Minimal Z' models: present bounds and early LHC reach
International Nuclear Information System (INIS)
Salvioni, Ennio; Zwirner, Fabio; Villadoro, Giovanni
2009-01-01
We consider 'minimal' Z' models, whose phenomenology is controlled by only three parameters beyond the Standard Model ones: the Z' mass and two effective coupling constants. They encompass many popular models motivated by grand unification, as well as many arising in other theoretical contexts. This parameterization takes also into account both mass and kinetic mixing effects, which we show to be sizable in some cases. After discussing the interplay between the bounds from electroweak precision tests and recent direct searches at the Tevatron, we extend our analysis to estimate the early LHC discovery potential. We consider a center-of-mass energy from 7 towards 10 TeV and an integrated luminosity from 50 to several hundred pb -1 , taking all existing bounds into account. We find that the LHC will start exploring virgin land in parameter space for M Z' around 700 GeV, with lower masses still excluded by the Tevatron and higher masses still excluded by electroweak precision tests. Increasing the energy up to 10 TeV, the LHC will start probing a wider range of Z' masses and couplings, although several hundred pb -1 will be needed to explore the regions of couplings favored by grand unification and to overcome the Tevatron bounds in the mass region around 250 GeV.
Bounding species distribution models
Directory of Open Access Journals (Sweden)
Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE
2011-10-01
Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].
Bounding Species Distribution Models
Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.
2011-01-01
Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].
DuBose, Theodore B.; Milanfar, Peyman; Izatt, Joseph A.; Farsiu, Sina
2016-03-01
The human retina is composed of several layers, visible by in vivo optical coherence tomography (OCT) imaging. To enhance diagnostics of retinal diseases, several algorithms have been developed to automatically segment one or more of the boundaries of these layers. OCT images are corrupted by noise, which is frequently the result of the detector noise and speckle, a type of coherent noise resulting from the presence of several scatterers in each voxel. However, it is unknown what the empirical distribution of noise in each layer of the retina is, and how the magnitude and distribution of the noise affects the lower bounds of segmentation accuracy. Five healthy volunteers were imaged using a spectral domain OCT probe from Bioptigen, Inc, centered at 850nm with 4.6µm full width at half maximum axial resolution. Each volume was segmented by expert manual graders into nine layers. The histograms of intensities in each layer were then fit to seven possible noise distributions from the literature on speckle and image processing. Using these empirical noise distributions and empirical estimates of the intensity of each layer, the Cramer-Rao lower bound (CRLB), a measure of the variance of an estimator, was calculated for each boundary layer. Additionally, the optimum bias of a segmentation algorithm was calculated, and a corresponding biased CRLB was calculated, which represents the improved performance an algorithm can achieve by using prior knowledge, such as the smoothness and continuity of layer boundaries. Our general mathematical model can be easily adapted for virtually any OCT modality.
Models and Techniques for Proving Data Structure Lower Bounds
DEFF Research Database (Denmark)
Larsen, Kasper Green
In this dissertation, we present a number of new techniques and tools for proving lower bounds on the operational time of data structures. These techniques provide new lines of attack for proving lower bounds in both the cell probe model, the group model, the pointer machine model and the I...... bound of tutq = (lgd1 n). For ball range searching, we get a lower bound of tutq = (n11=d). The highest previous lower bound proved in the group model does not exceed ((lg n= lg lg n)2) on the maximum of tu and tq. Finally, we present a new technique for proving lower bounds....../O-model. In all cases, we push the frontiers further by proving lower bounds higher than what could possibly be proved using previously known techniques. For the cell probe model, our results have the following consequences: The rst (lg n) query time lower bound for linear space static data structures...
Models of bounded rationality under certainty
Rasouli, S.; Timmermans, H.J.P.; Rasouli, S.; Timmermans, H.J.P.
2015-01-01
Purpose This chapter reviews models of decision-making and choice under conditions of certainty. It allows readers to position the contribution of the other chapters in this book in the historical development of the topic area. Theory Bounded rationality is defined in terms of a strategy to simplify
Hyperon polarizabilities in the bound-state soliton model
International Nuclear Information System (INIS)
Gobbi, C.; Scoccola, N.N.
1996-01-01
A detailed calculation of electric and magnetic static polarizabilities of octet hyperons is presented in the framework of the bound-state soliton model. Both seagull and dispersive contributions are considered, and the results are compared with different model predictions. (orig.)
Combinatorial bounds on the α-divergence of univariate mixture models
Nielsen, Frank; Sun, Ke
2017-01-01
We derive lower- and upper-bounds of α-divergence between univariate mixture models with components in the exponential family. Three pairs of bounds are presented in order with increasing quality and increasing computational cost. They are verified
Model independent bounds on magnetic moments of Majorana neutrinos
International Nuclear Information System (INIS)
Bell, Nicole F.; Gorchtein, Mikhail; Ramsey-Musolf, Michael J.; Vogel, Petr; Wang, Peng
2006-01-01
We analyze the implications of neutrino masses for the magnitude of neutrino magnetic moments. By considering electroweak radiative corrections to the neutrino mass, we derive model-independent naturalness upper bounds on neutrino magnetic moments, μ ν , generated by physics above the electroweak scale. For Dirac neutrinos, the bound is several orders of magnitude more stringent than present experimental limits. However, for Majorana neutrinos the magnetic moment contribution to the mass is Yukawa suppressed. The bounds we derive for magnetic moments of Majorana neutrinos are weaker than present experimental limits if μ ν is generated by new physics at ∼1 TeV, and surpass current experimental sensitivity only for new physics scales >10-100 TeV. The discovery of a neutrino magnetic moment near present limits would thus signify that neutrinos are Majorana particles
Efficient Proof Engines for Bounded Model Checking of Hybrid Systems
DEFF Research Database (Denmark)
Fränzle, Martin; Herde, Christian
2005-01-01
In this paper we present HySat, a new bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL-based pseudo-Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits all...
Models for light QCD bound states
International Nuclear Information System (INIS)
LaCourse, D.P.
1992-01-01
After a brief overview of Regge, tower, and heavy-quark experimental data, this thesis examines two massless wave equations relevant to quark bound states. We establish general conditions on the Lorentz scalar and Lorentz vector potentials which yield arbitrary leading Regge trajectories for the case of circular classical motion. A semi-classical approximation which includes radial motion reproduces remarkably well the exact solutions. Conditions for tower structure are examined, and found to be incompatible with conditions which give a Nambu stringlike Regge slope. The author then proposes a generalization of the usual potential model of quark bound states in which the confining flux tube is a dynamical object carrying both angular momentum and energy. The Q bar Q-string system with spinless quarks is quantized using an implicit operator technique and the resulting relativistic wave equation is solved. For heavy quarks the usual Schroedinger valence-quark model is recovered. The Regge slope with light quarks agree with the classical rotating-string result and is significantly larger and the effects of short-range forces are also considered. A relativistic generalization of the quantized flux tube model predicts the glueball ground state mass to be √3/α' ≅ 1.9 GeV where α' is the normal Regge slope. The groundstate as well as excited levels like considerably above the expectations of previous models and also above various proposed experimental candidates. The glueball Regge slope is only about three-eighths that for valence quark hadrons. A semi-classical calculation of the Regge slope is in good agreement with a numerically exact value
Rigorous bounds on the free energy of electron-phonon models
Raedt, Hans De; Michielsen, Kristel
1997-01-01
We present a collection of rigorous upper and lower bounds to the free energy of electron-phonon models with linear electron-phonon interaction. These bounds are used to compare different variational approaches. It is shown rigorously that the ground states corresponding to the sharpest bounds do
Probabilistic error bounds for reduced order modeling
Energy Technology Data Exchange (ETDEWEB)
Abdo, M.G.; Wang, C.; Abdel-Khalik, H.S., E-mail: abdo@purdue.edu, E-mail: wang1730@purdue.edu, E-mail: abdelkhalik@purdue.edu [Purdue Univ., School of Nuclear Engineering, West Lafayette, IN (United States)
2015-07-01
Reduced order modeling has proven to be an effective tool when repeated execution of reactor analysis codes is required. ROM operates on the assumption that the intrinsic dimensionality of the associated reactor physics models is sufficiently small when compared to the nominal dimensionality of the input and output data streams. By employing a truncation technique with roots in linear algebra matrix decomposition theory, ROM effectively discards all components of the input and output data that have negligible impact on reactor attributes of interest. This manuscript introduces a mathematical approach to quantify the errors resulting from the discarded ROM components. As supported by numerical experiments, the introduced analysis proves that the contribution of the discarded components could be upper-bounded with an overwhelmingly high probability. The reverse of this statement implies that the ROM algorithm can self-adapt to determine the level of the reduction needed such that the maximum resulting reduction error is below a given tolerance limit that is set by the user. (author)
Combinatorial bounds on the α-divergence of univariate mixture models
Nielsen, Frank
2017-06-20
We derive lower- and upper-bounds of α-divergence between univariate mixture models with components in the exponential family. Three pairs of bounds are presented in order with increasing quality and increasing computational cost. They are verified empirically through simulated Gaussian mixture models. The presented methodology generalizes to other divergence families relying on Hellinger-type integrals.
Higgs mass bounds from a chirally invariant lattice Higgs-Yukawa model with overlap fermions
International Nuclear Information System (INIS)
Gerhold, Philipp; Kallarackal, Jim
2008-10-01
We study the parameter dependence of the Higgs mass in a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. Eventually, the aim is to establish upper and lower Higgs mass bounds. Here we present our preliminary results on the lower Higgs mass bound at several selected values for the cutoff and give a brief outlook towards the upper Higgs mass bound. (orig.)
A Model of Boundedly Rational Consumer Choice
Thomas Riechmann
2000-01-01
The paper presents an extended version of the standard textbook problem of consumer choice. As usual, agents have to decide about their desired quatities of various consumption goods, at the same time taking into account their limited budget. Prices for the goods are not fixed but arise from a Walrasian interaction of total demand and a stilized supply function for each of the goods. After showing that this type of model cannot be solved analytically, three different types of evolutionary alg...
Systematic assignment of Feshbach resonances via an asymptotic bound state model
Goosen, M.; Kokkelmans, SJ.J.M.F.
2008-01-01
We present an Asymptotic Bound state Model (ABM), which is useful to predict Feshbach resonances. The model utilizes asymptotic properties of the interaction potentials to represent coupled molecular wavefunctions. The bound states of this system give rise to Feshbach resonances, localized at the
Kumaraswamy autoregressive moving average models for double bounded environmental data
Bayer, Fábio Mariano; Bayer, Débora Missio; Pumi, Guilherme
2017-12-01
In this paper we introduce the Kumaraswamy autoregressive moving average models (KARMA), which is a dynamic class of models for time series taking values in the double bounded interval (a,b) following the Kumaraswamy distribution. The Kumaraswamy family of distribution is widely applied in many areas, especially hydrology and related fields. Classical examples are time series representing rates and proportions observed over time. In the proposed KARMA model, the median is modeled by a dynamic structure containing autoregressive and moving average terms, time-varying regressors, unknown parameters and a link function. We introduce the new class of models and discuss conditional maximum likelihood estimation, hypothesis testing inference, diagnostic analysis and forecasting. In particular, we provide closed-form expressions for the conditional score vector and conditional Fisher information matrix. An application to environmental real data is presented and discussed.
Exploring L1 model space in search of conductivity bounds for the MT problem
Wheelock, B. D.; Parker, R. L.
2013-12-01
spatial variation delivers the fewest possible regions defined by a mean conductivity, the quantity we wish to bound. Thus, these regions present a natural set for which the most narrow and discriminating bounds can be found. For illustration, we apply these techniques to synthetic magnetotelluric (MT) data sets resulting from one-dimensional (1D) earth models. In each case we find that with realistic data coverage, any single inverted model can often stray from the truth, while the computed bounds on an encompassing region contain both the inverted and the true conductivities, indicating that our measure of model uncertainty is robust. Such estimates of uncertainty for conductivity can then be translated to bounds on important petrological parameters such as mineralogy, porosity, saturation, and fluid type.
The tightly bound nuclei in the liquid drop model
Sree Harsha, N. R.
2018-05-01
In this paper, we shall maximise the binding energy per nucleon function in the semi-empirical mass formula of the liquid drop model of the atomic nuclei to analytically prove that the mean binding energy per nucleon curve has local extrema at A ≈ 58.6960, Z ≈ 26.3908 and at A ≈ 62.0178, Z ≈ 27.7506. The Lagrange method of multipliers is used to arrive at these results, while we have let the values of A and Z take continuous fractional values. The shell model that shows why 62Ni is the most tightly bound nucleus is outlined. A brief account on stellar nucleosynthesis is presented to show why 56Fe is more abundant than 62Ni and 58Fe. We believe that the analytical proof presented in this paper can be a useful tool to the instructors to introduce the nucleus with the highest mean binding energy per nucleon.
Temperature bounds in a model of laminar flames
International Nuclear Information System (INIS)
Kirane, M.; Badraoui, S.
1994-06-01
We consider reaction-diffusion equations coupling temperature and mass fraction in one-step-reaction model of combustion in R N . Uniform temperature bounds are derived when the Lewis number is less than one. This result completes the case of Lewis number greater than one studied by J.D. Avrin and M. Kirane ''Temperature growth and temperature bounds in special cases of combustion models'' (to appear in Applicable Analysis). (author). 5 refs
Behavioral Consistency of C and Verilog Programs Using Bounded Model Checking
National Research Council Canada - National Science Library
Clarke, Edmund; Kroening, Daniel; Yorav, Karen
2003-01-01
.... We describe experimental results on various reactive present an algorithm that checks behavioral consistency between an ANSI-C program and a circuit given in Verilog using Bounded Model Checking...
A gauged baby Skyrme model and a novel BPS bound
International Nuclear Information System (INIS)
Adam, C; Naya, C; Sanchez-Guillen, J; Wereszczynski, A
2013-01-01
The baby Skyrme model is a well-known nonlinear field theory supporting topological solitons in two space dimensions. Its action functional consist of a potential term, a kinetic term quadratic in derivatives (the 'nonlinear sigma model term') and the Skyrme term quartic in first derivatives. The limiting case of vanishing sigma model term (the so-called BPS baby Skyrme model) is known to support exact soliton solutions saturating a BPS bound which exists for this model. Further, the BPS model has infinitely many symmetries and conservation laws. Recently it was found that the gauged version of the BPS baby Skyrme model with gauge group U(1) and the usual Maxwell term, too, has a BPS bound and BPS solutions saturating this bound. This BPS bound is determined by a superpotential which has to obey a superpotential equation, in close analogy to the situation in supergravity. Further, the BPS bound and the corresponding BPS solitons only may exist for potentials such that the superpotential equation has a global solution. We also briefly describe some properties of soliton solutions.
Quantum Gravity Mathematical Models and Experimental Bounds
Fauser, Bertfried; Zeidler, Eberhard
2007-01-01
The construction of a quantum theory of gravity is the most fundamental challenge confronting contemporary theoretical physics. The different physical ideas which evolved while developing a theory of quantum gravity require highly advanced mathematical methods. This book presents different mathematical approaches to formulate a theory of quantum gravity. It represents a carefully selected cross-section of lively discussions about the issue of quantum gravity which took place at the second workshop "Mathematical and Physical Aspects of Quantum Gravity" in Blaubeuren, Germany. This collection covers in a unique way aspects of various competing approaches. A unique feature of the book is the presentation of different approaches to quantum gravity making comparison feasible. This feature is supported by an extensive index. The book is mainly addressed to mathematicians and physicists who are interested in questions related to mathematical physics. It allows the reader to obtain a broad and up-to-date overview on ...
Electrostatic charge bounds for ball lightning models
International Nuclear Information System (INIS)
Stephan, Karl D
2008-01-01
Several current theories concerning the nature of ball lightning predict a substantial electrostatic charge in order to account for its observed motion and shape (Turner 1998 Phys. Rep. 293 1; Abrahamson and Dinniss 2000 Nature 403 519). Using charged soap bubbles as a physical model for ball lightning, we show that the magnitude of charge predicted by some of these theories is too high to allow for the types of motion commonly observed in natural ball lightning, which includes horizontal motion above the ground and movement near grounded conductors. Experiments show that at charge levels of only 10-15 nC, 3-cm-diameter soap bubbles tend to be attracted by induced charges to the nearest grounded conductor and rupture. We conclude with a scaling rule that can be used to extrapolate these results to larger objects and surroundings
An evolutionary model of bounded rationality and intelligence.
Directory of Open Access Journals (Sweden)
Thomas J Brennan
Full Text Available BACKGROUND: Most economic theories are based on the premise that individuals maximize their own self-interest and correctly incorporate the structure of their environment into all decisions, thanks to human intelligence. The influence of this paradigm goes far beyond academia-it underlies current macroeconomic and monetary policies, and is also an integral part of existing financial regulations. However, there is mounting empirical and experimental evidence, including the recent financial crisis, suggesting that humans do not always behave rationally, but often make seemingly random and suboptimal decisions. METHODS AND FINDINGS: Here we propose to reconcile these contradictory perspectives by developing a simple binary-choice model that takes evolutionary consequences of decisions into account as well as the role of intelligence, which we define as any ability of an individual to increase its genetic success. If no intelligence is present, our model produces results consistent with prior literature and shows that risks that are independent across individuals in a generation generally lead to risk-neutral behaviors, but that risks that are correlated across a generation can lead to behaviors such as risk aversion, loss aversion, probability matching, and randomization. When intelligence is present the nature of risk also matters, and we show that even when risks are independent, either risk-neutral behavior or probability matching will occur depending upon the cost of intelligence in terms of reproductive success. In the case of correlated risks, we derive an implicit formula that shows how intelligence can emerge via selection, why it may be bounded, and how such bounds typically imply the coexistence of multiple levels and types of intelligence as a reflection of varying environmental conditions. CONCLUSIONS: Rational economic behavior in which individuals maximize their own self interest is only one of many possible types of behavior that
An evolutionary model of bounded rationality and intelligence.
Brennan, Thomas J; Lo, Andrew W
2012-01-01
Most economic theories are based on the premise that individuals maximize their own self-interest and correctly incorporate the structure of their environment into all decisions, thanks to human intelligence. The influence of this paradigm goes far beyond academia-it underlies current macroeconomic and monetary policies, and is also an integral part of existing financial regulations. However, there is mounting empirical and experimental evidence, including the recent financial crisis, suggesting that humans do not always behave rationally, but often make seemingly random and suboptimal decisions. Here we propose to reconcile these contradictory perspectives by developing a simple binary-choice model that takes evolutionary consequences of decisions into account as well as the role of intelligence, which we define as any ability of an individual to increase its genetic success. If no intelligence is present, our model produces results consistent with prior literature and shows that risks that are independent across individuals in a generation generally lead to risk-neutral behaviors, but that risks that are correlated across a generation can lead to behaviors such as risk aversion, loss aversion, probability matching, and randomization. When intelligence is present the nature of risk also matters, and we show that even when risks are independent, either risk-neutral behavior or probability matching will occur depending upon the cost of intelligence in terms of reproductive success. In the case of correlated risks, we derive an implicit formula that shows how intelligence can emerge via selection, why it may be bounded, and how such bounds typically imply the coexistence of multiple levels and types of intelligence as a reflection of varying environmental conditions. Rational economic behavior in which individuals maximize their own self interest is only one of many possible types of behavior that arise from natural selection. The key to understanding which types of
The dynamics of Bertrand model with bounded rationality
International Nuclear Information System (INIS)
Zhang Jixiang; Da Qingli; Wang Yanhua
2009-01-01
The paper considers a Bertrand model with bounded rational. A duopoly game is modelled by two nonlinear difference equations. By using the theory of bifurcations of dynamical systems, the existence and stability for the equilibria of this system are obtained. Numerical simulations used to show bifurcations diagrams, phase portraits for various parameters and sensitive dependence on initial conditions. We observe that an increase of the speed of adjustment of bounded rational player may change the stability of Nash equilibrium point and cause bifurcation and chaos to occur. The analysis and results in this paper are interesting in mathematics and economics.
Vulnerable Derivatives and Good Deal Bounds: A Structural Model
DEFF Research Database (Denmark)
Murgoci, Agatha
2013-01-01
We price vulnerable derivatives -- i.e. derivatives where the counterparty may default. These are basically the derivatives traded on the over-the-counter (OTC) markets. Default is modeled in a structural framework. The technique employed for pricing is good deal bounds (GDBs). The method imposes...
Cryptography In The Bounded Quantum-Storage Model
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Salvail, Louis; Schaffner, Christian
2005-01-01
We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...
Cryptography in the Bounded Quantum-Storage Model
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Serge, Fehr; Schaffner, Christian
2008-01-01
We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...
Stieltjes electrostatic model interpretation for bound state problems
Indian Academy of Sciences (India)
In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as unit moving imaginary charges i ℏ , which are placed in between the two fixed imaginary charges arising due to the classical turning ...
Re-derived overclosure bound for the inert doublet model
Biondini, S.; Laine, M.
2017-08-01
We apply a formalism accounting for thermal effects (such as modified Sommerfeld effect; Salpeter correction; decohering scatterings; dissociation of bound states), to one of the simplest WIMP-like dark matter models, associated with an "inert" Higgs doublet. A broad temperature range T ˜ M/20 . . . M/104 is considered, stressing the importance and less-understood nature of late annihilation stages. Even though only weak interactions play a role, we find that resummed real and virtual corrections increase the tree-level overclosure bound by 1 . . . 18%, depending on quartic couplings and mass splittings.
Lower Bounds in the Asymmetric External Memory Model
DEFF Research Database (Denmark)
Jacob, Riko; Sitchinava, Nodari
2017-01-01
Motivated by the asymmetric read and write costs of emerging non-volatile memory technologies, we study lower bounds for the problems of sorting, permuting and multiplying a sparse matrix by a dense vector in the asymmetric external memory model (AEM). Given an AEM with internal (symmetric) memory...... of size M, transfers between symmetric and asymmetric memory in blocks of size B and the ratio ω between write and read costs, we show Ω(min (N, ωN/B logω M/B N/B) lower bound for the cost of permuting N input elements. This lower bound also applies to the problem of sorting N elements. This proves...
Generalized Skyrme model with the loosely bound potential
Gudnason, Sven Bjarke; Zhang, Baiyang; Ma, Nana
2016-12-01
We study a generalization of the loosely bound Skyrme model which consists of the Skyrme model with a sixth-order derivative term—motivated by its fluidlike properties—and the second-order loosely bound potential—motivated by lowering the classical binding energies of higher-charged Skyrmions. We use the rational map approximation for the Skyrmion of topological charge B =4 , calculate the binding energy of the latter, and estimate the systematic error in using this approximation. In the parameter space that we can explore within the rational map approximation, we find classical binding energies as low as 1.8%, and once taking into account the contribution from spin-isospin quantization, we obtain binding energies as low as 5.3%. We also calculate the contribution from the sixth-order derivative term to the electric charge density and axial coupling.
Bounded Model Checking and Inductive Verification of Hybrid Discrete-Continuous Systems
DEFF Research Database (Denmark)
Becker, Bernd; Behle, Markus; Eisenbrand, Fritz
2004-01-01
We present a concept to signicantly advance the state of the art for bounded model checking (BMC) and inductive verication (IV) of hybrid discrete-continuous systems. Our approach combines the expertise of partners coming from dierent domains, like hybrid systems modeling and digital circuit veri...
Modelling Ca2+ bound Troponin in Excitation Contraction Coupling
Directory of Open Access Journals (Sweden)
Henry G. Zot
2016-09-01
Full Text Available To explain disparate decay rates of cytosolic Ca2+ and structural changes in the thin filaments during a twitch, we model the time course of Ca2+ bound troponin (Tn resulting from the free Ca2+ transient of fast skeletal muscle. In fibers stretched beyond overlap, the decay of Ca2+ as measured by a change in fluo 3 fluorescence is significantly slower than the intensity decay of the meridional 1/38.5 nm-1 reflection of Tn; this is not simply explained by considering only the Ca2+ binding properties of Tn alone (Matsuo, T., Iwamoto, H., and Yagi, N. (2010. Biophys. J. 99, 193-200. We apply a comprehensive model that includes the known Ca2+ binding properties of Tn in the context of the thin filament with and without cycling crossbridges. Calculations based on the model predict that the transient of Ca2+ bound Tn correlates with either the fluo 3 time course in muscle with overlapping thin and thick filaments or the intensity of the meridional 1/38.5 nm-1 reflection in overstretched muscle. Hence, cycling crossbridges delay the dissociation of Ca2+ from Tn. Correlation with the fluo 3 fluorescence change is not causal given that the transient of Ca2+ bound Tn depends on sarcomere length, whereas the fluo-3 fluorescence change does not. Transient positions of tropomyosin calculated from the time course of Ca2+ bound Tn are in reasonable agreement with the transient of measured perturbations of the Tn repeat in overlap and non-overlap muscle preparations.
P2-16: Dual-Bound Model and the Role of Time Bound in Perceptual Decision Making
Directory of Open Access Journals (Sweden)
Daeseob Lim
2012-10-01
Full Text Available The diffusion model (DM encapsulates the dynamics of perceptual decision within a ‘diffusion field’ that is defined by a basis with sensory-evidence (SE and time vectors. At the core of the DM, it assumes that a decision is not made until an evidence particle drifts in the diffusion field and eventually hits one of the two pre-fixed bounds defined in the SE axis. This assumption dictates when and which choice is made by referring to when and which bound will be hit by the evidence particle. What if urgency pressures the decision system to make a choice even when the evidence particle has yet hit the SE bound? Previous modeling attempts at coping with time pressure, despite differences in detail, all manipulated the coordinate of SE bounds. Here, we offer a novel solution by adopting another bound on the time axis. This ‘dual-bound’ model (DBM posits that decisions can also be made when the evidence particle hits a time bound, which is determined on a trial-by-trial basis by a ‘perceived time interval’ – how long the system can stay in the ‘diffusion’ field. The classic single-bound model (SBM exhibited systematic errors in predicting both the reaction time distributions and the time-varying bias in choice. Those errors were not corrected by previously proposed variants of the SBM until the time bound was introduced. The validity of the DBM was further supported by the strong across-individual correlation between observed precision of interval timing and the predicted trial-by-trial variability of the time bound.
Symanzik approach in modeling of bound states of Dirac particle in singular background
Directory of Open Access Journals (Sweden)
Pismak Yu. M.
2017-01-01
Full Text Available In the model of interaction of spinor field with homogeneous isotropic material plane constructed in framework of Symanzik approach, the bound states are studied. For localized near plane Dirac particle the expression for current, charge and density are presented. For bound state with massless dispersion law the current, charge and density are calculated for simplified model with 2 parameter exactly.The model can find application to a wide class of phenomena arising by the interaction of fields of quantum electrodynamics with two-dimensional materials.
The Kadanoff lower-bound variational renormalization group applied to an SU(2) lattice spin model
International Nuclear Information System (INIS)
Thorleifsson, G.; Damgaard, P.H.
1990-07-01
We apply the variational lower-bound Renormalization Group transformation of Kadanoff to an SU(2) lattice spin model in 2 and 3 dimensions. Even in the one-hypercube framework of this renormalization group transformation the present model is characterised by having an infinite basis of fundamental operators. We investigate whether the lower-bound variational renormalization group transformation yields results stable under truncations of this operator basis. Our results show that for this particular spin model this is not the case. (orig.)
Bounds for perpetual American option prices in a jump diffusion model
Ekström, Erik
2006-01-01
We provide bounds for perpetual American option prices in a jump diffusion model in terms of American option prices in the standard Black-Scholes model. We also investigate the dependence of the bounds on different parameters of the model.
Leader's opinion priority bounded confidence model for network opinion evolution
Zhu, Meixia; Xie, Guangqiang
2017-08-01
Aiming at the weight of trust someone given to participate in the interaction in Hegselmann-Krause's type consensus model is the same and virtual social networks among individuals with different level of education, personal influence, etc. For differences between agents, a novelty bounded confidence model was proposed with leader's opinion considered priority. Interaction neighbors can be divided into two kinds. The first kind is made up of "opinion leaders" group, another kind is made up of ordinary people. For different groups to give different weights of trust. We also analyzed the related characteristics of the new model under the symmetrical bounded confidence parameters and combined with the classical HK model were analyzed. Simulation experiment results show that no matter the network size and initial view is subject to uniform distribution or discrete distribution. We can control the "opinion-leader" good change the number of views and values, and even improve the convergence speed. Experiment also found that the choice of "opinion leaders" is not the more the better, the model well explain how the "opinion leader" in the process of the evolution of the public opinion play the role of the leader.
Capacitated Bounded Cardinality Hub Routing Problem: Model and Solution Algorithm
Gelareha, Shahin; Monemic, Rahimeh Neamatian; Semetd, Frederic
2017-01-01
In this paper, we address the Bounded Cardinality Hub Location Routing with Route Capacity wherein each hub acts as a transshipment node for one directed route. The number of hubs lies between a minimum and a maximum and the hub-level network is a complete subgraph. The transshipment operations take place at the hub nodes and flow transfer time from a hub-level transporter to a spoke-level vehicle influences spoke- to-hub allocations. We propose a mathematical model and a branch-and-cut algor...
An interval-valued reliability model with bounded failure rates
DEFF Research Database (Denmark)
Kozine, Igor; Krymsky, Victor
2012-01-01
The approach to deriving interval-valued reliability measures described in this paper is distinctive from other imprecise reliability models in that it overcomes the issue of having to impose an upper bound on time to failure. It rests on the presupposition that a constant interval-valued failure...... rate is known possibly along with other reliability measures, precise or imprecise. The Lagrange method is used to solve the constrained optimization problem to derive new reliability measures of interest. The obtained results call for an exponential-wise approximation of failure probability density...
Boundedly rational learning and heterogeneous trading strategies with hybrid neuro-fuzzy models
Bekiros, S.D.
2009-01-01
The present study deals with heterogeneous learning rules in speculative markets where heuristic strategies reflect the rules-of-thumb of boundedly rational investors. The major challenge for "chartists" is the development of new models that would enhance forecasting ability particularly for time
Boson bound states in the β-Fermi–Pasta–Ulam model
Indian Academy of Sciences (India)
The bound states of four bosons in the quantum -Fermi–Pasta–Ulam model are investigated and some interesting results are presented using the number conserving approximation combined ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science
Local Model Checking of Weighted CTL with Upper-Bound Constraints
DEFF Research Database (Denmark)
Jensen, Jonas Finnemann; Larsen, Kim Guldstrand; Srba, Jiri
2013-01-01
We present a symbolic extension of dependency graphs by Liu and Smolka in order to model-check weighted Kripke structures against the logic CTL with upper-bound weight constraints. Our extension introduces a new type of edges into dependency graphs and lifts the computation of fixed-points from...
A point particle model of lightly bound skyrmions
Directory of Open Access Journals (Sweden)
Mike Gillard
2017-04-01
Full Text Available A simple model of the dynamics of lightly bound skyrmions is developed in which skyrmions are replaced by point particles, each carrying an internal orientation. The model accounts well for the static energy minimizers of baryon number 1≤B≤8 obtained by numerical simulation of the full field theory. For 9≤B≤23, a large number of static solutions of the point particle model are found, all closely resembling size B subsets of a face centred cubic lattice, with the particle orientations dictated by a simple colouring rule. Rigid body quantization of these solutions is performed, and the spin and isospin of the corresponding ground states extracted. As part of the quantization scheme, an algorithm to compute the symmetry group of an oriented point cloud, and to determine its corresponding Finkelstein–Rubinstein constraints, is devised.
Widmann, E; Curceanu, C; Trento 2006; Trento06
2006-01-01
These are the miniproceedings of the workshop "Exotic hadronic atoms, deeply bound kaonic nuclear states and antihydrogen: present results, future challenges," which was held at the European Centre for Theoretical Nuclear Physics and Related Studies (ECT*), Trento (Italy), June 19-24, 2006. The document includes a short presentation of the topics, the list of participants, and a short contribution from each speaker.
Achieving the physical limits of the bounded-storage model
International Nuclear Information System (INIS)
Mandayam, Prabha; Wehner, Stephanie
2011-01-01
Secure two-party cryptography is possible if the adversary's quantum storage device suffers imperfections. For example, security can be achieved if the adversary can store strictly less then half of the qubits transmitted during the protocol. This special case is known as the bounded-storage model, and it has long been an open question whether security can still be achieved if the adversary's storage were any larger. Here, we answer this question positively and demonstrate a two-party protocol which is secure as long as the adversary cannot store even a small fraction of the transmitted pulses. We also show that security can be extended to a larger class of noisy quantum memories.
International Nuclear Information System (INIS)
Kim, Chang-Bae; Krommes, J.A.
1988-08-01
The work of Krommes and Smith on rigorous upper bounds for the turbulent transport of a passively advected scalar [/ital Ann. Phys./ 177:246 (1987)] is extended in two directions: (1) For their ''reference model,'' improved upper bounds are obtained by utilizing more sophisticated two-time constraints which include the effects of cross-correlations up to fourth order. Numerical solutions of the model stochastic differential equation are also obtained; they show that the new bounds compare quite favorably with the exact results, even at large Reynolds and Kubo numbers. (2) The theory is extended to take account of a finite spatial autocorrelation length L/sub c/. As a reasonably generic example, the problem of particle transport due to statistically specified stochastic magnetic fields in a collisionless turbulent plasma is revisited. A bound is obtained which reduces for small L/sub c/ to the quasilinear limit and for large L/sub c/ to the strong turbulence limit, and which provides a reasonable and rigorous interpolation for intermediate values of L/sub c/. 18 refs., 6 figs
The Supermarket Model with Bounded Queue Lengths in Equilibrium
Brightwell, Graham; Fairthorne, Marianne; Luczak, Malwina J.
2018-04-01
In the supermarket model, there are n queues, each with a single server. Customers arrive in a Poisson process with arrival rate λ n , where λ = λ (n) \\in (0,1) . Upon arrival, a customer selects d=d(n) servers uniformly at random, and joins the queue of a least-loaded server amongst those chosen. Service times are independent exponentially distributed random variables with mean 1. In this paper, we analyse the behaviour of the supermarket model in the regime where λ (n) = 1 - n^{-α } and d(n) = \\lfloor n^β \\rfloor , where α and β are fixed numbers in (0, 1]. For suitable pairs (α , β ) , our results imply that, in equilibrium, with probability tending to 1 as n → ∞, the proportion of queues with length equal to k = \\lceil α /β \\rceil is at least 1-2n^{-α + (k-1)β } , and there are no longer queues. We further show that the process is rapidly mixing when started in a good state, and give bounds on the speed of mixing for more general initial conditions.
Bound state solution of the Grassmannian nonlinear sigma model with fermions
International Nuclear Information System (INIS)
Abdalla, E.; Lima-Santos, A.
1987-11-01
We construct the s matrix for bound state (gauge-invariant) scattering for nonlinear sigma models defined on the manifold SU(N)/S(U(p)x (lower casex)U(n-p)) with fermions. It is not possible to compute gauge non-singlet matrix elements. In the present language they are not submitted to sufficiently many constraints derived from higher conservation laws. (author) [pt
Improved metastability bounds on the standard model Higgs mass
Espinosa, J R; Espinosa, J R; Quiros, M
1995-01-01
Depending on the Higgs-boson and top-quark masses, M_H and M_t, the effective potential of the Standard Model at finite (and zero) temperature can have a deep and unphysical stable minimum \\langle \\phi(T)\\rangle at values of the field much larger than G_F^{-1/2}. We have computed absolute lower bounds on M_H, as a function of M_t, imposing the condition of no decay by thermal fluctuations, or quantum tunnelling, to the stable minimum. Our effective potential at zero temperature includes all next-to-leading logarithmic corrections (making it extremely scale-independent), and we have used pole masses for the Higgs-boson and top-quark. Thermal corrections to the effective potential include plasma effects by one-loop ring resummation of Debye masses. All calculations, including the effective potential and the bubble nucleation rate, are performed numerically and so the results do not rely on any kind of analytical approximation. Easy-to-use fits are provided for the benefit of the reader. Conclusions on the possi...
Upper and lower Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model
International Nuclear Information System (INIS)
Gerhold, Philipp Frederik Clemens
2009-01-01
Motivated by the advent of the Large Hadron Collider (LHC) the aim of the present work is the non-perturbative determination of the cutoff-dependent upper and lower mass bounds of the Standard Model Higgs boson based on first principle calculations, in particular not relying on additional information such as the triviality property of the Higgs- Yukawa sector or indirect arguments like vacuum stability considerations. For that purpose the lattice approach is employed to allow for a non-perturbative investigation of a chirally invariant lattice Higgs-Yukawa model, serving here as a reasonable simplification of the full Standard Model, containing only those fields and interactions which are most essential for the intended Higgs boson mass determination. These are the complex Higgs doublet as well as the top and bottom quark fields and their mutual interactions. To maintain the chiral character of the Standard Model Higgs-fermion coupling also on the lattice, the latter model is constructed on the basis of the Neuberger overlap operator, obeying then an exact global lattice chiral symmetry. Respecting the fermionic degrees of freedom in a fully dynamical manner by virtue of a PHMC algorithm appropriately adapted to the here intended lattice calculations, such mass bounds can indeed be established with the aforementioned approach. Supported by analytical calculations performed in the framework of the constraint effective potential, the lower bound is found to be approximately m low H (Λ)=80 GeV at a cutoff of Λ=1000 GeV. The emergence of a lower Higgs boson mass bound is thus a manifest property of the pure Higgs-Yukawa sector that evolves directly from the Higgs-fermion interaction for a given set of Yukawa coupling constants. Its quantitative size, however, turns out to be non-universal in the sense, that it depends on the specific form, for instance, of the Higgs boson self-interaction. The upper Higgs boson mass bound is then established in the strong coupling
UVA photolysis using the protein-bound sensitizers present in human lens
International Nuclear Information System (INIS)
Ortwerth, B.J.; Olesen, P.R.
1994-01-01
This research was undertaken to demonstrate that the protein-bound chromophores in aged human lens can act as sensitizers for protein damage by UVA light. The water-insoluble (WI) proteins from pooled human and bovine lenses were solubilized by sonication in water and illuminated with UV light similar in output to that transmitted by the cornea. Analysis of the irradiated proteins showed a linear decrease in sulfhydryl groups with a 30% loss after 2 h. No loss was seen when native α-crystallin was irradiated under the same conditions. A 25% loss of histidine residues was also observed with the human lens WI fraction, and sodium dodecyl sulfate polyacrylamide gels indicated considerable protein cross-linking. Similar photodamage was seen with a WI fraction from old bovine lenses. While the data show the presence of UVA sensitizers, some histidine destruction and protein cross-linking were also obtained with α-crystallin and with lysozyme which argue that part of the histidine loss in the human WISS was likely due to tryptophan acting as a sensitizer. (Author)
Energy Technology Data Exchange (ETDEWEB)
Melintescu, A.; Galeriu, D. [' Horia Hulubei' National Institute for Physics and Nuclear Engineering, Bucharest-Magurele (Romania); Diabate, S.; Strack, S. [Institute of Toxicology and Genetics, Karlsruhe Institute of Technology - KIT, Eggenstein-Leopoldshafen (Germany)
2015-03-15
The processes involved in tritium transfer in crops are complex and regulated by many feedback mechanisms. A full mechanistic model is difficult to develop due to the complexity of the processes involved in tritium transfer and environmental conditions. First, a review of existing models (ORYZA2000, CROPTRIT and WOFOST) presenting their features and limits, is made. Secondly, the preparatory steps for a robust model are discussed, considering the role of dry matter and photosynthesis contribution to the OBT (Organically Bound Tritium) dynamics in crops.
Bag-model analyses of proton-antiproton scattering and atomic bound states
International Nuclear Information System (INIS)
Alberg, M.A.; Freedman, R.A.; Henley, E.M.; Hwang, W.P.; Seckel, D.; Wilets, L.
1983-01-01
We study proton-antiproton (pp-bar ) scattering using the static real potential of Bryan and Phillips outside a cutoff radius rsub0 and two different shapes for the imaginary potential inside a radius R*. These forms, motivated by bag models, are a one-gluon-annihilation potential and a simple geometric-overlap form. In both cases there are three adjustable parameters: the effective bag radius R*, the effective strong coupling constant αsubssup*, and rsub0. There is also a choice for the form of the real potential inside the cutoff radius rsub0. Analysis of the pp-bar scattering data in the laboratory-momentum region 0.4--0.7 GeV/c yields an effective nucleon bag radius R* in the range 0.6--1.1 fm, with the best fit obtained for R* = 0.86 fm. Arguments are presented that the deduced value of R* is likely to be an upper bound on the isolated nucleon bag radius. The present results are consistent with the range of bag radii in current bag models. We have also used the resultant optical potential to calculate the shifts and widths of the sup3Ssub1 and sup1Ssub0 atomic bound states of the pp-bar system. For both states we find upward (repulsive) shifts and widths of about 1 keV. We find no evidence for narrow, strongly bound pp-bar states in our potential model
Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai
2009-03-14
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
Energy Technology Data Exchange (ETDEWEB)
Bardhan, J. P.; Knepley, M. G.; Anitescu, M. (Biosciences Division); ( MCS); (Rush Univ.)
2009-03-01
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
Energy Technology Data Exchange (ETDEWEB)
Dowding, Kevin J.; Hills, Richard Guy (New Mexico State University, Las Cruces, NM)
2005-04-01
Numerical models of complex phenomena often contain approximations due to our inability to fully model the underlying physics, the excessive computational resources required to fully resolve the physics, the need to calibrate constitutive models, or in some cases, our ability to only bound behavior. Here we illustrate the relationship between approximation, calibration, extrapolation, and model validation through a series of examples that use the linear transient convective/dispersion equation to represent the nonlinear behavior of Burgers equation. While the use of these models represents a simplification relative to the types of systems we normally address in engineering and science, the present examples do support the tutorial nature of this document without obscuring the basic issues presented with unnecessarily complex models.
Zhu, Haiyan; Fang, Xiaoyun; Zhang, Dongmei; Wu, Weicheng; Shao, Miaomiao; Wang, Lan; Gu, Jianxin
2016-01-01
Heat shock proteins (HSPs) were originally identified as stress-responsive proteins and serve as molecular chaperones in different intracellular compartments. Translocation of HSPs to the cell surface and release of HSPs into the extracellular space have been observed during the apoptotic process and in response to a variety of cellular stress. Here, we report that UV irradiation and cisplatin treatment rapidly induce the expression of membrane-bound Hsp60, Hsp70, and Hsp90 upstream the phosphatidylserine exposure. Membrane-bound Hsp60, Hsp70 and Hsp90 could promote the release of IL-6 and IL-1β as well as DC maturation by the evaluation of CD80 and CD86 expression. On the other hand, Hsp60, Hsp70 and Hsp90 on cells could facilitate the uptake of dying cells by bone marrow-derived dendritic cells. Lectin-like oxidized LDL receptor-1 (LOX-1), as a common receptor for Hsp60, Hsp70, and Hsp90, is response for their recognition and mediates the uptake of dying cells. Furthermore, membrane-bound Hsp60, Hsp70 and Hsp90 could promote the cross-presentation of OVA antigen from E.G7 cells and inhibition of the uptake of dying cells by LOX-1 decreases the cross-presentation of cellular antigen. Therefore, the rapid exposure of HSPs on dying cells at the early stage allows for the recognition by and confers an activation signal to the immune system.
The bounded model property via step algebras and step frames
Bezhanishvili, N.; Ghilardi, S.
2014-01-01
The paper introduces semantic and algorithmic methods for establishing a variant of the analytic subformula property (called ‘the bounded proof property’, bpp) for modal propositional logics. The bpp is much weaker property than full cut-elimination, but it is nevertheless sufficient for
K-nuclear bound states in a dynamical model
Czech Academy of Sciences Publication Activity Database
Mareš, Jiří; Friedman, E.; Gal, A.
2006-01-01
Roč. 770, 1/2 (2006), s. 84-105 ISSN 0375-9474 Institutional research plan: CEZ:AV0Z10480505 Keywords : kaonic atoms * K-nuclear bound states * K-nucleus interaction Subject RIV: BE - Theoretical Physics Impact factor: 2.155, year: 2006
Surface-bounded growth modeling applied to human mandibles
DEFF Research Database (Denmark)
Andresen, Per Rønsholt
1999-01-01
This thesis presents mathematical and computational techniques for three dimensional growth modeling applied to human mandibles. The longitudinal shape changes make the mandible a complex bone. The teeth erupt and the condylar processes change direction, from pointing predominantly backward...... of the common features. 3.model the process that moves the matched points (growth modeling). A local shape feature called crest line has shown itself to be structurally stable on mandibles. Registration of crest lines (from different mandibles) results in a sparse deformation field, which must be interpolated...... old mandible based on the 3 month old scan. When using successively more recent scans as basis for the model the error drops to 2.0 mm for the 11 years old scan. Thus, it seems reasonable to assume that the mandibular growth is linear....
Computation of covex bounds for present value functions with random payments
Ahcan, A.; Darkiewicz, G.; Goovaerts, M.J.; Hoedemakers, T.
2006-01-01
In this contribution we study the distribution of the present value function of a series of random payments in a stochastic financial environment. Such distributions occur naturally in a wide range of applications within fields of insurance and finance. We obtain accurate approximations by
Development of Young Children's Understanding that the Recent Past Is Causally Bound to the Present.
Povinelli, Daniel J.; Landry, Anita M.; Theall, Laura A.; Clark, Britten R.; Castille, Conni M.
1999-01-01
Six experiments examined young children's understanding that very recent past events determine the present. Found that 4-year-olds, but not 3-year-olds, could locate a puppet they had observed being hidden either through a videotape or using a verbal analog of the task. When children observed 2 events in which they participated, only 5-year-olds…
Composite models of hadrons and relativistic bound states
International Nuclear Information System (INIS)
Filippov, A.T.
1977-01-01
The following problems are considered: what the constituents of the hadrons are; what their quantum numbers and their broken and unbroken symmetries are; what the dynamics of the constituents (equations, binding forces and the origin of symmetry violations) is. The most puzzling question is: why the constituents ''escape from freedom'' and are confined inside the hadrons; what experimentalists can report about the hadron constituents and their dynamics if not finding them. There are no final answers to all these questions. The achievements of quark model are described, some problems concerning the comparison of the quark model with experiment are considered. The attempt is also made to present alternative views on the same problems
International Nuclear Information System (INIS)
O’Carroll, Michael
2012-01-01
We consider the interaction of particles in weakly correlated lattice quantum field theories. In the imaginary time functional integral formulation of these theories there is a relative coordinate lattice Schroedinger operator H which approximately describes the interaction of these particles. Scalar and vector spin, QCD and Gross-Neveu models are included in these theories. In the weakly correlated regime H=H o +W where H o =−γΔ l , 0 l is the d-dimensional lattice Laplacian: γ=β, the inverse temperature for spin systems and γ=κ 3 where κ is the hopping parameter for QCD. W is a self-adjoint potential operator which may have non-local contributions but obeys the bound ‖W(x, y)‖⩽cexp ( −a(‖x‖+‖y‖)), a large: exp−a=β/β o (1/2) (κ/κ o ) for spin (QCD) models. H o , W, and H act in l 2 (Z d ), d⩾ 1. The spectrum of H below zero is known to be discrete and we obtain bounds on the number of states below zero. This number depends on the short range properties of W, i.e., the long range tail does not increase the number of states.
Dependence in probabilistic modeling Dempster-Shafer theory and probability bounds analysis
Energy Technology Data Exchange (ETDEWEB)
Ferson, Scott [Applied Biomathematics, Setauket, NY (United States); Nelsen, Roger B. [Lewis & Clark College, Portland OR (United States); Hajagos, Janos [Applied Biomathematics, Setauket, NY (United States); Berleant, Daniel J. [Iowa State Univ., Ames, IA (United States); Zhang, Jianzhong [Iowa State Univ., Ames, IA (United States); Tucker, W. Troy [Applied Biomathematics, Setauket, NY (United States); Ginzburg, Lev R. [Applied Biomathematics, Setauket, NY (United States); Oberkampf, William L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-05-01
This report summarizes methods to incorporate information (or lack of information) about inter-variable dependence into risk assessments that use Dempster-Shafer theory or probability bounds analysis to address epistemic and aleatory uncertainty. The report reviews techniques for simulating correlated variates for a given correlation measure and dependence model, computation of bounds on distribution functions under a specified dependence model, formulation of parametric and empirical dependence models, and bounding approaches that can be used when information about the intervariable dependence is incomplete. The report also reviews several of the most pervasive and dangerous myths among risk analysts about dependence in probabilistic models.
