WorldWideScience

Sample records for models positive matrix

  1. Matrix models with γstring>0

    International Nuclear Information System (INIS)

    Marzban, C.; Viswanathan, R.R.

    1990-12-01

    Within the framework of c = 1 matrix models, we consider multi-matrix models. A connection is established between a D-dimensional gas of fermions (bosons) for odd (even) values of D. A statistical mechanical analysis yields the scaling law for the free energy, and hence the susceptibility exponents for the various models. The exponents turn out to be positive for the multi-matrix models, suggesting that these could represent models of 2 d-gravity coupled to c>1 matter. Whereas in the c=1 case the density of states itself diverges as one approaches the critical point, in the D-matrix models various derivatives of the density of states diverge, with the order of the derivative depending on D. This qualitatively different behaviour of the density of states could be a signal of the conjectured ''phase transition'' at c=1. (author). 14 refs

  2. OD Matrix Acquisition Based on Mobile Phone Positioning Data

    Directory of Open Access Journals (Sweden)

    Xiaoqing ZUO

    2014-06-01

    Full Text Available Dynamic OD matrix is basic data of traffic travel guidance, traffic control, traffic management and traffic planning, and reflects the basic needs of travelers on the traffic network. With the rising popularity of positioning technology and the communication technology and the generation of huge mobile phone users, the mining and use of mobile phone positioning data, can get more traffic intersections and import and export data. These data will be integrated into obtaining the regional OD matrix, which is bound to bring convenience. In this article, mobile phone positioning data used in the data acquisition of intelligent transportation system, research a kind of regional dynamic OD matrix acquisition method based on the mobile phone positioning data. The method based on purpose of transportation, using time series similarity classification algorithm based on piecewise linear representation of the corner point (CP-PLR, mapping each base station cell to traffic zone of different traffic characteristics, and through a series of mapping optimization of base station cell to traffic zone to realize city traffic zone division based on mobile phone traffic data, on the basis, adjacency matrix chosen as the physical data structure of OD matrix storage, the principle of obtaining regional dynamic OD matrix based on the mobile phone positioning data are expounded, and the algorithm of obtaining regional dynamic OD matrix based on mobile phone positioning data are designed and verified.

  3. ARMA Cholesky Factor Models for the Covariance Matrix of Linear Models.

    Science.gov (United States)

    Lee, Keunbaik; Baek, Changryong; Daniels, Michael J

    2017-11-01

    In longitudinal studies, serial dependence of repeated outcomes must be taken into account to make correct inferences on covariate effects. As such, care must be taken in modeling the covariance matrix. However, estimation of the covariance matrix is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcomes these limitations, two Cholesky decomposition approaches have been proposed: modified Cholesky decomposition for autoregressive (AR) structure and moving average Cholesky decomposition for moving average (MA) structure, respectively. However, the correlations of repeated outcomes are often not captured parsimoniously using either approach separately. In this paper, we propose a class of flexible, nonstationary, heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the covariance matrix that we denote as ARMACD. We analyze a recent lung cancer study to illustrate the power of our proposed methods.

  4. q-Virasoro constraints in matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Nedelin, Anton [Dipartimento di Fisica, Università di Milano-Bicocca and INFN, sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Department of Physics and Astronomy, Uppsala university,Box 516, SE-75120 Uppsala (Sweden); Zabzine, Maxim [Department of Physics and Astronomy, Uppsala university,Box 516, SE-75120 Uppsala (Sweden)

    2017-03-20

    The Virasoro constraints play the important role in the study of matrix models and in understanding of the relation between matrix models and CFTs. Recently the localization calculations in supersymmetric gauge theories produced new families of matrix models and we have very limited knowledge about these matrix models. We concentrate on elliptic generalization of hermitian matrix model which corresponds to calculation of partition function on S{sup 3}×S{sup 1} for vector multiplet. We derive the q-Virasoro constraints for this matrix model. We also observe some interesting algebraic properties of the q-Virasoro algebra.

  5. A matrix model for WZW

    International Nuclear Information System (INIS)

    Dorey, Nick; Tong, David; Turner, Carl

    2016-01-01

    We study a U(N) gauged matrix quantum mechanics which, in the large N limit, is closely related to the chiral WZW conformal field theory. This manifests itself in two ways. First, we construct the left-moving Kac-Moody algebra from matrix degrees of freedom. Secondly, we compute the partition function of the matrix model in terms of Schur and Kostka polynomials and show that, in the large N limit, it coincides with the partition function of the WZW model. This same matrix model was recently shown to describe non-Abelian quantum Hall states and the relationship to the WZW model can be understood in this framework.

  6. On bounded rank positive semidefinite matrix completions of extreme partial correlation matrices.

    NARCIS (Netherlands)

    M. Eisenberg-Nagy (Marianna); M. Laurent (Monique); A. Varvitsiotis (Antonios)

    2012-01-01

    textabstractWe study a new geometric graph parameter $egd(G)$, defined as the smallest integer $r\\ge 1$ for which any partial symmetric matrix which is completable to a correlation matrix and whose entries are specified at the positions of the edges of $G$, can be completed to a matrix in the convex

  7. On bounded rank positive semidefinite matrix completions of extreme partial correlation matrices.

    NARCIS (Netherlands)

    M. Eisenberg-Nagy (Marianna); M. Laurent (Monique); A. Varvitsiotis (Antonios)

    2012-01-01

    htmlabstractWe study a new geometric graph parameter egd(G), defined as the smallest integer r ≥ 1 for which any partial symmetric matrix which is completable to a correlation matrix and whose entries are specified at the positions of the edges of G, can be completed to a matrix in the convex hull

  8. Mapping value added positions in facilities management by using a product-process matrix

    DEFF Research Database (Denmark)

    Katchamart, Akarapong

    2013-01-01

    Purpose – The purpose of this exploratory research paper is to present a product-process matrix that assists FM organizations and their stakeholders to map their value added position in their organizations. Using this matrix, FM practitioners are able to assess the existing value added delivering...... of the matrix are an FM product structure and an FM process structure. The supporting empirical data were collected through semi-structured interviews from selected FM organizations supplemented by relevant documents. Findings – Based on a product-process matrix, a typology of FM value added positions...... greater values to the client’s core business. Meanwhile, misaligning dilutes the value delivery. Research limitations/implications – This normative matrix can be used as a decision-making tool for a client to assess its FM performances and activities, and to determine the needs of FM provision...

  9. A quenched c = 1 critical matrix model

    International Nuclear Information System (INIS)

    Qiu, Zongan; Rey, Soo-Jong.

    1990-12-01

    We study a variant of the Penner-Distler-Vafa model, proposed as a c = 1 quantum gravity: 'quenched' matrix model with logarithmic potential. The model is exactly soluble, and exhibits a two-cut branching as observed in multicritical unitary matrix models and multicut Hermitian matrix models. Using analytic continuation of the power in the conventional polynomial potential, we also show that both the Penner-Distler-Vafa model and our 'quenched' matrix model satisfy Virasoro algebra constraints

  10. Modeling food matrix effects on chemical reactivity: Challenges and perspectives.

    Science.gov (United States)

    Capuano, Edoardo; Oliviero, Teresa; van Boekel, Martinus A J S

    2017-06-29

    The same chemical reaction may be different in terms of its position of the equilibrium (i.e., thermodynamics) and its kinetics when studied in different foods. The diversity in the chemical composition of food and in its structural organization at macro-, meso-, and microscopic levels, that is, the food matrix, is responsible for this difference. In this viewpoint paper, the multiple, and interconnected ways the food matrix can affect chemical reactivity are summarized. Moreover, mechanistic and empirical approaches to explain and predict the effect of food matrix on chemical reactivity are described. Mechanistic models aim to quantify the effect of food matrix based on a detailed understanding of the chemical and physical phenomena occurring in food. Their applicability is limited at the moment to very simple food systems. Empirical modeling based on machine learning combined with data-mining techniques may represent an alternative, useful option to predict the effect of the food matrix on chemical reactivity and to identify chemical and physical properties to be further tested. In such a way the mechanistic understanding of the effect of the food matrix on chemical reactions can be improved.

