark)

    Jancsary, Dennis; Meyer, Renate E; Höllerer, Markus A.

    2017-01-01

    as a nexus of organizational role identities and counterroles. The structure of such a nexus reveals degrees of differentiation and interconnectedness between logics as well as distinct interfaces. We validate and further develop our model through qualitative content analysis and semantic network analytical...... methods applied to the website of a large organization. Our study contributes to recent literature on institutional pluralism by further specifying the structural aspects of constellations of logics and different types of institutional pluralism (monolithic, fragmented, and modular). Specifically, we show...

  7. Logic feels so good-I like it! Evidence for intuitive detection of logicality in syllogistic reasoning.

    Science.gov (United States)

    Morsanyi, Kinga; Handley, Simon J

    2012-05-01

    When people evaluate syllogisms, their judgments of validity are often biased by the believability of the conclusions of the problems. Thus, it has been suggested that syllogistic reasoning performance is based on an interplay between a conscious and effortful evaluation of logicality and an intuitive appreciation of the believability of the conclusions (e.g., Evans, Newstead, Allen, & Pollard, 1994). However, logic effects in syllogistic reasoning emerge even when participants are unlikely to carry out a full logical analysis of the problems (e.g., Shynkaruk & Thompson, 2006). There is also evidence that people can implicitly detect the conflict between their beliefs and the validity of the problems, even if they are unable to consciously produce a logical response (e.g., De Neys, Moyens, & Vansteenwegen, 2010). In 4 experiments we demonstrate that people intuitively detect the logicality of syllogisms, and this effect emerges independently of participants' conscious mindset and their cognitive capacity. This logic effect is also unrelated to the superficial structure of the problems. Additionally, we provide evidence that the logicality of the syllogisms is detected through slight changes in participants' affective states. In fact, subliminal affective priming had an effect on participants' subjective evaluations of the problems. Finally, when participants misattributed their emotional reactions to background music, this significantly reduced the logic effect. (c) 2012 APA, all rights reserved.

  8. Popular lectures on mathematical logic

    CERN Document Server

    Wang, Hao

    2014-01-01

    A noted logician and philosopher addresses various forms of mathematical logic, discussing both theoretical underpinnings and practical applications. Author Hao Wang surveys the central concepts and theories of the discipline in a historical and developmental context, and then focuses on the four principal domains of contemporary mathematical logic: set theory, model theory, recursion theory and constructivism, and proof theory.Topics include the place of problems in the development of theories of logic and logic's relation to computer science. Specific attention is given to Gödel's incomplete

  9. Optimization methods for logical inference

    CERN Document Server

    Chandru, Vijay

    2011-01-01

    Merging logic and mathematics in deductive inference-an innovative, cutting-edge approach. Optimization methods for logical inference? Absolutely, say Vijay Chandru and John Hooker, two major contributors to this rapidly expanding field. And even though ""solving logical inference problems with optimization methods may seem a bit like eating sauerkraut with chopsticks. . . it is the mathematical structure of a problem that determines whether an optimization model can help solve it, not the context in which the problem occurs."" Presenting powerful, proven optimization techniques for logic in

  10. When fast logic meets slow belief: Evidence for a parallel-processing model of belief bias.

    Science.gov (United States)

    Trippas, Dries; Thompson, Valerie A; Handley, Simon J

    2017-05-01

    Two experiments pitted the default-interventionist account of belief bias against a parallel-processing model. According to the former, belief bias occurs because a fast, belief-based evaluation of the conclusion pre-empts a working-memory demanding logical analysis. In contrast, according to the latter both belief-based and logic-based responding occur in parallel. Participants were given deductive reasoning problems of variable complexity and instructed to decide whether the conclusion was valid on half the trials or to decide whether the conclusion was believable on the other half. When belief and logic conflict, the default-interventionist view predicts that it should take less time to respond on the basis of belief than logic, and that the believability of a conclusion should interfere with judgments of validity, but not the reverse. The parallel-processing view predicts that beliefs should interfere with logic judgments only if the processing required to evaluate the logical structure exceeds that required to evaluate the knowledge necessary to make a belief-based judgment, and vice versa otherwise. Consistent with this latter view, for the simplest reasoning problems (modus ponens), judgments of belief resulted in lower accuracy than judgments of validity, and believability interfered more with judgments of validity than the converse. For problems of moderate complexity (modus tollens and single-model syllogisms), the interference was symmetrical, in that validity interfered with belief judgments to the same degree that believability interfered with validity judgments. For the most complex (three-term multiple-model syllogisms), conclusion believability interfered more with judgments of validity than vice versa, in spite of the significant interference from conclusion validity on judgments of belief.

  11. Using program logic model analysis to evaluate and better deliver what works

    International Nuclear Information System (INIS)

    Megdal, Lori; Engle, Victoria; Pakenas, Larry; Albert, Scott; Peters, Jane; Jordan, Gretchen

    2005-01-01

    There is a rich history in using program theories and logic models (PT/LM) for evaluation, monitoring, and program refinement in a variety of fields, such as health care, social and education programs. The use of these tools to evaluate and improve energy efficiency programs has been growing over the last 5-7 years. This paper provides an overview of the state-of-the-art methods of logic model development, with analysis that significantly contributed to: Assessing the logic behind how the program expects to be able to meets its ultimate goals, including the 'who', the 'how', and through what mechanism. In doing so, gaps and questions that still need to be addressed can be identified. Identifying and prioritize the indicators that should be measured to evaluate the program and program theory. Determining key researchable questions that need to be answered by evaluation/research, to assess whether the mechanism assumed to cause the changes in actions, attitudes, behaviours, and business practices is workable and efficient. Also will assess the validity in the program logic and the likelihood that the program can accomplish its ultimate goals. Incorporating analysis of prior like programs and social science theories in a framework to identify opportunities for potential program refinements. The paper provides an overview of the tools, techniques and references, and uses as example the energy efficiency program analysis conducted for the New York State Energy Research and Development Authority's (NYSERDA) New York ENERGY $MART SM programs

  12. Model Checking Is Static Analysis of Modal Logic

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis

    2010-01-01

    Flow Logic is an approach to the static analysis of programs that has been developed for functional, imperative and object-oriented programming languages and for concurrent, distributed, mobile and cryptographic process calculi. In this paper we extend it; to deal with modal logics and prove...

  13. Coherent quantum logic

    International Nuclear Information System (INIS)

    Finkelstein, D.

    1987-01-01

    The von Neumann quantum logic lacks two basic symmetries of classical logic, that between sets and classes, and that between lower and higher order predicates. Similarly, the structural parallel between the set algebra and linear algebra of Grassmann and Peano was left incomplete by them in two respects. In this work a linear algebra is constructed that completes this correspondence and is interpreted as a new quantum logic that restores these invariances, and as a quantum set theory. It applies to experiments with coherent quantum phase relations between the quantum and the apparatus. The quantum set theory is applied to model a Lorentz-invariant quantum time-space complex

  14. A Formal Semantics for Concept Understanding relying on Description Logics

    DEFF Research Database (Denmark)

    Badie, Farshad

    2017-01-01

    In this research, Description Logics (DLs) will be employed for logical description, logical characterisation, logical modelling and ontological description of concept understanding in terminological systems. It’s strongly believed that using a formal descriptive logic could support us in reveali...... logical assumptions whose discovery may lead us to a better understanding of ‘concept understanding’. The Structure of Observed Learning Outcomes (SOLO) model as an appropriate model of increasing complexity of humans’ understanding has supported the formal analysis....

  15. A Formal Semantics for Concept Understanding relying on Description Logics

    DEFF Research Database (Denmark)

    Badie, Farshad

    2017-01-01

    logical assumptions whose discovery may lead us to a better understanding of ‘concept understanding’. The Structure of Observed Learning Outcomes (SOLO) model as an appropriate model of increasing complexity of humans’ understanding has supported the formal analysis.......In this research, Description Logics (DLs) will be employed for logical description, logical characterisation, logical modelling and ontological description of concept understanding in terminological systems. It’s strongly believed that using a formal descriptive logic could support us in revealing...

  16. Application of Logic Models in a Large Scientific Research Program

    Science.gov (United States)

    O'Keefe, Christine M.; Head, Richard J.

    2011-01-01

    It is the purpose of this article to discuss the development and application of a logic model in the context of a large scientific research program within the Commonwealth Scientific and Industrial Research Organisation (CSIRO). CSIRO is Australia's national science agency and is a publicly funded part of Australia's innovation system. It conducts…

  17. Introduction to mathematical logic

    CERN Document Server

    Mendelson, Elliott

    2009-01-01

    The Propositional CalculusPropositional Connectives. Truth TablesTautologies Adequate Sets of Connectives An Axiom System for the Propositional Calculus Independence. Many-Valued LogicsOther AxiomatizationsFirst-Order Logic and Model TheoryQuantifiersFirst-Order Languages and Their Interpretations. Satisfiability and Truth. ModelsFirst-Order TheoriesProperties of First-Order Theories Additional Metatheorems and Derived Rules Rule C Completeness Theorems First-Order Theories with EqualityDefinitions of New Function Letters and Individual Constants Prenex Normal Forms Isomorphism of Interpretati

  18. A logic model framework for evaluation and planning in a primary care practice-based research network (PBRN)

    Science.gov (United States)

    Hayes, Holly; Parchman, Michael L.; Howard, Ray

    2012-01-01

    Evaluating effective growth and development of a Practice-Based Research Network (PBRN) can be challenging. The purpose of this article is to describe the development of a logic model and how the framework has been used for planning and evaluation in a primary care PBRN. An evaluation team was formed consisting of the PBRN directors, staff and its board members. After the mission and the target audience were determined, facilitated meetings and discussions were held with stakeholders to identify the assumptions, inputs, activities, outputs, outcomes and outcome indicators. The long-term outcomes outlined in the final logic model are two-fold: 1.) Improved health outcomes of patients served by PBRN community clinicians; and 2.) Community clinicians are recognized leaders of quality research projects. The Logic Model proved useful in identifying stakeholder interests and dissemination activities as an area that required more attention in the PBRN. The logic model approach is a useful planning tool and project management resource that increases the probability that the PBRN mission will be successfully implemented. PMID:21900441

  19. Logical Specification and Analysis of Fault Tolerant Systems through Partial Model Checking

    NARCIS (Netherlands)

    Gnesi, S.; Etalle, Sandro; Mukhopadhyay, S.; Lenzini, Gabriele; Lenzini, G.; Martinelli, F.; Roychoudhury, A.

    2003-01-01

    This paper presents a framework for a logical characterisation of fault tolerance and its formal analysis based on partial model checking techniques. The framework requires a fault tolerant system to be modelled using a formal calculus, here the CCS process algebra. To this aim we propose a uniform

  20. Fuzzy logic control of nuclear power plant

    International Nuclear Information System (INIS)

    Yao Liangzhong; Guo Renjun; Ma Changwen

    1996-01-01

    The main advantage of the fuzzy logic control is that the method does not require a detailed mathematical model of the object to be controlled. In this paper, the shortcomings and limitations of the model-based method in nuclear power plant control were presented, the theory of the fuzzy logic control was briefly introduced, and the applications of the fuzzy logic control technology in nuclear power plant controls were surveyed. Finally, the problems to be solved by using the fuzzy logic control in nuclear power plants were discussed

  1. SUPPLY –CHAIN AND LOGIC MODELS FOR THE TEXTILE AND CLOTHING COMPANIES

    Directory of Open Access Journals (Sweden)

    VISILEANU Emilia

    2014-05-01

    Full Text Available The textile and clothing industry is characterized by specific supply-chain models with companies situated in a complex cluster type structure. Depending on the size, the volume and the variety of production, companies can be classified as follows: large companies, griffes, medium size companies and subcontracting companies. The logic of companies is defined by the main feature of the textile and clothing field, namely the logic of collections, determined by the seasonality and classified into several types: planning, fast-fashion, fast fashion/ planning. The market share defined by stylistic content, product quality and price determine their typology: mass-market, bridge, diffusion, prêt-a-porter/haute-couture. The study conducted on a number of companies in the textile-clothing industry revealed the following: high share of SMEs (75%, dominant role of garments in the production (74.5%, fast-fashion logic of imitating companies is predominant (94% and mass-market type products have the highest market share (71%. Success in national and international challenges that must be faced by the textile - clothing sector: complete liberalization of world trade, the implementation of quality standards, the adoption of the EU Customs Code and relocation can be provided only by changing the supply -chain models and business strategies with a focus on short series products with high customization and fictionalization, new models of e-commerce services, e-business, etc

  2. Aspects and modular reasoning in nonmonotonic logic

    DEFF Research Database (Denmark)

    Ostermann, Klaus

    2008-01-01

    Nonmonotonic logic is a branch of logic that has been developed to model situations with incomplete information. We argue that there is a connection between AOP and nonmonotonic logic which deserves further study. As a concrete technical contribution and "appetizer", we outline an AO semantics de...... defined in default logic (a form of nonmonotonic logic), propose a definition of modular reasoning, and show that the default logic version of the language semantics admits modular reasoning whereas a conventional language semantics based on weaving does not....

  3. Layered Fixed Point Logic

    DEFF Research Database (Denmark)

    Filipiuk, Piotr; Nielson, Flemming; Nielson, Hanne Riis

    2012-01-01

    We present a logic for the specification of static analysis problems that goes beyond the logics traditionally used. Its most prominent feature is the direct support for both inductive computations of behaviors as well as co-inductive specifications of properties. Two main theoretical contributions...... are a Moore Family result and a parametrized worst case time complexity result. We show that the logic and the associated solver can be used for rapid prototyping of analyses and illustrate a wide variety of applications within Static Analysis, Constraint Satisfaction Problems and Model Checking. In all cases...

  4. Fuzzy logic modeling of EIS measurements on lithium-ion batteries

    International Nuclear Information System (INIS)

    Singh, Pritpal; Vinjamuri, Ramana; Wang, Xiquan; Reisner, David

    2006-01-01

    A fuzzy logic-based state of health (SOH) meter is being developed for lithium-ion (Li-ion) batteries for potential use in portable defibrillators. Electrochemical impedance spectroscopy (EIS) measurements have been made from which input parameters for a fuzzy logic model to estimate the state of charge (SOC) and SOH are derived. The batteries are discharged continuously at a 1.4 A load current to simulate the constant current draw during the monitoring and recording of a patient's EKG, and periodically interrupted by 10 A pulses to simulate the battery discharge to charge up the capacitor that is in turn discharged to supply high voltage to the electrodes for the defibrillation of the patient. The test procedures included both voltage recovery and EIS measurements, and were made as the batteries were being discharged and over 30 charge/discharge cycles. Accurate models have been developed to estimate the number of pulses that the battery pack can deliver at various stages of its cycle life (SOC measure) and the number of charge/discharge cycles (SOH measure) that it had undergone

  5. Logical model for the control of a BWR turbine;Modelo logico para el control de una turbina de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, Y. [Universidad del Valle de Mexico, Campus Toluca, Av. Las Palmas No. 136, Col. San Jorge Pueblo Nuevo, 52140 Metepec, Estado de Mexico (Mexico); Amador G, R.; Ortiz V, J.; Castillo D, R., E-mail: yonaeton@hotmail.co [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    In this work a design of a logical model is presented for the turbine control of a nuclear power plant with a BWR like energy source. The model is sought to implement later on inside the thermal hydraulics code of better estimate RELAP/SCDAPSIM. The logical model is developed for the control and protection of the turbine, and the consequent protection to the BWR, considering that the turbine control will be been able to use for one or several turbines in series. The quality of the present design of the logical model of the turbine control is that it considers the most important parameters in the operation of a turbine, besides that they have incorporated to the logical model the secondary parameters that will be activated originally as true when the turbine model is substituted by a detailed model. The development of the logical model of a turbine will be of utility in the short and medium term to carry out analysis on the turbine operation with different operation conditions, of vapor extraction, specific steps of the turbine to feed other equipment s, in addition to analyze the separate and the integrated effect. (Author)

  6. Permissive Subsorted Partial Logic in CASL

    DEFF Research Database (Denmark)

    Cerioli, Maura; Haxthausen, Anne Elisabeth; Krieg-Brückner, Bernd

    1997-01-01

    This paper presents a permissive subsorted partial logic used in the CoFI Algebraic Specification Language. In contrast to other order-sorted logics, subsorting is not modeled by set inclusions, but by injective embeddings allowing for more general models in which subtypes can have different data...

  7. Hybrid Logic and its Proof-Theory

    CERN Document Server

    Brauner, Torben

    2011-01-01

    This is the first book-length treatment of hybrid logic and its proof-theory. Hybrid logic is an extension of ordinary modal logic which allows explicit reference to individual points in a model (where the points represent times, possible worlds, states in a computer, or something else). This is useful for many applications, for example when reasoning about time one often wants to formulate a series of statements about what happens at specific times. There is little consensus about proof-theory for ordinary modal logic. Many modal-logical proof systems lack important properties and the relatio

  8. Modelling Of Anticipated Damage Ratio On Breakwaters Using Fuzzy Logic

    Science.gov (United States)

    Mercan, D. E.; Yagci, O.; Kabdasli, S.

    2003-04-01

    In breakwater design the determination of armour unit weight is especially important in terms of the structure's life. In a typical experimental breakwater stability study, different wave series composed of different wave heights; wave period and wave steepness characteristics are applied in order to investigate performance the structure. Using a classical approach, a regression equation is generated for damage ratio as a function of characteristic wave height. The parameters wave period and wave steepness are not considered. In this study, differing from the classical approach using a fuzzy logic, a relationship between damage ratio as a function of mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s) was further generated. The system's inputs were mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s). For fuzzification all input variables were divided into three fuzzy subsets, their membership functions were defined using method developed by Mandani (Mandani, 1974) and the rules were written. While for defuzzification the centroid method was used. In order to calibrate and test the generated models an experimental study was conducted. The experiments were performed in a wave flume (24 m long, 1.0 m wide and 1.0 m high) using 20 different irregular wave series (P-M spectrum). Throughout the study, the water depth was 0.6 m and the breakwater cross-sectional slope was 1V/2H. In the armour layer, a type of artificial armour unit known as antifer cubes were used. The results of the established fuzzy logic model and regression equation model was compared with experimental data and it was determined that the established fuzzy logic model gave a more accurate prediction of the damage ratio on this type of breakwater. References Mandani, E.H., "Application of Fuzzy Algorithms for Control of Simple Dynamic Plant", Proc. IEE, vol. 121, no. 12, December 1974.

  9. Programmable Array Logic Design

    International Nuclear Information System (INIS)

    Demon Handoyo; Djen Djen Djainal

    2007-01-01

    Good digital circuit design that part of a complex system, often becoming a separate problem. To produce finishing design according to wanted performance is often given on to considerations which each other confuse, hence thereby analyse optimization become important in this case. To realization is made design logic program, the first are determined global diagram block, then are decided contents of these block diagram, and then determined its interconnection in the form of logic expression, continued with election of component. These steps are done to be obtained the design with low price, easy in its interconnection, minimal volume, low power and certainty god work. (author)

  10. Electronic logic to enhance switch reliability in detecting openings and closures of redundant switches

    Science.gov (United States)

    Cooper, James A.

    1986-01-01

    A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and failsafe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.

  11. Completeness Results for Linear Logic on Petri Nets

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    1993-01-01

    Completeness is shown for several versions of Girard's linear logic with respect to Petri nets as the class of models. The strongest logic considered is intuitionistic linear logic, with $otimes$, $-!circ$, &, $oplus$ and the exponential ! (''of course´´), and forms of quantification. This logic ...

  12. A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater

    International Nuclear Information System (INIS)

    Turkdogan-Aydinol, F. Ilter; Yetilmezsoy, Kaan

    2010-01-01

    A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R V ), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (±3)% and an average volumetric TCOD removal rate of 6.87 (±3.93) kg TCOD removed /m 3 -day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98.

  13. A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Turkdogan-Aydinol, F. Ilter, E-mail: aydin@yildiz.edu.tr [Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220 Davutpasa, Esenler, Istanbul (Turkey); Yetilmezsoy, Kaan, E-mail: yetilmez@yildiz.edu.tr [Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220 Davutpasa, Esenler, Istanbul (Turkey)

    2010-10-15

    A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R{sub V}), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 ({+-}3)% and an average volumetric TCOD removal rate of 6.87 ({+-}3.93) kg TCOD{sub removed}/m{sup 3}-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98.

  14. A Logic of Blockchain Updates

    OpenAIRE

    Brünnler, Kai; Flumini, Dandolo; Studer, Thomas

    2017-01-01

    Blockchains are distributed data structures that are used to achieve consensus in systems for cryptocurrencies (like Bitcoin) or smart contracts (like Ethereum). Although blockchains gained a lot of popularity recently, there is no logic-based model for blockchains available. We introduce BCL, a dynamic logic to reason about blockchain updates, and show that BCL is sound and complete with respect to a simple blockchain model.

  15. Development of a program logic model and evaluation plan for a participatory ergonomics intervention in construction.

    Science.gov (United States)

    Jaegers, Lisa; Dale, Ann Marie; Weaver, Nancy; Buchholz, Bryan; Welch, Laura; Evanoff, Bradley

    2014-03-01

    Intervention studies in participatory ergonomics (PE) are often difficult to interpret due to limited descriptions of program planning and evaluation. In an ongoing PE program with floor layers, we developed a logic model to describe our program plan, and process and summative evaluations designed to describe the efficacy of the program. The logic model was a useful tool for describing the program elements and subsequent modifications. The process evaluation measured how well the program was delivered as intended, and revealed the need for program modifications. The summative evaluation provided early measures of the efficacy of the program as delivered. Inadequate information on program delivery may lead to erroneous conclusions about intervention efficacy due to Type III error. A logic model guided the delivery and evaluation of our intervention and provides useful information to aid interpretation of results. © 2013 Wiley Periodicals, Inc.

  16. Development of a Program Logic Model and Evaluation Plan for a Participatory Ergonomics Intervention in Construction

    Science.gov (United States)

    Jaegers, Lisa; Dale, Ann Marie; Weaver, Nancy; Buchholz, Bryan; Welch, Laura; Evanoff, Bradley

    2013-01-01

    Background Intervention studies in participatory ergonomics (PE) are often difficult to interpret due to limited descriptions of program planning and evaluation. Methods In an ongoing PE program with floor layers, we developed a logic model to describe our program plan, and process and summative evaluations designed to describe the efficacy of the program. Results The logic model was a useful tool for describing the program elements and subsequent modifications. The process evaluation measured how well the program was delivered as intended, and revealed the need for program modifications. The summative evaluation provided early measures of the efficacy of the program as delivered. Conclusions Inadequate information on program delivery may lead to erroneous conclusions about intervention efficacy due to Type III error. A logic model guided the delivery and evaluation of our intervention and provides useful information to aid interpretation of results. PMID:24006097

  17. Three-valued logics in modal logic

    NARCIS (Netherlands)

    Kooi, Barteld; Tamminga, Allard

    2013-01-01

    Every truth-functional three-valued propositional logic can be conservatively translated into the modal logic S5. We prove this claim constructively in two steps. First, we define a Translation Manual that converts any propositional formula of any three-valued logic into a modal formula. Second, we

  18. Modeling of Single Event Transients With Dual Double-Exponential Current Sources: Implications for Logic Cell Characterization

    Science.gov (United States)

    Black, Dolores A.; Robinson, William H.; Wilcox, Ian Z.; Limbrick, Daniel B.; Black, Jeffrey D.

    2015-08-01

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. An accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional model based on one double-exponential source can be incomplete. A small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. The parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.

  19. Towards a Formal Occurrence Logic based on Predicate Logic

    DEFF Research Database (Denmark)

    Badie, Farshad; Götzsche, Hans

    2015-01-01

    In this discussion we will concentrate on the main characteristics of an alternative kind of logic invented by Hans Götzsche: Occurrence Logic, which is not based on truth functionality. Our approach is based on temporal logic developed and elaborated by A. N. Prior. We will focus on characterising...... argumentation based on formal Occurrence Logic concerning events and occurrences, and illustrate the relations between Predicate Logic and Occurrence Logic. The relationships (and dependencies) is conducive to an approach that can analyse the occurrences of ”logical statements based on different logical...... principles” in different moments. We will also conclude that the elaborated Götzsche’s Occurrence Logic could be able to direct us to a truth-functional independent computer-based logic for analysing argumentation based on events and occurrences....

  20. Chaotic logic gate: A new approach in set and design by genetic algorithm

    International Nuclear Information System (INIS)

    Beyki, Mahmood; Yaghoobi, Mahdi

    2015-01-01

    How to reconfigure a logic gate is an attractive subject for different applications. Chaotic systems can yield a wide variety of patterns and here we use this feature to produce a logic gate. This feature forms the basis for designing a dynamical computing device that can be rapidly reconfigured to become any wanted logical operator. This logic gate that can reconfigure to any logical operator when placed in its chaotic state is called chaotic logic gate. The reconfiguration realize by setting the parameter values of chaotic logic gate. In this paper we present mechanisms about how to produce a logic gate based on the logistic map in its chaotic state and genetic algorithm is used to set the parameter values. We use three well-known selection methods used in genetic algorithm: tournament selection, Roulette wheel selection and random selection. The results show the tournament selection method is the best method for set the parameter values. Further, genetic algorithm is a powerful tool to set the parameter values of chaotic logic gate

  1. Models, Languages and Logics for Concurrent Distributed Systems

    DEFF Research Database (Denmark)

    The EEC Esprit Basic Research Action No 3011, Models, Languages and Logics for Con current Distributed Systems, CEDISYS, held its second workshop at Aarhus University in May, l991, following the successful workshop in San Miniato in 1990. The Aarhus Workshop was centered around CEDISYS research...... activities, and the selected themes of Applications and Automated Tools in the area of Distributed Systerns. The 24 participants were CEDISYS partners, and invited guests with expertise on the selected themes. This booklet contains the program of the workshop, short abstracts for the talks presented...

  2. All-optical symmetric ternary logic gate

    Science.gov (United States)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  3. Logic programming extensions of Horn clause logic

    Directory of Open Access Journals (Sweden)

    Ron Sigal

    1988-11-01

    Full Text Available Logic programming is now firmly established as an alternative programming paradigm, distinct and arguably superior to the still dominant imperative style of, for instance, the Algol family of languages. The concept of a logic programming language is not precisely defined, but it is generally understood to be characterized buy: a declarative nature; foundation in some well understood logical system, e.g., first order logic.

  4. Enabling Concise and Modular Specifications in Separation Logic

    DEFF Research Database (Denmark)

    Jensen, Jonas Buhrkal

    2014-01-01

    logics and examples of using these logics to verify challenging programs. The article Modular Verification of Linked Lists with Views via Separation Logic reports on verification of a practical data structure with separation logic. The challenges identified in this work has served as motivation for later...... unstructured control flow and the lack of basic facilities in the language such as memory allocation and procedure calls. Finally, the chapter Techniques for Model Construction in Separation Logic surveys the mathematical techniques used to develop the previous separation logics and many other logics...

  5. Optically controllable molecular logic circuits

    International Nuclear Information System (INIS)

    Nishimura, Takahiro; Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-01-01

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals

  6. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  7. Modelling Cryptographic Keys in Dynamic Epistemic Logic with DEMO

    NARCIS (Netherlands)

    H. van Ditmarsch (Hans); D.J.N. van Eijck (Jan); F.A.G. Sietsma (Floor); S.E. Simon (Sunil); not CWI et al; J.B. Perez; not CWI et al

    2012-01-01

    textabstractIt is far from obvious to find logical counterparts to cryptographic protocol primitives. In logic, a common assumption is that agents are perfectly rational and have no computational limitations. This creates a dilemma. If one merely abstracts from computational aspects, protocols

  8. Hybrid Logical Analyses of the Ambient Calculus

    DEFF Research Database (Denmark)

    Bolander, Thomas; Hansen, Rene Rydhof

    2010-01-01

    In this paper, hybrid logic is used to formulate three control flow analyses for Mobile Ambients, a process calculus designed for modelling mobility. We show that hybrid logic is very well-suited to express the semantic structure of the ambient calculus and how features of hybrid logic can...

  9. Optimized 4-bit Quantum Reversible Arithmetic Logic Unit

    Science.gov (United States)

    Ayyoub, Slimani; Achour, Benslama

    2017-08-01

    Reversible logic has received a great attention in the recent years due to its ability to reduce the power dissipation. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. The arithmetic logic unit (ALU) is an important part of central processing unit (CPU) as the execution unit. This paper presents a complete design of a new reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The proposed ALU based on a reversible low power control unit and small performance parameters full adder named double Peres gates. The presented ALU can produce the largest number (28) of arithmetic and logic functions and have the smallest number of quantum cost and delay compared with existing designs.

  10. Logical provenance in data-oriented workflows?

    KAUST Repository

    Ikeda, R.

    2013-04-01

    We consider the problem of defining, generating, and tracing provenance in data-oriented workflows, in which input data sets are processed by a graph of transformations to produce output results. We first give a new general definition of provenance for general transformations, introducing the notions of correctness, precision, and minimality. We then determine when properties such as correctness and minimality carry over from the individual transformations\\' provenance to the workflow provenance. We describe a simple logical-provenance specification language consisting of attribute mappings and filters. We provide an algorithm for provenance tracing in workflows where logical provenance for each transformation is specified using our language. We consider logical provenance in the relational setting, observing that for a class of Select-Project-Join (SPJ) transformations, logical provenance specifications encode minimal provenance. We have built a prototype system supporting the features and algorithms presented in the paper, and we report a few preliminary experimental results. © 2013 IEEE.

  11. Developing and Optimising the Use of Logic Models in Systematic Reviews: Exploring Practice and Good Practice in the Use of Programme Theory in Reviews.

    Science.gov (United States)

    Kneale, Dylan; Thomas, James; Harris, Katherine

    2015-01-01

    Logic models are becoming an increasingly common feature of systematic reviews, as is the use of programme theory more generally in systematic reviewing. Logic models offer a framework to help reviewers to 'think' conceptually at various points during the review, and can be a useful tool in defining study inclusion and exclusion criteria, guiding the search strategy, identifying relevant outcomes, identifying mediating and moderating factors, and communicating review findings. In this paper we critique the use of logic models in systematic reviews and protocols drawn from two databases representing reviews of health interventions and international development interventions. Programme theory featured only in a minority of the reviews and protocols included. Despite drawing from different disciplinary traditions, reviews and protocols from both sources shared several limitations in their use of logic models and theories of change, and these were used almost unanimously to solely depict pictorially the way in which the intervention worked. Logic models and theories of change were consequently rarely used to communicate the findings of the review. Logic models have the potential to be an aid integral throughout the systematic reviewing process. The absence of good practice around their use and development may be one reason for the apparent limited utility of logic models in many existing systematic reviews. These concerns are addressed in the second half of this paper, where we offer a set of principles in the use of logic models and an example of how we constructed a logic model for a review of school-based asthma interventions.

  12. Asynchronous Operators of Sequential Logic Venjunction & Sequention

    CERN Document Server

    Vasyukevich, Vadim

    2011-01-01

    This book is dedicated to new mathematical instruments assigned for logical modeling of the memory of digital devices. The case in point is logic-dynamical operation named venjunction and venjunctive function as well as sequention and sequentional function. Venjunction and sequention operate within the framework of sequential logic. In a form of the corresponding equations, they organically fit analytical expressions of Boolean algebra. Thus, a sort of symbiosis is formed using elements of asynchronous sequential logic on the one hand and combinational logic on the other hand. So, asynchronous

  13. A Conceptual Space Logic

    DEFF Research Database (Denmark)

    Nilsson, Jørgen Fischer

    1999-01-01

    Conceptual spaces have been proposed as topological or geometric means for establishing conceptual structures and models. This paper, after briey reviewing conceptual spaces, focusses on the relationship between conceptual spaces and logical concept languages with operations for combining concepts...... to form concepts. Speci cally is introduced an algebraic concept logic, for which conceptual spaces are installed as semantic domain as replacement for, or enrichment of, the traditional....

  14. Fusion Control of Flexible Logic Control and Neural Network

    Directory of Open Access Journals (Sweden)

    Lihua Fu

    2014-01-01

    Full Text Available Based on the basic physical meaning of error E and error variety EC, this paper analyzes the logical relationship between them and uses Universal Combinatorial Operation Model in Universal Logic to describe it. Accordingly, a flexible logic control method is put forward to realize effective control on multivariable nonlinear system. In order to implement fusion control with artificial neural network, this paper proposes a new neuron model of Zero-level Universal Combinatorial Operation in Universal Logic. And the artificial neural network of flexible logic control model is implemented based on the proposed neuron model. Finally, stability control, anti-interference control of double inverted-pendulum system, and free walking of cart pendulum system on a level track are realized, showing experimentally the feasibility and validity of this method.

  15. Quantum supports and modal logic

    International Nuclear Information System (INIS)

    Svetlichny, G.

    1986-01-01

    Recently Foulis, Piron, and Randall introduced a new interpretation of empirical and quantum logics which substitute for the notion of a probabilistic weight a combinatorial notion called a support. The informal use of the notion of ''possible outcomes of experiments'' suggests that this interpretation can be related to corresponding formal notions as treated by modal logic. The purpose of this paper is to prove that in fact supports are in one-to-one correspondence with the sets of possibly true elementary propositions in Kripke models of a set of modal formulas associated to the empirical or quantum logic. This hopefully provides a sufficiently detailed link between the two rather distinct logical systems to shed useful light on both

  16. Fuzzy logic in management

    CERN Document Server

    Carlsson, Christer; Fullér, Robert

    2004-01-01

    Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...

  17. "Glitch Logic" and Applications to Computing and Information Security

    Science.gov (United States)

    Stoica, Adrian; Katkoori, Srinivas

    2009-01-01

    This paper introduces a new method of information processing in digital systems, and discusses its potential benefits to computing and information security. The new method exploits glitches caused by delays in logic circuits for carrying and processing information. Glitch processing is hidden to conventional logic analyses and undetectable by traditional reverse engineering techniques. It enables the creation of new logic design methods that allow for an additional controllable "glitch logic" processing layer embedded into a conventional synchronous digital circuits as a hidden/covert information flow channel. The combination of synchronous logic with specific glitch logic design acting as an additional computing channel reduces the number of equivalent logic designs resulting from synthesis, thus implicitly reducing the possibility of modification and/or tampering with the design. The hidden information channel produced by the glitch logic can be used: 1) for covert computing/communication, 2) to prevent reverse engineering, tampering, and alteration of design, and 3) to act as a channel for information infiltration/exfiltration and propagation of viruses/spyware/Trojan horses.