Evading Lyth bound in models of quintessential inflation
International Nuclear Information System (INIS)
Hossain, Md. Wali; Myrzakulov, R.; Sami, M.; Saridakis, Emmanuel N.
2014-01-01
Quintessential inflation refers to an attempt to unify inflation and late-time cosmic acceleration using a single scalar field. In this letter we consider two different classes of quintessential inflation, one of which is based upon a Lagrangian with non-canonical kinetic term k 2 (ϕ)∂ μ ϕ∂ μ ϕ and a steep exponential potential while the second class uses the concept of steep brane world inflation. We show that in both cases the Lyth bound can be evaded, despite the large tensor-to-scalar ratio of perturbations. The post-inflationary dynamics is consistent with nucleosynthesis constraint in these cases
McPeake, John D.; And Others
1991-01-01
Describes adolescent chemical dependency treatment model developed at Beech Hill Hospital (New Hampshire) which integrated Twelve Step-oriented alcohol and drug rehabilitation program with experiential education school, Hurricane Island Outward Bound School. Describes Beech Hill Hurricane Island Outward Bound School Adolescent Chemical Dependency…
Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls
Directory of Open Access Journals (Sweden)
Ciprian G. Gal
2006-11-01
Full Text Available In a previous article [7], we proposed a model of phase separation in a binary mixture confined to a bounded region which may be contained within porous walls. The boundary conditions were derived from a mass conservation law and variational methods. In the present paper, we study the problem further. Using a Faedo-Galerkin method, we obtain the existence and uniqueness of a global solution to our problem, under more general assumptions than those in [7]. We then study its asymptotic behavior and prove the existence of an exponential attractor (and thus of a global attractor with finite dimension.
Relevance of the ICRP biokinetic model for dietary organically bound tritium
International Nuclear Information System (INIS)
Trivedi, A.
1999-10-01
Ingested dietary tritium can participate in metabolic processes, and become synthesized into organically bound tritium in the tissues and organs. The distribution and retention of the organically bound tritium throughout the body are much different than tritium in the body water. The International Commission on Radiological Protection (ICRP) Publication 56 (1989) has a biokinetic model to calculate dose from the ingestion of organically bound dietary tritium. The model predicts that the dose from the ingestion of organically bound dietary tritium is about 2.3 times higher than from the ingestion of the same activity of tritiated water. Under steady-state conditions, the calculated dose rate (using the first principle approach) from the ingestion of dietary organically bound tritium can be twice that from the ingestion of tritiated water. For an adult, the upper-bound dose estimate for the ingestion of dietary organically bound tritium is estimated to be close to 2.3 times higher than that of tritiated water. Therefore, given the uncertainty in the dose calculation with respect to the actual relevant dose, the ICRP biokinetic model for organically bound tritium is sufficient for dosimetry for adults. (author)
International Nuclear Information System (INIS)
Chun, Moon Hyun; Park, Joo Wan; Nam, Ho Yun
1992-01-01
Improved analytical models have been proposed that can predict the lower and upper limits of the water hammer region for given flow conditions by incorporation of recent advances made in the understanding of phenomena associated with the condensation-induced water hammer into existing methods. Present models are applicable for steam-water counterflow in a long horizontal pipe geometry. Both lower and upper bounds of the water hammer region are expressed in terms of the 'critical inlet water flow rate' as a function of axial position. Water hammer region boundaries predicted by present and typical existing models are compared for particular flow conditions of the water hammer event occurred at San Onofre Unit 1 to assess the applicability of the models examined. The result shows that present models for lower and upper bounds of the water hammer region compare favorably with the best performing existing models
Upper Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa Model
Energy Technology Data Exchange (ETDEWEB)
Gerhold, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany)
2010-02-15
We establish the cutoff-dependent upper Higgs boson mass bound by means of direct lattice computations in the framework of a chirally invariant lattice Higgs-Yukawa model emulating the same chiral Yukawa coupling structure as in the Higgs-fermion sector of the Standard Model. As expected from the triviality picture of the Higgs sector, we observe the upper mass bound to decrease with rising cutoff parameter {lambda}. Moreover, the strength of the fermionic contribution to the upper mass bound is explored by comparing to the corresponding analysis in the pure {phi}{sup 4}-theory. (orig.)
Two-vibron bound states in the β–Fermi–Pasta–Ulam model
International Nuclear Information System (INIS)
Hu Xinguang; Tang Yi
2008-01-01
This paper studies the two-vibron bound states in the β–Fermi–Pasta–Ulam model by means of the number conserving approximation combined with the number state method. The results indicate that on-site, adjacent-site and mixed two-vibron bound states may exist in the model. Specially, wave number has a significant effect on such bound states, which may be considered as the quantum effects of the localized states in quantum systems. (condensed matter: structure, thermal and mechanical properties)
Tools for model-independent bounds in direct dark matter searches
DEFF Research Database (Denmark)
Cirelli, M.; Del Nobile, E.; Panci, P.
2013-01-01
We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei.......We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei....
Take it NP-easy: Bounded model construction for duration calculus
DEFF Research Database (Denmark)
Fränzle, Martin
2002-01-01
Following the recent successes of bounded model-checking, we reconsider the problem of constructing models of discrete-time Duration Calculus formulae. While this problem is known to be non-elementary when arbitrary length models are considered [Hansen94], it turns out to be only NP-complete when...... constrained to bounded length. As a corollary we obtain that model construction is in NP for the formulae actually encountered in case studies using Duration Calculus, as these have a certain small-model property. First experiments with a prototype implementation of the procedures demonstrate a competitive...
Surface-bounded growth modeling applied to human mandibles
DEFF Research Database (Denmark)
Andresen, Per Rønsholt; Brookstein, F. L.; Conradsen, Knut
2000-01-01
From a set of longitudinal three-dimensional scans of the same anatomical structure, the authors have accurately modeled the temporal shape and size changes using a linear shape model. On a total of 31 computed tomography scans of the mandible from six patients, 14,851 semilandmarks are found...
Computational and Game-Theoretic Approaches for Modeling Bounded Rationality
L. Waltman (Ludo)
2011-01-01
textabstractThis thesis studies various computational and game-theoretic approaches to economic modeling. Unlike traditional approaches to economic modeling, the approaches studied in this thesis do not rely on the assumption that economic agents behave in a fully rational way. Instead, economic
Induction, bounding, weak combinatorial principles, and the homogeneous model theorem
Hirschfeldt, Denis R; Shore, Richard A
2017-01-01
Goncharov and Peretyat'kin independently gave necessary and sufficient conditions for when a set of types of a complete theory T is the type spectrum of some homogeneous model of T. Their result can be stated as a principle of second order arithmetic, which is called the Homogeneous Model Theorem (HMT), and analyzed from the points of view of computability theory and reverse mathematics. Previous computability theoretic results by Lange suggested a close connection between HMT and the Atomic Model Theorem (AMT), which states that every complete atomic theory has an atomic model. The authors show that HMT and AMT are indeed equivalent in the sense of reverse mathematics, as well as in a strong computability theoretic sense and do the same for an analogous result of Peretyat'kin giving necessary and sufficient conditions for when a set of types is the type spectrum of some model.
Zhu, Wei; Timmermans, Harry
2011-06-01
Models of geographical choice behavior have been dominantly based on rational choice models, which assume that decision makers are utility-maximizers. Rational choice models may be less appropriate as behavioral models when modeling decisions in complex environments in which decision makers may simplify the decision problem using heuristics. Pedestrian behavior in shopping streets is an example. We therefore propose a modeling framework for pedestrian shopping behavior incorporating principles of bounded rationality. We extend three classical heuristic rules (conjunctive, disjunctive and lexicographic rule) by introducing threshold heterogeneity. The proposed models are implemented using data on pedestrian behavior in Wang Fujing Street, the city center of Beijing, China. The models are estimated and compared with multinomial logit models and mixed logit models. Results show that the heuristic models are the best for all the decisions that are modeled. Validation tests are carried out through multi-agent simulation by comparing simulated spatio-temporal agent behavior with the observed pedestrian behavior. The predictions of heuristic models are slightly better than those of the multinomial logit models.
Constructive Lower Bounds on Model Complexity of Shallow Perceptron Networks
Czech Academy of Sciences Publication Activity Database
Kůrková, Věra
2018-01-01
Roč. 29, č. 7 (2018), s. 305-315 ISSN 0941-0643 R&D Projects: GA ČR GA15-18108S Institutional support: RVO:67985807 Keywords : shallow and deep networks * model complexity and sparsity * signum perceptron networks * finite mappings * variational norms * Hadamard matrices Subject RIV: IN - Informatics, Computer Science Impact factor: 2.505, year: 2016
Lower bound plane stress element for modelling 3D structures
DEFF Research Database (Denmark)
Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao
2017-01-01
In-plane action is often the primary load-carrying mechanism of reinforced concrete structures. The plate bending action will be secondary, and the behaviour of the structure can be modelled with a reasonable accuracy using a generalised three-dimensional plane stress element. In this paper...
Bounds on quantum collapse models from matter-wave interferometry: calculational details
Toroš, Marko; Bassi, Angelo
2018-03-01
We present a simple derivation of the interference pattern in matter-wave interferometry predicted by a class of quantum master equations. We apply the obtained formulae to the following collapse models: the Ghirardi-Rimini-Weber (GRW) model, the continuous spontaneous localization (CSL) model together with its dissipative (dCSL) and non-Markovian generalizations (cCSL), the quantum mechanics with universal position localization (QMUPL), and the Diósi-Penrose (DP) model. We discuss the separability of the dynamics of the collapse models along the three spatial directions, the validity of the paraxial approximation, and the amplification mechanism. We obtain analytical expressions both in the far field and near field limits. These results agree with those already derived in the Wigner function formalism. We compare the theoretical predictions with the experimental data from two recent matter-wave experiments: the 2012 far-field experiment of Juffmann T et al (2012 Nat. Nanotechnol. 7 297-300) and the 2013 Kapitza-Dirac-Talbot-Lau (KDTL) near-field experiment of Eibenberger et al (2013 Phys. Chem. Chem. Phys. 15 14696-700). We show the region of the parameter space for each collapse model that is excluded by these experiments. We show that matter-wave experiments provide model-insensitive bounds that are valid for a wide family of dissipative and non-Markovian generalizations.
Yan, Zheng; Wang, Jun
2014-03-01
This paper presents a neural network approach to robust model predictive control (MPC) for constrained discrete-time nonlinear systems with unmodeled dynamics affected by bounded uncertainties. The exact nonlinear model of underlying process is not precisely known, but a partially known nominal model is available. This partially known nonlinear model is first decomposed to an affine term plus an unknown high-order term via Jacobian linearization. The linearization residue combined with unmodeled dynamics is then modeled using an extreme learning machine via supervised learning. The minimax methodology is exploited to deal with bounded uncertainties. The minimax optimization problem is reformulated as a convex minimization problem and is iteratively solved by a two-layer recurrent neural network. The proposed neurodynamic approach to nonlinear MPC improves the computational efficiency and sheds a light for real-time implementability of MPC technology. Simulation results are provided to substantiate the effectiveness and characteristics of the proposed approach.
On devising Boussinesq-type models with bounded eigenspectra: One horizontal dimension
DEFF Research Database (Denmark)
Eskilsson, Claes; Engsig-Karup, Allan Peter
2014-01-01
) are introduced. Using spectral element simulations of stream function waves it is illustrated that (i) the bounded equations capture the physics of the wave motion as well as the standard unbounded equations, and (ii) the bounded equations are computationally more efficient when explicit time-stepping schemes...... using a spectral element method of arbitrary spatial order p. It is shown that existing sets of parameters, found by optimising the linear dispersion relation, give rise to unbounded eigenspectra which govern stability. For explicit time-stepping schemes the global CFL time-step restriction typically...... requires Δt∝p−2. We derive and present conditions on the parameters under which implicitly-implicit Boussinesq-type equations will exhibit bounded eigenspectra. Two new bounded versions having comparable nonlinear and dispersive properties as the equations of Nwogu (1993) and Schäffer and Madsen (1995...
Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0)
Sauerland, Volkmar; Löptien, Ulrike; Leonhard, Claudine; Oschlies, Andreas; Srivastav, Anand
2018-03-01
Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often embedded into Earth system models which are increasingly used for decision making regarding climate policies. These models contain poorly constrained parameters (e.g., maximum phytoplankton growth rate), which are typically adjusted until the model shows reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical processes are nonlinear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose determining a preferably large lower bound for the global optimum that is relatively easy to obtain and that will help to assess the quality of an optimum, generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is typically larger than zero. We suggest deriving such lower bounds based on typical properties of biogeochemical models (e.g., a limited number of extremes and a bounded time derivative). We illustrate the applicability of the method with two real-world examples. The first example uses real-world observations of the Baltic Sea in a box model setup. The second example considers a three-dimensional coupled ocean circulation model in combination with satellite chlorophyll a.
Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0
Directory of Open Access Journals (Sweden)
V. Sauerland
2018-03-01
Full Text Available Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often embedded into Earth system models which are increasingly used for decision making regarding climate policies. These models contain poorly constrained parameters (e.g., maximum phytoplankton growth rate, which are typically adjusted until the model shows reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical processes are nonlinear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose determining a preferably large lower bound for the global optimum that is relatively easy to obtain and that will help to assess the quality of an optimum, generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is typically larger than zero. We suggest deriving such lower bounds based on typical properties of biogeochemical models (e.g., a limited number of extremes and a bounded time derivative. We illustrate the applicability of the method with two real-world examples. The first example uses real-world observations of the Baltic Sea in a box model setup. The second example considers a three-dimensional coupled ocean circulation model in combination with satellite chlorophyll a.
Bounds on $Z^\\prime$ from 3-3-1 model at the LHC energies
Coutinho, Y A; Nepomuceno, A A
2013-01-01
The Large Hadron Collider will restart with higher energy and luminosity in 2015. This achievement opens the possibility of discovering new phenomena hardly described by the Standard Model, that is based on two neutral gauge bosons: the photon and the $Z$. This perspective imposes a deep and systematic study of models that predicts the existence of new neutral gauge bosons. One of such models is based on the gauge group $SU(3)_C \\times SU(3)_L \\times U(1)_N$ called 3-3-1 model for short. In this paper we perform a study with $Z^\\prime$ predicted in two versions of the 3-3-1 model and compare the signature of this resonance in each model version. By considering the present and future LHC energy regimes, we obtain some distributions and the total cross section for the process $p + p \\longrightarrow \\ell^{+} + \\ell^{-} + X$. Additionally, we derive lower bounds on $Z^\\prime$ mass from the latest LHC results. Finally we analyze the LHC potential for discovering this neutral gauge boson at 14 TeV center-of-mass en...
Triviality bound on lightest Higgs mass in next to minimal supersymmetric model
International Nuclear Information System (INIS)
Choudhury, S.R.; Mamta; Dutta, Sukanta
1998-01-01
We study the implication of triviality on Higgs sector in next to minimal supersymmetric model (NMSSM) using variational field theory. It is shown that the mass of the lightest Higgs boson in NMSSM has an upper bound ∼ 10 M w which is of the same order as that in the standard model. (author)
Solution of the spatial neutral model yields new bounds on the Amazonian species richness
Shem-Tov, Yahav; Danino, Matan; Shnerb, Nadav M.
2017-02-01
Neutral models, in which individual agents with equal fitness undergo a birth-death-mutation process, are very popular in population genetics and community ecology. Usually these models are applied to populations and communities with spatial structure, but the analytic results presented so far are limited to well-mixed or mainland-island scenarios. Here we combine analytic results and numerics to obtain an approximate solution for the species abundance distribution and the species richness for the neutral model on continuous landscape. We show how the regional diversity increases when the recruitment length decreases and the spatial segregation of species grows. Our results are supported by extensive numerical simulations and allow one to probe the numerically inaccessible regime of large-scale systems with extremely small mutation/speciation rates. Model predictions are compared with the findings of recent large-scale surveys of tropical trees across the Amazon basin, yielding new bounds for the species richness (between 13100 and 15000) and the number of singleton species (between 455 and 690).
Energy Technology Data Exchange (ETDEWEB)
Fox, Zachary [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Neuert, Gregor [Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 (United States); Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37232 (United States); Munsky, Brian [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)
2016-08-21
Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.
Polarized quark distributions in bound nucleon and polarized EMC effect in Thermodynamical Bag Model
Energy Technology Data Exchange (ETDEWEB)
Ganesamurthy, Kuppusamy, E-mail: udckgm@sify.co [Research Department of Physics, Urumu Dhanalakshmi College, Trichy 620019 (India); Sambasivam, Raghavan, E-mail: udcsam@sify.co [Research Department of Physics, Urumu Dhanalakshmi College, Trichy 620019 (India)
2011-04-15
The polarized parton distribution functions (PDFs) and nuclear structure functions are evaluated by the phenomenological Thermodynamical Bag Model for nuclear media {sup 7}Li and {sup 27}Al. The Fermi statistical distribution function which includes the spin degree of freedom is used in this statistical model. We predict a sizeable polarized EMC effect. The results of quark spin sum and axial coupling constant of bound nucleons are compared with theoretical predictions of modified Nambu-Jona-Lasinio (NJL) model by Bentz et al.
Orthogonality-condition model for bound states with a separable expansion of the potential
International Nuclear Information System (INIS)
Pal, K.F.
1984-01-01
A very efficient solution of the equation of Saito's orthogonality-condition model (OCM) is reported for bound states by means of a separable expansion of the potential (PSE method). Some simplifications of the published formulae of the PSE method is derived, which facilitate its application to the OCM and may be useful in solving the Schroedinger equation as well. (author)
The Preisach hysteresis model: Error bounds for numerical identification and inversion
Czech Academy of Sciences Publication Activity Database
Krejčí, Pavel
2013-01-01
Roč. 6, č. 1 (2013), s. 101-119 ISSN 1937-1632 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : hysteresis * Preisach model * error bounds Subject RIV: BA - General Mathematics http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=7779
DEFF Research Database (Denmark)
Guedes, J.M.; Rodrigues, H.C.; Bendsøe, Martin P.
2003-01-01
This paper describes a computational model, based on inverse homogenization and topology design, for approximating energy bounds for two-phase composites under multiple load cases. The approach allows for the identification of possible single-scale cellular materials that give rise to the optimal...
A Model-Free No-arbitrage Price Bound for Variance Options
Energy Technology Data Exchange (ETDEWEB)
Bonnans, J. Frederic, E-mail: frederic.bonnans@inria.fr [Ecole Polytechnique, INRIA-Saclay (France); Tan Xiaolu, E-mail: xiaolu.tan@polytechnique.edu [Ecole Polytechnique, CMAP (France)
2013-08-01
We suggest a numerical approximation for an optimization problem, motivated by its applications in finance to find the model-free no-arbitrage bound of variance options given the marginal distributions of the underlying asset. A first approximation restricts the computation to a bounded domain. Then we propose a gradient projection algorithm together with the finite difference scheme to solve the optimization problem. We prove the general convergence, and derive some convergence rate estimates. Finally, we give some numerical examples to test the efficiency of the algorithm.
Localized modelling and feedback control of linear instabilities in 2-D wall bounded shear flows
Tol, Henry; Kotsonis, Marios; de Visser, Coen
2016-11-01
A new approach is presented for control of instabilities in 2-D wall bounded shear flows described by the linearized Navier-Stokes equations (LNSE). The control design accounts both for spatially localized actuators/sensors and the dominant perturbation dynamics in an optimal control framework. An inflow disturbance model is proposed for streamwise instabilities that drive laminar-turbulent transition. The perturbation modes that contribute to the transition process can be selected and are included in the control design. A reduced order model is derived from the LNSE that captures the input-output behavior and the dominant perturbation dynamics. This model is used to design an optimal controller for suppressing the instability growth. A 2-D channel flow and a 2-D boundary layer flow over a flat plate are considered as application cases. Disturbances are generated upstream of the control domain and the resulting flow perturbations are estimated/controlled using wall shear measurements and localized unsteady blowing and suction at the wall. It will be shown that the controller is able to cancel the perturbations and is robust to unmodelled disturbances.
Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean
Directory of Open Access Journals (Sweden)
C. S. Hassler
2009-10-01
Full Text Available Iron (Fe is known to be mostly bound to organic ligands and to limit primary productivity in the Southern Ocean. It is thus important to investigate the bioavailability of organically bound Fe. In this study, we used four phytoplankton species of the Southern Ocean (Phaeocystis sp., Chaetoceros sp., Fragilariopsis kerguelensis and Thalassiosira antarctica Comber to measure the influence of various organic ligands on Fe solubility and bioavailability. Short-term uptake Fe:C ratios were inversely related to the surface area to volume ratios of the phytoplankton. The ratio of extracellular to intracellular Fe is used to discuss the relative importance of diffusive supply and uptake to control Fe bioavailability. The effect of excess organic ligands on Fe bioavailability cannot be solely explained by their effect on Fe solubility. For most strains studied, the bioavailability of Fe can be enhanced relative to inorganic Fe in the presence of porphyrin, catecholate siderophore and saccharides whereas it was decreased in presence of hydroxamate siderophore and organic amine. For Thalassiosira, iron bioavailability was not affected by the presence of porphyrin, catecholate siderophore and saccharides. The enhancement of Fe bioavailability in presence of saccharides is presented as the result from both the formation of bioavailable (or chemically labile organic form of Fe and the stabilisation of Fe within the dissolved phase. Given the ubiquitous presence of saccharides in the ocean, these compounds might represent an important factor to control the basal level of soluble and bioavailable Fe. Results show that the use of model phytoplankton is promising to improve mechanistic understanding of Fe bioavailability and primary productivity in HNLC regions of the ocean.
International Nuclear Information System (INIS)
Gerhold, Philipp; Jansen, Karl
2009-12-01
We study a lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model, in particular, obeying a Ginsparg- Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. In this paper we present our results on the cutoffdependent upper Higgs boson mass bound at several selected values of the cutoff parameter Λ. (orig.)
Paynter, Ian; Genest, Daniel; Peri, Francesco; Schaaf, Crystal
2018-04-06
Volumetric models with known biases are shown to provide bounds for the uncertainty in estimations of volume for ecologically interesting objects, observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids, three-dimensional convex hull polygons, voxels, the Outer Hull Model and Square Based Columns (SBCs) are considered for their ability to estimate the volume of temperate and tropical trees, as well as geomorphological features such as bluffs and saltmarsh creeks. For temperate trees, supplementary geometric models are evaluated for their ability to bound the uncertainty in cylinder-based reconstructions, finding that coarser volumetric methods do not currently constrain volume meaningfully, but may be helpful with further refinement, or in hybridized models. Three-dimensional convex hull polygons consistently overestimate object volume, and SBCs consistently underestimate volume. Voxel estimations vary in their bias, due to the point density of the TLS data, and occlusion, particularly in trees. The response of the models to parametrization is analysed, observing unexpected trends in the SBC estimates for the drumlin dataset. Establishing that this result is due to the resolution of the TLS observations being insufficient to support the resolution of the geometric model, it is suggested that geometric models with predictable outcomes can also highlight data quality issues when they produce illogical results.
Improved bounds on the epidemic threshold of exact SIS models on complex networks
Ruhi, Navid Azizan; Thrampoulidis, Christos; Hassibi, Babak
2017-01-01
The SIS (susceptible-infected-susceptible) epidemic model on an arbitrary network, without making approximations, is a 2n-state Markov chain with a unique absorbing state (the all-healthy state). This makes analysis of the SIS model and, in particular, determining the threshold of epidemic spread quite challenging. It has been shown that the exact marginal probabilities of infection can be upper bounded by an n-dimensional linear time-invariant system, a consequence of which is that the Markov chain is “fast-mixing” when the LTI system is stable, i.e. when equation (where β is the infection rate per link, δ is the recovery rate, and λmax(A) is the largest eigenvalue of the network's adjacency matrix). This well-known threshold has been recently shown not to be tight in several cases, such as in a star network. In this paper, we provide tighter upper bounds on the exact marginal probabilities of infection, by also taking pairwise infection probabilities into account. Based on this improved bound, we derive tighter eigenvalue conditions that guarantee fast mixing (i.e., logarithmic mixing time) of the chain. We demonstrate the improvement of the threshold condition by comparing the new bound with the known one on various networks with various epidemic parameters.
Model-Independent Lower Bounds for $b \\to d$ Penguin Processes
Fleischer, Robert; Fleischer, Robert; Recksiegel, Stefan
2005-01-01
For the exploration of flavour physics, b -> d penguin processes are an important aspect, with the prominent example of \\bar B^0_d -> K^0 \\bar K^0. We recently derived lower bounds for the CP-averaged branching ratio of this channel in the Standard Model; they were found to be very close to the corresponding experimental upper limits, thereby suggesting that \\bar B^0_d -> K^0 \\bar K^0 should soon be observed. In fact, the BaBar collaboration subsequently announced the first signals of this transition. Here we point out that it is also possible to derive lower bounds for \\bar B -> \\rho \\gamma decays, which are again surprisingly close to the current experimental upper limits. We show that these bounds are realizations of a general bound that holds within the Standard Model for b -> d penguin processes, allowing further applications to decays of the kind B^\\pm -> K^{(\\ast)\\pm} K^{(\\ast)} and B^\\pm -> \\pi^\\pm \\ell^+ \\ell^-, \\rho^\\pm \\ell^+ \\ell^-.
Improved bounds on the epidemic threshold of exact SIS models on complex networks
Ruhi, Navid Azizan
2017-01-05
The SIS (susceptible-infected-susceptible) epidemic model on an arbitrary network, without making approximations, is a 2n-state Markov chain with a unique absorbing state (the all-healthy state). This makes analysis of the SIS model and, in particular, determining the threshold of epidemic spread quite challenging. It has been shown that the exact marginal probabilities of infection can be upper bounded by an n-dimensional linear time-invariant system, a consequence of which is that the Markov chain is “fast-mixing” when the LTI system is stable, i.e. when equation (where β is the infection rate per link, δ is the recovery rate, and λmax(A) is the largest eigenvalue of the network\\'s adjacency matrix). This well-known threshold has been recently shown not to be tight in several cases, such as in a star network. In this paper, we provide tighter upper bounds on the exact marginal probabilities of infection, by also taking pairwise infection probabilities into account. Based on this improved bound, we derive tighter eigenvalue conditions that guarantee fast mixing (i.e., logarithmic mixing time) of the chain. We demonstrate the improvement of the threshold condition by comparing the new bound with the known one on various networks with various epidemic parameters.
Fragment-based modelling of single stranded RNA bound to RNA recognition motif containing proteins
de Beauchene, Isaure Chauvot; de Vries, Sjoerd J.; Zacharias, Martin
2016-01-01
Abstract Protein-RNA complexes are important for many biological processes. However, structural modeling of such complexes is hampered by the high flexibility of RNA. Particularly challenging is the docking of single-stranded RNA (ssRNA). We have developed a fragment-based approach to model the structure of ssRNA bound to a protein, based on only the protein structure, the RNA sequence and conserved contacts. The conformational diversity of each RNA fragment is sampled by an exhaustive library of trinucleotides extracted from all known experimental protein–RNA complexes. The method was applied to ssRNA with up to 12 nucleotides which bind to dimers of the RNA recognition motifs (RRMs), a highly abundant eukaryotic RNA-binding domain. The fragment based docking allows a precise de novo atomic modeling of protein-bound ssRNA chains. On a benchmark of seven experimental ssRNA–RRM complexes, near-native models (with a mean heavy-atom deviation of <3 Å from experiment) were generated for six out of seven bound RNA chains, and even more precise models (deviation < 2 Å) were obtained for five out of seven cases, a significant improvement compared to the state of the art. The method is not restricted to RRMs but was also successfully applied to Pumilio RNA binding proteins. PMID:27131381
Bounds on the Higgs mass in the standard model and the minimal supersymmetric standard model
Quiros, M.
1995-01-01
Depending on the Higgs-boson and top-quark masses, M_H and M_t, the effective potential of the {\\bf Standard Model} can develop a non-standard minimum for values of the field much larger than the weak scale. In those cases the standard minimum becomes metastable and the possibility of decay to the non-standard one arises. Comparison of the decay rate to the non-standard minimum at finite (and zero) temperature with the corresponding expansion rate of the Universe allows to identify the region, in the (M_H, M_t) plane, where the Higgs field is sitting at the standard electroweak minimum. In the {\\bf Minimal Supersymmetric Standard Model}, approximate analytical expressions for the Higgs mass spectrum and couplings are worked out, providing an excellent approximation to the numerical results which include all next-to-leading-log corrections. An appropriate treatment of squark decoupling allows to consider large values of the stop and/or sbottom mixing parameters and thus fix a reliable upper bound on the mass o...
Efficient Multi-Valued Bounded Model Checking for LTL over Quasi-Boolean Algebras
Andrade, Jefferson O.; Kameyama, Yukiyoshi
2012-01-01
Multi-valued Model Checking extends classical, two-valued model checking to multi-valued logic such as Quasi-Boolean logic. The added expressivity is useful in dealing with such concepts as incompleteness and uncertainty in target systems, while it comes with the cost of time and space. Chechik and others proposed an efficient reduction from multi-valued model checking problems to two-valued ones, but to the authors' knowledge, no study was done for multi-valued bounded model checking. In thi...
Strongest model-independent bound on the lifetime of Dark Matter
Audren, Benjamin; Mangano, Gianpiero; Serpico, Pasquale Dario; Tram, Thomas
2014-01-01
Dark Matter is essential for structure formation in the late Universe so it must be stable on cosmological time scales. But how stable exactly? Only assuming decays into relativistic particles, we report an otherwise model independent bound on the lifetime of Dark Matter using current cosmological data. Since these decays affect only the low-$\\ell$ multipoles of the CMB, the Dark Matter lifetime is expected to correlate with the tensor-to-scalar ratio $r$ as well as curvature $\\Omega_k$. We consider two models, including $r$ and $r+\\Omega_k$ respectively, versus data from Planck, WMAP, WiggleZ and Baryon Acoustic Oscillations, with or without the BICEP2 data (if interpreted in terms of primordial gravitational waves). This results in a lower bound on the lifetime of CDM given by 160Gyr (without BICEP2) or 200Gyr (with BICEP2) at 95% confidence level.
Khan, Tila; Heffron, Connie L; High, Kevin P; Roberts, Paul C
2014-05-03
Potent and safe adjuvants are needed to improve the efficacy of parenteral and mucosal vaccines. Cytokines, chemokines and growth factors have all proven to be effective immunomodulatory adjuvants when administered with a variety of antigens. We have previously evaluated the efficacy of membrane-anchored interleukins (IL) such as IL-2 and IL-4 co-presented as Cytokine-bearing Influenza Vaccines (CYT-IVACs) using a mouse model of influenza challenge. Here, we describe studies evaluating the parenteral and mucosal adjuvanticity of membrane-bound IL-12 and IL-23 CYT-IVACs in young adult mice. Mucosal immunization using IL-12 and IL-23 bearing whole influenza virus vaccine (WIV) was more effective at eliciting virus-specific nasal IgA and reducing viral lung burden following challenge compared to control WIV vaccinated animals. Both IL-12 and IL-23 bearing WIV elicited the highest anti-viral IgA levels in serum and nasal washes. This study highlights for the first time the mucosal adjuvant potential of IL-12 and IL-23 CYT-IVAC formulations in eliciting mucosal immune responses and reducing viral lung burden. The co-presentation of immunomodulators in direct context with viral antigen in whole inactivated viral vaccines may provide a means to significantly lower the dose of vaccine required for protection.
A relativistic gauge model describing N particles bound by harmonic forces
International Nuclear Information System (INIS)
Filippov, A.T.
1987-01-01
Application of the principle of gauging to linear canonical symmetries of simplest/rudimentary/bilinear lagrangians is shown to produce a relativistic version of the Lagrangian describing N particles bound by harmonic forces. For pairwise coupled identical particles the gauge group is T 1 xU 1 , xSU N-1 . A model for the relativistic discrete string (a chain of N particles) is also discussed. All these gauge theoried of particles can be quantized by standard methods
Mohri, Mehryar; Rostamizadeh, Afshin
2013-01-01
We present a brief survey of existing mistake bounds and introduce novel bounds for the Perceptron or the kernel Perceptron algorithm. Our novel bounds generalize beyond standard margin-loss type bounds, allow for any convex and Lipschitz loss function, and admit a very simple proof.
Resolvent-based modeling of passive scalar dynamics in wall-bounded turbulence
Dawson, Scott; Saxton-Fox, Theresa; McKeon, Beverley
2017-11-01
The resolvent formulation of the Navier-Stokes equations expresses the system state as the output of a linear (resolvent) operator acting upon a nonlinear forcing. Previous studies have demonstrated that a low-rank approximation of this linear operator predicts many known features of incompressible wall-bounded turbulence. In this work, this resolvent model for wall-bounded turbulence is extended to include a passive scalar field. This formulation allows for a number of additional simplifications that reduce model complexity. Firstly, it is shown that the effect of changing scalar diffusivity can be approximated through a transformation of spatial wavenumbers and temporal frequencies. Secondly, passive scalar dynamics may be studied through the low-rank approximation of a passive scalar resolvent operator, which is decoupled from velocity response modes. Thirdly, this passive scalar resolvent operator is amenable to approximation by semi-analytic methods. We investigate the extent to which this resulting hierarchy of models can describe and predict passive scalar dynamics and statistics in wall-bounded turbulence. The support of AFOSR under Grant Numbers FA9550-16-1-0232 and FA9550-16-1-0361 is gratefully acknowledged.
Vacuum stability bounds in anomaly and gaugino mediated supersymmetry breaking models
International Nuclear Information System (INIS)
Gabrielli, Emidio; Huitu, Katri; Roy, Sourov
2002-01-01
We constrain the parameter space of the minimal and gaugino-assisted anomaly mediation, and gaugino mediation models by requiring that the electroweak vacuum corresponds to the deepest minimum of the scalar potential. In the framework of anomaly mediation models we find strong lower bounds on slepton and squark masses. In the gaugino mediation models the mass spectrum is forced to be at the TeV scale. We find extensive regions of the parameter space which are ruled out, even at low tanβ. The implications of these results on the g-2 of the muon are also analyzed
New bounds on the phase transition line in a non-compact abelian lattice Higgs model
International Nuclear Information System (INIS)
Nill, F.
1987-01-01
The Higgs expectation value and the 't Hooft loop are investigated as order respectively disorder parameters in a fixed-length Higgs model of Villain type with gauge group R. Based on either observable the phase transition line is shown to be monotonically decreasing and Lipschitz continuous with Lipschitz constant 4d in dimension d ≥ 3. This gives new bounds on the phase transition line in terms of its endpoints, i.e. the critical couplings of the Z-gauge model and the XY-model with Villain action, respectively. (orig.)
Emergent low-energy bound states in the two-orbital Hubbard model
Núñez-Fernández, Y.; Kotliar, G.; Hallberg, K.
2018-03-01
A repulsive Coulomb interaction between electrons in different orbitals in correlated materials can give rise to bound quasiparticle states. We study the nonhybridized two-orbital Hubbard model with intra- (inter)orbital interaction U (U12) and different bandwidths using an improved dynamical mean-field theory numerical technique which leads to reliable spectra on the real energy axis directly at zero temperature. We find that a finite density of states at the Fermi energy in one band is correlated with the emergence of well-defined quasiparticle states at excited energies Δ =U -U12 in the other band. These excitations are interband holon-doublon bound states. At the symmetric point U =U12 , the quasiparticle peaks are located at the Fermi energy, leading to a simultaneous and continuous Mott transition settling a long-standing controversy.
Opinion formation and distribution in a bounded-confidence model on various networks
Meng, X. Flora; Van Gorder, Robert A.; Porter, Mason A.
2018-02-01
In the social, behavioral, and economic sciences, it is important to predict which individual opinions eventually dominate in a large population, whether there will be a consensus, and how long it takes for a consensus to form. Such ideas have been studied heavily both in physics and in other disciplines, and the answers depend strongly both on how one models opinions and on the network structure on which opinions evolve. One model that was created to study consensus formation quantitatively is the Deffuant model, in which the opinion distribution of a population evolves via sequential random pairwise encounters. To consider heterogeneity of interactions in a population along with social influence, we study the Deffuant model on various network structures (deterministic synthetic networks, random synthetic networks, and social networks constructed from Facebook data). We numerically simulate the Deffuant model and conduct regression analyses to investigate the dependence of the time to reach steady states on various model parameters, including a confidence bound for opinion updates, the number of participating entities, and their willingness to compromise. We find that network structure and parameter values both have important effects on the convergence time and the number of steady-state opinion groups. For some network architectures, we observe that the relationship between the convergence time and model parameters undergoes a transition at a critical value of the confidence bound. For some networks, the steady-state opinion distribution also changes from consensus to multiple opinion groups at this critical value.
Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows
Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William
2015-01-01
The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.
Multi-Higgs doublet models: physical parametrization, sum rules and unitarity bounds
Bento, Miguel P.; Haber, Howard E.; Romão, J. C.; Silva, João P.
2017-11-01
If the scalar sector of the Standard Model is non-minimal, one might expect multiple generations of the hypercharge-1/2 scalar doublet analogous to the generational structure of the fermions. In this work, we examine the structure of a Higgs sector consisting of N Higgs doublets (where N ≥ 2). It is particularly convenient to work in the so-called charged Higgs basis, in which the neutral Higgs vacuum expectation value resides entirely in the first Higgs doublet, and the charged components of remaining N - 1 Higgs doublets are mass-eigenstate fields. We elucidate the interactions of the gauge bosons with the physical Higgs scalars and the Goldstone bosons and show that they are determined by an N × 2 N matrix. This matrix depends on ( N - 1)(2 N - 1) real parameters that are associated with the mixing of the neutral Higgs fields in the charged Higgs basis. Among these parameters, N - 1 are unphysical (and can be removed by rephasing the physical charged Higgs fields), and the remaining 2( N - 1)2 parameters are physical. We also demonstrate a particularly simple form for the cubic interaction and some of the quartic interactions of the Goldstone bosons with the physical Higgs scalars. These results are applied in the derivation of Higgs coupling sum rules and tree-level unitarity bounds that restrict the size of the quartic scalar couplings. In particular, new applications to three Higgs doublet models with an order-4 CP symmetry and with a Z_3 symmetry, respectively, are presented.
A gauge model describing N relativistic particles bound by linear forces
International Nuclear Information System (INIS)
Filippov, A.T.
1988-01-01
A relativistic model of N particles bound by linear forces is obtained by applying the gauging procedure to the linear canonical symmteries of a simple (rudimentary) nonrelativistic N-particle Lagrangian extended to relativistic phase space. The new (gauged) Lagrangian is formally Poincare invariant, the Hamiltonian is a linear combination of first-class constraints which are closed with respect to Pisson brackets and generate the localized canonical symmteries. The gauge potentials appear as the Lagrange multipliers of the constraints. Gauge fixing and quantization of the model are also briefly discussed. 11 refs
International Nuclear Information System (INIS)
Brechner, R.R.; D'Argenio, D.Z.; Dahalan, R.; Wolf, W.
1986-01-01
Nephrotoxicity remains a major limitation in the use of cisplatin [cis-diamminedichloroplatinum(II)]. Although several strategies are in use to limit this serious side effect, none is fully satisfactory. Classical pharmacokinetic studies of cisplatin have been based on blood and urine samples. As nephrotoxicity plays a significant role in the design of the therapeutic strategy, the kidneys should be considered as a separate state in any model formulated for ultimate control purposes. Previous studies of organ pharmacokinetics have relied on population measurements. The authors have developed an organ compartmental model from individual animal data obtained noninvasively. The eight-compartment model used to represent the distribution of cisplatin considers free and bound platinum in plasma, platinum in the erythrocytes, mobile and bound platinum in the kidneys, mobile and bound platinum in the tissues, and platinum in the urine. Data were collected from experiments with anesthetized female rats, after intravenous administration of [195mPt]cisplatin. Both arterial and bladder samples, and multiple images obtained with an Anger camera interfaced to a microcomputer were used. The model was estimated from individual data obtained after injection of a bolus of cisplatin (six animals). The model was validated by using it to predict data obtained from forcing the system with a different input function, a 0.5-h intravenous infusion (three animals). The results of this work show that it is possible to noninvasively study drug kinetics in organs that are not readily accessible to direct measurements in an individual, rather than relying on invasive measurements performed on a population.(ABSTRACT TRUNCATED AT 250 WORDS)
A comparison between skeleton and bounding box models for falling direction recognition
Narupiyakul, Lalita; Srisrisawang, Nitikorn
2017-12-01
Falling is an injury that can lead to a serious medical condition in every range of the age of people. However, in the case of elderly, the risk of serious injury is much higher. Due to the fact that one way of preventing serious injury is to treat the fallen person as soon as possible, several works attempted to implement different algorithms to recognize the fall. Our work compares the performance of two models based on features extraction: (i) Body joint data (Skeleton Data) which are the joint's positions in 3 axes and (ii) Bounding box (Box-size Data) covering all body joints. Machine learning algorithms that were chosen are Decision Tree (DT), Naïve Bayes (NB), K-nearest neighbors (KNN), Linear discriminant analysis (LDA), Voting Classification (VC), and Gradient boosting (GB). The results illustrate that the models trained with Skeleton data are performed far better than those trained with Box-size data (with an average accuracy of 94-81% and 80-75%, respectively). KNN shows the best performance in both Body joint model and Bounding box model. In conclusion, KNN with Body joint model performs the best among the others.
Efficient Multi-Valued Bounded Model Checking for LTL over Quasi-Boolean Algebras
Andrade, Jefferson O.; Kameyama, Yukiyoshi
Multi-valued Model Checking extends classical, two-valued model checking to multi-valued logic such as Quasi-Boolean logic. The added expressivity is useful in dealing with such concepts as incompleteness and uncertainty in target systems, while it comes with the cost of time and space. Chechik and others proposed an efficient reduction from multi-valued model checking problems to two-valued ones, but to the authors' knowledge, no study was done for multi-valued bounded model checking. In this paper, we propose a novel, efficient algorithm for multi-valued bounded model checking. A notable feature of our algorithm is that it is not based on reduction of multi-values into two-values; instead, it generates a single formula which represents multi-valuedness by a suitable encoding, and asks a standard SAT solver to check its satisfiability. Our experimental results show a significant improvement in the number of variables and clauses and also in execution time compared with the reduction-based one.
International Nuclear Information System (INIS)
Wang Feng; Ma Xiaoguang; Selvam, Lalitha; Gribakin, Gleb; Surko, Clifford M
2012-01-01
The Doppler-shift spectra of the γ-rays from positron annihilation in molecules were determined by using the momentum distribution of the annihilation electron–positron pair. The effect of the positron wavefunction on spectra was analysed in a recent paper (Green et al 2012 New J. Phys. 14 035021). In this companion paper, we focus on the dominant contribution to the spectra, which arises from the momenta of the bound electrons. In particular, we use computational quantum chemistry models (Hartree–Fock with two basis sets and density functional theory (DFT)) to calculate the wavefunctions of the bound electrons. Numerical results are presented for noble gases and small molecules such as H 2 , N 2 , O 2 , CH 4 and CF 4 . The calculations reveal relatively small effects on the Doppler-shift spectra from the level of inclusion of electron correlation energy in the models. For atoms, the difference in the full-width at half-maximum of the spectra obtained using the Hartree–Fock and DFT models does not exceed 2%. For molecules the difference can be much larger, reaching 8% for some molecular orbitals. These results indicate that the predicted positron annihilation spectra for molecules are generally more sensitive to inclusion of electron correlation energies in the quantum chemistry model than the spectra for atoms are. (paper)
NEW UPPER AND LOWER BOUNDS LINE OF SIGHT PATH LOSS MODELS FOR MOBILE PROPAGATION IN BUILDINGS
Directory of Open Access Journals (Sweden)
Supachai Phaiboon
2017-11-01
Full Text Available This paper proposes a method to predict line-of-sight (LOS path loss in buildings. We performed measurements in two different type of buildings at a frequency of 1.8 GHz and propose new upper and lower bounds path loss models which depend on max and min values of sample path loss data. This makes our models limit path loss within the boundary lines. The models include time-variant effects such as people moving and cars in parking areas with their influence on wave propagation that is very high. The results have shown that the proposed models will be useful for the system and cell design of indoor wireless communication systems.
Establishing the existence of a distance-based upper bound for a fuzzy DEA model using duality
International Nuclear Information System (INIS)
Soleimani-damaneh, M.
2009-01-01
In a recent paper [Soleimani-damaneh M. Fuzzy upper bounds and their applications. Chaos, Solitons and Fractals 2008;36:217-25.], I established the existence of a distance-based fuzzy upper bound for the objective function of a fuzzy DEA model, using the properties of a discussed signed distance, and provided an effective approach to solve that model. In this paper a new dual-based proof for the existence of the above-mentioned upper bound is provided which gives a useful insight into the theory of fuzzy DEA.
Using a Water Balance Model to Bound Potential Irrigation Development in the Upper Blue Nile Basin
Jain Figueroa, A.; McLaughlin, D.
2016-12-01
The Grand Ethiopian Renaissance Dam (GERD), on the Blue Nile is an example of water resource management underpinning food, water and energy security. Downstream countries have long expressed concern about water projects in Ethiopia because of possible diversions to agricultural uses that could reduce flow in the Nile. Such diversions are attractive to Ethiopia as a partial solution to its food security problems but they could also conflict with hydropower revenue from GERD. This research estimates an upper bound on diversions above the GERD project by considering the potential for irrigated agriculture expansion and, in particular, the availability of water and land resources for crop production. Although many studies have aimed to simulate downstream flows for various Nile basin management plans, few have taken the perspective of bounding the likely impacts of upstream agricultural development. The approach is to construct an optimization model to establish a bound on Upper Blue Nile (UBN) agricultural development, paying particular attention to soil suitability and seasonal variability in climate. The results show that land and climate constraints impose significant limitations on crop production. Only 25% of the land area is suitable for irrigation due to the soil, slope and temperature constraints. When precipitation is also considered only 11% of current land area could be used in a way that increases water consumption. The results suggest that Ethiopia could consume an additional 3.75 billion cubic meters (bcm) of water per year, through changes in land use and storage capacity. By exploiting this irrigation potential, Ethiopia could potentially decrease the annual flow downstream of the UBN by 8 percent from the current 46 bcm/y to the modeled 42 bcm/y.
Jacquin, A. P.
2012-04-01
This study analyses the effect of precipitation spatial distribution uncertainty on the uncertainty bounds of a snowmelt runoff model's discharge estimates. Prediction uncertainty bounds are derived using the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. The model analysed is a conceptual watershed model operating at a monthly time step. The model divides the catchment into five elevation zones, where the fifth zone corresponds to the catchment glaciers. Precipitation amounts at each elevation zone i are estimated as the product between observed precipitation (at a single station within the catchment) and a precipitation factor FPi. Thus, these factors provide a simplified representation of the spatial variation of precipitation, specifically the shape of the functional relationship between precipitation and height. In the absence of information about appropriate values of the precipitation factors FPi, these are estimated through standard calibration procedures. The catchment case study is Aconcagua River at Chacabuquito, located in the Andean region of Central Chile. Monte Carlo samples of the model output are obtained by randomly varying the model parameters within their feasible ranges. In the first experiment, the precipitation factors FPi are considered unknown and thus included in the sampling process. The total number of unknown parameters in this case is 16. In the second experiment, precipitation factors FPi are estimated a priori, by means of a long term water balance between observed discharge at the catchment outlet, evapotranspiration estimates and observed precipitation. In this case, the number of unknown parameters reduces to 11. The feasible ranges assigned to the precipitation factors in the first experiment are slightly wider than the range of fixed precipitation factors used in the second experiment. The mean squared error of the Box-Cox transformed discharge during the calibration period is used for the evaluation of the
Bounded Rational Managers Struggle with Talent Management - An Agent-based Modelling Approach
DEFF Research Database (Denmark)
Adamsen, Billy; Thomsen, Svend Erik
This study applies an agent-based modeling approach to explore some aspects of an important managerial task: finding and cultivating talented individuals capable of creating value for their organization at some future state. Given that the term talent in talent management is an empty signifier...... and its denotative meaning floating, we propose that bounded rational managers base their decisions on a simple heuristic, i.e. selecting and cultivating individuals so that their capabilities resemble their own capabilities the most (Adamsen 2015). We model the consequences of this talent management...... heuristic by varying the capabilities of today’s managers, which in turn impact which individuals will be selected as talent. We model the average level of capabilities and the distribution thereof in the sample where managers identify and select individuals from. We consider varying degrees of path...