  11. Complex matrix model duality

    International Nuclear Information System (INIS)

    Brown, T.W.

    2010-11-01

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  12. Complex matrix model duality

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W.

    2010-11-15

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  13. Classifying FM Value Positioning by Using a Product-Process Matrix

    DEFF Research Database (Denmark)

    Katchamart, Akarapong

    with the type of facilities processes between FM organizations with their clients. Approach (Theory/Methodology): The paper develops the facilities product - process matrix to allow comparisons of different facilities products with facilities processes and illustrate its degree of value delivering. The building......, characterized by levels of information, knowledge and innovation sharing, and mutual involvement, defines four facilities process types. Positions on the matrix capture the product-process interrelationships in facilities management. Practical Implications: The paper presents propositions of relating...... blocks of matrix are a facilities product structure and a facilities process structure. Results: A facilities product structure, characterized by degrees of facilities product customization, complexity, contingencies involved, defines four facilities product categories. A facilities process structure...

  14. Multi-cut solutions in Chern-Simons matrix models

    Science.gov (United States)

    Morita, Takeshi; Sugiyama, Kento

    2018-04-01

    We elaborate the Chern-Simons (CS) matrix models at large N. The saddle point equations of these matrix models have a curious structure which cannot be seen in the ordinary one matrix models. Thanks to this structure, an infinite number of multi-cut solutions exist in the CS matrix models. Particularly we exactly derive the two-cut solutions at finite 't Hooft coupling in the pure CS matrix model. In the ABJM matrix model, we argue that some of multi-cut solutions might be interpreted as a condensation of the D2-brane instantons.

  15. Modeling and Simulation of Matrix Converter

    DEFF Research Database (Denmark)

    Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede

    2005-01-01

    This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...

  16. Matrix algebra for linear models

    CERN Document Server

    Gruber, Marvin H J

    2013-01-01

    Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f

  17. Table-sized matrix model in fractional learning

    Science.gov (United States)

    Soebagyo, J.; Wahyudin; Mulyaning, E. C.

    2018-05-01

    This article provides an explanation of the fractional learning model i.e. a Table-Sized Matrix model in which fractional representation and its operations are symbolized by the matrix. The Table-Sized Matrix are employed to develop problem solving capabilities as well as the area model. The Table-Sized Matrix model referred to in this article is used to develop an understanding of the fractional concept to elementary school students which can then be generalized into procedural fluency (algorithm) in solving the fractional problem and its operation.

  18. Complexity of the positive semidefinite matrix completion problem with a rank constraint.

    NARCIS (Netherlands)

    M. Eisenberg-Nagy (Marianna); M. Laurent (Monique); A. Varvitsiotis (Antonios); K. Bezdek; A. Deza; Y. Ye

    2013-01-01

    htmlabstractWe consider the decision problem asking whether a partial rational symmetric matrix with an all-ones diagonal can be completed to a full positive semidefinite matrix of rank at most k. We show that this problem is NP-hard for any fixed integer k ≥ 2. Equivalently, for k ≥ 2, it is

  19. Complexity of the positive semidefinite matrix completion problem with a rank constraint.

    NARCIS (Netherlands)

    M. Eisenberg-Nagy (Marianna); M. Laurent (Monique); A. Varvitsiotis (Antonios)

    2012-01-01

    htmlabstractWe consider the decision problem asking whether a partial rational symmetric matrix with an all-ones diagonal can be completed to a full positive semidefinite matrix of rank at most k. We show that this problem is NP-hard for any fixed integer k ≥ 2. Equivalently, for k ≥ 2, it is

  20. Positioning matrix of economic efficiency and complexity: a case study in a university hospital.

    Science.gov (United States)

    Ippolito, Adelaide; Viggiani, Vincenzo

    2014-01-01

    At the end of 2010, the Federico II University Hospital in Naples, Italy, initiated a series of discussions aimed at designing and applying a positioning matrix to its departments. This analysis was developed to create a tool able to extract meaningful information both to increase knowledge about individual departments and to inform the choices of general management during strategic planning. The name given to this tool was the positioning matrix of economic efficiency and complexity. In the matrix, the x-axis measures the ratio between revenues and costs, whereas the y-axis measures the index of complexity, thus showing "profitability" while bearing in mind the complexity of activities. By using the positioning matrix, it was possible to conduct a critical analysis of the characteristics of the Federico II University Hospital and to extract useful information for general management to use during strategic planning at the end of 2010 when defining medium-term objectives. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Complexity of the positive semidefinite matrix completion problem with a rank constraint

    NARCIS (Netherlands)

    Nagy, M.; Laurent, M.; Varvitsiotis, A.; Bezdek, K.; Deza, A.; Ye, Y.

    2013-01-01

    We consider the decision problem asking whether a partial rational symmetric matrix with an all-ones diagonal can be completed to a full positive semidefinite matrix of rank at most k. We show that this problem is NP-hard for any fixed integer k ≥ 2. In other words, for k ≥ 2, it is NP-hard to test

  2. On Chern-Simons Matrix Models

    CERN Document Server

    Garoufalidis, S; Garoufalidis, Stavros; Marino, Marcos

    2006-01-01

    The contribution of reducible connections to the U(N) Chern-Simons invariant of a Seifert manifold $M$ can be expressed in some cases in terms of matrix integrals. We show that the U(N) evaluation of the LMO invariant of any rational homology sphere admits a matrix model representation which agrees with the Chern-Simons matrix integral for Seifert spheres and the trivial connection.

  3. Information matrix estimation procedures for cognitive diagnostic models.

    Science.gov (United States)

    Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei

    2018-03-06

    Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.

  4. Project-matrix models of marketing organization

    Directory of Open Access Journals (Sweden)

    Gutić Dragutin

    2009-01-01

    Full Text Available Unlike theory and practice of corporation organization, in marketing organization numerous forms and contents at its disposal are not reached until this day. It can be well estimated that marketing organization today in most of our companies and in almost all its parts, noticeably gets behind corporation organization. Marketing managers have always been occupied by basic, narrow marketing activities as: sales growth, market analysis, market growth and market share, marketing research, introduction of new products, modification of products, promotion, distribution etc. They rarely found it necessary to focus a bit more to different aspects of marketing management, for example: marketing planning and marketing control, marketing organization and leading. This paper deals with aspects of project - matrix marketing organization management. Two-dimensional and more-dimensional models are presented. Among two-dimensional, these models are analyzed: Market management/products management model; Products management/management of product lifecycle phases on market model; Customers management/marketing functions management model; Demand management/marketing functions management model; Market positions management/marketing functions management model. .