  18. Research on Judgment Aggregation Based on Logic

    Directory of Open Access Journals (Sweden)

    Li Dai

    2014-05-01

    Full Text Available Preference aggregation and judgment aggregation are two basic research models of group decision making. And preference aggregation has been deeply studied in social choice theory. However, researches of social choice theory gradually focus on judgment aggregation which appears recently. Judgment aggregation focuses on how to aggregate many consistent logical formulas into one, from the perspective of logic. We try to start with judgment aggregation model based on logic and then explore different solutions to problem of judgment aggregation.

  19. Classical logic and logicism in human thought

    OpenAIRE

    Elqayam, Shira

    2012-01-01

    This chapter explores the role of classical logic as a theory of human reasoning. I distinguish between classical logic as a normative, computational and algorithmic system, and review its role is theories of human reasoning since the 1960s. The thesis I defend is that psychological theories have been moving further and further away from classical logic on all three levels. I examine some prominent example of logicist theories, which incorporate logic in their psychological account, includin...

  20. Three-valued logic gates in reaction-diffusion excitable media

    International Nuclear Information System (INIS)

    Motoike, Ikuko N.; Adamatzky, Andrew

    2005-01-01

    It is well established now that excitable media are capable of implementing of a wide range of computational operations, from image processing to logical computation to navigation of robots. The findings published so far in the field of logical computation were concerned solely with realization of boolean logic. This imposed somewhat artificial limitations on a suitability of excitable media for logical reasoning and restricted a range of possible applications of these non-classical computational devices in the field of artificial intelligence. In the paper we go beyond binary logic and show how to implement three-valued logical operations in toy models of geometrically constrained excitable media. We realize several types of logical gates, including Lukasiewicz conjunction and disjunction, and Sobocinski conjunction in cellular automata and FitzHugh-Nagumo models of T-shaped excitable media

  1. CRS and Guarded Logics: a fruitful contact

    NARCIS (Netherlands)

    van Benthem, J.; Andréka, H.; Ferenczi, M.; Németi, I.

    2013-01-01

    Back and forth between algebra and model theory. Algebra and model theory are complementary stances in the history of logic, and their interaction continues to spawn new ideas, witness the interface of First-Order Logic and Cylindric Algebra. This chapter is about a more specialized contact: the

  2. The Comparison of Think Talk Write and Think Pair Share Model with Realistic Mathematics Education Approach Viewed from Mathematical-Logical Intelligence

    Directory of Open Access Journals (Sweden)

    Himmatul Afthina

    2017-12-01

    Full Text Available The aims of this research to determine the effect of Think Talk Write (TTW and Think Pair Share (TPS model with Realistic Mathematics Education (RME approach viewed from mathematical-logical intelligence. This research employed the quasi experimental research. The population of research was all students of the eight graders of junior high school in Karangamyar Regency in academic year 2016/2017. The result of this research shows that (1 TTW with RME approach gave better mathematics achievement than TPS with RME approach, (2 Students with high mathematical-logical intelligence can reach a better mathematics achievement than those with average and low, whereas students with average mathematical-logical intelligence can reach a better achievement than those with low one, (3 In TTW model with RME approach, students with high mathematical-logical intelligence can reach a better mathematics achievement than those with average and low, whereas students with average and low mathematical-logical intelligence gave same mathematics achievement, and  in TPS model with RME approach students with high mathematical-logical intelligence can reach a better mathematics achievement than those with average and low, whereas students with average mathematical-logical intelligence can reach a better achievement than those with low one (4 In each category of  mathematical-logical intelligence, TTW with RME approach and TPS with RME approach gave same mathematics achievement.

  3. Structural modeling and fuzzy-logic based diagnosis of a ship propulsion benchmark

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Blanke, M.; Katebi, S.D.

    2000-01-01

    An analysis of structural model of a ship propulsion benchmark leads to identifying the subsystems with inherent redundant information. For a nonlinear part of the system, a Fuzzy logic based FD algorithm with adaptive threshold is employed. The results illustrate the applicability of structural...

  4. Logical labyrinths

    CERN Document Server

    Smullyan, Raymond

    2008-01-01

    This book features a unique approach to the teaching of mathematical logic by putting it in the context of the puzzles and paradoxes of common language and rational thought. It serves as a bridge from the author's puzzle books to his technical writing in the fascinating field of mathematical logic. Using the logic of lying and truth-telling, the author introduces the readers to informal reasoning preparing them for the formal study of symbolic logic, from propositional logic to first-order logic, a subject that has many important applications to philosophy, mathematics, and computer science. T

  5. Supervisory control system implemented in programmable logical controller web server

    OpenAIRE

    Milavec, Simon

    2012-01-01

    In this thesis, we study the feasibility of supervisory control and data acquisition (SCADA) system realisation in a web server of a programmable logic controller. With the introduction of Ethernet protocol to the area of process control, the more powerful programmable logic controllers obtained integrated web servers. The web server of a programmable logic controller, produced by Siemens, will also be described in this thesis. Firstly, the software and the hardware equipment used for real...

  6. A Pure Logic-Based Approach to Natural Reasoning

    NARCIS (Netherlands)

    Abzianidze, Lasha

    2015-01-01

    The paper presents a model for natural reasoning that combines theorem proving techniques with natural logic. The model is a tableau system for a higher-order logic the formulas of which resemble linguistic expressions. A textual entailment system LangPro, an implementation of the model, represents

  7. Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter

    Science.gov (United States)

    Jafri, M. H.; Mansor, H.; Gunawan, T. S.

    2017-11-01

    Bench-top helicopter is a laboratory scale helicopter that usually used as a testing bench of the real helicopter behavior. This helicopter is a 3 Degree of Freedom (DOF) helicopter which works by three different axes wshich are elevation, pitch and travel. Thus, fuzzy logic controller has been proposed to be implemented into Quanser bench-top helicopter because of its ability to work with non-linear system. The objective for this project is to design and apply fuzzy logic controller for Quanser bench-top helicopter. Other than that, fuzzy logic controller performance system has been simulated to analyze and verify its behavior over existing PID controller by using Matlab & Simulink software. In this research, fuzzy logic controller has been designed to control the elevation angle. After simulation has been performed, it can be seen that simulation result shows that fuzzy logic elevation control is working for 4°, 5° and 6°. These three angles produce zero steady state error and has a fast response. Other than that, performance comparisons have been performed between fuzzy logic controller and PID controller. Fuzzy logic elevation control has a better performance compared to PID controller where lower percentage overshoot and faster settling time have been achieved in 4°, 5° and 6° step response test. Both controller are have zero steady state error but fuzzy logic controller is managed to produce a better performance in term of settling time and percentage overshoot which make the proposed controller is reliable compared to the existing PID controller.

  8. When fast logic meets slow belief: Evidence for a parallel-processing model of belief bias

    OpenAIRE

    Trippas, Dries; Thompson, Valerie A.; Handley, Simon J.

    2016-01-01

    Two experiments pitted the default-interventionist account of belief bias against a parallel-processing model. According to the former, belief bias occurs because a fast, belief-based evaluation of the conclusion pre-empts a working-memory demanding logical analysis. In contrast, according to the latter both belief-based and logic-based responding occur in parallel. Participants were given deductive reasoning problems of variable complexity and instructed to decide whether the conclusion was ...

  9. Modal Logics with Counting

    Science.gov (United States)

    Areces, Carlos; Hoffmann, Guillaume; Denis, Alexandre

    We present a modal language that includes explicit operators to count the number of elements that a model might include in the extension of a formula, and we discuss how this logic has been previously investigated under different guises. We show that the language is related to graded modalities and to hybrid logics. We illustrate a possible application of the language to the treatment of plural objects and queries in natural language. We investigate the expressive power of this logic via bisimulations, discuss the complexity of its satisfiability problem, define a new reasoning task that retrieves the cardinality bound of the extension of a given input formula, and provide an algorithm to solve it.

  10. Use of a plant level logic model for quantitative assessment of systems interactions

    International Nuclear Information System (INIS)

    Chu, B.B.; Rees, D.C.; Kripps, L.P.; Hunt, R.N.; Bradley, M.

    1985-01-01

    The Electric Power Research Institute (EPRI) has sponsored a research program to investigate methods for identifying systems interactions (SIs) and for the evaluation of their importance. Phase 1 of the EPRI research project focused on the evaluation of methods for identification of SIs. Major results of the Phase 1 activities are the documentation of four different methodologies for identification of potential SIs and development of guidelines for performing an effective plant walkdown in support of an SI analysis. Phase II of the project, currently being performed, is utilizing a plant level logic model of a pressurized water reactor (PWR) to determine the quantitative importance of identified SIs. In Phase II, previously reported events involving interactions between systems were screened and selected on the basis of their relevance to the Baltimore Gas and Electric (BGandE) Calvert Cliffs Nuclear Power Plant design and perceived potential safety significance. Selected events were then incorporated into the BGandE plant level GO logic model. The model is being exercised to calculate the relative importance of these events. Five previously identified event scenarios, extracted from licensee event reports (LERs) are being evaluated during the course of the study. A key feature of the approach being used in Phase II is the use of a logic model in a manner to effectively evaluate the impact of events on the system level and the plant level for the mitigation of transients. Preliminary study results indicate that the developed methodology can be a viable and effective means for determining the quantitative significance of SIs

  11. The use of fuzzy logic for data analysis and modelling of European ...

    African Journals Online (AJOL)

    The use of fuzzy logic for data analysis and modelling of European harmful algal blooms: results of the HABES project. ... African Journal of Marine Science ... Alexandrium minutum, Karenia mikimotoi and Phaeocystis globosa at various European sites as part of the Harmful Algal Blooms Expert System (HABES) project.

  12. Model Checking Quantified Computation Tree Logic

    NARCIS (Netherlands)

    Rensink, Arend; Baier, C; Hermanns, H.

    2006-01-01

    Propositional temporal logic is not suitable for expressing properties on the evolution of dynamically allocated entities over time. In particular, it is not possible to trace such entities through computation steps, since this requires the ability to freely mix quantification and temporal

  13. Decision model on the demographic profile for tuberculosis control using fuzzy logic

    Directory of Open Access Journals (Sweden)

    Laisa Ribeiro de Sá

    2015-06-01

    Full Text Available This study aimed to describe the relationship between demographic factors and the involvement of tuberculosis by applying a decision support model based on fuzzy logic to classify the regions as priority and non-priority in the city of João Pessoa, state of Paraíba (PB. As data source, we used the Notifiable Diseases Information System between 2009 and 2011. We chose the descriptive analysis, relative risk (RR, spatial distribution and fuzzy logic. The total of 1,245 cases remained in the study, accounting for 37.02% of cases in 2009. High and low risk clusters were identified, and the RR was higher among men (8.47, with 12 clusters, and among those uneducated (11.65, with 13 clusters. To demonstrate the functionality of the model was elected the year with highest number of cases, and the municipality district with highest population. The methodology identified priority areas, guiding managers to make decisions that respect the local particularities.

  14. A note on domains of discourse. Logical know-how for integrated environmental modelling

    Energy Technology Data Exchange (ETDEWEB)

    Gerstengarbe, F.W. (ed.); Jaeger, C.C.

    2003-10-01

    Building computer models means implementing a mathematical structure on a piece of hardware in such a way that insights about some other phenomenon can be gained, remembered and communicated. For meaningful computer modelling, the phenomenon to be modelled must be described in a logically coherent way. This can be quite difficult, especially when a combination of highly heterogeneous scientific disciplines is needed, as is often the case in environmental research. The paper shows how the notion of a domain of discourse as developed by logicians can be used to map out the cognitive landscape of integrated modelling. This landscape is not a fixed universe, but a multiverse resonating with an evolving pluralism of domains of discourse. Integrated modelling involves a never-ending activity of translation between such domains, an activity that often goes hand in hand with major efforts to overcome conceptual confusions within given domains. For these purposes, a careful use of mathematics, including tools of formal logic presented in the paper, can be helpful. The concept of vulnerability as currently used in global change research is discussed as an example of the challenges to be met in integrated environmental modelling. (orig.)

  15. Hertzian Dynamic Models In Ludwig Wittgenstein’s Theory Of Logic

    Directory of Open Access Journals (Sweden)

    Andreea Eșanu

    2013-05-01

    Full Text Available During the last century the social sciences grew from the stage of speculative system building to a more mature development in which empirical data are sought for the significance they can have for systematic theories. A lot of work in this field concerns itself with determining the methodological and conceptual prerequisites for a mature science of human reasoning and behavior. Modeling human reasoning and human behavior, although currently focused on social and economic phenomena like organizations, organizational knowledge, leadership, cooperation etc., are historically dependent upon modeling natural phenomena in physical science, precisely because physical science tackles successfully the issue of building upon empirical data. This paper pursues an apparently small, but nonetheless significant, historical claim concerning the “relative position of human reasoning and mechanics” a claim made possible by the development of late 19th century’s epistemology of science (mainly Heinrich Hertz’s and theoretical philosophy (Ludwig Wittgenstein. The main idea of the paper is that Ludwig Wittgenstein’s concept of “logical representation”, seen as a landmark for what human reasoning is about, is an intricate analogue to the Hertzian “dynamic models” from the Principles of Mechanics. This analogy is analyzed and explained with regard to the problem of the “logic of color”.

  16. Using RUFDATA to guide a logic model for a quality assurance process in an undergraduate university program.

    Science.gov (United States)

    Sherman, Paul David

    2016-04-01

    This article presents a framework to identify key mechanisms for developing a logic model blueprint that can be used for an impending comprehensive evaluation of an undergraduate degree program in a Canadian university. The evaluation is a requirement of a comprehensive quality assurance process mandated by the university. A modified RUFDATA (Saunders, 2000) evaluation model is applied as an initiating framework to assist in decision making to provide a guide for conceptualizing a logic model for the quality assurance process. This article will show how an educational evaluation is strengthened by employing a RUFDATA reflective process in exploring key elements of the evaluation process, and then translating this information into a logic model format that could serve to offer a more focussed pathway for the quality assurance activities. Using preliminary program evaluation data from two key stakeholders of the undergraduate program as well as an audit of the curriculum's course syllabi, a case is made for, (1) the importance of inclusivity of key stakeholders participation in the design of the evaluation process to enrich the authenticity and accuracy of program participants' feedback, and (2) the diversification of data collection methods to ensure that stakeholders' narrative feedback is given ample exposure. It is suggested that the modified RUFDATA/logic model framework be applied to all academic programs at the university undergoing the quality assurance process at the same time so that economies of scale may be realized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A course in bimodal provability logic

    NARCIS (Netherlands)

    Visser, A.

    The aim of the present paper is twofold: first I am somewhat dissatisfied with current treatments of Bimodal Provability Logic: the models employed there are singled out by certain syntactical conditions, moreover they validate the logics under consideration only locally. In this paper I give a

  18. step by step process from logic model to case study method as an ...

    African Journals Online (AJOL)

    Global Journal

    Logic models and case study approach to programme evaluation have proven ... in qualitative methodology. There is ... Note: IEHPs= internationally educated health professionals, ... interviews with the programme managers. .... programme assessed to ensure that the IEHPs are ready to face the certification ..... Comparison.

  19. Modal extensions of Lukasiewicz logic for modelling coalitional power

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Tomáš; Teheux, B.

    2017-01-01

    Roč. 27, č. 1 (2017), s. 129-154 ISSN 0955-792X R&D Projects: GA ČR GAP402/12/1309 Institutional support: RVO:67985556 Keywords : Coalition Logic * Lukasiewicz modal logic * effectivity function Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.909, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kroupa-0471671.pdf

  20. Quantum computer with mixed states and four-valued logic

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2002-01-01

    In this paper we discuss a model of quantum computer in which a state is an operator of density matrix and gates are general quantum operations, not necessarily unitary. A mixed state (operator of density matrix) of n two-level quantum systems is considered as an element of 4 n -dimensional operator Hilbert space (Liouville space). It allows us to use a quantum computer model with four-valued logic. The gates of this model are general superoperators which act on n-ququat state. Ququat is a quantum state in a four-dimensional (operator) Hilbert space. Unitary two-valued logic gates and quantum operations for an n-qubit open system are considered as four-valued logic gates acting on n-ququats. We discuss properties of quantum four-valued logic gates. In the paper we study universality for quantum four-valued logic gates. (author)

  1. Interconnected magnetic tunnel junctions for spin-logic applications

    Science.gov (United States)

    Manfrini, Mauricio; Vaysset, Adrien; Wan, Danny; Raymenants, Eline; Swerts, Johan; Rao, Siddharth; Zografos, Odysseas; Souriau, Laurent; Gavan, Khashayar Babaei; Rassoul, Nouredine; Radisic, Dunja; Cupak, Miroslav; Dehan, Morin; Sayan, Safak; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.; Mocuta, Dan; Radu, Iuliana P.

    2018-05-01

    With the rapid progress of spintronic devices, spin-logic concepts hold promises of energy-delay conscious computation for efficient logic gate operations. We report on the electrical characterization of domain walls in interconnected magnetic tunnel junctions. By means of spin-transfer torque effect, domains walls are produced at the common free layer and its propagation towards the output pillar sensed by tunneling magneto-resistance. Domain pinning conditions are studied quasi-statically showing a strong dependence on pillar size, ferromagnetic free layer width and inter-pillar distance. Addressing pinning conditions are detrimental for cascading and fan-out of domain walls across nodes, enabling the realization of domain-wall-based logic technology.

  2. A Hybrid Method for Modeling and Solving Supply Chain Optimization Problems with Soft and Logical Constraints

    Directory of Open Access Journals (Sweden)

    Paweł Sitek

    2016-01-01

    Full Text Available This paper presents a hybrid method for modeling and solving supply chain optimization problems with soft, hard, and logical constraints. Ability to implement soft and logical constraints is a very important functionality for supply chain optimization models. Such constraints are particularly useful for modeling problems resulting from commercial agreements, contracts, competition, technology, safety, and environmental conditions. Two programming and solving environments, mathematical programming (MP and constraint logic programming (CLP, were combined in the hybrid method. This integration, hybridization, and the adequate multidimensional transformation of the problem (as a presolving method helped to substantially reduce the search space of combinatorial models for supply chain optimization problems. The operation research MP and declarative CLP, where constraints are modeled in different ways and different solving procedures are implemented, were linked together to use the strengths of both. This approach is particularly important for the decision and combinatorial optimization models with the objective function and constraints, there are many decision variables, and these are summed (common in manufacturing, supply chain management, project management, and logistic problems. The ECLiPSe system with Eplex library was proposed to implement a hybrid method. Additionally, the proposed hybrid transformed model is compared with the MILP-Mixed Integer Linear Programming model on the same data instances. For illustrative models, its use allowed finding optimal solutions eight to one hundred times faster and reducing the size of the combinatorial problem to a significant extent.

  3. Explicit logic circuits discriminate neural states.

    Directory of Open Access Journals (Sweden)

    Lane Yoder

    Full Text Available The magnitude and apparent complexity of the brain's connectivity have left explicit networks largely unexplored. As a result, the relationship between the organization of synaptic connections and how the brain processes information is poorly understood. A recently proposed retinal network that produces neural correlates of color vision is refined and extended here to a family of general logic circuits. For any combination of high and low activity in any set of neurons, one of the logic circuits can receive input from the neurons and activate a single output neuron whenever the input neurons have the given activity state. The strength of the output neuron's response is a measure of the difference between the smallest of the high inputs and the largest of the low inputs. The networks generate correlates of known psychophysical phenomena. These results follow directly from the most cost-effective architectures for specific logic circuits and the minimal cellular capabilities of excitation and inhibition. The networks function dynamically, making their operation consistent with the speed of most brain functions. The networks show that well-known psychophysical phenomena do not require extraordinarily complex brain structures, and that a single network architecture can produce apparently disparate phenomena in different sensory systems.

  4. Modelling of the automatic stabilization system of the aircraft course by a fuzzy logic method

    Science.gov (United States)

    Mamonova, T.; Syryamkin, V.; Vasilyeva, T.

    2016-04-01

    The problem of the present paper concerns the development of a fuzzy model of the system of an aircraft course stabilization. In this work modelling of the aircraft course stabilization system with the application of fuzzy logic is specified. Thus the authors have used the data taken for an ordinary passenger plane. As a result of the study the stabilization system models were realised in the environment of Matlab package Simulink on the basis of the PID-regulator and fuzzy logic. The authors of the paper have shown that the use of the method of artificial intelligence allows reducing the time of regulation to 1, which is 50 times faster than the time when standard receptions of the management theory are used. This fact demonstrates a positive influence of the use of fuzzy regulation.

  5. Compact modeling of CRS devices based on ECM cells for memory, logic and neuromorphic applications

    International Nuclear Information System (INIS)

    Linn, E; Ferch, S; Waser, R; Menzel, S

    2013-01-01

    Dynamic physics-based models of resistive switching devices are of great interest for the realization of complex circuits required for memory, logic and neuromorphic applications. Here, we apply such a model of an electrochemical metallization (ECM) cell to complementary resistive switches (CRSs), which are favorable devices to realize ultra-dense passive crossbar arrays. Since a CRS consists of two resistive switching devices, it is straightforward to apply the dynamic ECM model for CRS simulation with MATLAB and SPICE, enabling study of the device behavior in terms of sweep rate and series resistance variations. Furthermore, typical memory access operations as well as basic implication logic operations can be analyzed, revealing requirements for proper spike and level read operations. This basic understanding facilitates applications of massively parallel computing paradigms required for neuromorphic applications. (paper)

  6. Logic programming and metadata specifications

    Science.gov (United States)

    Lopez, Antonio M., Jr.; Saacks, Marguerite E.

    1992-01-01

    Artificial intelligence (AI) ideas and techniques are critical to the development of intelligent information systems that will be used to collect, manipulate, and retrieve the vast amounts of space data produced by 'Missions to Planet Earth.' Natural language processing, inference, and expert systems are at the core of this space application of AI. This paper presents logic programming as an AI tool that can support inference (the ability to draw conclusions from a set of complicated and interrelated facts). It reports on the use of logic programming in the study of metadata specifications for a small problem domain of airborne sensors, and the dataset characteristics and pointers that are needed for data access.

  7. Experimentation of cooperative learning model Numbered Heads Together (NHT) type by concept maps and Teams Games Tournament (TGT) by concept maps in terms of students logical mathematics intellegences

    Science.gov (United States)

    Irawan, Adi; Mardiyana; Retno Sari Saputro, Dewi

    2017-06-01

    This research is aimed to find out the effect of learning model towards learning achievement in terms of students’ logical mathematics intelligences. The learning models that were compared were NHT by Concept Maps, TGT by Concept Maps, and Direct Learning model. This research was pseudo experimental by factorial design 3×3. The population of this research was all of the students of class XI Natural Sciences of Senior High School in all regency of Karanganyar in academic year 2016/2017. The conclusions of this research were: 1) the students’ achievements with NHT learning model by Concept Maps were better than students’ achievements with TGT model by Concept Maps and Direct Learning model. The students’ achievements with TGT model by Concept Maps were better than the students’ achievements with Direct Learning model. 2) The students’ achievements that exposed high logical mathematics intelligences were better than students’ medium and low logical mathematics intelligences. The students’ achievements that exposed medium logical mathematics intelligences were better than the students’ low logical mathematics intelligences. 3) Each of student logical mathematics intelligences with NHT learning model by Concept Maps has better achievement than students with TGT learning model by Concept Maps, students with NHT learning model by Concept Maps have better achievement than students with the direct learning model, and the students with TGT by Concept Maps learning model have better achievement than students with Direct Learning model. 4) Each of learning model, students who have logical mathematics intelligences have better achievement then students who have medium logical mathematics intelligences, and students who have medium logical mathematics intelligences have better achievement than students who have low logical mathematics intelligences.

  8. Logical Characterisation of Ontology Construction using Fuzzy Description Logics

    DEFF Research Database (Denmark)

    Badie, Farshad; Götzsche, Hans

    had the extension of ontologies with Fuzzy Logic capabilities which plan to make proper backgrounds for ontology driven reasoning and argumentation on vague and imprecise domains. This presentation conceptualises learning from fuzzy classes using the Inductive Logic Programming framework. Then......, employs Description Logics in characterising and analysing fuzzy statements. And finally, provides a conceptual framework describing fuzzy concept learning in ontologies using the Inductive Logic Programming....

  9. Manipulating potential wells in Logical Stochastic Resonance to obtain XOR logic

    International Nuclear Information System (INIS)

    Storni, Remo; Ando, Hiroyasu; Aihara, Kazuyuki; Murali, K.; Sinha, Sudeshna

    2012-01-01

    Logical Stochastic Resonance (LSR) is the application of Stochastic Resonance to logic computation, namely the phenomenon where a nonlinear system driven by weak signals representing logic inputs, under optimal noise, can yield logic outputs. We extend the existing results, obtained in the context of bistable systems, to multi-stable dynamical systems, allowing us to obtain XOR logic, in addition to the AND (NAND) and OR (NOR) logic observed in earlier studies. This strategy widens the scope of LSR from the application point of view, as XOR forms the basis of ubiquitous bit-by-bit addition, and conceptually, showing the ability to yield non-monotonic input–output logic associations. -- Highlights: ► We generalize Logical Stochastic Resonance from bistable to multi-stable systems. ► We propose a tristable dynamical system formed of piecewise linear functions. ► The system can correctly reproduce XOR logic behavior using the LSR principle. ► The system yields different logic behavior without the need to change the dynamics.

  10. Determination of Biological Treatability Processes of Textile Wastewater and Implementation of a Fuzzy Logic Model

    Directory of Open Access Journals (Sweden)

    Harun Akif Kabuk

    2015-01-01

    Full Text Available This study investigated the biological treatability of textile wastewater. For this purpose, a membrane bioreactor (MBR was utilized for biological treatment after the ozonation process. Due to the refractory organic contents of textile wastewater that has a low biodegradability capacity, ozonation was implemented as an advanced oxidation process prior to the MBR system to increase the biodegradability of the wastewater. Textile wastewater, oxidized by ozonation, was fed to the MBR at different hydraulic retention times (HRT. During the process, color, chemical oxygen demand (COD, and biochemical oxygen demand (BOD removal efficiencies were monitored for 24-hour, 12-hour, 6-hour, and 3-hour retention times. Under these conditions, 94% color, 65% COD, and 55% BOD removal efficiencies were obtained in the MBR system. The experimental outputs were modeled with multiple linear regressions (MLR and fuzzy logic. MLR results suggested that color removal is more related to COD removal relative to BOD removal. A surface map of this issue was prepared with a fuzzy logic model. Furthermore, fuzzy logic was employed to the whole modeling of the biological system treatment. Determination coefficients for COD, BOD, and color removal efficiencies were 0.96, 0.97, and 0.92, respectively.

  11. Classical Mathematical Logic The Semantic Foundations of Logic

    CERN Document Server

    Epstein, Richard L

    2011-01-01

    In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations. The book provides detailed explanations of all proo

  12. On-line tuning of a fuzzy-logic power system stabilizer

    International Nuclear Information System (INIS)

    Hossein-Zadeh, N.; Kalam, A.

    2002-01-01

    A scheme for on-line tuning of a fuzzy-logic power system stabilizer is presented. firstly, a fuzzy-logic power system stabilizer is developed using speed deviation and accelerating power as the controller input variables. The inference mechanism of fuzzy-logic controller is represented by a decision table, constructed of linguistic IF-THEN rules. The Linguistic rules are available from experts and the design procedure is based on these rules. It assumed that an exact model of the plant is not available and it is difficult to extract the exact parameters of the power plant. Thus, the design procedure can not be based on an exact model. This is an advantage of fuzzy logic that makes the design of a controller possible without knowing the exact model of the plant. Secondly, two scaling parameters are introduced to tune the fuzzy-logic power system stabilizer. These scaling parameters are the outputs of another fuzzy-logic system, which gets the operating conditions of power system as inputs. These mechanism of tuning the fuzzy-logic power system stabilizer makes the fuzzy-logic power system stabilizer adaptive to changes in the operating conditions. Therefore, the degradation of the system response, under a wide range of operating conditions, is less compared to the system response with a fixed-parameter fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. The tuned stabilizer has been tested by performing nonlinear simulations using a synchronous machine-infinite bus model. The responses are compared with a fixed parameters fuzzy-logic power system stabilizer and a conventional (linear) power system stabilizer. It is shown that the tuned fuzzy-logic power system stabilizer is superior to both of them

  13. A functional language for describing reversible logic

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal

    2012-01-01

    Reversible logic is a computational model where all gates are logically reversible and combined in circuits such that no values are lost or duplicated. This paper presents a novel functional language that is designed to describe only reversible logic circuits. The language includes high....... Reversibility of descriptions is guaranteed with a type system based on linear types. The language is applied to three examples of reversible computations (ALU, linear cosine transformation, and binary adder). The paper also outlines a design flow that ensures garbage- free translation to reversible logic...... circuits. The flow relies on a reversible combinator language as an intermediate language....

  14. Transforming equality logic to propositional logic

    NARCIS (Netherlands)

    Zantema, H.; Groote, J.F.

    2003-01-01

    Abstract We investigate and compare various ways of transforming equality formulas to propositional formulas, in order to be able to solve satisfiability in equality logic by means of satisfiability in propositional logic. We propose equality substitution as a new approach combining desirable

  15. The logic-bias effect: The role of effortful processing in the resolution of belief-logic conflict.

    Science.gov (United States)

    Howarth, Stephanie; Handley, Simon J; Walsh, Clare

    2016-02-01

    According to the default interventionist dual-process account of reasoning, belief-based responses to reasoning tasks are based on Type 1 processes generated by default, which must be inhibited in order to produce an effortful, Type 2 output based on the validity of an argument. However, recent research has indicated that reasoning on the basis of beliefs may not be as fast and automatic as this account claims. In three experiments, we presented participants with a reasoning task that was to be completed while they were generating random numbers (RNG). We used the novel methodology introduced by Handley, Newstead & Trippas (Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 28-43, 2011), which required participants to make judgments based upon either the validity of a conditional argument or the believability of its conclusion. The results showed that belief-based judgments produced lower rates of accuracy overall and were influenced to a greater extent than validity judgments by the presence of a conflict between belief and logic for both simple and complex arguments. These findings were replicated in Experiment 3, in which we controlled for switching demands in a blocked design. Across all three experiments, we found a main effect of RNG, implying that both instructional sets require some effortful processing. However, in the blocked design RNG had its greatest impact on logic judgments, suggesting that distinct executive resources may be required for each type of judgment. We discuss the implications of our findings for the default interventionist account and offer a parallel competitive model as an alternative interpretation for our findings.

  16. Multi-valued and Fuzzy Logic Realization using TaOx Memristive Devices.

    Science.gov (United States)

    Bhattacharjee, Debjyoti; Kim, Wonjoo; Chattopadhyay, Anupam; Waser, Rainer; Rana, Vikas

    2018-01-08

    Among emerging non-volatile storage technologies, redox-based resistive switching Random Access Memory (ReRAM) is a prominent one. The realization of Boolean logic functionalities using ReRAM adds an extra edge to this technology. Recently, 7-state ReRAM devices were used to realize ternary arithmetic circuits, which opens up the computing space beyond traditional binary values. In this manuscript, we report realization of multi-valued and fuzzy logic operators with a representative application using ReRAM devices. Multi-valued logic (MVL), such as Łukasiewicz logic generalizes Boolean logic by allowing more than two truth values. MVL also permits operations on fuzzy sets, where, in contrast to standard crisp logic, an element is permitted to have a degree of membership to a given set. Fuzzy operations generally model human reasoning better than Boolean logic operations, which is predominant in current computing technologies. When the available information for the modelling of a system is imprecise and incomplete, fuzzy logic provides an excellent framework for the system design. Practical applications of fuzzy logic include, industrial control systems, robotics, and in general, design of expert systems through knowledge-based reasoning. Our experimental results show, for the first time, that it is possible to model fuzzy logic natively using multi-state memristive devices.

  17. Molecular processors: from qubits to fuzzy logic.

    Science.gov (United States)

    Gentili, Pier Luigi

    2011-03-14

    Single molecules or their assemblies are information processing devices. Herein it is demonstrated how it is possible to process different types of logic through molecules. As long as decoherent effects are maintained far away from a pure quantum mechanical system, quantum logic can be processed. If the collapse of superimposed or entangled wavefunctions is unavoidable, molecules can still be used to process either crisp (binary or multi-valued) or fuzzy logic. The way for implementing fuzzy inference engines is declared and it is supported by the examples of molecular fuzzy logic systems devised so far. Fuzzy logic is drawing attention in the field of artificial intelligence, because it models human reasoning quite well. This ability may be due to some structural analogies between a fuzzy logic system and the human nervous system. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Separating Business Logic from Medical Knowledge in Digital Clinical Workflows Using Business Process Model and Notation and Arden Syntax.

    Science.gov (United States)

    de Bruin, Jeroen S; Adlassnig, Klaus-Peter; Leitich, Harald; Rappelsberger, Andrea

    2018-01-01

    Evidence-based clinical guidelines have a major positive effect on the physician's decision-making process. Computer-executable clinical guidelines allow for automated guideline marshalling during a clinical diagnostic process, thus improving the decision-making process. Implementation of a digital clinical guideline for the prevention of mother-to-child transmission of hepatitis B as a computerized workflow, thereby separating business logic from medical knowledge and decision-making. We used the Business Process Model and Notation language system Activiti for business logic and workflow modeling. Medical decision-making was performed by an Arden-Syntax-based medical rule engine, which is part of the ARDENSUITE software. We succeeded in creating an electronic clinical workflow for the prevention of mother-to-child transmission of hepatitis B, where institution-specific medical decision-making processes could be adapted without modifying the workflow business logic. Separation of business logic and medical decision-making results in more easily reusable electronic clinical workflows.

  19. Logic and Ontology

    Directory of Open Access Journals (Sweden)

    Newton C. A. da Costa

    2002-12-01

    Full Text Available In view of the present state of development of non classical logic, especially of paraconsistent logic, a new stand regarding the relations between logic and ontology is defended In a parody of a dictum of Quine, my stand May be summarized as follows. To be is to be the value of a variable a specific language with a given underlying logic Yet my stand differs from Quine’s, because, among other reasons, I accept some first order heterodox logics as genuine alternatives to classical logic I also discuss some questions of non classical logic to substantiate my argument, and suggest that may position complements and extends some ideas advanced by L Apostel.