OPRA capacity bounds for selection diversity over generalized fading channels
Hanif, Muhammad Fainan; Yang, Hongchuan; Alouini, Mohamed-Slim
2014-01-01
, lower and upper bounds on OPRA capacity for selection diversity scheme are presented. These bounds hold for variety of fading channels including log-normal and generalized Gamma distributed models and have very simple analytic expressions for easy
NLIE of Dirichlet sine-Gordon model for boundary bound states
International Nuclear Information System (INIS)
Ahn, Changrim; Bajnok, Zoltan; Palla, Laszlo; Ravanini, Francesco
2008-01-01
We investigate boundary bound states of sine-Gordon model on the finite-size strip with Dirichlet boundary conditions. For the purpose we derive the nonlinear integral equation (NLIE) for the boundary excited states from the Bethe ansatz equation of the inhomogeneous XXZ spin 1/2 chain with boundary imaginary roots discovered by Saleur and Skorik. Taking a large volume (IR) limit we calculate boundary energies, boundary reflection factors and boundary Luescher corrections and compare with the excited boundary states of the Dirichlet sine-Gordon model first considered by Dorey and Mattsson. We also consider the short distance limit and relate the IR scattering data with that of the UV conformal field theory
International Nuclear Information System (INIS)
D'Alesio, U.; Leader, E.; Murgia, F.
2010-01-01
We show that respecting the underlying Lorentz structure in the parton model has very strong consequences. Failure to insist on the correct Lorentz covariance is responsible for the existence of contradictory results in the literature for the polarized structure function g 2 (x), whereas with the correct imposition we are able to derive the Wandzura-Wilczek relation for g 2 (x) and the target-mass corrections for polarized deep inelastic scattering without recourse to the operator product expansion. We comment briefly on the problem of threshold behavior in the presence of target-mass corrections. Careful attention to the Lorentz structure has also profound implications for the structure of the transverse momentum dependent parton densities often used in parton model treatments of hadron production, allowing the k T dependence to be derived explicitly. It also leads to stronger positivity and Soffer-type bounds than usually utilized for the collinear densities.
From superWIMPs to decaying dark matter. Models, bounds and indirect searches
Energy Technology Data Exchange (ETDEWEB)
Weniger, Christoph
2010-06-15
Despite lots of observational and theoretical efforts, the particle nature of dark matter remains unknown. Beyond the paradigmatic WIMPs (Weakly Interacting Massive Particles), many theoretically well motivated models exist where dark matter interacts much more weakly than electroweak with Standard Model particles. In this case new phenomena occur, like the decay of dark matter or the interference with the standard cosmology of the early Universe. In this thesis we study some of these aspects of superweakly coupled dark matter in general, and in the special case of hidden U(1){sub X} gauginos that kinetically mix with hypercharge. There, we will assume that the gauge group remains unbroken, similar to the Standard Model U(1){sub em}. We study different kinds of cosmological bounds, including bounds from thermal overproduction, from primordial nucleosynthesis and from structure formation. Furthermore, we study the possible cosmic-ray signatures predicted by this scenario, with emphasis on the electron and positron channel in light of the recent observations by PAMELA and Fermi LAT. Moreover we study the cosmic-ray signatures of decaying dark matter independently of concrete particle-physics models. In particular we analyze in how far the rise in the positron fraction above 10 GeV, as observed by PAMELA, can be explained by dark matter decay. Lastly, we concentrate on related predictions for gamma-ray observations with the Fermi LAT, and propose to use the dipole-like anisotropy of the prompt gamma-ray dark matter signal to distinguish exotic dark matter contributions from the extragalactic gamma-ray background. (orig.)
From superWIMPs to decaying dark matter. Models, bounds and indirect searches
International Nuclear Information System (INIS)
Weniger, Christoph
2010-06-01
Despite lots of observational and theoretical efforts, the particle nature of dark matter remains unknown. Beyond the paradigmatic WIMPs (Weakly Interacting Massive Particles), many theoretically well motivated models exist where dark matter interacts much more weakly than electroweak with Standard Model particles. In this case new phenomena occur, like the decay of dark matter or the interference with the standard cosmology of the early Universe. In this thesis we study some of these aspects of superweakly coupled dark matter in general, and in the special case of hidden U(1) X gauginos that kinetically mix with hypercharge. There, we will assume that the gauge group remains unbroken, similar to the Standard Model U(1) em . We study different kinds of cosmological bounds, including bounds from thermal overproduction, from primordial nucleosynthesis and from structure formation. Furthermore, we study the possible cosmic-ray signatures predicted by this scenario, with emphasis on the electron and positron channel in light of the recent observations by PAMELA and Fermi LAT. Moreover we study the cosmic-ray signatures of decaying dark matter independently of concrete particle-physics models. In particular we analyze in how far the rise in the positron fraction above 10 GeV, as observed by PAMELA, can be explained by dark matter decay. Lastly, we concentrate on related predictions for gamma-ray observations with the Fermi LAT, and propose to use the dipole-like anisotropy of the prompt gamma-ray dark matter signal to distinguish exotic dark matter contributions from the extragalactic gamma-ray background. (orig.)
Hydrological catchment modelling: past, present and future
Directory of Open Access Journals (Sweden)
2007-01-01
Full Text Available This paper discusses basic issues in hydrological modelling and flood forecasting, ranging from the roles of physically-based and data-driven rainfall runoff models, to the concepts of predictive uncertainty and equifinality and their implications. The evolution of a wide range of hydrological catchment models employing the physically meaningful and data-driven approaches introduces the need for objective test beds or benchmarks to assess the merits of the different models in reconciling the alternative approaches. In addition, the paper analyses uncertainty in models and predictions by clarifying the meaning of uncertainty, by distinguishing between parameter and predictive uncertainty and by demonstrating how the concept of equifinality must be addressed by appropriate and robust inference approaches. Finally, the importance of predictive uncertainty in the decision making process is highlighted together with possible approaches aimed at overcoming the diffidence of end-users.
Charge–mass ratio bound and optimization in the Parikh–Wilczek tunneling model of Hawking radiation
International Nuclear Information System (INIS)
Kim, Kyung Kiu; Wen, Wen-Yu
2014-01-01
In this Letter, we study the mutual information hidden in the Parikh–Wilczek tunneling model of Hawking radiation for Reissner–Nordström black holes. We argue that the condition of nonnegativity of mutual information suggests bound(s) for charge–mass ratio of emitted particles. We further view the radiation as an optimization process and discuss its effect on time evolution of a charged black hole.
Bounded Memory, Inertia, Sampling and Weighting Model for Market Entry Games
Directory of Open Access Journals (Sweden)
Yi-Shan Lee
2011-03-01
Full Text Available This paper describes the “Bounded Memory, Inertia, Sampling and Weighting” (BI-SAW model, which won the http://sites.google.com/site/gpredcomp/Market Entry Prediction Competition in 2010. The BI-SAW model refines the I-SAW Model (Erev et al. [1] by adding the assumption of limited memory span. In particular, we assume when players draw a small sample to weight against the average payoff of all past experience, they can only recall 6 trials of past experience. On the other hand, we keep all other key features of the I-SAW model: (1 Reliance on a small sample of past experiences, (2 Strong inertia and recency effects, and (3 Surprise triggers change. We estimate this model using the first set of experimental results run by the competition organizers, and use it to predict results of a second set of similar experiments later ran by the organizers. We find significant improvement in out-of-sample predictability (against the I-SAW model in terms of smaller mean normalized MSD, and such result is robust to resampling the predicted game set and reversing the role of the sets of experimental results. Our model’s performance is the best among all the participants.
Directory of Open Access Journals (Sweden)
E. Kwak
2012-07-01
Full Text Available Digital Building Model is an important component in many applications such as city modelling, natural disaster planning, and aftermath evaluation. The importance of accurate and up-to-date building models has been discussed by many researchers, and many different approaches for efficient building model generation have been proposed. They can be categorised according to the data source used, the data processing strategy, and the amount of human interaction. In terms of data source, due to the limitations of using single source data, integration of multi-senor data is desired since it preserves the advantages of the involved datasets. Aerial imagery and LiDAR data are among the commonly combined sources to obtain 3D building models with good vertical accuracy from laser scanning and good planimetric accuracy from aerial images. The most used data processing strategies are data-driven and model-driven ones. Theoretically one can model any shape of buildings using data-driven approaches but practically it leaves the question of how to impose constraints and set the rules during the generation process. Due to the complexity of the implementation of the data-driven approaches, model-based approaches draw the attention of the researchers. However, the major drawback of model-based approaches is that the establishment of representative models involves a manual process that requires human intervention. Therefore, the objective of this research work is to automatically generate building models using the Minimum Bounding Rectangle algorithm and sequentially adjusting them to combine the advantages of image and LiDAR datasets.
Comparison of the ASME Environmental Fatigue Design Curve with the Leax' Low Bound Model
International Nuclear Information System (INIS)
Jeong, Ill Seok; Kim, Wan Jae; Jun, Hyun Ik
2010-01-01
Environmental fatigue issue long time argued between industry and regulator. The issues of the debates are about environmental fatigue data only from experiment laboratories, no evidences in fields, and over conservatism. However, NRC issued the requirement to implement it to the construction design prior to industry practical design code. American Society of Mechanical Engineers (ASME) determined to issue non-mandatory code cases of environmental fatigue design. This paper evaluated the conservatism of the ASME proposed environmental fatigue design curve in comparison with the Leax' low bound approach model of environmental fatigue curve. A group of CF8M cast austenitic stainless steel (CASS) produced in KEPCO Research Center was introduced in the evaluation
Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A
2014-10-01
Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the
Bounds on fluid permeability for viscous flow through porous media
International Nuclear Information System (INIS)
Berryman, J.G.
1985-01-01
General properties of variational bounds on Darcy's constant for slow viscous flow through porous media are studied. The bounds are also evaluated numerically for the penetrable sphere model. The bound of Doi depending on two-point correlations and the analytical bound of Weissberg and Prager give comparable results in the low density limit but the analytical bound is superior for higher densities. Prager's bound depending on three-point correlation functions is worse than the analytical bound at low densities but better (although comparable to it) at high densities. A procedure for methodically improving Prager's three point bound is presented. By introducing a Gaussian trial function, the three-point bound is improved by an order of magnitude for moderate values of porosity. The new bounds are comparable in magnitude to the Kozeny--Carman empirical relation for porous materials
Zhu, W.; Timmermans, H.J.P.
2011-01-01
Models of geographical choice behavior have been dominantly based on rational choice models, which assume that decision makers are utility-maximizers. Rational choice models may be less appropriate as behavioral models when modeling decisions in complex environments in which decision makers may
Comments upon a bound state model for a two body system
International Nuclear Information System (INIS)
Micu, L.
2005-01-01
We show that in classical mechanics, classical and relativistic quantum mechanics it is possible to replace the equation of the relative motion for a two-body bound system at rest by individual dynamical equations with correlated solutions. We compare the representations of a bound system in terms of the relative and individual coordinates and mention some of the observable differences. (author)
Stefferson, Michael W.; Norris, Samantha L.; Vernerey, Franck J.; Betterton, Meredith D.; E Hough, Loren
2017-08-01
Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.
Ellison, Donald H.; Englander, Jacob A.; Conway, Bruce A.
2017-01-01
The multiple gravity assist low-thrust (MGALT) trajectory model combines the medium-fidelity Sims-Flanagan bounded-impulse transcription with a patched-conics flyby model and is an important tool for preliminary trajectory design. While this model features fast state propagation via Keplers equation and provides a pleasingly accurate estimation of the total mass budget for the eventual flight suitable integrated trajectory it does suffer from one major drawback, namely its temporal spacing of the control nodes. We introduce a variant of the MGALT transcription that utilizes the generalized anomaly from the universal formulation of Keplers equation as a decision variable in addition to the trajectory phase propagation time. This results in two improvements over the traditional model. The first is that the maneuver locations are equally spaced in generalized anomaly about the orbit rather than time. The second is that the Kepler propagator now has the generalized anomaly as its independent variable instead of time and thus becomes an iteration-free propagation method. The new algorithm is outlined, including the impact that this has on the computation of Jacobian entries for numerical optimization, and a motivating application problem is presented that illustrates the improvements that this model has over the traditional MGALT transcription.
Physical Uncertainty Bounds (PUB)
Energy Technology Data Exchange (ETDEWEB)
Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-19
This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.
Shu, Zhengyu; Lin, Hong; Shi, Shaolei; Mu, Xiangduo; Liu, Yanru; Huang, Jianzhong
2016-05-03
The whole-cell lipase from Burkholderia cepacia has been used as a biocatalyst in organic synthesis. However, there is no report in the literature on the component or the gene sequence of the cell-bound lipase from this species. Qualitative analysis of the cell-bound lipase would help to illuminate the regulation mechanism of gene expression and further improve the yield of the cell-bound lipase by gene engineering. Three predictive cell-bound lipases, lipA, lipC21 and lipC24, from Burkholderia sp. ZYB002 were cloned and expressed in E. coli. Both LipA and LipC24 displayed the lipase activity. LipC24 was a novel mesophilic enzyme and displayed preference for medium-chain-length acyl groups (C10-C14). The 3D structural model of LipC24 revealed the open Y-type active site. LipA displayed 96 % amino acid sequence identity with the known extracellular lipase. lipA-inactivation and lipC24-inactivation decreased the total cell-bound lipase activity of Burkholderia sp. ZYB002 by 42 % and 14 %, respectively. The cell-bound lipase activity from Burkholderia sp. ZYB002 originated from a multi-enzyme mixture with LipA as the main component. LipC24 was a novel lipase and displayed different enzymatic characteristics and structural model with LipA. Besides LipA and LipC24, other type of the cell-bound lipases (or esterases) should exist.
Modelling and simulation of turbulence and heat transfer in wall-bounded flows
Popovac, M.
2006-01-01
At present it is widely accepted that there is no universal turbulence model, i.e. no turbulence model can give acceptably good predictions for all turbulent flows that are found in nature or engineering. Every turbulence model is based on certain assumptions, and hence it is aimed at certain type
RG running in a minimal UED model in light of recent LHC Higgs mass bounds
International Nuclear Information System (INIS)
Blennow, Mattias; Melbéus, Henrik; Ohlsson, Tommy; Zhang, He
2012-01-01
We study how the recent ATLAS and CMS Higgs mass bounds affect the renormalization group running of the physical parameters in universal extra dimensions. Using the running of the Higgs self-coupling constant, we derive bounds on the cutoff scale of the extra-dimensional theory itself. We show that the running of physical parameters, such as the fermion masses and the CKM mixing matrix, is significantly restricted by these bounds. In particular, we find that the running of the gauge couplings cannot be sufficient to allow gauge unification at the cutoff scale.
International Nuclear Information System (INIS)
Eliasi, H.; Menhaj, M.B.; Davilu, H.
2011-01-01
Research highlights: → In this work, a robust nonlinear model predictive control algorithm is developed. → This algorithm is applied to control the power level for load following. → The state constraints are imposed on the predicted trajectory during optimization. → The xenon oscillations are the main constraint for the load following problem. → In this algorithm, xenon oscillations are bounded within acceptable limits. - Abstract: One of the important operations in nuclear power plants is load-following in which imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation considered to be a constraint for the load-following operation. In this paper, a robust nonlinear model predictive control for the load-following operation problem is proposed that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to maintain xenon oscillations to be bounded. The constant AO is a robust state constraint for load-following problem. The controller imposes restricted state constraints on the predicted trajectory during optimization which guarantees robust satisfaction of state constraints without restoring to a min-max optimization problem. Simulation results show that the proposed controller for the load-following operation is so effective so that the xenon oscillations kept bounded in the given region.
Li, Cheng; Pan, Xinyi; Ying, Kui; Zhang, Qiang; An, Jing; Weng, Dehe; Qin, Wen; Li, Kuncheng
2009-11-01
The conventional phase difference method for MR thermometry suffers from disturbances caused by the presence of lipid protons, motion-induced error, and field drift. A signal model is presented with multi-echo gradient echo (GRE) sequence using a fat signal as an internal reference to overcome these problems. The internal reference signal model is fit to the water and fat signals by the extended Prony algorithm and the Levenberg-Marquardt algorithm to estimate the chemical shifts between water and fat which contain temperature information. A noise analysis of the signal model was conducted using the Cramer-Rao lower bound to evaluate the noise performance of various algorithms, the effects of imaging parameters, and the influence of the water:fat signal ratio in a sample on the temperature estimate. Comparison of the calculated temperature map and thermocouple temperature measurements shows that the maximum temperature estimation error is 0.614 degrees C, with a standard deviation of 0.06 degrees C, confirming the feasibility of this model-based temperature mapping method. The influence of sample water:fat signal ratio on the accuracy of the temperature estimate is evaluated in a water-fat mixed phantom experiment with an optimal ratio of approximately 0.66:1. (c) 2009 Wiley-Liss, Inc.
Bounded Gaussian process regression
DEFF Research Database (Denmark)
Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan
2013-01-01
We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...... with the proposed explicit noise-model extension....
Super-Grid Modeling of the Elastic Wave Equation in Semi-Bounded Domains
Energy Technology Data Exchange (ETDEWEB)
Petersson, N. Anders; Sjögreen, Björn
2014-10-01
We develop a super-grid modeling technique for solving the elastic wave equation in semi-bounded two- and three-dimensional spatial domains. In this method, waves are slowed down and dissipated in sponge layers near the far-field boundaries. Mathematically, this is equivalent to a coordinate mapping that transforms a very large physical domain to a significantly smaller computational domain, where the elastic wave equation is solved numerically on a regular grid. To damp out waves that become poorly resolved because of the coordinate mapping, a high order artificial dissipation operator is added in layers near the boundaries of the computational domain. We prove by energy estimates that the super-grid modeling leads to a stable numerical method with decreasing energy, which is valid for heterogeneous material properties and a free surface boundary condition on one side of the domain. Our spatial discretization is based on a fourth order accurate finite difference method, which satisfies the principle of summation by parts. We show that the discrete energy estimate holds also when a centered finite difference stencil is combined with homogeneous Dirichlet conditions at several ghost points outside of the far-field boundaries. Therefore, the coefficients in the finite difference stencils need only be boundary modified near the free surface. This allows for improved computational efficiency and significant simplifications of the implementation of the proposed method in multi-dimensional domains. Numerical experiments in three space dimensions show that the modeling error from truncating the domain can be made very small by choosing a sufficiently wide super-grid damping layer. The numerical accuracy is first evaluated against analytical solutions of Lamb’s problem, where fourth order accuracy is observed with a sixth order artificial dissipation. We then use successive grid refinements to study the numerical accuracy in the more
Lower Bounds for Sorted Geometric Queries in the I/O Model
DEFF Research Database (Denmark)
Afshani, Peyman; Zeh, Norbert
2012-01-01
. This is highly relevant in an I/O context because storing a massive data set in a superlinear-space data structure is often infeasible. We also prove that answering queries using I/Os requires space, where N is the input size, B is the block size, and M is the size of the main memory. This bound is unlikely...... to be optimal and in fact we can show that, for a particular class of “persistence-based” data structures, the space lower bound can be improved to Ω(N2 / MO(1)). Both these lower bounds are a first step towards understanding the complexity of sorted geometric query problems. All our lower bounds assume...
Neutron scattering from elemental indium, the optical model, and the bound-state potential
Energy Technology Data Exchange (ETDEWEB)
Chiba, S. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Guenther, P.T.; Lawson, R.D.; Smith, A.B. (Argonne National Lab., IL (USA))
1990-06-01
Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of {approx}500 keV. Seventy or more differential values are obtained at each incident energy, distributed between {approx}18{degree} and 160{degree}. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from {approx}1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs.
Neutron scattering from elemental indium, the optical model, and the bound-state potential
International Nuclear Information System (INIS)
Chiba, S.; Guenther, P.T.; Lawson, R.D.; Smith, A.B.
1990-01-01
Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of ∼500 keV. Seventy or more differential values are obtained at each incident energy, distributed between ∼18 degree and 160 degree. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from ∼1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs
Han, Hyojung; Rojewski, Jay W.
2015-01-01
A Korean national database, the High School Graduates Occupational Mobility Survey, was used to examine the influence of perceived social supports (family and school) and career adaptability on the subsequent job satisfaction of work-bound adolescents 4 months after their transition from high school to work. Structural equation modeling analysis…
FAO/IAEA model protocol for the determination of bound residues in soil
International Nuclear Information System (INIS)
1986-01-01
A protocol for determining bound pesticide residue content in soils was developed and collaboratively tested by 11 members of the FAO/IAEA Research Co-ordination Committee. The method assumes prior incubation of soil with a radioactive pesticide or related organic compound. The major process steps of the protocol include: (a) Soxhlet extraction of air-dry soil with methanol for 24 h; (b) determination of radioactivity in unextracted soil, in methanol-extracted soil (yielding bound residue content), and in the methanol extract (yielding extractable residue content); and (c) use of triplicate samples per analysis. The participants received lysimeter soils treated six to seven years earlier with 14 C-allyl alcohol (Soil A) or 14 C-hexachloro-benzene (Soil H). The inter-laboratory results first indicated non-homogeneity of Soil A sub-samples, since the initial and bound radioactivity for four laboratories was about half of that found by the remaining seven laboratories. Intra-laboratory (in one laboratory) analyses of sub-subsamples from six 'high-group' laboratories, two 'low-group' laboratories and two additional laboratories confirmed the homogeneity of Soil A and implicated error in the combustion methods at 'low-group' laboratories. The intra- and inter-laboratory coefficients of variation for initial 14 C-content were 4.7% and 7.0%, respectively. Of the residual 14 C in Soil A, 95% was bound; in contrast, only 15% of 14 C in Soil H was bound. The coefficients of variation among ten laboratories, for Soil H, were 8.4% and 18.1% for percentage extractable residue and percentage bound residue, respectively. Some limited testing of alternative protocols, using other solvents or batch extraction, confirmed that the IAEA protocol was most efficient in the extraction of non-bound radioactivity; pre-wetting Soil A may, however, improve extraction. (author)
New efficient utility upper bounds for the fully adaptive model of attack trees
Buldas, Ahto; Lenin, Aleksandr
2013-01-01
We present a new fully adaptive computational model for attack trees that allows attackers to repeat atomic attacks if they fail and to play on if they are caught and have to pay penalties. The new model allows safer conclusions about the security of real-life systems and is somewhat
Directory of Open Access Journals (Sweden)
Z. Li
2017-11-01
Full Text Available Export production reflects the amount of organic matter transferred from the ocean surface to depth through biological processes. This export is in large part controlled by nutrient and light availability, which are conditioned by mixed layer depth (MLD. In this study, building on Sverdrup's critical depth hypothesis, we derive a mechanistic model of an upper bound on carbon export based on the metabolic balance between photosynthesis and respiration as a function of MLD and temperature. We find that the upper bound is a positively skewed bell-shaped function of MLD. Specifically, the upper bound increases with deepening mixed layers down to a critical depth, beyond which a long tail of decreasing carbon export is associated with increasing heterotrophic activity and decreasing light availability. We also show that in cold regions the upper bound on carbon export decreases with increasing temperature when mixed layers are deep, but increases with temperature when mixed layers are shallow. A meta-analysis shows that our model envelopes field estimates of carbon export from the mixed layer. When compared to satellite export production estimates, our model indicates that export production in some regions of the Southern Ocean, particularly the subantarctic zone, is likely limited by light for a significant portion of the growing season.
Weak radiative decays of the B meson and bounds on M{sub H}± in the Two-Higgs-Doublet Model
Energy Technology Data Exchange (ETDEWEB)
Misiak, Mikolaj [University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); CERN, Theoretical Physics Department, Geneva 23 (Switzerland); Steinhauser, Matthias [Karlsruhe Institute of Technology (KIT), Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany)
2017-03-15
In a recent publication (Abdesselam et al. arXiv:1608.02344), the Belle collaboration updated their analysis of the inclusive weak radiative B-meson decay, including the full dataset of (772 ± 11) x 10{sup 6} B anti B pairs. Their result for the branching ratio is now below the Standard Model prediction (Misiak et al. Phys Rev Lett 114:221801, 2015, Czakon et al. JHEP 1504:168, 2015), though it remains consistent with it. However, bounds on the charged Higgs boson mass in the Two-Higgs-Doublet Model get affected in a significant manner. In the so-called Model II, the 95% C.L. lower bound on M{sub H}± is now in the 570-800 GeV range, depending quite sensitively on the method applied for its determination. Our present note is devoted to presenting and discussing the updated bounds, as well as to clarifying several ambiguities that one might encounter in evaluating them. One of such ambiguities stems from the photon energy cutoff choice, which deserves re-consideration in view of the improved experimental accuracy. (orig.)
DEFF Research Database (Denmark)
Baadsgaard, Mikkel; Nielsen, Jan Nygaard; Madsen, Henrik
2000-01-01
An econometric analysis of continuous-timemodels of the term structure of interest rates is presented. A panel of coupon bond prices with different maturities is used to estimate the embedded parameters of a continuous-discrete state space model of unobserved state variables: the spot interest rate...... noise term should account for model errors. A nonlinear filtering method is used to compute estimates of the state variables, and the model parameters are estimated by a quasimaximum likelihood method provided that some assumptions are imposed on the model residuals. Both Monte Carlo simulation results...
Large N Chern-Simons with massive fundamental fermions — A model with no bound states
International Nuclear Information System (INIS)
Frishman, Yitzhak; Sonnenschein, Jacob
2014-01-01
In a previous paper http://dx.doi.org/10.1007/JHEP12(2013)091, we analyzed the theory of massive fermions in the fundamental representation coupled to a U(N) Chern-Simons gauge theory in three dimensions at level K. It was done in the large N, large K limits where λ=(N/K) was kept fixed. Among other results, we showed there that there are no high mass “quark anti-quark" bound states. Here we show that there are no bound states at all.
Upper bound on the efficiency of certain nonimaging concentrators in the physical-optics model
Welford, W. T.; Winston, R.
1982-09-01
Upper bounds on the performance of nonimaging concentrators are obtained within the framework of scalar-wave theory by using a simple approach to avoid complex calculations on multiple phase fronts. The approach consists in treating a theoretically perfect image-forming device and postulating that no non-image-forming concentrator can have a better performance than such an ideal image-forming system. The performance of such a system can be calculated according to wave theory, and this will provide, in accordance with the postulate, upper bounds on the performance of nonimaging systems. The method is demonstrated for a two-dimensional compound parabolic concentrator.
Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions
Directory of Open Access Journals (Sweden)
S. M. Miller
2014-02-01
the relative merits of each. This paper investigates the applicability of several approaches to bounded inverse problems. A common method of data transformations is found to unrealistically skew estimates for the examined example application. The method of Lagrange multipliers and two Markov chain Monte Carlo (MCMC methods yield more realistic and accurate results. In general, the examined MCMC approaches produce the most realistic result but can require substantial computational time. Lagrange multipliers offer an appealing option for large, computationally intensive problems when exact uncertainty bounds are less central to the analysis. A synthetic data inversion of US anthropogenic methane emissions illustrates the strengths and weaknesses of each approach.
Directory of Open Access Journals (Sweden)
Eduardo Vicente
2013-06-01
effectivities more than a number of fixed essential characteristics. Luiz Artur Ferrareto (UFRGS, undertaking a theoretical proposal for categorizing radio content in four different levels of planning (segment, form, programming and content itself tries to “compare and contrast the practices of Brazilian commercial broadcasting companies to those used on the radio in the United States, a reference market for our national entrepreneurs”. Madalena Oliveira (University of Minho focuses on the current stage of communication researches in Portugal reflecting on the challenges for studying a culture based on listening in times of looking. Marko Ala-Fossi, (University of Tampere beginning with the statement that “radio evolution greatly depends not only on the cultural context of a country but also on the whole social, political, economic development of societies” gives us a projection on radio development around the world for the next decades. Closing the dossier, Rafael Duarte Oliveira Venancio (UFU assuming radio as language by definition and not as a device understands it as a section and an operating model in such language as it intersects the world. Another six articles, not enrolled in the dossier, round the edition off. Fernando de Tacca debates the category of “photocine” recurring to three recent Spanish productions. Gustavo Souza investigates the possibility of identifying a point of view in documentary movies while establishing a debate that joins the materialities of image and sound with the subjectivity resulting from interpretation. Vinicius Bandeira develops on the special duplicity present in the movies between what is and what is not subsumed by the camera. Neide Jallageas proposes the study of visual communication design from the first modelings, attempting especially to the radical propositions from the early XXth century avant-garde movement. Gilson Schwartz debates on the impact from the distribution of videogames as hegemonic cultural practice in
Boson bound states in the β-Fermi–Pasta–Ulam model
Indian Academy of Sciences (India)
5. — journal of. November 2013 physics pp. 839–848. Boson bound states in the ... of Basic Sciences, The First Aeronautical Institute of the Air Force, Xinyang 464000, ..... [4] N Boechler, G Theocharis, S Job, P G Kevrekidis, M A Porter and C ...
International Nuclear Information System (INIS)
2007-01-01
The presented materials consist of presentations of international workshop which held in Warsaw from 4 to 5 October 2007. Main subject of the meeting was progress in manufacturing as well as research program development for neutron detector which is planned to be placed at GANIL laboratory and will be used in nuclear spectroscopy research
2016-06-06
cathodic conditions, oxidized and reduced heme states were assumed, respectively. The calculated results are summarized in Table 2. The solvation free...reports favor a flavin-bound model, proposing two one- electron reductions of flavin, namely, oxidized (Ox) to semiquinone (Sq) and semiquinone to...hydroquinone (Hq), at anodic and cathodic conditions, respectively. In this work, to provide a mechanistic understanding of riboflavin (RF) binding at
Czech Academy of Sciences Publication Activity Database
Aussel, D.; Červinka, Michal; Marechal, M.
2016-01-01
Roč. 50, č. 1 (2016), s. 19-38 ISSN 0399-0559 R&D Projects: GA ČR GAP402/12/1309; GA ČR GA201/09/1957 Institutional support: RVO:67985556 Keywords : Deregulated electricity market * production bounds * mathematical program with complementarity constraints * M-stationarity * calmness Subject RIV: BA - General Mathematics Impact factor: 0.550, year: 2016
DEFF Research Database (Denmark)
Ísberg, Vignir; Balle, Thomas; Sander, Tommy
2011-01-01
molecular dynamics (MD) simulations. The driving force for the transformation was the addition of several known intermolecular and receptor interhelical hydrogen bonds enforcing the necessary helical and rotameric movements. Subsquent MD simulations without constraints confirmed the stability......A 5-HT(2A) receptor model was constructed by homology modeling based on the ß(2)-adrenergic receptor and the G protein-bound opsin crystal structures. The 5-HT(2A) receptor model was transferred into an active conformation by an agonist ligand and a G(aq) peptide in four subsequent steered...
A (2 d,3 v) cylindrical, kinetic model of a time-independent, collisionless bounded plasma
International Nuclear Information System (INIS)
Pedit, H.; Kuhn, S.
1994-01-01
A (2 d,3 v) cylindrical, electrostatic, collisionless kinetic model for a wide class of negative-bias de states of the single-ended Q machine is developed. Based on the method presented recently by the authors for an analogous cartesian model, the self-consistent plasma state is found by means of an iterative scheme in which the charge-density and potential distributions are alternately advanced. The electron an ion velocity distribution functions are calculated via trajectory integration, which ensures high accuracy and resolution in both configuration and velocity space. The main differences between cartesian and cylindrical geometry are discussed, and typical macroscopic as well as microscopic quantities for an exemplary special case are presented. (author). 3 refs, 5 figs
International Nuclear Information System (INIS)
2007-01-01
The PARIS meeting held in Cracow, Poland from 14 to 15 May 2007. The main subjects discussed during this meeting were the status of international project dedicated to gamma spectroscopy research. The scientific research program includes investigations of giant dipole resonance, probe of hot nuclei induced in heavy reactions, Jacobi shape transitions, isospin mixing and nuclear multifragmentation. The mentioned programme needs Rand D development such as new scintillations materials as lanthanum chlorides and bromides as well as new photo detection sensors as avalanche photodiodes - such subjects are also subjects of discussion. Additionally results of computerized simulations of scintillation detectors properties by means of GEANT- 4 code are presented
Upper bounds on Higgs and top quark masses in the flipped SU(5)xU(1) superstring model
Energy Technology Data Exchange (ETDEWEB)
Durand, L.; Lopez, J.L.
1989-02-02
In this letter, we use a simplified method to calculate high-energy unitarity constraints on grand unified broken supersymmetric models. We apply the method to the ''flipped'' SU(5)xU(1) superstring model, obtain the constraints at a grand unified mass scale M/sub G/=4x10/sup 16/ GeV, and then use the renormalization group equations to evolve the constraints to the low-energy mass scale M/sub W/. We find upper bounds on the low-energy superpotential parameters which in turn imply absolute upper bounds on the top quark mass, m/sub t/< or approx.200 GeV, and on the lightest neutral Higgs boson mass, Msub(H/sub 1//sup 0/)< or approx.155 GeV. We also obtain an upper bound on Msub(H/sub 1//sup 0/) as a function of m/sub t/ which shows that for favored values of the ratio of Higgs vacuum expectation values Msub(H/sub 1//sup 0/)< or approx.125 GeV.
Heat Pump Water Heater Modeling in EnergyPlus (Presentation)
Energy Technology Data Exchange (ETDEWEB)
Wilson, E.; Christensen, C.
2012-03-01
This presentation summarizes NREL's development of a HPWH model for use in hourly building energy simulation programs, such as BEopt; this presentation was given at the Building America Stakeholder meeting on March 1, 2012, in Austin, Texas.
Relativistic bound state wave functions
International Nuclear Information System (INIS)
Micu, L.
2005-01-01
A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is
Astronomical bounds on a cosmological model allowing a general interaction in the dark sector
Pan, Supriya; Mukherjee, Ankan; Banerjee, Narayan
2018-06-01
Non-gravitational interaction between two barotropic dark fluids, namely the pressureless dust and the dark energy in a spatially flat Friedmann-Lemaître-Robertson-Walker model, has been discussed. It is shown that for the interactions that are linear in terms the energy densities of the dark components and their first order derivatives, the net energy density is governed by a second-order differential equation with constant coefficients. Taking a generalized interaction, which includes a number of already known interactions as special cases, the dynamics of the universe is described for three types of the dark energy equation of state, namely that of interacting quintessence, interacting vacuum energy density, and interacting phantom. The models have been constrained using the standard cosmological probes, Supernovae Type Ia data from joint light curve analysis and the observational Hubble parameter data. Two geometric tests, the cosmographic studies, and the Om diagnostic have been invoked so as to ascertain the behaviour of the present model vis-a-vis the Λ-cold dark matter model. We further discussed the interacting scenarios taking into account the thermodynamic considerations.
Building models for marketing decisions : Past, present and future
Leeflang, PSH; Wittink, DR
We review five eras of model building in marketing, with special emphasis on the fourth and the fifth eras, the present and the future. At many firms managers now routinely use model-based results for marketing decisions. Given an increasing number of successful applications, the demand for models
International Nuclear Information System (INIS)
Diabate, S.; Strack, S.
1993-01-01
Tritium released into the environment may be incorporated into organic matter. Organically bound tritium in that case will show retention times in organisms that are considerably longer than those of tritiated water which has significant consequences on dose estimates. This article reviews the most important processes of organically bound tritium production and transport through food networks. Metabolic reactions in plant and animal organisms with tritiated water as a reaction partner are of great importance in this respect. The most important production process, in quantitative terms, is photosynthesis in green plants. The translocation of organically bound tritium from the leaves to edible parts of crop plants should be considered in models of organically bound tritium behavior. Organically bound tritium enters the human body on several pathways, either from the primary producers (vegetable food) or at a higher tropic level (animal food). Animal experiments have shown that the dose due to ingestion of organically bound tritium can be up to twice as high as a comparable intake of tritiated water in gaseous or liquid form. In the environment, organically bound tritium in plants and animals is often found to have higher specific tritium concentrations than tissue water. This is not due to some tritium enrichment effects but to the fact that no equilibrium conditions are reached under natural conditions. 66 refs
Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much.
He, Bryan; De Sa, Christopher; Mitliagkas, Ioannis; Ré, Christopher
2016-01-01
Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured that the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor, we show by counterexample that this is not the case, and we prove that that the mixing times do not differ by more than a polynomial factor under mild conditions. To prove these relative bounds, we introduce a method of augmenting the state space to study systematic scan using conductance.
NLO+NLL collider bounds, Dirac fermion and scalar dark matter in the B-L model
Energy Technology Data Exchange (ETDEWEB)
Klasen, Michael [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Theoretische Physik, Muenster (Germany); Lyonnet, Florian [Southern Methodist University, Dallas, TX (United States); Queiroz, Farinaldo S. [Max-Planck-Institut fuer Kernphysik, Particle and Astroparticle Physics Division, Heidelberg (Germany)
2017-05-15
Baryon and lepton numbers being accidental global symmetries of the Standard Model (SM), it is natural to promote them to local symmetries. However, to preserve anomaly-freedom, only combinations of B-L are viable. In this spirit, we investigate possible dark matter realizations in the context of the U(1){sub B-L} model: (i) Dirac fermion with unbroken B-L; (ii) Dirac fermion with broken B-L; (iii) scalar dark matter; (iv) two-component dark matter. We compute the relic abundance, direct and indirect detection observables and confront them with recent results from Planck, LUX-2016, and Fermi-LAT and prospects from XENON1T. In addition to the well-known LEP bound M{sub Z}{sup {sub '}}/g{sub BL} >or similar 7 TeV, we include often ignored LHC bounds using 13 TeV dilepton (dimuon + dielectron) data at next-to-leading order plus next-to-leading logarithmic accuracy. We show that, for gauge couplings smaller than 0.4, the LHC gives rise to the strongest collider limit. In particular, we find M{sub Z}{sup {sub '}}/g{sub BL} > 8.7 TeV for g{sub BL} = 0.3. We conclude that the NLO+NLL corrections improve the dilepton bounds on the Z{sup '} mass and that both dark matter candidates are only viable in the Z{sup '} resonance region, with the parameter space for scalar dark matter being fully probed by XENON1T. Lastly, we show that one can successfully have a minimal two-component dark matter model. (orig.)
Spectrum of gluino bound states
International Nuclear Information System (INIS)
Chanowitz, M.; Sharpe, S.; California Univ., Berkeley
1983-01-01
Using the bag model to first order in αsub(s) we find that if light gluinos exist they will appear as constituents of electrically charged bound states which are stable against strong interaction decay. We review the present experimental constraints and conclude that light, long-lived charged hadrons containing gluinos might exist with lifetimes between 2x10 - 8 and 10 - 14 s. (orig.)
Upper bounds on superpartner masses from upper bounds on the Higgs boson mass.
Cabrera, M E; Casas, J A; Delgado, A
2012-01-13
The LHC is putting bounds on the Higgs boson mass. In this Letter we use those bounds to constrain the minimal supersymmetric standard model (MSSM) parameter space using the fact that, in supersymmetry, the Higgs mass is a function of the masses of sparticles, and therefore an upper bound on the Higgs mass translates into an upper bound for the masses for superpartners. We show that, although current bounds do not constrain the MSSM parameter space from above, once the Higgs mass bound improves big regions of this parameter space will be excluded, putting upper bounds on supersymmetry (SUSY) masses. On the other hand, for the case of split-SUSY we show that, for moderate or large tanβ, the present bounds on the Higgs mass imply that the common mass for scalars cannot be greater than 10(11) GeV. We show how these bounds will evolve as LHC continues to improve the limits on the Higgs mass.
International Nuclear Information System (INIS)
Orzalesi, C.A.
1979-01-01
In relativistic quantum theory, bound states generate forces in the crossed channel; such forces can affect the binding and self-consistent solutions should be sought for the bound-state problem. The author investigates how self-consistency can be achieved by successive approximations, in a simple scalar model and with successive relativistic eikonal approximations (EAs). Within the generalized ladder approximation, some exact properties of the resulting ''first generation'' bound states are discussed. The binding energies in this approximation are rather small even for rather large values of the primary coupling constant. The coupling of the constituent particles to the first-generation reggeon is determined by a suitable EA and a new generalized ladder amplitude is constructed with rungs given either by the primary gluons or by the first-generation reggeons. The resulting new (second-generation) bound states are found in a reggeized EA. The size of the corrections to the binding energies due to the rebinding effects is surprisingly large. The procedure is then iterated, so as to find - again in an EA - the third-generation bound states. The procedure is found to be self-consistent already at this stage: the third-generation bound states coincide with those of second generation, and no further rebinding takes place in the higher iterations of the approximation method. Features - good and bad - of the model are discussed, as well as the possible relevance of rebinding mechanisms in hadron dynamics. (author)
International Nuclear Information System (INIS)
Mankiewicz, L.; Sawicki, M.
1989-01-01
Within a relativistically correct yet analytically solvable model of light-front quantum mechanics we construct the electromagnetic form factor of the two-body bound state and we study the validity of the static approximation to the full form factor. Upon comparison of full form factors calculated for different values of binding energy we observe an unexpected effect that for very strongly bound states further increase in binding leads to an increase in the size of the bound system. A similar effect is found for another quantum-mechanical model of relativistic dynamics
Pradhan, Aniruddhe; Akhavan, Rayhaneh
2017-11-01
Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.
International Nuclear Information System (INIS)
Adom, Philip Kofi; Bekoe, William; Akoena, Sesi Kutri Komla
2012-01-01
In spite of the varying supply boosting efforts made by various governments to deal with the existing demand–supply gap in the electricity sector, the incessant growth in aggregate domestic electricity demand has made these efforts futile. As an objective, this paper attempts to identify the factors responsible for the historical growth trends in aggregate domestic electricity demand quantifying their effects both in the short-run and long-run periods using the ARDL Bounds cointegration approach and the sample period 1975 to 2005. In the long-run, real per capita GDP, industry efficiency, structural changes in the economy, and degree of urbanisation are identified as the main driving force behind the historical growth trend in aggregate domestic electricity demand. However, in the short-run, real per capita GDP, industry efficiency, and degree of urbanisation are the main drivers of aggregate domestic electricity demand. Industry efficiency is the only factor that drives aggregate domestic electricity demand downwards. However, the negative efficiency effect is insufficient to have outweighed the positive income, output, and demographic effects, hence the continual growth in aggregate domestic electricity demand. As a policy option, we recommend that appropriate electricity efficiency standards be implemented at the industry level. - Highlights: ► Real per capita GDP is the primary determinant of electricity demand both in the short and long-run. ► Industrial efficiency, structural changes and urbanisation rate play secondary role. ► The positive income, output, and demographic effects outweigh the negative efficiency effects.
2017-06-01
This research expands the modeling and simulation (M and S) body of knowledge through the development of an Implicit Model Development Process (IMDP...When augmented to traditional Model Development Processes (MDP), the IMDP enables the development of models that can address a broader array of...potential impacts on operational effectiveness. Specifically, the IMDP provides a formalized methodology for developing an improved model definition
Pedestrian simulation model based on principles of bounded rationality: results of validation tests
Zhu, W.; Timmermans, H.J.P.; Lo, H.P.; Leung, Stephen C.H.; Tan, Susanna M.L.
2009-01-01
Over the years, different modelling approaches to simulating pedestrian movement have been suggested. The majority of pedestrian decision models are based on the concept of utility maximization. To explore alternatives, we developed the heterogeneous heuristic model (HHM), based on principles of
Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N
2015-04-28
Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.
Bounds on the slope and curvature of Isgur-Wise function in a QCD-inspired quark model
Energy Technology Data Exchange (ETDEWEB)
Hazarika, Bhaskar Jyoti [Department of Physics, Pandu College, Guwahati (India); Choudhury, D.K. [Department of Physics, Gauhati University, Guwahati (India)
2011-09-15
The quantum chromodynamics-inspired potential model pursued by us earlier has been recently modified to incorporate an additional factor 'c' in the linear cum Coulomb potential. While it felicitates the inclusion of standard confinement parameter b = 0.183 GeV{sup 2} unlike in previous work, it still falls short of explaining the Isgur-Wise function for the B mesons without ad hoc adjustment of the strong coupling constant. In this work, we determine the factor 'c' from the experimental values of decay constants and masses and show that the reality constraint on 'c' yields bounds on the strong coupling constant as well as on slope and curvature of Isgur-Wise function allowing more flexibility to the model. (author)
Presenting an Evaluation Model for the Cancer Registry Software.
Moghaddasi, Hamid; Asadi, Farkhondeh; Rabiei, Reza; Rahimi, Farough; Shahbodaghi, Reihaneh
2017-12-01
As cancer is increasingly growing, cancer registry is of great importance as the main core of cancer control programs, and many different software has been designed for this purpose. Therefore, establishing a comprehensive evaluation model is essential to evaluate and compare a wide range of such software. In this study, the criteria of the cancer registry software have been determined by studying the documents and two functional software of this field. The evaluation tool was a checklist and in order to validate the model, this checklist was presented to experts in the form of a questionnaire. To analyze the results of validation, an agreed coefficient of %75 was determined in order to apply changes. Finally, when the model was approved, the final version of the evaluation model for the cancer registry software was presented. The evaluation model of this study contains tool and method of evaluation. The evaluation tool is a checklist including the general and specific criteria of the cancer registry software along with their sub-criteria. The evaluation method of this study was chosen as a criteria-based evaluation method based on the findings. The model of this study encompasses various dimensions of cancer registry software and a proper method for evaluating it. The strong point of this evaluation model is the separation between general criteria and the specific ones, while trying to fulfill the comprehensiveness of the criteria. Since this model has been validated, it can be used as a standard to evaluate the cancer registry software.
Presenting a Model for Setting in Narrative Fiction Illustration
Directory of Open Access Journals (Sweden)
Hajar Salimi Namin
2017-12-01
Full Text Available The present research aims at presenting a model for evaluating and enhancing training the setting in illustration for narrative fictions for undergraduate students of graphic design who are weak in setting. The research utilized expert’s opinions through a survey. The designed model was submitted to eight experts, and their opinions were used to have the model adjusted and improved. Used as research instruments were notes, materials in text books, papers, and related websites, as well as questionnaires. Results indicated that, for evaluating and enhancing the level of training the setting in illustration for narrative fiction to students, one needs to extract sub-indexes of setting. Moreover, definition and recognition of the model of setting helps undergraduate students of graphic design enhance the level of setting in their works skill by recognizing details of setting. Accordingly, it is recommended to design training packages to enhance these sub-indexes and hence improve the setting for narrative fiction illustration.
Possibilistic Fuzzy Net Present Value Model and Application
Directory of Open Access Journals (Sweden)
S. S. Appadoo
2014-01-01
Full Text Available The cash flow values and the interest rate in the net present value (NPV model are usually specified by either crisp numbers or random variables. In this paper, we first discuss some of the recent developments in possibility theory and find closed form expressions for fuzzy possibilistic net present value (FNPV. Then, following Carlsson and Fullér (2001, we discuss some of the possibilistic moments related to FNPV model along with an illustrative numerical example. We also give a unified approach to find higher order moments of FNPV by using the moment generating function introduced by Paseka et al. (2011.
Presenting an evaluation model of the trauma registry software.