  5. Elements of matrix modeling and computing with Matlab

    CERN Document Server

    White, Robert E

    2006-01-01

    As discrete models and computing have become more common, there is a need to study matrix computation and numerical linear algebra. Encompassing a diverse mathematical core, Elements of Matrix Modeling and Computing with MATLAB examines a variety of applications and their modeling processes, showing you how to develop matrix models and solve algebraic systems. Emphasizing practical skills, it creates a bridge from problems with two and three variables to more realistic problems that have additional variables. Elements of Matrix Modeling and Computing with MATLAB focuses on seven basic applicat

  6. Factorisations for partition functions of random Hermitian matrix models

    International Nuclear Information System (INIS)

    Jackson, D.M.; Visentin, T.I.

    1996-01-01

    The partition function Z N , for Hermitian-complex matrix models can be expressed as an explicit integral over R N , where N is a positive integer. Such an integral also occurs in connection with random surfaces and models of two dimensional quantum gravity. We show that Z N can be expressed as the product of two partition functions, evaluated at translated arguments, for another model, giving an explicit connection between the two models. We also give an alternative computation of the partition function for the φ 4 -model.The approach is an algebraic one and holds for the functions regarded as formal power series in the appropriate ring. (orig.)

  7. Estimation in a multiplicative mixed model involving a genetic relationship matrix

    Directory of Open Access Journals (Sweden)

    Eccleston John A

    2009-04-01

    Full Text Available Abstract Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments.

  8. An interpolation problem for completely positive maps on matrix algebras: solvability and parametrization

    Czech Academy of Sciences Publication Activity Database

    Ambrozie, Calin-Grigore; Gheondea, A.

    2015-01-01

    Roč. 63, č. 4 (2015), s. 826-851 ISSN 0308-1087 R&D Projects: GA AV ČR IAA100190903 Institutional support: RVO:67985840 Keywords : Choi matrix * completely positive * density matrix Subject RIV: BA - General Mathematics Impact factor: 0.761, year: 2015 http://www.tandfonline.com/doi/abs/10.1080/03081087.2014.903253

  9. Chern-Simons matrix models and unoriented strings

    International Nuclear Information System (INIS)

    Halmagyi, Nick; Yasnov, Vadim

    2004-01-01

    For matrix models with measure on the Lie algebra of SO/Sp, the sub-leading free energy is given by F 1 (S) ±{1/4}({δF 0 (S)}/{δS}). Motivated by the fact that this relationship does not hold for Chern-Simons theory on S 3 , we calculate the sub-leading free energy in the matrix model for this theory, which is a Gaussian matrix model with Haar measure on the group SO/Sp. We derive a quantum loop equation for this matrix model and then find that F 1 is an integral of the leading order resolvent over the spectral curve. We explicitly calculate this integral for quadratic potential and find agreement with previous studies of SO/Sp Chern-Simons theory. (author)

  10. Positive semidefinite matrix completion, universal rigidity and the Strong Arnold Property

    NARCIS (Netherlands)

    M. Laurent (Monique); A. Varvitsiotis (Antonios)

    2014-01-01

    htmlabstractThis paper addresses the following three topics: positive semidefinite (psd) matrix completions, universal rigidity of frameworks, and the Strong Arnold Property (SAP). We show some strong connections among these topics, using semidefinite programming as unifying theme. Our main

  11. Positive semidefinite matrix completion, universal rigidity and the Strong Arnold Property

    NARCIS (Netherlands)

    Laurent, Monique; Varvitsiotis, A.

    This paper addresses the following three topics: positive semidefinite (psd) matrix completions, universal rigidity of frameworks, and the Strong Arnold Property (SAP). We show some strong connections among these topics, using semidefinite programming as unifying theme. Our main contribution is a

  12. On renormalization group flow in matrix model

    International Nuclear Information System (INIS)

    Gao, H.B.

    1992-10-01

    The renormalization group flow recently found by Brezin and Zinn-Justin by integrating out redundant entries of the (N+1)x(N+1) Hermitian random matrix is studied. By introducing explicitly the RG flow parameter, and adding suitable counter terms to the matrix potential of the one matrix model, we deduce some interesting properties of the RG trajectories. In particular, the string equation for the general massive model interpolating between the UV and IR fixed points turns out to be a consequence of RG flow. An ambiguity in the UV region of the RG trajectory is remarked to be related to the large order behaviour of the one matrix model. (author). 7 refs

  13. Convergence of Transition Probability Matrix in CLVMarkov Models

    Science.gov (United States)

    Permana, D.; Pasaribu, U. S.; Indratno, S. W.; Suprayogi, S.

    2018-04-01

    A transition probability matrix is an arrangement of transition probability from one states to another in a Markov chain model (MCM). One of interesting study on the MCM is its behavior for a long time in the future. The behavior is derived from one property of transition probabilty matrix for n steps. This term is called the convergence of the n-step transition matrix for n move to infinity. Mathematically, the convergence of the transition probability matrix is finding the limit of the transition matrix which is powered by n where n moves to infinity. The convergence form of the transition probability matrix is very interesting as it will bring the matrix to its stationary form. This form is useful for predicting the probability of transitions between states in the future. The method usually used to find the convergence of transition probability matrix is through the process of limiting the distribution. In this paper, the convergence of the transition probability matrix is searched using a simple concept of linear algebra that is by diagonalizing the matrix.This method has a higher level of complexity because it has to perform the process of diagonalization in its matrix. But this way has the advantage of obtaining a common form of power n of the transition probability matrix. This form is useful to see transition matrix before stationary. For example cases are taken from CLV model using MCM called Model of CLV-Markov. There are several models taken by its transition probability matrix to find its convergence form. The result is that the convergence of the matrix of transition probability through diagonalization has similarity with convergence with commonly used distribution of probability limiting method.

  14. Global unitary fixing and matrix-valued correlations in matrix models

    International Nuclear Information System (INIS)

    Adler, Stephen L.; Horwitz, Lawrence P.

    2003-01-01

    We consider the partition function for a matrix model with a global unitary invariant energy function. We show that the averages over the partition function of global unitary invariant trace polynomials of the matrix variables are the same when calculated with any choice of a global unitary fixing, while averages of such polynomials without a trace define matrix-valued correlation functions, that depend on the choice of unitary fixing. The unitary fixing is formulated within the standard Faddeev-Popov framework, in which the squared Vandermonde determinant emerges as a factor of the complete Faddeev-Popov determinant. We give the ghost representation for the FP determinant, and the corresponding BRST invariance of the unitary-fixed partition function. The formalism is relevant for deriving Ward identities obeyed by matrix-valued correlation functions

  15. An algorithm to compute the square root of 3x3 positive definite matrix

    International Nuclear Information System (INIS)

    Franca, L.P.

    1988-06-01

    An efficient closed form to compute the square root of a 3 x 3 positive definite matrix is presented. The derivation employs the Cayley-Hamilton theorem avoiding calculation of eigenvectors. We show that evaluation of one eigenvalue of the square root matrix is needed and can not be circumvented. The algorithm is robust and efficient. (author) [pt

  16. String beta function equations from c=1 matrix model

    CERN Document Server

    Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R

    1995-01-01

    We derive the \\sigma-model tachyon \\beta-function equation of 2-dimensional string theory, in the background of flat space and linear dilaton, working entirely within the c=1 matrix model. The tachyon \\beta-function equation is satisfied by a \\underbar{nonlocal} and \\underbar{nonlinear} combination of the (massless) scalar field of the matrix model. We discuss the possibility of describing the `discrete states' as well as other possible gravitational and higher tensor backgrounds of 2-dimensional string theory within the c=1 matrix model. We also comment on the realization of the W-infinity symmetry of the matrix model in the string theory. The present work reinforces the viewpoint that a nonlocal (and nonlinear) transform is required to extract the space-time physics of 2-dimensional string theory from the c=1 matrix model.