  20. Structural Logical Relations

    DEFF Research Database (Denmark)

    Schürmann, Carsten; Sarnat, Jeffrey

    2008-01-01

    Tait's method (a.k.a. proof by logical relations) is a powerful proof technique frequently used for showing foundational properties of languages based on typed lambda-calculi. Historically, these proofs have been extremely difficult to formalize in proof assistants with weak meta-logics......, such as Twelf, and yet they are often straightforward in proof assistants with stronger meta-logics. In this paper, we propose structural logical relations as a technique for conducting these proofs in systems with limited meta-logical strength by explicitly representing and reasoning about an auxiliary logic...

  1. Logical reasoning versus information processing in the dual-strategy model of reasoning.

    Science.gov (United States)

    Markovits, Henry; Brisson, Janie; de Chantal, Pier-Luc

    2017-01-01

    One of the major debates concerning the nature of inferential reasoning is between counterexample-based strategies such as mental model theory and statistical strategies underlying probabilistic models. The dual-strategy model, proposed by Verschueren, Schaeken, & d'Ydewalle (2005a, 2005b), which suggests that people might have access to both kinds of strategy has been supported by several recent studies. These have shown that statistical reasoners make inferences based on using information about premises in order to generate a likelihood estimate of conclusion probability. However, while results concerning counterexample reasoners are consistent with a counterexample detection model, these results could equally be interpreted as indicating a greater sensitivity to logical form. In order to distinguish these 2 interpretations, in Studies 1 and 2, we presented reasoners with Modus ponens (MP) inferences with statistical information about premise strength and in Studies 3 and 4, naturalistic MP inferences with premises having many disabling conditions. Statistical reasoners accepted the MP inference more often than counterexample reasoners in Studies 1 and 2, while the opposite pattern was observed in Studies 3 and 4. Results show that these strategies must be defined in terms of information processing, with no clear relations to "logical" reasoning. These results have additional implications for the underlying debate about the nature of human reasoning. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. The Logic of XACML

    DEFF Research Database (Denmark)

    Ramli, Carroline Dewi Puspa Kencana; Nielson, Hanne Riis; Nielson, Flemming

    2011-01-01

    We study the international standard XACML 3.0 for describing security access control policy in a compositional way. Our main contribution is to derive a logic that precisely captures the idea behind the standard and to formally define the semantics of the policy combining algorithms of XACML....... To guard against modelling artefacts we provide an alternative way of characterizing the policy combining algorithms and we formally prove the equivalence of these approaches. This allows us to pinpoint the shortcoming of previous approaches to formalization based either on Belnap logic or on D -algebra....

  3. BDI Logics

    NARCIS (Netherlands)

    Meyer, J.J.Ch.; Broersen, J.M.; Herzig, A.

    2015-01-01

    This paper presents an overview of so-called BDI logics, logics where the notion of Beliefs, Desires and Intentions play a central role. Starting out from the basic ideas about BDI by Bratman, we consider various formalizations in logic, such as the approach of Cohen and Levesque, slightly

  4. Many-valued logics

    CERN Document Server

    Bolc, Leonard

    1992-01-01

    Many-valued logics were developed as an attempt to handle philosophical doubts about the "law of excluded middle" in classical logic. The first many-valued formal systems were developed by J. Lukasiewicz in Poland and E.Post in the U.S.A. in the 1920s, and since then the field has expanded dramatically as the applicability of the systems to other philosophical and semantic problems was recognized. Intuitionisticlogic, for example, arose from deep problems in the foundations of mathematics. Fuzzy logics, approximation logics, and probability logics all address questions that classical logic alone cannot answer. All these interpretations of many-valued calculi motivate specific formal systems thatallow detailed mathematical treatment. In this volume, the authors are concerned with finite-valued logics, and especially with three-valued logical calculi. Matrix constructions, axiomatizations of propositional and predicate calculi, syntax, semantic structures, and methodology are discussed. Separate chapters deal w...

  5. Constraint Logic Programming approach to protein structure prediction

    Directory of Open Access Journals (Sweden)

    Fogolari Federico

    2004-11-01

    Full Text Available Abstract Background The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. Results Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. Conclusions The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space.

  6. Constraint Logic Programming approach to protein structure prediction.

    Science.gov (United States)

    Dal Palù, Alessandro; Dovier, Agostino; Fogolari, Federico

    2004-11-30

    The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known) secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space.

  7. Quantum Logic as a Dynamic Logic

    NARCIS (Netherlands)

    Baltag, A.; Smets, S.

    We address the old question whether a logical understanding of Quantum Mechanics requires abandoning some of the principles of classical logic. Against Putnam and others (Among whom we may count or not E. W. Beth, depending on how we interpret some of his statements), our answer is a clear “no”.

  8. Quantum logic as a dynamic logic

    NARCIS (Netherlands)

    Baltag, Alexandru; Smets, Sonja

    We address the old question whether a logical understanding of Quantum Mechanics requires abandoning some of the principles of classical logic. Against Putnam and others (Among whom we may count or not E. W. Beth, depending on how we interpret some of his statements), our answer is a clear "no".

  9. Product Lukasiewicz Logic

    Czech Academy of Sciences Publication Activity Database

    Horčík, Rostislav; Cintula, Petr

    2004-01-01

    Roč. 43, - (2004), s. 477-503 ISSN 1432-0665 R&D Projects: GA AV ČR IAA1030004; GA ČR GA201/02/1540 Grant - others:GA CTU(CZ) project 0208613; net CEEPUS(SK) SK-042 Institutional research plan: CEZ:AV0Z1030915 Keywords : fuzzy logic * many-valued logic * Lukasiewicz logic * Lpi logic * Takeuti-Titani logic * MV-algebras * product MV-algebras Subject RIV: BA - General Mathematics Impact factor: 0.295, year: 2004

  10. Model for Adjustment of Aggregate Forecasts using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Taracena–Sanz L. F.

    2010-07-01

    Full Text Available This research suggests a contribution in the implementation of forecasting models. The proposed model is developed with the aim to fit the projection of demand to surroundings of firms, and this is based on three considerations that cause that in many cases the forecasts of the demand are different from reality, such as: 1 one of the problems most difficult to model in the forecasts is the uncertainty related to the information available; 2 the methods traditionally used by firms for the projection of demand mainly are based on past behavior of the market (historical demand; and 3 these methods do not consider in their analysis the factors that are influencing so that the observed behaviour occurs. Therefore, the proposed model is based on the implementation of Fuzzy Logic, integrating the main variables that affect the behavior of market demand, and which are not considered in the classical statistical methods. The model was applied to a bottling of carbonated beverages, and with the adjustment of the projection of demand a more reliable forecast was obtained.

  11. Superconductor fluxoid logic

    International Nuclear Information System (INIS)

    Andronov, A.A.; Kurin, V.V.; Levichev, M.Yu.; Ryndyk, D.A.; Vostokov, V.I.

    1993-01-01

    In recent years there has been much interest in superconductor logical devices. Our paper is devoted to the analysis of some new possibilities in this field. The main problems here are: minimization of time of logical operations and reducing of device scale. Josephson systems are quite appropriate for this purpose because of small size, short characteristic time and also small energy losses. Two different types of Josephson logic have been investigated during last years. The first type is based on hysteretic V-A characteristic of a single Josephson junction. Superconducting and resistive (with nonzero voltage) states are considered as logical zero and logical unit. The second one - rapid single flux quantum logic, has been developed recently and is based on SQUID-like bistability. Different logical states are the states with different number of magnetic flux quanta inside closed superconducting contour. Information is represented by voltage pulses with fixed ''area'' (∫ V(t)/dt). This pulses are generated when logical state of SQUID-like elementary cell changes. The fundamental role of magnetic flux quantization in this type of logic leads to the necessity of large enough self-inductance of superconductor contour and thus to limitations on minimal device dimensions. (orig.)

  12. HyLTL: a temporal logic for model checking hybrid systems

    Directory of Open Access Journals (Sweden)

    Davide Bresolin

    2013-08-01

    Full Text Available The model-checking problem for hybrid systems is a well known challenge in the scientific community. Most of the existing approaches and tools are limited to safety properties only, or operates by transforming the hybrid system to be verified into a discrete one, thus loosing information on the continuous dynamics of the system. In this paper we present a logic for specifying complex properties of hybrid systems called HyLTL, and we show how it is possible to solve the model checking problem by translating the formula into an equivalent hybrid automaton. In this way the problem is reduced to a reachability problem on hybrid automata that can be solved by using existing tools.

  13. Advances in Modal Logic

    DEFF Research Database (Denmark)

    Modal logic is a subject with ancient roots in the western logical tradition. Up until the last few generations, it was pursued mainly as a branch of philosophy. But in recent years, the subject has taken new directions with connections to topics in computer science and mathematics. This volume...... is the proceedings of the conference of record in its fi eld, Advances in Modal Logic. Its contributions are state-of-the-art papers. The topics include decidability and complexity results for specifi c modal logics, proof theory of modal logic, logics for reasoning about time and space, provability logic, dynamic...... epistemic logic, and the logic of evidence....

  14. Mathematical logic

    CERN Document Server

    Kleene, Stephen Cole

    1967-01-01

    Undergraduate students with no prior instruction in mathematical logic will benefit from this multi-part text. Part I offers an elementary but thorough overview of mathematical logic of 1st order. Part II introduces some of the newer ideas and the more profound results of logical research in the 20th century. 1967 edition.

  15. Logic flowgraph model for disturbance analysis of a PWR pressurizer system

    International Nuclear Information System (INIS)

    Guarro, S.; Okrent, D.

    1984-01-01

    The Logic Flowgraph Methodology (LFM) has been developed as a synthetic simulation language for process reliability or disturbance analysis applications. A Disturbance Analysis System (DAS) using the LFM models can store the necessary information concerning a given process in an efficient way, and automatically construct in real time the diagnostic tree(s) showing the root cause(s) of occurring disturbances. A comprehensive LFM model for a PWR pressurizer system is presented and discussed, and the latest version of the LFM tree synthesis routine, optimized to achieve reduction of computer memory usage, is used to show the LFM diagnoses of selected hypothetic disturbances

  16. Indeterministic Temporal Logic

    Directory of Open Access Journals (Sweden)

    Trzęsicki Kazimierz

    2015-09-01

    Full Text Available The questions od determinism, causality, and freedom have been the main philosophical problems debated since the beginning of temporal logic. The issue of the logical value of sentences about the future was stated by Aristotle in the famous tomorrow sea-battle passage. The question has inspired Łukasiewicz’s idea of many-valued logics and was a motive of A. N. Prior’s considerations about the logic of tenses. In the scheme of temporal logic there are different solutions to the problem. In the paper we consider indeterministic temporal logic based on the idea of temporal worlds and the relation of accessibility between them.

  17. Generalized Boolean logic Driven Markov Processes: A powerful modeling framework for Model-Based Safety Analysis of dynamic repairable and reconfigurable systems

    International Nuclear Information System (INIS)

    Piriou, Pierre-Yves; Faure, Jean-Marc; Lesage, Jean-Jacques

    2017-01-01

    This paper presents a modeling framework that permits to describe in an integrated manner the structure of the critical system to analyze, by using an enriched fault tree, the dysfunctional behavior of its components, by means of Markov processes, and the reconfiguration strategies that have been planned to ensure safety and availability, with Moore machines. This framework has been developed from BDMP (Boolean logic Driven Markov Processes), a previous framework for dynamic repairable systems. First, the contribution is motivated by pinpointing the limitations of BDMP to model complex reconfiguration strategies and the failures of the control of these strategies. The syntax and semantics of GBDMP (Generalized Boolean logic Driven Markov Processes) are then formally defined; in particular, an algorithm to analyze the dynamic behavior of a GBDMP model is developed. The modeling capabilities of this framework are illustrated on three representative examples. Last, qualitative and quantitative analysis of GDBMP models highlight the benefits of the approach.

  18. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    Science.gov (United States)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  19. Logic, probability, and human reasoning.

    Science.gov (United States)

    Johnson-Laird, P N; Khemlani, Sangeet S; Goodwin, Geoffrey P

    2015-04-01

    This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn - not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Answer Sets in a Fuzzy Equilibrium Logic

    Science.gov (United States)

    Schockaert, Steven; Janssen, Jeroen; Vermeir, Dirk; de Cock, Martine

    Since its introduction, answer set programming has been generalized in many directions, to cater to the needs of real-world applications. As one of the most general “classical” approaches, answer sets of arbitrary propositional theories can be defined as models in the equilibrium logic of Pearce. Fuzzy answer set programming, on the other hand, extends answer set programming with the capability of modeling continuous systems. In this paper, we combine the expressiveness of both approaches, and define answer sets of arbitrary fuzzy propositional theories as models in a fuzzification of equilibrium logic. We show that the resulting notion of answer set is compatible with existing definitions, when the syntactic restrictions of the corresponding approaches are met. We furthermore locate the complexity of the main reasoning tasks at the second level of the polynomial hierarchy. Finally, as an illustration of its modeling power, we show how fuzzy equilibrium logic can be used to find strong Nash equilibria.

  1. Evaluating the Potential Business Benefits of Ecodesign Implementation: A Logic Model Approach

    Directory of Open Access Journals (Sweden)

    Vinícius P. Rodrigues

    2018-06-01

    Full Text Available The business benefits attained from ecodesign programs in manufacturing companies have been regularly documented by several studies from both the academic and corporate spheres. However, there are still significant challenges for adopting ecodesign, especially regarding the evaluation of these potential business benefits prior to the actual ecodesign implementation. To address such gap, this study proposes an exploratory and theory-driven framework based on logic models to support the development of business cases for ecodesign implementation. The objective is to offer an outlook into how ecodesign implementation can potentially affect key corporate performance outcomes. This paper is based on a three-stage research methodology with six steps. Two full systematic literature reviews were performed, along with two thematic analyses and a grounded theory approach with the aim of developing the business case framework, which was then evaluated by seven industry experts. This research contributes to the literature of ecodesign especially by laying out an ecodesign-instantiated logic model, which is readily available to be adapted and customized for further test and use in practice. Discussions on the usefulness and applicability of the framework and directions for future research are presented.

  2. A logical correspondence between natural semantics and abstract machines

    DEFF Research Database (Denmark)

    Simmons, Robert J.; Zerny, Ian

    2013-01-01

    We present a logical correspondence between natural semantics and abstract machines. This correspondence enables the mechanical and fully-correct construction of an abstract machine from a natural semantics. Our logical correspondence mirrors the Reynolds functional correspondence, but we...... manipulate semantic specifications encoded in a logical framework instead of manipulating functional programs. Natural semantics and abstract machines are instances of substructural operational semantics. As a byproduct, using a substructural logical framework, we bring concurrent and stateful models...

  3. Propositional Logics of Dependence

    NARCIS (Netherlands)

    Yang, F.; Väänänen, J.

    2016-01-01

    In this paper, we study logics of dependence on the propositional level. We prove that several interesting propositional logics of dependence, including propositional dependence logic, propositional intuitionistic dependence logic as well as propositional inquisitive logic, are expressively complete

  4. Duration Calculus: Logical Foundations

    DEFF Research Database (Denmark)

    Hansen, Michael Reichhardt; Chaochen, Zhou

    1997-01-01

    The Duration Calculus (abbreviated DC) represents a logical approach to formal design of real-time systems, where real numbers are used to model time and Boolean valued functions over time are used to model states and events of real-time systems. Since it introduction, DC has been applied to many...

  5. Anatomy Ontology Matching Using Markov Logic Networks

    Directory of Open Access Journals (Sweden)

    Chunhua Li

    2016-01-01

    Full Text Available The anatomy of model species is described in ontologies, which are used to standardize the annotations of experimental data, such as gene expression patterns. To compare such data between species, we need to establish relationships between ontologies describing different species. Ontology matching is a kind of solutions to find semantic correspondences between entities of different ontologies. Markov logic networks which unify probabilistic graphical model and first-order logic provide an excellent framework for ontology matching. We combine several different matching strategies through first-order logic formulas according to the structure of anatomy ontologies. Experiments on the adult mouse anatomy and the human anatomy have demonstrated the effectiveness of proposed approach in terms of the quality of result alignment.

  6. A model reference and sensitivity model-based self-learning fuzzy logic controller as a solution for control of nonlinear servo systems

    NARCIS (Netherlands)

    Kovacic, Z.; Bogdan, S.; Balenovic, M.

    1999-01-01

    In this paper, the design, simulation and experimental verification of a self-learning fuzzy logic controller (SLFLC) suitable for the control of nonlinear servo systems are described. The SLFLC contains a learning algorithm that utilizes a second-order reference model and a sensitivity model

  7. Belief Bisimulation for Hidden Markov Models Logical Characterisation and Decision Algorithm

    DEFF Research Database (Denmark)

    Jansen, David N.; Nielson, Flemming; Zhang, Lijun

    2012-01-01

    This paper establishes connections between logical equivalences and bisimulation relations for hidden Markov models (HMM). Both standard and belief state bisimulations are considered. We also present decision algorithms for the bisimilarities. For standard bisimilarity, an extension of the usual...... partition refinement algorithm is enough. Belief bisimilarity, being a relation on the continuous space of belief states, cannot be described directly. Instead, we show how to generate a linear equation system in time cubic in the number of states....

  8. Abductive Logic Grammars

    DEFF Research Database (Denmark)

    Christiansen, Henning; Dahl, Veronica

    2009-01-01

    By extending logic grammars with constraint logic, we give them the ability to create knowledge bases that represent the meaning of an input string. Semantic information is thus defined through extra-grammatical means, and a sentence's meaning logically follows as a by-product of string rewriting....... We formalize these ideas, and exemplify them both within and outside first-order logic, and for both fixed and dynamic knowledge bases. Within the latter variety, we consider the usual left-to-right derivations that are traditional in logic grammars, but also -- in a significant departure from...

  9. Applications of Logic Coverage Criteria and Logic Mutation to Software Testing

    Science.gov (United States)

    Kaminski, Garrett K.

    2011-01-01

    Logic is an important component of software. Thus, software logic testing has enjoyed significant research over a period of decades, with renewed interest in the last several years. One approach to detecting logic faults is to create and execute tests that satisfy logic coverage criteria. Another approach to detecting faults is to perform mutation…

  10. Lindström theorems for fragments of first-order logic

    NARCIS (Netherlands)

    van Benthem, J.; ten Cate, B.; Väänänen, J.

    2009-01-01

    Lindström theorems characterize logics in terms of model-theoretic conditions such as Compactness and the Löwenheim-Skolem property. Most existing characterizations of this kind concern extensions of first-order logic. But on the other hand, many logics relevant to computer science are fragments or

  11. Model Checking the Logic of Allen's Relations Meets and Started-by is P^NP-Complete

    Directory of Open Access Journals (Sweden)

    Laura Bozzelli

    2016-09-01

    Full Text Available In the plethora of fragments of Halpern and Shoham's modal logic of time intervals (HS, the logic AB of Allen's relations Meets and Started-by is at a central position. Statements that may be true at certain intervals, but at no sub-interval of them, such as accomplishments, as well as metric constraints about the length of intervals, that force, for instance, an interval to be at least (resp., at most, exactly k points long, can be expressed in AB. Moreover, over the linear order of the natural numbers N, it subsumes the (point-based logic LTL, as it can easily encode the next and until modalities. Finally, it is expressive enough to capture the ω-regular languages, that is, for each ω-regular expression R there exists an AB formula Φ such that the language defined by R coincides with the set of models of Φ over N. It has been shown that the satisfiability problem for AB over N is EXPSPACE-complete. Here we prove that, under the homogeneity assumption, its model checking problem is Δ^p_2 = P^NP-complete (for the sake of comparison, the model checking problem for full HS is EXPSPACE-hard, and the only known decision procedure is nonelementary. Moreover, we show that the modality for the Allen relation Met-by can be added to AB at no extra cost (AA'B is P^NP-complete as well.

  12. Towards an arithmetical logic the arithmetical foundations of logic

    CERN Document Server

    Gauthier, Yvon

    2015-01-01

    This book offers an original contribution to the foundations of logic and mathematics, and focuses on the internal logic of mathematical theories, from arithmetic or number theory to algebraic geometry. Arithmetical logic is the term used to refer to the internal logic of classical arithmetic, here called Fermat-Kronecker arithmetic, and combines Fermat’s method of infinite descent with Kronecker’s general arithmetic of homogeneous polynomials. The book also includes a treatment of theories in physics and mathematical physics to underscore the role of arithmetic from a constructivist viewpoint. The scope of the work intertwines historical, mathematical, logical and philosophical dimensions in a unified critical perspective; as such, it will appeal to a broad readership from mathematicians to logicians, to philosophers interested in foundational questions. Researchers and graduate students in the fields of philosophy and mathematics will benefit from the author’s critical approach to the foundations of l...

  13. Meta-Logical Reasoning in Higher-Order Logic

    DEFF Research Database (Denmark)

    Villadsen, Jørgen; Schlichtkrull, Anders; Hess, Andreas Viktor

    The semantics of first-order logic (FOL) can be described in the meta-language of higher-order logic (HOL). Using HOL one can prove key properties of FOL such as soundness and completeness. Furthermore, one can prove sentences in FOL valid using the formalized FOL semantics. To aid...

  14. IMITATING MODEL OF ASSIMILATION AND FORGETTING OF THE LOGICALLY CONNECTED INFORMATION

    Directory of Open Access Journals (Sweden)

    Robert Valerievich Mayer

    2017-09-01

    Full Text Available The educational material we present as a set of a number of information blocks consisting of learning material elements (LMEs; therefore its assimilation and forgetting occurs differently, than in the Ebbinghaus’s experiments. The purpose of the article is constructing of a computer model of assimilation and forgetting of the logically connected information allowing: 1 to prove the fast rise of understanding while training; 2 to receive the forgetting curve for the comprehended information. The modeling methods help to receive the graphs of the knowledge level dependence on time. It is shown, that the processes of assimilation and forgetting occurs according to the logistic law.

  15. Tensor product of no-signaling boxes in the framework of quantum logics

    International Nuclear Information System (INIS)

    Tylec, T I; Kuś, M

    2017-01-01

    In the quantum logic framework we show that the no-signaling box model is a particular type of tensor product with single box logics. Such notion of a tensor product is too strong to apply in the category of logics of quantum mechanical systems. In the light of the obtained results, the statement that no-signaling box models are generalizations of quantum models is questionable. (letter)

  16. Abduction, ASP and Open Logic Programs

    OpenAIRE

    Bonatti, Piero A.

    2002-01-01

    Open logic programs and open entailment have been recently proposed as an abstract framework for the verification of incomplete specifications based upon normal logic programs and the stable model semantics. There are obvious analogies between open predicates and abducible predicates. However, despite superficial similarities, there are features of open programs that have no immediate counterpart in the framework of abduction and viceversa. Similarly, open programs cannot be immediately simul...

  17. Connections among quantum logics

    International Nuclear Information System (INIS)

    Lock, P.F.; Hardegree, G.M.

    1985-01-01

    In this paper, a theory of quantum logics is proposed which is general enough to enable us to reexamine a previous work on quantum logics in the context of this theory. It is then easy to assess the differences between the different systems studied. The quantum logical systems which are incorporated are divided into two groups which we call ''quantum propositional logics'' and ''quantum event logics''. The work of Kochen and Specker (partial Boolean algebras) is included and so is that of Greechie and Gudder (orthomodular partially ordered sets), Domotar (quantum mechanical systems), and Foulis and Randall (operational logics) in quantum propositional logics; and Abbott (semi-Boolean algebras) and Foulis and Randall (manuals) in quantum event logics, In this part of the paper, an axiom system for quantum propositional logics is developed and the above structures in the context of this system examined. (author)

  18. A Community Health Worker "logic model": towards a theory of enhanced performance in low- and middle-income countries.

    Science.gov (United States)

    Naimoli, Joseph F; Frymus, Diana E; Wuliji, Tana; Franco, Lynne M; Newsome, Martha H

    2014-10-02

    There has been a resurgence of interest in national Community Health Worker (CHW) programs in low- and middle-income countries (LMICs). A lack of strong research evidence persists, however, about the most efficient and effective strategies to ensure optimal, sustained performance of CHWs at scale. To facilitate learning and research to address this knowledge gap, the authors developed a generic CHW logic model that proposes a theoretical causal pathway to improved performance. The logic model draws upon available research and expert knowledge on CHWs in LMICs. Construction of the model entailed a multi-stage, inductive, two-year process. It began with the planning and implementation of a structured review of the existing research on community and health system support for enhanced CHW performance. It continued with a facilitated discussion of review findings with experts during a two-day consultation. The process culminated with the authors' review of consultation-generated documentation, additional analysis, and production of multiple iterations of the model. The generic CHW logic model posits that optimal CHW performance is a function of high quality CHW programming, which is reinforced, sustained, and brought to scale by robust, high-performing health and community systems, both of which mobilize inputs and put in place processes needed to fully achieve performance objectives. Multiple contextual factors can influence CHW programming, system functioning, and CHW performance. The model is a novel contribution to current thinking about CHWs. It places CHW performance at the center of the discussion about CHW programming, recognizes the strengths and limitations of discrete, targeted programs, and is comprehensive, reflecting the current state of both scientific and tacit knowledge about support for improving CHW performance. The model is also a practical tool that offers guidance for continuous learning about what works. Despite the model's limitations and several

  19. A Brief History of Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2012-04-01

    Full Text Available

    The problems of uncertainty, imprecision and vagueness have been discussed for many years. These problems have been major topics in philosophical circles with much debate, in particular, about the nature of vagueness and the ability of traditional Boolean logic to cope with concepts and perceptions that are imprecise or vague. The Fuzzy Logic (which is usually translated into Castilian by “Lógica Borrosa”, or “Lógica Difusa”, but also by “Lógica Heurística” can be considered a bypass-valued logics (Multi-valued Logic, MVL, its acronym in English. It is founded on, and is closely related to-Fuzzy Sets Theory, and successfully applied on Fuzzy Systems. You might think that fuzzy logic is quite recent and what has worked for a short time, but its origins date back at least to the Greek philosophers and especially Plato (428-347 B.C.. It even seems plausible
    to trace their origins in China and India. Because it seems that they were the first to consider that all things need not be of a certain type or quit, but there are a stopover between. That is, be the pioneers in considering that there may be varying degrees of truth and falsehood. In case of colors, for example, between white and black there is a whole infinite scale: the shades of gray. Some recent theorems show that in principle fuzzy logic can be used to model any continuous system, be it based
    in AI, or physics, or biology, or economics, etc. Investigators in many fields may find that fuzzy, commonsense models are more useful, and many more accurate than are standard mathematical ones. We analyze here the history and development of this problem: Fuzziness, or “Borrosidad” (in Castilian, essential to work with Uncertainty.

  20. Delay Insensitive Ternary CMOS Logic for Secure Hardware

    Directory of Open Access Journals (Sweden)

    Ravi S. P. Nair

    2015-09-01

    Full Text Available As digital circuit design continues to evolve due to progress of semiconductor processes well into the sub 100 nm range, clocked architectures face limitations in a number of cases where clockless asynchronous architectures generate less noise and produce less electro-magnetic interference (EMI. This paper develops the Delay-Insensitive Ternary Logic (DITL asynchronous design paradigm that combines design aspects of similar dual-rail asynchronous paradigms and Boolean logic to create a single wire per bit, three voltage signaling and logic scheme. DITL is compared with other delay insensitive paradigms, such as Pre-Charge Half-Buffers (PCHB and NULL Convention Logic (NCL on which it is based. An application of DITL is discussed in designing secure digital circuits resistant to side channel attacks based on measurement of timing, power, and EMI signatures. A Secure DITL Adder circuit is designed at the transistor level, and several variance parameters are measured to validate the efficiency of DITL in resisting side channel attacks. The DITL design methodology is then applied to design a secure 8051 ALU.

  1. Paraconsistent Computational Logic

    DEFF Research Database (Denmark)

    Jensen, Andreas Schmidt; Villadsen, Jørgen

    2012-01-01

    In classical logic everything follows from inconsistency and this makes classical logic problematic in areas of computer science where contradictions seem unavoidable. We describe a many-valued paraconsistent logic, discuss the truth tables and include a small case study....

  2. Principles of logic and the use of digital geographic information systems

    Science.gov (United States)

    Robinove, Charles Joseph

    1986-01-01

    Digital geographic information systems allow many different types of data to be spatially and statistically analyzed. Logical operations can be performed on individual or multiple data planes by algorithms that can be implemented in computer systems. Users and creators of the systems should fully understand these operations. This paper describes the relationships of layers and features in geographic data bases and the principles of logic that can be applied by geographic information systems and suggests that a thorough knowledge of the data that are entered into a geographic data base and of the logical operations will produce results that are most satisfactory to the user. Methods of spatial analysis are reduced to their primitive logical operations and explained to further such understanding.

  3. Rough set classification based on quantum logic

    Science.gov (United States)

    Hassan, Yasser F.

    2017-11-01

    By combining the advantages of quantum computing and soft computing, the paper shows that rough sets can be used with quantum logic for classification and recognition systems. We suggest the new definition of rough set theory as quantum logic theory. Rough approximations are essential elements in rough set theory, the quantum rough set model for set-valued data directly construct set approximation based on a kind of quantum similarity relation which is presented here. Theoretical analyses demonstrate that the new model for quantum rough sets has new type of decision rule with less redundancy which can be used to give accurate classification using principles of quantum superposition and non-linear quantum relations. To our knowledge, this is the first attempt aiming to define rough sets in representation of a quantum rather than logic or sets. The experiments on data-sets have demonstrated that the proposed model is more accuracy than the traditional rough sets in terms of finding optimal classifications.

  4. What are Institutional Logics

    DEFF Research Database (Denmark)

    Berg Johansen, Christina; Waldorff, Susanne Boch

    This study presents new insights into the explanatory power of the institutional logics perspective. With outset in a discussion of seminal theory texts, we identify two fundamental topics that frame institutional logics: overarching institutional orders guides by institutional logics, as well...... as change and agency generated by friction between logics. We use these topics as basis for an analysis of selected empirical papers, with the aim of understanding how institutional logics contribute to institutional theory at large, and which social matters institutional logics can and cannot explore...

  5. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    International Nuclear Information System (INIS)

    Zainal, Nurul Afiqah; Tat, Chan Sooi; Ajisman

    2016-01-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's output is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor. (paper)

  6. Complex Systems Analysis of Cell Cycling Models in Carcinogenesis:II. Cell Genome and Interactome, Neoplastic Non-random Transformation Models in Topoi with Lukasiewicz-Logic and MV Algebras

    CERN Document Server

    Baianu, I C

    2004-01-01

    Quantitative Biology, abstract q-bio.OT/0406045 From: I.C. Baianu Dr. [view email] Date (v1): Thu, 24 Jun 2004 02:45:13 GMT (164kb) Date (revised v2): Fri, 2 Jul 2004 00:58:06 GMT (160kb) Complex Systems Analysis of Cell Cycling Models in Carcinogenesis: II. Authors: I.C. Baianu Comments: 23 pages, 1 Figure Report-no: CC04 Subj-class: Other Carcinogenesis is a complex process that involves dynamically inter-connected modular sub-networks that evolve under the influence of micro-environmentally induced perturbations, in non-random, pseudo-Markov chain processes. An appropriate n-stage model of carcinogenesis involves therefore n-valued Logic treatments of nonlinear dynamic transformations of complex functional genomes and cell interactomes. Lukasiewicz Algebraic Logic models of genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous, Boolean or "fuzzy", logic models of genetic activities in vivo....

  7. A Tableau Prover for Natural Logic and Language

    NARCIS (Netherlands)

    Abzianidze, Lasha

    2015-01-01

    Modeling the entailment relation over sentences is one of the generic problems of natural language understanding. In order to account for this problem, we design a theorem prover for Natural Logic, a logic whose terms resemble natural language expressions. The prover is based on an analytic tableau

  8. Dispositional logic

    Science.gov (United States)

    Le Balleur, J. C.

    1988-01-01

    The applicability of conventional mathematical analysis (based on the combination of two-valued logic and probability theory) to problems in which human judgment, perception, or emotions play significant roles is considered theoretically. It is shown that dispositional logic, a branch of fuzzy logic, has particular relevance to the common-sense reasoning typical of human decision-making. The concepts of dispositionality and usuality are defined analytically, and a dispositional conjunctive rule and dispositional modus ponens are derived.

  9. Experimental demonstration of programmable multi-functional spin logic cell based on spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Wan, C.H., E-mail: wancaihua@iphy.ac.cn; Yuan, Z.H.; Fang, C.; Kong, W.J.; Wu, H.; Zhang, Q.T.; Tao, B.S.; Han, X.F., E-mail: xfhan@iphy.ac.cn

    2017-04-15

    Confronting with the gigantic volume of data produced every day, raising integration density by reducing the size of devices becomes harder and harder to meet the ever-increasing demand for high-performance computers. One feasible path is to actualize more logic functions in one cell. In this respect, we experimentally demonstrate a prototype spin-orbit torque based spin logic cell integrated with five frequently used logic functions (AND, OR, NOT, NAND and NOR). The cell can be easily programmed and reprogrammed to perform desired function. Furthermore, the information stored in cells is symmetry-protected, making it possible to expand into logic gate array where the cell can be manipulated one by one without changing the information of other undesired cells. This work provides a prospective example of multi-functional spin logic cell with reprogrammability and nonvolatility, which will advance the application of spin logic devices. - Highlights: • Experimental demonstration of spin logic cell based on spin Hall effect. • Five logic functions are realized in a single logic cell. • The logic cell is reprogrammable. • Information in the cell is symmetry-protected. • The logic cell can be easily expanded to logic gate array.

  10. Speed Geometric Quantum Logical Gate Based on Double-Hamiltonian Evolution under Large-Detuning Cavity QED Model

    International Nuclear Information System (INIS)

    Chen Changyong; Liu Zongliang; Kang Shuai; Li Shaohua

    2010-01-01

    We introduce the double-Hamiltonian evolution technique approach to investigate the unconventional geometric quantum logical gate with dissipation under the model of many identical three-level atoms in a cavity, driven by a classical field. Our concrete calculation is made for the case of two atoms for the large-detuning interaction of the atoms with the cavity mode. The main advantage of our scheme is of eliminating the photon flutuation in the cavity mode during the gating. The corresponding analytical results will be helpful for experimental realization of speed geometric quantum logical gate in real cavities. (general)

  11. Metamathematics of fuzzy logic

    CERN Document Server

    Hájek, Petr

    1998-01-01

    This book presents a systematic treatment of deductive aspects and structures of fuzzy logic understood as many valued logic sui generis. Some important systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference' can be naturally understood as logical deduction.