Asadi, Farkhondeh; Paydar, Somayeh
2018-04-01
Trauma is a major cause of 10% death in the worldwide and is considered as a global concern. This problem has made healthcare policy makers and managers to adopt a basic strategy in this context. Trauma registry has an important and basic role in decreasing the mortality and the disabilities due to injuries resulted from trauma. Today, different software are designed for trauma registry. Evaluation of this software improves management, increases efficiency and effectiveness of these systems. Therefore, the aim of this study is to present an evaluation model for trauma registry software. The present study is an applied research. In this study, general and specific criteria of trauma registry software were identified by reviewing literature including books, articles, scientific documents, valid websites and related software in this domain. According to general and specific criteria and related software, a model for evaluating trauma registry software was proposed. Based on the proposed model, a checklist designed and its validity and reliability evaluated. Mentioned model by using of the Delphi technique presented to 12 experts and specialists. To analyze the results, an agreed coefficient of %75 was determined in order to apply changes. Finally, when the model was approved by the experts and professionals, the final version of the evaluation model for the trauma registry software was presented. For evaluating of criteria of trauma registry software, two groups were presented: 1- General criteria, 2- Specific criteria. General criteria of trauma registry software were classified into four main categories including: 1- usability, 2- security, 3- maintainability, and 4-interoperability. Specific criteria were divided into four main categories including: 1- data submission and entry, 2- reporting, 3- quality control, 4- decision and research support. The presented model in this research has introduced important general and specific criteria of trauma registry software
Numerical modelling of present and future hydrology at Laxemar- Simpevarp
International Nuclear Information System (INIS)
Sassner, Mona; Sabel, Ulrika; Bosson, Emma; Berglund, Sten
2011-04-01
The Swedish Nuclear Fuel and Waste Management Company (SKB) has performed site investigations at two potential sites for a final repository for spent nuclear fuel. This report presents results of water flow modelling of the Laxemar area. The modelling reported in this document is focused on the near-surface groundwater, i.e. groundwater in Quaternary deposits and shallow rock, and surface water systems, and was performed using the MIKE SHE tool. The main objective of the modelling was to provide input to the radionuclide transport and dose calculations that were carried out as a part of the comparison between the Laxemar and Forsmark sites
Numerical modelling of present and future hydrology at Laxemar- Simpevarp
Energy Technology Data Exchange (ETDEWEB)
Sassner, Mona; Sabel, Ulrika (DHI Sverige AB (Sweden)); Bosson, Emma; Berglund, Sten (Svensk Kaernbraenslehantering AB (Sweden))
2011-04-15
The Swedish Nuclear Fuel and Waste Management Company (SKB) has performed site investigations at two potential sites for a final repository for spent nuclear fuel. This report presents results of water flow modelling of the Laxemar area. The modelling reported in this document is focused on the near-surface groundwater, i.e. groundwater in Quaternary deposits and shallow rock, and surface water systems, and was performed using the MIKE SHE tool. The main objective of the modelling was to provide input to the radionuclide transport and dose calculations that were carried out as a part of the comparison between the Laxemar and Forsmark sites
Relativistic Model of Hamiltonian Renormalization for Bound States and Scattering Amplitudes
International Nuclear Information System (INIS)
Serafin, Kamil
2017-01-01
We test the renormalization group procedure for effective particles on a model of fermion–scalar interaction based on the Yukawa theory. The model is obtained by truncating the Yukawa theory to just two Fock sectors in the Dirac front form of Hamiltonian dynamics, a fermion, and a fermion and a boson, for the purpose of simple analytic calculation that exhibits steps of the procedure. (author)
Thermodynamic and kinetics models of hydrogen absorption bound to phase transformations
International Nuclear Information System (INIS)
Gondor, G.; Lexcellent, Ch.
2007-01-01
In order to design hydrogen gaseous pressure tanks, the absorption (desorption) of hydrogen has to be described and modelled. The equilibrium state can be described by the 'H 2 gas pressure - H 2 composition in the intermetallic compounds - isotherms' (PCI) curves. Several models of PCI curves already exist. At the beginning of the absorption, the hydrogen atoms and the intermetallic compounds form a solid solution (α phase). When the hydrogen concentration increases, a phase transformation appears changing the α solid solution into an hydride (β phase) (solid solution + H 2 ↔ hydride). When all the solid solution has been transformed into hydride, the absorbed hydrogen atoms are in β phase. A new thermodynamic model has been developed in order to take into account this transition phase. The equilibrium state is then given by a relation between the H 2 gas pressure and the H 2 concentration in the intermetallic compound for a fixed external temperature. Two kinetics models have been developed too; at first has been considered that the kinetics depend only of the entire concentration in the intermetallic compound and of the difference between the applied pressure and the equilibrium pressure. Then, has been considered that the hydrogen concentration changes in the metallic matrix. In this last case, for each hydrogenation process, the absorption velocity is calculated to determine the slowest local process which regulates the local evolution of the hydrogen concentration. These two models are based on the preceding thermodynamic model of the PCI curves. (O.M.)
Inner-outer predictive wall model for wall-bounded turbulence in hypersonic flow
Martin, M. Pino; Helm, Clara M.
2017-11-01
The inner-outer predictive wall model of Mathis et al. is modified for hypersonic turbulent boundary layers. The model is based on a modulation of the energized motions in the inner layer by large scale momentum fluctuations in the logarithmic layer. Using direct numerical simulation (DNS) data of turbulent boundary layers with free stream Mach number 3 to 10, it is shown that the variation of the fluid properties in the compressible flows leads to large Reynolds number (Re) effects in the outer layer and facilitate the modulation observed in high Re incompressible flows. The modulation effect by the large scale increases with increasing free-stream Mach number. The model is extended to include spanwise and wall-normal velocity fluctuations and is generalized through Morkovin scaling. Temperature fluctuations are modeled using an appropriate Reynolds Analogy. Density fluctuations are calculated using an equation of state and a scaling with Mach number. DNS data are used to obtain the universal signal and parameters. The model is tested by using the universal signal to reproduce the flow conditions of Mach 3 and Mach 7 turbulent boundary layer DNS data and comparing turbulence statistics between the modeled flow and the DNS data. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.
Kinetic simulation on collisional bounded plasma
International Nuclear Information System (INIS)
Zhu, S.P.; Sato, Tetsuya; Tomita, Yukihiro; Hatori, Tadatsugu
1998-01-01
A self-consistent kinetic simulation model on collisional bounded plasma is presented. The electric field is given by solving Poisson equation and collisions among particles (including charged particles and neutral particles) are included. The excitation and ionization of neutral particle, and recombination are also contained in the present model. The formation of potential structure near a boundary for a discharge system was used as an application of this model. (author)
Development of Presentation Model with Cloud Based Infrastructure
Directory of Open Access Journals (Sweden)
Magdalena Widiantari Maria
2018-01-01
Full Text Available Computer mediated communication are the communication activities using technology which have rapidly in progress. Communication interactive activities nowadays has no longer only involving person to person but mediated by technology, and have been done in many fields including in education and teaching activity. In this study, presentation media based on cloud's infrastructure designed to replace face to face or in class lectures. In addition, the presentation will allow media data storage indefinitely, and accessible wherever and anytime. This is in line with the concept of student center learning where students were encouraged to more active in the lecture activities. The purpose of this research is making or designing a presentation model based on cloud‘s infrastructure. This research is using research and development method which is consists of four stages, where the first phase is composing the concept of media presentation design. The second phase are choosing the subject that will be designed as the subject of presentation. The third stage is designing presentation model. And the fourth phase is collecting materials of the subject that will be presented by each lecturer.
Fific, Mario; Little, Daniel R.; Nosofsky, Robert M.
2010-01-01
We formalize and provide tests of a set of logical-rule models for predicting perceptual classification response times (RTs) and choice probabilities. The models are developed by synthesizing mental-architecture, random-walk, and decision-bound approaches. According to the models, people make independent decisions about the locations of stimuli…
Directory of Open Access Journals (Sweden)
Poppy Amriyati
2015-12-01
Full Text Available Traveling Salesman Problem (TSP merupakan teknik pencarian rute yang dimulai dari satu titik awal, setiap kota harus dikunjungi sekali dan kemudian kembali ke tempat asal sehingga total jarak atau waktu perjalanan adalah minimum. Untuk mengatasi kedakpastian jarak atau waktu perjalanan, maka perlu dilakukan pengembangan model TSP. Salah satu bidang Optimisasi yang mampu menyelesaikan permasalahan terkait ketidakpastian adalah Optimisasi Robust. Dalam makalah ini dibahas mengenai penerapan Optimisasi Robust pada TSP (RTSP menggunakan pendekatan Box Uncertainty dan diselesaikan dengan menggunakan Metode Branch and Bound. Disajikan simulasi numerik pada software aplikasi Maple untuk beberapa kasus nyata terkait penerapan Optimisasi RTSP , seperti masalah manajemen konstruksi, penentuan jarak tempuh kota di Pulau Jawa, dan Penentuan Rute Mandiri Fun Run.
Lower bound element and submodel for modelling of joints between precast concrete panels
DEFF Research Database (Denmark)
Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao
2015-01-01
In practice, precast concrete structures are designed using either analytical methods or linear finite element tools, and the in-situ cast joints between the precast panels are assessed using conservative empirical design formulas. This often leads to a suboptimal design, and local mechanisms ins....... The computational time and problem size of the joint element and detailed model will be discussed....
Predictive Models of Li-ion Battery Lifetime (Presentation)
Energy Technology Data Exchange (ETDEWEB)
Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A.
2014-09-01
Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.
Test and lower bound modeling of keyed shear connections in RC shear walls
DEFF Research Database (Denmark)
Sørensen, Jesper Harrild; Herfelt, Morten Andersen; Hoang, Linh Cao
2018-01-01
This paper presents an investigation into the ultimate behavior of a recently developed design for keyed shear connections. The influence of the key depth on the failure mode and ductility of the connection has been studied by push-off tests. The tests showed that connections with larger key...
Modelling and simulation-based acquisition decision support: present & future
CSIR Research Space (South Africa)
Naidoo, S
2009-10-01
Full Text Available stream_source_info Naidoo1_2009.pdf.txt stream_content_type text/plain stream_size 24551 Content-Encoding UTF-8 stream_name Naidoo1_2009.pdf.txt Content-Type text/plain; charset=UTF-8 1 Modelling & Simulation...-Based Acquisition Decision Support: Present & Future Shahen Naidoo Abstract The Ground Based Air Defence System (GBADS) Programme, of the South African Army has been applying modelling and simulation (M&S) to provide acquisition decision and doctrine...
Statistical Model of the 2001 Czech Census for Interactive Presentation
Czech Academy of Sciences Publication Activity Database
Grim, Jiří; Hora, Jan; Boček, Pavel; Somol, Petr; Pudil, Pavel
Vol. 26, č. 4 (2010), s. 1-23 ISSN 0282-423X R&D Projects: GA ČR GA102/07/1594; GA MŠk 1M0572 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : Interactive statistical model * census data presentation * distribution mixtures * data modeling * EM algorithm * incomplete data * data reproduction accuracy * data mining Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.492, year: 2010 http://library.utia.cas.cz/separaty/2010/RO/grim-0350513.pdf
1990-07-01
Economia 5001 Eisenhower Avenue Travessa Estevio Pinto Alexandria, VA 22333-5600 Lisboa, Portugal 8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9...should be contingent upon the particular organizational pattern and culture . To test a possible model, a quasi-experimental study trained 18 instructors...cohesion, the particular organizational pattern and the culture related to it. (Pereira and Jesuino, 1987, final report). An important shortcoming of the
Ye, Min; Nagar, Swati; Korzekwa, Ken
2015-01-01
Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057
Ye, Min; Nagar, Swati; Korzekwa, Ken
2016-04-01
Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Persistence-Based Branch Misprediction Bounds for WCET Analysis
DEFF Research Database (Denmark)
Puffitsch, Wolfgang
2015-01-01
Branch prediction is an important feature of pipelined processors to achieve high performance. However, it can lead to overly pessimistic worst-case execution time (WCET) bounds when being modeled too conservatively. This paper presents bounds on the number of branch mispredictions for local...... dynamic branch predictors. To handle interferences between branch instructions we use the notion of persistence, a concept that is also found in cache analyses. The bounds apply to branches in general, not only to branches that close a loop. Furthermore, the bounds can be easily integrated into integer...... linear programming formulations of the WCET problem. An evaluation on a number of benchmarks shows that with these bounds, dynamic branch prediction does not necessarily lead to higher WCET bounds than static prediction schemes....
Lower bounds for ν and Q2 values leading to scaling in the simple parton model
International Nuclear Information System (INIS)
Nataf, R.S.
1979-06-01
The simple parton model leads to the Bjorken scaling law only for rather large values of the transfer. For small values, the scale invariance is broken by a purely kinematical effect which is shown to depend on: (1+(4M 2 x 2 /Q 2 ))sup(1/2)-1, M being the mass of the target nucleon. Thus, one has to consider: ν>=5M (5GeV) and: Q 2 >=10M 2 x (9GeV/c) 2 for the whole x range) if it is demanded that scaling holds within 10% to error
Nuclear model developments in FLUKA for present and future applications
Cerutti, Francesco; Empl, Anton; Fedynitch, Anatoli; Ferrari, Alfredo; Ruben, GarciaAlia; Sala, Paola R.; Smirnov, George; Vlachoudis, Vasilis
2017-09-01
The FLUKAS code [1-3] is used in research laboratories all around the world for challenging applications spanning a very wide range of energies, projectiles and targets. FLUKAS is also extensively used for in hadrontherapy research studies and clinical planning systems. In this paper some of the recent developments in the FLUKAS nuclear physics models of relevance for very different application fields including medical physics are presented. A few examples are shown demonstrating the effectiveness of the upgraded code.
DEFF Research Database (Denmark)
Skar, Asmus; Holst, Mogens Løvendorf
Ports and industries require special types of pavements to resist the heavy static load from containers and continuous loads from operation vehicles. To reduce the risk of rutting and settlements over time concrete or compositepavement systems are typically applied. The structural design of such ......Ports and industries require special types of pavements to resist the heavy static load from containers and continuous loads from operation vehicles. To reduce the risk of rutting and settlements over time concrete or compositepavement systems are typically applied. The structural design...... of such pavements are today based on Mechanistic-Empirical (M-E) methods. The M-E method is appropriate for many situations, in other situations it may lead to overdesign, or maybe worse, underdesign. The method has limited capabilities and cannot account for signicant factors affecting the pavement response...... number of model parameters. In order to move a step towards more generalised structural design methods for analysis of heavy duty pavements, this study aims at developing a mechanistic approach based on constitutive models. A simple framework for engineering application is sought; creating a rational...
Bounding the heterogeneous gas uptake on aerosols and ground using resistance model
Su, H.; Li, M.; Cheng, Y.
2017-12-01
Heterogeneous uptake on aerosols and ground are potential important atmospheric sinks for gases. Different schemes have been used to characterize the dry deposition and heterogeneous aerosol gas uptake, although they share similar characteristics. In this work, we propose a unified resistance model to compare the uptake flux on both ground and aerosols, to identify the dominate heterogeneous process within the planetary boundary layer (PBL). The Gamma(eq) is introduced to represent the reactive uptake coefficient on aerosols when these two processes are equally important. It's shown that Gamma(eq) is proportional to the dry deposition velocity, inversely proportional to aerosol surface area concentration. Under typical regional background condition, Gamma(eq) vary from 1x10-5 to 4x10-4 with gas species, land-use type and season, which indicates that aerosol gas uptake should be included in atmospheric models when uptake coefficient higher than 10-5. We address the importance of heterogeneous gas uptake on aerosols over ground especially for ozone uptake on liquid organic aerosols and for marine PBL atmosphere.
Czech Academy of Sciences Publication Activity Database
Hamilton, A. J.; Novotný, Vojtěch; Waters, E. K.; Basset, Y.; Benke, K. K.; Grimbacher, P. S.; Miller, S. E.; Samuelson, G. A.; Weiblen, G. D.; Yen, J. D. L.; Stork, N. E.
2013-01-01
Roč. 171, č. 2 (2013), s. 357-365 ISSN 0029-8549 R&D Projects: GA MŠk(CZ) LH11008; GA ČR GA206/09/0115 Grant - others:Czech Ministry of Education(CZ) CZ.1.07/2.3.00/20.0064; National Science Foundarion(US) DEB-0841885; Otto Kinne Foundation, Darwin Initiative(GB) 19-008 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:60077344 Keywords : host specificity * model * Monte Carlo Subject RIV: EH - Ecology, Behaviour Impact factor: 3.248, year: 2013 http://link.springer.com/article/10.1007%2Fs00442-012-2434-5
Metabolism of organically bound tritium
International Nuclear Information System (INIS)
Travis, C.C.
1984-01-01
The classic methodology for estimating dose to man from environmental tritium ignores the fact that organically bound tritium in foodstuffs may be directly assimilated in the bound compartment of tissues without previous oxidation. We propose a four-compartment model consisting of a free body water compartment, two organic compartments, and a small, rapidly metabolizing compartment. The utility of this model lies in the ability to input organically bound tritium in foodstuffs directly into the organic compartments of the model. We found that organically bound tritium in foodstuffs can increase cumulative total body dose by a factor of 1.7 to 4.5 times the free body water dose alone, depending on the bound-to-loose ratio of tritium in the diet. Model predictions are compared with empirical measurements of tritium in human urine and tissue samples, and appear to be in close agreement. 10 references, 4 figures, 3 tables
The η′N interaction from a chiral effective model and η′-N bound state
International Nuclear Information System (INIS)
Sakai, Shuntaro; Jido, Daisuke
2015-01-01
The η ′ mass reduction in the nuclear medium is expected owing to the degeneracy of the pseudoscalar-singlet and octet mesons in the restoration of the spontaneous chiral symmetry breaking. In this study, we investigate the η ′ N 2body interaction, which is the fundamental interaction of the in-medium η ′ properties, using the linear sigma model as a chiral effective model. The η ′ N interaction in the linear sigma model comes from the scalar meson exchange with U A (1) symmetry effect and is found to be fairly strong attraction. The transition amplitude of η ′ N to the ηN channel is relatively small compared to that of elastic channel. From the analysis of the η ′ N 2body system, we find a η ′ N bound state with the binding energy 12.3-3.3iMeV. We expect that this strongly attractive two body interaction leads to a deep and attractive optical potential
Book Selection, Collection Development, and Bounded Rationality.
Schwartz, Charles A.
1989-01-01
Reviews previously proposed schemes of classical rationality in book selection, describes new approaches to rational choice behavior, and presents a model of book selection based on bounded rationality in a garbage can decision process. The role of tacit knowledge and symbolic content in the selection process are also discussed. (102 references)…
Bounded Satisfiability for PCTL
Bertrand, Nathalie; Fearnley, John; Schewe, Sven
2012-01-01
While model checking PCTL for Markov chains is decidable in polynomial-time, the decidability of PCTL satisfiability, as well as its finite model property, are long standing open problems. While general satisfiability is an intriguing challenge from a purely theoretical point of view, we argue that general solutions would not be of interest to practitioners: such solutions could be too big to be implementable or even infinite. Inspired by bounded synthesis techniques, we turn to the more appl...
Observational Bounds on Cosmic Doomsday
Energy Technology Data Exchange (ETDEWEB)
Shmakova, Marina
2003-07-11
Recently it was found, in a broad class of models, that the dark energy density may change its sign during the evolution of the universe. This may lead to a global collapse of the universe within the time t{sub c} {approx} 10{sup 10}-10{sup 11} years. Our goal is to find what bounds on the future lifetime of the universe can be placed by the next generation of cosmological observations. As an example, we investigate the simplest model of dark energy with a linear potential V({phi}) = V{sub 0}(1 + {alpha}{phi}). This model can describe the present stage of acceleration of the universe if {alpha} is small enough. However, eventually the field {phi} rolls down, V({phi}) becomes negative, and the universe collapses. The existing observational data indicate that the universe described by this model will collapse not earlier than t{sub c} {approx_equal} 10 billion years from the present moment. We show that the data from SNAP and Planck satellites may extend the bound on the ''doomsday'' time to tc 40 billion years at the 95% confidence level.
Modeling population exposures to silver nanoparticles present in consumer products
Royce, Steven G.; Mukherjee, Dwaipayan; Cai, Ting; Xu, Shu S.; Alexander, Jocelyn A.; Mi, Zhongyuan; Calderon, Leonardo; Mainelis, Gediminas; Lee, KiBum; Lioy, Paul J.; Tetley, Teresa D.; Chung, Kian Fan; Zhang, Junfeng; Georgopoulos, Panos G.
2014-11-01
Exposures of the general population to manufactured nanoparticles (MNPs) are expected to keep rising due to increasing use of MNPs in common consumer products (PEN 2014). The present study focuses on characterizing ambient and indoor population exposures to silver MNPs (nAg). For situations where detailed, case-specific exposure-related data are not available, as in the present study, a novel tiered modeling system, Prioritization/Ranking of Toxic Exposures with GIS (geographic information system) Extension (PRoTEGE), has been developed: it employs a product life cycle analysis (LCA) approach coupled with basic human life stage analysis (LSA) to characterize potential exposures to chemicals of current and emerging concern. The PRoTEGE system has been implemented for ambient and indoor environments, utilizing available MNP production, usage, and properties databases, along with laboratory measurements of potential personal exposures from consumer spray products containing nAg. Modeling of environmental and microenvironmental levels of MNPs employs probabilistic material flow analysis combined with product LCA to account for releases during manufacturing, transport, usage, disposal, etc. Human exposure and dose characterization further employ screening microenvironmental modeling and intake fraction methods combined with LSA for potentially exposed populations, to assess differences associated with gender, age, and demographics. Population distributions of intakes, estimated using the PRoTEGE framework, are consistent with published individual-based intake estimates, demonstrating that PRoTEGE is capable of capturing realistic exposure scenarios for the US population. Distributions of intakes are also used to calculate biologically relevant population distributions of uptakes and target tissue doses through human airway dosimetry modeling that takes into account product MNP size distributions and age-relevant physiological parameters.
Market access through bound tariffs
DEFF Research Database (Denmark)
Sala, Davide; Yalcin, Erdal; Schröder, Philipp
2010-01-01
on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and longterm...
Market Access through Bound Tariffs
DEFF Research Database (Denmark)
Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal
on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and long...
Janssen, Christian P; Brumby, Duncan P; Dowell, John; Chater, Nick; Howes, Andrew
2011-01-01
We report the results of a dual-task study in which participants performed a tracking and typing task under various experimental conditions. An objective payoff function was used to provide explicit feedback on how participants should trade off performance between the tasks. Results show that participants' dual-task interleaving strategy was sensitive to changes in the difficulty of the tracking task and resulted in differences in overall task performance. To test the hypothesis that people select strategies that maximize payoff, a Cognitively Bounded Rational Analysis model was developed. This analysis evaluated a variety of dual-task interleaving strategies to identify the optimal strategy for maximizing payoff in each condition. The model predicts that the region of optimum performance is different between experimental conditions. The correspondence between human data and the prediction of the optimal strategy is found to be remarkably high across a number of performance measures. This suggests that participants were honing their behavior to maximize payoff. Limitations are discussed. Copyright © 2011 Cognitive Science Society, Inc.
International Nuclear Information System (INIS)
Faulot, J.P.
1990-05-01
The CRUSIFI code has been developed by SEPTEN (Engineering and Construction Division) with SICLE software during 1983-1985 in order to study the CREYS-MALVILLE dynamic behavior. At the time, the version was based on project data (version 2.3). It includes a 2 zones model for the cold plenum thermal-hydraulics, modelling which does not allow to reproduce accurately dissymetries apt to occur as well in usual operating (hydraulic dissymetries bound to one or many systems out of order), as during incidentally operating (hydraulic dissymetries bound to primary pump working back or thermal dissymetries after a transient on one or many secondary loops). Moreover, a 2 zones model cannot simulate axial temperature gradients which appear during double stratification phenomenon (upper and lower part of the plenum) produced by alternating thermal shock. A 12 zones model (4 sectors with 3 axial zones each) such as model developed by R$DD (Research and Development Division) allows to satisfy correctly these problems. This report is a specification of the chosen modelling. This model is now operational after qualifying with experimental transients on mockup and reactor. It is to-day connected with the EDF general operating code CRUSIFI (calibrating version 3.0). It could be easily integrated in a four loops plant modelling such as the CREYS-MALVILLE simulator in a four loops plant modelling such as the CREYS-MALVILLE simulator under construction at the present time by THOMSON
Abbas, Ash Mohammad
2012-01-01
In this paper, we describe some bounds and inequalities relating h-index, g-index, e-index, and generalized impact factor. We derive the bounds and inequalities relating these indexing parameters from their basic definitions and without assuming any continuous model to be followed by any of them. We verify the theorems using citation data for five Price Medalists. We observe that the lower bound for h-index given by Theorem 2, [formula: see text], g ≥ 1, comes out to be more accurate as compared to Schubert-Glanzel relation h is proportional to C(2/3)P(-1/3) for a proportionality constant of 1, where C is the number of citations and P is the number of papers referenced. Also, the values of h-index obtained using Theorem 2 outperform those obtained using Egghe-Liang-Rousseau power law model for the given citation data of Price Medalists. Further, we computed the values of upper bound on g-index given by Theorem 3, g ≤ (h + e), where e denotes the value of e-index. We observe that the upper bound on g-index given by Theorem 3 is reasonably tight for the given citation record of Price Medalists.
Improved Range Searching Lower Bounds
DEFF Research Database (Denmark)
Larsen, Kasper Green; Nguyen, Huy L.
2012-01-01
by constructing a hard input set and query set, and then invoking Chazelle and Rosenberg's [CGTA'96] general theorem on the complexity of navigation in the pointer machine. For the group model, we show that input sets and query sets that are hard for range reporting in the pointer machine (i.e. by Chazelle...... and Rosenberg's theorem), are also hard for dynamic range searching in the group model. This theorem allows us to reuse decades of research on range reporting lower bounds to immediately obtain a range of new group model lower bounds. Amongst others, this includes an improved lower bound for the fundamental...
Upper Bounds for Ruin Probability with Stochastic Investment Return
Institute of Scientific and Technical Information of China (English)
ZHANG Lihong
2005-01-01
Risk models with stochastic investment return are widely held in practice, as well as in more challenging research fields. Risk theory is mainly concerned with ruin probability, and a tight bound for ruin probability is the best for practical use. This paper presents a discrete time risk model with stochastic investment return. Conditional expectation properties and martingale inequalities are used to obtain both exponential and non-exponential upper bounds for the ruin probability.
Wu, Jun; Tjoa, Thomas; Li, Lianfa; Jaimes, Guillermo; Delfino, Ralph J
2012-07-11
Exposure to polycyclic aromatic hydrocarbon (PAH) has been linked to various adverse health outcomes. Personal PAH exposures are usually measured by personal monitoring or biomarkers, which are costly and impractical for a large population. Modeling is a cost-effective alternative to characterize personal PAH exposure although challenges exist because the PAH exposure can be highly variable between locations and individuals in non-occupational settings. In this study we developed models to estimate personal inhalation exposures to particle-bound PAH (PB-PAH) using data from global positioning system (GPS) time-activity tracking data, traffic activity, and questionnaire information. We conducted real-time (1-min interval) personal PB-PAH exposure sampling coupled with GPS tracking in 28 non-smoking women for one to three sessions and one to nine days each session from August 2009 to November 2010 in Los Angeles and Orange Counties, California. Each subject filled out a baseline questionnaire and environmental and behavior questionnaires on their typical activities in the previous three months. A validated model was used to classify major time-activity patterns (indoor, in-vehicle, and other) based on the raw GPS data. Multiple-linear regression and mixed effect models were developed to estimate averaged daily and subject-level PB-PAH exposures. The covariates we examined included day of week and time of day, GPS-based time-activity and GPS speed, traffic- and roadway-related parameters, meteorological variables (i.e. temperature, wind speed, relative humidity), and socio-demographic variables and occupational exposures from the questionnaire. We measured personal PB-PAH exposures for 180 days with more than 6 h of valid data on each day. The adjusted R2 of the model was 0.58 for personal daily exposures, 0.61 for subject-level personal exposures, and 0.75 for subject-level micro-environmental exposures. The amount of time in vehicle (averaging 4.5% of total
Yang, Kuo-Shu
2003-01-01
Maslow's theory of basic human needs is criticized with respect to two of its major aspects, unidimensional linearity and cross-cultural validity. To replace Maslow's linear theory, a revised Y model is proposed on the base of Y. Yu's original Y model. Arranged on the stem of the Y are Maslow's physiological needs (excluding sexual needs) and safety needs. Satisfaction of these needs is indispensable to genetic survival. On the left arm of the Y are interpersonal and belongingness needs, esteem needs, and the self-actualization need. The thoughts and behaviors required for the fulfillment of these needs lead to genetic expression. Lastly, on the right arm of the Y are sexual needs, childbearing needs, and parenting needs. The thoughts and behaviors entailed in the satisfaction of these needs result in genetic transmission. I contend that needs for genetic survival and transmission are universal and that needs for genetic expression are culture-bound. Two major varieties of culture-specific expression needs are distinguished for each of the three levels of needs on the left arm of the Y model. Collectivistic needs for interpersonal affiliation and belongingness, esteem, and self-actualization prevail in collectivist cultures like those found in East Asian countries. Individualistic needs are dominant in individualist cultures like those in North America and certain European nations. I construct two separate Y models, one for people in collectivist cultures and the other for those in individualist ones. In the first (the Yc model), the three levels of expression needs on the left arm are collectivistic in nature, whereas in the second (the Yi model), the three levels of needs on the left arm are individualistic in nature. Various forms of the double-Y model are formulated by conceptually combining the Yc and Yi models at the cross-cultural, crossgroup, and intra-individual levels. Research directions for testing the various aspects of the double-Y model are
Matthews, Edward; Sen, Ananya; Yoshikawa, Naruo; Bergström, Ed; Dessent, Caroline E H
2016-06-01
Isolated molecular clusters of adenine, cytosine, thymine and uracil bound to hexachloroplatinate, PtCl6(2-), have been studied using laser electronic photodissociation spectroscopy to investigate photoactivation of a platinum complex in the vicinity of a nucleobase. These metal complex-nucleobase clusters represent model systems for identifying the fundamental photochemical processes occurring in photodynamic platinum drug therapies that target DNA. This is the first study to explore the specific role of a strongly photoactive platinum compound in the aggregate complex. Each of the clusters studied displays a broadly similar absorption spectra, with a strong λmax ∼ 4.6 eV absorption band and a subsequent increase in the absorption intensity towards higher spectral-energy. The absorption bands are traced to ligand-to-metal-charge-transfer excitations on the PtCl6(2-) moiety within the cluster, and result in Cl(-)·nucleobase and PtCl5(-) as primary photofragments. These results demonstrate how selective photoexcitation can drive distinctive photodecay channels for a model photo-pharmaceutical. In addition, cluster absorption due to excitation of nucleobase-centred chromophores is observed in the region around 5 eV. For the uracil cluster, photofragments consistent with ultrafast decay of the excited state and vibrational predissociation on the ground-state surface are observed. However, this decay channel becomes successively weaker on going from thymine to cytosine to adenine, due to differential coupling of the excited states to the electron detachment continuum. These effects demonstrate the distinctive photophysical characteristics of the different nucleobases, and are discussed in the context of the recently recorded photoelectron spectra of theses clusters.
Kahneman, Daniel
2002-01-01
The work cited by the Nobel committee was done jointly with the late Amos Tversky (1937-1996) during a long and unusually close collaboration. Together, we explored the psychology of intuitive beliefs and choices and examined their bounded rationality. This essay presents a current perspective on the three major topics of our joint work: heuristics of judgment, risky choice, and framing effects. In all three domains we studied intuitions - thoughts and preferences that come to mind quickly an...
Energy Technology Data Exchange (ETDEWEB)
Munier, Raymond [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hermanson, Jan [Golder Associates (Sweden)
2001-03-01
This report presents a methodology to construct, visualise and present geoscientific descriptive models based on data from the site investigations, which the SKB currently performs, to build an underground nuclear waste disposal facility in Sweden. It is designed for interaction with SICADA (SKB:s site characterisation database) and RVS (SKB:s Rock Visualisation System). However, the concepts of the methodology are general and can be used with other tools capable of handling 3D geometries and parameters. The descriptive model is intended to be an instrument where site investigation data from all disciplines are put together to form a comprehensive visual interpretation of the studied rock mass. The methodology has four main components: 1. Construction of a geometrical model of the interpreted main structures at the site. 2. Description of the geoscientific characteristics of the structures. 3. Description and geometrical implementation of the geometric uncertainties in the interpreted model structures. 4. Quality system for the handling of the geometrical model, its associated database and some aspects of the technical auditing. The geometrical model forms a basis for understanding the main elements and structures of the investigated site. Once the interpreted geometries are in place in the model, the system allows for adding descriptive and quantitative data to each modelled object through a system of intuitive menus. The associated database allows each geometrical object a complete quantitative description of all geoscientific disciplines, variabilities, uncertainties in interpretation and full version history. The complete geometrical model and its associated database of object descriptions are to be recorded in a central quality system. Official, new and old versions of the model are administered centrally in order to have complete quality assurance of each step in the interpretation process. The descriptive model is a cornerstone in the understanding of the
PRESENT STATUS OF RESEARCH IN DEBRIS FLOW MODELING.
Chen, Cheng-lung
1985-01-01
A viable rheological model should consist of both a time-independent part and a time-dependent part. A generalized viscoplastic fluid model that has both parts as well as two major rheological properties (i. e. , the normal stress effect and soil yield criteria) is shown to be sufficiently accurate, yet practical, for general use in debris flow modeling. Other rheological models, such as the Bingham plastic fluid model and the so-called Coulomb-viscous model, are compared in terms of the generalized viscoplastic fluid model.
OpenDolphin: presentation models for compelling user interfaces
CERN. Geneva
2014-01-01
Shared applications run on the server. They still need a display, though, be it on the web or on the desktop. OpenDolphin introduces a shared presentation model to clearly differentiate between "what" to display and "how" to display. The "what" is managed on the server and is independent of the UI technology whereas the "how" can fully exploit the UI capabilities like the ubiquity of the web or the power of the desktop in terms of interactivity, animations, effects, 3D worlds, and local devices. If you run a server-centric architecture and still seek to provide the best possible user experience, then this talk is for you. About the speaker Dierk König (JavaOne Rock Star) works as a fellow for Canoo Engineering AG, Basel, Switzerland. He is a committer to many open-source projects including OpenDolphin, Groovy, Grails, GPars and GroovyFX. He is lead author of the "Groovy in Action" book, which is among ...
Modeling of present and Eemian stable water isotopes in precipitation
DEFF Research Database (Denmark)
Sjolte, Jesper
The subject of this thesis is the modeling of the isotopic temperature proxies d18O, dD and deuterium excess in precipitation. Two modeling studies were carried out, one using the regional climate model, and one using a global climate model. In the regional study the model was run for the period ...... the modeled isotopes do not agree with ice core data. The discrepancy between the model output and the ice core data is attributed to the boundary conditions, where changes in ice sheets and vegetation have not been accounted for.......The subject of this thesis is the modeling of the isotopic temperature proxies d18O, dD and deuterium excess in precipitation. Two modeling studies were carried out, one using the regional climate model, and one using a global climate model. In the regional study the model was run for the period...... 1959 to 2001 using meteorological data and a domain including Greenland and the surrounding North Atlantic. The model was found to reproduce the observed seasonal variability of temperature and precipitation well. In comparison with ice core data from Greenland and observations from coastal stations...
International Nuclear Information System (INIS)
Jakirlić, S.; Maduta, R.
2015-01-01
Highlights: • A grid-spacing free, instability-sensitive Reynolds stress model is formulated. • The model is capable of capturing turbulence fluctuations. • Substantial improvement concerning proper turbulence activity enhancement is achieved. • The model is intensively validated in a series of 2D and 3D separating flows. • The model feasibility is also checked in some attached flows. - Abstract: The incapability of the conventional Unsteady RANS (Reynolds–Averaged Navier Stokes) models to adequately capture turbulence unsteadiness presents the prime motivation of the present work, which focuses on formulating an instability-sensitive, eddy-resolving turbulence model on the Second-Moment Closure level. The model scheme adopted, functioning as a ‘sub-scale’ model in the Unsteady RANS framework, represents a differential near-wall Reynolds stress model formulated in conjunction with the scale-supplying equation governing the homogeneous part of the inverse turbulent time scale ω h (ω h = ε h /k). The latter equation was straightforwardly obtained from the model equation describing the dynamics of the homogeneous part of the total viscous dissipation rate ε, defined as ε h = ε − 0.5ν∂ 2 k/(∂x j ∂x j ) (Jakirlic and Hanjalic, 2002), by applying the derivation rules to the expression for ω h . The model capability to account for vortex length and time scales variability was enabled through an additional term in the corresponding length-scale determining equation, providing a selective enhancement of its production, pertinent particularly to the highly unsteady separated shear layer region, modeled in terms of the von Karman length scale (comprising the second derivative of the velocity field) in line with the SAS (Scale-Adaptive Simulation) proposal (Menter and Egorov, 2010). The present model formulation, termed as SRANS model (Sensitized RANS), does not comprise any parameter depending explicitly on grid spacing. The predictive
Present status of the VMI and related models
International Nuclear Information System (INIS)
Scharff-Goldhaber, G.
1980-05-01
This article traces the evolution of the Variable Moment of Inertia model in its relation to the shell model, the Bohr-Mottelson model and the Interacting Boson Model. The discovery of a new type of spectrum, that of pseudomagic nuclei (isobars of doubly magic nuclei) is reported, and an explanation for their dynamics is suggested. The type of rotational motion underlying the ground state band of an e-e nucleus is shown to depend on whether the minimum number of valence nucleon pairs of one kind (neutrons or protons) is less than or equal to 2 or > 2. In the former case the alpha-dumbbell model holds; in the latter the two-fluid model
Labeling schemes for bounded degree graphs
DEFF Research Database (Denmark)
Adjiashvili, David; Rotbart, Noy Galil
2014-01-01
We investigate adjacency labeling schemes for graphs of bounded degree Δ = O(1). In particular, we present an optimal (up to an additive constant) log n + O(1) adjacency labeling scheme for bounded degree trees. The latter scheme is derived from a labeling scheme for bounded degree outerplanar...... graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 2010], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 2002]. We also provide improved labeling schemes for bounded degree...
Making sense to modelers: Presenting UML class model differences in prose
DEFF Research Database (Denmark)
Störrle, Harald
2013-01-01
Understanding the difference between two models, such as different versions of a design, can be difficult. It is a commonly held belief in the model differencing community that the best way of presenting a model difference is by using graph or tree-based visualizations. We disagree and present an...... by a controlled experiment that tests three alternatives to presenting model differences. Our findings support our claim that the approach presented here is superior to EMF Compare.......Understanding the difference between two models, such as different versions of a design, can be difficult. It is a commonly held belief in the model differencing community that the best way of presenting a model difference is by using graph or tree-based visualizations. We disagree and present...... an alternative approach where sets of low-level model differences are abstracted into high-level model differences that lend themselves to being presented textually. This format is informed by an explorative survey to elicit the change descriptions modelers use themselves. Our approach is validated...
Directory of Open Access Journals (Sweden)
Wu Jun
2012-07-01
Full Text Available Abstract Background Exposure to polycyclic aromatic hydrocarbon (PAH has been linked to various adverse health outcomes. Personal PAH exposures are usually measured by personal monitoring or biomarkers, which are costly and impractical for a large population. Modeling is a cost-effective alternative to characterize personal PAH exposure although challenges exist because the PAH exposure can be highly variable between locations and individuals in non-occupational settings. In this study we developed models to estimate personal inhalation exposures to particle-bound PAH (PB-PAH using data from global positioning system (GPS time-activity tracking data, traffic activity, and questionnaire information. Methods We conducted real-time (1-min interval personal PB-PAH exposure sampling coupled with GPS tracking in 28 non-smoking women for one to three sessions and one to nine days each session from August 2009 to November 2010 in Los Angeles and Orange Counties, California. Each subject filled out a baseline questionnaire and environmental and behavior questionnaires on their typical activities in the previous three months. A validated model was used to classify major time-activity patterns (indoor, in-vehicle, and other based on the raw GPS data. Multiple-linear regression and mixed effect models were developed to estimate averaged daily and subject-level PB-PAH exposures. The covariates we examined included day of week and time of day, GPS-based time-activity and GPS speed, traffic- and roadway-related parameters, meteorological variables (i.e. temperature, wind speed, relative humidity, and socio-demographic variables and occupational exposures from the questionnaire. Results We measured personal PB-PAH exposures for 180 days with more than 6 h of valid data on each day. The adjusted R2 of the model was 0.58 for personal daily exposures, 0.61 for subject-level personal exposures, and 0.75 for subject-level micro-environmental exposures. The amount
Past and present of sediment and carbon biogeochemical cycling models
Directory of Open Access Journals (Sweden)
F. T. Mackenzie
2004-01-01
Full Text Available The global carbon cycle is part of the much more extensive sedimentary cycle that involves large masses of carbon in the Earth's inner and outer spheres. Studies of the carbon cycle generally followed a progression in knowledge of the natural biological, then chemical, and finally geological processes involved, culminating in a more or less integrated picture of the biogeochemical carbon cycle by the 1920s. However, knowledge of the ocean's carbon cycle behavior has only within the last few decades progressed to a stage where meaningful discussion of carbon processes on an annual to millennial time scale can take place. In geologically older and pre-industrial time, the ocean was generally a net source of CO2 emissions to the atmosphere owing to the mineralization of land-derived organic matter in addition to that produced in situ and to the process of CaCO3 precipitation. Due to rising atmospheric CO2 concentrations because of fossil fuel combustion and land use changes, the direction of the air-sea CO2 flux has reversed, leading to the ocean as a whole being a net sink of anthropogenic CO2. The present thickness of the surface ocean layer, where part of the anthropogenic CO2 emissions are stored, is estimated as of the order of a few hundred meters. The oceanic coastal zone net air-sea CO2 exchange flux has also probably changed during industrial time. Model projections indicate that in pre-industrial times, the coastal zone may have been net heterotrophic, releasing CO2 to the atmosphere from the imbalance between gross photosynthesis and total respiration. This, coupled with extensive CaCO3 precipitation in coastal zone environments, led to a net flux of CO2 out of the system. During industrial time the coastal zone ocean has tended to reverse its trophic status toward a non-steady state situation of net autotrophy, resulting in net uptake of anthropogenic CO2 and storage of carbon in the coastal ocean, despite the significant calcification
Vanhommerig, S.A.M.; Sluyterman, L.A.A.E.; Meijer, E.M.
1996-01-01
Poly(ethylene glycol)-bound nicotinamide adenine dinucleotide (PEG-NAD+) has been successfully employed in the continuous production of L-amino acids from the corresponding alpha-keto acids by stereospecific reductive amination. Like many other dehydrogenases also horse liver alcohol dehydrogenase
Presentation of Austrians recommended dispersion model for tunnel portals
Energy Technology Data Exchange (ETDEWEB)
Oettl, D.; Sturm, P.; Almbauer, R. [Inst. for Internal Combustion Engines and Thermodynamics, Graz Univ. of Technology (Austria)
2004-07-01
Street tunnels in cities are often suggested as solution to avoid daily congestions but also to prevent residential areas from high noise and air pollution emissions. In case of longitudinal ventilated tunnels high pollution levels may occur in the vicinity of the portals. The dispersion of pollutants from tunnel portals is considered to differ significantly from those of other sources, such as line or point sources. To the best of the authors knowledge, there exist currently two distinct dispersion models, which are especially designed to treat dispersion from tunnel portals. Okamoto et al proposed a diagnostic wind field model, where the dispersion is modelled using a Taylor-Galerkin-Forester filter method. Oettl et al. developed a Lagrangian-type model (GRAL TM 3.5=Graz Lagrangian model Tunnel Module version 3.5), which is briefly described in the next section. (orig.)
International Nuclear Information System (INIS)
Gyergyek, T.; Jurcic-Zlobec, B.; Cercek, M.
2008-01-01
Potential formation in a bounded plasma system that contains electrons with a two-temperature velocity distribution and is terminated by a floating, electron emitting electrode (collector) is studied by a one-dimensional kinetic model. A method on how to determine the boundary conditions at the collector for the numerical solution of the Poisson equation is presented. The difference between the regular and the irregular numerical solutions of the Poisson equation is explained. The regular numerical solution of the Poisson equation fulfills the boundary conditions at the source and can be computed for any distance from the collector. The irregular solution does not fulfill the source boundary conditions and the computation breaks down at some distance from the collector. An excellent agreement of the values of the potential at the inflection point found from the numerical solution of the Poisson equation with the values predicted by the analytical model is obtained. Potential, electric field, and particle density profiles found by the numerical solution of the Poisson equation are compared to the profiles obtained with the particle in cell computer simulation. A very good quantitative agreement of the potential and electric field profiles is obtained. For certain values of the parameters the analytical model predicts three possible values of the potential at the inflection point. In such cases always only one of the corresponding numerical solutions of the Poisson equation is regular, while the other two are irregular. The regular numerical solution of the Poisson equation always corresponds to the solution of the model that predicts the largest ion flux to the collector
Bonissone CIDU Presentation: Design of Local Fuzzy Models
National Aeronautics and Space Administration — After reviewing key background concepts in fuzzy systems and evolutionary computing, we will focus on the use of local fuzzy models, which are related to both kernel...
OPRA capacity bounds for selection diversity over generalized fading channels
Hanif, Muhammad Fainan
2014-05-01
Channel side information at the transmitter can increase the average capacity by enabling optimal power and rate adaptation. The resulting optimal power and rate adaptation (OPRA) capacity rarely has a closed-form analytic expression. In this paper, lower and upper bounds on OPRA capacity for selection diversity scheme are presented. These bounds hold for variety of fading channels including log-normal and generalized Gamma distributed models and have very simple analytic expressions for easy evaluation even for kth best path selection. Some selected numerical results show that the newly proposed bounds closely approximate the actual OPRA capacity. © 2014 IEEE.
Circuit lower bounds in bounded arithmetics
Czech Academy of Sciences Publication Activity Database
Pich, Ján
2015-01-01
Roč. 166, č. 1 (2015), s. 29-45 ISSN 0168-0072 R&D Projects: GA AV ČR IAA100190902 Keywords : bounded arithmetic * circuit lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.582, year: 2015 http://www.sciencedirect.com/science/article/pii/S0168007214000888
Curvature bound from gravitational catalysis
Gies, Holger; Martini, Riccardo
2018-04-01
We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.
Tang, Yifeng; Akhavan, Rayhaneh
2014-11-01
A nested-LES wall-modeling approach for high Reynolds number, wall-bounded turbulence is presented. In this approach, a coarse-grained LES is performed in the full-domain, along with a nested, fine-resolution LES in a minimal flow unit. The coupling between the two domains is achieved by renormalizing the instantaneous LES velocity fields to match the profiles of kinetic energies of components of the mean velocity and velocity fluctuations in both domains to those of the minimal flow unit in the near-wall region, and to those of the full-domain in the outer region. The method is of fixed computational cost, independent of Reτ , in homogenous flows, and is O (Reτ) in strongly non-homogenous flows. The method has been applied to equilibrium turbulent channel flows at 1000 shear-driven, 3D turbulent channel flow at Reτ ~ 2000 . In equilibrium channel flow, the friction coefficient and the one-point turbulence statistics are predicted in agreement with Dean's correlation and available DNS and experimental data. In shear-driven, 3D channel flow, the evolution of turbulence statistics is predicted in agreement with experimental data of Driver & Hebbar (1991) in shear-driven, 3D boundary layer flow.
Wegner-type Bounds for a Two-particle Lattice Model with a Generic 'Rough' Quasi-periodic Potential
International Nuclear Information System (INIS)
Gaume, Martin
2010-01-01
In this paper, we consider a class of two-particle tight-binding Hamiltonians, describing pairs of interacting quantum particles on the lattice Z d , d ≥ 1, subject to a common external potential V(x) which we assume quasi-periodic and depending on auxiliary parameters. Such parametric families of ergodic deterministic potentials ('grands ensembles') have been introduced earlier in Chulaevsky (2007), in the framework of single-particle lattice systems, where it was proved that a non-uniform analog of the Wegner bound holds true for a class of quasi-periodic grands ensembles. Using the approach proposed in Chulaevsky and Suhov (Commun Math Phys 283(2):479-489, 2008), we establish volume-dependent Wegner-type bounds for a class of quasi-periodic two-particle lattice systems with a non-random short-range interaction.