  17. Towards Matrix Models in IIB Superstrings

    OpenAIRE

    Olesen, P.

    1997-01-01

    I review the properties of a matrix action of relevance for IIB superstrings. This model generalizes the action proposed by Ishibashi, Kawai, Kitazawa, and Tsuchiya by introducing an auxillary field Y, which is the matrix version of the auxillary field g in the Schild action.

  18. Multiscale Modeling of Ceramic Matrix Composites

    Science.gov (United States)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  19. Orbifold matrix models and fuzzy extra dimensions

    CERN Document Server

    Chatzistavrakidis, Athanasios; Zoupanos, George

    2011-01-01

    We revisit an orbifold matrix model obtained as a restriction of the type IIB matrix model on a Z_3-invariant sector. An investigation of its moduli space of vacua is performed and issues related to chiral gauge theory and gravity are discussed. Modifications of the orbifolded model triggered by Chern-Simons or mass deformations are also analyzed. Certain vacua of the modified models exhibit higher-dimensional behaviour with internal geometries related to fuzzy spheres.

  20. Chern-Simons matrix models, two-dimensional Yang-Mills theory and the Sutherland model

    International Nuclear Information System (INIS)

    Szabo, Richard J; Tierz, Miguel

    2010-01-01

    We derive some new relationships between matrix models of Chern-Simons gauge theory and of two-dimensional Yang-Mills theory. We show that q-integration of the Stieltjes-Wigert matrix model is the discrete matrix model that describes q-deformed Yang-Mills theory on S 2 . We demonstrate that the semiclassical limit of the Chern-Simons matrix model is equivalent to the Gross-Witten model in the weak-coupling phase. We study the strong-coupling limit of the unitary Chern-Simons matrix model and show that it too induces the Gross-Witten model, but as a first-order deformation of Dyson's circular ensemble. We show that the Sutherland model is intimately related to Chern-Simons gauge theory on S 3 , and hence to q-deformed Yang-Mills theory on S 2 . In particular, the ground-state wavefunction of the Sutherland model in its classical equilibrium configuration describes the Chern-Simons free energy. The correspondence is extended to Wilson line observables and to arbitrary simply laced gauge groups.

  1. On the transfer matrix of the supersymmetric eight-vertex model. I. Periodic boundary conditions

    Science.gov (United States)

    Hagendorf, Christian; Liénardy, Jean

    2018-03-01

    The square-lattice eight-vertex model with vertex weights a, b, c, d obeying the relation (a^2+ab)(b^2+ab) = (c^2+ab)(d^2+ab) and periodic boundary conditions is considered. It is shown that the transfer matrix of the model for L  =  2n  +  1 vertical lines and periodic boundary conditions along the horizontal direction possesses the doubly degenerate eigenvalue \\Thetan = (a+b){\\hspace{0pt}}2n+1 . This proves a conjecture by Stroganov from 2001. The proof uses the supersymmetry of a related XYZ spin-chain Hamiltonian. The eigenstates of the transfer matrix corresponding to \\Thetan are shown to be the ground states of the spin-chain Hamiltonian. Moreover, for positive vertex weights \\Thetan is the largest eigenvalue of the transfer matrix.

  2. A Novel Method to Implement the Matrix Pencil Super Resolution Algorithm for Indoor Positioning

    Directory of Open Access Journals (Sweden)

    Tariq Jamil Saifullah Khanzada

    2011-10-01

    Full Text Available This article highlights the estimation of the results for the algorithms implemented in order to estimate the delays and distances for the indoor positioning system. The data sets for the transmitted and received signals are captured at a typical outdoor and indoor area. The estimation super resolution algorithms are applied. Different state of art and super resolution techniques based algorithms are applied to avail the optimal estimates of the delays and distances between the transmitted and received signals and a novel method for matrix pencil algorithm is devised. The algorithms perform variably at different scenarios of transmitted and received positions. Two scenarios are experienced, for the single antenna scenario the super resolution techniques like ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique and theMatrix Pencil algorithms give optimal performance compared to the conventional techniques. In two antenna scenario RootMUSIC and Matrix Pencil algorithm performed better than other algorithms for the distance estimation, however, the accuracy of all the algorithms is worst than the single antenna scenario. In all cases our devised Matrix Pencil algorithm achieved the best estimation results.

  3. Risk matrix model for rotating equipment

    Directory of Open Access Journals (Sweden)

    Wassan Rano Khan

    2014-07-01

    Full Text Available Different industries have various residual risk levels for their rotating equipment. Accordingly the occurrence rate of the failures and associated failure consequences categories are different. Thus, a generalized risk matrix model is developed in this study which can fit various available risk matrix standards. This generalized risk matrix will be helpful to develop new risk matrix, to fit the required risk assessment scenario for rotating equipment. Power generation system was taken as case study. It was observed that eight subsystems were under risk. Only vibration monitor system was under high risk category, while remaining seven subsystems were under serious and medium risk categories.

  4. Mirror of the refined topological vertex from a matrix model

    CERN Document Server

    Eynard, B

    2011-01-01

    We find an explicit matrix model computing the refined topological vertex, starting from its representation in terms of plane partitions. We then find the spectral curve of that matrix model, and thus the mirror symmetry of the refined vertex. With the same method we also find a matrix model for the strip geometry, and we find its mirror curve. The fact that there is a matrix model shows that the refined topological string amplitudes also satisfy the remodeling the B-model construction.

  5. Les Houches lectures on matrix models and topological strings

    CERN Document Server

    Marino, M

    2004-01-01

    In these lecture notes for the Les Houches School on Applications of Random Matrices in Physics we give an introduction to the connections between matrix models and topological strings. We first review some basic results of matrix model technology and then we focus on type B topological strings. We present the main results of Dijkgraaf and Vafa describing the spacetime string dynamics on certain Calabi-Yau backgrounds in terms of matrix models, and we emphasize the connection to geometric transitions and to large N gauge/string duality. We also use matrix model technology to analyze large N Chern-Simons theory and the Gopakumar-Vafa transition.

  6. Matrix diffusion model. In situ tests using natural analogues

    International Nuclear Information System (INIS)

    Rasilainen, K.

    1997-11-01

    Matrix diffusion is an important retarding and dispersing mechanism for substances carried by groundwater in fractured bedrock. Natural analogues provide, unlike laboratory or field experiments, a possibility to test the model of matrix diffusion in situ over long periods of time. This thesis documents quantitative model tests against in situ observations, done to support modelling of matrix diffusion in performance assessments of nuclear waste repositories

  7. Matrix Tricks for Linear Statistical Models

    CERN Document Server

    Puntanen, Simo; Styan, George PH

    2011-01-01

    In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple "tricks" which simplify and clarify the treatment of a problem - both for the student and

  8. Loop equations for multi-cut matrix models

    International Nuclear Information System (INIS)

    Akemann, G.