  12. Equational type logic

    NARCIS (Netherlands)

    Manca, V.; Salibra, A.; Scollo, Giuseppe

    1990-01-01

    Equational type logic is an extension of (conditional) equational logic, that enables one to deal in a single, unified framework with diverse phenomena such as partiality, type polymorphism and dependent types. In this logic, terms may denote types as well as elements, and atomic formulae are either

  13. Design of synthetic biological logic circuits based on evolutionary algorithm.

    Science.gov (United States)

    Chuang, Chia-Hua; Lin, Chun-Liang; Chang, Yen-Chang; Jennawasin, Tanagorn; Chen, Po-Kuei

    2013-08-01

    The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose.

  14. Henkin and Hybrid Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Huertas, Antonia; Manzano, Maria

    2014-01-01

    Leon Henkin was not a modal logician, but there is a branch of modal logic that has been deeply influenced by his work. That branch is hybrid logic, a family of logics that extend orthodox modal logic with special proposition symbols (called nominals) that name worlds. This paper explains why...... Henkin’s techniques are so important in hybrid logic. We do so by proving a completeness result for a hybrid type theory called HTT, probably the strongest hybrid logic that has yet been explored. Our completeness result builds on earlier work with a system called BHTT, or basic hybrid type theory...... is due to the first-order perspective, which lies at the heart of Henin’s best known work and hybrid logic....

  15. Institutional Logics in Action

    DEFF Research Database (Denmark)

    Lounsbury, Michael; Boxenbaum, Eva

    2013-01-01

    This double volume presents state-of-the-art research and thinking on the dynamics of actors and institutional logics. In the introduction, we briefly sketch the roots and branches of institutional logics scholarship before turning to the new buds of research on the topic of how actors engage...... institutional logics in the course of their organizational practice. We introduce an exciting line of new works on the meta-theoretical foundations of logics, institutional logic processes, and institutional complexity and organizational responses. Collectively, the papers in this volume advance the very...... prolific stream of research on institutional logics by deepening our insight into the active use of institutional logics in organizational action and interaction, including the institutional effects of such (inter)actions....

  16. Greek, Indian and Arabic logic

    CERN Document Server

    Gabbay, Dov M

    2004-01-01

    Greek, Indian and Arabic Logic marks the initial appearance of the multi-volume Handbook of the History of Logic. Additional volumes will be published when ready, rather than in strict chronological order. Soon to appear are The Rise of Modern Logic: From Leibniz to Frege. Also in preparation are Logic From Russell to Gödel, Logic and the Modalities in the Twentieth Century, and The Many-Valued and Non-Monotonic Turn in Logic. Further volumes will follow, including Mediaeval and Renaissance Logic and Logic: A History of its Central. In designing the Handbook of the History of Logic, the Editors have taken the view that the history of logic holds more than an antiquarian interest, and that a knowledge of logic's rich and sophisticated development is, in various respects, relevant to the research programmes of the present day. Ancient logic is no exception. The present volume attests to the distant origins of some of modern logic's most important features, such as can be found in the claim by the authors of t...

  17. Modern Logical Frameworks Design

    DEFF Research Database (Denmark)

    Murawska, Agata Anna

    2017-01-01

    lack support for reasoning about, or programming with, the mechanised systems. Our main motivation is to eventually make it possible to model and reason about complex concurrent systems and protocols. No matter the application, be it the development of a logic for multiparty session types...... or a cryptographic protocol used in a voting system, we need the ability to model and reason about both the building blocks of these systems and the intricate connections between them. To this end, this dissertation is an investigation into LF-based formalisms that might help address the aforementioned issues. We...... design and provide the meta-theory of two new frameworks, HyLF and Lincx. The former aims to extend the expressiveness of LF to include proof irrelevance and some user-defined behaviours, using ideas from hybrid logics. The latter is a showcase for an easier to implement framework, while also allowing...

  18. The Third Life of Quantum Logic: Quantum Logic Inspired by Quantum Computing

    OpenAIRE

    Dunn, J. Michael; Moss, Lawrence S.; Wang, Zhenghan

    2013-01-01

    We begin by discussing the history of quantum logic, dividing it into three eras or lives. The first life has to do with Birkhoff and von Neumann's algebraic approach in the 1930's. The second life has to do with attempt to understand quantum logic as logic that began in the late 1950's and blossomed in the 1970's. And the third life has to do with recent developments in quantum logic coming from its connections to quantum computation. We discuss our own work connecting quantum logic to quant...

  19. Quantum probabilistic logic programming

    Science.gov (United States)

    Balu, Radhakrishnan

    2015-05-01

    We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.

  20. Real Islamic Logic

    NARCIS (Netherlands)

    Bergstra, J.A.

    2011-01-01

    Four options for assigning a meaning to Islamic Logic are surveyed including a new proposal for an option named "Real Islamic Logic" (RIL). That approach to Islamic Logic should serve modern Islamic objectives in a way comparable to the functionality of Islamic Finance. The prospective role of RIL

  1. What are Institutional Logics

    OpenAIRE

    Berg Johansen, Christina; Bock Waldorff, Susanne

    2015-01-01

    This study presents new insights into the explanatory power of the institutional logics perspective. With outset in a discussion of seminal theory texts, we identify two fundamental topics that frame institutional logics: overarching institutional orders guided by institutional logics, as well as change and agency generated by friction between logics. We use these topics as basis for an analysis of selected empirical papers, with the aim of understanding how institutional logics contribute to...

  2. Formalizing Informal Logic

    Directory of Open Access Journals (Sweden)

    Douglas Walton

    2015-12-01

    Full Text Available This paper presents a formalization of informal logic using the Carneades Argumentation System (CAS, a formal, computational model of argument that consists of a formal model of argument graphs and audiences. Conflicts between pro and con arguments are resolved using proof standards, such as preponderance of the evidence. CAS also formalizes argumentation schemes. Schemes can be used to check whether a given argument instantiates the types of argument deemed normatively appropriate for the type of dialogue.

  3. Probabilistic Logical Characterization

    DEFF Research Database (Denmark)

    Hermanns, Holger; Parma, Augusto; Segala, Roberto

    2011-01-01

    Probabilistic automata exhibit both probabilistic and non-deterministic choice. They are therefore a powerful semantic foundation for modeling concurrent systems with random phenomena arising in many applications ranging from artificial intelligence, security, systems biology to performance...... modeling. Several variations of bisimulation and simulation relations have proved to be useful as means to abstract and compare different automata. This paper develops a taxonomy of logical characterizations of these relations on image-finite and image-infinite probabilistic automata....

  4. Self-Assembling Molecular Logic Gates Based on DNA Crossover Tiles.

    Science.gov (United States)

    Campbell, Eleanor A; Peterson, Evan; Kolpashchikov, Dmitry M

    2017-07-05

    DNA-based computational hardware has attracted ever-growing attention due to its potential to be useful in the analysis of complex mixtures of biological markers. Here we report the design of self-assembling logic gates that recognize DNA inputs and assemble into crossover tiles when the output signal is high; the crossover structures disassemble to form separate DNA stands when the output is low. The output signal can be conveniently detected by fluorescence using a molecular beacon probe as a reporter. AND, NOT, and OR logic gates were designed. We demonstrate that the gates can connect to each other to produce other logic functions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A fuzzy logic model to forecast stock market momentum in Indonesia's property and real estate sector

    Science.gov (United States)

    Penawar, H. K.; Rustam, Z.

    2017-07-01

    The Capital market has the important role in Indonesia's economy. The capital market does not only support the economy of Indonesia but also being an indicator Indonesia's economy improvement. Something that has been traded in the capital market is stock (stock market). Nowadays, the stock market is full of uncertainty. That uncertainty values make predicting stock market is all that we have to do before we make a decision in the stock market. One that can be predicted in the stock market is momentum. To forecast stock market momentum, it can use fuzzy logic model. In the process of modeling, it will be used 14 days historical data that consisting the value of open, high, low, and close, to predict the next 5 days momentum categories. There are three momentum categories namely Bullish, Neutral, and Bearish. To illustrate the fuzzy logic model, we will use stocks data from several companies that listed on Indonesia Stock Exchange (IDX) in property and real estate sector.

  6. Some relationships between logic programming and multiple-valued logic

    International Nuclear Information System (INIS)

    Rine, D.C.

    1986-01-01

    There have been suggestions in the artificial intelligence literature that investigations into relationships between logic programming and multiple-valued logic may be helpful. This paper presents some of these relationships through equivalent algebraic evaluations

  7. An Integrated Risk Index Model Based on Hierarchical Fuzzy Logic for Underground Risk Assessment

    Directory of Open Access Journals (Sweden)

    Muhammad Fayaz

    2017-10-01

    Full Text Available Available space in congested cities is getting scarce due to growing urbanization in the recent past. The utilization of underground space is considered as a solution to the limited space in smart cities. The numbers of underground facilities are growing day by day in the developing world. Typical underground facilities include the transit subway, parking lots, electric lines, water supply and sewer lines. The likelihood of the occurrence of accidents due to underground facilities is a random phenomenon. To avoid any accidental loss, a risk assessment method is required to conduct the continuous risk assessment and report any abnormality before it happens. In this paper, we have proposed a hierarchical fuzzy inference based model for under-ground risk assessment. The proposed hierarchical fuzzy inference architecture reduces the total number of rules from the rule base. Rule reduction is important because the curse of dimensionality damages the transparency and interpretation as it is very tough to understand and justify hundreds or thousands of fuzzy rules. The computation time also increases as rules increase. The proposed model takes 175 rules having eight input parameters to compute the risk index, and the conventional fuzzy logic requires 390,625 rules, having the same number of input parameters to compute risk index. Hence, the proposed model significantly reduces the curse of dimensionality. Rule design for fuzzy logic is also a tedious task. In this paper, we have also introduced new rule schemes, namely maximum rule-based and average rule-based; both schemes can be used interchangeably according to the logic needed for rule design. The experimental results show that the proposed method is a virtuous choice for risk index calculation where the numbers of variables are greater.

  8. A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models.

    Science.gov (United States)

    Bernardes, Juliana S; Carbone, Alessandra; Zaverucha, Gerson

    2011-03-23

    Remote homology detection is a hard computational problem. Most approaches have trained computational models by using either full protein sequences or multiple sequence alignments (MSA), including all positions. However, when we deal with proteins in the "twilight zone" we can observe that only some segments of sequences (motifs) are conserved. We introduce a novel logical representation that allows us to represent physico-chemical properties of sequences, conserved amino acid positions and conserved physico-chemical positions in the MSA. From this, Inductive Logic Programming (ILP) finds the most frequent patterns (motifs) and uses them to train propositional models, such as decision trees and support vector machines (SVM). We use the SCOP database to perform our experiments by evaluating protein recognition within the same superfamily. Our results show that our methodology when using SVM performs significantly better than some of the state of the art methods, and comparable to other. However, our method provides a comprehensible set of logical rules that can help to understand what determines a protein function. The strategy of selecting only the most frequent patterns is effective for the remote homology detection. This is possible through a suitable first-order logical representation of homologous properties, and through a set of frequent patterns, found by an ILP system, that summarizes essential features of protein functions.

  9. A stochastic logical system approach to model and optimal control of cyclic variation of residual gas fraction in combustion engines

    International Nuclear Information System (INIS)

    Wu, Yuhu; Kumar, Madan; Shen, Tielong

    2016-01-01

    Highlights: • An in-cylinder pressure based measuring method for the RGF is derived. • A stochastic logical dynamical model is proposed to represent the transient behavior of the RGF. • The receding horizon controller is designed to reduce the variance of the RGF. • The effectiveness of the proposed model and control approach is validated by the experimental evidence. - Abstract: In four stroke internal combustion engines, residual gas from the previous cycle is an important factor influencing the combustion quality of the current cycle, and the residual gas fraction (RGF) is a popular index to monitor the influence of residual gas. This paper investigates the cycle-to-cycle transient behavior of the RGF in the view of systems theory and proposes a multi-valued logic-based control strategy for attenuation of RGF fluctuation. First, an in-cylinder pressure sensor-based method for measuring the RGF is provided by following the physics of the in-cylinder transient state of four-stroke internal combustion engines. Then, the stochastic property of the RGF is examined based on statistical data obtained by conducting experiments on a full-scale gasoline engine test bench. Based on the observation of the examination, a stochastic logical transient model is proposed to represent the cycle-to-cycle transient behavior of the RGF, and with the model an optimal feedback control law, which targets on rejection of the RGF fluctuation, is derived in the framework of stochastic logical system theory. Finally, experimental results are demonstrated to show the effectiveness of the proposed model and the control strategy.

  10. Local stabilizer codes in three dimensions without string logical operators

    International Nuclear Information System (INIS)

    Haah, Jeongwan

    2011-01-01

    We suggest concrete models for self-correcting quantum memory by reporting examples of local stabilizer codes in 3D that have no string logical operators. Previously known local stabilizer codes in 3D all have stringlike logical operators, which make the codes non-self-correcting. We introduce a notion of ''logical string segments'' to avoid difficulties in defining one-dimensional objects in discrete lattices. We prove that every stringlike logical operator of our code can be deformed to a disjoint union of short segments, each of which is in the stabilizer group. The code has surfacelike logical operators whose partial implementation has unsatisfied stabilizers along its boundary.

  11. Instantons in Self-Organizing Logic Gates

    Science.gov (United States)

    Bearden, Sean R. B.; Manukian, Haik; Traversa, Fabio L.; Di Ventra, Massimiliano

    2018-03-01

    Self-organizing logic is a recently suggested framework that allows the solution of Boolean truth tables "in reverse"; i.e., it is able to satisfy the logical proposition of gates regardless to which terminal(s) the truth value is assigned ("terminal-agnostic logic"). It can be realized if time nonlocality (memory) is present. A practical realization of self-organizing logic gates (SOLGs) can be done by combining circuit elements with and without memory. By employing one such realization, we show, numerically, that SOLGs exploit elementary instantons to reach equilibrium points. Instantons are classical trajectories of the nonlinear equations of motion describing SOLGs and connect topologically distinct critical points in the phase space. By linear analysis at those points, we show that these instantons connect the initial critical point of the dynamics, with at least one unstable direction, directly to the final fixed point. We also show that the memory content of these gates affects only the relaxation time to reach the logically consistent solution. Finally, we demonstrate, by solving the corresponding stochastic differential equations, that, since instantons connect critical points, noise and perturbations may change the instanton trajectory in the phase space but not the initial and final critical points. Therefore, even for extremely large noise levels, the gates self-organize to the correct solution. Our work provides a physical understanding of, and can serve as an inspiration for, models of bidirectional logic gates that are emerging as important tools in physics-inspired, unconventional computing.

  12. GCSRL - A Logic for Stochastic Reward Models with Timed and Untimed Behaviour

    NARCIS (Netherlands)

    Kuntz, Matthias; Haverkort, Boudewijn R.; Cloth, L.

    In this paper we define the logic GCSRL (generalised continuous stochastic reward logic) that provides means to reason about systems that have states which sojourn times are either greater zero, in which case this sojourn time is exponentially distributed (tangible states), or zero (vanishing

  13. The dark side of Interval Temporal Logic: sharpening the undecidability border

    DEFF Research Database (Denmark)

    Bresolin, Davide; Monica, Dario Della; Goranko, Valentin

    2011-01-01

    on the class of models (in our case, the class of interval structures)in which it is interpreted. In this paper, we have identified several new minimal undecidable logics amongst the fragments of Halpern-Shoham logic HS, including the logic of the overlaps relation, over the classes of all and finite linear...... orders, as well as the logic of the meet and subinterval relations, over the class of dense linear orders. Together with previous undecid ability results, this work contributes to delineate the border of the dark side of interval temporal logics quite sharply....

  14. Decision Optimization of Machine Sets Taking Into Consideration Logical Tree Minimization of Design Guidelines

    Science.gov (United States)

    Deptuła, A.; Partyka, M. A.

    2014-08-01

    The method of minimization of complex partial multi-valued logical functions determines the degree of importance of construction and exploitation parameters playing the role of logical decision variables. Logical functions are taken into consideration in the issues of modelling machine sets. In multi-valued logical functions with weighting products, it is possible to use a modified Quine - McCluskey algorithm of multi-valued functions minimization. Taking into account weighting coefficients in the logical tree minimization reflects a physical model of the object being analysed much better

  15. Advanced evacuation model managed through fuzzy logic during an accident in LNG terminal

    Energy Technology Data Exchange (ETDEWEB)

    Stankovicj, Goran; Petelin, Stojan [Faculty for Maritime Studies and Transport, University of Ljubljana, Portorozh (Sierra Leone); others, and

    2014-07-01

    Evacuation of people located inside the enclosed area of an LNG terminal is a complex problem, especially considering that accidents involving LNG are potentially very hazardous. In order to create an evacuation model managed through fuzzy logic, extensive influence must be generated from safety analyses. A very important moment in the optimal functioning of an evacuation model is the creation of a database which incorporates all input indicators. The output result is the creation of a safety evacuation route which is active at the moment of the accident. (Author)

  16. Support for the Logical Execution Time Model on a Time-predictable Multicore Processor

    DEFF Research Database (Denmark)

    Kluge, Florian; Schoeberl, Martin; Ungerer, Theo

    2016-01-01

    The logical execution time (LET) model increases the compositionality of real-time task sets. Removal or addition of tasks does not influence the communication behavior of other tasks. In this work, we extend a multicore operating system running on a time-predictable multicore processor to support...... the LET model. For communication between tasks we use message passing on a time-predictable network-on-chip to avoid the bottleneck of shared memory. We report our experiences and present results on the costs in terms of memory and execution time....

  17. Bisimulations, games, and logic

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Clausen, Christian

    1994-01-01

    In a recent paper by Joyal, Nielsen, and Winskel, bisimulation is defined in an abstract and uniform way across a wide range of different models for concurrency. In this paper, following a recent trend in theoretical computer science, we characterize their abstract definition game-theoretically a......-theoretically and logically in a non-interleaving model. Our characterizations appear as surprisingly simple extensions of corresponding characterizations of interleaving bisimulation....

  18. Analysis and Implementation of Cryptographic Hash Functions in Programmable Logic Devices

    Directory of Open Access Journals (Sweden)

    Tautvydas Brukštus

    2016-06-01

    Full Text Available In this day’s world, more and more focused on data pro-tection. For data protection using cryptographic science. It is also important for the safe storage of passwords for this uses a cryp-tographic hash function. In this article has been selected the SHA-256 cryptographic hash function to implement and explore, based on fact that it is now a popular and safe. SHA-256 cryp-tographic function did not find any theoretical gaps or conflict situations. Also SHA-256 cryptographic hash function used cryptographic currencies. Currently cryptographic currency is popular and their value is high. For the measurements have been chosen programmable logic integrated circuits as they less effi-ciency then ASIC. We chose Altera Corporation produced prog-rammable logic integrated circuits. Counting speed will be inves-tigated by three programmable logic integrated circuit. We will use programmable logic integrated circuits belong to the same family, but different generations. Each programmable logic integ-rated circuit made using different dimension technology. Choo-sing these programmable logic integrated circuits: EP3C16, EP4CE115 and 5CSEMA5F31. To compare calculations perfor-mances parameters are provided in the tables and graphs. Re-search show the calculation speed and stability of different prog-rammable logic circuits.

  19. Improvements to Earthquake Location with a Fuzzy Logic Approach

    Science.gov (United States)

    Gökalp, Hüseyin

    2018-01-01

    In this study, improvements to the earthquake location method were investigated using a fuzzy logic approach proposed by Lin and Sanford (Bull Seismol Soc Am 91:82-93, 2001). The method has certain advantages compared to the inverse methods in terms of eliminating the uncertainties of arrival times and reading errors. In this study, adopting this approach, epicentral locations were determined based on the results of a fuzzy logic space concerning the uncertainties in the velocity models. To map the uncertainties in arrival times into the fuzzy logic space, a trapezoidal membership function was constructed by directly using the travel time difference between the two stations for the P- and S-arrival times instead of the P- and S-wave models to eliminate the need for obtaining information concerning the velocity structure of the study area. The results showed that this method worked most effectively when earthquakes occurred away from a network or when the arrival time data contained phase reading errors. In this study, to resolve the problems related to determining the epicentral locations of the events, a forward modeling method like the grid search technique was used by applying different logical operations (i.e., intersection, union, and their combination) with a fuzzy logic approach. The locations of the events were depended on results of fuzzy logic outputs in fuzzy logic space by searching in a gridded region. The process of location determination with the defuzzification of only the grid points with the membership value of 1 obtained by normalizing all the maximum fuzzy output values of the highest values resulted in more reliable epicentral locations for the earthquakes than the other approaches. In addition, throughout the process, the center-of-gravity method was used as a defuzzification operation.

  20. Logic Models: A Tool for Effective Program Planning, Collaboration, and Monitoring. REL 2014-025

    Science.gov (United States)

    Kekahio, Wendy; Lawton, Brian; Cicchinelli, Louis; Brandon, Paul R.

    2014-01-01

    A logic model is a visual representation of the assumptions and theory of action that underlie the structure of an education program. A program can be a strategy for instruction in a classroom, a training session for a group of teachers, a grade-level curriculum, a building-level intervention, or a district-or statewide initiative. This guide, an…

  1. Research and Evaluations of the Health Aspects of Disasters, Part VI: Interventional Research and the Disaster Logic Model.

    Science.gov (United States)

    Birnbaum, Marvin L; Daily, Elaine K; O'Rourke, Ann P; Kushner, Jennifer

    2016-04-01

    Disaster-related interventions are actions or responses undertaken during any phase of a disaster to change the current status of an affected community or a Societal System. Interventional disaster research aims to evaluate the results of such interventions in order to develop standards and best practices in Disaster Health that can be applied to disaster risk reduction. Considering interventions as production functions (transformation processes) structures the analyses and cataloguing of interventions/responses that are implemented prior to, during, or following a disaster or other emergency. Since currently it is not possible to do randomized, controlled studies of disasters, in order to validate the derived standards and best practices, the results of the studies must be compared and synthesized with results from other studies (ie, systematic reviews). Such reviews will be facilitated by the selected studies being structured using accepted frameworks. A logic model is a graphic representation of the transformation processes of a program [project] that shows the intended relationships between investments and results. Logic models are used to describe a program and its theory of change, and they provide a method for the analyzing and evaluating interventions. The Disaster Logic Model (DLM) is an adaptation of a logic model used for the evaluation of educational programs and provides the structure required for the analysis of disaster-related interventions. It incorporates a(n): definition of the current functional status of a community or Societal System, identification of needs, definition of goals, selection of objectives, implementation of the intervention(s), and evaluation of the effects, outcomes, costs, and impacts of the interventions. It is useful for determining the value of an intervention and it also provides the structure for analyzing the processes used in providing the intervention according to the Relief/Recovery and Risk-Reduction Frameworks.

  2. Deciding Full Branching Time Logic by Program Transformation

    Science.gov (United States)

    Pettorossi, Alberto; Proietti, Maurizio; Senni, Valerio

    We present a method based on logic program transformation, for verifying Computation Tree Logic (CTL*) properties of finite state reactive systems. The finite state systems and the CTL* properties we want to verify, are encoded as logic programs on infinite lists. Our verification method consists of two steps. In the first step we transform the logic program that encodes the given system and the given property, into a monadic ω -program, that is, a stratified program defining nullary or unary predicates on infinite lists. This transformation is performed by applying unfold/fold rules that preserve the perfect model of the initial program. In the second step we verify the property of interest by using a proof method for monadic ω-programs.

  3. Model-Checking an Alternating-time Temporal Logic with Knowledge, Imperfect Information, Perfect Recall and Communicating Coalitions

    Directory of Open Access Journals (Sweden)

    Cătălin Dima

    2010-06-01

    Full Text Available We present a variant of ATL with distributed knowledge operators based on a synchronous and perfect recall semantics. The coalition modalities in this logic are based on partial observation of the full history, and incorporate a form of cooperation between members of the coalition in which agents issue their actions based on the distributed knowledge, for that coalition, of the system history. We show that model-checking is decidable for this logic. The technique utilizes two variants of games with imperfect information and partially observable objectives, as well as a subset construction for identifying states whose histories are indistinguishable to the considered coalition.

  4. Specification and Verification of Web Applications in Rewriting Logic

    Science.gov (United States)

    Alpuente, María; Ballis, Demis; Romero, Daniel

    This paper presents a Rewriting Logic framework that formalizes the interactions between Web servers and Web browsers through a communicating protocol abstracting HTTP. The proposed framework includes a scripting language that is powerful enough to model the dynamics of complex Web applications by encompassing the main features of the most popular Web scripting languages (e.g. PHP, ASP, Java Servlets). We also provide a detailed characterization of browser actions (e.g. forward/backward navigation, page refresh, and new window/tab openings) via rewrite rules, and show how our models can be naturally model-checked by using the Linear Temporal Logic of Rewriting (LTLR), which is a Linear Temporal Logic specifically designed for model-checking rewrite theories. Our formalization is particularly suitable for verification purposes, since it allows one to perform in-depth analyses of many subtle aspects related to Web interaction. Finally, the framework has been completely implemented in Maude, and we report on some successful experiments that we conducted by using the Maude LTLR model-checker.

  5. Logical-Rule Models of Classification Response Times: A Synthesis of Mental-Architecture, Random-Walk, and Decision-Bound Approaches

    Science.gov (United States)

    Fific, Mario; Little, Daniel R.; Nosofsky, Robert M.

    2010-01-01

    We formalize and provide tests of a set of logical-rule models for predicting perceptual classification response times (RTs) and choice probabilities. The models are developed by synthesizing mental-architecture, random-walk, and decision-bound approaches. According to the models, people make independent decisions about the locations of stimuli…

  6. A Two-Factor Autoregressive Moving Average Model Based on Fuzzy Fluctuation Logical Relationships

    Directory of Open Access Journals (Sweden)

    Shuang Guan

    2017-10-01

    Full Text Available Many of the existing autoregressive moving average (ARMA forecast models are based on one main factor. In this paper, we proposed a new two-factor first-order ARMA forecast model based on fuzzy fluctuation logical relationships of both a main factor and a secondary factor of a historical training time series. Firstly, we generated a fluctuation time series (FTS for two factors by calculating the difference of each data point with its previous day, then finding the absolute means of the two FTSs. We then constructed a fuzzy fluctuation time series (FFTS according to the defined linguistic sets. The next step was establishing fuzzy fluctuation logical relation groups (FFLRGs for a two-factor first-order autoregressive (AR(1 model and forecasting the training data with the AR(1 model. Then we built FFLRGs for a two-factor first-order autoregressive moving average (ARMA(1,m model. Lastly, we forecasted test data with the ARMA(1,m model. To illustrate the performance of our model, we used real Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX and Dow Jones datasets as a secondary factor to forecast TAIEX. The experiment results indicate that the proposed two-factor fluctuation ARMA method outperformed the one-factor method based on real historic data. The secondary factor may have some effects on the main factor and thereby impact the forecasting results. Using fuzzified fluctuations rather than fuzzified real data could avoid the influence of extreme values in historic data, which performs negatively while forecasting. To verify the accuracy and effectiveness of the model, we also employed our method to forecast the Shanghai Stock Exchange Composite Index (SHSECI from 2001 to 2015 and the international gold price from 2000 to 2010.

  7. The Role of Logic Modeling in a Collaborative and Iterative Research Process: Lessons from Research and Analysis Conducted with the Federal Voting Assistance Program

    Science.gov (United States)

    2016-01-01

    NIOSH, 2009. As of July 21, 2015: http://www.rand.org/pubs/monographs/MG809.html W. K. Kellogg Foundation, Logic Model Development Guide, Battle...RAND Corporation, MG-809-NIOSH, 2009. As of July 21, 2015: http://www.rand.org/pubs/monographs/MG809.html W. K. Kellogg Foundation, Logic Model

  8. Action Type Deontic Logic

    DEFF Research Database (Denmark)

    Bentzen, Martin Mose

    2014-01-01

    A new deontic logic, Action Type Deontic Logic, is presented. To motivate this logic, a number of benchmark cases are shown, representing inferences a deontic logic should validate. Some of the benchmark cases are singled out for further comments and some formal approaches to deontic reasoning...... are evaluated with respect to the benchmark cases. After that follows an informal introduction to the ideas behind the formal semantics, focussing on the distinction between action types and action tokens. Then the syntax and semantics of Action Type Deontic Logic is presented and it is shown to meet...

  9. Challenges And Results of the Applications of Fuzzy Logic in the Classification of Rich Galaxy Clusters

    Science.gov (United States)

    Girola Schneider, R.

    2017-07-01

    The fuzzy logic is a branch of the artificial intelligence founded on the concept that everything is a matter of degree. It intends to create mathematical approximations on the resolution of certain types of problems. In addition, it aims to produce exact results obtained from imprecise data, for which it is particularly useful for electronic and computer applications. This enables it to handle vague or unspecific information when certain parts of a system are unknown or ambiguous and, therefore, they cannot be measured in a reliable manner. Also, when the variation of a variable can produce an alteration on the others The main focus of this paper is to prove the importance of these techniques formulated from a theoretical analysis on its application on ambiguous situations in the field of the rich clusters of galaxies. The purpose is to show its applicability in the several classification systems proposed for the rich clusters, which are based on criteria such as the level of richness of the cluster, the distribution of the brightest galaxies, whether there are signs of type-cD galaxies or not or the existence of sub-clusters. Fuzzy logic enables the researcher to work with "imprecise" information implementing fuzzy sets and combining rules to define actions. The control systems based on fuzzy logic join input variables that are defined in terms of fuzzy sets through rule groups that produce one or several output values of the system under study. From this context, the application of the fuzzy logic's techniques approximates the solution of the mathematical models in abstractions about the rich galaxy cluster classification of physical properties in order to solve the obscurities that must be confronted by an investigation group in order to make a decision.

  10. Quantifiers for quantum logic

    OpenAIRE

    Heunen, Chris

    2008-01-01

    We consider categorical logic on the category of Hilbert spaces. More generally, in fact, any pre-Hilbert category suffices. We characterise closed subobjects, and prove that they form orthomodular lattices. This shows that quantum logic is just an incarnation of categorical logic, enabling us to establish an existential quantifier for quantum logic, and conclude that there cannot be a universal quantifier.

  11. Fast logic?: Examining the time course assumption of dual process theory.

    Science.gov (United States)

    Bago, Bence; De Neys, Wim

    2017-01-01

    Influential dual process models of human thinking posit that reasoners typically produce a fast, intuitive heuristic (i.e., Type-1) response which might subsequently be overridden and corrected by slower, deliberative processing (i.e., Type-2). In this study we directly tested this time course assumption. We used a two response paradigm in which participants have to give an immediate answer and afterwards are allowed extra time before giving a final response. In four experiments we used a range of procedures (e.g., challenging response deadline, concurrent load) to knock out Type 2 processing and make sure that the initial response was intuitive in nature. Our key finding is that we frequently observe correct, logical responses as the first, immediate response. Response confidence and latency analyses indicate that these initial correct responses are given fast, with high confidence, and in the face of conflicting heuristic responses. Findings suggest that fast and automatic Type 1 processing also cues a correct logical response from the start. We sketch a revised dual process model in which the relative strength of different types of intuitions determines reasoning performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A feasibility investigation for modeling and optimization of temperature in bone drilling using fuzzy logic and Taguchi optimization methodology.

    Science.gov (United States)

    Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar

    2014-11-01

    Drilling of bone is a common procedure in orthopedic surgery to produce hole for screw insertion to fixate the fracture devices and implants. The increase in temperature during such a procedure increases the chances of thermal invasion of bone which can cause thermal osteonecrosis resulting in the increase of healing time or reduction in the stability and strength of the fixation. Therefore, drilling of bone with minimum temperature is a major challenge for orthopedic fracture treatment. This investigation discusses the use of fuzzy logic and Taguchi methodology for predicting and minimizing the temperature produced during bone drilling. The drilling experiments have been conducted on bovine bone using Taguchi's L25 experimental design. A fuzzy model is developed for predicting the temperature during orthopedic drilling as a function of the drilling process parameters (point angle, helix angle, feed rate and cutting speed). Optimum bone drilling process parameters for minimizing the temperature are determined using Taguchi method. The effect of individual cutting parameters on the temperature produced is evaluated using analysis of variance. The fuzzy model using triangular and trapezoidal membership predicts the temperature within a maximum error of ±7%. Taguchi analysis of the obtained results determined the optimal drilling conditions for minimizing the temperature as A3B5C1.The developed system will simplify the tedious task of modeling and determination of the optimal process parameters to minimize the bone drilling temperature. It will reduce the risk of thermal osteonecrosis and can be very effective for the online condition monitoring of the process. © IMechE 2014.

  13. Quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1979-01-01

    The subspaces of Hilbert space constitute an orthocomplemented quasimodular lattice Lsub(q) for which neither a two-valued function nor generalized truth function exist. A generalisation of the dialogic method can be used as an interpretation of a lattice Lsub(qi), which may be considered as the intuitionistic part of Lsub(q). Some obvious modifications of the dialogic method are introduced which come from the possible incommensurability of propositions about quantum mechanical systems. With the aid of this generalized dialogic method a propositional calculus Qsub(eff) is derived which is similar to the calculus of effective (intuitionistic) logic, but contains a few restrictions which are based on the incommensurability of quantum mechanical propositions. It can be shown within the framework of the calculus Qsub(eff) that the value-definiteness of the elementary propositions which are proved by quantum mechanical propositions is inherited by all finite compund propositions. In this way one arrives at the calculus Q of full quantum logic which incorporates the principle of excluded middle for all propositions and which is a model for the lattice Lsub(q). (Auth.)