International Nuclear Information System (INIS)
Tonini, Marco
2014-11-01
This thesis discusses the consistency of different Little Higgs models with the collected collider data as of the summer of 2013. Moreover, future prospects for possible discoveries and mass measurement methods of new physics signals at the foreseen LHC run II with increased center-of-mass energy are presented. Little Higgs models belong to a class of extensions of the Standard Higgs model, predicting a strong interaction regime at a compositeness scale Λ=4πf approximate global symmetry spontaneously broken at the scale f. A natural hierarchy between the compositeness and the electroweak scale is introduced by the Collective Symmetry Breaking mechanism: one-loop diagrams generating the Higgs mass term are forced to be at most logarithmically sensitive to Λ. A naturally light Higgs boson can thus be accommodated, consistently with a perturbative theory until a scale of order 10 TeV. We have probed the parameter space of three prominent examples of Little Higgs models, namely the Simplest Little Higgs model, the Littlest Higgs model, and the Littlest Higgs model with T-parity, against electroweak precision observables and the collected LHC data concerning both Higgs properties and direct searches for new particles, with √(s)=7,8 TeV and up to 25 fb -1 of integrated luminosity. Lower bounds on the scale f are set, within a certain degree of confidence level, which allow to draw conclusions on the ''naturalness'' of the different models. Optimisations of the existing direct searches setups, assuming a Little Higgs signal, as well as dedicated mass measurement methods designed for the foreseen LHC runs with √(s)=13,14 TeV are thoroughly discussed and proposed in this thesis. Special attention will be dedicated to final states including either a large or negligible fraction of missing transverse momentum. In particular, we will propose a dedicated collider search tailored for the discovery and mass measurement of a top partner, exploiting jet
Meson-meson bound state in a 2+1 lattice QCD model with two flavors and strong coupling
International Nuclear Information System (INIS)
Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, Antonio Francisco
2005-01-01
We consider the existence of bound states of two mesons in an imaginary-time formulation of lattice QCD. We analyze an SU(3) theory with two flavors in 2+1 dimensions and two-dimensional spin matrices. For a small hopping parameter and a sufficiently large glueball mass, as a preliminary, we show the existence of isoscalar and isovector mesonlike particles that have isolated dispersion curves (upper gap up to near the two-particle threshold ∼-4lnκ). The corresponding meson masses are equal up to and including O(κ 3 ) and are asymptotically of order -2lnκ-κ 2 . Considering the zero total isospin sector, we show that there is a meson-meson bound state solution to the Bethe-Salpeter equation in a ladder approximation, below the two-meson threshold, and with binding energy of order bκ 2 ≅0.02359κ 2 . In the context of the strong coupling expansion in κ, we show that there are two sources of meson-meson attraction. One comes from a quark-antiquark exchange. This is not a meson exchange, as the spin indices are not those of the meson particle, and we refer to this as a quasimeson exchange. The other arises from gauge field correlations of four overlapping bonds, two positively oriented and two of opposite orientation. Although the exchange part gives rise to a space range-one attractive potential, the main mechanism for the formation of the bound state comes from the gauge contribution. In our lattice Bethe-Salpeter equation approach, this mechanism is manifested by an attractive distance-zero energy-dependent potential. We recall that no bound state appeared in the one-flavor case, where the repulsive effect of Pauli exclusion is stronger
Improving the hadron physics of non-Standard-Model decays: example bounds on R-parity violation
Daub, J. T.; Dreiner, H. K.; Hanhart, C.; Kubis, B.; Meißner, U.-G.
2013-01-01
Using the example of selected decays driven by R-parity-violating supersymmetric operators, we demonstrate how strong final-state interactions can be controlled quantitatively with high precision, thus allowing for a more accurate extraction of effective parameters from data. In our examples we focus on the lepton-flavor-violating decays τ → μπ + π - . InR-parityviolationthesecanariseduetotheproductoftwocouplings. We find bounds that are an order of magnitude stronger than previous ones.
Estimating net present value variability for deterministic models
van Groenendaal, W.J.H.
1995-01-01
For decision makers the variability in the net present value (NPV) of an investment project is an indication of the project's risk. So-called risk analysis is one way to estimate this variability. However, risk analysis requires knowledge about the stochastic character of the inputs. For large,
Dynamical reduction models: present status and future developments
Energy Technology Data Exchange (ETDEWEB)
Bassi, Angelo [Dipartimento di Fisica Teorica, Universita degli Studi di Trieste, Strada Costiera 11, 34014 Trieste (Italy); Mathematisches Institut der Ludwig-Maximilians Universitaet, Theresienstr. 39, 80333 Munich (Germany)
2007-05-15
We review the major achievements of the dynamical reduction program, showing why and how it provides a unified, consistent description of physical phenomena, from the microscopic quantum domain to the macroscopic classical one. We discuss the difficulties in generalizing the existing models in order to comprise also relativistic quantum field theories. We point out possible future lines of research, ranging from mathematical physics to phenomenology.
Surviving the present: Modeling tools for organizational change
International Nuclear Information System (INIS)
Pangaro, P.
1992-01-01
The nuclear industry, like the rest of modern American business, is beset by a confluence of economic, technological, competitive, regulatory, and political pressures. For better or worse, business schools and management consultants have leapt to the rescue, offering the most modern conveniences that they can purvey. Recent advances in the study of organizations have led to new tools for their analysis, revision, and repair. There are two complementary tools that do not impose values or injunctions in themselves. One, called the organization modeler, captures the hierarchy of purposes that organizations and their subparts carry out. Any deficiency or pathology is quickly illuminated, and requirements for repair are made clear. The second, called THOUGHTSTICKER, is used to capture the semantic content of the conversations that occur across the interactions of parts of an organization. The distinctions and vocabulary in the language of an organization, and the relations within that domain, are elicited from the participants so that all three are available for debate and refinement. The product of the applications of these modeling tools is not the resulting models but rather the enhancement of the organization as a consequence of the process of constructing them
International Nuclear Information System (INIS)
Fedodeev, V.I.
1975-01-01
A microviscosity model of proton relaxation in pure liquids and in solutions of paramagnetic ions is examined. It is shown that the influence of adsorbed paramagnetic centers on proton relaxation in finely dispersed substances is significantly weaker than in solutions. A 'two-phase' relaxation model is used in determining the parameters of the bound liquid (water) using nuclear magnetic resonance data. The relations obtained with the model are used to compute the viscosity of water in clay. The value is of the same order of magnitude as that obtained by other methods
Energy Technology Data Exchange (ETDEWEB)
Fedodeev, V I
1975-09-01
A microviscosity model of proton relaxation in pure liquids and in solutions of paramagnetic ions is examined. It is shown that the influence of adsorbed paramagnetic centers on proton relaxation in finely dispersed substances is significantly weaker than in solutions. A 'two-phase' relaxation model is used in determining the parameters of the bound liquid (water) using nuclear magnetic resonance data. The relations obtained with the model are used to compute the viscosity of water in clay. The value is of the same order of magnitude as that obtained by other methods.
The ELOCA fuel modelling code: past, present and future
International Nuclear Information System (INIS)
Williams, A.F.
2005-01-01
ELOCA is the Industry Standard Toolset (IST) computer code for modelling CANDU fuel under the transient coolant conditions typical of an accident scenario. Since its original inception in the early 1970's, the code has undergone continual development and improvement. The code now embodies much of the knowledge and experience of fuel behaviour gained by the Canadian nuclear industry over this period. ELOCA has proven to be a valuable tool for the safety analyst, and continues to be used extensively to support the licensing cases of CANDU reactors. This paper provides a brief and much simplified view of this development history, its current status, and plans for future development. (author)
Directory of Open Access Journals (Sweden)
Piscaglia F.
2013-11-01
Full Text Available The implementation and the combination of advanced boundary conditions and subgrid scale models for Large Eddy Simulations are presented. The goal is to perform reliable cold flow LES simulations in complex geometries, such as in the cylinders of internal combustion engines. The implementation of an inlet boundary condition for synthetic turbulence generation and of two subgrid scale models, the local Dynamic Smagorinsky and the Wall-Adapting Local Eddy-viscosity SGS model ( WALE is described. The WALE model is based on the square of the velocity gradient tensor and it accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations and it recovers the proper y3 near-wall scaling for the eddy viscosity without requiring dynamic pressure; hence, it is supposed to be a very reliable model for ICE simulation. Model validation has been performed separately on two steady state flow benches: a backward facing step geometry and a simple IC engine geometry with one axed central valve. A discussion on the completeness of the LES simulation (i.e. LES simulation quality is given.
Fuzzy upper bounds and their applications
Energy Technology Data Exchange (ETDEWEB)
Soleimani-damaneh, M. [Department of Mathematics, Faculty of Mathematical Science and Computer Engineering, Teacher Training University, 599 Taleghani Avenue, Tehran 15618 (Iran, Islamic Republic of)], E-mail: soleimani_d@yahoo.com
2008-04-15
This paper considers the concept of fuzzy upper bounds and provides some relevant applications. Considering a fuzzy DEA model, the existence of a fuzzy upper bound for the objective function of the model is shown and an effective approach to solve that model is introduced. Some dual interpretations are provided, which are useful for practical purposes. Applications of the concept of fuzzy upper bounds in two physical problems are pointed out.
International Nuclear Information System (INIS)
Tezuka, Hirokazu.
1984-10-01
Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)
Abolfazli, Elham; Saidabadi, Reza Yousefi; Fallah, Vahid
2016-01-01
The purpose of the present study is to investigate indifference management structural model in education system of Ardabil Province. The research method was integration study using Alli modeling. Statistical society of research was 420 assistant professors of educational science, managers, and deputies of Ardabil's second period of high schools…
Directory of Open Access Journals (Sweden)
Seong-Pil Moon
2018-01-01
Full Text Available This paper investigates the stability problem of the feedback active noise control (ANC system, which can be caused by the modeling error of the electro-acoustic path estimation in its feedback mechanism. A stability analysis method is proposed to obtain the stability bound as a form of a closed-form equation in terms of the delay error length of the secondary path, the ANC filter length, and the primary noise frequency. In the proposed method, the system’s open loop magnitude and phase response equations are separately exploited and approximated within the Nyquist stability criterion. The stability bound of the proposed method is verified by comparing both the original Nyquist stability condition and the simulation results.
A lower bound on the mass of dark matter particles
International Nuclear Information System (INIS)
Boyarsky, Alexey; Ruchayskiy, Oleg; Iakubovskyi, Dmytro
2009-01-01
We discuss the bounds on the mass of Dark Matter (DM) particles, coming from the analysis of DM phase-space distribution in dwarf spheroidal galaxies (dSphs). After reviewing the existing approaches, we choose two methods to derive such a bound. The first one depends on the information about the current phase space distribution of DM particles only, while the second one uses both the initial and final distributions. We discuss the recent data on dSphs as well as astronomical uncertainties in relevant parameters. As an application, we present lower bounds on the mass of DM particles, coming from various dSphs, using both methods. The model-independent bound holds for any type of fermionic DM. Stronger, model-dependent bounds are quoted for several DM models (thermal relics, non-resonantly and resonantly produced sterile neutrinos, etc.). The latter bounds rely on the assumption that baryonic feedback cannot significantly increase the maximum of a distribution function of DM particles. For the scenario in which all the DM is made of sterile neutrinos produced via non-resonant mixing with the active neutrinos (NRP) this gives m NRP > 1.7 keV. Combining these results in their most conservative form with the X-ray bounds of DM decay lines, we conclude that the NRP scenario remains allowed in a very narrow parameter window only. This conclusion is independent of the results of the Lyman-α analysis. The DM model in which sterile neutrinos are resonantly produced in the presence of lepton asymmetry remains viable. Within the minimal neutrino extension of the Standard Model (the νMSM), both mass and the mixing angle of the DM sterile neutrino are bounded from above and below, which suggests the possibility for its experimental search
Dynkowska, Wioletta M; Cyran, Malgorzata R; Ceglińska, Alicja
2015-03-30
The bread-making process influences bread components, including phenolics that significantly contribute to its antioxidant properties. Five bread model systems made from different rye cultivars were investigated to compare their impact on concentration of ethanol-soluble (free and ester-bound) and insoluble phenolics. Breads produced by a straight dough method without acid addition (A) and three-stage sourdough method with 12 h native starter preparation (C) exhibited the highest, genotype-dependent concentrations of free phenolic acids. Dough acidification by direct acid addition (method B) or by gradual production during prolonged starter fermentation (24 and 48 h, for methods D and E) considerably decreased their level. However, breads B were enriched in soluble ester-bound fraction. Both direct methods, despite substantial differences in dough pH, caused a similar increase in the amount of insoluble ester-bound fraction. The contents of phenolic fractions in rye bread were positively related to activity level of feruloyl esterase and negatively to those of arabinoxylan-hydrolysing enzymes in wholemeal flour. The solubility of rye bread phenolics may be enhanced by application of a suitable bread-making procedure with respect to rye cultivar, as the mechanisms of this process are also governed by a response of an individual genotype with specific biochemical profile. © 2014 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Two-phonon bound states in imperfect crystals
International Nuclear Information System (INIS)
Behera, S.N.; Samsur, Sk.
1980-01-01
The question of the occurrence of two-phonon bound states in imperfect crystals is investigated. It is shown that the anharmonicity mediated two-phonon bound state which is present in perfect crystals gets modified due to the presence of impurities. Moreover, the possibility of the occurrence of a purely impurity mediated two-phonon bound state is demonstrated. The bound state frequencies are calculated using the simple Einstein oscillator model for the host phonons. The two-phonon density of states for the imperfect crystal thus obtained has peaks at the combination and difference frequencies of two host phonons besides the peaks at the bound state frequencies. For a perfect crystal the theory predicts a single peak at the two-phonon bound state frequency in conformity with experimental observations and other theoretical calculations. Experimental data on the two-phonon infrared absorption and Raman scattering from mixed crystals of Gasub(1-c)Alsub(c)P and Gesub(1-c)Sisub(c) are analysed to provide evidence in support of impurity-mediated two-phonon bound states. The relevance of the zero frequency (difference spectrum) peak to the central peak, observed in structural phase transitions, is conjectured. (author)
Bounds on poloidal kinetic energy in plane layer convection
Tilgner, A.
2017-12-01
A numerical method is presented that conveniently computes upper bounds on heat transport and poloidal energy in plane layer convection for infinite and finite Prandtl numbers. The bounds obtained for the heat transport coincide with earlier results. These bounds imply upper bounds for the poloidal energy, which follow directly from the definitions of dissipation and energy. The same constraints used for computing upper bounds on the heat transport lead to improved bounds for the poloidal energy.
Dynamic Garment Simulation based on Hybrid Bounding Volume Hierarchy
Directory of Open Access Journals (Sweden)
Zhu Dongyong
2016-12-01
Full Text Available In order to solve the computing speed and efficiency problem of existing dynamic clothing simulation, this paper presents a dynamic garment simulation based on a hybrid bounding volume hierarchy. It firstly uses MCASG graph theory to do the primary segmentation for a given three-dimensional human body model. And then it applies K-means cluster to do the secondary segmentation to collect the human body’s upper arms, lower arms, upper legs, lower legs, trunk, hip and woman’s chest as the elementary units of dynamic clothing simulation. According to different shapes of these elementary units, it chooses the closest and most efficient hybrid bounding box to specify these units, such as cylinder bounding box and elliptic cylinder bounding box. During the process of constructing these bounding boxes, it uses the least squares method and slices of the human body to get the related parameters. This approach makes it possible to use the least amount of bounding boxes to create close collision detection regions for the appearance of the human body. A spring-mass model based on a triangular mesh of the clothing model is finally constructed for dynamic simulation. The simulation result shows the feasibility and superiority of the method described.
Comparing two reliability upper bounds for multistate systems
International Nuclear Information System (INIS)
Meng, Fan C.
2005-01-01
The path-cut reliability bound due to Esary and Proschan [J. Am. Stat. Assoc. 65 (1970) 329] and the minimax reliability bound due to Barlow and Proschan [Statistical Theory of Reliability and Life Testing: Probability Models, 1981] for binary systems have been generalized to multistate systems by Block and Savits [J. Appl. Probab. 19 (1982) 391]. Some comparison results concerning the two multistate lower bounds for various types of multistate systems are given by Meng [Probab. Eng. Inform. Sci. 16 (2002) 485]. In this note we compare the two multistate upper bounds and present results which generalize some previous ones obtained by Maymin [J. Stat. Plan. Inference 16 (1987) 337] for binary systems. Examples are given to illustrate our results
Simulation bounds for system availability
International Nuclear Information System (INIS)
Tietjen, G.L.; Waller, R.A.
1976-01-01
System availability is a dominant factor in the practicality of nuclear power electrical generating plants. A proposed model for obtaining either lower bounds or interval estimates on availability uses observed data on ''n'' failure-to-repair cycles of the system to estimate the parameters in the time-to-failure and time-to-repair models. These estimates are then used in simulating failure/repair cycles of the system. The availability estimate is obtained for each of 5000 samples of ''n'' failure/repair cycles to form a distribution of estimates. Specific percentile points of those simulated distributions are selected as lower simulation bounds or simulation interval bounds for the system availability. The method is illustrated with operational data from two nuclear plants for which an exponential time-to-failure and a lognormal time-to-repair are assumed
Energy Technology Data Exchange (ETDEWEB)
Grinstein, Benjamín [Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Murphy, Christopher W. [Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126 (Italy); Uttayarat, Patipan [Department of Physics, Srinakharinwirot University, Wattana, Bangkok 10110 (Thailand)
2016-06-13
We compute all of the one-loop corrections that are enhanced, O(λ{sub i}λ{sub j}/16π{sup 2}), in the limit s≫|λ{sub i}|v{sup 2}≫M{sub W}{sup 2}, s≫m{sub 12}{sup 2} to all the 2→2 longitudinal vector boson and Higgs boson scattering amplitudes in the CP-conserving two-Higgs doublet model with a softly broken ℤ{sub 2} symmetry. In the two simplified scenarios we study, the typical bound we find is |λ{sub i}(s)|⪅4.
A cluster expansion for bound three-alpha particles as a three-body problem
International Nuclear Information System (INIS)
Osman, A.
1981-08-01
A three-body model is proposed to study the nuclear bound states. The nucleus is described as a bound state of three clusters. A cluster expansion is introduced for the three cluster bound state problem. The present integral equations are treated by simple approximate solutions, which lead to effective potentials by using the present cluster expansion. The 12 C nucleus is described as a three-alpha particle bound state. The binding energy of 12 C is calculated numerically using the present cluster expansion as bound three-alpha clusters. The present three-body cluster expansion calculations are very near to the exact three-body calculations using separable potentials. The present theoretical calculations are in good agreement with the experimental measurements. (author)
Optima and bounds for irreversible thermodynamic processes
International Nuclear Information System (INIS)
Hoffmann, K.H.
1990-01-01
In this paper bounds and optima for irreversible thermodynamic processes and their application in different fields are discussed. The tools of finite time thermodynamics are presented and especially optimal control theory is introduced. These methods are applied to heat engines, including models of the Diesel engine and a light-driven engine. Further bounds for irreversible processes are introduced, discussing work deficiency and its relation to thermodynamic length. Moreover the problem of dissipation in systems composed of several subsystems is studied. Finally, the methods of finite time thermodynamics are applied to thermodynamic processes described on a more microscopic level. The process used as an example is simulated annealing. It is shown how optimal control theory is applied to find the optimal cooling schedule for this important stochastic optimization method
Optimal Bounds in Parametric LTL Games
Directory of Open Access Journals (Sweden)
Martin Zimmermann
2011-06-01
Full Text Available We consider graph games of infinite duration with winning conditions in parameterized linear temporal logic, where the temporal operators are equipped with variables for time bounds. In model checking such specifications were introduced as "PLTL" by Alur et al. and (in a different version called "PROMPT-LTL" by Kupferman et al.. We present an algorithm to determine optimal variable valuations that allow a player to win a game. Furthermore, we show how to determine whether a player wins a game with respect to some, infinitely many, or all valuations. All our algorithms run in doubly-exponential time; so, adding bounded temporal operators does not increase the complexity compared to solving plain LTL games.
Some Improved Nonperturbative Bounds for Fermionic Expansions
Energy Technology Data Exchange (ETDEWEB)
Lohmann, Martin, E-mail: marlohmann@gmail.com [Universita di Roma Tre, Dipartimento di Matematica (Italy)
2016-06-15
We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered in a model problem by Djokic (2013). It explains the standard way to bound the expansion from a new point of view, and for some of the amplitudes provides new bounds, which avoid the use of Fourier transform, and are therefore superior to the standard bounds for models like the cold interacting Fermi gas.
Wentworth, Mami Tonoe
Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification
International Nuclear Information System (INIS)
Inoue, J.; Ohtaka, K.
2004-01-01
We study virtual bound states in photonics, which are a vectorial extension of electron virtual bound states. The condition for these states is derived. It is found that the Mie resonant state which satisfies the condition that the size parameter is less than the angular momentum should be interpreted as a photon virtual bound state. In order to confirm the validity of the concept, we compare the photonic density of states, the width of which represents the lifetime of the photon virtual bound states, with numerical results
DEFF Research Database (Denmark)
Emiris, Ioannis Z.; Mourrain, Bernard; Tsigaridas, Elias
2010-01-01
) resultant by means of mixed volume, as well as recent advances on aggregate root bounds for univariate polynomials, and are applicable to arbitrary positive dimensional systems. We improve upon Canny's gap theorem [7] by a factor of O(dn-1), where d bounds the degree of the polynomials, and n is the number...... bound on the number of steps that subdivision-based algorithms perform in order to isolate all real roots of a polynomial system. This leads to the first complexity bound of Milne's algorithm [22] in 2D....
International Nuclear Information System (INIS)
Zouzou, S.
1986-01-01
In the framework of simple non-relativistic potential models, we examine the system consisting of two quarks and two antiquarks with equal or unequal masses. We search for possible bound states below the threshold for the spontaneous dissociation into two mesons. We solve the four body problem by empirical or systematic variational methods and we include the virtual meson-meson components of the wave function. With standard two-body potentials, there is no proliferation of multiquarks. With unequal quark masses, we obtain however exotic (anti Qanti Qqq) bound states with a baryonic antidiquark-quark-quark structure very analogous to the heavy flavoured (Q'qq) baryons. (orig.)
Bound entanglement and local realism
International Nuclear Information System (INIS)
Kaszlikowski, Dagomir; Zukowski, Marek; Gnacinski, Piotr
2002-01-01
We show using a numerical approach, which gives necessary and sufficient conditions for the existence of local realism, that the bound entangled state presented in Bennett et al. [Phys. Rev. Lett. 82, 5385 (1999)] admits a local and realistic description. We also find the lowest possible amount of some appropriate entangled state that must be ad-mixed to the bound entangled state so that the resulting density operator has no local and realistic description and as such can be useful in quantum communication and quantum computation
Bounded Intention Planning Revisited
Sievers Silvan; Wehrle Martin; Helmert Malte
2014-01-01
Bounded intention planning provides a pruning technique for optimal planning that has been proposed several years ago. In addition partial order reduction techniques based on stubborn sets have recently been investigated for this purpose. In this paper we revisit bounded intention planning in the view of stubborn sets.
Distributed Large Independent Sets in One Round On Bounded-independence Graphs
Halldorsson , Magnus M.; Konrad , Christian
2015-01-01
International audience; We present a randomized one-round, single-bit messages, distributed algorithm for the maximum independent set problem in polynomially bounded-independence graphs with poly-logarithmic approximation factor. Bounded-independence graphs capture various models of wireless networks such as the unit disc graphs model and the quasi unit disc graphs model. For instance, on unit disc graphs, our achieved approximation ratio is O((log(n)/log(log(n)))^2).A starting point of our w...
Bounds on the Capacity of Weakly constrained two-dimensional Codes
DEFF Research Database (Denmark)
Forchhammer, Søren
2002-01-01
Upper and lower bounds are presented for the capacity of weakly constrained two-dimensional codes. The maximum entropy is calculated for two simple models of 2-D codes constraining the probability of neighboring 1s as an example. For given models of the coded data, upper and lower bounds...... on the capacity for 2-D channel models based on occurrences of neighboring 1s are considered....
Tight Temporal Bounds for Dataflow Applications Mapped onto Shared Resources
Alizadeh Ara, H.; Geilen, M.; Basten, T.; Behrouzian, A.R.B.; Hendriks, M.; Goswami, D.
2016-01-01
We present an analysis method that provides tight temporal bounds for applications modeled by Synchronous Dataflow Graphs and mapped to shared resources. We consider the resource sharing effects on the temporal behaviour of the application by embedding worst case resource availability curves in the
Bounded prospection in dilemmas of trust and reciprocity
Evans, A.M.; Krueger, J.I.
2016-01-01
Knowing when to trust others is an important social skill, but recent findings suggest that humans struggle with this dilemma—trusting strangers more than they should. Although trust decisions often do not meet the standards of rationality, they appear to be boundedly rational. We present a model of
International Nuclear Information System (INIS)
Toki, Hiroshi; Yamazaki, Toshimitsu
1989-01-01
The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)
Faddeev-Yakubovsky technique for weakly bound systems
International Nuclear Information System (INIS)
Hadizadeh, M.R.; Yamashita, M.T.; Tomio, Lauro; Delfino, A.
2011-01-01
Nature shows the existence of weakly bound systems in different sectors, ranging from atomic to nuclear physics. Few-body systems with large scattering length exhibit universal features, which are independent of the details of the interaction, and thus are common to nuclear and atomic systems. Very different methods are used to study the properties of few-body systems, from Faddeev methods to diagonalization methods that rely on an expansion of the wave functions in a complete basis set, like e.g. hyper-spherical harmonics and no core shell model. In this talk we present Faddeev-Yakubovsky method to study the three- and four-body bound states in momentum space. To show the efficiency and accuracy of the method we investigate the three- and four-boson weakly bound states in unitary limit (for zero two-body binding) and we present a pretty complete picture of universality. (author)
Upper bounds for reversible circuits based on Young subgroups
DEFF Research Database (Denmark)
Abdessaied, Nabila; Soeken, Mathias; Thomsen, Michael Kirkedal
2014-01-01
We present tighter upper bounds on the number of Toffoli gates needed in reversible circuits. Both multiple controlled Toffoli gates and mixed polarity Toffoli gates have been considered for this purpose. The calculation of the bounds is based on a synthesis approach based on Young subgroups...... that results in circuits using a more generalized gate library. Starting from an upper bound for this library we derive new bounds which improve the existing bound by around 77%....
No-arbitrage bounds for financial scenarios
DEFF Research Database (Denmark)
Geyer, Alois; Hanke, Michael; Weissensteiner, Alex
2014-01-01
We derive no-arbitrage bounds for expected excess returns to generate scenarios used in financial applications. The bounds allow to distinguish three regions: one where arbitrage opportunities will never exist, a second where arbitrage may be present, and a third, where arbitrage opportunities...
Bounded Rationality and Budgeting
Ibrahim, Mukdad
2016-01-01
This article discusses the theory of bounded rationality which had been introduced by Herbert Simon in the 1950s. Simon introduced the notion of bounded rationality stating that while decision-makers strive for rationality, they are limited by the effect of the environment, their information process capacity and by the constraints on their information storage and retrieval capabilities. Moreover, this article tries to specifically blend this notion into budgeting, using the foundations of inc...
Backus, George E.
1999-01-01
The purpose of the grant was to study how prior information about the geomagnetic field can be used to interpret surface and satellite magnetic measurements, to generate quantitative descriptions of prior information that might be so used, and to use this prior information to obtain from satellite data a model of the core field with statistically justifiable error estimates. The need for prior information in geophysical inversion has long been recognized. Data sets are finite, and faithful descriptions of aspects of the earth almost always require infinite-dimensional model spaces. By themselves, the data can confine the correct earth model only to an infinite-dimensional subset of the model space. Earth properties other than direct functions of the observed data cannot be estimated from those data without prior information about the earth. Prior information is based on what the observer already knows before the data become available. Such information can be "hard" or "soft". Hard information is a belief that the real earth must lie in some known region of model space. For example, the total ohmic dissipation in the core is probably less that the total observed geothermal heat flow out of the earth's surface. (In principle, ohmic heat in the core can be recaptured to help drive the dynamo, but this effect is probably small.) "Soft" information is a probability distribution on the model space, a distribution that the observer accepts as a quantitative description of her/his beliefs about the earth. The probability distribution can be a subjective prior in the sense of Bayes or the objective result of a statistical study of previous data or relevant theories.
Alvarez, Laura V.; Schmeeckle, Mark W.; Grams, Paul E.
2017-01-01
Lateral ﬂow separation occurs in rivers where banks exhibit strong curvature. In canyon-boundrivers, lateral recirculation zones are the principal storage of ﬁne-sediment deposits. A parallelized,three-dimensional, turbulence-resolving model was developed to study the ﬂow structures along lateralseparation zones located in two pools along the Colorado River in Marble Canyon. The model employs thedetached eddy simulation (DES) technique, which resolves turbulence structures larger than the grid spacingin the interior of the ﬂow. The DES-3D model is validated using Acoustic Doppler Current Proﬁler ﬂowmeasurements taken during the 2008 controlled ﬂood release from Glen Canyon Dam. A point-to-pointvalidation using a number of skill metrics, often employed in hydrological research, is proposed here forﬂuvial modeling. The validation results show predictive capabilities of the DES model. The model reproducesthe pattern and magnitude of the velocity in the lateral recirculation zone, including the size and position ofthe primary and secondary eddy cells, and return current. The lateral recirculation zone is open, havingcontinuous import of ﬂuid upstream of the point of reattachment and export by the recirculation returncurrent downstream of the point of separation. Differences in magnitude and direction of near-bed andnear-surface velocity vectors are found, resulting in an inward vertical spiral. Interaction between therecirculation return current and the main ﬂow is dynamic, with large temporal changes in ﬂow direction andmagnitude. Turbulence structures with a predominately vertical axis of vorticity are observed in the shearlayer becoming three-dimensional without preferred orientation downstream.
Remarks on Bousso's covariant entropy bound
Mayo, A E
2002-01-01
Bousso's covariant entropy bound is put to the test in the context of a non-singular cosmological solution of general relativity found by Bekenstein. Although the model complies with every assumption made in Bousso's original conjecture, the entropy bound is violated due to the occurrence of negative energy density associated with the interaction of some the matter components in the model. We demonstrate how this property allows for the test model to 'elude' a proof of Bousso's conjecture which was given recently by Flanagan, Marolf and Wald. This corroborates the view that the covariant entropy bound should be applied only to stable systems for which every matter component carries positive energy density.
Tate, Stephen James
2013-10-01
In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.
Edmunds, Charlotte E. R.; Milton, Fraser; Wills, Andy J.
2018-01-01
Behavioral evidence for the COVIS dual-process model of category learning has been widely reported in over a hundred publications (Ashby & Valentin, 2016). It is generally accepted that the validity of such evidence depends on the accurate identification of individual participants' categorization strategies, a task that usually falls to…
Confidence bounds of recurrence-based complexity measures
International Nuclear Information System (INIS)
Schinkel, Stefan; Marwan, N.; Dimigen, O.; Kurths, J.
2009-01-01
In the recent past, recurrence quantification analysis (RQA) has gained an increasing interest in various research areas. The complexity measures the RQA provides have been useful in describing and analysing a broad range of data. It is known to be rather robust to noise and nonstationarities. Yet, one key question in empirical research concerns the confidence bounds of measured data. In the present Letter we suggest a method for estimating the confidence bounds of recurrence-based complexity measures. We study the applicability of the suggested method with model and real-life data.
Bionic Control of Cheetah Bounding with a Segmented Spine
Wang, Chunlei; Wang, Shigang
2016-01-01
A cheetah model is built to mimic real cheetah and its mechanical and dimensional parameters are derived from the real cheetah. In particular, two joints in spine and four joints in a leg are used to realize the motion of segmented spine and segmented legs which are the key properties of the cheetah bounding. For actuating and stabilizing the bounding gait of cheetah, we present a bioinspired controller based on the state-machine. The controller mainly mimics the function of the cerebellum to...
Qiu, Shanwen
2012-07-01
In this article, we propose a new grid-free and exact solution method for computing solutions associated with an hybrid traffic flow model based on the Lighthill- Whitham-Richards (LWR) partial differential equation. In this hybrid flow model, the vehicles satisfy the LWR equation whenever possible, and have a fixed acceleration otherwise. We first present a grid-free solution method for the LWR equation based on the minimization of component functions. We then show that this solution method can be extended to compute the solutions to the hybrid model by proper modification of the component functions, for any concave fundamental diagram. We derive these functions analytically for the specific case of a triangular fundamental diagram. We also show that the proposed computational method can handle fixed or moving bottlenecks.
Emergence of scale-free characteristics in socio-ecological systems with bounded rationality
Kasthurirathna, Dharshana; Piraveenan, Mahendra
2015-01-01
Socio?ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback?-Leibler divergence between Nash and Quantal Res...
On bound states of photons in noncommutative U(1) gauge theory
International Nuclear Information System (INIS)
Fatollahi, A.H.; Jafari, A.
2006-01-01
We consider the possibility that photons of noncommutative U(1) gauge theory can make bound states. Using the potential model, developed based on the constituent gluon picture of QCD glue-balls, arguments are presented in favor of the existence of these bound states. The basic ingredient of the potential model is that the self-interacting massless gauge particles may get mass by the inclusion of non-perturbative effects. (orig.)
Voronoi Diagrams Without Bounding Boxes
Sang, E. T. K.
2015-10-01
We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010) and Nerbonne et al (2011).
International Nuclear Information System (INIS)
Adams, J.E.
1979-05-01
The difficulty of applying the WKB approximation to problems involving arbitrary potentials has been confronted. Recent work has produced a convenient expression for the potential correction term. However, this approach does not yield a unique correction term and hence cannot be used to construct the proper modification. An attempt is made to overcome the uniqueness difficulties by imposing a criterion which permits identification of the correct modification. Sections of this work are: semiclassical eigenvalues for potentials defined on a finite interval; reactive scattering exchange kernels; a unified model for elastic and inelastic scattering from a solid surface; and selective absorption on a solid surface
Energy Technology Data Exchange (ETDEWEB)
Mueller, Michel G.; Haan, Peter de [ETH Zurich, Institute for Environmental Decisions, Natural and Social Science Interface, Universitaetstr. 22, CHN J 73.2, 8092 Zurich (Switzerland)
2009-03-15
This article presents an agent-based microsimulation capable of forecasting the effects of policy levers that influence individual choices of new passenger cars. The fundamental decision-making units are households distinguished by sociodemographic characteristics and car ownership. A two-stage model of individual decision processes is employed. In the first stage, individual choice sets are constructed using simple, non-compensatory rules that are based on previously owned cars. Second, decision makers evaluate alternatives in their individual choice set using a multi-attributive weighting rule. The attribute weights are based on a multinomial logit model for cross-country policy analysis in European countries. Additionally, prospect theory and the notion of mental accounting are used to model the perception of monetary values. The microsimulation forecasts actual market observations with high accuracy, both on the level of aggregate market characteristics as well as on a highly resolved level of distributions of market shares. The presented approach is useful for the assessment of policies that influence individual purchase decisions of new passenger cars; it allows accounting for a highly resolved car fleet and differentiated consumer segments. As a result, the complexity of incentive schemes can be represented and detailed structural changes can be investigated. (author)
The bound state problem and quark confinement
International Nuclear Information System (INIS)
Chaichian, M.; Demichev, A.P.; Nelipa, N.F.
1980-01-01
A quantum field-theoretic model in which quark is confined is considered. System of equations for the Green functions of colour singlet and octet bound states is obtained. The method is based on the nonperturbative Schwinger-Dyson equations with the use of Slavnov-Taylor identities. It is shown that in the framework of the model if there exist singlet, then also exist octet bound states of the quark-antiquark system. Thus in general, confinement of free quarks does not mean absence of their coloured bound states. (author)
New bounds on isotropic Lorentz violation
International Nuclear Information System (INIS)
Carone, Christopher D.; Sher, Marc; Vanderhaeghen, Marc
2006-01-01
Violations of Lorentz invariance that appear via operators of dimension four or less are completely parametrized in the Standard Model Extension (SME). In the pure photonic sector of the SME, there are 19 dimensionless, Lorentz-violating parameters. Eighteen of these have experimental upper bounds ranging between 10 -11 and 10 -32 ; the remaining parameter, k-tilde tr , is isotropic and has a much weaker bound of order 10 -4 . In this Brief Report, we point out that k-tilde tr gives a significant contribution to the anomalous magnetic moment of the electron and find a new upper bound of order 10 -8 . With reasonable assumptions, we further show that this bound may be improved to 10 -14 by considering the renormalization of other Lorentz-violating parameters that are more tightly constrained. Using similar renormalization arguments, we also estimate bounds on Lorentz-violating parameters in the pure gluonic sector of QCD
Covariant entropy bound and loop quantum cosmology
International Nuclear Information System (INIS)
Ashtekar, Abhay; Wilson-Ewing, Edward
2008-01-01
We examine Bousso's covariant entropy bound conjecture in the context of radiation filled, spatially flat, Friedmann-Robertson-Walker models. The bound is violated near the big bang. However, the hope has been that quantum gravity effects would intervene and protect it. Loop quantum cosmology provides a near ideal setting for investigating this issue. For, on the one hand, quantum geometry effects resolve the singularity and, on the other hand, the wave function is sharply peaked at a quantum corrected but smooth geometry, which can supply the structure needed to test the bound. We find that the bound is respected. We suggest that the bound need not be an essential ingredient for a quantum gravity theory but may emerge from it under suitable circumstances.
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Faust, Sebastian; Mukherjee, Pratyay
2013-01-01
Related key attacks (RKAs) are powerful cryptanalytic attacks where an adversary can change the secret key and observe the effect of such changes at the output. The state of the art in RKA security protects against an a-priori unbounded number of certain algebraic induced key relations, e.......g., affine functions or polynomials of bounded degree. In this work, we show that it is possible to go beyond the algebraic barrier and achieve security against arbitrary key relations, by restricting the number of tampering queries the adversary is allowed to ask for. The latter restriction is necessary......-protocols (including the Okamoto scheme, for instance) are secure even if the adversary can arbitrarily tamper with the prover’s state a bounded number of times and obtain some bounded amount of leakage. Interestingly, for the Okamoto scheme we can allow also independent tampering with the public parameters. We show...
Massive Galileon positivity bounds
de Rham, Claudia; Melville, Scott; Tolley, Andrew J.; Zhou, Shuang-Yong
2017-09-01
The EFT coefficients in any gapped, scalar, Lorentz invariant field theory must satisfy positivity requirements if there is to exist a local, analytic Wilsonian UV completion. We apply these bounds to the tree level scattering amplitudes for a massive Galileon. The addition of a mass term, which does not spoil the non-renormalization theorem of the Galileon and preserves the Galileon symmetry at loop level, is necessary to satisfy the lowest order positivity bound. We further show that a careful choice of successively higher derivative corrections are necessary to satisfy the higher order positivity bounds. There is then no obstruction to a local UV completion from considerations of tree level 2-to-2 scattering alone. To demonstrate this we give an explicit example of such a UV completion.
Present status on atomic and molecular data relevant to fusion plasma diagnostics and modeling
International Nuclear Information System (INIS)
Tawara, H.
1997-01-01
This issue is the collection of the paper presented status on atomic and molecular data relevant to fusion plasma diagnostics and modeling. The 10 of the presented papers are indexed individually. (J.P.N.)
Variational lower bound on the scattering length
International Nuclear Information System (INIS)
Rosenberg, L.; Spruch, L.
1975-01-01
The scattering length A characterizes the zero-energy scattering of one system by another. It was shown some time ago that a variational upper bound on A could be obtained using methods, of the Rayleigh-Ritz type, which are commonly employed to obtain upper bounds on energy eigenvalues. Here we formulate a method for obtaining a variational lower bound on A. Once again the essential idea is to express the scattering length as a variational estimate plus an error term and then to reduce the problem of bounding the error term to one involving bounds on energy eigenvalues. In particular, the variational lower bound on A is rigorously established provided a certin modified Hamiltonian can be shown to have no discrete states lying below the level of the continuum threshold. It is unfortunately true that necessary conditions for the existence of bound states are not available for multiparticle systems in general. However, in the case of positron-atom scattering the adiabatic approximation can be introduced as an (essentially) solvable comparison problem to rigorously establish the nonexistence of bound states of the modified Hamiltonian. It has recently been shown how the validity of the variational upper bound on A can be maintained when the target ground-state wave function is imprecisely known. Similar methods can be used to maintain the variational lower bound on A. Since the bound is variational, the error in the calculated scattering length will be of second order in the error in the wave function. The use of the adiabatic approximation in the present context places no limitation in principle on the accuracy achievable
Directory of Open Access Journals (Sweden)
Kiswanto Gandjar
2017-01-01
Full Text Available The increase in the volume of rough machining on the CBV area is one of the indicators of increased efficiencyof machining process. Normally, this area is not subject to the rough machining process, so that the volume of the rest of the material is still big. With the addition of CC point and tool orientation to CBV area on a complex surface, the finishing will be faster because the volume of the excess material on this process will be reduced. This paper presents a method for volume calculation of the parts which do not allow further occurrence of the machining process, particulary for rough machining on a complex object. By comparing the total volume of raw materials and machining area volume, the volume of residual material,on which machining process cannot be done,can be determined. The volume of the total machining area has been taken into account for machiningof the CBV and non CBV areas. By using delaunay triangulation for the triangle which includes the machining and CBV areas. The volume will be calculated using Divergence(Gaussian theorem by focusing on the direction of the normal vector on each triangle. This method can be used as an alternative to selecting tothe rough machining methods which select minimum value of nonmachinable volume so that effectiveness can be achieved in the machining process.
Ducassou, Lionel; Dhers, Laura; Jonasson, Gabriella; Pietrancosta, Nicolas; Boucher, Jean-Luc; Mansuy, Daniel; André, François
2017-09-01
Human cytochrome P450 2U1 (CYP2U1) is an orphan CYP that exhibits several distinctive characteristics among the 57 human CYPs with a highly conserved sequence in almost all living organisms. We compared its protein sequence with those of the 57 human CYPs and constructed a 3D structure of a full-length CYP2U1 model bound to a POPC membrane. We also performed docking experiments of arachidonic acid (AA) and N-arachidonoylserotonin (AS) in this model. The protein sequence of CYP2U1 displayed two unique characteristics when compared to those of the human CYPs, the presence of a longer N-terminal region upstream of the putative trans-membrane helix (TMH) containing 8 proline residues, and of an insert of about 20 amino acids containing 5 arginine residues between helices A' and A. Its N-terminal part upstream of TMH involved an additional short terminal helix, in a manner similar to what was reported in the crystal structure of Saccharomyces cerevisiae CYP51. Our model also showed a specific interaction between the charged residues of insert AA' and phosphate groups of lipid polar heads, suggesting a possible role of this insert in substrate recruitment. Docking of AA and AS in this model showed these substrates in channel 2ac, with the terminal alkyl chain of AA or the indole ring of AS close to the heme, in agreement with the reported CYP2U1-catalyzed AA and AS hydroxylation regioselectivities. This model should be useful to find new endogenous or exogenous CYP2U1 substrates and to interpret the regioselectivity of their hydroxylation. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Bionic Control of Cheetah Bounding with a Segmented Spine.
Wang, Chunlei; Wang, Shigang
2016-01-01
A cheetah model is built to mimic real cheetah and its mechanical and dimensional parameters are derived from the real cheetah. In particular, two joints in spine and four joints in a leg are used to realize the motion of segmented spine and segmented legs which are the key properties of the cheetah bounding. For actuating and stabilizing the bounding gait of cheetah, we present a bioinspired controller based on the state-machine. The controller mainly mimics the function of the cerebellum to plan the locomotion and keep the body balance. The haptic sensor and proprioception system are used to detect the trigger of the phase transition. Besides, the vestibular modulation could perceive the pitching angle of the trunk. At last, the cerebellum acts as the CPU to operate the information from the biological sensors. In addition, the calculated results are transmitted to the low-level controller to actuate and stabilize the cheetah bounding. Moreover, the delay feedback control method is employed to plan the motion of the leg joints to stabilize the pitching motion of trunk with the stability criterion. Finally, the cyclic cheetah bounding with biological properties is realized. Meanwhile, the stability and dynamic properties of the cheetah bounding gait are analyzed elaborately.
Bionic Control of Cheetah Bounding with a Segmented Spine
Directory of Open Access Journals (Sweden)
Chunlei Wang
2016-01-01
Full Text Available A cheetah model is built to mimic real cheetah and its mechanical and dimensional parameters are derived from the real cheetah. In particular, two joints in spine and four joints in a leg are used to realize the motion of segmented spine and segmented legs which are the key properties of the cheetah bounding. For actuating and stabilizing the bounding gait of cheetah, we present a bioinspired controller based on the state-machine. The controller mainly mimics the function of the cerebellum to plan the locomotion and keep the body balance. The haptic sensor and proprioception system are used to detect the trigger of the phase transition. Besides, the vestibular modulation could perceive the pitching angle of the trunk. At last, the cerebellum acts as the CPU to operate the information from the biological sensors. In addition, the calculated results are transmitted to the low-level controller to actuate and stabilize the cheetah bounding. Moreover, the delay feedback control method is employed to plan the motion of the leg joints to stabilize the pitching motion of trunk with the stability criterion. Finally, the cyclic cheetah bounding with biological properties is realized. Meanwhile, the stability and dynamic properties of the cheetah bounding gait are analyzed elaborately.
Lower bound on inconclusive probability of unambiguous discrimination
International Nuclear Information System (INIS)
Feng Yuan; Zhang Shengyu; Duan Runyao; Ying Mingsheng
2002-01-01
We derive a lower bound on the inconclusive probability of unambiguous discrimination among n linearly independent quantum states by using the constraint of no signaling. It improves the bound presented in the paper of Zhang, Feng, Sun, and Ying [Phys. Rev. A 64, 062103 (2001)], and when the optimal discrimination can be reached, these two bounds coincide with each other. An alternative method of constructing an appropriate measurement to prove the lower bound is also presented
A binomial random sum of present value models in investment analysis
Βουδούρη, Αγγελική; Ντζιαχρήστος, Ευάγγελος
1997-01-01
Stochastic present value models have been widely adopted in financial theory and practice and play a very important role in capital budgeting and profit planning. The purpose of this paper is to introduce a binomial random sum of stochastic present value models and offer an application in investment analysis.
Robust Synchronization Models for Presentation System Using SMIL-Driven Approach
Asnawi, Rustam; Ahmad, Wan Fatimah Wan; Rambli, Dayang Rohaya Awang
2013-01-01
Current common Presentation System (PS) models are slide based oriented and lack synchronization analysis either with temporal or spatial constraints. Such models, in fact, tend to lead to synchronization problems, particularly on parallel synchronization with spatial constraints between multimedia element presentations. However, parallel…
Appell, Jürgen; Merentes Díaz, Nelson José
2013-01-01
This monographis a self-contained exposition of the definition and properties of functionsof bounded variation and their various generalizations; the analytical properties of nonlinear composition operators in spaces of such functions; applications to Fourier analysis, nonlinear integral equations, and boundary value problems. The book is written for non-specialists. Every chapter closes with a list of exercises and open problems.
Dynamic bounds coupled with Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Rajabalinejad, M., E-mail: M.Rajabalinejad@tudelft.n [Faculty of Civil Engineering, Delft University of Technology, Delft (Netherlands); Meester, L.E. [Delft Institute of Applied Mathematics, Delft University of Technology, Delft (Netherlands); Gelder, P.H.A.J.M. van; Vrijling, J.K. [Faculty of Civil Engineering, Delft University of Technology, Delft (Netherlands)
2011-02-15
For the reliability analysis of engineering structures a variety of methods is known, of which Monte Carlo (MC) simulation is widely considered to be among the most robust and most generally applicable. To reduce simulation cost of the MC method, variance reduction methods are applied. This paper describes a method to reduce the simulation cost even further, while retaining the accuracy of Monte Carlo, by taking into account widely present monotonicity. For models exhibiting monotonic (decreasing or increasing) behavior, dynamic bounds (DB) are defined, which in a coupled Monte Carlo simulation are updated dynamically, resulting in a failure probability estimate, as well as a strict (non-probabilistic) upper and lower bounds. Accurate results are obtained at a much lower cost than an equivalent ordinary Monte Carlo simulation. In a two-dimensional and a four-dimensional numerical example, the cost reduction factors are 130 and 9, respectively, where the relative error is smaller than 5%. At higher accuracy levels, this factor increases, though this effect is expected to be smaller with increasing dimension. To show the application of DB method to real world problems, it is applied to a complex finite element model of a flood wall in New Orleans.
Generalized bounds for convex multistage stochastic programs
Künzi, H; Fandel, G; Trockel, W; Basile, A; Drexl, A; Dawid, H; Inderfurth, K; Kürsten, W; Schittko, U
2005-01-01
This work was completed during my tenure as a scientific assistant and d- toral student at the Institute for Operations Research at the University of St. Gallen. During that time, I was involved in several industry projects in the field of power management, on the occasion of which I was repeatedly c- fronted with complex decision problems under uncertainty. Although usually hard to solve, I quickly learned to appreciate the benefit of stochastic progr- ming models and developed a strong interest in their theoretical properties. Motivated both by practical questions and theoretical concerns, I became p- ticularly interested in the art of finding tight bounds on the optimal value of a given model. The present work attempts to make a contribution to this important branch of stochastic optimization theory. In particular, it aims at extending some classical bounding methods to broader problem classes of practical relevance. This book was accepted as a doctoral thesis by the University of St. Gallen in June 2004.1...