    1995-03-01

    The loop equation for the complex one-matrix model with a multi-cut structure is derived and solved in the planar limit. An iterative scheme for higher genus contributions to the free energy and the multi-loop correlators is presented for the two-cut model, where explicit results are given up to and including genus two. The double-scaling limit is analyzed and the relation to the one-cut solution of the hermitian and complex one-matrix model is discussed. (orig.)

  9. Strategy BMT Al-Ittihad Using Matrix IE, Matrix SWOT 8K, Matrix SPACE and Matrix TWOS

    Directory of Open Access Journals (Sweden)

    Nofrizal Nofrizal

    2018-03-01

    Full Text Available This research aims to formulate and select BMT Al-Ittihad Rumbai strategy to face the changing of business environment both from internal environment such as organization resources, finance, member and external business such as competitor, economy, politics and others. This research method used Analysis of EFAS, IFAS, IE Matrix, SWOT-8K Matrix, SPACE Matrix and TWOS Matrix. our hope from this research it can assist BMT Al-Ittihad in formulating and selecting strategies for the sustainability of BMT Al-Ittihad in the future. The sample in this research is using purposive sampling technique that is the manager and leader of BMT Al-IttihadRumbaiPekanbaru. The result of this research shows that the position of BMT Al-Ittihad using IE Matrix, SWOT-8K Matrix and SPACE Matrix is in growth position, stabilization and aggressive. The choice of strategy after using TWOS Matrix is market penetration, market development, vertical integration, horizontal integration, and stabilization (careful.

  10. Random matrix models for phase diagrams

    International Nuclear Information System (INIS)

    Vanderheyden, B; Jackson, A D

    2011-01-01

    We describe a random matrix approach that can provide generic and readily soluble mean-field descriptions of the phase diagram for a variety of systems ranging from quantum chromodynamics to high-T c materials. Instead of working from specific models, phase diagrams are constructed by averaging over the ensemble of theories that possesses the relevant symmetries of the problem. Although approximate in nature, this approach has a number of advantages. First, it can be useful in distinguishing generic features from model-dependent details. Second, it can help in understanding the 'minimal' number of symmetry constraints required to reproduce specific phase structures. Third, the robustness of predictions can be checked with respect to variations in the detailed description of the interactions. Finally, near critical points, random matrix models bear strong similarities to Ginsburg-Landau theories with the advantage of additional constraints inherited from the symmetries of the underlying interaction. These constraints can be helpful in ruling out certain topologies in the phase diagram. In this Key Issues Review, we illustrate the basic structure of random matrix models, discuss their strengths and weaknesses, and consider the kinds of system to which they can be applied.

  11. Notes on Mayer expansions and matrix models

    International Nuclear Information System (INIS)

    Bourgine, Jean-Emile

    2014-01-01

    Mayer cluster expansion is an important tool in statistical physics to evaluate grand canonical partition functions. It has recently been applied to the Nekrasov instanton partition function of N=2 4d gauge theories. The associated canonical model involves coupled integrations that take the form of a generalized matrix model. It can be studied with the standard techniques of matrix models, in particular collective field theory and loop equations. In the first part of these notes, we explain how the results of collective field theory can be derived from the cluster expansion. The equalities between free energies at first orders is explained by the discrete Laplace transform relating canonical and grand canonical models. In a second part, we study the canonical loop equations and associate them with similar relations on the grand canonical side. It leads to relate the multi-point densities, fundamental objects of the matrix model, to the generating functions of multi-rooted clusters. Finally, a method is proposed to derive loop equations directly on the grand canonical model

  12. Phenomenological model of nanocluster in polymer matrix

    International Nuclear Information System (INIS)

    Oksengendler, B.L.; Turaeva, N.N.; Azimov, J.; Rashidova, S.Sh.

    2010-01-01

    The phenomenological model of matrix nanoclusters is presented based on the Wood-Saxon potential used in nuclear physics. In frame of this model the following problems have been considered: calculation of width of diffusive layer between nanocluster and matrix, definition of Tamm surface electronic state taking into account the diffusive layer width, receiving the expression for specific magnetic moment of nanoclusters taking into account the interface width. (authors)

  13. Modeling cometary photopolarimetric characteristics with Sh-matrix method

    Science.gov (United States)

    Kolokolova, L.; Petrov, D.

    2017-12-01

    Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.

  14. Matrix diffusion model. In situ tests using natural analogues

    Energy Technology Data Exchange (ETDEWEB)

    Rasilainen, K. [VTT Energy, Espoo (Finland)

    1997-11-01

    Matrix diffusion is an important retarding and dispersing mechanism for substances carried by groundwater in fractured bedrock. Natural analogues provide, unlike laboratory or field experiments, a possibility to test the model of matrix diffusion in situ over long periods of time. This thesis documents quantitative model tests against in situ observations, done to support modelling of matrix diffusion in performance assessments of nuclear waste repositories. 98 refs. The thesis includes also eight previous publications by author.

  15. Matrix models with non-even potentials

    International Nuclear Information System (INIS)

    Marzban, C.; Raju Viswanathan, R.

    1990-07-01

    We study examples of hermitian 1-matrix models with even and odd terms present in the potential. A definition of criticality is presented which in these cases leads to multicritical models falling into the same universality classes as those of the purely even potentials. We also show that, in our examples, for polynomial potentials ending in odd powers (unbounded) the coupling constants, in addition to their expected real critical values, also admit critical values which alternate between imaginary/real values in the odd/even terms. We find that, remarkably, the ensuing statistical models are insensitive to the real/imaginary nature of these critical values. This feature may be of relevance in the recently-studied connection between matrix models and the moduli space of Riemann surfaces. (author). 9 refs

  16. P-matrix in the quark compound bag model

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Narodetskij, I.M.; Veselov, A.I.

    1983-01-01

    Meaning of the P-matrix analysis is discussed within the quark compound bag (QCB) model. The most general version of this model is considered including the arbitrary coupling between quark and hadronic channels and the arbitrary smearipg of the surface interection region. The behaviour of P-matrix poles as functions of matching radius r,L0 is discussed for r 0 > + . In conclusion are presented the parameters of an illustrative set of NN potentials that has been obtained from the P-matrix fit to experimental data

  17. A new method to quantify the health risks from sources of perfluoroalkyl substances, combined with positive matrix factorization and risk assessment models.

    Science.gov (United States)

    Xu, Jiao; Shi, Guo-Liang; Guo, Chang-Sheng; Wang, Hai-Ting; Tian, Ying-Ze; Huangfu, Yan-Qi; Zhang, Yuan; Feng, Yin-Chang; Xu, Jian

    2018-01-01

    A hybrid model based on the positive matrix factorization (PMF) model and the health risk assessment model for assessing risks associated with sources of perfluoroalkyl substances (PFASs) in water was established and applied at Dianchi Lake to test its applicability. The new method contains 2 stages: 1) the sources of PFASs were apportioned by the PMF model and 2) the contribution of health risks from each source was calculated by the new hybrid model. Two factors were extracted by PMF, with factor 1 identified as aqueous fire-fighting foams source and factor 2 as fluoropolymer manufacturing and processing and perfluorooctanoic acid production source. The health risk of PFASs in the water assessed by the health risk assessment model was 9.54 × 10 -7  a -1 on average, showing no obvious adverse effects to human health. The 2 sources' risks estimated by the new hybrid model ranged from 2.95 × 10 -10 to 6.60 × 10 -6  a -1 and from 1.64 × 10 -7 to 1.62 × 10 -6  a -1 , respectively. The new hybrid model can provide useful information on the health risks of PFAS sources, which is helpful for pollution control and environmental management. Environ Toxicol Chem 2018;37:107-115. © 2017 SETAC. © 2017 SETAC.