  14. Target Control in Logical Models Using the Domain of Influence of Nodes.

    Science.gov (United States)

    Yang, Gang; Gómez Tejeda Zañudo, Jorge; Albert, Réka

    2018-01-01

    Dynamical models of biomolecular networks are successfully used to understand the mechanisms underlying complex diseases and to design therapeutic strategies. Network control and its special case of target control, is a promising avenue toward developing disease therapies. In target control it is assumed that a small subset of nodes is most relevant to the system's state and the goal is to drive the target nodes into their desired states. An example of target control would be driving a cell to commit to apoptosis (programmed cell death). From the experimental perspective, gene knockout, pharmacological inhibition of proteins, and providing sustained external signals are among practical intervention techniques. We identify methodologies to use the stabilizing effect of sustained interventions for target control in Boolean network models of biomolecular networks. Specifically, we define the domain of influence (DOI) of a node (in a certain state) to be the nodes (and their corresponding states) that will be ultimately stabilized by the sustained state of this node regardless of the initial state of the system. We also define the related concept of the logical domain of influence (LDOI) of a node, and develop an algorithm for its identification using an auxiliary network that incorporates the regulatory logic. This way a solution to the target control problem is a set of nodes whose DOI can cover the desired target node states. We perform greedy randomized adaptive search in node state space to find such solutions. We apply our strategy to in silico biological network models of real systems to demonstrate its effectiveness.

  15. Quantum Enhanced Inference in Markov Logic Networks.

    Science.gov (United States)

    Wittek, Peter; Gogolin, Christian

    2017-04-19

    Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.

  16. Quantum Enhanced Inference in Markov Logic Networks

    Science.gov (United States)

    Wittek, Peter; Gogolin, Christian

    2017-04-01

    Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.

  17. MODELING OF RELATIONSHIP BETWEEN GROUNDWATER FLOW AND OTHER METEOROLOGICAL VARIABLES USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Şaban YURTÇU

    2006-02-01

    Full Text Available In this study, modeling of the effect of rainfall, flow and evaporation as independent variables on the change of underground water levels as dependent variables were investigated by fuzzy logic (FL. In the study, total 396 values taken from six observation stations belong to Afyon inferior basin in Akarçay from 1977 to 1989 years were used. Using the monthly average values of stations, the change of underground water level was modeled by FL. It is observed that the results obtained from FL and the observations are compatible with each other. This shows FL modeling can be used to estimate groundwater levels from the appropriate meteorological value.

  18. Logic as Marr's Computational Level: Four Case Studies.

    Science.gov (United States)

    Baggio, Giosuè; van Lambalgen, Michiel; Hagoort, Peter

    2015-04-01

    We sketch four applications of Marr's levels-of-analysis methodology to the relations between logic and experimental data in the cognitive neuroscience of language and reasoning. The first part of the paper illustrates the explanatory power of computational level theories based on logic. We show that a Bayesian treatment of the suppression task in reasoning with conditionals is ruled out by EEG data, supporting instead an analysis based on defeasible logic. Further, we describe how results from an EEG study on temporal prepositions can be reanalyzed using formal semantics, addressing a potential confound. The second part of the article demonstrates the predictive power of logical theories drawing on EEG data on processing progressive constructions and on behavioral data on conditional reasoning in people with autism. Logical theories can constrain processing hypotheses all the way down to neurophysiology, and conversely neuroscience data can guide the selection of alternative computational level models of cognition. Copyright © 2014 Cognitive Science Society, Inc.

  19. Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimization approach.

    Science.gov (United States)

    Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R

    2015-09-15

    Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary data are available at Bioinformatics online. julio@iim.csic.es or saezrodriguez@ebi.ac.uk. © The Author 2015. Published by Oxford University Press.

  20. Modeling and the analysis of control logic for a digital PWM controller based on a nano electronic single electron transistor

    Directory of Open Access Journals (Sweden)

    Rathnakannan Kailasam

    2008-01-01

    Full Text Available This paper describes the modelling and the analysis of control logic for a Nano-Device- based PWM controller. A comprehensive simple SPICE schematic model for Single Electron transistor has been proposed. The operation of basic Single Electron Transistor logic gates and SET flip flops were successfully designed and their performances analyzed. The proposed design for realizing the logic gates and flip-flops is used in constructing the PWM controller utilized for switching the buck converter circuit. The output of the converter circuit is compared with reference voltage, and when the error voltage and the reference are matched the latch is reset so as to generate the PWM signal. Due to the simplicity and accuracy of the compact model, the simulation time and speed are much faster, which makes it potentially applicable in large-scale circuit simulation. This study confirms that the SET-based PWM controller is small in size, consumes ultra low power and operates at high speeds without compromising any performance. In addition these devices are capable of measuring charges of extremely high sensitivity.

  1. Logic delays of 5-μm resistor coupled Josephson logic

    International Nuclear Information System (INIS)

    Sone, J.; Yoshida, T.; Tahara, S.; Abe, H.

    1982-01-01

    Logic delays of resistor coupled Josephson logic (RCJL) have been investigated. An experimental circuit with a cascade chain of ten RCJL OR gates was fabricated using Pb-alloy Josephson IC technology with 5-μm minimum linewidth. Logic delay was measured to be as low as 10.8 ps with power dissipation of 11.7 μW. This demonstrates a switching operation faster than those reported for other Josephson gate designs. Comparison with computer-simulation results is also presented

  2. Erotetic epistemic logic

    Czech Academy of Sciences Publication Activity Database

    Peliš, Michal

    2017-01-01

    Roč. 26, č. 3 (2017), s. 357-381 ISSN 1425-3305 R&D Projects: GA ČR(CZ) GC16-07954J Institutional support: RVO:67985955 Keywords : epistemic logic * erotetic implication * erotetic logic * logic of questions Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology http://apcz.umk.pl/czasopisma/index.php/LLP/article/view/LLP.2017.007

  3. The Football of Logic

    Directory of Open Access Journals (Sweden)

    Schang Fabien

    2017-03-01

    Full Text Available An analogy is made between two rather different domains, namely: logic, and football (or soccer. Starting from a comparative table between the two activities, an alternative explanation of logic is given in terms of players, ball, goal, and the like. Our main thesis is that, just as the task of logic is preserving truth from premises to the conclusion, footballers strive to keep the ball as far as possible until the opposite goal. Assuming this analogy may help think about logic in the same way as in dialogical logic, but it should also present truth-values in an alternative sense of speech-acts occurring in a dialogue. The relativity of truth-values is focused by this way, thereby leading to an additional way of logical pluralism.

  4. The Logic of Practice in the Practice of Logics

    DEFF Research Database (Denmark)

    Raviola, Elena; Dubini, Paola

    2016-01-01

    of logics through a six months full-time ethnographic study at Il Sole-24 Ore, the largest Italian financial newspaper, between 2007 and 2008. An original conceptual framework is developed to analyse how the logic of journalism is enacted vis-à-vis that of advertising in a setting in which an old technology...... for news production – print newspaper – coexists with a new one – website – and thus encounters between new and old technological possibilities make workings of institutional logics particularly visible. The findings point out different mechanisms of institutional work dealing with actions that, made...

  5. Efficient fuzzy logic controller for magnetic levitation systems | Shu ...

    African Journals Online (AJOL)

    In this paper magnetic levitation controller using fuzzy logic is proposed. The proposed Fuzzy logic controller (FLC) is designed, and developed using triangular membership function with 7×7 rules. The system model was implemented in MATLAB/SIMULINK and the system responses to Fuzzy controller with different input ...

  6. A fast-slow logic system

    International Nuclear Information System (INIS)

    Kawashima, Hideo.

    1977-01-01

    A fast-slow logic system has been made for use in multi-detector experiments in nuclear physics such as particle-gamma and particle-particle coincidence experiments. The system consists of a fast logic system and a slow logic system. The fast logic system has a function of fast coincidences and provides timing signals for the slow logic system. The slow logic system has a function of slow coincidences and a routing control of input analog signals to the ADCs. (auth.)

  7. Towards automatic verification of ladder logic programs

    OpenAIRE

    Zoubek , Bohumir; Roussel , Jean-Marc; Kwiatkowska , Martha

    2003-01-01

    International audience; Control system programs are usually validated by testing prior to their deployment. Unfortunately, testing is not exhaustive and therefore it is possible that a program which passed all the required tests still contains errors. In this paper we apply techniques of automatic verification to a control program written in ladder logic. A model is constructed mechanically from the ladder logic program and subjected to automatic verification against requirements that include...

  8. Logic in the curricula of Computer Science

    Directory of Open Access Journals (Sweden)

    Margareth Quindeless

    2014-12-01

    Full Text Available The aim of the programs in Computer Science is to educate and train students to understand the problems and build systems that solve them. This process involves applying a special reasoning to model interactions, capabilities, and limitations of the components involved. A good curriculum must involve the use of tools to assist in these tasks, and one that could be considered as a fundamental is the logic, because with it students develop the necessary reasoning. Besides, software developers analyze the behavior of the program during the designed, the depuration, and testing; hardware designers perform minimization and equivalence verification of circuits; designers of operating systems validate routing protocols, programing, and synchronization; and formal logic underlying all these activities. Therefore, a strong background in applied logic would help students to develop or potentiate their ability to reason about complex systems. Unfortunately, few curricula formed and properly trained in logic. Most includes only one or two courses of Discrete Mathematics, which in a few weeks covered truth tables and the propositional calculus, and nothing more. This is not enough, and higher level courses in which they are applied and many other logical concepts are needed. In addition, students will not see the importance of logic in their careers and need to modify the curriculum committees or adapt the curriculum to reverse this situation.

  9. Material Targets for Scaling All-Spin Logic

    Science.gov (United States)

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.

    2016-01-01

    All-spin-logic devices are promising candidates to augment and complement beyond-CMOS integrated circuit computing due to nonvolatility, ultralow operating voltages, higher logical efficiency, and high density integration. However, the path to reach lower energy-delay product performance compared to CMOS transistors currently is not clear. We show that scaling and engineering the nanoscale magnetic materials and interfaces is the key to realizing spin-logic devices that can surpass the energy-delay performance of CMOS transistors. With validated stochastic nanomagnetic and vector spin-transport numerical models, we derive the target material and interface properties for the nanomagnets and channels. We identify promising directions for material engineering and discovery focusing on the systematic scaling of magnetic anisotropy (Hk ) and saturation magnetization (Ms ), the use of perpendicular magnetic anisotropy, and the interface spin-mixing conductance of the ferromagnet-spin-channel interface (Gmix ). We provide systematic targets for scaling a spin-logic energy-delay product toward 2 aJ ns, comprehending the stochastic noise for nanomagnets.

  10. Logic for Physicists

    Science.gov (United States)

    Pereyra, Nicolas A.

    2018-06-01

    This book gives a rigorous yet 'physics-focused' introduction to mathematical logic that is geared towards natural science majors. We present the science major with a robust introduction to logic, focusing on the specific knowledge and skills that will unavoidably be needed in calculus topics and natural science topics in general (rather than taking a philosophical-math-fundamental oriented approach that is commonly found in mathematical logic textbooks).

  11. Logic of likelihood

    International Nuclear Information System (INIS)

    Wall, M.J.W.

    1992-01-01

    The notion of open-quotes probabilityclose quotes is generalized to that of open-quotes likelihood,close quotes and a natural logical structure is shown to exist for any physical theory which predicts likelihoods. Two physically based axioms are given for this logical structure to form an orthomodular poset, with an order-determining set of states. The results strengthen the basis of the quantum logic approach to axiomatic quantum theory. 25 refs

  12. The effect of output-input isolation on the scaling and energy consumption of all-spin logic devices

    International Nuclear Information System (INIS)

    Hu, Jiaxi; Haratipour, Nazila; Koester, Steven J.

    2015-01-01

    All-spin logic (ASL) is a novel approach for digital logic applications wherein spin is used as the state variable instead of charge. One of the challenges in realizing a practical ASL system is the need to ensure non-reciprocity, meaning the information flows from input to output, not vice versa. One approach described previously, is to introduce an asymmetric ground contact, and while this approach was shown to be effective, it remains unclear as to the optimal approach for achieving non-reciprocity in ASL. In this study, we quantitatively analyze techniques to achieve non-reciprocity in ASL devices, and we specifically compare the effect of using asymmetric ground position and dipole-coupled output/input isolation. For this analysis, we simulate the switching dynamics of multiple-stage logic devices with FePt and FePd perpendicular magnetic anisotropy materials using a combination of a matrix-based spin circuit model coupled to the Landau–Lifshitz–Gilbert equation. The dipole field is included in this model and can act as both a desirable means of coupling magnets and a source of noise. The dynamic energy consumption has been calculated for these schemes, as a function of input/output magnet separation, and the results show that using a scheme that electrically isolates logic stages produces superior non-reciprocity, thus allowing both improved scaling and reduced energy consumption

  13. The effect of output-input isolation on the scaling and energy consumption of all-spin logic devices

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jiaxi; Haratipour, Nazila; Koester, Steven J., E-mail: skoester@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota-Twin Cities, 200 Union St. SE, Minneapolis, Minnesota 55455 (United States)

    2015-05-07

    All-spin logic (ASL) is a novel approach for digital logic applications wherein spin is used as the state variable instead of charge. One of the challenges in realizing a practical ASL system is the need to ensure non-reciprocity, meaning the information flows from input to output, not vice versa. One approach described previously, is to introduce an asymmetric ground contact, and while this approach was shown to be effective, it remains unclear as to the optimal approach for achieving non-reciprocity in ASL. In this study, we quantitatively analyze techniques to achieve non-reciprocity in ASL devices, and we specifically compare the effect of using asymmetric ground position and dipole-coupled output/input isolation. For this analysis, we simulate the switching dynamics of multiple-stage logic devices with FePt and FePd perpendicular magnetic anisotropy materials using a combination of a matrix-based spin circuit model coupled to the Landau–Lifshitz–Gilbert equation. The dipole field is included in this model and can act as both a desirable means of coupling magnets and a source of noise. The dynamic energy consumption has been calculated for these schemes, as a function of input/output magnet separation, and the results show that using a scheme that electrically isolates logic stages produces superior non-reciprocity, thus allowing both improved scaling and reduced energy consumption.

  14. Microelectromechanical reprogrammable logic device

    KAUST Repository

    Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Younis, Mohammad I.

    2016-01-01

    on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance

  15. One reason, several logics

    Directory of Open Access Journals (Sweden)

    Evandro Agazzi

    2011-06-01

    Full Text Available Humans have used arguments for defending or refuting statements long before the creation of logic as a specialized discipline. This can be interpreted as the fact that an intuitive notion of "logical consequence" or a psychic disposition to articulate reasoning according to this pattern is present in common sense, and logic simply aims at describing and codifying the features of this spontaneous capacity of human reason. It is well known, however, that several arguments easily accepted by common sense are actually "logical fallacies", and this indicates that logic is not just a descriptive, but also a prescriptive or normative enterprise, in which the notion of logical consequence is defined in a precise way and then certain rules are established in order to maintain the discourse in keeping with this notion. Yet in the justification of the correctness and adequacy of these rules commonsense reasoning must necessarily be used, and in such a way its foundational role is recognized. Moreover, it remains also true that several branches and forms of logic have been elaborated precisely in order to reflect the structural features of correct argument used in different fields of human reasoning and yet insufficiently mirrored by the most familiar logical formalisms.

  16. A logic-based dynamic modeling approach to explicate the evolution of the central dogma of molecular biology.

    Science.gov (United States)

    Jafari, Mohieddin; Ansari-Pour, Naser; Azimzadeh, Sadegh; Mirzaie, Mehdi

    It is nearly half a century past the age of the introduction of the Central Dogma (CD) of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.

  17. A logic-based dynamic modeling approach to explicate the evolution of the central dogma of molecular biology.

    Directory of Open Access Journals (Sweden)

    Mohieddin Jafari

    Full Text Available It is nearly half a century past the age of the introduction of the Central Dogma (CD of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.

  18. GOAL Agents Instantiate Intention Logic

    OpenAIRE

    Hindriks, Koen; van der Hoek, Wiebe

    2008-01-01

    It is commonly believed there is a big gap between agent logics and computational agent frameworks. In this paper, we show that this gap is not as big as believed by showing that GOAL agents instantiate Intention Logic of Cohen and Levesque. That is, we show that GOAL agent programs can be formally related to Intention Logic.We do so by proving that the GOAL Verification Logic can be embedded into Intention Logic. It follows that (a fragment of) Intention Logic can be used t...

  19. Representations of Multiple-Valued Logic Functions

    CERN Document Server

    Stankovic, Radomir S

    2012-01-01

    Compared to binary switching functions, multiple-valued functions offer more compact representations of the information content of signals modeled by logic functions and, therefore, their use fits very well in the general settings of data compression attempts and approaches. The first task in dealing with such signals is to provide mathematical methods for their representation in a way that will make their application in practice feasible.Representation of Multiple-Valued Logic Functions is aimed at providing an accessible introduction to these mathematical techniques that are necessary for ap

  20. Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Laszlo B. [Texas A and M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128 (United States)], E-mail: laszlo.kish@ece.tamu.edu

    2009-03-02

    A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case (N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also non-existent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart.

  1. Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states

    International Nuclear Information System (INIS)

    Kish, Laszlo B.

    2009-01-01

    A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case (N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also non-existent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart

  2. Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states

    Science.gov (United States)

    Kish, Laszlo B.

    2009-03-01

    A new type of deterministic (non-probabilistic) computer logic system inspired by the stochasticity of brain signals is shown. The distinct values are represented by independent stochastic processes: independent voltage (or current) noises. The orthogonality of these processes provides a natural way to construct binary or multi-valued logic circuitry with arbitrary number N of logic values by using analog circuitry. Moreover, the logic values on a single wire can be made a (weighted) superposition of the N distinct logic values. Fuzzy logic is also naturally represented by a two-component superposition within the binary case ( N=2). Error propagation and accumulation are suppressed. Other relevant advantages are reduced energy dissipation and leakage current problems, and robustness against circuit noise and background noises such as 1/f, Johnson, shot and crosstalk noise. Variability problems are also non-existent because the logic value is an AC signal. A similar logic system can be built with orthogonal sinusoidal signals (different frequency or orthogonal phase) however that has an extra 1/N type slowdown compared to the noise-based logic system with increasing number of N furthermore it is less robust against time delay effects than the noise-based counterpart.

  3. Timed Safety Automata and Logic Conformance

    National Research Council Canada - National Science Library

    Young, Frank

    1999-01-01

    Timed Logic Conformance (TLC) is used to verify the behavioral and timing properties of detailed digital circuits against abstract circuit specifications when both are modeled as Timed Safety Automata (TSA...

  4. Time-space modal logic for verification of bit-slice circuits

    Science.gov (United States)

    Hiraishi, Hiromi

    1996-03-01

    The major goal of this paper is to propose a new modal logic aiming at formal verification of bit-slice circuits. The new logic is called as time-space modal logic and its major feature is that it can handle two transition relations: one for time transition and the other for space transition. As for a verification algorithm, a symbolic model checking algorithm of the new logic is shown. This could be applicable to verification of bit-slice microprocessor of infinite bit width and 1D systolic array of infinite length. A simple benchmark result shows the effectiveness of the proposed approach.

  5. Micromagnetic simulation of exploratory magnetic logic device with missing corner defect

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaokuo, E-mail: yangxk0123@163.com; Cai, Li; Zhang, Bin; Cui, Huanqing; Zhang, Mingliang

    2015-11-15

    Magnetic film nanostructures are attractive components of nonvolatile magnetoresistive memories and nanomagnet logic circuits. Recently, we studied switching properties (i.e., null logic preserving) of rectangle shape nanomagnet subjected to fabrication imperfections. Specifically, we presented typical missing corner material-related imperfections and adopted an isosceles triangle to model this defect for nanomagnets. Micromagnetic simulation shows that this kind of imperfections modeling method agrees well with previous experimental observations. Using the proposed defect modeling scheme, we investigate in detail the switching characteristics of different defective stand-alone and coupled nanomagnets. The results suggest that the state transition of defective nanomagnet element highly depends on defect type and device’s aspect ratio, and the defect type B{sub d} needs the largest coercive field, while the defect type D requires the largest null field for switching. These findings can provide key technical parameters and guides for nanomagnet logic circuit design. - Highlights: • We have modeled missing corner defect issue for nanomagnet logic device. • The logic state of defective NML element highly depends on defect type and AR. • The NML device with defect type B{sub d} needs the largest coercive field to reverse state. • The defect type D in the NML devices requires the largest null field to switch.

  6. Comparative evaluation of fuzzy logic and genetic algorithms models for portfolio optimization

    Directory of Open Access Journals (Sweden)

    Heidar Masoumi Soureh

    2017-03-01

    Full Text Available Selection of optimum methods which have appropriate speed and precision for planning and de-cision-making has always been a challenge for investors and managers. One the most important concerns for them is investment planning and optimization for acquisition of desirable wealth under controlled risk with the best return. This paper proposes a model based on Markowitz the-orem by considering the aforementioned limitations in order to help effective decisions-making for portfolio selection. Then, the model is investigated by fuzzy logic and genetic algorithms, for the optimization of the portfolio in selected active companies listed in Tehran Stock Exchange over the period 2012-2016 and the results of the above models are discussed. The results show that the two studied models had functional differences in portfolio optimization, its tools and the possibility of supplementing each other and their selection.

  7. Programmatic access to logical models in the Cell Collective modeling environment via a REST API.

    Science.gov (United States)

    Kowal, Bryan M; Schreier, Travis R; Dauer, Joseph T; Helikar, Tomáš

    2016-01-01

    Cell Collective (www.cellcollective.org) is a web-based interactive environment for constructing, simulating and analyzing logical models of biological systems. Herein, we present a Web service to access models, annotations, and simulation data in the Cell Collective platform through the Representational State Transfer (REST) Application Programming Interface (API). The REST API provides a convenient method for obtaining Cell Collective data through almost any programming language. To ensure easy processing of the retrieved data, the request output from the API is available in a standard JSON format. The Cell Collective REST API is freely available at http://thecellcollective.org/tccapi. All public models in Cell Collective are available through the REST API. For users interested in creating and accessing their own models through the REST API first need to create an account in Cell Collective (http://thecellcollective.org). thelikar2@unl.edu. Technical user documentation: https://goo.gl/U52GWo. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Description logic rules

    CERN Document Server

    Krötzsch, M

    2010-01-01

    Ontological modelling today is applied in many areas of science and technology,including the Semantic Web. The W3C standard OWL defines one of the most important ontology languages based on the semantics of description logics. An alternative is to use rule languages in knowledge modelling, as proposed in the W3C's RIF standard. So far, it has often been unclear how to combine both technologies without sacrificing essential computational properties. This book explains this problem and presents new solutions that have recently been proposed. Extensive introductory chapters provide the necessary

  9. Model of biological quantum logic in DNA.

    Science.gov (United States)

    Mihelic, F Matthew

    2013-08-02

    The DNA molecule has properties that allow it to act as a quantum logic processor. It has been demonstrated that there is coherent conduction of electrons longitudinally along the DNA molecule through pi stacking interactions of the aromatic nucleotide bases, and it has also been demonstrated that electrons moving longitudinally along the DNA molecule are subject to a very efficient electron spin filtering effect as the helicity of the DNA molecule interacts with the spin of the electron. This means that, in DNA, electrons are coherently conducted along a very efficient spin filter. Coherent electron spin is held in a logically and thermodynamically reversible chiral symmetry between the C2-endo and C3-endo enantiomers of the deoxyribose moiety in each nucleotide, which enables each nucleotide to function as a quantum gate. The symmetry break that provides for quantum decision in the system is determined by the spin direction of an electron that has an orbital angular momentum that is sufficient to overcome the energy barrier of the double well potential separating the C2-endo and C3-endo enantiomers, and that enantiomeric energy barrier is appropriate to the Landauer limit of the energy necessary to randomize one bit of information.

  10. Systematic Analysis of Quantitative Logic Model Ensembles Predicts Drug Combination Effects on Cell Signaling Networks

    Science.gov (United States)

    2016-08-27

    bovine serum albumin (BSA) diluted to the amount corresponding to that in the media of the stimulated cells. Phospho-JNK comprises two isoforms whose...information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website (http://www.wileyonlinelibrary.com/psp4) Systematic Analysis of Quantitative Logic Model Morris et al. 553 www.wileyonlinelibrary/psp4

  11. Understanding Social Media Logic

    Directory of Open Access Journals (Sweden)

    José van Dijck

    2013-08-01

    Full Text Available Over the past decade, social media platforms have penetrated deeply into the mech­anics of everyday life, affecting people's informal interactions, as well as institutional structures and professional routines. Far from being neutral platforms for everyone, social media have changed the conditions and rules of social interaction. In this article, we examine the intricate dynamic between social media platforms, mass media, users, and social institutions by calling attention to social media logic—the norms, strategies, mechanisms, and economies—underpin­ning its dynamics. This logic will be considered in light of what has been identified as mass me­dia logic, which has helped spread the media's powerful discourse outside its institutional boundaries. Theorizing social media logic, we identify four grounding principles—programmabil­ity, popularity, connectivity, and datafication—and argue that these principles become increas­ingly entangled with mass media logic. The logic of social media, rooted in these grounding principles and strategies, is gradually invading all areas of public life. Besides print news and broadcasting, it also affects law and order, social activism, politics, and so forth. Therefore, its sustaining logic and widespread dissemination deserve to be scrutinized in detail in order to better understand its impact in various domains. Concentrating on the tactics and strategies at work in social media logic, we reassess the constellation of power relationships in which social practices unfold, raising questions such as: How does social media logic modify or enhance ex­isting mass media logic? And how is this new media logic exported beyond the boundaries of (social or mass media proper? The underlying principles, tactics, and strategies may be relat­ively simple to identify, but it is much harder to map the complex connections between plat­forms that distribute this logic: users that employ them, technologies that

  12. Indeterminacy, linguistic semantics and fuzzy logic

    Energy Technology Data Exchange (ETDEWEB)

    Novak, V. [Univ. of Ostrava (Czech Republic)

    1996-12-31

    In this paper, we discuss the indeterminacy phenomenon which has two distinguished faces, namely uncertainty modeled especially by the probability theory and vagueness, modeled by fuzzy logic. Other important mathematical model of vagueness is provided by the Alternative Set Theory. We focus on some of the basic concepts of these theories in connection with mathematical modeling of the linguistic semantics.

  13. Reprogrammable Logic Gate and Logic Circuit Based on Multistimuli-Responsive Raspberry-like Micromotors.

    Science.gov (United States)

    Zhang, Lina; Zhang, Hui; Liu, Mei; Dong, Bin

    2016-06-22

    In this paper, we report a polymer-based raspberry-like micromotor. Interestingly, the resulting micromotor exhibits multistimuli-responsive motion behavior. Its on-off-on motion can be regulated by the application of stimuli such as H2O2, near-infrared light, NH3, or their combinations. Because of the versatility in motion control, the current micromotor has great potential in the application field of logic gate and logic circuit. With use of different stimuli as the inputs and the micromotor motion as the output, reprogrammable OR and INHIBIT logic gates or logic circuit consisting of OR, NOT, and AND logic gates can be achieved.

  14. Symmetries in Genetic Systems and the Concept of Geno-Logical Coding

    Directory of Open Access Journals (Sweden)

    Sergey V. Petoukhov

    2016-12-01

    Full Text Available The genetic code of amino acid sequences in proteins does not allow understanding and modeling of inherited processes such as inborn coordinated motions of living bodies, innate principles of sensory information processing, quasi-holographic properties, etc. To be able to model these phenomena, the concept of geno-logical coding, which is connected with logical functions and Boolean algebra, is put forward. The article describes basic pieces of evidence in favor of the existence of the geno-logical code, which exists in p­arallel with the known genetic code of amino acid sequences but which serves for transferring inherited processes along chains of generations. These pieces of evidence have been received due to the analysis of symmetries in structures of molecular-genetic systems. The analysis has revealed a close connection of the genetic system with dyadic groups of binary numbers and with other mathematical objects, which are related with dyadic groups: Walsh functions (which are algebraic characters of dyadic groups, bit-reversal permutations, logical holography, etc. These results provide a new approach for mathematical modeling of genetic structures, which uses known mathematical formalisms from technological fields of noise-immunity coding of information, binary analysis, logical holography, and digital devices of artificial intellect. Some opportunities for a development of algebraic-logical biology are opened.

  15. Conference Trends in Logic XI

    CERN Document Server

    Wansing, Heinrich; Willkommen, Caroline; Recent Trends in Philosophical Logic

    2014-01-01

    This volume presents recent advances in philosophical logic with chapters focusing on non-classical logics, including paraconsistent logics, substructural logics, modal logics of agency and other modal logics. The authors cover themes such as the knowability paradox, tableaux and sequent calculi, natural deduction, definite descriptions, identity, truth, dialetheism, and possible worlds semantics.   The developments presented here focus on challenging problems in the specification of fundamental philosophical notions, as well as presenting new techniques and tools, thereby contributing to the development of the field. Each chapter contains a bibliography, to assist the reader in making connections in the specific areas covered. Thus this work provides both a starting point for further investigations into philosophical logic and an update on advances, techniques and applications in a dynamic field.   The chapters originate from papers presented during the Trends in Logic XI conference at the Ruhr University ...

  16. Regulatory Anatomy: How "Safety Logics" Structure European Transplant Medicine.

    Science.gov (United States)

    Hoeyer, Klaus

    2015-07-01

    This article proposes the term "safety logics" to understand attempts within the European Union (EU) to harmonize member state legislation to ensure a safe and stable supply of human biological material for transplants and transfusions. With safety logics, I refer to assemblages of discourses, legal documents, technological devices, organizational structures, and work practices aimed at minimizing risk. I use this term to reorient the analytical attention with respect to safety regulation. Instead of evaluating whether safety is achieved, the point is to explore the types of "safety" produced through these logics as well as to consider the sometimes unintended consequences of such safety work. In fact, the EU rules have been giving rise to complaints from practitioners finding the directives problematic and inadequate. In this article, I explore the problems practitioners face and why they arise. In short, I expose the regulatory anatomy of the policy landscape.

  17. Prospects of luminescence based molecular scale logic gates and logic circuits

    International Nuclear Information System (INIS)

    Speiser, Shammai

    2016-01-01

    In recent years molecular electronics has emerged as a rapidly growing research field. The aim of this review is to introduce this subject as a whole with special emphasis on molecular scale potential devices and applications. As a particular example we will discuss all optical molecular scale logic gates and logic circuits based on molecular fluorescence and electronic excitation transfer processes. Charge and electronic energy transfers (ET and EET) are well-studied examples whereby different molecules can signal their state from one (the donor, D) to the other (the acceptor, A). We show how a half-adder logic circuit can be implemented on one molecule that can communicate its logic output as input to another half-adder molecule. This is achieved as an electronic energy transfer from a donor to an acceptor, thus implementing a molecular full adder. We discuss a specific pair, the rhodamine–azulene, for which there is considerable spectroscopic data, but the scheme is general enough to allow a wide choice of D and A pairs. We present results based on this pair, in which, for the first time, an all optical half-adder and full-adder logic circuits are implemented. - Highlights: • Molecular scale logic • Photoquenching • Full adder

  18. Prospects of luminescence based molecular scale logic gates and logic circuits

    Energy Technology Data Exchange (ETDEWEB)

    Speiser, Shammai, E-mail: speiser@technion.ac.il

    2016-01-15

    In recent years molecular electronics has emerged as a rapidly growing research field. The aim of this review is to introduce this subject as a whole with special emphasis on molecular scale potential devices and applications. As a particular example we will discuss all optical molecular scale logic gates and logic circuits based on molecular fluorescence and electronic excitation transfer processes. Charge and electronic energy transfers (ET and EET) are well-studied examples whereby different molecules can signal their state from one (the donor, D) to the other (the acceptor, A). We show how a half-adder logic circuit can be implemented on one molecule that can communicate its logic output as input to another half-adder molecule. This is achieved as an electronic energy transfer from a donor to an acceptor, thus implementing a molecular full adder. We discuss a specific pair, the rhodamine–azulene, for which there is considerable spectroscopic data, but the scheme is general enough to allow a wide choice of D and A pairs. We present results based on this pair, in which, for the first time, an all optical half-adder and full-adder logic circuits are implemented. - Highlights: • Molecular scale logic • Photoquenching • Full adder.

  19. Quantum logics with existence property

    International Nuclear Information System (INIS)

    Schindler, C.

    1991-01-01

    A quantum logic (σ-orthocomplete orthomodular poset L with a convex, unital, and separating set Δ of states) is said to have the existence property if the expectation functionals on lin(Δ) associated with the bounded observables of L form a vector space. Classical quantum logics as well as the Hilbert space logics of traditional quantum mechanics have this property. The author shows that, if a quantum logic satisfies certain conditions in addition to having property E, then the number of its blocks (maximal classical subsystems) must either be one (classical logics) or uncountable (as in Hilbert space logics)

  20. Collaborative Management of Complex Major Construction Projects: AnyLogic-Based Simulation Modelling

    Directory of Open Access Journals (Sweden)

    Na Zhao

    2016-01-01

    Full Text Available Complex supply chain system collaborative management of major construction projects effectively integrates the different participants in the construction project. This paper establishes a simulation model based on AnyLogic to reveal the collaborative elements in the complex supply chain management system and the modes of action as well as the transmission problems of the intent information. Thus it is promoting the participants to become an organism with coordinated development and coevolution. This study can help improve the efficiency and management of the complex system of major construction projects.

  1. Logic-based aggregation methods for ranking student applicants

    Directory of Open Access Journals (Sweden)

    Milošević Pavle

    2017-01-01

    Full Text Available In this paper, we present logic-based aggregation models used for ranking student applicants and we compare them with a number of existing aggregation methods, each more complex than the previous one. The proposed models aim to include depen- dencies in the data using Logical aggregation (LA. LA is a aggregation method based on interpolative Boolean algebra (IBA, a consistent multi-valued realization of Boolean algebra. This technique is used for a Boolean consistent aggregation of attributes that are logically dependent. The comparison is performed in the case of student applicants for master programs at the University of Belgrade. We have shown that LA has some advantages over other presented aggregation methods. The software realization of all applied aggregation methods is also provided. This paper may be of interest not only for student ranking, but also for similar problems of ranking people e.g. employees, team members, etc.

  2. Flat Coalgebraic Fixed Point Logics

    Science.gov (United States)

    Schröder, Lutz; Venema, Yde

    Fixed point logics are widely used in computer science, in particular in artificial intelligence and concurrency. The most expressive logics of this type are the μ-calculus and its relatives. However, popular fixed point logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the μ-calculus. The family of such flat fixed point logics includes, e.g., CTL, the *-nesting-free fragment of PDL, and the logic of common knowledge. Here, we extend this notion to the generic semantic framework of coalgebraic logic, thus covering a wide range of logics beyond the standard μ-calculus including, e.g., flat fragments of the graded μ-calculus and the alternating-time μ-calculus (such as ATL), as well as probabilistic and monotone fixed point logics. Our main results are completeness of the Kozen-Park axiomatization and a timed-out tableaux method that matches ExpTime upper bounds inherited from the coalgebraic μ-calculus but avoids using automata.