Energy Technology Data Exchange (ETDEWEB)
Lozes, G. [CEA Saclay, Dir. de l' Energie Nucleaire (DEN/DSOE), 91 - Gif sur Yvette (France)
2007-07-01
The CPR ISMIR is a CEA-CNRS program on the behaviour of materials submitted to irradiation; it has been begun to support the applied current research programs on the aging of nuclear fuels, the storage and incineration matrices and the future reactors. Its aim is to contribute to scientifically set up the methods for anticipating the behaviour of ceramic materials under irradiation in using the important development of calculation means. Thus have been developed the basic knowledge and the interactions physics and calculation models at pertinent scales have been elaborated. (O.M.)
Bounds and Estimates for Transport Coefficients of Random and Porous Media with High Contrasts
International Nuclear Information System (INIS)
Berryman, J G
2004-01-01
Bounds on transport coefficients of random polycrystals of laminates are presented, including the well-known Hashin-Shtrikman bounds and some newly formulated bounds involving two formation factors for a two-component porous medium. Some new types of self-consistent estimates are then formulated based on the observed analytical structure both of these bounds and also of earlier self-consistent estimates (of the CPA or coherent potential approximation type). A numerical study is made, assuming first that the internal structure (i.e., the laminated grain structure) is not known, and then that it is known. The purpose of this aspect of the study is to attempt to quantify the differences in the predictions of properties of a system being modeled when such organized internal structure is present in the medium but detailed spatial correlation information may or (more commonly) may not be available. Some methods of estimating formation factors from data are also presented and then applied to a high-contrast fluid-permeability data set. Hashin-Shtrikman bounds are found to be very accurate estimates for low contrast heterogeneous media. But formation factor lower bounds are superior estimates for high contrast situations. The new self-consistent estimators also tend to agree better with data than either the bounds or the CPA estimates, which themselves tend to overestimate values for high contrast conducting composites
Energy Technology Data Exchange (ETDEWEB)
Bechtle, Philip [Bonn Univ. (Germany). Physikalisches Inst.; Heinemeyer, Sven [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Staal, Oscar [Stockholm Univ. (Sweden). Dept. of Physics; Stefaniak, Tim; Williams, Karina E. [Bonn Univ. (Germany). Physikalisches Inst.; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Brein, Oliver
2013-12-15
We describe the new developments in version 4 of the public computer code HiggsBounds. HiggsBounds is a tool to test models with arbitrary Higgs sectors, containing both neutral and charged Higgs bosons, against the published exclusion bounds from Higgs searches at the LEP, Tevatron and LHC experiments. From the model predictions for the Higgs masses, branching ratios, production cross sections and total decay widths - which are specified by the user in the input for the program - the code calculates the predicted signal rates for the search channels considered in the experimental data. The signal rates are compared to the expected and observed cross section limits from the Higgs searches to determine whether a point in the model parameter space is excluded at 95% confidence level. In this paper we present a modification of the HiggsBounds main algorithm that extends the exclusion test in order to ensure that it provides useful results in the presence of one or more significant excesses in the data, corresponding to potential Higgs signals. We also describe a new method to test whether the limits from an experimental search performed under certain model assumptions can be applied to a different theoretical model. Further developments discussed here include a framework to take into account theoretical uncertainties on the Higgs mass predictions, and the possibility to obtain the {chi}{sup 2} likelihood of Higgs exclusion limits from LEP. Extensions to the user subroutines from earlier versions of HiggsBounds are described. The new features are demonstrated by additional example programs.
International Nuclear Information System (INIS)
Bechtle, Philip; Staal, Oscar; Brein, Oliver
2013-12-01
We describe the new developments in version 4 of the public computer code HiggsBounds. HiggsBounds is a tool to test models with arbitrary Higgs sectors, containing both neutral and charged Higgs bosons, against the published exclusion bounds from Higgs searches at the LEP, Tevatron and LHC experiments. From the model predictions for the Higgs masses, branching ratios, production cross sections and total decay widths - which are specified by the user in the input for the program - the code calculates the predicted signal rates for the search channels considered in the experimental data. The signal rates are compared to the expected and observed cross section limits from the Higgs searches to determine whether a point in the model parameter space is excluded at 95% confidence level. In this paper we present a modification of the HiggsBounds main algorithm that extends the exclusion test in order to ensure that it provides useful results in the presence of one or more significant excesses in the data, corresponding to potential Higgs signals. We also describe a new method to test whether the limits from an experimental search performed under certain model assumptions can be applied to a different theoretical model. Further developments discussed here include a framework to take into account theoretical uncertainties on the Higgs mass predictions, and the possibility to obtain the χ 2 likelihood of Higgs exclusion limits from LEP. Extensions to the user subroutines from earlier versions of HiggsBounds are described. The new features are demonstrated by additional example programs.
Bounds on the capacity of constrained two-dimensional codes
DEFF Research Database (Denmark)
Forchhammer, Søren; Justesen, Jørn
2000-01-01
Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run-l...
Continuous Opinion Dynamics Under Bounded Confidence:. a Survey
Lorenz, Jan
Models of continuous opinion dynamics under bounded confidence have been presented independently by Krause and Hegselmann and by Deffuant et al. in 2000. They have raised a fair amount of attention in the communities of social simulation, sociophysics and complexity science. The researchers working on it come from disciplines such as physics, mathematics, computer science, social psychology and philosophy. In these models agents hold continuous opinions which they can gradually adjust if they hear the opinions of others. The idea of bounded confidence is that agents only interact if they are close in opinion to each other. Usually, the models are analyzed with agent-based simulations in a Monte Carlo style, but they can also be reformulated on the agent's density in the opinion space in a master equation style. The contribution of this survey is fourfold. First, it will present the agent-based and density-based modeling frameworks including the cases of multidimensional opinions and heterogeneous bounds of confidence. Second, it will give the bifurcation diagrams of cluster configuration in the homogeneous model with uniformly distributed initial opinions. Third, it will review the several extensions and the evolving phenomena which have been studied so far, and fourth it will state some open questions.
Sensitivity analysis using probability bounding
International Nuclear Information System (INIS)
Ferson, Scott; Troy Tucker, W.
2006-01-01
Probability bounds analysis (PBA) provides analysts a convenient means to characterize the neighborhood of possible results that would be obtained from plausible alternative inputs in probabilistic calculations. We show the relationship between PBA and the methods of interval analysis and probabilistic uncertainty analysis from which it is jointly derived, and indicate how the method can be used to assess the quality of probabilistic models such as those developed in Monte Carlo simulations for risk analyses. We also illustrate how a sensitivity analysis can be conducted within a PBA by pinching inputs to precise distributions or real values
Mappings from models presenting topological mass mechanisms to purely topological models
International Nuclear Information System (INIS)
Amaral, R.L.P.G.; Costa, J.V.; Bouffon, L.O.; Lemes, V.E.R.
2004-01-01
We discuss a class of mappings between the fields of the Cremmer-Sherk and pure BF model in 4D. These mappings are established both with an interactive procedure as well as with an exact mapping procedure. Related equivalencies in 5D and 3D are discussed. (author)
Mappings From Models Presenting Topological Mass Mechanisms to Purely Topological Models
International Nuclear Information System (INIS)
Amaral, R.L.P.G.; Costa, J.V.; Ventura, O.S.; Bouffon, L.O.; Lemes, V.E.R.
2004-01-01
We discuss a class of mappings between the fields of the Cremmer-Sherk and pure BF model in 4D. These mappings are established both with an iterative procedure as well as with an exact mapping procedure. Related equivalences in 5D and 3D are discussed
Arias, C A; Martín-Martinez, M; Blundell, T L; Arthur, M; Courvalin, P; Reynolds, P E
1999-03-01
Sequence determination of a region downstream from the vanXYc gene in Enterococcus gallinarum BM4174 revealed an open reading frame, designated vanT, that encodes a 698-amino-acid polypeptide with an amino-terminal domain containing 10 predicted transmembrane segments. The protein contained a highly conserved pyridoxal phosphate attachment site in the C-terminal domain, typical of alanine racemases. The protein was overexpressed in Escherichia coli, and serine racemase activity was detected in the membrane but not in the cytoplasmic fraction after centrifugation of sonicated cells, whereas alanine racemase activity was located almost exclusively in the cytoplasm. When the protein was overexpressed as a polypeptide lacking the predicted transmembrane domain, serine racemase activity was detected in the cytoplasm. The serine racemase activity was partially (64%) inhibited by D-cycloserine, whereas host alanine racemase activity was almost totally inhibited (97%). Serine racemase activity was also detected in membrane preparations of constitutively vancomycin-resistant E. gallinarum BM4174 but not in BM4175, in which insertional inactivation of the vanC-1 D-Ala:D-Ser ligase gene probably had a polar effect on expression of the vanXYc and vanT genes. Comparative modelling of the deduced C-terminal domain was based on the alignment of VanT with the Air alanine racemase from Bacillus stearothermophilus. The model revealed that almost all critical amino acids in the active site of Air were conserved in VanT, indicating that the C-terminal domain of VanT is likely to adopt a three-dimensional structure similar to that of Air and that the protein could exist as a dimer. These results indicate that the source of D-serine for peptidoglycan synthesis in vancomycin-resistant enterococci expressing the VanC phenotype involves racemization of L- to D-serine by a membrane-bound serine racemase.
Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model (Presentation)
Energy Technology Data Exchange (ETDEWEB)
Kim, G-.H.; Smith, K.; Pesaran, A.
2009-06-01
This presentation outlines NREL's multi-physics simulation study to characterize an internal short by linking and integrating electrochemical cell, electro-thermal, and abuse reaction kinetics models.
Directory of Open Access Journals (Sweden)
Phung Khanh Lam
Full Text Available To identify risk factors and develop a prediction model for the development of profound and recurrent shock amongst children presenting with dengue shock syndrome (DSS.We analyzed data from a prospective cohort of children with DSS recruited at the Paediatric Intensive Care Unit of the Hospital for Tropical Disease in Ho Chi Minh City, Vietnam. The primary endpoint was "profound DSS", defined as ≥2 recurrent shock episodes (for subjects presenting in compensated shock, or ≥1 recurrent shock episodes (for subjects presenting initially with decompensated/hypotensive shock, and/or requirement for inotropic support. Recurrent shock was evaluated as a secondary endpoint. Risk factors were pre-defined clinical and laboratory variables collected at the time of presentation with shock. Prognostic model development was based on logistic regression and compared to several alternative approaches.The analysis population included 1207 children of whom 222 (18% progressed to "profound DSS" and 433 (36% had recurrent shock. Independent risk factors for both endpoints included younger age, earlier presentation, higher pulse rate, higher temperature, higher haematocrit and, for females, worse hemodynamic status at presentation. The final prognostic model for "profound DSS" showed acceptable discrimination (AUC=0.69 for internal validation and calibration and is presented as a simple score-chart.Several risk factors for development of profound or recurrent shock among children presenting with DSS were identified. The score-chart derived from the prognostic models should improve triage and management of children presenting with DSS in dengue-endemic areas.
Tight Network Topology Dependent Bounds on Rounds of Communication
Chattopadhyay, Arkadev; Langberg, Michael; Li, Shi; Rudra, Atri
2016-01-01
We prove tight network topology dependent bounds on the round complexity of computing well studied $k$-party functions such as set disjointness and element distinctness. Unlike the usual case in the CONGEST model in distributed computing, we fix the function and then vary the underlying network topology. This complements the recent such results on total communication that have received some attention. We also present some applications to distributed graph computation problems. Our main contri...
Space mappings with bounded distortion
Reshetnyak, Yu G
1989-01-01
This book is intended for researchers and students concerned with questions in analysis and function theory. The author provides an exposition of the main results obtained in recent years by Soviet and other mathematicians in the theory of mappings with bounded distortion, an active direction in contemporary mathematics. The mathematical tools presented can be applied to a broad spectrum of problems that go beyond the context of the main topic of investigation. For a number of questions in the theory of partial differential equations and the theory of functions with generalized derivatives, this is the first time they have appeared in an internationally distributed monograph.
Direct bounds on the tau neutrino mass from LEP
International Nuclear Information System (INIS)
Passalacqua, L.
1996-11-01
A review of direct bounds on the mass of the tau neutrino obtained at the LEP collider is presented. In addition to published results it includes preliminary results presented at recent conferences and new results presented at the 1996 Tau Workshop. The different techniques and decay modes employed by the ALEPH, DELPHI and OPAL collaborations are compared. The impact of the theoretical modelling of tau decays is also discussed. The most stringent 95 % CL limit on the tau neutrino mass is now obtained by a preliminary ALEPH analysis which combines the results from τ → 5 π ± (π 0 ) v τ and τ → 3 π ± v τ decays. This bound constraints the mass of the tau neutrino below 18.2 M e V / c 2
Universal bounds on current fluctuations.
Pietzonka, Patrick; Barato, Andre C; Seifert, Udo
2016-05-01
For current fluctuations in nonequilibrium steady states of Markovian processes, we derive four different universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An exponential bound that depends only on the average entropy production and the average number of transitions per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the generating function. Even though our results are restricted to networks with a finite number of states, we show that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which the generating function can be calculated using the additivity principle. Our bounds provide a general class of constraints for nonequilibrium systems.
Tight Bounds for Distributed Functional Monitoring
DEFF Research Database (Denmark)
Woodruff, David P.; Zhang, Qin
2011-01-01
$, our bound resolves their main open question. Our lower bounds are based on new direct sum theorems for approximate majority, and yield significant improvements to problems in the data stream model, improving the bound for estimating $F_p, p > 2,$ in $t$ passes from $\\tilde{\\Omega}(n^{1-2/p}/(\\eps^{2/p......} t))$ to $\\tilde{\\Omega}(n^{1-2/p}/(\\eps^{4/p} t))$, giving the first bound for estimating $F_0$ in $t$ passes of $\\Omega(1/(\\eps^2 t))$ bits of space that does not use the gap-hamming problem, and showing a distribution for the gap-hamming problem with high external information cost or super...
VORONOI DIAGRAMS WITHOUT BOUNDING BOXES
Directory of Open Access Journals (Sweden)
E. T. K. Sang
2015-10-01
Full Text Available We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010 and Nerbonne et al (2011.
Absolute Lower Bound on the Bounce Action
Sato, Ryosuke; Takimoto, Masahiro
2018-03-01
The decay rate of a false vacuum is determined by the minimal action solution of the tunneling field: bounce. In this Letter, we focus on models with scalar fields which have a canonical kinetic term in N (>2 ) dimensional Euclidean space, and derive an absolute lower bound on the bounce action. In the case of four-dimensional space, we show the bounce action is generically larger than 24 /λcr, where λcr≡max [-4 V (ϕ )/|ϕ |4] with the false vacuum being at ϕ =0 and V (0 )=0 . We derive this bound on the bounce action without solving the equation of motion explicitly. Our bound is derived by a quite simple discussion, and it provides useful information even if it is difficult to obtain the explicit form of the bounce solution. Our bound offers a sufficient condition for the stability of a false vacuum, and it is useful as a quick check on the vacuum stability for given models. Our bound can be applied to a broad class of scalar potential with any number of scalar fields. We also discuss a necessary condition for the bounce action taking a value close to this lower bound.
On a unified presentation of the non-equilibrium two-phase flow models
International Nuclear Information System (INIS)
Boure, J.A.
1975-01-01
If the various existing one-dimensional two-phase flow models are consistent, they must appear as particular cases of more general models. It is shown that such is the case if, and only if, the mathematical form of the laws of the transfers between the phases is sufficiently general. These transfer laws control the non-equilibrium phenomena. A convenient general model is a particular form of the two-fluid model. This particular form involves three equations and three dependent variables characterizing the mixture, and three equations and three dependent variables characterizing the differences between the phases (slip, thermal non-equilibriums). The mathematical expressions of the transfert terms present in the above equations involve first-order partial derivatives of the dependent variables. The other existing models may be deduced from the general model by making assumptions on the fluid evolution. Several examples are given. The resulting unified presentation of the existing model enables a comparison of the implicit assumptions made in these models on the transfer laws. It is therefore, a useful tool for the appraisal of the existing models and for the development of new models [fr
Kusev, Petko; van Schaik, Paul; Tsaneva-Atanasova, Krasimira; Juliusson, Asgeir; Chater, Nick
2018-01-01
When attempting to predict future events, people commonly rely on historical data. One psychological characteristic of judgmental forecasting of time series, established by research, is that when people make forecasts from series, they tend to underestimate future values for upward trends and overestimate them for downward ones, so-called trend-damping (modeled by anchoring on, and insufficient adjustment from, the average of recent time series values). Events in a time series can be experienced sequentially (dynamic mode), or they can also be retrospectively viewed simultaneously (static mode), not experienced individually in real time. In one experiment, we studied the influence of presentation mode (dynamic and static) on two sorts of judgment: (a) predictions of the next event (forecast) and (b) estimation of the average value of all the events in the presented series (average estimation). Participants' responses in dynamic mode were anchored on more recent events than in static mode for all types of judgment but with different consequences; hence, dynamic presentation improved prediction accuracy, but not estimation. These results are not anticipated by existing theoretical accounts; we develop and present an agent-based model-the adaptive anchoring model (ADAM)-to account for the difference between processing sequences of dynamically and statically presented stimuli (visually presented data). ADAM captures how variation in presentation mode produces variation in responses (and the accuracy of these responses) in both forecasting and judgment tasks. ADAM's model predictions for the forecasting and judgment tasks fit better with the response data than a linear-regression time series model. Moreover, ADAM outperformed autoregressive-integrated-moving-average (ARIMA) and exponential-smoothing models, while neither of these models accounts for people's responses on the average estimation task. Copyright © 2017 The Authors. Cognitive Science published by Wiley
Present status of theories and data analyses of mathematical models for carcinogenesis
International Nuclear Information System (INIS)
Kai, Michiaki; Kawaguchi, Isao
2007-01-01
Reviewed are the basic mathematical models (hazard functions), present trend of the model studies and that for radiation carcinogenesis. Hazard functions of carcinogenesis are described for multi-stage model and 2-event model related with cell dynamics. At present, the age distribution of cancer mortality is analyzed, relationship between mutation and carcinogenesis is discussed, and models for colorectal carcinogenesis are presented. As for radiation carcinogenesis, models of Armitage-Doll and of generalized MVK (Moolgavkar, Venson, Knudson, 1971-1990) by 2-stage clonal expansion have been applied to analysis of carcinogenesis in A-bomb survivors, workers in uranium mine (Rn exposure) and smoking doctors in UK and other cases, of which characteristics are discussed. In analyses of A-bomb survivors, models above are applied to solid tumors and leukemia to see the effect, if any, of stage, age of exposure, time progression etc. In miners and smokers, stages of the initiation, promotion and progression in carcinogenesis are discussed on the analyses. Others contain the analyses of workers in Canadian atomic power plant, and of patients who underwent the radiation therapy. Model analysis can help to understand the carcinogenic process in a quantitative aspect rather than to describe the process. (R.T.)
Advanced Models and Controls for Prediction and Extension of Battery Lifetime (Presentation)
Energy Technology Data Exchange (ETDEWEB)
Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Pesaran, A.
2014-02-01
Predictive models of capacity and power fade must consider a multiplicity of degradation modes experienced by Li-ion batteries in the automotive environment. Lacking accurate models and tests, lifetime uncertainty must presently be absorbed by overdesign and excess warranty costs. To reduce these costs and extend life, degradation models are under development that predict lifetime more accurately and with less test data. The lifetime models provide engineering feedback for cell, pack and system designs and are being incorporated into real-time control strategies.
Energy Technology Data Exchange (ETDEWEB)
Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States); Shenker, Stephen H. [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA (United States); Stanford, Douglas [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States)
2016-08-17
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent λ{sub L}≤2πk{sub B}T/ℏ. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
General bounds in Hybrid Natural Inflation
Germán, Gabriel; Herrera-Aguilar, Alfredo; Hidalgo, Juan Carlos; Sussman, Roberto A.; Tapia, José
2017-12-01
Recently we have studied in great detail a model of Hybrid Natural Inflation (HNI) by constructing two simple effective field theories. These two versions of the model allow inflationary energy scales as small as the electroweak scale in one of them or as large as the Grand Unification scale in the other, therefore covering the whole range of possible energy scales. In any case the inflationary sector of the model is of the form V(phi)=V0 (1+a cos(phi/f)) where 0waterfall field. One interesting characteristic of this model is that the slow-roll parameter epsilon(phi) is a non-monotonic function of phi presenting a maximum close to the inflection point of the potential. Because the scalar spectrum Script Ps(k) of density fluctuations when written in terms of the potential is inversely proportional to epsilon(phi) we find that Script Ps(k) presents a minimum at phimin. The origin of the HNI potential can be traced to a symmetry breaking phenomenon occurring at some energy scale f which gives rise to a (massless) Goldstone boson. Non-perturbative physics at some temperature Tmodels is not common. We use this property of HNI to determine bounds for the inflationary energy scale Δ and for the tensor-to-scalar ratio r.
The oral case presentation: toward a performance-based rhetorical model for teaching and learning
Directory of Open Access Journals (Sweden)
Mei Yuit Chan
2015-07-01
Full Text Available The oral case presentation is an important communicative activity in the teaching and assessment of students. Despite its importance, not much attention has been paid to providing support for teachers to teach this difficult task to medical students who are novices to this form of communication. As a formalized piece of talk that takes a regularized form and used for a specific communicative goal, the case presentation is regarded as a rhetorical activity and awareness of its rhetorical and linguistic characteristics should be given due consideration in teaching. This paper reviews practitioners’ and the limited research literature that relates to expectations of medical educators about what makes a good case presentation, and explains the rhetorical aspect of the activity. It is found there is currently a lack of a comprehensive model of the case presentation that projects the rhetorical and linguistic skills needed to produce and deliver a good presentation. Attempts to describe the structure of the case presentation have used predominantly opinion-based methodologies. In this paper, I argue for a performance-based model that would not only allow a description of the rhetorical structure of the oral case presentation, but also enable a systematic examination of the tacit genre knowledge that differentiates the expert from the novice. Such a model will be a useful resource for medical educators to provide more structured feedback and teaching support to medical students in learning this important genre.
The oral case presentation: toward a performance-based rhetorical model for teaching and learning
Chan, Mei Yuit
2015-01-01
The oral case presentation is an important communicative activity in the teaching and assessment of students. Despite its importance, not much attention has been paid to providing support for teachers to teach this difficult task to medical students who are novices to this form of communication. As a formalized piece of talk that takes a regularized form and used for a specific communicative goal, the case presentation is regarded as a rhetorical activity and awareness of its rhetorical and linguistic characteristics should be given due consideration in teaching. This paper reviews practitioners’ and the limited research literature that relates to expectations of medical educators about what makes a good case presentation, and explains the rhetorical aspect of the activity. It is found there is currently a lack of a comprehensive model of the case presentation that projects the rhetorical and linguistic skills needed to produce and deliver a good presentation. Attempts to describe the structure of the case presentation have used predominantly opinion-based methodologies. In this paper, I argue for a performance-based model that would not only allow a description of the rhetorical structure of the oral case presentation, but also enable a systematic examination of the tacit genre knowledge that differentiates the expert from the novice. Such a model will be a useful resource for medical educators to provide more structured feedback and teaching support to medical students in learning this important genre. PMID:26194482
Maurya, Mannar R; Arya, Aarti; Kumar, Amit; Kuznetsov, Maxim L; Avecilla, Fernando; Costa Pessoa, João
2010-07-19
The Schiff base (Hfsal-dmen) derived from 3-formylsalicylic acid and N,N-dimethyl ethylenediamine has been covalently bonded to chloromethylated polystyrene to give the polymer-bound ligand, PS-Hfsal-dmen (I). Treatment of PS-Hfsal-dmen with [V(IV)O(acac)(2)] in the presence of MeOH gave the oxidovanadium(IV) complex PS-[V(IV)O(fsal-dmen)(MeO)] (1). On aerial oxidation in methanol, complex 1 was oxidized to PS-[V(V)O(2)(fsal-dmen)] (2). The corresponding neat complexes, [V(IV)O(sal-dmen)(acac)] (3) and [V(V)O(2)(sal-dmen)] (4) were similarly prepared. All these complexes are characterized by various spectroscopic techniques (IR, electronic, NMR, and electron paramagnetic resonance (EPR)) and thermal as well as field-emission scanning electron micrographs (FE-SEM) studies, and the molecular structures of 3 and 4 were determined by single crystal X-ray diffraction. The EPR spectrum of the polymer supported V(IV)O-complex 1 is characteristic of magnetically diluted V(IV)O-complexes, the resolved EPR pattern indicating that the V(IV)O-centers are well dispersed in the polymer matrix. A good (51)V NMR spectrum could also be measured with 4 suspended in dimethyl sulfoxide (DMSO), the chemical shift (-503 ppm) being compatible with a VO(2)(+)-center and a N,O binding set. The catalytic oxidative desulfurization of organosulfur compounds thiophene, dibenzothiophene, benzothiophene, and 2-methyl thiophene (model of fuel diesel) was carried out using complexes 1 and 2. The sulfur in model organosulfur compounds oxidizes to the corresponding sulfone in the presence of H(2)O(2). The systems 1 and 2 do not loose efficiency for sulfoxidation at least up to the third cycle of reaction, this indicating that they preserve their integrity under the conditions used. Plausible intermediates involved in these catalytic processes are established by UV-vis, EPR, (51)V NMR, and density functional theory (DFT) studies, and an outline of the mechanism is proposed. The (51)V NMR spectra
Bounded Rationality of Generalized Abstract Fuzzy Economies
Directory of Open Access Journals (Sweden)
Lei Wang
2014-01-01
Full Text Available By using a nonlinear scalarization technique, the bounded rationality model M for generalized abstract fuzzy economies in finite continuous spaces is established. Furthermore, by using the model M, some new theorems for structural stability and robustness to (λ,ϵ-equilibria of generalized abstract fuzzy economies are proved.
A Forward Reachability Algorithm for Bounded Timed-Arc Petri Nets
DEFF Research Database (Denmark)
David, Alexandre; Jacobsen, Lasse; Jacobsen, Morten
2012-01-01
Timed-arc Petri nets (TAPN) are a well-known time extension of thePetri net model and several translations to networks of timedautomata have been proposed for this model.We present a direct, DBM-basedalgorithm for forward reachability analysis of bounded TAPNs extended with transport arcs...
Troise, Antonio Dario; Wiltafsky, Markus; Fogliano, Vincenzo; Vitaglione, Paola
2018-01-01
The quantification of protein bound Maillard reaction products (MRPs) is still a challenge in food chemistry. Protein hydrolysis is the bottleneck step: it is time consuming and the protein degradation is not always complete. In this study, the quantitation of free amino acids and Amadori products
Modelling of present and future hydrology and solute transport at Forsmark. SR-Site Biosphere
International Nuclear Information System (INIS)
Bosson, Emma; Sassner, Mona; Sabel, Ulrika; Gustafsson, Lars-Goeran
2010-10-01
Radioactive waste from nuclear power plants in Sweden is managed by the Swedish Nuclear Fuel and Waste Management Co, SKB. SKB has performed site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for high-level radioactive waste. In 2009 a decision was made to focus on the Forsmark site. This decision was based on a large amount of empirical evidence suggesting Forsmark to be more suitable for a geological repository /SKB 2010b/. This report presents model results of numerical flow and transport modelling of surface water and near-surface groundwater at the Forsmark site for present and future conditions. Both temperate and periglacial climates have been simulated. Also different locations of the shoreline have been applied to the model, as well as different models of vegetation and Quaternary deposits. The modelling was performed using the modelling tool MIKE SHE and was based on the SDM-Site Forsmark MIKE SHE model (presented by Bosson et al. in SKB report R-08-09). The present work is a part of the biosphere modelling performed for the SR-Site safety assessment. The Forsmark area has a flat, small-scale topography. The study area is almost entirely below 20 m.a.s.l. (metres above sea level). There is a strong correlation between the topography of the ground surface and the ground water level in the Quaternary deposits (QD); thus, the surface water divides and the groundwater divides for the QD can be assumed to coincide. No major water courses flow through the catchment. Small brooks, which often dry out in the summer, connect the different sub-catchments with each other. The main lakes in the area, Lake Bolundsfjaerden, Lake Fiskarfjaerden, Lake Gaellsbotraesket and Lake Eckarfjaerden, all have sizes of less than one km2. The lakes are in general shallow. Approximately 70% of the catchment areas are covered by forest. Agricultural land is only present in
Modelling of present and future hydrology and solute transport at Forsmark. SR-Site Biosphere
Energy Technology Data Exchange (ETDEWEB)
Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stocholm (Sweden)); Sassner, Mona; Sabel, Ulrika; Gustafsson, Lars-Goeran (DHI Sverige AB (Sweden))
2010-10-15
Radioactive waste from nuclear power plants in Sweden is managed by the Swedish Nuclear Fuel and Waste Management Co, SKB. SKB has performed site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for high-level radioactive waste. In 2009 a decision was made to focus on the Forsmark site. This decision was based on a large amount of empirical evidence suggesting Forsmark to be more suitable for a geological repository /SKB 2010b/. This report presents model results of numerical flow and transport modelling of surface water and near-surface groundwater at the Forsmark site for present and future conditions. Both temperate and periglacial climates have been simulated. Also different locations of the shoreline have been applied to the model, as well as different models of vegetation and Quaternary deposits. The modelling was performed using the modelling tool MIKE SHE and was based on the SDM-Site Forsmark MIKE SHE model (presented by Bosson et al. in SKB report R-08-09). The present work is a part of the biosphere modelling performed for the SR-Site safety assessment. The Forsmark area has a flat, small-scale topography. The study area is almost entirely below 20 m.a.s.l. (metres above sea level). There is a strong correlation between the topography of the ground surface and the ground water level in the Quaternary deposits (QD); thus, the surface water divides and the groundwater divides for the QD can be assumed to coincide. No major water courses flow through the catchment. Small brooks, which often dry out in the summer, connect the different sub-catchments with each other. The main lakes in the area, Lake Bolundsfjaerden, Lake Fiskarfjaerden, Lake Gaellsbotraesket and Lake Eckarfjaerden, all have sizes of less than one km2. The lakes are in general shallow. Approximately 70% of the catchment areas are covered by forest. Agricultural land is only present in
Mean field theory of nuclei and shell model. Present status and future outlook
International Nuclear Information System (INIS)
Nakada, Hitoshi
2003-01-01
Many of the recent topics of the nuclear structure are concerned on the problems of unstable nuclei. It has been revealed experimentally that the nuclear halos and the neutron skins as well as the cluster structures or the molecule-like structures can be present in the unstable nuclei, and the magic numbers well established in the stable nuclei disappear occasionally while new ones appear. The shell model based on the mean field approximation has been successfully applied to stable nuclei to explain the nuclear structure as the finite many body system quantitatively and it is considered as the standard model at present. If the unstable nuclei will be understood on the same model basis or not is a matter related to fundamental principle of nuclear structure theories. In this lecture, the fundamental concept and the framework of the theory of nuclear structure based on the mean field theory and the shell model are presented to make clear the problems and to suggest directions for future researches. At first fundamental properties of nuclei are described under the subtitles: saturation and magic numbers, nuclear force and effective interactions, nuclear matter, and LS splitting. Then the mean field theory is presented under subtitles: the potential model, the mean field theory, Hartree-Fock approximation for nuclear matter, density dependent force, semiclassical mean field theory, mean field theory and symmetry, Skyrme interaction and density functional, density matrix expansion, finite range interactions, effective masses, and motion of center of mass. The subsequent section is devoted to the shell model with the subtitles: beyond the mean field approximation, core polarization, effective interaction of shell model, one-particle wave function, nuclear deformation and shell model, and shell model of cross shell. Finally structure of unstable nuclei is discussed with the subtitles: general remark on the study of unstable nuclear structure, asymptotic behavior of wave
Litt, Jonathan S. (Compiler)
2018-01-01
NASA Glenn Research Center hosted a Users' Workshop on the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) on August 21, 2017. The objective of this workshop was to update the user community on the latest features of T-MATS, and to provide a forum to present work performed using T-MATS. Presentations highlighted creative applications and the development of new features and libraries, and emphasized the flexibility and simulation power of T-MATS.
Myznikov, I L; Nabokov, N L; Rogovanov, D Yu; Khankevich, Yu R
2016-01-01
The paper proposes to apply the informational modeling of correlation matrix developed by I.L. Myznikov in early 1990s in neurophysiological investigations, such as electroencephalogram recording and analysis, coherence description of signals from electrodes on the head surface. The authors demonstrate information models built using the data from studies of inert gas inhalation by healthy human subjects. In the opinion of the authors, information models provide an opportunity to describe physiological processes with a high level of generalization. The procedure of presenting the EEG results holds great promise for the broad application.
Proceedings of standard model at the energy of present and future accelerators
International Nuclear Information System (INIS)
Csikor, F.; Pocsik, G.; Toth, E.
1992-01-01
This book contains the proceedings of the Workshop on The Standard Model at the Energy of the Present and Future Accelerators, 27 June - 1 July 1989, Budapest. The Standard Model of strong and electro-weak interactions providing essential insights into the fundamental structure of matter and being the basic building block of further generalizations has a rich content. The Workshop was devoted to discussing topical problems of testing the Standard Model in high energy reactions such as jet physics and fragmentation, new applications and tests of perturbative QCD, CP-violation, B-meson physics and developments in weak decays, some of the future experimental plans and related topics
Genesis and evolution of the Skyrme model from 1954 to the present
International Nuclear Information System (INIS)
Sanyuk, V.I.
1994-01-01
Not widely known facts on the genesis of the Skyrme model are presented in a historical survey, based on Skyrme's earliest papers and on his own published remembrance. We consider the evolution of Skyrme's model description of nuclear matter from the ''Mesonic Fluid'' model up to its final version, known as the baryon model. We pay special tribute to some well-known ideas in contemporary particle physics which one can find in Skyrme's earlier papers, such as: Nuclear Democracy, the Solitonic Mechanism, the Nonlinear Realization of Chiral Symmetry, Topological Charges, Fermi-Bose Transmutation, etc. It is curious to note in the final version of the Skyrme model gleams of Kelvin's ''Vortex Atoms'' theory. In conclusion we make a brief analysis of the validity of Skyrme's conjectures in view of recent results and pinpoint some questions which still remain. (author). 93 refs, 4 figs
Linear regression metamodeling as a tool to summarize and present simulation model results.
Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M
2013-10-01
Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.
International Nuclear Information System (INIS)
Ritchie, Burke
2006-01-01
The Hamiltonian for Dirac's second-order equation depends nonlinearly on the potential V and the energy E. For this reason the magnetic contribution to the Hamiltonian for s-waves, which has a short range, is attractive for a repulsive Coulomb potential (V>0) and repulsive for an attractive Coulomb potential (V 2 . Usually solutions are found in the regime E=mc 2 +ε , where except for high Z, ε 2 . Here it is shown that for V>0 the attractive magnetic term and the linear repulsive term combine to support a bound state near E=0.5mc 2 corresponding to a binding energy E b =-ε =0.5mc 2
Mobile Applications in Cell Biology Present New Approaches for Cell Modelling
de Oliveira, Mayara Lustosa; Galembeck, Eduardo
2016-01-01
Cell biology apps were surveyed in order to identify whether there are new approaches for modelling cells allowed by the new technologies implemented in tablets and smartphones. A total of 97 apps were identified in 3 stores surveyed (Apple, Google Play and Amazon), they are presented as: education 48.4%, games 26.8% and medicine 15.4%. The apps…
Estimation of lower-bound KJc on pressure vessel steels from invalid data
International Nuclear Information System (INIS)
McCable, D.E.; Merkle, J.G.
1996-01-01
Statistical methods are currently being introduced into the transition temperature characterization of ferritic steels. Objective is to replace imprecise correlations between empirical impact test methods and universal K Ic or K Ia lower-bound curves with direct use of material-specific fracture mechanics data. This paper introduces a computational procedure that couples order statistics, weakest-link statistical theory, and a constraint model to arrive at estimates of lower-bound K Jc values. All of the above concepts have been used before to meet various objectives. In the present case, scheme is to make a best estimate of lower-bound fracture toughness when resource K Jc data are too few to use conventional statistical analyses. Utility of the procedure is of greatest value in the middle-to-high toughness part of the transition range where specimen constraint loss and elevated lower-bound toughness interfere with conventional statistical analysis methods
Resignation syndrome: Catatonia? Culture-bound?
Directory of Open Access Journals (Sweden)
Karl eSallin
2016-01-01
Full Text Available Resignation syndrome (RS designates a long-standing disorder predominately affecting psychologically traumatised children and adolescents in the midst of a strenuous and lengthy migration process. Typically a depressive onset is followed by gradual withdrawal progressing via stupor into a state that prompts tube feeding and is characterised by failure to respond even to painful stimuli. The patient is seemingly unconscious. Recovery ensues within months to years and is claimed to be dependent on the restoration of hope to the family.Descriptions of disorders resembling RS can be found in the literature and the condition is unlikely novel. Nevertheless, the magnitude and geographical distribution stand out. Several hundred cases have been reported exclusively in Sweden in the past decade prompting the Swedish National Board of Health and Welfare to recognise RS as a separate diagnostic entity. The currently prevailing stress hypothesis fails to account for the regional distribution and contributes little to treatment. Consequently, a re-evaluation of diagnostics and treatment is required. Psychogenic catatonia is proposed to supply the best fit with the clinical presentation. Treatment response, altered brain metabolism or preserved awareness would support this hypothesis.Epidemiological data suggests culture-bound beliefs and expectations to generate and direct symptom expression and we argue that culture-bound psychogenesis can accommodate the endemic distribution.Last, we review recent models of predictive coding indicating how expectation processes are crucially involved in the placebo and nocebo effect, delusions and conversion disorders. Building on this theoretical framework we propose a neurobiological model of RS in which the impact of overwhelming negative expectations are directly causative of the down-regulation of higher order and lower order behavioural systems in particularly vulnerable individuals.
International Nuclear Information System (INIS)
Layssac, J.; Renard, F.M.; Verzegnassi, C.
1990-06-01
We review the information that is already provided and will be soon provided on the parameters of a new neutral boson of the most general nature from LEP and SLC experiments. We develop a strategy that associates the general independent lepton and quark Z' couplings to precisely defined experiments. For the specific case of particular popular models (E 6 , left-right symmetry, composite Z) that we have analyzed, we predict, in case of negative searches, bounds of typical order one percent for the Z' mixing angle and one TeV for the Z' mass, at the end of the various experimental phases
Mass gathering medicine: a predictive model for patient presentation and transport rates.
Arbon, P; Bridgewater, F H; Smith, C
2001-01-01
This paper reports on research into the influence of environmental factors (including crowd size, temperature, humidity, and venue type) on the number of patients and the patient problems presenting to first-aid services at large, public events in Australia. Regression models were developed to predict rates of patient presentation and of transportation-to-a-hospital for future mass gatherings. To develop a data set and predictive model that can be applied across venues and types of mass gathering events that is not venue or event specific. Data collected will allow informed event planning for future mass gatherings for which health care services are required. Mass gatherings were defined as public events attended by in excess of 25,000 people. Over a period of 12 months, 201 mass gatherings attended by a combined audience in excess of 12 million people were surveyed throughout Australia. The survey was undertaken by St. John Ambulance Australia personnel. The researchers collected data on the incidence and type of patients presenting for treatment and on the environmental factors that may influence these presentations. A standard reporting format and definition of event geography was employed to overcome the event-specific nature of many previous surveys. There are 11,956 patients in the sample. The patient presentation rate across all event types was 0.992/1,000 attendees, and the transportation-to-hospital rate was 0.027/1,000 persons in attendance. The rates of patient presentations declined slightly as crowd sizes increased. The weather (particularly the relative humidity) was related positively to an increase in the rates of presentations. Other factors that influenced the number and type of patients presenting were the mobility of the crowd, the availability of alcohol, the event being enclosed by a boundary, and the number of patient-care personnel on duty. Three regression models were developed to predict presentation rates at future events. Several
KioskAR: An Augmented Reality Game as a New Business Model to Present Artworks
Directory of Open Access Journals (Sweden)
Yoones A. Sekhavat
2016-01-01
Full Text Available This paper presents the architecture of KioskAR, which is a pervasive game implemented using augmented reality (AR. This game introduces a new business model that makes it possible for players to present their artworks in virtual kiosks using augmented reality, while they are having fun playing the game. In addition to competition between the players in the game, this game requires social interaction between players to earn more points. A user study is conducted to evaluate the sense of presence and the usability of the application. The results of experiments show that KioskAR can achieve a high level of usability as well as sense of presence.
Institutional Analysis of Bounded Rationality of the Contemporary Russians
Directory of Open Access Journals (Sweden)
Ivan V. Rozmainsky
2017-12-01
Full Text Available The paper argues that behavior of present-day Russians is inconsistent with standard Neoclassical economics and can be better explained by the synthesis of various branches of Institutionalism and Post Keynesianism. Authors try to show that the present-day Russians are characterized by bounded rationality when they invest in health and financial assets, by fits and starts spend their incomes and cannot predict future levels of these incomes. Sometimes such bounded rationality manifests itself as investor myopia – a phenomenon that describes a situation when people exclude future variables from consideration starting from some threshold point of time. Investor myopia can lead to negative investment in health via smoking and heavy drinking, and also generate non-rational saving behavior. Furthermore, the contemporary Russians behave in the opportunistic manner. In particular, in the course of important examination writing the majority of people prefer to cheat off. Finally, the social pressure modifies the consumptive choice of the present-day Russians; in other words, this choice is not intrinsic. These statements are verified on the base of opinion poll findings by authors in 2016 and 2017. Sample included 521 persons, mainly young people. These data are analyzed by means of econometric – binomial and multinomial logit-models. The results of these studies show that the contemporary Russians are really characterized by bounded rather than perfect rationality. One of the conclusions is that fee-paying educated students are significantly less rational in their saving choice.
3D instantaneous dynamics modeling of present-day Aegean subduction
Glerum, Anne; Spakman, Wim; van Hinsbergen, Douwe; Pranger, Casper
2017-04-01
To study the sensitivity of surface observables to subduction and mantle flow, i.e. the coupling of crustal tectonics and the underlying mantle dynamics, we have developed 3D numerical models of the instantaneous crust-mantle dynamics of the eastern Mediterranean. These models comprise both a realistic crust-lithosphere system and the underlying mantle. The focus for this presentation lies on the regional crustal flow response to the present-day Aegean subduction system. Our curved model domain measures 40°x40°x2900km with the Aegean subduction system taken as the geographic center. Model set-ups are based on geological and geophysical data of the eastern Mediterranean. We first create a 3D synthetic geometry of the crust-lithosphere system in a stand-alone program, including the present-day configuration of the plates in the region and crust and lithosphere thickness variations abstracted from Moho and LAB maps (Faccenna et al., 2014, Carafa et al., 2015). In addition we construct the geometry of the Aegean slab from a seismic tomography model (UU-P07; Amaru, 2007) and earthquake hypocenters (NCEDC, 2014). Geometries are then imported into the finite element code ASPECT (Kronbichler et al., 2012) using specially designed plugins. The mantle initial temperature conditions can include deviations from an adiabatic profile obtained from conversion of the UU-P07 seismic velocity anomalies to temperature anomalies using a depth-dependent scaling (Karato, 2008). We model compressible mantle flow for which material properties are obtained from thermodynamics P-T lookup-tables (Perple_X, Connolly, 2009) in combination with nonlinear viscoplastic rheology laws. Sublithospheric flow through the lateral model boundaries is left free via open boundary conditions (Chertova et al., 2012), while plate motion is prescribed at the model sides in terms of relative as well as absolute plate motion velocities (e.g. Doubrovine et al., 2012). So far, we used a free-slip surface, but
Glesener, G. B.; Vican, L.
2015-12-01
Physical analog models and demonstrations can be effective educational tools for helping instructors teach abstract concepts in the Earth, planetary, and space sciences. Reducing the learning challenges for students using physical analog models and demonstrations, however, can often increase instructors' workload and budget because the cost and time needed to produce and maintain such curriculum materials is substantial. First, this presentation describes a working model for the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC) to support instructors' use of physical analog models and demonstrations in the science classroom. The working model is based on a combination of instructional resource models developed by the Association of College & Research Libraries and by the Physics Instructional Resource Association. The MEDL-CMC aims to make the curriculum materials available for all science courses and outreach programs within the institution where the MEDL-CMC resides. The sustainability and value of the MEDL-CMC comes from its ability to provide and maintain a variety of physical analog models and demonstrations in a wide range of science disciplines. Second, the presentation then reports on the development, progress, and future of the MEDL-CMC at the University of California Los Angeles (UCLA). Development of the UCLA MEDL-CMC was funded by a grant from UCLA's Office of Instructional Development and is supported by the Department of Earth, Planetary, and Space Sciences. Other UCLA science departments have recently shown interest in the UCLA MEDL-CMC services, and therefore, preparations are currently underway to increase our capacity for providing interdepartmental service. The presentation concludes with recommendations and suggestions for other institutions that wish to start their own MEDL-CMC in order to increase educational effectiveness and decrease instructor workload. We welcome an interuniversity collaboration to
Acceptance of Addiction Prevention Exiting Methods and Presentation of Appropriate Model
Directory of Open Access Journals (Sweden)
Ali Asghar Savad-Kouhi
2006-10-01
Full Text Available Objective: The aim of this study is assessment of acceptance of addiction prevention existing methods and design and present of appropriate model. Materials & Methods: This research has done by survey and desariptive method by using questionnaire we assessed knowledge and belief of people about suggesting and existing methods of addiction prevention and their acceptence and finally design new and appropriate model of addiction prevention. For designing questionnaire, first exports and professors were openly interviewed and according their views final questionnaire was planned. We used questionnaire with 2 open ended and 61 close-ended tests for gathering data. The subjects of research were 2500 persons 13-35 years old that were selected by randomized sampling from 15 provinces. Results: The findings showed that according to people who were studied, they have positive beliefs about prevention methods and their effectiveness. According to findings a good model is inclusive model that able to do in four level: knowledge, change believe and attitude, control and change behavior. Conclusion: The people of study belive that acceptance of suggesting and existing methods of addiction prevention are effective direct and indirect to others, and appropriate model is inclusive model.
Bounding approaches to system identification
Norton, John; Piet-Lahanier, Hélène; Walter, Éric
1996-01-01
In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.
Supergravity and upper bound on scale of supersymmetry breaking
International Nuclear Information System (INIS)
Kim, J.E.; Nishino, H.
1983-09-01
In locally supersymmetric grand unified models we show rather a model independent upper bound 3x10 11 GeV for the scale of supersymmetry breaking, which is derived by considering SU(2)xU(1) breaking at electro-weak mass scale. This bound necessarily implies the existence of new particles (superpartners) below 10 4 GeV. (author)
A tool for simulating parallel branch-and-bound methods
Golubeva, Yana; Orlov, Yury; Posypkin, Mikhail
2016-01-01
The Branch-and-Bound method is known as one of the most powerful but very resource consuming global optimization methods. Parallel and distributed computing can efficiently cope with this issue. The major difficulty in parallel B&B method is the need for dynamic load redistribution. Therefore design and study of load balancing algorithms is a separate and very important research topic. This paper presents a tool for simulating parallel Branchand-Bound method. The simulator allows one to run load balancing algorithms with various numbers of processors, sizes of the search tree, the characteristics of the supercomputer's interconnect thereby fostering deep study of load distribution strategies. The process of resolution of the optimization problem by B&B method is replaced by a stochastic branching process. Data exchanges are modeled using the concept of logical time. The user friendly graphical interface to the simulator provides efficient visualization and convenient performance analysis.
A tool for simulating parallel branch-and-bound methods
Directory of Open Access Journals (Sweden)
Golubeva Yana
2016-01-01
Full Text Available The Branch-and-Bound method is known as one of the most powerful but very resource consuming global optimization methods. Parallel and distributed computing can efficiently cope with this issue. The major difficulty in parallel B&B method is the need for dynamic load redistribution. Therefore design and study of load balancing algorithms is a separate and very important research topic. This paper presents a tool for simulating parallel Branchand-Bound method. The simulator allows one to run load balancing algorithms with various numbers of processors, sizes of the search tree, the characteristics of the supercomputer’s interconnect thereby fostering deep study of load distribution strategies. The process of resolution of the optimization problem by B&B method is replaced by a stochastic branching process. Data exchanges are modeled using the concept of logical time. The user friendly graphical interface to the simulator provides efficient visualization and convenient performance analysis.