  18. Exactly soluble matrix models

    International Nuclear Information System (INIS)

    Raju Viswanathan, R.

    1991-09-01

    We study examples of one dimensional matrix models whose potentials possess an energy spectrum that can be explicitly determined. This allows for an exact solution in the continuum limit. Specifically, step-like potentials and the Morse potential are considered. The step-like potentials show no scaling behaviour and the Morse potential (which corresponds to a γ = -1 model) has the interesting feature that there are no quantum corrections to the scaling behaviour in the continuum limit. (author). 5 refs

  19. Symmetries of integrable hierarchies and matrix model constraints

    International Nuclear Information System (INIS)

    Vos, K. de

    1992-01-01

    The orbit construction associates a soliton hierarchy to every level-one vertex realization of a simply laced affine Kac-Moody algebra g. We show that the τ-function of such a hierarchy has the (truncated) Virasoro algebra as an algebra of infinitesimal symmetry transformations. To prove this we use an appropriate bilinear form of these hierarchies together with the coset construction of conformal field theory. For A 1 (1) the orbit construction gives either the Toda or the KdV hierarchy. These both occur in the one-matrix model of two-dimensional quantum gravity, before and after the double scaling limit respectively. The truncated Virasoro symmetry algebra is exactly the algebra of constraints of the one-matrix model. The partition function of the one-matrix model is therefore an invariant τ-function. We also consider the case of A 1 (1) with l>1. Surprisingly, the symmetry algebra in that case is not simply a truncated Casimir algebra. It appears that again only the Virasoro symmetry survives. We speculate on the relation with multi-matrix models. (orig.)

  20. Considerations Concerning Matrix Diagram Transformations Associated with Mathematical Model Study of a Three-phase Transformer

    Directory of Open Access Journals (Sweden)

    Mihaela Poienar

    2014-09-01

    Full Text Available The clock hour figure mathematical model of a threephase transformer can be expressed, in the most plain form, through a 3X3 square matrix, called code matrix. The lines position reflect the modification in the high voltage windings terminal and the columns position reflect the modification in the low voltage winding terminal. The main changes on the transformer winding terminal are: the circular permutation of connection between windings; terminal supply reversal; reverse direction for the phase winding wrapping; reversal the beginning with the end for a phase winding; the connection conversion from N in Z between phase winding or inverse. The analytical form of these changes actually affect the configuration of the mathematical model expressed through a transformations diagram proposed and analyzed in two ways: bipolar version and unipolar version (fanwise. In the end of the paper are presented about the practical exploitation of the transformations diagram.

  1. Type II pp-wave matrix models from point-like gravitons

    International Nuclear Information System (INIS)

    Lozano, Yolanda; RodrIguez-Gomez, Diego

    2006-01-01

    The BMN Matrix model can be regarded as a theory of coincident M-theory gravitons, which expand by Myers dielectric effect into the 2-sphere and 5-sphere giant graviton vacua of the theory. In this note we show that, in the same fashion, Matrix String theory in Type IIA pp-wave backgrounds arises from the action for coincident Type IIA gravitons. In Type IIB, we show that the action for coincident gravitons in the maximally supersymmetric pp-wave background gives rise to a Matrix model which supports fuzzy 3-sphere giant graviton vacua with the right behavior in the classical limit. We discuss the relation between our Matrix model and the Tiny Graviton Matrix theory

  2. 3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects

    International Nuclear Information System (INIS)

    Pupurs, A; Varna, J

    2012-01-01

    Fiber/matrix interface debond growth is one of the main mechanisms of damage evolution in unidirectional (UD) polymer composites. Because for polymer composites the fiber strain to failure is smaller than for the matrix multiple fiber breaks occur at random positions when high mechanical stress is applied to the composite. The energy released due to each fiber break is usually larger than necessary for the creation of a fiber break therefore a partial debonding of fiber/matrix interface is typically observed. Thus the stiffness reduction of UD composite is contributed both from the fiber breaks and from the interface debonds. The aim of this paper is to analyze the debond growth in carbon fiber/epoxy and glass fiber/epoxy UD composites using fracture mechanics principles by calculation of energy release rate G II . A 3-D FEM model is developed for calculation of energy release rate for fiber/matrix interface debonds at different locations in the composite including the composite surface region where the stress state differs from the one in the bulk composite. In the model individual partially debonded fiber is surrounded by matrix region and embedded in a homogenized composite.

  3. The classical r-matrix method for nonlinear sigma-model

    OpenAIRE

    Sevostyanov, Alexey

    1995-01-01

    The canonical Poisson structure of nonlinear sigma-model is presented as a Lie-Poisson r-matrix bracket on coadjoint orbits. It is shown that the Poisson structure of this model is determined by some `hidden singularities' of the Lax matrix.

  4. Source apportionment of atmospheric bulk deposition in the Belgrade urban area using Positive Matrix factorization

    Science.gov (United States)

    Tasić, M.; Mijić, Z.; Rajšić, S.; Stojić, A.; Radenković, M.; Joksić, J.

    2009-04-01

    The primary objective of the present study was to assess anthropogenic impacts of heavy metals to the environment by determination of total atmospheric deposition of heavy metals. Atmospheric depositions (wet + dry) were collected monthly, from June 2002 to December 2006, at three urban locations in Belgrade, using bulk deposition samplers. Concentrations of Fe, Al, Pb, Zn, Cu, Ni, Mn, Cr, V, As and Cd were analyzed using atomic absorption spectrometry. Based upon these results, the study attempted to examine elemental associations in atmospheric deposition and to elucidate the potential sources of heavy metal contaminants in the region by the use of multivariate receptor model Positive Matrix Factorization (PMF).

  5. Source apportionment of atmospheric bulk deposition in the Belgrade urban area using Positive Matrix factorization

    International Nuclear Information System (INIS)

    Tasic, M; Mijic, Z; Rajsic, S; Stojic, A; Radenkovic, M; Joksic, J

    2009-01-01

    The primary objective of the present study was to assess anthropogenic impacts of heavy metals to the environment by determination of total atmospheric deposition of heavy metals. Atmospheric depositions (wet + dry) were collected monthly, from June 2002 to December 2006, at three urban locations in Belgrade, using bulk deposition samplers. Concentrations of Fe, Al, Pb, Zn, Cu, Ni, Mn, Cr, V, As and Cd were analyzed using atomic absorption spectrometry. Based upon these results, the study attempted to examine elemental associations in atmospheric deposition and to elucidate the potential sources of heavy metal contaminants in the region by the use of multivariate receptor model Positive Matrix Factorization (PMF).