  3. Dual deep modeling: multi-level modeling with dual potencies and its formalization in F-Logic.

    Science.gov (United States)

    Neumayr, Bernd; Schuetz, Christoph G; Jeusfeld, Manfred A; Schrefl, Michael

    2018-01-01

    An enterprise database contains a global, integrated, and consistent representation of a company's data. Multi-level modeling facilitates the definition and maintenance of such an integrated conceptual data model in a dynamic environment of changing data requirements of diverse applications. Multi-level models transcend the traditional separation of class and object with clabjects as the central modeling primitive, which allows for a more flexible and natural representation of many real-world use cases. In deep instantiation, the number of instantiation levels of a clabject or property is indicated by a single potency. Dual deep modeling (DDM) differentiates between source potency and target potency of a property or association and supports the flexible instantiation and refinement of the property by statements connecting clabjects at different modeling levels. DDM comes with multiple generalization of clabjects, subsetting/specialization of properties, and multi-level cardinality constraints. Examples are presented using a UML-style notation for DDM together with UML class and object diagrams for the representation of two-level user views derived from the multi-level model. Syntax and semantics of DDM are formalized and implemented in F-Logic, supporting the modeler with integrity checks and rich query facilities.

  4. The logical foundations of scientific theories languages, structures, and models

    CERN Document Server

    Krause, Decio

    2016-01-01

    This book addresses the logical aspects of the foundations of scientific theories. Even though the relevance of formal methods in the study of scientific theories is now widely recognized and regaining prominence, the issues covered here are still not generally discussed in philosophy of science. The authors focus mainly on the role played by the underlying formal apparatuses employed in the construction of the models of scientific theories, relating the discussion with the so-called semantic approach to scientific theories. The book describes the role played by this metamathematical framework in three main aspects: considerations of formal languages employed to axiomatize scientific theories, the role of the axiomatic method itself, and the way set-theoretical structures, which play the role of the models of theories, are developed. The authors also discuss the differences and philosophical relevance of the two basic ways of aximoatizing a scientific theory, namely Patrick Suppes’ set theoretical predicate...

  5. The stock-flow model of spatial data infrastructure development refined by fuzzy logic.

    Science.gov (United States)

    Abdolmajidi, Ehsan; Harrie, Lars; Mansourian, Ali

    2016-01-01

    The system dynamics technique has been demonstrated to be a proper method by which to model and simulate the development of spatial data infrastructures (SDI). An SDI is a collaborative effort to manage and share spatial data at different political and administrative levels. It is comprised of various dynamically interacting quantitative and qualitative (linguistic) variables. To incorporate linguistic variables and their joint effects in an SDI-development model more effectively, we suggest employing fuzzy logic. Not all fuzzy models are able to model the dynamic behavior of SDIs properly. Therefore, this paper aims to investigate different fuzzy models and their suitability for modeling SDIs. To that end, two inference and two defuzzification methods were used for the fuzzification of the joint effect of two variables in an existing SDI model. The results show that the Average-Average inference and Center of Area defuzzification can better model the dynamics of SDI development.

  6. 76 FR 36566 - Notice of Submission of Proposed Information Collection to OMB “Logic Model” Grant Performance...

    Science.gov (United States)

    2011-06-22

    ... Proposed Information Collection to OMB ``Logic Model'' Grant Performance Report Standard AGENCY: Office of... lists the following information: Title of Proposal: ``Logic Model'' Grant Performance Report Standard. OMB Approval Number: 2535-0114. Form Numbers: HUD 96010, each program utilizing the Logic Model will...

  7. Mathematical logic foundations for information science

    CERN Document Server

    Li, Wei

    2014-01-01

    Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel’s theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds...

  8. MEMS Logic Using Mixed-Frequency Excitation

    KAUST Repository

    Ilyas, Saad

    2017-06-22

    We present multi-function microelectromechanical systems (MEMS) logic device that can perform the fundamental logic gate AND, OR, universal logic gates NAND, NOR, and a tristate logic gate using mixed-frequency excitation. The concept is based on exciting combination resonances due to the mixing of two or more input signals. The device vibrates at two steady states: a high state when the combination resonance is activated and a low state when no resonance is activated. These vibration states are assigned to logical value 1 or 0 to realize the logic gates. Using ac signals to drive the resonator and to execute the logic inputs unifies the input and output wave forms of the logic device, thereby opening the possibility for cascading among logic devices. We found that the energy consumption per cycle of the proposed logic resonator is higher than those of existing technologies. Hence, integration of such logic devices to build complex computational system needs to take into consideration lowering the total energy consumption. [2017-0041

  9. Amplifying genetic logic gates.

    Science.gov (United States)

    Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew

    2013-05-03

    Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.

  10. Tableau Calculus for the Logic of Comparative Similarity over Arbitrary Distance Spaces

    Science.gov (United States)

    Alenda, Régis; Olivetti, Nicola

    The logic CSL (first introduced by Sheremet, Tishkovsky, Wolter and Zakharyaschev in 2005) allows one to reason about distance comparison and similarity comparison within a modal language. The logic can express assertions of the kind "A is closer/more similar to B than to C" and has a natural application to spatial reasoning, as well as to reasoning about concept similarity in ontologies. The semantics of CSL is defined in terms of models based on different classes of distance spaces and it generalizes the logic S4 u of topological spaces. In this paper we consider CSL defined over arbitrary distance spaces. The logic comprises a binary modality to represent comparative similarity and a unary modality to express the existence of the minimum of a set of distances. We first show that the semantics of CSL can be equivalently defined in terms of preferential models. As a consequence we obtain the finite model property of the logic with respect to its preferential semantic, a property that does not hold with respect to the original distance-space semantics. Next we present an analytic tableau calculus based on its preferential semantics. The calculus provides a decision procedure for the logic, its termination is obtained by imposing suitable blocking restrictions.

  11. Testing Superconductor Logic Integrated Circuits

    NARCIS (Netherlands)

    Arun, A.J.; Kerkhoff, Hans G.

    2005-01-01

    Superconductor logic has the potential of extremely low-power consumption and ultra-fast digital signal processing. Unfortunately, the obtained yield of the present processes is low and specific faults occur. This paper deals with fault-modelling, Design-for-Test structures, and ATPG for these

  12. The Quantum Logical Challenge: Peter Mittelstaedt's Contributions to Logic and Philosophy of Science

    Science.gov (United States)

    Beltrametti, E.; Dalla Chiara, M. L.; Giuntini, R.

    2017-12-01

    Peter Mittelstaedt's contributions to quantum logic and to the foundational problems of quantum theory have significantly realized the most authentic spirit of the International Quantum Structures Association: an original research about hard technical problems, which are often "entangled" with the emergence of important changes in our general world-conceptions. During a time where both the logical and the physical community often showed a skeptical attitude towards Birkhoff and von Neumann's quantum logic, Mittelstaedt brought into light the deeply innovating features of a quantum logical thinking that allows us to overcome some strong and unrealistic assumptions of classical logical arguments. Later on his intense research on the unsharp approach to quantum theory and to the measurement problem stimulated the increasing interest for unsharp forms of quantum logic, creating a fruitful interaction between the work of quantum logicians and of many-valued logicians. Mittelstaedt's general views about quantum logic and quantum theory seem to be inspired by a conjecture that is today more and more confirmed: there is something universal in the quantum theoretic formalism that goes beyond the limits of microphysics, giving rise to interesting applications to a number of different fields.

  13. Contextual Validity in Hybrid Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Jørgensen, Klaus Frovin

    2013-01-01

    interpretations. Moreover, such indexicals give rise to a special kind of validity—contextual validity—that interacts with ordinary logi- cal validity in interesting and often unexpected ways. In this paper we model these interactions by combining standard techniques from hybrid logic with insights from the work...... of Hans Kamp and David Kaplan. We introduce a simple proof rule, which we call the Kamp Rule, and first we show that it is all we need to take us from logical validities involving now to contextual validities involving now too. We then go on to show that this deductive bridge is strong enough to carry us...... to contextual validities involving yesterday, today and tomorrow as well....

  14. Querying Natural Logic Knowledge Bases

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik; Jensen, Per Anker

    2017-01-01

    This paper describes the principles of a system applying natural logic as a knowledge base language. Natural logics are regimented fragments of natural language employing high level inference rules. We advocate the use of natural logic for knowledge bases dealing with querying of classes...... in ontologies and class-relationships such as are common in life-science descriptions. The paper adopts a version of natural logic with recursive restrictive clauses such as relative clauses and adnominal prepositional phrases. It includes passive as well as active voice sentences. We outline a prototype...... for partial translation of natural language into natural logic, featuring further querying and conceptual path finding in natural logic knowledge bases....

  15. A study of the logical model of capital market complexity theories

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Analyzes the shortcomings of the classic capital market theories based on EMH and discloses the complexity essence of the capital market. Considering the capital market a complicated, interactive and adaptable dynamic system, with complexity science as the method for researching the operation law of the capital market, this paper constructs a nonlinear logical model to analyze the applied realm, focal point and interrelationship of such theories as dissipative structure theory, chaos theory, fractal theory, synergetics theory, catastrophe theory and scale theory, and summarizes and discusses the achievements and problems of each theory.Based on the research, the paper foretells the developing direction of complexity science in a capital market.

  16. Comparison of depth-dose distributions of proton therapeutic beams calculated by means of logical detectors and ionization chamber modeled in Monte Carlo codes

    Energy Technology Data Exchange (ETDEWEB)

    Pietrzak, Robert [Department of Nuclear Physics and Its Applications, Institute of Physics, University of Silesia, Katowice (Poland); Konefał, Adam, E-mail: adam.konefal@us.edu.pl [Department of Nuclear Physics and Its Applications, Institute of Physics, University of Silesia, Katowice (Poland); Sokół, Maria; Orlef, Andrzej [Department of Medical Physics, Maria Sklodowska-Curie Memorial Cancer Center, Institute of Oncology, Gliwice (Poland)

    2016-08-01

    The success of proton therapy depends strongly on the precision of treatment planning. Dose distribution in biological tissue may be obtained from Monte Carlo simulations using various scientific codes making it possible to perform very accurate calculations. However, there are many factors affecting the accuracy of modeling. One of them is a structure of objects called bins registering a dose. In this work the influence of bin structure on the dose distributions was examined. The MCNPX code calculations of Bragg curve for the 60 MeV proton beam were done in two ways: using simple logical detectors being the volumes determined in water, and using a precise model of ionization chamber used in clinical dosimetry. The results of the simulations were verified experimentally in the water phantom with Marcus ionization chamber. The average local dose difference between the measured relative doses in the water phantom and those calculated by means of the logical detectors was 1.4% at first 25 mm, whereas in the full depth range this difference was 1.6% for the maximum uncertainty in the calculations less than 2.4% and for the maximum measuring error of 1%. In case of the relative doses calculated with the use of the ionization chamber model this average difference was somewhat greater, being 2.3% at depths up to 25 mm and 2.4% in the full range of depths for the maximum uncertainty in the calculations of 3%. In the dose calculations the ionization chamber model does not offer any additional advantages over the logical detectors. The results provided by both models are similar and in good agreement with the measurements, however, the logical detector approach is a more time-effective method. - Highlights: • Influence of the bin structure on the proton dose distributions was examined for the MC simulations. • The considered relative proton dose distributions in water correspond to the clinical application. • MC simulations performed with the logical detectors and the

  17. Questions and dependency in intuitionistic logic

    NARCIS (Netherlands)

    Ciardelli, Ivano; Iemhoff, Rosalie; Yang, Fan

    2017-01-01

    In recent years, the logic of questions and dependencies has been investigated in the closely related frameworks of inquisitive logic and dependence logic. These investigations have assumed classical logic as the background logic of statements, and added formulas expressing questions and

  18. LA LÓGICA DIFUSA COMPENSATORIA / THE COMPENSATORY FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Jesús Cejas-Montero

    2011-06-01

    Full Text Available

    La Lógica Difusa Compensatoria es un modelo lógico que permite la modelación simultánea de los procesos deductivos y de toma de decisiones. Sus características más importantes son: la flexibilidad, la tolerancia con la imprecisión, la capacidad para moldear problemas no-lineales y su fundamento en el lenguaje de sentido común. El artículo pretende llevar a la comunidad académico-empresarial las ideas fundamentales de la Lógica Difusa Compensatoria, ilustrándola en sus posibles campos de aplicación para lograr la competitividad de una organización.

    Abstract

    The Compensatory Fuzzy Logic is a logical model that allows the simultaneous modeling of the deductive and decision-making processes. The most important characteristics of Compensatory Fuzzy Logic are: the flexibility, the tolerance with the inaccuracy, the capacity to model no-lineal problems and its foundation in the language of common sense. The article seeks to bring the basic ideas of the Compensatory Fuzzy Logic to the academic–managerial community, illustrating it in its possible fields of application, in order to achieve the competitiveness of an organization.

  19. Logic Meeting

    CERN Document Server

    Tugué, Tosiyuki; Slaman, Theodore

    1989-01-01

    These proceedings include the papers presented at the logic meeting held at the Research Institute for Mathematical Sciences, Kyoto University, in the summer of 1987. The meeting mainly covered the current research in various areas of mathematical logic and its applications in Japan. Several lectures were also presented by logicians from other countries, who visited Japan in the summer of 1987.

  20. Parallel logic gates in synthetic gene networks induced by non-Gaussian noise.

    Science.gov (United States)

    Xu, Yong; Jin, Xiaoqin; Zhang, Huiqing

    2013-11-01

    The recent idea of logical stochastic resonance is verified in synthetic gene networks induced by non-Gaussian noise. We realize the switching between two kinds of logic gates under optimal moderate noise intensity by varying two different tunable parameters in a single gene network. Furthermore, in order to obtain more logic operations, thus providing additional information processing capacity, we obtain in a two-dimensional toggle switch model two complementary logic gates and realize the transformation between two logic gates via the methods of changing different parameters. These simulated results contribute to improve the computational power and functionality of the networks.

  1. Memristive Perceptron for Combinational Logic Classification

    Directory of Open Access Journals (Sweden)

    Lidan Wang

    2013-01-01

    Full Text Available The resistance of the memristor depends upon the past history of the input current or voltage; so it can function as synapse in neural networks. In this paper, a novel perceptron combined with the memristor is proposed to implement the combinational logic classification. The relationship between the memristive conductance change and the synapse weight update is deduced, and the memristive perceptron model and its synaptic weight update rule are explored. The feasibility of the novel memristive perceptron for implementing the combinational logic classification (NAND, NOR, XOR, and NXOR is confirmed by MATLAB simulation.

  2. Evaluating bacterial gene-finding HMM structures as probabilistic logic programs.

    Science.gov (United States)

    Mørk, Søren; Holmes, Ian

    2012-03-01

    Probabilistic logic programming offers a powerful way to describe and evaluate structured statistical models. To investigate the practicality of probabilistic logic programming for structure learning in bioinformatics, we undertook a simplified bacterial gene-finding benchmark in PRISM, a probabilistic dialect of Prolog. We evaluate Hidden Markov Model structures for bacterial protein-coding gene potential, including a simple null model structure, three structures based on existing bacterial gene finders and two novel model structures. We test standard versions as well as ADPH length modeling and three-state versions of the five model structures. The models are all represented as probabilistic logic programs and evaluated using the PRISM machine learning system in terms of statistical information criteria and gene-finding prediction accuracy, in two bacterial genomes. Neither of our implementations of the two currently most used model structures are best performing in terms of statistical information criteria or prediction performances, suggesting that better-fitting models might be achievable. The source code of all PRISM models, data and additional scripts are freely available for download at: http://github.com/somork/codonhmm. Supplementary data are available at Bioinformatics online.

  3. What is mathematical logic?

    CERN Document Server

    Crossley, J N; Brickhill, CJ; Stillwell, JC

    2010-01-01

    Although mathematical logic can be a formidably abstruse topic, even for mathematicians, this concise book presents the subject in a lively and approachable fashion. It deals with the very important ideas in modern mathematical logic without the detailed mathematical work required of those with a professional interest in logic.The book begins with a historical survey of the development of mathematical logic from two parallel streams: formal deduction, which originated with Aristotle, Euclid, and others; and mathematical analysis, which dates back to Archimedes in the same era. The streams beg

  4. Implementation of a Fuzzy Logic Speed Controller for a Permanent ...

    African Journals Online (AJOL)

    In this paper DC motor control models were mathematically extracted and implemented using fuzzy logic speed controller. All control systems suffer from problems related to undesirable overshoot, longer settling times and vibrations while going from one state to another. To overcome the maximum overshoot, fuzzy logic ...

  5. Introduction to mathematical logic

    CERN Document Server

    Mendelson, Elliott

    2015-01-01

    The new edition of this classic textbook, Introduction to Mathematical Logic, Sixth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Gödel, Church, Kleene, Rosser, and Turing.The sixth edition incorporates recent work on Gödel's second incompleteness theorem as well as restoring an appendix on consistency proofs for first-order arithmetic. This appendix last appeared in the first edition. It is offered in th

  6. INDONESIA PUBLIC BANKS PERFORMANCE EVALUATION USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Sugiarto Sugiarto

    2016-10-01

    Full Text Available Return on Asset (ROA is a variable that has the greatest ability in predicting public banks stock prices in Indonesia. The coefficient of determination of ROA on public banks stock prices in Indonesia reached 54.8%. ROA has a significant positive influence on public bank stock prices in Indonesia. Fuzzy logic process on the performance of the 15 public banks in Indonesia have been carried out using the data of ROA for the period 2010 up to 2013. Bank reference performance according to ROA is based on Bank Indonesia Letter No. 6 / 23DPNP / 2011. The performance of each bank was analyzed by conventional methods and as a comparison used fuzzy logic. The evaluation with fuzzy logic method able to provide added value to the currently enforced performance evaluation method. There is significant difference in conclusion between the determination of fuzzy logic models and conventional method

  7. Cell-to-Cell Communication Circuits: Quantitative Analysis of Synthetic Logic Gates

    Science.gov (United States)

    Hoffman-Sommer, Marta; Supady, Adriana; Klipp, Edda

    2012-01-01

    One of the goals in the field of synthetic biology is the construction of cellular computation devices that could function in a manner similar to electronic circuits. To this end, attempts are made to create biological systems that function as logic gates. In this work we present a theoretical quantitative analysis of a synthetic cellular logic-gates system, which has been implemented in cells of the yeast Saccharomyces cerevisiae (Regot et al., 2011). It exploits endogenous MAP kinase signaling pathways. The novelty of the system lies in the compartmentalization of the circuit where all basic logic gates are implemented in independent single cells that can then be cultured together to perform complex logic functions. We have constructed kinetic models of the multicellular IDENTITY, NOT, OR, and IMPLIES logic gates, using both deterministic and stochastic frameworks. All necessary model parameters are taken from literature or estimated based on published kinetic data, in such a way that the resulting models correctly capture important dynamic features of the included mitogen-activated protein kinase pathways. We analyze the models in terms of parameter sensitivity and we discuss possible ways of optimizing the system, e.g., by tuning the culture density. We apply a stochastic modeling approach, which simulates the behavior of whole populations of cells and allows us to investigate the noise generated in the system; we find that the gene expression units are the major sources of noise. Finally, the model is used for the design of system modifications: we show how the current system could be transformed to operate on three discrete values. PMID:22934039

  8. A logical approach to semantic interoperability in healthcare.

    Science.gov (United States)

    Bird, Linda; Brooks, Colleen; Cheong, Yu Chye; Tun, Nwe Ni

    2011-01-01

    Singapore is in the process of rolling out a number of national e-health initiatives, including the National Electronic Health Record (NEHR). A critical enabler in the journey towards semantic interoperability is a Logical Information Model (LIM) that harmonises the semantics of the information structure with the terminology. The Singapore LIM uses a combination of international standards, including ISO 13606-1 (a reference model for electronic health record communication), ISO 21090 (healthcare datatypes), and SNOMED CT (healthcare terminology). The LIM is accompanied by a logical design approach, used to generate interoperability artifacts, and incorporates mechanisms for achieving unidirectional and bidirectional semantic interoperability.

  9. Quantum logic gates using Stark-shifted Raman transitions in a cavity

    International Nuclear Information System (INIS)

    Biswas, Asoka; Agarwal, G.S.

    2004-01-01

    We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and the controlled-NOT gate using a detuned optical cavity interacting with a three-level Raman system. We discuss the role of Stark shifts, which are as important as the terms leading to the two-photon transition. The operation of the proposed logic gates involves metastable states of the atom and hence is not affected by spontaneous emission. These ideas can be extended to produce multiparticle entanglement

  10. A Fuzzy Logic Model to Classify Design Efficiency of Nursing Unit Floors

    Directory of Open Access Journals (Sweden)

    Tuğçe KAZANASMAZ

    2010-01-01

    Full Text Available This study was conducted to determine classifications for the planimetric design efficiency of certain public hospitals by developing a fuzzy logic algorithm. Utilizing primary areas and circulation areas from nursing unit floor plans, the study employed triangular membership functions for the fuzzy subsets. The input variables of primary areas per bed and circulation areas per bed were fuzzified in this model. The relationship between input variables and output variable of design efficiency were displayed as a result of fuzzy rules. To test existing nursing unit floors, efficiency output values were obtained and efficiency classes were constructed by this model in accordance with general norms, guidelines and previous studies. The classification of efficiency resulted from the comparison of hospitals.

  11. Analysis of selected structures for model-based measuring methods using fuzzy logic

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, R.; Kaestner, W.; Fenske, A.; Vandreier, B.; Schefter, S. [Hochschule fuer Technik, Wirtschaft und Sozialwesen Zittau/Goerlitz (FH), Zittau (DE). Inst. fuer Prozesstechnik, Prozessautomatisierung und Messtechnik e.V. (IPM)

    2000-07-01

    Monitoring and diagnosis of safety-related technical processes in nuclear enginering can be improved with the help of intelligent methods of signal processing such as analytical redundancies. This chapter gives an overview about combined methods in form of hybrid models using model based measuring methods (observer) and knowledge-based methods (fuzzy logic). Three variants of hybrid observers (fuzzy-supported observer, hybrid observer with variable gain and hybrid non-linear operating point observer) are explained. As a result of the combination of analytical and fuzzy-based algorithms a new quality of monitoring and diagnosis is achieved. The results will be demonstrated in summary for the example water level estimation within pressure vessels (pressurizer, steam generator, and Boiling Water Reactor) with water-steam mixture during the accidental depressurization. (orig.)

  12. Analysis of selected structures for model-based measuring methods using fuzzy logic

    International Nuclear Information System (INIS)

    Hampel, R.; Kaestner, W.; Fenske, A.; Vandreier, B.; Schefter, S.

    2000-01-01

    Monitoring and diagnosis of safety-related technical processes in nuclear engineering can be improved with the help of intelligent methods of signal processing such as analytical redundancies. This chapter gives an overview about combined methods in form of hybrid models using model based measuring methods (observer) and knowledge-based methods (fuzzy logic). Three variants of hybrid observers (fuzzy-supported observer, hybrid observer with variable gain and hybrid non-linear operating point observer) are explained. As a result of the combination of analytical and fuzzy-based algorithms a new quality of monitoring and diagnosis is achieved. The results will be demonstrated in summary for the example water level estimation within pressure vessels (pressurizer, steam generator, and Boiling Water Reactor) with water-steam mixture during the accidental depressurization. (orig.)

  13. Fuzzy Logic and Arithmetical Hierarchy III

    Czech Academy of Sciences Publication Activity Database

    Hájek, Petr

    2001-01-01

    Roč. 68, č. 1 (2001), s. 129-142 ISSN 0039-3215 R&D Projects: GA AV ČR IAA1030004 Institutional research plan: AV0Z1030915 Keywords : fuzzy logic * basic fuzzy logic * Lukasiewicz logic * Godel logic * product logic * arithmetical hierarchy Subject RIV: BA - General Mathematics

  14. Semantic theory for logic programming

    Energy Technology Data Exchange (ETDEWEB)

    Brown, F M

    1981-01-01

    The author axiomatizes a number of meta theoretic concepts which have been used in logic programming, including: meaning, logical truth, nonentailment, assertion and erasure, thus showing that these concepts are logical in nature and need not be defined as they have previously been defined in terms of the operations of any particular interpreter for logic programs. 10 references.

  15. Model based on diffuse logic for the construction of indicators of urban vulnerability in natural phenomena

    International Nuclear Information System (INIS)

    Garcia L, Carlos Eduardo; Hurtado G, Jorge Eduardo

    2003-01-01

    Upon considering the vulnerability of a urban system in a holistic way and taking into account some natural, technological and social factors, a model based upon a system of fuzzy logic, allowing to estimate the vulnerability of any system under natural phenomena potentially catastrophic is proposed. The model incorporates quantitative and qualitative variables in a dynamic system, in which variations in one of them have a positive or negative impact over the rest. An urban system model and an indicator model to determine the vulnerability due to natural phenomena were designed

  16. Logic and Learning

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Gierasimczuk, Nina; de Jong, Dick

    2014-01-01

    Learning and learnability have been long standing topics of interests within the linguistic, computational, and epistemological accounts of inductive in- ference. Johan van Benthem’s vision of the “dynamic turn” has not only brought renewed life to research agendas in logic as the study of inform......Learning and learnability have been long standing topics of interests within the linguistic, computational, and epistemological accounts of inductive in- ference. Johan van Benthem’s vision of the “dynamic turn” has not only brought renewed life to research agendas in logic as the study...... of information processing, but likewise helped bring logic and learning in close proximity. This proximity relation is examined with respect to learning and belief revision, updating and efficiency, and with respect to how learnability fits in the greater scheme of dynamic epistemic logic and scientific method....

  17. Magnonic logic circuits

    International Nuclear Information System (INIS)

    Khitun, Alexander; Bao Mingqiang; Wang, Kang L

    2010-01-01

    We describe and analyse possible approaches to magnonic logic circuits and basic elements required for circuit construction. A distinctive feature of the magnonic circuitry is that information is transmitted by spin waves propagating in the magnetic waveguides without the use of electric current. The latter makes it possible to exploit spin wave phenomena for more efficient data transfer and enhanced logic functionality. We describe possible schemes for general computing and special task data processing. The functional throughput of the magnonic logic gates is estimated and compared with the conventional transistor-based approach. Magnonic logic circuits allow scaling down to the deep submicrometre range and THz frequency operation. The scaling is in favour of the magnonic circuits offering a significant functional advantage over the traditional approach. The disadvantages and problems of the spin wave devices are also discussed.

  18. 78 FR 49079 - Lease Modifications, Lease and Logical Mining Unit Diligence, Advance Royalty, Royalty Rates, and...

    Science.gov (United States)

    2013-08-12

    ... Management 43 CFR Parts 3000, 3400, 3430, et al. Lease Modifications, Lease and Logical Mining Unit Diligence... Lease Modifications, Lease and Logical Mining Unit Diligence, Advance Royalty, Royalty Rates, and Bonds... producing coal and has achieved diligence; (3) the value of any unpaid bonus payments; and (4) 100 percent...

  19. Fuzzy logic an introductory course for engineering students

    CERN Document Server

    Trillas, Enric

    2015-01-01

      This book introduces readers to fundamental concepts in fuzzy logic. It describes the necessary theoretical background and a number of basic mathematical models. Moreover, it makes them familiar with fuzzy control, an important topic in the engineering field. The book offers an unconventional introductory textbook on fuzzy logic, presenting theory together with examples and not always following the typical mathematical style of theorem-corollaries. Primarily intended to support engineers during their university studies, and to spark their curiosity about fuzzy logic and its applications, the book is also suitable for self-study, providing a valuable resource for engineers and professionals who deal with imprecision and non-random uncertainty in real-world applications.  

  20. Relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1983-01-01

    on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)

  1. Rosalie Wolf Memorial Lecture: A logic model to measure the impacts of World Elder Abuse Awareness Day.

    Science.gov (United States)

    Stein, Karen

    2016-01-01

    This commentary discusses the need to evaluate the impact of World Elder Abuse Awareness Day activities, the elder abuse field's most sustained public awareness initiative. A logic model is proposed with measures for short-term, medium-term, and long-term outcomes for community-based programs.

  2. Implementing conventional logic unconventionally: photochromic molecular populations as registers and logic gates.

    Science.gov (United States)

    Chaplin, J C; Russell, N A; Krasnogor, N

    2012-07-01

    In this paper we detail experimental methods to implement registers, logic gates and logic circuits using populations of photochromic molecules exposed to sequences of light pulses. Photochromic molecules are molecules with two or more stable states that can be switched reversibly between states by illuminating with appropriate wavelengths of radiation. Registers are implemented by using the concentration of molecules in each state in a given sample to represent an integer value. The register's value can then be read using the intensity of a fluorescence signal from the sample. Logic gates have been implemented using a register with inputs in the form of light pulses to implement 1-input/1-output and 2-input/1-output logic gates. A proof of concept logic circuit is also demonstrated; coupled with the software workflow describe the transition from a circuit design to the corresponding sequence of light pulses. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Damage Identification of Bridge Based on Chebyshev Polynomial Fitting and Fuzzy Logic without Considering Baseline Model Parameters

    Directory of Open Access Journals (Sweden)

    Yu-Bo Jiao

    2015-01-01

    Full Text Available The paper presents an effective approach for damage identification of bridge based on Chebyshev polynomial fitting and fuzzy logic systems without considering baseline model data. The modal curvature of damaged bridge can be obtained through central difference approximation based on displacement modal shape. Depending on the modal curvature of damaged structure, Chebyshev polynomial fitting is applied to acquire the curvature of undamaged one without considering baseline parameters. Therefore, modal curvature difference can be derived and used for damage localizing. Subsequently, the normalized modal curvature difference is treated as input variable of fuzzy logic systems for damage condition assessment. Numerical simulation on a simply supported bridge was carried out to demonstrate the feasibility of the proposed method.

  4. [New horizons in medicine. The application of "fuzzy logic" in clinical and experimental medicine].

    Science.gov (United States)

    Guarini, G

    1994-06-01

    In medicine, the study of physiological and physiopathological problems is generally programmed by elaborating models which respond to the principals of formal logic. This gives the advantage of favouring the transformation of the formal model into a mathematical model of reference which responds to the principles of the set theories. All this is in the utopian wish to obtain as a result of each research, a net answer whether positive or negative, according to the Aristotelian principal of tertium non datur. Taking this into consideration, the A. briefly traces the principles of modal logic and, in particular, those of fuzzy logic, proposing that the latter substitute the actual definition of "logic with more truth values", with that perhaps more pertinent of "logic of conditioned possibilities". After a brief synthesis on the state of the art on the application of fuzzy logic, the A. reports an example of graphic expression of fuzzy logic by demonstrating how the basic glycemic data (expressed by the vectors magnitude) revealed in a sample of healthy individuals, constituted on the whole an unbroken continuous stream of set partials. The A. calls attention to fuzzy logic as a useful instrument to elaborate in a new way the analysis of scenario qualified to acquire the necessary information to single out the critical points which characterize the potential development of any biological phenomenon.

  5. The Diagonal Model of Job Satisfaction and Motivation: Extracted from the Logical Comparison of Content and Process Theories

    Science.gov (United States)

    Sahito, Zafarullah; Vaisanen, Pertti

    2017-01-01

    The purpose of this study is to explore the strongest areas of all prime theories of job satisfaction and motivation to create a new multidimensional model. This model relies on all explored areas from the logical comparison of content and process theories to understand the phenomenon of job satisfaction and motivation of employees. The model…

  6. Relational Parametricity and Separation Logic

    DEFF Research Database (Denmark)

    Birkedal, Lars; Yang, Hongseok

    2008-01-01

    Separation logic is a recent extension of Hoare logic for reasoning about programs with references to shared mutable data structures. In this paper, we provide a new interpretation of the logic for a programming language with higher types. Our interpretation is based on Reynolds's relational...... parametricity, and it provides a formal connection between separation logic and data abstraction. Udgivelsesdato: 2008...

  7. Heterogeneous logics of competition

    DEFF Research Database (Denmark)

    Mossin, Christiane

    2015-01-01

    of competition are only realized as particular forms of social organization by virtue of interplaying with other kinds of logics, like legal logics. (2) Competition logics enjoy a peculiar status in-between constructedness and givenness; although competition depends on laws and mechanisms of socialization, we...... still experience competition as an expression of spontaneous human activities. On the basis of these perspectives, a study of fundamental rights of EU law, springing from the principle of ‘free movement of people’, is conducted. The first part of the empirical analysis seeks to detect the presence...... of a presumed logic of competition within EU law, whereas the second part focuses on particular legal logics. In this respect, the so-called ‘real link criterion’ (determining the access to transnational social rights for certain groups of unemployed people) is given special attention. What is particularly...