Twisting, supercoiling and stretching in protein bound DNA
Lam, Pui-Man; Zhen, Yi
2018-04-01
We have calculated theoretical results for the torque and slope of the twisted DNA, with various proteins bound on it, using the Neukirch-Marko model, in the regime where plectonemes exist. We found that the torque in the protein bound DNA decreases compared to that in the bare DNA. This is caused by the decrease in the free energy g(f) , and hence the smaller persistence lengths, in the case of protein bound DNA. We hope our results will encourage experimental investigations of supercoiling in protein bound DNA, which can provide further tests of the Neukirch-Marko model.
International Nuclear Information System (INIS)
Schaap, L.E.J.J.; Bosmans, G.; Van der Graaf, E.R.; Hendriks, Ch.F.
1998-01-01
By means of the so-called radiation performance standard (SPN, abbreviated in Dutch) the total radioactivity from building constructions which contributes to the indoor radiation dose can be calculated. The SPN is implemented with related boundary values and is part of the Building Decree ('Bouwbesluit') in the Netherlands. The model, presented in this book, forms the basis of a new Dutch radiation protection standard, to be published by the Dutch Institute for Standardization NEN (formerly NNI). 14 refs
Modeling nonstationary extreme wave heights in present and future climates of Greek Seas
Directory of Open Access Journals (Sweden)
Panagiota Galiatsatou
2016-01-01
Full Text Available In this study the generalized extreme value (GEV distribution function was used to assess nonstationarity in annual maximum wave heights for selected locations in the Greek Seas, both in the present and future climates. The available significant wave height data were divided into groups corresponding to the present period (1951–2000, a first future period (2001–2050, and a second future period (2051–2100. For each time period, the parameters of the GEV distribution were specified as functions of time-varying covariates and estimated using the conditional density network (CDN. For each location and selected time period, a total number of 29 linear and nonlinear models were fitted to the wave data, for a given combination of covariates. The covariates used in the GEV-CDN models consisted of wind fields resulting from the Regional Climate Model version 3 (RegCM3 developed by the International Center for Theoretical Physics (ICTP with a spatial resolution of 10 km × 10 km, after being processed using principal component analysis (PCA. The results obtained from the best fitted models in the present and future periods for each location were compared, revealing different patterns of relationships between wind components and extreme wave height quantiles in different parts of the Greek Seas and different periods. The analysis demonstrates an increase of extreme wave heights in the first future period as compared with the present period, causing a significant threat to Greek coastal areas in the North Aegean Sea and the Ionian Sea.
Simulation of the present-day climate with the climate model INMCM5
Volodin, E. M.; Mortikov, E. V.; Kostrykin, S. V.; Galin, V. Ya.; Lykossov, V. N.; Gritsun, A. S.; Diansky, N. A.; Gusev, A. V.; Iakovlev, N. G.
2017-12-01
In this paper we present the fifth generation of the INMCM climate model that is being developed at the Institute of Numerical Mathematics of the Russian Academy of Sciences (INMCM5). The most important changes with respect to the previous version (INMCM4) were made in the atmospheric component of the model. Its vertical resolution was increased to resolve the upper stratosphere and the lower mesosphere. A more sophisticated parameterization of condensation and cloudiness formation was introduced as well. An aerosol module was incorporated into the model. The upgraded oceanic component has a modified dynamical core optimized for better implementation on parallel computers and has two times higher resolution in both horizontal directions. Analysis of the present-day climatology of the INMCM5 (based on the data of historical run for 1979-2005) shows moderate improvements in reproduction of basic circulation characteristics with respect to the previous version. Biases in the near-surface temperature and precipitation are slightly reduced compared with INMCM4 as well as biases in oceanic temperature, salinity and sea surface height. The most notable improvement over INMCM4 is the capability of the new model to reproduce the equatorial stratospheric quasi-biannual oscillation and statistics of sudden stratospheric warmings.
Meredith, Pamela; Ownsworth, Tamara; Strong, Jenny
2008-03-01
It is now well established that pain is a multidimensional phenomenon, affected by a gamut of psychosocial and biological variables. According to diathesis-stress models of chronic pain, some individuals are more vulnerable to developing disability following acute pain because they possess particular psychosocial vulnerabilities which interact with physical pathology to impact negatively upon outcome. Attachment theory, a theory of social and personality development, has been proposed as a comprehensive developmental model of pain, implicating individual adult attachment pattern in the ontogenesis and maintenance of chronic pain. The present paper reviews and critically appraises studies which link adult attachment theory with chronic pain. Together, these papers offer support for the role of insecure attachment as a diathesis (or vulnerability) for problematic adjustment to pain. The Attachment-Diathesis Model of Chronic Pain developed from this body of literature, combines adult attachment theory with the diathesis-stress approach to chronic pain. The evidence presented in this review, and the associated model, advances our understanding of the developmental origins of chronic pain conditions, with potential application in guiding early pain intervention and prevention efforts, as well as tailoring interventions to suit specific patient needs.
Exact BPS bound for noncommutative baby Skyrmions
International Nuclear Information System (INIS)
Domrin, Andrei; Lechtenfeld, Olaf; Linares, Román; Maceda, Marco
2013-01-01
The noncommutative baby Skyrme model is a Moyal deformation of the two-dimensional sigma model plus a Skyrme term, with a group-valued or Grassmannian target. Exact abelian solitonic solutions have been identified analytically in this model, with a singular commutative limit. Inside any given Grassmannian, we establish a BPS bound for the energy functional, which is saturated by these baby Skyrmions. This asserts their stability for unit charge, as we also test in second-order perturbation theory
Efficiency gains, bounds, and risk in finance
Sarisoy, Cisil
2015-01-01
This thesis consists of three chapters. The first chapter analyzes efficiency gains in the estimation of expected returns based on asset pricing models and examines the economic implications of such gains in portfolio allocation exercises. The second chapter provides nonparametric efficiency bounds
Quivers of Bound Path Algebras and Bound Path Coalgebras
Directory of Open Access Journals (Sweden)
Dr. Intan Muchtadi
2010-09-01
Full Text Available bras and coalgebras can be represented as quiver (directed graph, and from quiver we can construct algebras and coalgebras called path algebras and path coalgebras. In this paper we show that the quiver of a bound path coalgebra (resp. algebra is the dual quiver of its bound path algebra (resp. coalgebra.
A note on BPS vortex bound states
Directory of Open Access Journals (Sweden)
A. Alonso-Izquierdo
2016-02-01
Full Text Available In this note we investigate bound states, where scalar and vector bosons are trapped by BPS vortices in the Abelian Higgs model with a critical ratio of the couplings. A class of internal modes of fluctuation around cylindrically symmetric BPS vortices is characterized mathematically, analyzing the spectrum of the second-order fluctuation operator when the Higgs and vector boson masses are equal. A few of these bound states with low values of quantized magnetic flux are described fully, and their main properties are discussed.
A note on BPS vortex bound states
Energy Technology Data Exchange (ETDEWEB)
Alonso-Izquierdo, A., E-mail: alonsoiz@usal.es [Departamento de Matematica Aplicada, Universidad de Salamanca (Spain); Garcia Fuertes, W., E-mail: wifredo@uniovi.es [Departamento de Fisica, Universidad de Oviedo (Spain); Mateos Guilarte, J., E-mail: guilarte@usal.es [Departamento de Fisica Fundamental, Universidad de Salamanca (Spain)
2016-02-10
In this note we investigate bound states, where scalar and vector bosons are trapped by BPS vortices in the Abelian Higgs model with a critical ratio of the couplings. A class of internal modes of fluctuation around cylindrically symmetric BPS vortices is characterized mathematically, analyzing the spectrum of the second-order fluctuation operator when the Higgs and vector boson masses are equal. A few of these bound states with low values of quantized magnetic flux are described fully, and their main properties are discussed.
The covariant entropy bound in gravitational collapse
International Nuclear Information System (INIS)
Gao, Sijie; Lemos, Jose P. S.
2004-01-01
We study the covariant entropy bound in the context of gravitational collapse. First, we discuss critically the heuristic arguments advanced by Bousso. Then we solve the problem through an exact model: a Tolman-Bondi dust shell collapsing into a Schwarzschild black hole. After the collapse, a new black hole with a larger mass is formed. The horizon, L, of the old black hole then terminates at the singularity. We show that the entropy crossing L does not exceed a quarter of the area of the old horizon. Therefore, the covariant entropy bound is satisfied in this process. (author)
Bound states in curved quantum waveguides
International Nuclear Information System (INIS)
Exner, P.; Seba, P.
1987-01-01
We study free quantum particle living on a curved planar strip Ω of a fixed width d with Dirichlet boundary conditions. It can serve as a model for electrons in thin films on a cylindrical-type substrate, or in a curved quantum wire. Assuming that the boundary of Ω is infinitely smooth and its curvature decays fast enough at infinity, we prove that a bound state with energy below the first transversal mode exists for all sufficiently small d. A lower bound on the critical width is obtained using the Birman-Schwinger technique. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Sverjensky, D A [The John Hopkins Univ, Dept of Earth and Planetary Sciences, Baltimore (United States)
1993-12-31
The main purpose of this report is to summarize geochemical modeling studies of the present-day Koongarra groundwaters. Information on the present-day geochemistry and geochemical processes at Koongarra forms a basis for a present-day analogue for nuclear waste migration. The present-day analogue is built on studies of the mineralogy and petrology of the Koongarra deposit, and chemical analyses of present-day groundwaters from the deposit. The overall approach taken in the present study has been to carry out a series of aqueous speciation and state of saturation calculations, including chemical mass transfer calculations, to address the possible control over the chemistry of the present-day for the groundwaters at Koongarra. The most important implication of the present study for the migration of radionuclides is the strong role played by the water-rock interactions, both above and below the water table, influencing the overall chemical evolution of the groundwaters. Thus, the results show that the chemical evolution of waters is strongly controlled by the initial availability of CO{sub 2} and the mineral assemblage encountered, which together determine the major element evolution of the waters by controlling the pH. The relative rates of evolution of the pH and the oxidation state of the groundwaters are also critical to the mobility of uranium. The shallow Koongarra waters are sufficiently oxidising that they can dissolve and transport uranium even under acidic conditions. Under the more reducing condition of the deep groundwaters, is the pH level that permits uranium transport as carbonate complexes. However, if the oxidation state decreases to much lower levels, it would be expected that uranium become immobile. All the speciation and state of saturation calculations carried out in the present study are available from the author, on request 22 refs., 7 tabs., 18 figs.
Energy Technology Data Exchange (ETDEWEB)
Sverjensky, D. A. [The John Hopkins Univ, Dept of Earth and Planetary Sciences, Baltimore (United States)
1992-12-31
The main purpose of this report is to summarize geochemical modeling studies of the present-day Koongarra groundwaters. Information on the present-day geochemistry and geochemical processes at Koongarra forms a basis for a present-day analogue for nuclear waste migration. The present-day analogue is built on studies of the mineralogy and petrology of the Koongarra deposit, and chemical analyses of present-day groundwaters from the deposit. The overall approach taken in the present study has been to carry out a series of aqueous speciation and state of saturation calculations, including chemical mass transfer calculations, to address the possible control over the chemistry of the present-day for the groundwaters at Koongarra. The most important implication of the present study for the migration of radionuclides is the strong role played by the water-rock interactions, both above and below the water table, influencing the overall chemical evolution of the groundwaters. Thus, the results show that the chemical evolution of waters is strongly controlled by the initial availability of CO{sub 2} and the mineral assemblage encountered, which together determine the major element evolution of the waters by controlling the pH. The relative rates of evolution of the pH and the oxidation state of the groundwaters are also critical to the mobility of uranium. The shallow Koongarra waters are sufficiently oxidising that they can dissolve and transport uranium even under acidic conditions. Under the more reducing condition of the deep groundwaters, is the pH level that permits uranium transport as carbonate complexes. However, if the oxidation state decreases to much lower levels, it would be expected that uranium become immobile. All the speciation and state of saturation calculations carried out in the present study are available from the author, on request 22 refs., 7 tabs., 18 figs.
Draper, Martin; Usera, Gabriel
2015-04-01
The Scale Dependent Dynamic Model (SDDM) has been widely validated in large-eddy simulations using pseudo-spectral codes [1][2][3]. The scale dependency, particularly the potential law, has been proved also in a priori studies [4][5]. To the authors' knowledge there have been only few attempts to use the SDDM in finite difference (FD) and finite volume (FV) codes [6][7], finding some improvements with the dynamic procedures (scale independent or scale dependent approach), but not showing the behavior of the scale-dependence parameter when using the SDDM. The aim of the present paper is to evaluate the SDDM in the open source code caffa3d.MBRi, an updated version of the code presented in [8]. caffa3d.MBRi is a FV code, second-order accurate, parallelized with MPI, in which the domain is divided in unstructured blocks of structured grids. To accomplish this, 2 cases are considered: flow between flat plates and flow over a rough surface with the presence of a model wind turbine, taking for this case the experimental data presented in [9]. In both cases the standard Smagorinsky Model (SM), the Scale Independent Dynamic Model (SIDM) and the SDDM are tested. As presented in [6][7] slight improvements are obtained with the SDDM. Nevertheless, the behavior of the scale-dependence parameter supports the generalization of the dynamic procedure proposed in the SDDM, particularly taking into account that no explicit filter is used (the implicit filter is unknown). [1] F. Porté-Agel, C. Meneveau, M.B. Parlange. "A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer". Journal of Fluid Mechanics, 2000, 415, 261-284. [2] E. Bou-Zeid, C. Meneveau, M. Parlante. "A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows". Physics of Fluids, 2005, 17, 025105 (18p). [3] R. Stoll, F. Porté-Agel. "Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of
Structure and dynamics of weakly bound complexes
International Nuclear Information System (INIS)
Skouteris, D.
1998-01-01
The present thesis deals with the spectroscopic and theoretical investigation of weakly bound complexes involving a methane molecule. Studies of these Van der Waals complexes can give valuable information on the relevant intermolecular dynamics and promote the understanding of the interactions between molecules (which can ultimately lead to chemical reactions). Especially interesting are complexes involving molecules of high symmetry (e.g. tetrahedral, such as methane) because of the unusual effects arising from it (selection rules, nuclear Spin statistical weights etc.). The infrared spectrum of the Van der Waals complex between a CH 4 and a N 2 O molecule has been recorded and most of it has been assigned in the region of the N - O stretch (approximately 2225.0 cm -1 ). Despite the fact that this is really a weakly bound complex, it is nevertheless rigid enough so that the standard model for asymmetric top spectra can be applied to it with the usual quantum numbers. From the value of the inertial defect, it turns out that the methane unit is locked in a rigid configuration within the complex rather than freely rotating. The intermolecular distance as well as the tilting angle of the N 2 O linear unit are determined from the rotational constants. The complex itself turns out to have a T - shaped configuration. The infrared spectrum of the Ar - CH 4 complex at the ν 4 (bending) band of methane is also assigned. This is different from the previous one in that the methane unit rotates almost freely Within the complex. As a result, the quantum numbers used to classify rovibrational energy levels include these of the free unit. The concept of 'overall symmetry' is made use of to rationalise selection rules in various sub-bands of the spectrum. Moreover, new terms in the potential anisotropy Hamiltonian are calculated through the use of the overall symmetry concept. These are termed 'mixed anisotropy' terms since they involve both rotational and vibrational degrees of
Lying for the Greater Good: Bounded Rationality in a Team
Oktay Sürücü
2014-01-01
This paper is concerned with the interaction between fully and boundedly rational agents in situations where their interests are perfectly aligned. The cognitive limitations of the boundedly rational agent do not allow him to fully understand the market conditions and lead him to take non-optimal decisions in some situations. Using categorization to model bounded rationality, we show that the fully rational agent can nudge, i.e., he can manipulate the information he sends and decrease the exp...
Finding Maximal Pairs with Bounded Gap
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Lyngsø, Rune B.; Pedersen, Christian N. S.
1999-01-01
. In this paper we present methods for finding all maximal pairs under various constraints on the gap. In a string of length n we can find all maximal pairs with gap in an upper and lower bounded interval in time O(n log n+z) where z is the number of reported pairs. If the upper bound is removed the time reduces...... to O(n+z). Since a tandem repeat is a pair where the gap is zero, our methods can be seen as a generalization of finding tandem repeats. The running time of our methods equals the running time of well known methods for finding tandem repeats....
Rigorous upper bounds for transport due to passive advection by inhomogeneous turbulence
International Nuclear Information System (INIS)
Krommes, J.A.; Smith, R.A.
1987-05-01
A variational procedure, due originally to Howard and explored by Busse and others for self-consistent turbulence problems, is employed to determine rigorous upper bounds for the advection of a passive scalar through an inhomogeneous turbulent slab with arbitrary generalized Reynolds number R and Kubo number K. In the basic version of the method, the steady-state energy balance is used as a constraint; the resulting bound, though rigorous, is independent of K. A pedagogical reference model (one dimension, K = ∞) is described in detail; the bound compares favorably with the exact solution. The direct-interaction approximation is also worked out for this model; it is somewhat more accurate than the bound, but requires considerably more labor to solve. For the basic bound, a general formalism is presented for several dimensions, finite correlation length, and reasonably general boundary conditions. Part of the general method, in which a Green's function technique is employed, applies to self-consistent as well as to passive problems, and thereby generalizes previous results in the fluid literature. The formalism is extended for the first time to include time-dependent constraints, and a bound is deduced which explicitly depends on K and has the correct physical scalings in all regimes of R and K. Two applications from the theory of turbulent plasmas ae described: flux in velocity space, and test particle transport in stochastic magnetic fields. For the velocity space problem the simplest bound reproduces Dupree's original scaling for the strong turbulence diffusion coefficient. For the case of stochastic magnetic fields, the scaling of the bounds is described for the magnetic diffusion coefficient as well as for the particle diffusion coefficient in the so-called collisionless, fluid, and double-streaming regimes
Yukawa Bound States and Their LHC Phenomenology
Directory of Open Access Journals (Sweden)
Enkhbat Tsedenbaljir
2013-01-01
Full Text Available We present the current status on the possible bound states of extra generation quarks. These include phenomenology and search strategy at the LHC. If chiral fourth-generation quarks do exist their strong Yukawa couplings, implied by current experimental lower bound on their masses, may lead to formation of bound states. Due to nearly degenerate 4G masses suggested by Precision Electroweak Test one can employ “heavy isospin” symmetry to classify possible spectrum. Among these states, the color-octet isosinglet vector ω 8 is the easiest to be produced at the LHC. The discovery potential and corresponding decay channels are covered in this paper. With possible light Higgs at ~125 GeV two-Higgs doublet version is briefly discussed.
Cosmological implications of Dark Matter bound states
Energy Technology Data Exchange (ETDEWEB)
Mitridate, Andrea [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa (Italy); Redi, Michele; Smirnov, Juri [INFN, Sezione di Firenze, and Dipartimento di Fisica e Astronomia, Università di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Strumia, Alessandro, E-mail: andrea.mitridate@gmail.com, E-mail: michele.redi@fi.infn.it, E-mail: juri.smirnov@mpi-hd.mpg.de, E-mail: alessandro.strumia@cern.ch [Dipartimento di Fisica dell' Università di Pisa and INFN, Pisa (Italy)
2017-05-01
We present generic formulæ for computing how Sommerfeld corrections together with bound-state formation affects the thermal abundance of Dark Matter with non-abelian gauge interactions. We consider DM as a fermion 3plet (wino) or 5plet under SU(2) {sub L} . In the latter case bound states raise to 11.5 TeV the DM mass required to reproduce the cosmological DM abundance and give indirect detection signals such as (for this mass) a dominant γ-line around 70 GeV. Furthermore, we consider DM co-annihilating with a colored particle, such as a squark or a gluino, finding that bound state effects are especially relevant in the latter case.
Recent results on fusion and direct reactions with weakly bound stable nuclei
International Nuclear Information System (INIS)
Shrivastava, A.
2011-01-01
Recent measurements of fusion and direct reactions in case of weakly bound stable nuclei at extreme sub-barrier energies using a sensitive off beam technique are presented. First section deals with deep sub-barrier fusion cross-section measurement for 67 Li + 198 Pt followed by the study of fragment capture reaction of 7 Li + 198 Pt. Deviation in the slope of the fusion excitation function, as observed in case of medium heavy systems, is absent in the present asymmetric systems at these low energies. This study shows the absence of fusion hindrance, suggesting modifications in models that explain deep sub-barrier fusion data to incorporate weakly bound asymmetric systems
Bounds for Asian basket options
Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle
2008-09-01
In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.
Product differentiation under bounded rationality
Vermeulen, B.; Poutré, La J.A.; Kok, de A.G.; Pyka, A.; Handa, H.; Ishibuchi, H.; Ong, Y.-S.; Tan, K.-C.
2015-01-01
We study product differentiation equilibria and dynamics on the Salop circle under bounded rationality. Due to bounded rationality, firms tend to agglomerate in pairs. Upon adding a second tier of component suppliers, downstream assemblers may escape pairwise horizontal agglomeration. Moreover, we
Barth, Timothy J.
2014-01-01
This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.
Woo, Jung-Hun; Jung, Bujeon; Choi, Ki-Chul; Seo, Ji-Hyun; Kim, Tae Hyung; Park, Rokjin J.; Youn, Daeok; Jeong, Jaein; Moon, Byung-Kwon; Yeh, Sang-Wook
2010-05-01
Climate change will also affect future regional air quality which has potential human health, ecosystem, and economic implications. To analyze the impacts of climate change on Asian air quality, the NIER (National Institute of Environmental Research, Korea) integrated modeling framework was developed based on global-to-regional climate and atmospheric chemistry models. In this study, we developed emission inventories for the modeling framework for 1980~2100 with an emphasis on Asia emissions. Two emission processing systems which have functions of emission projection, spatial/temporal allocation, and chemical speciation have been also developed in support of atmospheric chemistry models including GEOS-Chem and Models-3/CMAQ. Asia-based emission estimates, projection factors, temporal allocation parameters were combined to improve regional modeling capability of past, present and future air quality over Asia. The global CO emissions show a 23% decrease from the years 1980 to 2000. For the future CO (from year 2000 to 2100), the A2 scenario shows a 95% increase due to the B40 (Residential-Biofuel) sector of Western Africa, Eastern Africa and East Asia and the F51 (Transport Road-Fossil fuel) sector of Middle East, USA and South Asia. The B1 scenario, however, shows a 79% decrease of emissions due to B40 and F51 sectors of East Asia, South Asia and USA for the same period. In many cases, Asian emissions play important roles for global emission increase or decrease depending on the IPCC scenarios considered. The regional ozone forming potential will be changed due to different VOC/NOx emission ratio changes in the future. More similarities and differences of Asian emission characteristics, in comparison with its global counterpart, are investigated.
The Relationship between Spiritual Health and other Dimensions of Health: Presentation of a Model
Directory of Open Access Journals (Sweden)
Akram Heidari
2016-06-01
Full Text Available Attitudes to humankind will have different effects on health service delivery. Health might used to be intended to provide physical health in the past; today, however, many researchers and clinicians consider the concept health to be beyond physical health. In support of this claim, it is enough to indicate that the bio-psycho-social model has for years been held by scientific communities to be a fully admitted model. However, the missing ring in this model, as suggested by many, is the spiritual health. In recent years, the relationship between spirituality and clinical interventions with a comprehensive focus on health has been under increasing scrutiny. Although different models have been presented for investigation of the relationship between spiritual health and other dimensions, the fundamental challenge in this regard is the actual place of spiritual health compared with other dimensions. In this article, attempts are made to address the position and weight of spiritual health from the Islam’s point of view.
Ramella-Roman, Jessica C.; Stoff, Susan; Chue-Sang, Joseph; Bai, Yuqiang
2016-03-01
The extra-cellular space in connective tissue of animals and humans alike is comprised in large part of collagen. Monitoring of collagen arrangement and cross-linking has been utilized to diagnose a variety of medical conditions and guide surgical intervention. For example, collagen monitoring is useful in the assessment and treatment of cervical cancer, skin cancer, myocardial infarction, and non-arteritic anterior ischemic optic neuropathy. We have developed a suite of tools and models based on polarized light transfer for the assessment of collagen presence, cross-linking, and orientation in living tissue. Here we will present some example of such approach applied to the human cervix. We will illustrate a novel Mueller Matrix (MM) imaging system for the study of cervical tissue; furthermore we will show how our model of polarized light transfer through cervical tissue compares to the experimental findings. Finally we will show validation of the methodology through histological results and Second Harmonic imaging microscopy.
Upper bounds on minimum cardinality of exact and approximate reducts
Chikalov, Igor
2010-01-01
In the paper, we consider the notions of exact and approximate decision reducts for binary decision tables. We present upper bounds on minimum cardinality of exact and approximate reducts depending on the number of rows (objects) in the decision table. We show that the bound for exact reducts is unimprovable in the general case, and the bound for approximate reducts is almost unimprovable in the general case. © 2010 Springer-Verlag Berlin Heidelberg.
Entropic Lower Bound for Distinguishability of Quantum States
Directory of Open Access Journals (Sweden)
Seungho Yang
2015-01-01
Full Text Available For a system randomly prepared in a number of quantum states, we present a lower bound for the distinguishability of the quantum states, that is, the success probability of determining the states in the form of entropy. When the states are all pure, acquiring the entropic lower bound requires only the density operator and the number of the possible states. This entropic bound shows a relation between the von Neumann entropy and the distinguishability.
Troise, Antonio Dario; Wiltafsky, Markus; Fogliano, Vincenzo; Vitaglione, Paola
2018-05-01
The quantification of protein bound Maillard reaction products (MRPs) is still a challenge in food chemistry. Protein hydrolysis is the bottleneck step: it is time consuming and the protein degradation is not always complete. In this study, the quantitation of free amino acids and Amadori products (APs) was compared to the percentage of blocked lysine by using chemometric tools. Eighty thermally treated soybean samples were analyzed by mass spectrometry to measure the concentration of free amino acids, free APs and the protein-bound markers of the Maillard reaction (furosine, Nε-(carboxymethyl)-l-lysine, Nε-(carboxyethyl)-l-lysine, total lysine). Results demonstrated that Discriminant Analysis (DA) and Correlated Component Regression (CCR) correctly estimated the percent of blocked lysine in a validation and prediction set. These findings indicate that the measure of free markers reflects the extent of protein damage in soybean samples and it suggests the possibility to obtain rapid information on the quality of the industrial processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bounded excursion stable gravastars and black holes
Energy Technology Data Exchange (ETDEWEB)
Rocha, P [Instituto de Fisica, Universidade Federal Fluminense, Avenida Litoranea, s/n, Boa Viagem 24210-340, Niteroi, RJ (Brazil); Miguelote, A Y; Chan, R [Coordenacao de Astronomia e Astrofisica, Observatorio Nacional, Rua General Jose Cristino, 77, Sao Cristovao 20921-400, Rio de Janeiro, RJ (Brazil); Da Silva, M F; Wang, Anzhong [Departamento de Fisica Teorica, Instituto de Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana 20550-900, Rio de Janeiro-RJ (Brazil); Santos, N O, E-mail: pedrosennarocha@gmail.com, E-mail: yasuda@on.br, E-mail: chan@on.br, E-mail: mfasnic@gmail.com, E-mail: N.O.Santos@qmul.ac.uk, E-mail: anzhong_wang@baylor.edu [LERMA/CNRS-FRE 2460, Universite Pierre et Marie Curie, ERGA, Boite 142, 4 Place Jussieu, 75005 Paris Cedex 05 (France)
2008-06-15
Dynamical models of prototype gravastars were constructed in order to study their stability. The models are the Visser-Wiltshire three-layer gravastars, in which an infinitely thin spherical shell of stiff fluid divides the whole spacetime into two regions, where the internal region is de Sitter, and the external one is Schwarzschild. It is found that in some cases the models represent the 'bounded excursion' stable gravastars, where the thin shell is oscillating between two finite radii, while in other cases they collapse until the formation of black holes occurs. In the phase space, the region for the 'bounded excursion' gravastars is very small in comparison to that of black holes, but not empty. Therefore, although the possibility of the existence of gravastars cannot be excluded from such dynamical models, our results indicate that, even if gravastars do indeed exist, that does not exclude the possibility of the existence of black holes.
Directory of Open Access Journals (Sweden)
Asma Foughali
2015-07-01
Full Text Available This work aims to evaluate the performance of a hydrological balance model in a watershed located in northern Tunisia (wadi Sejnane, 378 km2 in present climate conditions using input variables provided by four regional climate models. A modified version (MBBH of the lumped and single layer surface model BBH (Bucket with Bottom Hole model, in which pedo-transfer parameters estimated using watershed physiographic characteristics are introduced is adopted to simulate the water balance components. Only two parameters representing respectively the water retention capacity of the soil and the vegetation resistance to evapotranspiration are calibrated using rainfall-runoff data. The evaluation criterions for the MBBH model calibration are: relative bias, mean square error and the ratio of mean actual evapotranspiration to mean potential evapotranspiration. Daily air temperature, rainfall and runoff observations are available from 1960 to 1984. The period 1960–1971 is selected for calibration while the period 1972–1984 is chosen for validation. Air temperature and precipitation series are provided by four regional climate models (DMI, ARP, SMH and ICT from the European program ENSEMBLES, forced by two global climate models (GCM: ECHAM and ARPEGE. The regional climate model outputs (precipitation and air temperature are compared to the observations in terms of statistical distribution. The analysis was performed at the seasonal scale for precipitation. We found out that RCM precipitation must be corrected before being introduced as MBBH inputs. Thus, a non-parametric quantile-quantile bias correction method together with a dry day correction is employed. Finally, simulated runoff generated using corrected precipitation from the regional climate model SMH is found the most acceptable by comparison with runoff simulated using observed precipitation data, to reproduce the temporal variability of mean monthly runoff. The SMH model is the most accurate to
Presenting the students’ academic achievement causal model based on goal orientation
Directory of Open Access Journals (Sweden)
EBRAHIM NASIRI
2017-10-01
Full Text Available Introduction: Several factors play a role in academic achievement, individual’s excellence and capability to do actions and tasks that the learner is in charge of in learning areas. The main goal of this study was to present academic achievement causal model based on the dimensions of goal orientation and learning approaches among the students of Medical Science and Dentistry courses in Guilan University of Medical Sciences in 2013. Methods: This study is based on a cross-sectional model. The participants included 175 first and second year students of the Medical and Dentistry schools in Guilan University of Medical Sciences selected by random cluster sampling [121 persons (69% Medical Basic Science students and 54 (30.9% Dentistry students]. The measurement tool included the Goal Orientation Scale of Bouffard and Study Process Questionnaire of Biggs and the students’ Grade Point Average. The study data were analyzed using Pearson correlation coefficient and structural equations modeling. SPSS 14 and Amos were used to analyze the data. Results: The results indicated a significant relationship between goal orientation and learning strategies (P<0.05. In addition, the results revealed that a significant relationship exists between learning strategies [Deep Learning (r=0.37, P<0.05, Surface Learning (r=-0.21, P<0.05], and academic achievement. The suggested model of research is fitted to the data of the research. Conclusion: Results showed that the students’ academic achievement model fits with experimental data, so it can be used in learning principles which lead to students’ achievement in learning.
Presenting a conceptual model of data collection to manage the groundwater quality
Directory of Open Access Journals (Sweden)
Nourbakhsh Zahra
2017-12-01
Full Text Available A conceptual model was proposed in the present study, which highlighted important independent and dependent variables in order to managing the groundwater quality. Furthermore, the methods of selection of variable and collection of related data were explained. The study was carried out in the Tajan Plain, north of Iran; 50 drinking wells were considered as sampling points. In this model the Analytical Hierarchy Process (AHP was proposed to select the indicator water quality parameters. According to expert opinions and characteristics of the study area ten factors were chosen as variables influencing the quality of groundwater (land use types, lithology units, geology units, distance of wells to the outlet, distance to the residential areas, direction toward the residential areas, depth of the groundwater table, the type of aquifer, transmissivity and population. Geographic Information System (AecGIS 9.3 was used to manage the spatial-based variables and the data of non-spatial-based variables were obtained from relevant references. A database, which contains all collected data related to groundwater quality management in the studied area, was created as the output of the model. The output of this conceptual model can be used as an input for quantitative and mathematical models. Results show that 6 parameters (sulphate, iron, nitrate, electrical conductivity, calcium, and total dissolved solids (TDS were the best indicators for groundwater quality analysis in the area. More than 50% of the wells were drilled in the depth of groundwater table about 5 meters, in this low depth pollutants can load into the wells and also 78% of the wells are located within 5 km from the urban area; it can be concluded from this result that the intensive urban activities could affect groundwater quality.
Boundedly rational credit cycles
Sáez, María
1996-01-01
We propose an evolutionary model of a credit market. We show that the economy exhibits credit cycles. The model predicts dynamics which are consistent with some evidence about the Great Depression. Real shocks trigger episodes of credit--crunch which are observed in the process of adjustment towards the post shock equilibrium.
Classical Physics and the Bounds of Quantum Correlations.
Frustaglia, Diego; Baltanás, José P; Velázquez-Ahumada, María C; Fernández-Prieto, Armando; Lujambio, Aintzane; Losada, Vicente; Freire, Manuel J; Cabello, Adán
2016-06-24
A unifying principle explaining the numerical bounds of quantum correlations remains elusive, despite the efforts devoted to identifying it. Here, we show that these bounds are indeed not exclusive to quantum theory: for any abstract correlation scenario with compatible measurements, models based on classical waves produce probability distributions indistinguishable from those of quantum theory and, therefore, share the same bounds. We demonstrate this finding by implementing classical microwaves that propagate along meter-size transmission-line circuits and reproduce the probabilities of three emblematic quantum experiments. Our results show that the "quantum" bounds would also occur in a classical universe without quanta. The implications of this observation are discussed.
Roviana, D.; Tajuddin, A.; Edi, S.
2017-03-01
Mining potential in Indonesian is very abundant, ranging from Sabang to Marauke. Kabupaten Gorontalo is one of many places in Indonesia that have different types of minerals and natural resources that can be found in every district. The abundant of mining potential must be balanced with good management and ease of getting information by investors. The current issue is, (1) ways of presenting data/information about potential mines area is still manually (the maps that already capture from satellite image, then printed and attached to information board in the office) it caused the difficulties of getting information; (2) the high cost of maps printing; (3) the difficulties of regency leader (bupati) to obtain information for strategic decision making about mining potential. The goal of this research is to build a model of Geographical Information System that could provide data management of potential mines, so that the investors could easily get information according to their needs. To achieve that goal Research and Development method is used. The result of this research, is a model of Geographical Information System that implemented in an application to presenting data management of mines.
Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities
Directory of Open Access Journals (Sweden)
E. Litchman
2006-01-01
Full Text Available Phytoplankton community composition profoundly affects patterns of nutrient cycling and the dynamics of marine food webs; therefore predicting present and future phytoplankton community structure is crucial to understand how ocean ecosystems respond to physical forcing and nutrient limitations. We develop a mechanistic model of phytoplankton communities that includes multiple taxonomic groups (diatoms, coccolithophores and prasinophytes, nutrients (nitrate, ammonium, phosphate, silicate and iron, light, and a generalist zooplankton grazer. Each taxonomic group was parameterized based on an extensive literature survey. We test the model at two contrasting sites in the modern ocean, the North Atlantic (North Atlantic Bloom Experiment, NABE and subarctic North Pacific (ocean station Papa, OSP. The model successfully predicts general patterns of community composition and succession at both sites: In the North Atlantic, the model predicts a spring diatom bloom, followed by coccolithophore and prasinophyte blooms later in the season. In the North Pacific, the model reproduces the low chlorophyll community dominated by prasinophytes and coccolithophores, with low total biomass variability and high nutrient concentrations throughout the year. Sensitivity analysis revealed that the identity of the most sensitive parameters and the range of acceptable parameters differed between the two sites. We then use the model to predict community reorganization under different global change scenarios: a later onset and extended duration of stratification, with shallower mixed layer depths due to increased greenhouse gas concentrations; increase in deep water nitrogen; decrease in deep water phosphorus and increase or decrease in iron concentration. To estimate uncertainty in our predictions, we used a Monte Carlo sampling of the parameter space where future scenarios were run using parameter combinations that produced acceptable modern day outcomes and the
Resolving the global transpiration flux is critical to constraining global carbon cycle models because carbon uptake by photosynthesis in terrestrial plants (Gross Primary Productivity, GPP) is directly related to water lost through transpiration. Quantifying GPP globally is cha...
``Carbon Credits'' for Resource-Bounded Computations Using Amortised Analysis
Jost, Steffen; Loidl, Hans-Wolfgang; Hammond, Kevin; Scaife, Norman; Hofmann, Martin
Bounding resource usage is important for a number of areas, notably real-time embedded systems and safety-critical systems. In this paper, we present a fully automatic static type-based analysis for inferring upper bounds on resource usage for programs involving general algebraic datatypes and full recursion. Our method can easily be used to bound any countable resource, without needing to revisit proofs. We apply the analysis to the important metrics of worst-case execution time, stack- and heap-space usage. Our results from several realistic embedded control applications demonstrate good matches between our inferred bounds and measured worst-case costs for heap and stack usage. For time usage we infer good bounds for one application. Where we obtain less tight bounds, this is due to the use of software floating-point libraries.
A model study of present-day Hall-effect circulators
Energy Technology Data Exchange (ETDEWEB)
Placke, B. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Bosco, S. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Juelich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologiesh, Juelich (Germany); DiVincenzo, D.P. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Juelich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologiesh, Juelich (Germany); Peter Gruenberg Institute, Theoretical Nanoelectronics, Forschungszentrum Juelich, Juelich (Germany)
2017-12-15
Stimulated by the recent implementation of a three-port Hall-effect microwave circulator of Mahoney et al. (MEA), we present model studies of the performance of this device. Our calculations are based on the capacitive-coupling model of Viola and DiVincenzo (VD). Based on conductance data from a typical Hall-bar device obtained from a two-dimensional electron gas (2DEG) in a magnetic field, we numerically solve the coupled field-circuit equations to calculate the expected performance of the circulator, as determined by the S parameters of the device when coupled to 50Ω ports, as a function of frequency and magnetic field. Above magnetic fields of 1.5 T, for which a typical 2DEG enters the quantum Hall regime (corresponding to a Landau-level filling fraction ν of 20), the Hall angle θ{sub H} = tan{sup -1} σ{sub xy}/σ{sub xx} always remains close to 90 , and the S parameters are close to the analytic predictions of VD for θ{sub H} = π/2. As anticipated by VD, MEA find the device to have rather high (kΩ) impedance, and thus to be extremely mismatched to 50Ω, requiring the use of impedance matching. We incorporate the lumped matching circuits of MEA in our modeling and confirm that they can produce excellent circulation, although confined to a very small bandwidth. We predict that this bandwidth is significantly improved by working at lower magnetic field when the Landau index is high, e.g. ν = 20, and the impedance mismatch is correspondingly less extreme. Our modeling also confirms the observation of MEA that parasitic port-to-port capacitance can produce very interesting countercirculation effects. (orig.)
A model study of present-day Hall-effect circulators
International Nuclear Information System (INIS)
Placke, B.; Bosco, S.; DiVincenzo, D.P.
2017-01-01
Stimulated by the recent implementation of a three-port Hall-effect microwave circulator of Mahoney et al. (MEA), we present model studies of the performance of this device. Our calculations are based on the capacitive-coupling model of Viola and DiVincenzo (VD). Based on conductance data from a typical Hall-bar device obtained from a two-dimensional electron gas (2DEG) in a magnetic field, we numerically solve the coupled field-circuit equations to calculate the expected performance of the circulator, as determined by the S parameters of the device when coupled to 50Ω ports, as a function of frequency and magnetic field. Above magnetic fields of 1.5 T, for which a typical 2DEG enters the quantum Hall regime (corresponding to a Landau-level filling fraction ν of 20), the Hall angle θ_H = tan"-"1 σ_x_y/σ_x_x always remains close to 90 , and the S parameters are close to the analytic predictions of VD for θ_H = π/2. As anticipated by VD, MEA find the device to have rather high (kΩ) impedance, and thus to be extremely mismatched to 50Ω, requiring the use of impedance matching. We incorporate the lumped matching circuits of MEA in our modeling and confirm that they can produce excellent circulation, although confined to a very small bandwidth. We predict that this bandwidth is significantly improved by working at lower magnetic field when the Landau index is high, e.g. ν = 20, and the impedance mismatch is correspondingly less extreme. Our modeling also confirms the observation of MEA that parasitic port-to-port capacitance can produce very interesting countercirculation effects. (orig.)
Photophysics of aggregated 9-methylthiacarbocyanine bound to polyanions
Chibisov, Alexander K.; Görner, Helmut
2002-05-01
The photophysical properties of 3,3 '-diethyl-9-methylthiacarbocyanine (DTC) were studied in the presence of polystyrene sulfonate (PSS), polyacrylic acid (PAA) and polymethacrylic acid (PMA). The absorption spectra reflect a monomer/dimer equilibrium in neat aqueous solution and a shift towards bound H-aggregates, bound dimers and bound monomers on increasing the ratio of polyanion residue to dye concentrations ( r). These equilibria also determine the photodeactivation modes of DTC. The fluorescence intensity is reduced, when dimers and aggregates are present and strongly enhanced for low dye loading ( r=10 4). In contrast, the quantum yield of intersystem crossing is enhanced for bound dimers ( r=10 3).
Modelling economic losses of historic and present-day high-impact winter storms in Switzerland
Welker, Christoph; Martius, Olivia; Stucki, Peter; Bresch, David; Dierer, Silke; Brönnimann, Stefan
2015-04-01
simulate the wind field and related economic impact of both historic and present-day high-impact winter storms in Switzerland since end of the 19th century. Our technique involves the dynamical downscaling of the 20CR to 3 km horizontal resolution using the numerical Weather Research and Forecasting model and the subsequent loss simulation using an open-source impact model. This impact model estimates, for modern economic and social conditions, storm-related economic losses at municipality level, and thus allows a numerical simulation of the impact from both historic and present-day severe winter storms in Switzerland on a relatively fine spatial scale. In this study, we apply the modelling chain to a storm sample of almost 90 high-impact winter storms in Switzerland since 1871, and we are thus able to make a statement of the typical wind and loss patterns of hazardous windstorms in Switzerland. To evaluate our modelling chain, we compare simulated storm losses with insurance loss data for the present-day windstorms "Lothar" and "Joachim" in December 1999 and December 2011, respectively. Our study further includes a range of sensitivity experiments and a discussion of the main sources of uncertainty.
Directory of Open Access Journals (Sweden)
P. Servais
2007-09-01
Full Text Available The Seine river watershed is characterized by a high population density and intense agricultural activities. Data show low microbiological water quality in the main rivers (Seine, Marne, Oise of the watershed. Today, there is an increasing pressure from different social groups to restore microbiological water quality in order to both increase the safety of drinking water production and to restore the possible use of these rivers for bathing and rowing activities, as they were in the past. A model, appended to the hydro-ecological SENEQUE/Riverstrahler model describing the functioning of large river systems, was developed to describe the dynamics of faecal coliforms (FC, the most usual faecal contamination indicator. The model is able to calculate the distribution of FC concentrations in the whole drainage network resulting from land use and wastewater management in the watershed. The model was validated by comparing calculated FC concentrations with available field data for some well-documented situations in different river stretches of the Seine drainage network. Once validated, the model was used to test various predictive scenarios, as, for example, the impact of the modifications in wastewater treatment planned at the 2012 horizon in the Seine watershed in the scope of the implementation of the european water framework directive. The model was also used to investigate past situations. In particular, the variations of the microbiological water quality in the Parisian area due to population increase and modifications in wastewater management were estimated over the last century. It was shown that the present standards for bathing and other aquatic recreational activities are not met in the large tributaries upstream from Paris since the middle of the 1950's, and at least since the middle of the XIXth century in the main branch of the Seine river downstream from Paris. Efforts carried out for improving urban wastewater treatment in terms
Monetary and fiscal policy under bounded rationality and heterogeneous expectations
Lustenhouwer, J.E.
2017-01-01
The goal of this thesis is to use plausible and intuitive models of bounded rationality to give new insights in monetary and fiscal policy. Particular focus is put on the zero lower bound on the nominal interest rate, forward guidance, and fiscal consolidations. The thesis considers different forms
Towards an abstract parallel branch and bound machine
A. de Bruin (Arie); G.A.P. Kindervater (Gerard); H.W.J.M. Trienekens
1995-01-01
textabstractMany (parallel) branch and bound algorithms look very different from each other at first glance. They exploit, however, the same underlying computational model. This phenomenon can be used to define branch and bound algorithms in terms of a set of basic rules that are applied in a
Combining Alphas via Bounded Regression
Directory of Open Access Journals (Sweden)
Zura Kakushadze
2015-11-01
Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.
Deep Cuboid Detection: Beyond 2D Bounding Boxes
Dwibedi, Debidatta; Malisiewicz, Tomasz; Badrinarayanan, Vijay; Rabinovich, Andrew
2016-01-01
We present a Deep Cuboid Detector which takes a consumer-quality RGB image of a cluttered scene and localizes all 3D cuboids (box-like objects). Contrary to classical approaches which fit a 3D model from low-level cues like corners, edges, and vanishing points, we propose an end-to-end deep learning system to detect cuboids across many semantic categories (e.g., ovens, shipping boxes, and furniture). We localize cuboids with a 2D bounding box, and simultaneously localize the cuboid's corners,...
Energy Technology Data Exchange (ETDEWEB)
Araujo, Carlos Eduardo S. [Universidade Federal de Campina Grande, PB (Brazil). Programa de Recursos Humanos 25 da ANP]. E-mail: carlos@dme.ufcg.edu.br; Silva, Rosana M. da [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Matematica e Estatistica]. E-mail: rosana@dme.ufcg.edu.br
2004-07-01
This work presents an implementation of a synthetic model of a channel found in oil reservoir. The generation these models is one of the steps to the characterization and simulation of the equal probable three-dimensional geological scenery. O implemented model was obtained from fitting techniques of geometric modeling of curves and surfaces to the geological parameters (width, thickness, sinuosity and preferential direction) that defines the form to be modeled. The parameter sinuosity is related with the parameter wave length and the local amplitude of the channel, the parameter preferential direction indicates the way of the flow and the declivity of the channel. The modeling technique used to represent the surface of the channel is the sweeping technique, the consist in effectuate a translation operation from a curve along a guide curve. The guide curve, in our implementation, was generated by the interpolation of points obtained form sampled values or simulated of the parameter sinuosity, using the cubic splines of Bezier technique. A semi-ellipse, determinate by the parameter width and thickness, representing a transversal section of the channel, is the transferred curve through the guide curve, generating the channel surface. (author)
Recent advances in bound state quantum electrodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Lepage, G.P.
1977-06-01
Recent developments are reviewed in four areas of computational quantum electrodynamics: a new relativistic two-body formalism equal in rigor to the Bethe-Salpeter formalism but with strong calculational advantages is discussed; recent work on the computation of the decay rate of bound systems (positronium in particular) is presented; limits on possible composite structure of leptons are discussed; a new multidimensional integration program ('VEGAS') suitable for higher order calculations is presented
Directory of Open Access Journals (Sweden)
Sayyed Mohammad Ali Alamolhodaei
2015-03-01
Full Text Available The internationalization of small and medium size businesses is regarded as one of the most leading general policies in many of the world’s countries. The reason is that it is often the small and medium size companies which have a vital role in industrial innovation and gain profit for their societies through economic development. This research has investigated and identified the effective factors (organizational factors and business etiquette in Islam on entering into international markets by presenting local Islamic model in the companies of incubator of Science and Technology Park. The statistical population of the research includes the existing companies of Incubator of Mashhad Science and Technology Park. The statistical sample was investigated through simple random sampling from managers of active companies in export in Science and Technology Park. AMOS and SPSS software were applied for data analysis to identify the effects among variables survey research methodology and questionnaire tools were used.