  6. Matrix model and time-like linear dila ton matter

    International Nuclear Information System (INIS)

    Takayanagi, Tadashi

    2004-01-01

    We consider a matrix model description of the 2d string theory whose matter part is given by a time-like linear dilaton CFT. This is equivalent to the c=1 matrix model with a deformed, but very simple Fermi surface. Indeed, after a Lorentz transformation, the corresponding 2d spacetime is a conventional linear dila ton background with a time-dependent tachyon field. We show that the tree level scattering amplitudes in the matrix model perfectly agree with those computed in the world-sheet theory. The classical trajectories of fermions correspond to the decaying D-boranes in the time-like linear dilaton CFT. We also discuss the ground ring structure. Furthermore, we study the properties of the time-like Liouville theory by applying this matrix model description. We find that its ground ring structure is very similar to that of the minimal string. (author)

  7. Constructing service-oriented architecture adoption maturity matrix using Kano model

    Science.gov (United States)

    Hamzah, Mohd Hamdi Irwan; Baharom, Fauziah; Mohd, Haslina

    2017-10-01

    Commonly, organizations adopted Service-Oriented Architecture (SOA) because it can provide a flexible reconfiguration and can reduce the development time and cost. In order to guide the SOA adoption, previous industry and academia have constructed SOA maturity model. However, there is a limited number of works on how to construct the matrix in the previous SOA maturity model. Therefore, this study is going to provide a method that can be used in order to construct the matrix in the SOA maturity model. This study adapts Kano Model to construct the cross evaluation matrix focused on SOA adoption IT and business benefits. This study found that Kano Model can provide a suitable and appropriate method for constructing the cross evaluation matrix in SOA maturity model. Kano model also can be used to plot, organize and better represent the evaluation dimension for evaluating the SOA adoption.

  8. Lorentzian 3d gravity with wormholes via matrix models

    NARCIS (Netherlands)

    Ambjørn, J.; Jurkiewicz, J.; Loll, R.; Vernizzi, G.

    2001-01-01

    We uncover a surprising correspondence between a non-perturbative formulation of three-dimensional Lorentzian quantum gravity and a hermitian two-matrix model with ABAB-interaction. The gravitational transfer matrix can be expressed as the logarithm of a two-matrix integral, and we deduce from

  9. Two-matrix models and c =1 string theory

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong Chuansheng

    1994-05-01

    We show that the most general two-matrix model with bilinear coupling underlies c = 1 string theory. More precisely we prove that W 1+∞ constraints, a subset of the correlation functions and the integrable hierarchy characterizing such two-matrix model, correspond exactly to the W 1+∞ constraints, to the discrete tachyon correlation functions and the integrable hierarchy of the c = 1 string theory. (orig.)

  10. A matrix model from string field theory

    Directory of Open Access Journals (Sweden)

    Syoji Zeze

    2016-09-01

    Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large $N$ matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.

  11. Complex curve of the two-matrix model and its tau-function

    International Nuclear Information System (INIS)

    Kazakov, Vladimir A; Marshakov, Andrei

    2003-01-01

    We study the Hermitian and normal two-matrix models in planar approximation for an arbitrary number of eigenvalue supports. Its planar graph interpretation is given. The study reveals a general structure of the underlying analytic complex curve, different from the hyperelliptic curve of the one-matrix model. The matrix model quantities are expressed through the periods of meromorphic generating differential on this curve and the partition function of the multiple support solution, as a function of filling numbers and coefficients of the matrix potential, is shown to be a quasiclassical tau-function. The relation to N = 1 supersymmetric Yang-Mills theories is discussed. A general class of solvable multi-matrix models with tree-like interactions is considered

  12. Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models

    Science.gov (United States)

    Córdova, Clay; Heidenreich, Ben; Popolitov, Alexandr; Shakirov, Shamil

    2018-02-01

    We find an exact solution to strongly-coupled matrix models with a single-trace monomial potential. Our solution yields closed form expressions for the partition function as well as averages of Schur functions. The results are fully factorized into a product of terms linear in the rank of the matrix and the parameters of the model. We extend our formulas to include both logarithmic and finite-difference deformations, thereby generalizing the celebrated Selberg and Kadell integrals. We conjecture a formula for correlators of two Schur functions in these models, and explain how our results follow from a general orbifold-like procedure that can be applied to any one-matrix model with a single-trace potential.

  13. Modelling of polypropylene fibre-matrix composites using finite element analysis

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available Polypropylene (PP fibre-matrix composites previously prepared and studied experimentally were modelled using finite element analysis (FEA in this work. FEA confirmed that fibre content and composition controlled stress distribution in all-PP composites. The stress concentration at the fibre-matrix interface became greater with less fibre content. Variations in fibre composition were more significant in higher stress regions of the composites. When fibre modulus increased, the stress concentration at the fibres decreased and the shear stress at the fibre-matrix interface became more intense. The ratio between matrix modulus and fibre modulus was important, as was the interfacial stress in reducing premature interfacial failure and increasing mechanical properties. The model demonstrated that with low fibre concentration, there were insufficient fibres to distribute the applied stress. Under these conditions the matrix yielded when the applied stress reached the matrix yield stress, resulting in increased fibre axial stress. When the fibre content was high, there was matrix depletion and stress transfer was inefficient. The predictions of the FEA model were consistent with experimental and published data.

  14. String states, loops and effective actions in noncommutative field theory and matrix models

    Directory of Open Access Journals (Sweden)

    Harold C. Steinacker

    2016-09-01

    Full Text Available Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  15. String states, loops and effective actions in noncommutative field theory and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold C., E-mail: harold.steinacker@univie.ac.at

    2016-09-15

    Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  16. Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.

    Science.gov (United States)

    Escribano, J; Sánchez, M T; García-Aznar, J M

    2015-11-07

    Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Matrix models as non-commutative field theories on R3

    International Nuclear Information System (INIS)

    Livine, Etera R

    2009-01-01

    In the context of spin foam models for quantum gravity, group field theories are a useful tool allowing on the one hand a non-perturbative formulation of the partition function and on the other hand admitting an interpretation as generalized matrix models. Focusing on 2d group field theories, we review their explicit relation to matrix models and show their link to a class of non-commutative field theories invariant under a quantum-deformed 3d Poincare symmetry. This provides a simple relation between matrix models and non-commutative geometry. Moreover, we review the derivation of effective 2d group field theories with non-trivial propagators from Boulatov's group field theory for 3d quantum gravity. Besides the fact that this gives a simple and direct derivation of non-commutative field theories for the matter dynamics coupled to (3d) quantum gravity, these effective field theories can be expressed as multi-matrix models with a non-trivial coupling between matrices of different sizes. It should be interesting to analyze this new class of theories, both from the point of view of matrix models as integrable systems and for the study of non-commutative field theories.

  18. The matrix effect in secondary ion mass spectrometry

    Science.gov (United States)

    Seah, M. P.; Shard, A. G.

    2018-05-01

    Matrix effects in the secondary ion mass spectrometry (SIMS) of selected elemental systems have been analyzed to investigate the applicability of a mathematical description of the matrix effect, called here the charge transfer (CT) model. This model was originally derived for proton exchange and organic positive secondary ions, to characterise the enhancement or suppression of intensities in organic binary systems. In the systems considered in this paper protons are specifically excluded, which enables an assessment of whether the model applies for electrons as well. The present importance is in organic systems but, here we analyse simpler inorganic systems. Matrix effects in elemental systems cannot involve proton transfer if there are no protons present but may be caused by electron transfer and so electron transfer may also be involved in the matrix effects for organic systems. There are general similarities in both the magnitudes of the ion intensities as well as the matrix effects for both positive and negative secondary ions in both systems and so the CT model may be more widely applicable. Published SIMS analyses of binary elemental mixtures are analyzed. The data of Kim et al., for the Pt/Co system, provide, with good precision, data for such a system. This gives evidence for the applicability of the CT model, where electron, rather than proton, transfer is the matrix enhancing and suppressing mechanism. The published data of Prudon et al., for the important Si/Ge system, provides further evidence for the effects for both positive and negative secondary ions and allows rudimentary rules to be developed for the enhancing and suppressing species.