  8. Sequential Logic Model Deciphers Dynamic Transcriptional Control of Gene Expressions

    Science.gov (United States)

    Yeo, Zhen Xuan; Wong, Sum Thai; Arjunan, Satya Nanda Vel; Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar; Giuliani, Alessandro; Tsuchiya, Masa

    2007-01-01

    Background Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here. Methodology Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM) is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. Principal Findings SLM is verified by a set of well studied expression data on endo16 of Strongylocentrotus purpuratus (sea urchin) during the embryonic midgut development. A dynamic regulatory mechanism for endo16 expression controlled by three binding sites, UI, R and Otx is identified and demonstrated to be consistent with experimental findings. Furthermore, we show that during transition from specification to differentiation in wild type endo16 expression profile, SLM reveals three binary activities are not sufficient to explain the transcriptional regulation of endo16 expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. Conclusions/Significance The sequential logic formalism allows for a simplification of regulation network dynamics going from a continuous to a discrete representation of gene activation in time. In effect our SLM is non-parametric and model-independent, yet providing rich biological

  9. Sequential logic model deciphers dynamic transcriptional control of gene expressions.

    Directory of Open Access Journals (Sweden)

    Zhen Xuan Yeo

    Full Text Available BACKGROUND: Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here. METHODOLOGY: Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. PRINCIPAL FINDINGS: SLM is verified by a set of well studied expression data on endo16 of Strongylocentrotus purpuratus (sea urchin during the embryonic midgut development. A dynamic regulatory mechanism for endo16 expression controlled by three binding sites, UI, R and Otx is identified and demonstrated to be consistent with experimental findings. Furthermore, we show that during transition from specification to differentiation in wild type endo16 expression profile, SLM reveals three binary activities are not sufficient to explain the transcriptional regulation of endo16 expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. CONCLUSIONS/SIGNIFICANCE: The sequential logic formalism allows for a simplification of regulation network dynamics going from a continuous to a discrete representation of gene activation in time. In effect our SLM is non-parametric and model-independent, yet

  10. Basic logic and quantum entanglement

    International Nuclear Information System (INIS)

    Zizzi, P A

    2007-01-01

    As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But... can it be made explicit? In other words, is it possible to find the connective 'entanglement' in a logical sequent calculus for the machine language? And also, is it possible to 'teach' the quantum computer to 'mimic' the EPR 'paradox'? The answer is in the affirmative, if the logical sequent calculus is that of the weakest possible logic, namely Basic logic. - A weak logic has few structural rules. But in logic, a weak structure leaves more room for connectives (for example the connective 'entanglement'). Furthermore, the absence in Basic logic of the two structural rules of contraction and weakening corresponds to the validity of the no-cloning and no-erase theorems, respectively, in quantum computing

  11. Logic regression and its extensions.

    Science.gov (United States)

    Schwender, Holger; Ruczinski, Ingo

    2010-01-01

    Logic regression is an adaptive classification and regression procedure, initially developed to reveal interacting single nucleotide polymorphisms (SNPs) in genetic association studies. In general, this approach can be used in any setting with binary predictors, when the interaction of these covariates is of primary interest. Logic regression searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome variable, and thus, reveals variables and interactions that are associated with the response and/or have predictive capabilities. The logic expressions are embedded in a generalized linear regression framework, and thus, logic regression can handle a variety of outcome types, such as binary responses in case-control studies, numeric responses, and time-to-event data. In this chapter, we provide an introduction to the logic regression methodology, list some applications in public health and medicine, and summarize some of the direct extensions and modifications of logic regression that have been proposed in the literature. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Using Abductive Research Logic: "The Logic of Discovery", to Construct a Rigorous Explanation of Amorphous Evaluation Findings

    Science.gov (United States)

    Levin-Rozalis, Miri

    2010-01-01

    Background: Two kinds of research logic prevail in scientific research: deductive research logic and inductive research logic. However, both fail in the field of evaluation, especially evaluation conducted in unfamiliar environments. Purpose: In this article I wish to suggest the application of a research logic--"abduction"--"the logic of…

  13. Wide-range nuclear reactor temperature control using automatically tuned fuzzy logic controller

    International Nuclear Information System (INIS)

    Ramaswamy, P.; Edwards, R.M.; Lee, K.Y.

    1992-01-01

    In this paper, a fuzzy logic controller design for optimal reactor temperature control is presented. Since fuzzy logic controllers rely on an expert's knowledge of the process, they are hard to optimize. An optimal controller is used in this paper as a reference model, and a Kalman filter is used to automatically determine the rules for the fuzzy logic controller. To demonstrate the robustness of this design, a nonlinear six-delayed-neutron-group plant is controlled using a fuzzy logic controller that utilizes estimated reactor temperatures from a one-delayed-neutron-group observer. The fuzzy logic controller displayed good stability and performance robustness characteristics for a wide range of operation

  14. When technological discontinuities and disruptive business models challenge dominant industry logics: insights from the drugs industry

    OpenAIRE

    Sabatier , Valérie; Kennard , Adrienne; Mangematin , Vincent

    2012-01-01

    Working paper serie RMT (WPS 12-04) - 39 p; International audience; An industry's dominant logic is the general scheme of value creation and capture shared by its actors. In high technology fields, technological discontinuities are not enough to disrupt an industry's dominant logic. Identifying the factors that might trigger change in that logic can help companies develop strategies to enable them to capture greater value from their innovations by disrupting that logic. Based on analyzing the...

  15. Highland rural constellations. Territory occupation logics and models of order at the North of Traslasierra [Córdoba, Argentina

    Directory of Open Access Journals (Sweden)

    Fernando Diaz Terreno

    2013-07-01

    Full Text Available A set of intentioned readings made on an ancient Córdoba’s landscape reveal the occupation logics developed over centuries of territorial construction. These logics result from the combination of cultural ways of domination and exploitation of space, technical resources available and the natural landscape conditions imposed. From these processes, models of territorial order emerge as operational synthesis from the accumulation of human labor in the territory, gathering –in their own material structure– the key for future planning criteria. Just like constellation structures, order models express a form of spatial organization and some type of rurality specific from Northern Traslasierra. The aim is to arrive at a deep understanding of this postponed territory, show its cultural and natural resources and, through those, build a territorial narrative that places them back on the map of Córdoba’s regions.

  16. Connections among quantum logics

    International Nuclear Information System (INIS)

    Lock, P.F.; Hardegree, G.M.

    1985-01-01

    This paper gives a brief introduction to the major areas of work in quantum event logics: manuals (Foulis and Randall) and semi-Boolean algebras (Abbott). The two theories are compared, and the connection between quantum event logics and quantum propositional logics is made explicit. In addition, the work on manuals provides us with many examples of results stated in Part I. (author)

  17. Design of quaternary logic circuit using quantum dot gate-quantum dot channel FET (QDG-QDCFET)

    Science.gov (United States)

    Karmakar, Supriya

    2014-10-01

    This paper presents the implementation of quaternary logic circuits based on quantum dot gate-quantum dot channel field effect transistor (QDG-QDCFET). The super lattice structure in the quantum dot channel region of QDG-QDCFET and the electron tunnelling from inversion channel to the quantum dot layer in the gate region of a QDG-QDCFET change the threshold voltage of this device which produces two intermediate states between its ON and OFF states. This property of QDG-QDCFET is used to implement multi-valued logic for future multi-valued logic circuit. This paper presents the design of basic quaternary logic operation such as inverter, AND and OR operation based on QDG-QDCFET.

  18. Evaluation of a Postdischarge Call System Using the Logic Model.

    Science.gov (United States)

    Frye, Timothy C; Poe, Terri L; Wilson, Marisa L; Milligan, Gary

    2018-02-01

    This mixed-method study was conducted to evaluate a postdischarge call program for congestive heart failure patients at a major teaching hospital in the southeastern United States. The program was implemented based on the premise that it would improve patient outcomes and overall quality of life, but it had never been evaluated for effectiveness. The Logic Model was used to evaluate the input of key staff members to determine whether the outputs and results of the program matched the expectations of the organization. Interviews, online surveys, reviews of existing patient outcome data, and reviews of publicly available program marketing materials were used to ascertain current program output. After analyzing both qualitative and quantitative data from the evaluation, recommendations were made to the organization to improve the effectiveness of the program.

  19. Safety logic systems of PFBR

    International Nuclear Information System (INIS)

    Sambasivan, S. Ilango

    2004-01-01

    Full text : PFBR is provided with two independent, fast acting and diverse shutdown systems to detect any abnormalities and to initiate safety action. Each system consists of sensors, signal processing systems, logics, drive mechanisms and absorber rods. The absorber rods of the first system are Control and Safety Rods (CSR) and that of the second are called as Diverse Safety Rods (DSR). There are nine CSR and three DSR. While CSR are used for startup, control of reactor power, controlled shutdown and SCRAM, the DSR are used only for SCRAM. The respective drive mechanisms are called as CSRDM and DSRDM. Each of these two systems is capable of executing the shutdown satisfactorily with single failure criteria. Two independent safety logic systems based on diverse principles have been designed for the two shut down systems. The analog outputs of the sensors of Core Monitoring Systems comprising of reactor flux monitoring, core temperature monitoring, failed fuel detection and core flow monitoring systems are processed and converted into binary signals depending on their instantaneous values. Safety logic systems receive the binary signals from these core-monitoring systems and process them logically to protect the reactor against postulated initiating events. Neutronic and power to flow (P/Q) signals form the inputs to safety logic system-I and temperature signals are inputs to the safety logic system II. Failed fuel detection signals are processed by both the shut down systems. The two logic systems to actuate the safety rods are also based on two diverse designs and implemented with solid-state devices to meet all the requirements of safety systems. Safety logic system I that caters to neutronic and P/Q signals is designed around combinational logic and has an on-line test facility to detect struck at faults. The second logic system is based on dynamic logic and hence is inherently safe. This paper gives an overview of the two logic systems that have been

  20. A Paraconsistent Higher Order Logic

    DEFF Research Database (Denmark)

    Villadsen, Jørgen

    2004-01-01

    of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order...... of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens. Many non-classical logics are, at the propositional level, funny toys which work quite good, but when one wants...

  1. Conceptual Pathway Querying of Natural Logic Knowledge Bases from Text Bases

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik; Nilsson, Jørgen Fischer

    2013-01-01

    language than predicate logic. Natural logic accommodates a variety of scientific parlance, ontologies and domain models. It also supports a semantic net or graph view of the knowledge base. This admits computation of relationships between concepts simultaneously through pathfinding in the knowledge base...

  2. Duality Theory and Categorical Universal Logic: With Emphasis on Quantum Structures

    Directory of Open Access Journals (Sweden)

    Yoshihiro Maruyama

    2014-12-01

    Full Text Available Categorical Universal Logic is a theory of monad-relativised hyperdoctrines (or fibred universal algebras, which in particular encompasses categorical forms of both first-order and higher-order quantum logics as well as classical, intuitionistic, and diverse substructural logics. Here we show there are those dual adjunctions that have inherent hyperdoctrine structures in their predicate functor parts. We systematically investigate into the categorical logics of dual adjunctions by utilising Johnstone-Dimov-Tholen's duality-theoretic framework. Our set-theoretical duality-based hyperdoctrines for quantum logic have both universal and existential quantifiers (and higher-order structures, giving rise to a universe of Takeuti-Ozawa's quantum sets via the tripos-to-topos construction by Hyland-Johnstone-Pitts. The set-theoretical hyperdoctrinal models of quantum logic, as well as all quantum hyperdoctrines with cartesian base categories, turn out to give sound and complete semantics for Faggian-Sambin's first-order quantum sequent calculus over cartesian type theory; in addition, quantum hyperdoctrines with monoidal base categories are sound and complete for the calculus over linear type theory. We finally consider how to reconcile Birkhoff-von Neumann's quantum logic and Abramsky-Coecke's categorical quantum mechanics (which is modernised quantum logic as an antithesis to the traditional one via categorical universal logic.

  3. A Dynamic Informational-Epistemic Logic

    NARCIS (Netherlands)

    David Santos, Yuri; Madeira, Alexandre; Benevides, Mário

    2017-01-01

    Epistemic logic is usually employed to model two aspects of a situation: the ontic and the epistemic aspects. Truth, however, is not always attainable, and in many cases we are forced to reason only with whatever information is available to us. In this paper, we will explore a four-valued epistemic

  4. Indexical Hybrid Tense Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Jørgensen, Klaus Frovin

    2012-01-01

    In this paper we explore the logic of now, yesterday, today and tomorrow by combining the semantic approach to indexicality pioneered by Hans Kamp [9] and refined by David Kaplan [10] with hybrid tense logic. We first introduce a special now nominal (our @now corresponds to Kamp’s original now...... operator N) and prove completeness results for both logical and contextual validity. We then add propositional constants to handle yesterday, today and tomorrow; our system correctly treats sentences like “Niels will die yesterday” as contextually unsatisfiable. Building on our completeness results for now......, we prove completeness for the richer language, again for both logical and contextual validity....

  5. Logic circuits based on molecular spider systems.

    Science.gov (United States)

    Mo, Dandan; Lakin, Matthew R; Stefanovic, Darko

    2016-08-01

    Spatial locality brings the advantages of computation speed-up and sequence reuse to molecular computing. In particular, molecular walkers that undergo localized reactions are of interest for implementing logic computations at the nanoscale. We use molecular spider walkers to implement logic circuits. We develop an extended multi-spider model with a dynamic environment wherein signal transmission is triggered via localized reactions, and use this model to implement three basic gates (AND, OR, NOT) and a cascading mechanism. We develop an algorithm to automatically generate the layout of the circuit. We use a kinetic Monte Carlo algorithm to simulate circuit computations, and we analyze circuit complexity: our design scales linearly with formula size and has a logarithmic time complexity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Reversible logic gates on Physarum Polycephalum

    International Nuclear Information System (INIS)

    Schumann, Andrew

    2015-01-01

    In this paper, we consider possibilities how to implement asynchronous sequential logic gates and quantum-style reversible logic gates on Physarum polycephalum motions. We show that in asynchronous sequential logic gates we can erase information because of uncertainty in the direction of plasmodium propagation. Therefore quantum-style reversible logic gates are more preferable for designing logic circuits on Physarum polycephalum

  7. Logical entropy of quantum dynamical systems

    Directory of Open Access Journals (Sweden)

    Ebrahimzadeh Abolfazl

    2016-01-01

    Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.

  8. A beginner's guide to mathematical logic

    CERN Document Server

    Smullyan, Raymond M

    2014-01-01

    Combining stories of great philosophers, quotations, and riddles with the fundamentals of mathematical logic, this new textbook for first courses in mathematical logic was written by the subject's creative master. Raymond Smullyan offers clear, incremental presentations of difficult logic concepts with creative explanations and unique problems related to proofs, propositional logic and first-order logic, undecidability, recursion theory, and other topics.

  9. use of fuzzy logic to investigate weather parameter impact

    African Journals Online (AJOL)

    user

    2016-07-03

    Jul 3, 2016 ... developed in the Simulink environment of a MATLAB software. The model ... smoothing, stochastic process, ARMA (autoregressive integrated moving .... 2.3 Building of Fuzzy Logic Simulation Model. The fuzzy model is ...

  10. Testing Automation of Context-Oriented Programs Using Separation Logic

    Directory of Open Access Journals (Sweden)

    Mohamed A. El-Zawawy

    2014-01-01

    Full Text Available A new approach for programming that enables switching among contexts of commands during program execution is context-oriented programming (COP. This technique is more structured and modular than object-oriented and aspect-oriented programming and hence more flexible. For context-oriented programming, as implemented in COP languages such as ContextJ* and ContextL, this paper introduces accurate operational semantics. The language model of this paper uses Java concepts and is equipped with layer techniques for activation/deactivation of layer contexts. This paper also presents a logical system for COP programs. This logic is necessary for the automation of testing, developing, and validating of partial correctness specifications for COP programs and is an extension of separation logic. A mathematical soundness proof for the logical system against the proposed operational semantics is presented in the paper.

  11. Complex logic functions implemented with quantum dot bionanophotonic circuits.

    Science.gov (United States)

    Claussen, Jonathan C; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G; Medintz, Igor L

    2014-03-26

    We combine quantum dots (QDs) with long-lifetime terbium complexes (Tb), a near-IR Alexa Fluor dye (A647), and self-assembling peptides to demonstrate combinatorial and sequential bionanophotonic logic devices that function by time-gated Förster resonance energy transfer (FRET). Upon excitation, the Tb-QD-A647 FRET-complex produces time-dependent photoluminescent signatures from multi-FRET pathways enabled by the capacitor-like behavior of the Tb. The unique photoluminescent signatures are manipulated by ratiometrically varying dye/Tb inputs and collection time. Fluorescent output is converted into Boolean logic states to create complex arithmetic circuits including the half-adder/half-subtractor, 2:1 multiplexer/1:2 demultiplexer, and a 3-digit, 16-combination keypad lock.

  12. Logic reversibility and thermodynamic irreversibility demonstrated by DNAzyme-based Toffoli and Fredkin logic gates.

    Science.gov (United States)

    Orbach, Ron; Remacle, Françoise; Levine, R D; Willner, Itamar

    2012-12-26

    The Toffoli and Fredkin gates were suggested as a means to exhibit logic reversibility and thereby reduce energy dissipation associated with logic operations in dense computing circuits. We present a construction of the logically reversible Toffoli and Fredkin gates by implementing a library of predesigned Mg(2+)-dependent DNAzymes and their respective substrates. Although the logical reversibility, for which each set of inputs uniquely correlates to a set of outputs, is demonstrated, the systems manifest thermodynamic irreversibility originating from two quite distinct and nonrelated phenomena. (i) The physical readout of the gates is by fluorescence that depletes the population of the final state of the machine. This irreversible, heat-releasing process is needed for the generation of the output. (ii) The DNAzyme-powered logic gates are made to operate at a finite rate by invoking downhill energy-releasing processes. Even though the three bits of Toffoli's and Fredkin's logically reversible gates manifest thermodynamic irreversibility, we suggest that these gates could have important practical implication in future nanomedicine.

  13. The Interplay of Institutional Logics in IT Public–Private Partnerships

    DEFF Research Database (Denmark)

    Beck, Roman; Marschollek, Oliver; Gregory, Robert

    2015-01-01

    - and private-side stakeholders. Our case study of an IT PPP reveals public- and private-side differences that initially impeded the establishment of a partnership; using institutional logics theory as meta-theoretical lens, we propose a model that explains how public and private parties managed to negotiate...... their mode of collaboration by balancing their competing institutional norms and practices which ultimately resulted in the convergence of the two divergent logics. Our paper contributes to theory and practice by (1) elucidating the theoretical foundations and role of institutional logics for IT project...

  14. Functions and generality of logic reflections on Dedekind's and Frege's logicisms

    CERN Document Server

    Benis-Sinaceur, Hourya; Sandu, Gabriel

    2015-01-01

    This book examines three connected aspects of Frege's logicism: the differences between Dedekind's and Frege's interpretation of the term 'logic' and related terms and reflects on Frege's notion of function, comparing its understanding and the role it played in Frege's and Lagrange's foundational programs. It concludes with an examination of the notion of arbitrary function, taking into account Frege's, Ramsey's and Russell's view on the subject. Composed of three chapters, this book sheds light on important aspects of Dedekind's and Frege's logicisms. The first chapter explains how, although he shares Frege's aim at substituting logical standards of rigor to intuitive imports from spatio-temporal experience into the deductive presentation of arithmetic, Dedekind had a different goal and used or invented different tools. The chapter highlights basic dissimilarities between Dedekind's and Frege's actual ways of doing and thinking. The second chapter reflects on Frege's notion of a function, in comparison with ...

  15. An Algebraic View of Super-Belnap Logics

    Czech Academy of Sciences Publication Activity Database

    Albuquerque, H.; Přenosil, Adam; Rivieccio, U.

    2017-01-01

    Roč. 105, č. 6 (2017), s. 1051-1086 ISSN 0039-3215 R&D Projects: GA ČR GBP202/12/G061 Grant - others:EU(XE) PIRSES- GA-2012-31898 Institutional support: RVO:67985807 Keywords : Super-Belnap logics * Four-valued logic * Paraconsistent logic * Belnap–Dunn logic * FDE * Logic of Paradox * Kleene logic * Exactly True logic * De Morgan algebras * Abstract Algebraic Logic * Leibniz filters * Strong versions of logics Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.589, year: 2016

  16. Fuzzy logic and intelligent technologies in nuclear science

    International Nuclear Information System (INIS)

    Ruan, D.

    1998-01-01

    The research project on Fuzzy Logic and Intelligent technologies (FLINS) aims to bridge the gap between novel technologies and the nuclear industry. It aims to initiate research and development programs for solving intricate problems pertaining to the nuclear environment by using modern technologies as additional tool. The major achievements for 1997 include the application of the fuzzy-logic to the BR-1 reactor, the elaboration of a Fuzzy-control model as well as contributions to several workshops and publications

  17. Logic Programming: PROLOG.

    Science.gov (United States)

    Lopez, Antonio M., Jr.

    1989-01-01

    Provides background material on logic programing and presents PROLOG as a high-level artificial intelligence programing language that borrows its basic constructs from logic. Suggests the language is one which will help the educator to achieve various goals, particularly the promotion of problem solving ability. (MVL)

  18. Photovoltaic System Modeling with Fuzzy Logic Based Maximum Power Point Tracking Algorithm

    Directory of Open Access Journals (Sweden)

    Hasan Mahamudul

    2013-01-01

    Full Text Available This paper represents a novel modeling technique of PV module with a fuzzy logic based MPPT algorithm and boost converter in Simulink environment. The prime contributions of this work are simplification of PV modeling technique and implementation of fuzzy based MPPT system to track maximum power efficiently. The main highlighted points of this paper are to demonstrate the precise control of the duty cycle with respect to various atmospheric conditions, illustration of PV characteristic curves, and operation analysis of the converter. The proposed system has been applied for three different PV modules SOLKAR 36 W, BP MSX 60 W, and KC85T 87 W. Finally the resultant data has been compared with the theoretical prediction and company specified value to ensure the validity of the system.

  19. Locality-preserving logical operators in topological stabilizer codes

    Science.gov (United States)

    Webster, Paul; Bartlett, Stephen D.

    2018-01-01

    Locality-preserving logical operators in topological codes are naturally fault tolerant, since they preserve the correctability of local errors. Using a correspondence between such operators and gapped domain walls, we describe a procedure for finding all locality-preserving logical operators admitted by a large and important class of topological stabilizer codes. In particular, we focus on those equivalent to a stack of a finite number of surface codes of any spatial dimension, where our procedure fully specifies the group of locality-preserving logical operators. We also present examples of how our procedure applies to codes with different boundary conditions, including color codes and toric codes, as well as more general codes such as Abelian quantum double models and codes with fermionic excitations in more than two dimensions.

  20. Introduction to fuzzy logic using Matlab

    CERN Document Server

    Sivanandam, SN; Deepa, S N

    2006-01-01

    Fuzzy Logic, at present is a hot topic, among academicians as well various programmers. This book is provided to give a broad, in-depth overview of the field of Fuzzy Logic. The basic principles of Fuzzy Logic are discussed in detail with various solved examples. The different approaches and solutions to the problems given in the book are well balanced and pertinent to the Fuzzy Logic research projects. The applications of Fuzzy Logic are also dealt to make the readers understand the concept of Fuzzy Logic. The solutions to the problems are programmed using MATLAB 6.0 and the simulated results are given. The MATLAB Fuzzy Logic toolbox is provided for easy reference.

  1. Basic logic and quantum entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Zizzi, P A [Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, 35121 Padova (Italy)

    2007-05-15

    As it is well known, quantum entanglement is one of the most important features of quantum computing, as it leads to massive quantum parallelism, hence to exponential computational speed-up. In a sense, quantum entanglement is considered as an implicit property of quantum computation itself. But... can it be made explicit? In other words, is it possible to find the connective 'entanglement' in a logical sequent calculus for the machine language? And also, is it possible to 'teach' the quantum computer to 'mimic' the EPR 'paradox'? The answer is in the affirmative, if the logical sequent calculus is that of the weakest possible logic, namely Basic logic. - A weak logic has few structural rules. But in logic, a weak structure leaves more room for connectives (for example the connective 'entanglement'). Furthermore, the absence in Basic logic of the two structural rules of contraction and weakening corresponds to the validity of the no-cloning and no-erase theorems, respectively, in quantum computing.

  2. Using a logic model to evaluate the Kids Together early education inclusion program for children with disabilities and additional needs.

    Science.gov (United States)

    Clapham, Kathleen; Manning, Claire; Williams, Kathryn; O'Brien, Ginger; Sutherland, Margaret

    2017-04-01

    Despite clear evidence that learning and social opportunities for children with disabilities and special needs are more effective in inclusive not segregated settings, there are few known effective inclusion programs available to children with disabilities, their families or teachers in the early years within Australia. The Kids Together program was developed to support children with disabilities/additional needs aged 0-8 years attending mainstream early learning environments. Using a key worker transdisciplinary team model, the program aligns with the individualised package approach of the National Disability Insurance Scheme (NDIS). This paper reports on the use of a logic model to underpin the process, outcomes and impact evaluation of the Kids Together program. The research team worked across 15 Early Childhood Education and Care (ECEC) centres and in home and community settings. A realist evaluation using mixed methods was undertaken to understand what works, for whom and in what contexts. The development of a logic model provided a structured way to explore how the program was implemented and achieved short, medium and long term outcomes within a complex community setting. Kids Together was shown to be a highly effective and innovative model for supporting the inclusion of children with disabilities/additional needs in a range of environments central for early childhood learning and development. The use of a logic model provided a visual representation of the Kids Together model and its component parts and enabled a theory of change to be inferred, showing how a coordinated and collaborative approached can work across multiple environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Circuit Simulation of All-Spin Logic

    KAUST Repository

    Alawein, Meshal

    2016-05-01

    With the aggressive scaling of complementary metal-oxide semiconductor (CMOS) nearing an inevitable physical limit and its well-known power crisis, the quest for an alternative/augmenting technology that surpasses the current semiconductor electronics is needed for further technological progress. Spintronic devices emerge as prime candidates for Beyond CMOS era by utilizing the electron spin as an extra degree of freedom to decrease the power consumption and overcome the velocity limit connected with the charge. By using the nonvolatility nature of magnetization along with its direction to represent a bit of information and then manipulating it by spin-polarized currents, routes are opened for combined memory and logic. This would not have been possible without the recent discoveries in the physics of nanomagnetism such as spin-transfer torque (STT) whereby a spin-polarized current can excite magnetization dynamics through the transfer of spin angular momentum. STT have expanded the available means of switching the magnetization of magnetic layers beyond old classical techniques, promising to fulfill the need for a new generation of dense, fast, and nonvolatile logic and storage devices. All-spin logic (ASL) is among the most promising spintronic logic switches due to its low power consumption, logic-in-memory structure, and operation on pure spin currents. The device is based on a lateral nonlocal spin valve and STT switching. It utilizes two nanomagnets (whereby information is stored) that communicate with pure spin currents through a spin-coherent nonmagnetic channel. By using the well-known spin physics and the recently proposed four-component spin circuit formalism, ASL can be thoroughly studied and simulated. Previous attempts to model ASL in the linear and diffusive regime either neglect the dynamic characteristics of transport or do not provide a scalable and robust platform for full micromagnetic simulations and inclusion of other effects like spin Hall

  4. Implicational (semilinear) logics III: completeness properties

    Czech Academy of Sciences Publication Activity Database

    Cintula, Petr; Noguera, Carles

    2018-01-01

    Roč. 57, 3-4 (2018), s. 391-420 ISSN 0933-5846 R&D Projects: GA ČR GA13-14654S EU Projects: European Commission(XE) 689176 - SYSMICS Institutional support: RVO:67985807 ; RVO:67985556 Keywords : abstract algebraic logic * protoalgebraic logics * implicational logics * disjunctional logics * semilinear logics * non-classical logics * completeness theorems * rational completeness Subject RIV: BA - General Mathematics; BA - General Mathematics (UTIA-B) OBOR OECD: Computer science s, information science , bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.394, year: 2016

  5. Implicational (semilinear) logics III: completeness properties

    Czech Academy of Sciences Publication Activity Database

    Cintula, Petr; Noguera, Carles

    2018-01-01

    Roč. 57, 3-4 (2018), s. 391-420 ISSN 0933-5846 R&D Projects: GA ČR GA13-14654S EU Projects: European Commission(XE) 689176 - SYSMICS Institutional support: RVO:67985807 ; RVO:67985556 Keywords : abstract algebraic logic * protoalgebraic logics * implicational logics * disjunctional logics * semilinear logics * non-classical logics * completeness theorems * rational completeness Subject RIV: BA - General Mathematics; BA - General Mathematics (UTIA-B) OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.394, year: 2016

  6. Stereotypical Reasoning: Logical Properties

    OpenAIRE

    Lehmann, Daniel

    2002-01-01

    Stereotypical reasoning assumes that the situation at hand is one of a kind and that it enjoys the properties generally associated with that kind of situation. It is one of the most basic forms of nonmonotonic reasoning. A formal model for stereotypical reasoning is proposed and the logical properties of this form of reasoning are studied. Stereotypical reasoning is shown to be cumulative under weak assumptions.

  7. Magnetoresistive logic and biochip

    International Nuclear Information System (INIS)

    Brueckl, Hubert; Brzeska, Monika; Brinkmann, Dirk; Schotter, J.Joerg; Reiss, Guenter; Schepper, Willi; Kamp, P.-B.; Becker, Anke

    2004-01-01

    While some magnetoresistive devices based on giant magnetoresistance or spin-dependent tunneling are already commercialized, a new branch of development is evolving towards magnetoresistive logic with magnetic tunnel junctions. Furthermore, the new magnetoelectronic effects show promising properties in magnetoresistive biochips, which are capable of detecting even single molecules (e.g. DNA) by functionalized magnetic markers. The unclear limits of this approach are discussed with two model systems

  8. Microelectromechanical reprogrammable logic device

    Science.gov (United States)

    Hafiz, M. A. A.; Kosuru, L.; Younis, M. I.

    2016-01-01

    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme. PMID:27021295

  9. Microelectromechanical reprogrammable logic device

    KAUST Repository

    Hafiz, Md Abdullah Al

    2016-03-29

    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme.

  10. Design, Analysis and Test of Logic Circuits Under Uncertainty

    CERN Document Server

    Krishnaswamy, Smita; Hayes, John P

    2013-01-01

    Integrated circuits (ICs) increasingly exhibit uncertain characteristics due to soft errors, inherently probabilistic devices, and manufacturing variability. As device technologies scale, these effects can be detrimental to the reliability of logic circuits.  To improve future semiconductor designs, this book describes methods for analyzing, designing, and testing circuits subject to probabilistic effects. The authors first develop techniques to model inherently probabilistic methods in logic circuits and to test circuits for determining their reliability after they are manufactured. Then, they study error-masking mechanisms intrinsic to digital circuits and show how to leverage them to design more reliable circuits.  The book describes techniques for:   • Modeling and reasoning about probabilistic behavior in logic circuits, including a matrix-based reliability-analysis framework;   • Accurate analysis of soft-error rate (SER) based on functional-simulation, sufficiently scalable for use in gate-l...

  11. Verification and Planning Based on Coinductive Logic Programming

    Science.gov (United States)

    Bansal, Ajay; Min, Richard; Simon, Luke; Mallya, Ajay; Gupta, Gopal

    2008-01-01

    Coinduction is a powerful technique for reasoning about unfounded sets, unbounded structures, infinite automata, and interactive computations [6]. Where induction corresponds to least fixed point's semantics, coinduction corresponds to greatest fixed point semantics. Recently coinduction has been incorporated into logic programming and an elegant operational semantics developed for it [11, 12]. This operational semantics is the greatest fix point counterpart of SLD resolution (SLD resolution imparts operational semantics to least fix point based computations) and is termed co- SLD resolution. In co-SLD resolution, a predicate goal p( t) succeeds if it unifies with one of its ancestor calls. In addition, rational infinite terms are allowed as arguments of predicates. Infinite terms are represented as solutions to unification equations and the occurs check is omitted during the unification process. Coinductive Logic Programming (Co-LP) and Co-SLD resolution can be used to elegantly perform model checking and planning. A combined SLD and Co-SLD resolution based LP system forms the common basis for planning, scheduling, verification, model checking, and constraint solving [9, 4]. This is achieved by amalgamating SLD resolution, co-SLD resolution, and constraint logic programming [13] in a single logic programming system. Given that parallelism in logic programs can be implicitly exploited [8], complex, compute-intensive applications (planning, scheduling, model checking, etc.) can be executed in parallel on multi-core machines. Parallel execution can result in speed-ups as well as in larger instances of the problems being solved. In the remainder we elaborate on (i) how planning can be elegantly and efficiently performed under real-time constraints, (ii) how real-time systems can be elegantly and efficiently model- checked, as well as (iii) how hybrid systems can be verified in a combined system with both co-SLD and SLD resolution. Implementations of co-SLD resolution

  12. Fuzzy Logic Based The Application of Multi-Microcontroller in Mobile Robot Model

    Directory of Open Access Journals (Sweden)

    Nuryono Satya Widodo

    2009-12-01

    Full Text Available This paper proposed a fuzzy logic based mobile robot as implemented in a multimicrocontroller system. Fuzzy logic controller was developed based on a behavior based approach. The Controller inputs were obtained from seven sonar sensor and three tactile switches. Behavior based approach was implemented in different level priority of behaviors. The behaviors were: obstacle avoidance, wall following and escaping as the emergency behavior. The results show that robot was able to navigate autonomously and avoid the entire obstacle.

  13. Notes on stochastic (bio)-logic gates: computing with allosteric cooperativity.

    Science.gov (United States)

    Agliari, Elena; Altavilla, Matteo; Barra, Adriano; Dello Schiavo, Lorenzo; Katz, Evgeny

    2015-05-15

    Recent experimental breakthroughs have finally allowed to implement in-vitro reaction kinetics (the so called enzyme based logic) which code for two-inputs logic gates and mimic the stochastic AND (and NAND) as well as the stochastic OR (and NOR). This accomplishment, together with the already-known single-input gates (performing as YES and NOT), provides a logic base and paves the way to the development of powerful biotechnological devices. However, as biochemical systems are always affected by the presence of noise (e.g. thermal), standard logic is not the correct theoretical reference framework, rather we show that statistical mechanics can work for this scope: here we formulate a complete statistical mechanical description of the Monod-Wyman-Changeaux allosteric model for both single and double ligand systems, with the purpose of exploring their practical capabilities to express noisy logical operators and/or perform stochastic logical operations. Mixing statistical mechanics with logics, and testing quantitatively the resulting findings on the available biochemical data, we successfully revise the concept of cooperativity (and anti-cooperativity) for allosteric systems, with particular emphasis on its computational capabilities, the related ranges and scaling of the involved parameters and its differences with classical cooperativity (and anti-cooperativity).

  14. An electrically reconfigurable logic gate intrinsically enabled by spin-orbit materials.

    Science.gov (United States)

    Kazemi, Mohammad

    2017-11-10

    The spin degree of freedom in magnetic devices has been discussed widely for computing, since it could significantly reduce energy dissipation, might enable beyond Von Neumann computing, and could have applications in quantum computing. For spin-based computing to become widespread, however, energy efficient logic gates comprising as few devices as possible are required. Considerable recent progress has been reported in this area. However, proposals for spin-based logic either require ancillary charge-based devices and circuits in each individual gate or adopt principals underlying charge-based computing by employing ancillary spin-based devices, which largely negates possible advantages. Here, we show that spin-orbit materials possess an intrinsic basis for the execution of logic operations. We present a spin-orbit logic gate that performs a universal logic operation utilizing the minimum possible number of devices, that is, the essential devices required for representing the logic operands. Also, whereas the previous proposals for spin-based logic require extra devices in each individual gate to provide reconfigurability, the proposed gate is 'electrically' reconfigurable at run-time simply by setting the amplitude of the clock pulse applied to the gate. We demonstrate, analytically and numerically with experimentally benchmarked models, that the gate performs logic operations and simultaneously stores the result, realizing the 'stateful' spin-based logic scalable to ultralow energy dissipation.