ISOCT study of collagen crosslinking of collagen in cancer models (Conference Presentation)
Spicer, Graham; Young, Scott T.; Yi, Ji; Shea, Lonnie D.; Backman, Vadim
2016-03-01
The role of extracellular matrix modification and signaling in cancer progression is an increasingly recognized avenue for the progression of the disease. Previous study of field effect carcinogenesis with Inverse Spectroscopic Optical Coherence Tomography (ISOCT) has revealed pronounced changes in the nanoscale-sensitive mass fractal dimension D measured from field effect tissue when compared to healthy tissue. However, the origin of this difference in tissue ultrastructure in field effect carcinogenesis has remained poorly understood. Here, we present findings supporting the idea that enzymatic crosslinking of the extracellular matrix is an effect that presents at the earliest stages of carcinogenesis. We use a model of collagen gel with crosslinking induced by lysyl oxidase (LOXL4) to recapitulate the difference in D previously reported from healthy and cancerous tissue biopsies. Furthermore, STORM imaging of this collagen gel model verifies the morphologic effects of enzymatic crosslinking at length scales as small as 40 nm, close to the previously reported lower length scale sensitivity threshold of 35 nm for ISOCT. Analysis of the autocorrelation function from STORM images of collagen gels and subsequent fitting to the Whittle-Matérn correlation function shows a similar effect of LOXL4 on D from collagen measured with ISOCT and STORM. We extend this to mass spectrometric study of tissue to directly measure concentrations of collagen crosslink residues. The validation of ISOCT as a viable tool for non-invasive rapid quantification of collagen ultrastructure lends it to study other physiological phenomena involving ECM restructuring such as atherosclerotic plaque screening or cervical ripening during pregnancy.
Energy Technology Data Exchange (ETDEWEB)
Rubio, E. M.; Domingo, R.; Gonzalez, C.; Sanz, A.
2004-07-01
To study the optimised geometrical configuration to carry out mechanical drawing of plates is the main objective of this paper. To accomplish this objective, a comparative analysis of some suitable geometrical and kinematic configurations of the material located in the deformation zone has been made. Concretely, several triangular rigid zone models have been chosen, for each one, the overall energy involved in the process have been calculated and an estimation of its different components has been made. The calculation of the energy has been achieved applying the Upper Bound Theorem under plane strain and partial friction conditions. In addition, the range of use for the selected configurations has been established. (Author) 19 refs.
Present-Day Mars' Seismicity Predicted From 3-D Thermal Evolution Models of Interior Dynamics
Plesa, A.-C.; Knapmeyer, M.; Golombek, M. P.; Breuer, D.; Grott, M.; Kawamura, T.; Lognonné, P.; Tosi, N.; Weber, R. C.
2018-03-01
The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport mission, to be launched in 2018, will perform a comprehensive geophysical investigation of Mars in situ. The Seismic Experiment for Interior Structure package aims to detect global and regional seismic events and in turn offer constraints on core size, crustal thickness, and core, mantle, and crustal composition. In this study, we estimate the present-day amount and distribution of seismicity using 3-D numerical thermal evolution models of Mars, taking into account contributions from convective stresses as well as from stresses associated with cooling and planetary contraction. Defining the seismogenic lithosphere by an isotherm and assuming two end-member cases of 573 K and the 1073 K, we determine the seismogenic lithosphere thickness. Assuming a seismic efficiency between 0.025 and 1, this thickness is used to estimate the total annual seismic moment budget, and our models show values between 5.7 × 1016 and 3.9 × 1019 Nm.
Neutrino bounds from leptogenesis
International Nuclear Information System (INIS)
Hambye, T.
2005-01-01
Through leptogenesis, baryogenesis could have the same origin as neutrino masses. Emphasis is put on the conditions which, in order that this mechanism works, need to be fulfilled by the neutrino masses as well as by the heavy state masses. The model dependence of these conditions is discussed
Fialho, Maria Fernanda Pessano; Brusco, Indiara; da Silva Brum, Evelyne; Piana, Mariana; Boligon, Aline Augusti; Trevisan, Gabriela; Oliveira, Sara Marchesan
2017-08-17
Arthritis is a chronic inflammatory disease which reduces the life quality of affected individuals. Therapeutic tools used for treating inflammatory pain are associated with several undesirable effects. Buddleja thyrsoides Lam., known as 'Barbasco' or 'Cambara', is mostly used in several disorders and possesses antirheumatic, anti-inflammatory, and analgesic properties. Here, we investigated the antinociceptive and anti-inflammatory effects of the B. thyrsoides crude extract applied orally and topically in acute pain models and an arthritic pain model induced by complete Freund's adjuvant (CFA) paw injection in male mice (25-30 g). The high-performance liquid chromatography (HPLC) of the B. thyrsoides extract crude revealed the presence of the lupeol, stigmasterol, and β-sitosterol. The stability study of the B. thyrsoides gel did not show relevant changes at low temperatures. The oral treatment with the B. thrysoides extract prevented the capsaicin-induced spontaneous nociception and the acetic acid-induced abdominal writhing, but did not alter the thermal threshold in the tail immersion test. The B. thyrsoides antinociceptive effect was not reversed by naloxone in the capsaicin test. The B. thyrsoides oral or topical treatment reversed the CFA-induced mechanical allodynia and thermal hyperalgesia with maximum inhibition ( I max ) of 69 ± 6 and 68 ± 5% as well as 78 ± 15 and 87 ± 12%, respectively. Moreover, the topical but not oral treatment inhibited the CFA-induced cell infiltration, but did not reduce the paw edema significantly. The oral treatment with B. thyrsoides did not cause adverse effects. These findings suggest that the oral or topical treatment with B. thyrsoides presents antinociceptive actions in an arthritic pain model without causing adverse effects. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien
2016-11-01
We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.
On functions of bounded semivariation
Czech Academy of Sciences Publication Activity Database
Monteiro, Giselle Antunes
2015-01-01
Roč. 40, č. 2 (2015), s. 233-276 ISSN 0147-1937 Institutional support: RVO:67985840 Keywords : semivariation * functions of bounded variation * regulated functions Subject RIV: BA - General Mathematics http://projecteuclid.org/euclid.rae/1491271216
Computational Lower Bounds Using Diagonalization
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 7. Computational Lower Bounds Using Diagonalization - Languages, Turing Machines and Complexity Classes. M V Panduranga Rao. General Article Volume 14 Issue 7 July 2009 pp 682-690 ...
Bounds on the Effect of Progressive Structural Degradation
DEFF Research Database (Denmark)
Achtziger, Wolfgang; Bendsøe, Martin P; Taylor, John E.
1997-01-01
Problem formulations are presented for the evaluation of upper and lower bounds on the effect of progressive structural degradation. For the purposes of this study, degradation effect is measured by an increase in global structural compliance (flexibility). Thus the stated bounds are given simply...
Optimal Two Parameter Bounds for the Seiffert Mean
Directory of Open Access Journals (Sweden)
Hui Sun
2013-01-01
Full Text Available We obtain sharp bounds for the Seiffert mean in terms of a two parameter family of means. Our results generalize and extend the recent bounds presented in the Journal of Inequalities and Applications (2012 and Abstract and Applied Analysis (2012.
Bounds on the Effect of Progressive Structural Degradation
DEFF Research Database (Denmark)
Achtziger, W.; Bendsøe, Martin P; Taylor, John E.
1998-01-01
Problem formulations are presented for the evaluation of upper and lower bounds on the effect of progressive structural degradation. For the purposes of this study, degradation effect is measured by an increase in global structural compliance (flexibility). Thus the slated bounds are given simply...
Achieving Agreement in Three Rounds with Bounded-Byzantine Faults
Malekpour, Mahyar, R.
2017-01-01
A three-round algorithm is presented that guarantees agreement in a system of K greater than or equal to 3F+1 nodes provided each faulty node induces no more than F faults and each good node experiences no more than F faults, where, F is the maximum number of simultaneous faults in the network. The algorithm is based on the Oral Message algorithm of Lamport, Shostak, and Pease and is scalable with respect to the number of nodes in the system and applies equally to traditional node-fault model as well as the link-fault model. We also present a mechanical verification of the algorithm focusing on verifying the correctness of a bounded model of the algorithm as well as confirming claims of determinism.
Bounded fractional diffusion in geological media: Definition and Lagrangian approximation
Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang
2016-01-01
Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.
International Nuclear Information System (INIS)
del Aguila, F.; Moreno, J.M.; Quiros, M.
1989-01-01
Since new Z bosons (Z') are predicted by many approaches to particle physics beyond the standard model, the absence of a signal in lepton pairs at hadron colliders implies important, but very model-dependent, lower limits on Z' masses. We present an analytical procedure for converting an experimental limit on σ(Z')B(Z'→l + l - ) into mass limits in a large set of models. Explicit results are given for present CERN and future Fermilab collider data. We include renormalization effects so that consideration can be restricted to grand-unification models
Lower bounds on scintillation detector timing performance
International Nuclear Information System (INIS)
Clinthorne, N.H.; Rogers, W.L.; Hero, A.O. III.; Petrick, N.A.
1990-01-01
Fundamental method-independent limits on the timing performance of scintillation detectors are useful for identifying regimes in which either present timing methods are nearly optimal or where a considerable performance gain might be realized using better pulse processing techniques. Several types of lower bounds on mean-squared timing error (MSE) performance have been developed and applied to scintillation detectors. The simple Cramer-Rao (CR) bound can be useful in determining the limiting MSE for scintillators having a relatively high rate of photon problction such as BaF 2 and NaI(Tl); however, it tends to overestimate the achievalbe performance for scintillators with lower rates such as BGO. For this reason, alternative bounds have been developed using rate-distortion theory or by assuming that the conversion of energy to scintillation light must pass through excited states which have exponential lifetime densities. The bounds are functions of the mean scintillation pulse shape, the scintillation intensity, and photodetector characteristics; they are simple to evaluate and can be used to conveniently assess the limiting timing performance of scintillation detectors. (orig.)
Preliminary Results on the Experimental Investigation of the Structure Functions of Bound Nucleons
Energy Technology Data Exchange (ETDEWEB)
Bodek, Arie [Univ. of Rochester, NY (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-08-01
We present preliminary results on an experimental study of the nuclear modification of the longitudinal ($\\sigma_L$) and transverse ($\\sigma_T$) structure functions of nucleons bound in nuclear targets. The origin of these modifications (commonly referred as as the EMC effect) is not fully understood. Our measurements of R= $\\sigma_L / \\sigma_T$ for nuclei ($R_A$) and for deuterium ($R_D$) indicate that nuclear modifications of the structure functions of bound nucleons are different for the longitudinal and transverse structure functions, and that contrary to expectation from several theoretical models, $R_A< R_D$.
Rate Reduction for State-labelled Markov Chains with Upper Time-bounded CSL Requirements
Directory of Open Access Journals (Sweden)
Bharath Siva Kumar Tati
2016-07-01
Full Text Available This paper presents algorithms for identifying and reducing a dedicated set of controllable transition rates of a state-labelled continuous-time Markov chain model. The purpose of the reduction is to make states to satisfy a given requirement, specified as a CSL upper time-bounded Until formula. We distinguish two different cases, depending on the type of probability bound. A natural partitioning of the state space allows us to develop possible solutions, leading to simple algorithms for both cases.
Revisiting cosmological bounds on sterile neutrinos
Energy Technology Data Exchange (ETDEWEB)
Vincent, Aaron C. [Institute for Particle Physics Phenomenology (IPPP), Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Martínez, Enrique Fernández [Departamento and Instituto de Física Teórica (IFT), UAM/CSIC, Universidad Autonoma de Madrid, C/ Nicolás Cabrera 13-15, E-28049 Cantoblanco, Madrid (Spain); Hernández, Pilar; Mena, Olga [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Lattanzi, Massimiliano, E-mail: aaron.vincent@durham.ac.uk, E-mail: enrique.fernandez-martinez@uam.es, E-mail: m.pilar.hernandez@uv.es, E-mail: omena@ific.uv.es, E-mail: lattanzi@fe.infn.it [Dipartimento di Fisica e Science della Terra, Università di Ferrara and INFN, sezione di Ferrara, Polo Scientifico e Tecnologico, Edificio C Via Saragat, 1, I-44122 Ferrara (Italy)
2015-04-01
We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expected in the form of neutrinos from sterile decay. However, recombination-era observables including the Cosmic Microwave Background (CMB), the shift parameter R{sub CMB} and the sound horizon r{sub s} from Baryon Acoustic Oscillations (BAO) severely constrain this scenario. We self-consistently include the full time-evolution of the coupled sterile neutrino and standard model sectors in an MCMC, showing that if decay occurs after BBN, the sterile neutrino is essentially bounded by the constraint sin{sup 2}θ ∼< 0.026 (m{sub s}/eV){sup −2}.
Presenting Numerical Modelling of Explosive Volcanic Eruption to a General Public
Demaria, C.; Todesco, M.; Neri, A.; Blasi, G.
2001-12-01
Numerical modeling of explosive volcanic eruptions has been widely applied, during the last decades, to study pyroclastic flows dispersion along volcano's flanks and to evaluate their impact on urban areas. Results from these transient multi-phase and multi-component simulations are often reproduced in form of computer animations, representing the spatial and temporal evolution of relevant flow variables (such as temperature, or particle concentration). Despite being a sophisticated, technical tool to analyze and share modeling results within the scientific community, these animations truly look like colorful cartoons showing an erupting volcano and are especially suited to be shown to a general public. Thanks to their particular appeal, and to the large interest usually risen by exploding volcanoes, these animations have been presented several times on television and magazines and are currently displayed in a permanent exposition, at the Vesuvius Observatory in Naples. This work represents an effort to produce an accompanying tool for these animations, capable of explaining to a large audience the scientific meaning of what can otherwise look as a graphical exercise. Dealing with research aimed at the study of dangerous, explosive volcanoes, improving the general understanding of these scientific results plays an important role as far as risk perception is concerned. An educated population has better chances to follow an appropriate behavior, i.e.: one that could lead, on the long period, to a reduction of the potential risk. In this sense, a correct divulgation of scientific results, while improving the confidence of the population in the scientific community, should belong to the strategies adopted to mitigate volcanic risk. Due to the relevance of the long term final goal of such divulgation experiment, this work represents an interdisciplinary effort, combining scientific expertise and specific competence from the modern communication science and risk
Ricoeur, Andreas; Lange, Stephan; Avakian, Artjom
2015-04-01
Magnetoelectric (ME) coupling is an inherent property of only a few crystals exhibiting very low coupling coefficients at low temperatures. On the other hand, these materials are desirable due to many promising applications, e.g. as efficient data storage devices or medical or geophysical sensors. Efficient coupling of magnetic and electric fields in materials can only be achieved in composite structures. Here, ferromagnetic (FM) and ferroelectric (FE) phases are combined e.g. including FM particles in a FE matrix or embedding fibers of the one phase into a matrix of the other. The ME coupling is then accomplished indirectly via strain fields exploiting magnetostrictive and piezoelectric effects. This requires a poling of the composite, where the structure is exposed to both large magnetic and electric fields. The efficiency of ME coupling will strongly depend on the poling process. Besides the alignment of local polarization and magnetization, it is going along with cracking, also being decisive for the coupling properties. Nonlinear ferroelectric and ferromagnetic constitutive equations have been developed and implemented within the framework of a multifield, two-scale FE approach. The models are microphysically motivated, accounting for domain and Bloch wall motions. A second, so called condensed approach is presented which doesn't require the implementation of a spatial discretisation scheme, however still considering grain interactions and residual stresses. A micromechanically motivated continuum damage model is established to simulate degradation processes. The goal of the simulation tools is to predict the different constitutive behaviors, ME coupling properties and lifetime of smart magnetoelectric devices.
Jaeken, Laurent; Vasilievich Matveev, Vladimir
2012-01-01
Observations of coherent cellular behavior cannot be integrated into widely accepted membrane (pump) theory (MT) and its steady state energetics because of the thermal noise of assumed ordinary cell water and freely soluble cytoplasmic K(+). However, Ling disproved MT and proposed an alternative based on coherence, showing that rest (R) and action (A) are two different phases of protoplasm with different energy levels. The R-state is a coherent metastable low-entropy state as water and K(+) are bound to unfolded proteins. The A-state is the higher-entropy state because water and K(+) are free. The R-to-A phase transition is regarded as a mechanism to release energy for biological work, replacing the classical concept of high-energy bonds. Subsequent inactivation during the endergonic A-to-R phase transition needs an input of metabolic energy to restore the low entropy R-state. Matveev's native aggregation hypothesis allows to integrate the energetic details of globular proteins into this view.
Bounds and estimates for the linearly perturbed eigenvalue problem
International Nuclear Information System (INIS)
Raddatz, W.D.
1983-01-01
This thesis considers the problem of bounding and estimating the discrete portion of the spectrum of a linearly perturbed self-adjoint operator, M(x). It is supposed that one knows an incomplete set of data consisting in the first few coefficients of the Taylor series expansions of one or more of the eigenvalues of M(x) about x = 0. The foundations of the variational study of eigen-values are first presented. These are then used to construct the best possible upper bounds and estimates using various sets of given information. Lower bounds are obtained by estimating the error in the upper bounds. The extension of these bounds and estimates to the eigenvalues of the doubly-perturbed operator M(x,y) is discussed. The results presented have numerous practical application in the physical sciences, including problems in atomic physics and the theory of vibrations of acoustical and mechanical systems
Schwarzinger, Michaël; Carrat, Fabrice; Luchini, Stéphane
2009-07-01
The small sample size of contingent valuation (CV) surveys conducted in patients may have limited the use of the single-bounded (SB) dichotomous choice format which is recommended in environmental economics. In this paper, we explore two ways to increase the statistical efficiency of the SB format: (1) by the inclusion of proxies in addition to patients; (2) by the addition of a follow-up dichotomous question, i.e. the double-bounded (DB) dichotomous choice format. We found that patients (n=223) and spouses (n=64) answering on behalf of the patient had on average a similar willingness-to-pay for earlier alleviation of flu symptoms. However, a patient was significantly more likely to anchor his/her answer on the first bid as compared to a spouse. Finally, our original DB model with shift effect and heterogeneous anchoring reconciled the discrepancies found in willingness-to-pay statistics between SB and DB models in keeping with increased statistical efficiency.
Towards artificial tissue models: past, present, and future of 3D bioprinting.
Arslan-Yildiz, Ahu; El Assal, Rami; Chen, Pu; Guven, Sinan; Inci, Fatih; Demirci, Utkan
2016-03-01
Regenerative medicine and tissue engineering have seen unprecedented growth in the past decade, driving the field of artificial tissue models towards a revolution in future medicine. Major progress has been achieved through the development of innovative biomanufacturing strategies to pattern and assemble cells and extracellular matrix (ECM) in three-dimensions (3D) to create functional tissue constructs. Bioprinting has emerged as a promising 3D biomanufacturing technology, enabling precise control over spatial and temporal distribution of cells and ECM. Bioprinting technology can be used to engineer artificial tissues and organs by producing scaffolds with controlled spatial heterogeneity of physical properties, cellular composition, and ECM organization. This innovative approach is increasingly utilized in biomedicine, and has potential to create artificial functional constructs for drug screening and toxicology research, as well as tissue and organ transplantation. Herein, we review the recent advances in bioprinting technologies and discuss current markets, approaches, and biomedical applications. We also present current challenges and provide future directions for bioprinting research.
Energy Technology Data Exchange (ETDEWEB)
Cini Castagnoli, G.; Provenzale, A. [eds.
1997-12-31
The course Past and present variability of the solar-terrestrial system: measurement, data analysis and theoretical models is explicitly devoted to these issues. A solar cycle ago, in summer 1985, G. Cini organized a similar school, in a time when this field was in a very early stage of development and definitely fewer high-quality measurements were available. After eleven years, the field has grown toward becoming a robust scientific discipline, new data have been obtained, and new ideas have been proposed by both solar physicists and climate dynamicists. For this reason, the authors felt that it was the right time to organize a new summer school, with the aim of formalizing the developments that have taken place during these years, and also for speculating and maybe dreaming of new results that will be achieved in the upcoming years. The papers of the lectures have now been collected in this volume. First, in order to know what the authors talking about, they need to obtain reliable data from terrestrial archives,and to properly date the records that have been measured. To these crucial aspects is devoted the first part of the book, dealing with various types of proxy data and with the difficult issue of the dating of the records.
Catalá Bauset, J C; de Andres Ibañez, J A; Valverde Navarro, A; Martinez Soriano, F
2014-04-01
The aim of this paper is to present a methodology based on the use of fresh-frozen cadavers for training in the management of the airway, and to evaluate the degree of satisfaction among learning physicians. About 6 fresh-frozen cadavers and 14 workstations were prepared where participants were trained in the different skills needed for airway management. The details of preparation of the cadavers are described. The level of satisfaction of the participant was determined using a Likert rating scale of 5 points, at each of the 14 stations, as well as the overall assessment and clinical usefulness of the course. The mean overall evaluation of the course and its usefulness was 4.75 and 4.9, out of 5, respectively. All parts of the course were rated above 4 out of 5. The high level of satisfaction of the course remained homogeneous in the 2 editions analysed. The overall satisfaction of the course was not finally and uniquely determined by any of its particular parts. The fresh cadaver model for training physicians in techniques of airway management is a proposal satisfactory to the participant, and with a realism that approaches the live patient. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.
Directory of Open Access Journals (Sweden)
Stefano eTriberti
2016-01-01
Full Text Available Recent neuropsychological evidence suggest that a key role in linking perceptions and intentions is played by sense of presence. Despite this phenomenon having been studied primarily in the field of virtual reality (conceived as the illusion of being in the virtual space, recent research highlighted that it is a fundamental feature of everyday experience. Specifically, the function of presence as a cognitive process is to locate the Self in a physical space or situation, based on the perceived possibility to act in it; so, the variations in sense of presence allow one to continuously adapt his own action to the external environment. Indeed intentions, as the cognitive antecedents of action, are not static representations of the desired outcomes, but dynamic processes able to adjust their own representational content according to the opportunities/restrictions emerging in the environment. Focusing on the peculiar context of action mediated by interactive technologies, we here propose a theoretical model showing how each level of an intentional hierarchy (future-directed; present directed; and motor intentions can interlock with environmental affordances in order to promote a continuous stream of action and activity.
Directory of Open Access Journals (Sweden)
Kyoung-Hee Bae
2013-01-01
Full Text Available Background. The types of embryonic development probably provoke different paths of novel threadlike structure (NTS development. The authors hypothesized that NTS may be easily observed on the surface of swine intestines by using trypan blue staining method and visualization under an optical microscope. Methods. General anesthesia was administered to 2 Yorkshire pigs. The abdominal walls of the pigs were carefully dissected along the medial alba. NTSs were identified on organ surfaces under a stereoscopic microscope after trypan blue staining. Isolated NTS specimens obtained from the large intestine were subjected to 4′,6-diamidino-2-phenylindole (DAPI staining and observed using the polarized light microscopy to confirm whether the obtained structure fits the definition of NTS. Results. We found elastic, semitransparent threadlike structures (forming a network structure that had a milky-white color in situ and in vivo in swine large intestines. The samples showed distinct extinction of polarized light at every 90 degrees, and nucleus was shown to be rod shaped by DAPI staining, indicating that they meet the criteria of NTS. Conclusion. We used a swine model to demonstrate that NTS may be present on large animal organ surfaces. Our results may permit similar studies by using human specimens.
Directory of Open Access Journals (Sweden)
Xujin Pu
2016-09-01
Full Text Available Market competition creates strategic incentives for firms to communicate private information about their own product quality through certification. Although voluntary certification has recently gained importance in the agricultural industry, information asymmetry is not always completely addressed. This study analyzes how the relative proportion of boundedly rational consumers in the market influences the effectiveness of voluntary certification mechanisms by using a duopoly game model of high- and low-quality firms. The presented results show that a change in the proportion of boundedly rational consumers leads to different certification behaviors and a different market equilibrium. We also find that the existence of boundedly rational consumers is an important factor in the failure of voluntary certification. Indeed, when the relative proportion of such consumers is very high, voluntary certification is ineffective at improving market efficiency.
Higgs boson mass bounds in the presence of a heavy fourth quark family
Energy Technology Data Exchange (ETDEWEB)
Bulava, John [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Gerhold, Philipp; Kallarackal, Jim; Nagy, Attila [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2013-01-15
We present Higgs boson mass bounds in a lattice regularization allowing thus for non-perturbative investigations. In particular, we employ a lattice modified chiral invariant Higgs-Yukawa model using the overlap operator. We show results for the upper and lower Higgs boson mass bounds in the presence of a heavy mass-degenerate quark doublet with masses ranging up to 700 GeV. We perform infinite volume extrapolations in most cases, and examine several values of the lattice cutoff. Furthermore, we argue that the lower Higgs boson mass bound is stable with respect to the addition of higher dimensional operators to the scalar field potential. Our results have severe consequences for the phenomenology of a fourth generation of quarks if a light Higgs boson is discovered at the LHC.
Higgs boson mass bounds in the presence of a heavy fourth quark family
Bulava, John; Nagy, Attila; Kallarackal, Jim; Jansen, Karl
2012-01-01
We present Higgs boson mass bounds in a lattice regularization allowing thus for non-perturbative investigations. In particular, we employ a lattice modified chiral invariant Higgs-Yukawa model using the overlap operator. We show results for the upper and lower Higgs boson mass bounds in the presence of a heavy mass-degenerate quark doublet with masses ranging up to 700 GeV. We perform infinite volume extrapolations in most cases, and examine several values of the lattice cutoff. Furthermore, we argue that the lower Higgs boson mass bound is stable with respect to the addition of higher dimensional operators to the scalar field potential. Our results have severe consequences for the phenomenology of a fourth generation of quarks if a light Higgs boson is discovered at the LHC.
Afan, Haitham Abdulmohsin; El-shafie, Ahmed; Mohtar, Wan Hanna Melini Wan; Yaseen, Zaher Mundher
2016-10-01
An accurate model for sediment prediction is a priority for all hydrological researchers. Many conventional methods have shown an inability to achieve an accurate prediction of suspended sediment. These methods are unable to understand the behaviour of sediment transport in rivers due to the complexity, noise, non-stationarity, and dynamism of the sediment pattern. In the past two decades, Artificial Intelligence (AI) and computational approaches have become a remarkable tool for developing an accurate model. These approaches are considered a powerful tool for solving any non-linear model, as they can deal easily with a large number of data and sophisticated models. This paper is a review of all AI approaches that have been applied in sediment modelling. The current research focuses on the development of AI application in sediment transport. In addition, the review identifies major challenges and opportunities for prospective research. Throughout the literature, complementary models superior to classical modelling.
The Past, Present and Future of Cyber-Physical Systems: A Focus on Models
Lee, Edward A.
2015-01-01
This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical. PMID:25730486
The Past, Present and Future of Cyber-Physical Systems: A Focus on Models
Directory of Open Access Journals (Sweden)
Edward A. Lee
2015-02-01
Full Text Available This paper is about better engineering of cyber-physical systems (CPSs through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems, which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical.
The past, present and future of cyber-physical systems: a focus on models.
Lee, Edward A
2015-02-26
This paper is about better engineering of cyber-physical systems (CPSs) through better models. Deterministic models have historically proven extremely useful and arguably form the kingpin of the industrial revolution and the digital and information technology revolutions. Key deterministic models that have proven successful include differential equations, synchronous digital logic and single-threaded imperative programs. Cyber-physical systems, however, combine these models in such a way that determinism is not preserved. Two projects show that deterministic CPS models with faithful physical realizations are possible and practical. The first project is PRET, which shows that the timing precision of synchronous digital logic can be practically made available at the software level of abstraction. The second project is Ptides (programming temporally-integrated distributed embedded systems), which shows that deterministic models for distributed cyber-physical systems have practical faithful realizations. These projects are existence proofs that deterministic CPS models are possible and practical.
Lower Bounds to the Reliabilities of Factor Score Estimators.
Hessen, David J
2016-10-06
Under the general common factor model, the reliabilities of factor score estimators might be of more interest than the reliability of the total score (the unweighted sum of item scores). In this paper, lower bounds to the reliabilities of Thurstone's factor score estimators, Bartlett's factor score estimators, and McDonald's factor score estimators are derived and conditions are given under which these lower bounds are equal. The relative performance of the derived lower bounds is studied using classic example data sets. The results show that estimates of the lower bounds to the reliabilities of Thurstone's factor score estimators are greater than or equal to the estimates of the lower bounds to the reliabilities of Bartlett's and McDonald's factor score estimators.
Search for quasi bound η mesons
International Nuclear Information System (INIS)
Machner, H
2015-01-01
The search for a quasi bound η meson in atomic nuclei is reviewed. This tentative state is studied theoretically as well as experimentally. The theory starts from elastic η nucleon scattering which is derived from production data within some models. From this interaction the η nucleus interaction is derived. Model calculations predict binding energies and widths of the quasi bound state. Another method is to derive the η nucleus interaction from excitation functions of η production experiments. The s wave interaction is extracted from such data via final state interaction (FSI) theorem. We give the derivation of s wave amplitudes in partial wave expansion and in helicity amplitudes and their relation to observables. Different experiments extracting the FSI are discussed as are production experiments. So far only three experiments give evidence for the existence of the quasi bound state: a pion double charge exchange experiment, an effective mass measurement, and a transfer reaction at recoil free kinematics with observation of the decay of the state. (topical review)
International Nuclear Information System (INIS)
Faybishenko, B.; Doughty, C.; Geller, J.
1998-07-01
Understanding subsurface flow and transport processes is critical for effective assessment, decision-making, and remediation activities for contaminated sites. However, for fluid flow and contaminant transport through fractured vadose zones, traditional hydrogeological approaches are often found to be inadequate. In this project, the authors examine flow and transport through a fractured vadose zone as a deterministic chaotic dynamical process, and develop a model of it in these terms. Initially, the authors examine separately the geometric model of fractured rock and the flow dynamics model needed to describe chaotic behavior. Ultimately they will put the geometry and flow dynamics together to develop a chaotic-dynamical model of flow and transport in a fractured vadose zone. They investigate water flow and contaminant transport on several scales, ranging from small-scale laboratory experiments in fracture replicas and fractured cores, to field experiments conducted in a single exposed fracture at a basalt outcrop, and finally to a ponded infiltration test using a pond of 7 by 8 m. In the field experiments, they measure the time-variation of water flux, moisture content, and hydraulic head at various locations, as well as the total inflow rate to the subsurface. Such variations reflect the changes in the geometry and physics of water flow that display chaotic behavior, which they try to reconstruct using the data obtained. In the analysis of experimental data, a chaotic model can be used to predict the long-term bounds on fluid flow and transport behavior, known as the attractor of the system, and to examine the limits of short-term predictability within these bounds. This approach is especially well suited to the need for short-term predictions to support remediation decisions and long-term bounding studies. View-graphs from ten presentations made at the annual meeting held December 3--4, 1997 are included in an appendix to this report
Bounds on quantum confinement effects in metal nanoparticles
Blackman, G. Neal; Genov, Dentcho A.
2018-03-01
Quantum size effects on the permittivity of metal nanoparticles are investigated using the quantum box model. Explicit upper and lower bounds are derived for the permittivity and relaxation rates due to quantum confinement effects. These bounds are verified numerically, and the size dependence and frequency dependence of the empirical Drude size parameter is extracted from the model. Results suggest that the common practice of empirically modifying the dielectric function can lead to inaccurate predictions for highly uniform distributions of finite-sized particles.
Directory of Open Access Journals (Sweden)
Juho-Pekka Virtanen
2014-07-01
Full Text Available Rapid prototyping has received considerable interest with the introduction of affordable rapid prototyping machines. These machines can be used to manufacture physical models from three-dimensional digital mesh models. In this paper, we compare the results obtained with a new, affordable, rapid prototyping machine, and a traditional professional machine. Two separate data sets are used for this, both of which were acquired using terrestrial laser scanning. Both of the machines were able to produce complex and highly detailed geometries in plastic material from models based on terrestrial laser scanning. The dimensional accuracies and detail levels of the machines were comparable, and the physical artifacts caused by the fused deposition modeling (FDM technique used in the rapid prototyping machines could be found in both models. The accuracy of terrestrial laser scanning exceeded the requirements for manufacturing physical models of large statues and building segments at a 1:40 scale.
Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli
Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean
2015-01-01
Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Ba...
Abbou, Jeremy; Anne, Agnès; Demaille, Christophe
2006-11-16
The dynamics of a molecular layer of linear poly(ethylene glycol) (PEG) chains of molecular weight 3400, bearing at one end a ferrocene (Fc) label and thiol end-grafted at a low surface coverage onto a gold substrate, is probed using combined atomic force-electrochemical microscopy (AFM-SECM), at the scale of approximately 100 molecules. Force and current approach curves are simultaneously recorded as a force-sensing microelectrode (tip) is inserted within the approximately 10 nm thick, redox labeled, PEG chain layer. Whereas the force approach curve gives access to the structure of the compressed PEG layer, the tip-current, resulting from tip-to-substrate redox cycling of the Fc head of the chain, is controlled by chain dynamics. The elastic bounded diffusion model, which considers the motion of the Fc head as diffusion in a conformational field, complemented by Monte Carlo (MC) simulations, from which the chain conformation can be derived for any degree of confinement, allows the theoretical tip-current approach curve to be calculated. The experimental current approach curve can then be very satisfyingly reproduced by theory, down to a tip-substrate separation of approximately 2 nm, using only one adjustable parameter characterizing the chain dynamics: the effective diffusion coefficient of the chain head. At closer tip-substrate separations, an unpredicted peak is observed in the experimental current approach curve, which is shown to find its origin in a compression-induced escape of the chain from within the narrowing tip-substrate gap. MC simulations provide quantitative support for lateral chain elongation as the escape mechanism.
Capacity bounds for kth best path selection over generalized fading channels
Hanif, Muhammad Fainan; Yang, Hongchuan; Alouini, Mohamed-Slim
2014-01-01
Exact ergodic capacity calculation for fading wireless channels typically involves time-consuming numerical evaluation of infinite integrals. In this paper, lower and upper bounds on ergodic capacity for kth best path are presented. These bounds
Presenting Thin Media Models Affects Women's Choice of Diet or Normal Snacks
Krahe, Barbara; Krause, Christina
2010-01-01
Our study explored the influence of thin- versus normal-size media models and of self-reported restrained eating behavior on women's observed snacking behavior. Fifty female undergraduates saw a set of advertisements for beauty products showing either thin or computer-altered normal-size female models, allegedly as part of a study on effective…
Lake Michigan lake trout PCB model forecast post audit (oral presentation)
Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents an...
Product modeling standards for the building and construction industry : Past, present and future
Tolman, F.P.
1999-01-01
For the past ten years most sectors of industry have been developing standards for the electronic sharing and exchange of product model data. While several related industries, such as automotive and shipbuilding manufacturing have been relatively successful in integrating electronic product models
The effect of PLS regression in PLS path model estimation when multicollinearity is present
DEFF Research Database (Denmark)
Nielsen, Rikke; Kristensen, Kai; Eskildsen, Jacob
PLS path modelling has previously been found to be robust to multicollinearity both between latent variables and between manifest variables of a common latent variable (see e.g. Cassel et al. (1999), Kristensen, Eskildsen (2005), Westlund et al. (2008)). However, most of the studies investigate...... models with relatively few variables and very simple dependence structures compared to the models that are often estimated in practical settings. A recent study by Nielsen et al. (2009) found that when model structure is more complex, PLS path modelling is not as robust to multicollinearity between...... latent variables as previously assumed. A difference in the standard error of path coefficients of as much as 83% was found between moderate and severe levels of multicollinearity. Large differences were found not only for large path coefficients, but also for small path coefficients and in some cases...
Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity.
Chandrasekara, Anoma; Shahidi, Fereidoon
2010-06-09
Soluble and insoluble-bound phenolic extracts of several varieties of millet (kodo, finger, foxtail, proso, pearl, and little millets) whole grains were evaluated for their phenolic contents and antioxidative efficacy using trolox equivalent antioxidant capacity (TEAC), reducing power (RP), and beta-carotene-linoleate model system as well as ferrous chelating activity. In addition, ferulic and p-coumaric acids were present in soluble and bound phenolic fractions of millets, and their contents were determined using high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (MS). Kodo millet had the highest total phenolic content, whereas proso millet possessed the least. All millet varieties showed high antioxidant activities, although the order of their efficacy was assay dependent. HPLC analysis of millet phenolic extracts demonstrated that the bound fractions contained more ferulic and p-coumaric acids compared to their soluble counterparts. The results of this study showed that soluble as well as bound fractions of millet grains are rich sources of phenolic compounds with antioxidant, metal chelating, and reducing power. The potential of whole millets as natural sources of antioxidants depends on the variety used. The importance of the insoluble bound fraction of millet as a source of ferulic acid and p-coumaric acid was established, and their contribution to the total phenolic content must be taken into account in the assessment of the antioxidant activity of millets.
Directory of Open Access Journals (Sweden)
Hugo Bruno Correa Molinari
2013-03-01
Full Text Available The cell walls of grasses such as wheat, maize, rice and sugar cane, contain large amounts of ferulate that is ester-linked to the cell wall polysaccharide glucuronoarabinoxylan (GAX. This ferulate is considered to limit the digestibility of polysaccharide in grass biomass as it forms covalent linkages between polysaccharide and lignin components. Candidate genes within a grass-specific clade of the BAHD acyl-coA transferase superfamily have been identified as being responsible for the ester linkage of ferulate to GAX. Manipulation of these BAHD genes may therefore be a biotechnological target for increasing efficiency of conversion of grass biomass into biofuel. Here, we describe the expression of these candidate genes and amounts of bound ferulate from various tissues and developmental stages of the model grass Brachypodium distachyon. BAHD candidate transcripts and significant amounts of bound ferulate were present in every tissue and developmental stage. We hypothesise that BAHD candidate genes similar to the recently described rice OsPMT gene (PMT sub-clade are principally responsible for the bound coumaric acid (pCA, and that other BAHD candidates (non-PMT sub-clade are responsible for bound ferulic acid (FA. There were some similarities with between the ratio of expression non-PMT / PMT genes and the ratio of bound FA / pCA between tissue types, compatible with this hypothesis. However, much further work to modify BAHD genes in grasses and to characterise the heterologously expressed proteins is required to demonstrate their function.
Neutrinos, DUNE and the world best bound on CPT invariance
Barenboim, G.; Ternes, C. A.; Tórtola, M.
2018-05-01
CPT symmetry, the combination of Charge Conjugation, Parity and Time reversal, is a cornerstone of our model building strategy and therefore the repercussions of its potential violation will severely threaten the most extended tool we currently use to describe physics, i.e. local relativistic quantum fields. However, limits on its conservation from the Kaon system look indeed imposing. In this work we will show that neutrino oscillation experiments can improve this limit by several orders of magnitude and therefore are an ideal tool to explore the foundations of our approach to Nature. Strictly speaking testing CPT violation would require an explicit model for how CPT is broken and its effects on physics. Instead, what is presented in this paper is a test of one of the predictions of CPT conservation, i.e., the same mass and mixing parameters in neutrinos and antineutrinos. In order to do that we calculate the current CPT bound on all the neutrino mixing parameters and study the sensitivity of the DUNE experiment to such an observable. After deriving the most updated bound on CPT from neutrino oscillation data, we show that, if the recent T2K results turn out to be the true values of neutrino and antineutrino oscillations, DUNE would measure the fallout of CPT conservation at more than 3σ. Then, we study the sensitivity of the experiment to measure CPT invariance in general, finding that DUNE will be able to improve the current bounds on Δ (Δ m312) by at least one order of magnitude. We also study the sensitivity to the other oscillation parameters. Finally we show that, if CPT is violated in nature, combining neutrino with antineutrino data in oscillation analysis will produce imposter solutions.
Herkert, Nadja M; Lallement, Guy; Clarençon, Didier; Thiermann, Horst; Worek, Franz
2009-04-28
Recently, a dynamically working in vitro model with real-time determination of membrane-bound human acetylcholinesterase (AChE) activity was shown to be a versatile model to investigate oxime-induced reactivation kinetics of organophosphate- (OP) inhibited enzyme. In this assay, AChE was immobilized on particle filters which were perfused with acetylthiocholine, Ellman's reagent and phosphate buffer. Subsequently, AChE activity was continuously analyzed in a flow-through detector. Now, it was an intriguing question whether this model could be used with erythrocyte AChE from other species in order to investigate kinetic interactions in the absence of annoying side reactions. Rhesus monkey, swine and guinea pig erythrocytes were a stable and highly reproducible enzyme source. Then, the model was applied to the reactivation of sarin- and paraoxon-inhibited AChE by obidoxime or HI 6 and it could be shown that the derived reactivation rate constants were in good agreement to previous results obtained from experiments with a static model. Hence, this dynamic model offers the possibility to investigate highly reproducible interactions between AChE, OP and oximes with human and animal AChE.
Semiclassical bounds in magnetic bottles
Czech Academy of Sciences Publication Activity Database
Barseghyan, Diana; Exner, Pavel; Kovařík, H.; Weidl, T.
2016-01-01
Roč. 28, č. 1 (2016), s. 1650002 ISSN 0129-055X R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : magnetic Laplacian * discrete spectrum * eigenvalue bounds Subject RIV: BE - Theoretical Physics Impact factor: 1.426, year: 2016
Positivity bounds for Sivers functions
International Nuclear Information System (INIS)
Kang Zhongbo; Soffer, Jacques
2011-01-01
We generalize a positivity constraint derived initially for parity-conserving processes to the parity-violating ones, and use it to derive non-trivial bounds on several Sivers functions, entering in the theoretical description of single spin asymmetry for various processes.
Bound states of 'dressed' particles
International Nuclear Information System (INIS)
Shirokov, M.I.
1994-01-01
A new approach to the problem of bound states in relativistic quantum field theories is suggested. It uses the creation - destruction operators of 'dresses' particles which have been granted by Faddeev's (1963) 'dressing' formalism. Peculiarities of the proposed approach as compared to the known ones are discussed. 8 refs. (author)
Quantum lower bound for sorting
Shi, Yaoyun
2000-01-01
We prove that \\Omega(n log(n)) comparisons are necessary for any quantum algorithm that sorts n numbers with high success probability and uses only comparisons. If no error is allowed, at least 0.110nlog_2(n) - 0.067n + O(1) comparisons must be made. The previous known lower bound is \\Omega(n).
Unconditional lower bounds against advice
Buhrman, H.; Fortnow, L.; Santhanam, R.
2009-01-01
We show several unconditional lower bounds for exponential time classes against polynomial time classes with advice, including: (1) For any constant c, NEXP not in P^{NP[n^c]} (2) For any constant c, MAEXP not in MA/n^c (3) BPEXP not in BPP/n^{o(1)}. It was previously unknown even whether NEXP in
Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)
Energy Technology Data Exchange (ETDEWEB)
Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.
2015-01-01
The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.
Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, and...
Achieving interoperability in environmental modeling has evolved as software technology has progressed. The recent rise of cloud computing and proliferation of web services initiated a new stage for creating interoperable systems. Scientific programmers increasingly take advantag...
Ivic, Rebecca K.; Green, Robert J.
2012-01-01
How can public speaking instructors teach students how to be charismatic and confident speakers? The activity presented in this article suggests that instructors foster competent and charismatic presentational skills by having students channel the stylistic capabilities of an exceptional speaker. The activity requires students to take on the…
Qiu, Shanwen; Abdelaziz, Mohamed Ewis; Abdel Latif, Fadl Hicham Fadl; Claudel, Christian G.
2013-01-01
In this article, we propose a new exact and grid-free numerical scheme for computing solutions associated with an hybrid traffic flow model based on the Lighthill-Whitham-Richards (LWR) partial differential equation, for a class of fundamental
Qiu, Shanwen
2013-09-01
In this article, we propose a new exact and grid-free numerical scheme for computing solutions associated with an hybrid traffic flow model based on the Lighthill-Whitham-Richards (LWR) partial differential equation, for a class of fundamental diagrams. In this hybrid flow model, the vehicles satisfy the LWR equation whenever possible, and have a constant acceleration otherwise. We first propose a mathematical definition of the solution as a minimization problem. We use this formulation to build a grid-free solution method for this model based on the minimization of component function. We then derive these component functions analytically for triangular fundamental diagrams, which are commonly used to model traffic flow. We also show that the proposed computational method can handle fixed or moving bottlenecks. A toolbox implementation of the resulting algorithm is briefly discussed, and posted at https://dl.dropbox.com/u/1318701/Toolbox.zip. © 2013 Elsevier Ltd.
Binding energies of two deltas bound states
International Nuclear Information System (INIS)
Sato, Hiroshi; Saito, Koichi.
1982-06-01
Bound states of the two-deltas system are investigated by employing the realistic one boson exchange potential. It is found that there exist many bound states in each isospin channel and also found that the tensor interaction plays important role in producing these bound states. Relationship between these bound states and dibaryon resonances is discussed. (J.P.N.)
Modeling soluble salt assemblages on Mars: past aqueous history and present-day habitability
Toner, J. D.; Catling, D. C.; Light, B.
2014-12-01
Soluble salt assemblages formed through aqueous processes are widespread on Mars. These minerals are important for understanding the past aqueous history of Mars and indicate critical habitability parameters such as pH, temperature, water activity, and salinity. Equilibrium models have been used to determine solution chemistry and salt precipitation sequences from aqueous chemical data; however, current models are limited by a lack of experimental data for low-temperature perchlorates, and some model predictions are clearly anomalous. To address the need for accurate equilibrium models, we have developed a comprehensive model for low-temperature perchlorate-rich brines using (1) previously neglected literature data, (2) experimental solubilities determined in low-temperature perchlorate solutions, and (3) solubility and heat capacity results determined using Differential Scanning Calorimetry (DSC). Our resulting model is a significant improvement over existing models, such as FREZCHEM, particularly for perchlorate mixtures. We have applied our model to evaporation and freezing of a nominal Wet Chemistry Laboratory (WCL) solution measured at the Phoenix site. For a freezing WCL solution, our model indicates that ice, KClO4, hydromagnesite (3MgCO3·Mg(OH)2·3H2O), calcite (CaCO3), meridianiite (MgSO4·11H2O), MgCl2·12H2O, NaClO4·2H2O, and Mg(ClO4)2·6H2O form at the eutectic (209 K); whereas, KClO4, hydromagnesite, kieserite (MgSO4·H2O), anhydrite (CaSO4), halite (NaCl), NaClO4·H2O, and Mg(ClO4)2·6H2O form upon complete evaporation at 298 K. In general, evaporation yields more dehydrated mineral assemblages than salts produced by freezing. Hydrated phases that form during evaporation contain 0.3 wt. % water, which compares with 1.2 wt. % during freezing. Given independent evidence for the presence of calcite and minimum water contents in Martian soils of ~1.5 wt. %, salts at the Phoenix site, and possibly elsewhere, appear more likely to have formed during
The last interglacial in the Mediterranean as a model for the present interglacial
Zaso, C.; Goy, J. L.; Dabrio, C. J.; Bardaji, T.; Somoza, L.; Silva, P. G.
1993-05-01
Deposits of the Last Interglacial on the south and southeastern coasts of Spain are shallow marine and coastal sediments, with a warm fauna of Strombus bubonius. These units exhibit a diversity of morpho-sedimentary models controlled by the tectonic activity of the Mediterranean area, which is closely related to the approximation of Africa and Iberia during the Quaternary. There are three well-dated peaks of maximum sea level (T-I: isotopic substage 7a, T-II: isotopic substage 5e, T-III: isotopic substage 5c). A younger episode, T-IV, probably corresponds to the isotopic substage 5a. Episodes T-II, T-III and T-IV were laid down during Last Interglacial age. In addition, three Holocene peaks of maximum sea level: H 1 ca. 5100 yr B.P., H 2 ca. 3500 yr B.P. and H 3 ca. 2400 yr B.P. were found. The three main peaks of the Last Interglacial correspond to the morpho-sedimentary Tyrrhenian units T-II, T-III and T-IV, deposited during a time span of some 45,000 years. Several smaller oscillations can be distinguished within each of these units as subunits separated by erosional surfaces. At least three of such mapable subunits were distinguished within the peak T-II (5e); each lasted ca. 10,500 yr. As the positive oscillations of sea level (H 1, H 2, and H 3) recorded during the present Interglacial (Holocene) are much shorter, we infer that they are smaller-scale fluctuations (2500-1100 yr cycles) within the first oscillation (duration: ca. 10,500 yr) of the first Holocene peak of sea level which has not yet been completed. In addition to changes of sea level, the vertical and lateral arrangement of morpho-sedimentary units, which can be designated as the stratigraphic architecture, depends on tectonics and oceanography, including geoidal and steric changes and coastal dynamics. The coastal dynamics factor largely depends on the exchange of waters between the Atlantic and the Mediterranean. Maximum incursions of water coincides with warm periods (highstands) when the
Effects of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds
International Nuclear Information System (INIS)
Gerhold, Philipp; Kallarackal, Jim; Jansen, Karl
2010-12-01
We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)
Effects of a potential fourth fermion generation on the Higgs boson mass bounds
International Nuclear Information System (INIS)
Gerhold, Philipp; Kallarackal, Jim; Jansen, Karl
2010-12-01
We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)