  15. Proposal for the Formalization of Dialectical Logic

    Directory of Open Access Journals (Sweden)

    José Luis Usó-Doménech

    2016-12-01

    Full Text Available Classical logic is typically concerned with abstract analysis. The problem for a synthetic logic is to transcend and unify available data to reconstruct the object as a totality. Three rules are proposed to pass from classic logic to synthetic logic. We present the category logic of qualitative opposition using examples from various sciences. This logic has been defined to include the neuter as part of qualitative opposition. The application of these rules to qualitative opposition, and, in particular, its neuter, demonstrated that a synthetic logic allows the truth of some contradictions. This synthetic logic is dialectical with a multi-valued logic, which gives every proposition a truth value in the interval [0,1] that is the square of the modulus of a complex number. In this dialectical logic, contradictions of the neuter of an opposition may be true.

  16. Modern logic 1850-1950, East and West

    CERN Document Server

    Fuller, Mark

    2016-01-01

    This book presents diverse topics in mathematical logic such as proof theory, meta-mathematics, and applications of logic to mathematical structures. The collection spans the first 100 years of modern logic and is dedicated to the memory of Irving Anellis, founder of the journal 'Modern Logic', whose academic work was essential in promoting the algebraic tradition of logic, as represented by Charles Sanders Peirce. Anellis’s association with the Russian logic community introduced their school of logic to a wider audience in the USA, Canada and Western Europe. In addition, the collection takes a historical perspective on proof theory and the development of logic and mathematics in Eastern Logic, the Soviet Union and Russia. The book will be of interest to historians and philosophers in logic and mathematics, and the more specialized papers will also appeal to mathematicians and logicians.

  17. Classification of quantum phases and topology of logical operators in an exactly solved model of quantum codes

    International Nuclear Information System (INIS)

    Yoshida, Beni

    2011-01-01

    Searches for possible new quantum phases and classifications of quantum phases have been central problems in physics. Yet, they are indeed challenging problems due to the computational difficulties in analyzing quantum many-body systems and the lack of a general framework for classifications. While frustration-free Hamiltonians, which appear as fixed point Hamiltonians of renormalization group transformations, may serve as representatives of quantum phases, it is still difficult to analyze and classify quantum phases of arbitrary frustration-free Hamiltonians exhaustively. Here, we address these problems by sharpening our considerations to a certain subclass of frustration-free Hamiltonians, called stabilizer Hamiltonians, which have been actively studied in quantum information science. We propose a model of frustration-free Hamiltonians which covers a large class of physically realistic stabilizer Hamiltonians, constrained to only three physical conditions; the locality of interaction terms, translation symmetries and scale symmetries, meaning that the number of ground states does not grow with the system size. We show that quantum phases arising in two-dimensional models can be classified exactly through certain quantum coding theoretical operators, called logical operators, by proving that two models with topologically distinct shapes of logical operators are always separated by quantum phase transitions.

  18. Lectures on Logic and Computation

    DEFF Research Database (Denmark)

    The European Summer School in Logic, Language and Information (ESSLLI) is organized every year by the Association for Logic, Language and Information (FoLLI) in different sites around Europe. The main focus of ESSLLI is on the interface between linguistics, logic and computation. ESSLLI offers fo...

  19. Strong Completeness for Markovian Logics

    DEFF Research Database (Denmark)

    Kozen, Dexter; Mardare, Radu Iulian; Panangaden, Prakash

    2013-01-01

    In this paper we present Hilbert-style axiomatizations for three logics for reasoning about continuous-space Markov processes (MPs): (i) a logic for MPs defined for probability distributions on measurable state spaces, (ii) a logic for MPs defined for sub-probability distributions and (iii) a log...

  20. Error-Transparent Quantum Gates for Small Logical Qubit Architectures

    Science.gov (United States)

    Kapit, Eliot

    2018-02-01

    One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.

  1. The logic of actual obligation. An alternative approach to deontic logic

    NARCIS (Netherlands)

    Voorbraak, F.

    In this paper we develop a system of deontic logic (LAO, the logic of actual obligation) with a rather limited scope: we are, only interested in obligations as far as they: are relevant for deciding what actions actually ought to be done in a particular situation, given some normative system N.

  2. From the history of logic. Semantics of homonymy in Porphyry’s logic

    Directory of Open Access Journals (Sweden)

    Garin Sergey Vyacheslavovich

    2016-10-01

    Full Text Available The article deals with the logical and semantic aspects of the theory of homonyms in Aristotle’s “Categories” within the context of Porphyry’s commentaries. We consider the logical formation of the doctrine of homonymy of nouns, verbs, and conjunctions in Ancient Greek. We reveal the difficulty in interpreting the terms “κατηγορίαι”, “ὄνομα” and “ῥῆμα”. The paper has shed some light on different aspects of Porphyry’s logic.

  3. Functional-logic simulation of IP-blocks dose functional failures

    Directory of Open Access Journals (Sweden)

    Vyacheslav M. Barbashov

    2017-11-01

    Full Text Available The technique of functional-logical simulation of System-on-Chip (SoC total dose radiation failures is presented based on fuzzy logic sets theory. An analysis of the capabilities of this approach for IP-blocks radiation behavior is carried out along with the analysis of operating modes under irradiation influence on IP-blocks radiation behavior. The following elements of this technique application for simulation of dose radiation failures of various types of IP-units are studied: logical elements, memory units and cells, processors. Examples of criterial membership functions and operability functions construction are given for these IP-units and for various critical parameters characterizing their failures. It is shown that when modeling total dose failures it is necessary to take into account the influence of the functional mode on the model parameters. The technique proposed allows improving the reliability of the SoC radiation hardness estimation, also for the purpose of solving the problems of information security of electronic devices.

  4. Modal Logics for Cryptographic Processes

    DEFF Research Database (Denmark)

    Frendrup, U.; Huttel, Hans; Jensen, N. J.

    2002-01-01

    We present three modal logics for the spi-calculus and show that they capture strong versions of the environment sensitive bisimulation introduced by Boreale et al. Our logics differ from conventional modal logics for process calculi in that they allow us to describe the knowledge of an attacker ...

  5. Logic and Philosophy of Time

    DEFF Research Database (Denmark)

    By blending historical research with current research, this collection (loosely inspired by themes from the work of Arthur Prior) demonstrates the importance of Prior's writings and helps us to gain a deeper understanding of time, its logic(s), and its language(s).......By blending historical research with current research, this collection (loosely inspired by themes from the work of Arthur Prior) demonstrates the importance of Prior's writings and helps us to gain a deeper understanding of time, its logic(s), and its language(s)....

  6. Logical independence and quantum randomness

    International Nuclear Information System (INIS)

    Paterek, T; Kofler, J; Aspelmeyer, M; Zeilinger, A; Brukner, C; Prevedel, R; Klimek, P

    2010-01-01

    We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.

  7. A Comparison of Implications in Orthomodular Quantum Logic—Morphological Analysis of Quantum Logic

    Directory of Open Access Journals (Sweden)

    Mitsuhiko Fujio

    2012-01-01

    Full Text Available Morphological operators are generalized to lattices as adjunction pairs (Serra, 1984; Ronse, 1990; Heijmans and Ronse, 1990; Heijmans, 1994. In particular, morphology for set lattices is applied to analyze logics through Kripke semantics (Bloch, 2002; Fujio and Bloch, 2004; Fujio, 2006. For example, a pair of morphological operators as an adjunction gives rise to a temporalization of normal modal logic (Fujio and Bloch, 2004; Fujio, 2006. Also, constructions of models for intuitionistic logic or linear logics can be described in terms of morphological interior and/or closure operators (Fujio and Bloch, 2004. This shows that morphological analysis can be applied to various non-classical logics. On the other hand, quantum logics are algebraically formalized as orhomodular or modular ortho-complemented lattices (Birkhoff and von Neumann, 1936; Maeda, 1980; Chiara and Giuntini, 2002, and shown to allow Kripke semantics (Chiara and Giuntini, 2002. This suggests the possibility of morphological analysis for quantum logics. In this article, to show an efficiency of morphological analysis for quantum logic, we consider the implication problem in quantum logics (Chiara and Giuntini, 2002. We will give a comparison of the 5 polynomial implication connectives available in quantum logics.

  8. Logic an introductory course

    CERN Document Server

    Newton-Smith, WH

    2003-01-01

    A complete introduction to logic for first-year university students with no background in logic, philosophy or mathematics. In easily understood steps it shows the mechanics of the formal analysis of arguments.

  9. A Resolution Prover for Coalition Logic

    OpenAIRE

    Nalon, Cláudia; Zhang, Lan; Dixon, Clare; Hustadt, Ullrich

    2014-01-01

    We present a prototype tool for automated reasoning for Coalition Logic, a non-normal modal logic that can be used for reasoning about cooperative agency. The theorem prover CLProver is based on recent work on a resolution-based calculus for Coalition Logic that operates on coalition problems, a normal form for Coalition Logic. We provide an overview of coalition problems and of the resolution-based calculus for Coalition Logic. We then give details of the implementation of CLProver and prese...

  10. Truth-as-simulation : towards a coalgebraic perspective on logic and games

    NARCIS (Netherlands)

    A. Baltag

    1999-01-01

    textabstractBuilding on the work of L. Moss on coalgebraic logic, I study in a general setting a class of infinitary modal logics for F-coalgebras, designed to capture simulation and bisimulation. For a notion of coalgebraic simulation, I use the work of A. Thijs on modelling simulation in terms of

  11. Design and experimentation of BSFQ logic devices

    International Nuclear Information System (INIS)

    Hosoki, T.; Kodaka, H.; Kitagawa, M.; Okabe, Y.

    1999-01-01

    Rapid single flux quantum (RSFQ) logic needs synchronous pulses for each gate, so the clock-wiring problem is more serious when designing larger scale circuits with this logic. So we have proposed a new SFQ logic which follows Boolean algebra perfectly by using set and reset pulses. With this logic, the level information of current input is transmitted with these pulses generated by level-to-pulse converters, and each gate calculates logic using its phase level made by these pulses. Therefore, our logic needs no clock in each gate. We called this logic 'Boolean SFQ (BSFQ) logic'. In this paper, we report design and experimentation for an AND gate with inverting input based on BSFQ logic. The experimental results for OR and XOR gates are also reported. (author)

  12. Values beyond value? Is anything beyond the logic of capital?

    Science.gov (United States)

    Skeggs, Bev

    2014-03-01

    We are living in a time when it is frequently assumed that the logic of capital has subsumed every single aspect of our lives, intervening in the organization of our intimate relations as well as the control of our time, including investments in the future (e.g. via debt). The theories that document the incursion of this logic (often through the terms of neoliberalism and/or governmentality) assume that this logic is internalized, works and organizes everything including our subjectivity. These theories performatively reproduce the very conditions they describe, shrinking the domain of values and making it subject to capital's logic. All values are reduced to value. Yet values and value are always dialogic, dependent and co-constituting. In this paper I chart the history by which value eclipses values and how this shrinks our sociological imagination. By outlining the historical processes that institutionalized different organizations of the population through political economy and the social contract, producing ideas of proper personhood premised on propriety, I detail how forms of raced, gendered and classed personhood was formed. The gaps between the proper and improper generate significant contradictions that offer both opportunities to and limits on capitals' lines of flight. It is the lacks, the residues, and the excess that cannot be captured by capital's mechanisms of valuation that will be explored in order to think beyond the logic of capital and show how values will always haunt value. © London School of Economics and Political Science 2014.

  13. Combining Paraconsistent Logic with Argumentation

    NARCIS (Netherlands)

    Grooters, Diana; Prakken, Hendrik

    2014-01-01

    One tradition in the logical study of argumentation is to allow for arguments that combine strict and defeasible inference rules, and to derive the strict inference rules from a logic at least as strong as classical logic. An unsolved problem in this tradition is how the trivialising effect of the

  14. Anticoincidence logic using PALs

    International Nuclear Information System (INIS)

    Bolanos, L.; Arista Romeu, E.

    1997-01-01

    This paper describes the functioning principle of an anticoincidence logic and a design of this based on programing logic. The circuit was included in a discriminator of an equipment for single-photon absorptiometry

  15. Fuzzy logic based ELF magnetic field estimation in substations

    International Nuclear Information System (INIS)

    Kosalay, I.

    2008-01-01

    This paper examines estimation of the extremely low frequency magnetic fields (MF) in the power substation. First, the results of the previous relevant research studies and the MF measurements in a sample power substation are presented. Then, a fuzzy logic model based on the geometric definitions in order to estimate the MF distribution is explained. Visual software, which has a three-dimensional screening unit, based on the fuzzy logic technique, has been developed. (authors)

  16. Fuzzy logic prediction of dew point pressure of selected Iranian gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nowroozi, Saeed [Shahid Bahonar Univ. of Kerman (Iran); Iranian Offshore Oil Company (I.O.O.C.) (Iran); Ranjbar, Mohammad; Hashemipour, Hassan; Schaffie, Mahin [Shahid Bahonar Univ. of Kerman (Iran)

    2009-12-15

    The experimental determination of dew point pressure in a window PVT cell is often difficult especially in the case of lean retrograde gas condensate. Besides all statistical, graphical and experimental methods, the fuzzy logic method can be useful and more reliable for estimation of reservoir properties. Fuzzy logic can overcome uncertainty existent in many reservoir properties. Complexity, non-linearity and vagueness are some reservoir parameter characteristics, which can be propagated simply by fuzzy logic. The fuzzy logic dew point pressure modeling system used in this study is a multi input single output (MISO) Mamdani system. The model was developed using experimentally constant volume depletion (CVD) measured samples of some Iranian fields. The performance of the model is compared against the performance of some of the most accurate and general correlations for dew point pressure calculation. Results show that this novel method is more accurate and reliable with an average absolute deviation of 1.33% and 2.68% for developing and checking, respectively. (orig.)

  17. Contextual logic for quantum systems

    International Nuclear Information System (INIS)

    Domenech, Graciela; Freytes, Hector

    2005-01-01

    In this work we build a quantum logic that allows us to refer to physical magnitudes pertaining to different contexts from a fixed one without the contradictions with quantum mechanics expressed in no-go theorems. This logic arises from considering a sheaf over a topological space associated with the Boolean sublattices of the ortholattice of closed subspaces of the Hilbert space of the physical system. Different from standard quantum logics, the contextual logic maintains a distributive lattice structure and a good definition of implication as a residue of the conjunction

  18. Tensor product of quantum logics

    Science.gov (United States)

    Pulmannová, Sylvia

    1985-01-01

    A quantum logic is the couple (L,M) where L is an orthomodular σ-lattice and M is a strong set of states on L. The Jauch-Piron property in the σ-form is also supposed for any state of M. A ``tensor product'' of quantum logics is defined. This definition is compared with the definition of a free orthodistributive product of orthomodular σ-lattices. The existence and uniqueness of the tensor product in special cases of Hilbert space quantum logics and one quantum and one classical logic are studied.

  19. Microelectromechanical resonator based digital logic elements

    KAUST Repository

    Hafiz, Md Abdullah Al

    2016-10-20

    Micro/nano-electromechanical resonator based mechanical computing has recently attracted significant attention. However, its full realization has been hindered by the difficulty in realizing complex combinational logics, in which the logic function is constructed by cascading multiple smaller logic blocks. In this work we report an alternative approach for implementation of digital logic core elements, multiplexer and demultiplexer, which can be used to realize combinational logic circuits by suitable concatenation. Toward this, shallow arch shaped microresonators are electrically connected and their resonance frequencies are tuned based on an electrothermal frequency modulation scheme. This study demonstrates that by reconfiguring the same basic building block, the arch microresonator, complex logic circuits can be realized.

  20. Microelectromechanical resonator based digital logic elements

    KAUST Repository

    Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Younis, Mohammad I.; Fariborzi, Hossein

    2016-01-01

    Micro/nano-electromechanical resonator based mechanical computing has recently attracted significant attention. However, its full realization has been hindered by the difficulty in realizing complex combinational logics, in which the logic function is constructed by cascading multiple smaller logic blocks. In this work we report an alternative approach for implementation of digital logic core elements, multiplexer and demultiplexer, which can be used to realize combinational logic circuits by suitable concatenation. Toward this, shallow arch shaped microresonators are electrically connected and their resonance frequencies are tuned based on an electrothermal frequency modulation scheme. This study demonstrates that by reconfiguring the same basic building block, the arch microresonator, complex logic circuits can be realized.

  1. Students’ logical-mathematical intelligence profile

    Science.gov (United States)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-04-01

    One of students’ characteristics which play an important role in learning mathematics is logical-mathematical intelligence. This present study aims to identify profile of students’ logical-mathematical intelligence in general and specifically in each indicator. It is also analyzed and described based on students’ sex. This research used qualitative method with case study strategy. The subjects involve 29 students of 9th grade that were selected by purposive sampling. Data in this research involve students’ logical-mathematical intelligence result and interview. The results show that students’ logical-mathematical intelligence was identified in the moderate level with the average score is 11.17 and 51.7% students in the range of the level. In addition, the level of both male and female students are also mostly in the moderate level. On the other hand, both male and female students’ logical-mathematical intelligence is strongly influenced by the indicator of ability to classify and understand patterns and relationships. Furthermore, the ability of comparison is the weakest indicator. It seems that students’ logical-mathematical intelligence is still not optimal because more than 50% students are identified in moderate and low level. Therefore, teachers need to design a lesson that can improve students’ logical-mathematical intelligence level, both in general and on each indicator.

  2. Fuzzy Versions of Epistemic and Deontic Logic

    Science.gov (United States)

    Gounder, Ramasamy S.; Esterline, Albert C.

    1998-01-01

    Epistemic and deontic logics are modal logics, respectively, of knowledge and of the normative concepts of obligation, permission, and prohibition. Epistemic logic is useful in formalizing systems of communicating processes and knowledge and belief in AI (Artificial Intelligence). Deontic logic is useful in computer science wherever we must distinguish between actual and ideal behavior, as in fault tolerance and database integrity constraints. We here discuss fuzzy versions of these logics. In the crisp versions, various axioms correspond to various properties of the structures used in defining the semantics of the logics. Thus, any axiomatic theory will be characterized not only by its axioms but also by the set of properties holding of the corresponding semantic structures. Fuzzy logic does not proceed with axiomatic systems, but fuzzy versions of the semantic properties exist and can be shown to correspond to some of the axioms for the crisp systems in special ways that support dependency networks among assertions in a modal domain. This in turn allows one to implement truth maintenance systems. For the technical development of epistemic logic, and for that of deontic logic. To our knowledge, we are the first to address fuzzy epistemic and fuzzy deontic logic explicitly and to consider the different systems and semantic properties available. We give the syntax and semantics of epistemic logic and discuss the correspondence between axioms of epistemic logic and properties of semantic structures. The same topics are covered for deontic logic. Fuzzy epistemic and fuzzy deontic logic discusses the relationship between axioms and semantic properties for these logics. Our results can be exploited in truth maintenance systems.

  3. Logical independence and quantum randomness

    Energy Technology Data Exchange (ETDEWEB)

    Paterek, T; Kofler, J; Aspelmeyer, M; Zeilinger, A; Brukner, C [Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna (Austria); Prevedel, R; Klimek, P [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)], E-mail: tomasz.paterek@univie.ac.at

    2010-01-15

    We propose a link between logical independence and quantum physics. We demonstrate that quantum systems in the eigenstates of Pauli group operators are capable of encoding mathematical axioms and show that Pauli group quantum measurements are capable of revealing whether or not a given proposition is logically dependent on the axiomatic system. Whenever a mathematical proposition is logically independent of the axioms encoded in the measured state, the measurement associated with the proposition gives random outcomes. This allows for an experimental test of logical independence. Conversely, it also allows for an explanation of the probabilities of random outcomes observed in Pauli group measurements from logical independence without invoking quantum theory. The axiomatic systems we study can be completed and are therefore not subject to Goedel's incompleteness theorem.

  4. Marketing Logics, Ambidexterity and Influence

    DEFF Research Database (Denmark)

    Tollin, Karin; Schmidt, Marcus

    2012-01-01

    in four CMOs have taken on this challenge, or adopted a marketing logic which could be referred to as ambidextrous. Furthermore, the study shows that this logic exerts a stronger impact on marketing's influence, compared to logics related to assuring brand consistency and measuring the performance...... of marketing processes. Three other ways to enact marketing management were also revealed, namely: an innovation; a communication; and a supporting marketing logic. This leads us to conclude that the influence of companies' marketing functions show up a heterogeneous picture within which the marketing logics......The duties of companies' chief marketing officers (CMOs) seem incompatible. They are expected to ensure that their company's market assets are properly exploited and recorded, while simultaneously enacting a proactive role in the company's business development. This study shows that about one...

  5. Optical programmable Boolean logic unit.

    Science.gov (United States)

    Chattopadhyay, Tanay

    2011-11-10

    Logic units are the building blocks of many important computational operations likes arithmetic, multiplexer-demultiplexer, radix conversion, parity checker cum generator, etc. Multifunctional logic operation is very much essential in this respect. Here a programmable Boolean logic unit is proposed that can perform 16 Boolean logical operations from a single optical input according to the programming input without changing the circuit design. This circuit has two outputs. One output is complementary to the other. Hence no loss of data can occur. The circuit is basically designed by a 2×2 polarization independent optical cross bar switch. Performance of the proposed circuit has been achieved by doing numerical simulations. The binary logical states (0,1) are represented by the absence of light (null) and presence of light, respectively.

  6. Pulse coded safety logic for PFBR

    International Nuclear Information System (INIS)

    Anwer, Md. Najam; Satheesh, N.; Nagaraj, C.P.; Krishnakumar, B.

    2002-01-01

    Full text: Reactor safety logic is designed to initiate safety action against design basis events. The reactor is shutdown by de-energizing electromagnets and dropping the absorber rods under gravity. In prototype fast breeder reactor (PFBR), shutdown is affected by two independent shutdown systems, viz., control and safety rod drive mechanism (CSRDM) and diverse safety rod drive mechanism (DSRDM). Two separate safety logics are proposed for CSRDM and DSRDM, i.e. solid state logic with on-line fine impulse test (FIT) for CSRDM and pulse coded safety logic (PCSL) for DSRDM. The PCSL primarily utilizes the fact that the vast majority of faults in the logic circuitry result in static conditions at the output. It is arranged such that the presence of pulses are required to hold the shutdown actuators and any DC logic state, either logic 0 or logic 1 releases them. It is a dynamic, self-testing logic and used in a number of reactors. This paper describes the principle of operation of PCSL, its advantages, the concept of guard line logic (GLL), detection of stuck at 0 and stuck at 1 faults, fail safe and diversity features. The implementation of PCSL using Altera Max+Plus II software for PFBR trip signals and the results of simulation are discussed. This paper also describes a test jig using 80186 based system for testing PCSL for various input parameter's combinations and monitoring the outputs

  7. Induction and Confirmation Theory: An Approach based on a Paraconsistent Nonmonotonic Logic

    Directory of Open Access Journals (Sweden)

    Ricardo Sousa Silvestre

    2010-12-01

    Full Text Available This paper is an effort to realize and explore the connections that exist between nonmonotonic logic and confirmation theory. We pick up one of the most wide-spread nonmonotonic formalisms – default logic – and analyze to what extent and under what adjustments it could work as a logic of induction in the philosophical sense. By making use of this analysis, we extend default logic so as to make it able to minimally perform the task of a logic of induction, having as a result a system which we believe has interesting properties from the standpoint of theory of confirmation. It is for instance able to represent chains of inductive rules as well as to reason paraconsistently on the conclusions obtained from them. We then use this logic to represent some traditional ideas concerning confirmation theory, in particular the ones proposed by Carl Hempel in his classical paper “Studies in the Logic of Confirmation” of 1945 and the ones incorporated in the so-called abductive and hy-pothetico-deductive models.

  8. Induction and Confirmation Theory: An Approach based on a Paraconsistent Nonmonotonic Logic

    Directory of Open Access Journals (Sweden)

    Ricardo Sousa Silvestre

    2011-05-01

    Full Text Available This paper is an effort to realize and explore the connections that exist between nonmonotonic logic and confirmation theory. We pick up one of the most wide-spread nonmonotonic formalisms – default logic – and analyze to what extent and under what adjustments it could work as a logic of induction in the philosophical sense. By making use of this analysis, we extend default logic so as to make it able to minimally perform the task of a logic of induction, having as a result a system which we believe has interesting properties from the standpoint of theory of confirmation. It is for instance able to represent chains of inductive rules as well as to reason paraconsistently on the conclusions obtained from them. We then use this logic to represent some traditional ideas concerning confirmation theory, in particular the ones proposed by Carl Hempel in his classical paper "Studies in the Logic of Confirmation" of 1945 and the ones incorporated in the so-called abductive and hy-pothetico-deductive models.

  9. Towards rational closure for fuzzy logic: The case of propositional Godel logic

    CSIR Research Space (South Africa)

    Casini, G

    2013-12-01

    Full Text Available In the field of non-monotonic logics, the notion of rational closure is acknowledged as a landmark and we are going to see whether such a construction can be adopted in the context of mathematical fuzzy logic, a so far (apparently) unexplored...

  10. A Resolution Prover for Coalition Logic

    Directory of Open Access Journals (Sweden)

    Cláudia Nalon

    2014-04-01

    Full Text Available We present a prototype tool for automated reasoning for Coalition Logic, a non-normal modal logic that can be used for reasoning about cooperative agency. The theorem prover CLProver is based on recent work on a resolution-based calculus for Coalition Logic that operates on coalition problems, a normal form for Coalition Logic. We provide an overview of coalition problems and of the resolution-based calculus for Coalition Logic. We then give details of the implementation of CLProver and present the results for a comparison with an existing tableau-based solver.

  11. Logical design for computers and control

    CERN Document Server

    Dodd, Kenneth N

    1972-01-01

    Logical Design for Computers and Control Logical Design for Computers and Control gives an introduction to the concepts and principles, applications, and advancements in the field of control logic. The text covers topics such as logic elements; high and low logic; kinds of flip-flops; binary counting and arithmetic; and Boolean algebra, Boolean laws, and De Morgan's theorem. Also covered are topics such as electrostatics and atomic theory; the integrated circuit and simple control systems; the conversion of analog to digital systems; and computer applications and control. The book is recommend

  12. A manufacturing quality assessment model based-on two stages interval type-2 fuzzy logic

    Science.gov (United States)

    Purnomo, Muhammad Ridwan Andi; Helmi Shintya Dewi, Intan

    2016-01-01

    This paper presents the development of an assessment models for manufacturing quality using Interval Type-2 Fuzzy Logic (IT2-FL). The proposed model is developed based on one of building block in sustainable supply chain management (SSCM), which is benefit of SCM, and focuses more on quality. The proposed model can be used to predict the quality level of production chain in a company. The quality of production will affect to the quality of product. Practically, quality of production is unique for every type of production system. Hence, experts opinion will play major role in developing the assessment model. The model will become more complicated when the data contains ambiguity and uncertainty. In this study, IT2-FL is used to model the ambiguity and uncertainty. A case study taken from a company in Yogyakarta shows that the proposed manufacturing quality assessment model can work well in determining the quality level of production.

  13. Hybridity in the Higher Education of Ukraine: Global Logic or Local Idiosyncrasy?

    Directory of Open Access Journals (Sweden)

    Olga Gomilko

    2016-10-01

    Full Text Available Hybridity as a heuristic concept of the globalization and post-colonialism discourses is used for 1 understanding the logic of the modernization of the higher education of Ukraine (HEU, and 2 for making a meaningful diagnosis of those educational pathologies that restrain it. The educational pathologies are considered as the conditioned by post-coloniality and post-totalitarianism departure or deviation from the undertaking of the original missions of higher education (HE: “to educate, to train and to undertake research” (World Declaration on Higher Education for the Twenty-First Century: Vision and Action, 1998. Modernity as a philosophical concept and normative ideal that focus on increasing rational components in a human life is exploited for showing the ways of carrying out the missions of HE by adjusting particular patterns of rationality to the needs and wants of society. However, globalization puts modernity under challenges due to its bent toward de/or non-modern cultural practices. That’s why the logic of modernization in HEU acquires hybrid characteristics by fitting together different, multiple, opposing educational models and standards – post-colonial, post-totalitarian, modern, de/non-modern and global through the local acceptance. Therefore, the locality turns into a focal point of the modernization of HEU in a global context. The modernization of HEU reveals the ambivalent meaning of hybridity in its producing and destructive potential, i.e. as a global logic or a local idiosyncrasy.

  14. Spintronic logic design methodology based on spin Hall effect–driven magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Kang, Wang; Zhang, Youguang; Zhao, Weisheng; Wang, Zhaohao; Klein, Jacques-Olivier; Lv, Weifeng

    2016-01-01

    Conventional complementary metal-oxide-semiconductor (CMOS) technology is now approaching its physical scaling limits to enable Moore’s law to continue. Spintronic devices, as one of the potential alternatives, show great promise to replace CMOS technology for next-generation low-power integrated circuits in nanoscale technology nodes. Until now, spintronic memory has been successfully commercialized. However spintronic logic still faces many critical challenges (e.g. direct cascading capability and small operation gain) before it can be practically applied. In this paper, we propose a standard complimentary spintronic logic (CSL) design methodology to form a CMOS-like logic design paradigm. Using the spin Hall effect (SHE)-driven magnetic tunnel junction (MTJ) device as an example, we demonstrate CSL implementation, functionality and performance. This logic family provides a unified design methodology for spintronic logic circuits and partly solves the challenges of direct cascading capability and small operation gain in the previously proposed spintronic logic designs. By solving a modified Landau–Lifshitz–Gilbert equation, the magnetization dynamics in the free layer of the MTJ is theoretically described and a compact electrical model is developed. With this electrical model, numerical simulations have been performed to evaluate the functionality and performance of the proposed CSL design. Simulation results demonstrate that the proposed CSL design paradigm is rather promising for low-power logic computing. (paper)

  15. Separation Logic

    DEFF Research Database (Denmark)

    Reynolds, John C.

    2002-01-01

    In joint work with Peter O'Hearn and others, based on early ideas of Burstall, we have developed an extension of Hoare logic that permits reasoning about low-level imperative programs that use shared mutable data structure. The simple imperative programming language is extended with commands (not...... with the inductive definition of predicates on abstract data structures, this extension permits the concise and flexible description of structures with controlled sharing. In this paper, we will survey the current development of this program logic, including extensions that permit unrestricted address arithmetic...

  16. Developing and Using a Logic Model for Evaluation and Assessment of University Student Affairs Programming: A Case Study

    Science.gov (United States)

    Cooper, Jeff

    2009-01-01

    This dissertation addresses theory and practice of evaluation and assessment in university student affairs, by applying logic modeling/program theory to a case study. I intend to add knowledge to ongoing dialogue among evaluation scholars and practitioners on student affairs program planning and improvement as integral considerations that serve…

  17. How Objects Shape Logics in Construction

    DEFF Research Database (Denmark)

    Tryggestad, Kjell; Georg, Susse

    2011-01-01

    The notion of institutional logics is a key tenet in institutional theory but few studies have attended to the micro‐foundations of logics. The sociology of associations is used to explore the micro‐foundations of logics, their emergence and temporal–spatial importance. A case study of the constr......The notion of institutional logics is a key tenet in institutional theory but few studies have attended to the micro‐foundations of logics. The sociology of associations is used to explore the micro‐foundations of logics, their emergence and temporal–spatial importance. A case study...... and identities as emergent and contingent outcomes of the material practices of building construction. The argument is concluded by considering the building construction as a materially mediated meaning structure....

  18. Development of RPS trip logic based on PLD technology

    International Nuclear Information System (INIS)

    Choi, Jong Gyun; Lee, Dong Young

    2012-01-01

    The majority of instrumentation and control (I and C) systems in today's nuclear power plants (NPPs) are based on analog technology. Thus, most existing I and C systems now face obsolescence problems. Existing NPPs have difficulty in repairing and replacing devices and boards during maintenance because manufacturers no longer produce the analog devices and boards used in the implemented I and C systems. Therefore, existing NPPs are replacing the obsolete analog I and C systems with advanced digital systems. New NPPs are also adopting digital I and C systems because the economic efficiencies and usability of the systems are higher than the analog I and C systems. Digital I and C systems are based on two technologies: a microprocessor based system in which software programs manage the required functions and a programmable logic device (PLD) based system in which programmable logic devices, such as field programmable gate arrays, manage the required functions. PLD based systems provide higher levels of performance compared with microprocessor based systems because PLD systems can process the data in parallel while microprocessor based systems process the data sequentially. In this research, a bistable trip logic in a reactor protection system (RPS) was developed using very high speed integrated circuits hardware description language (VHDL), which is a hardware description language used in electronic design to describe the behavior of the digital system. Functional verifications were also performed in order to verify that the bistable trip logic was designed correctly and satisfied the required specifications. For the functional verification, a random testing technique was adopted to generate test inputs for the bistable trip logic.

  19. Abstract Interpretation of PIC programs through Logic Programming

    DEFF Research Database (Denmark)

    Henriksen, Kim Steen; Gallagher, John Patrick

    2006-01-01

    , are applied to the logic based model of the machine. A small PIC microcontroller is used as a case study. An emulator for this microcontroller is written in Prolog, and standard programming transformations and analysis techniques are used to specialise this emulator with respect to a given PIC program....... The specialised emulator can now be further analysed to gain insight into the given program for the PIC microcontroller. The method describes a general framework for applying abstractions, illustrated here by linear constraints and convex hull analysis, to logic programs. Using these techniques on the specialised...

  20. Design and verification of distributed logic controllers with application of Petri nets

    Energy Technology Data Exchange (ETDEWEB)

    Wiśniewski, Remigiusz; Grobelna, Iwona; Grobelny, Michał; Wiśniewska, Monika [University of Zielona Góra, Licealna 9, 65-417 Zielona Góra (Poland)

    2015-12-31

    The paper deals with the designing and verification of distributed logic controllers. The control system is initially modelled with Petri nets and formally verified against structural and behavioral properties with the application of the temporal logic and model checking technique. After that it is decomposed into separate sequential automata that are working concurrently. Each of them is re-verified and if the validation is successful, the system can be finally implemented.