  19. Matrix model calculations beyond the spherical limit

    International Nuclear Information System (INIS)

    Ambjoern, J.; Chekhov, L.; Kristjansen, C.F.; Makeenko, Yu.

    1993-01-01

    We propose an improved iterative scheme for calculating higher genus contributions to the multi-loop (or multi-point) correlators and the partition function of the hermitian one matrix model. We present explicit results up to genus two. We develop a version which gives directly the result in the double scaling limit and present explicit results up to genus four. Using the latter version we prove that the hermitian and the complex matrix model are equivalent in the double scaling limit and that in this limit they are both equivalent to the Kontsevich model. We discuss how our results away from the double scaling limit are related to the structure of moduli space. (orig.)

  20. Correlation functions of two-matrix models

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong, C.S.

    1993-11-01

    We show how to calculate correlation functions of two matrix models without any approximation technique (except for genus expansion). In particular we do not use any continuum limit technique. This allows us to find many solutions which are invisible to the latter technique. To reach our goal we make full use of the integrable hierarchies and their reductions which were shown in previous papers to naturally appear in multi-matrix models. The second ingredient we use, even though to a lesser extent, are the W-constraints. In fact an explicit solution of the relevant hierarchy, satisfying the W-constraints (string equation), underlies the explicit calculation of the correlation functions. The correlation functions we compute lend themselves to a possible interpretation in terms of topological field theories. (orig.)

  1. An alternative approach to KP hierarchy in matrix models

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong, C.S.

    1992-01-01

    We show that there exists an alternative procedure in order to extract differential hierarchies, such as the KdV hierarchy, from one-matrix models, without taking a continuum limit. To prove this we introduce the Toda lattice and reformulate it in operator form. We then consider the reduction to the systems appropriate for a one-matrix model. (orig.)

  2. Robust Adaptive Beamforming with Sensor Position Errors Using Weighted Subspace Fitting-Based Covariance Matrix Reconstruction.

    Science.gov (United States)

    Chen, Peng; Yang, Yixin; Wang, Yong; Ma, Yuanliang

    2018-05-08

    When sensor position errors exist, the performance of recently proposed interference-plus-noise covariance matrix (INCM)-based adaptive beamformers may be severely degraded. In this paper, we propose a weighted subspace fitting-based INCM reconstruction algorithm to overcome sensor displacement for linear arrays. By estimating the rough signal directions, we construct a novel possible mismatched steering vector (SV) set. We analyze the proximity of the signal subspace from the sample covariance matrix (SCM) and the space spanned by the possible mismatched SV set. After solving an iterative optimization problem, we reconstruct the INCM using the estimated sensor position errors. Then we estimate the SV of the desired signal by solving an optimization problem with the reconstructed INCM. The main advantage of the proposed algorithm is its robustness against SV mismatches dominated by unknown sensor position errors. Numerical examples show that even if the position errors are up to half of the assumed sensor spacing, the output signal-to-interference-plus-noise ratio is only reduced by 4 dB. Beam patterns plotted using experiment data show that the interference suppression capability of the proposed beamformer outperforms other tested beamformers.

  3. Matrix factorizations, minimal models and Massey products

    International Nuclear Information System (INIS)

    Knapp, Johanna; Omer, Harun

    2006-01-01

    We present a method to compute the full non-linear deformations of matrix factorizations for ADE minimal models. This method is based on the calculation of higher products in the cohomology, called Massey products. The algorithm yields a polynomial ring whose vanishing relations encode the obstructions of the deformations of the D-branes characterized by these matrix factorizations. This coincides with the critical locus of the effective superpotential which can be computed by integrating these relations. Our results for the effective superpotential are in agreement with those obtained from solving the A-infinity relations. We point out a relation to the superpotentials of Kazama-Suzuki models. We will illustrate our findings by various examples, putting emphasis on the E 6 minimal model

  4. Construction of the exact Fisher information matrix of Gaussian time series models by means of matrix differential rules

    NARCIS (Netherlands)

    Klein, A.A.B.; Melard, G.; Zahaf, T.

    2000-01-01

    The Fisher information matrix is of fundamental importance for the analysis of parameter estimation of time series models. In this paper the exact information matrix of a multivariate Gaussian time series model expressed in state space form is derived. A computationally efficient procedure is used

  5. Random matrix model for disordered conductors

    Indian Academy of Sciences (India)

    In the interpretation of transport properties of mesoscopic systems, the multichannel ... One defines the random matrix model with N eigenvalues 0. λТ ..... With heuristic arguments, using the ideas pertaining to Dyson Coulomb gas analogy,.

  6. Dualities in ABJM matrix model from closed string viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Kiyoshige, Kazuki; Moriyama, Sanefumi [Department of Physics, Graduate School of Science, Osaka City University,3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan)

    2016-11-17

    We propose a new formalism to study the ABJM matrix model. Contrary to expressing the fractional brane background with the Wilson loops in the open string formalism, we formulate the Wilson loop expectation value from the viewpoint of the closed string background. With this new formalism, we can prove some duality relations in the matrix model. /includegraphics[scale=0.7]{abstract.eps}.

  7. Matrix model as a mirror of Chern-Simons theory

    International Nuclear Information System (INIS)

    Aganagic, Mina; Klemm, Albrecht; Marino, Marcos; Vafa, Cumrun

    2004-01-01

    Using mirror symmetry, we show that Chern-Simons theory on certain manifolds such as lens spaces reduces to a novel class of Hermitian matrix models, where the measure is that of unitary matrix models. We show that this agrees with the more conventional canonical quantization of Chern-Simons theory. Moreover, large N dualities in this context lead to computation of all genus A-model topological amplitudes on toric Calabi-Yau manifolds in terms of matrix integrals. In the context of type IIA superstring compactifications on these Calabi-Yau manifolds with wrapped D6 branes (which are dual to M-theory on G2 manifolds) this leads to engineering and solving F-terms for N=1 supersymmetric gauge theories with superpotentials involving certain multi-trace operators. (author)

  8. Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling

    Science.gov (United States)

    Liu, Alan S.; Wang, Hailong; Copeland, Craig R.; Chen, Christopher S.; Shenoy, Vivek B.; Reich, Daniel H.

    2016-01-01

    The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics. PMID:27671239

  9. A random matrix model of relaxation

    International Nuclear Information System (INIS)

    Lebowitz, J L; Pastur, L

    2004-01-01

    We consider a two-level system, S 2 , coupled to a general n level system, S n , via a random matrix. We derive an integral representation for the mean reduced density matrix ρ(t) of S 2 in the limit n → ∞, and we identify a model of S n which possesses some of the properties expected for macroscopic thermal reservoirs. In particular, it yields the Gibbs form for ρ(∞). We also consider an analog of the van Hove limit and obtain a master equation (Markov dynamics) for the evolution of ρ(t) on an appropriate time scale

  10. A hierarchical model for ordinal matrix factorization

    DEFF Research Database (Denmark)

    Paquet, Ulrich; Thomson, Blaise; Winther, Ole

    2012-01-01

    This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based...

  11. The multitrace matrix model: An alternative to Connes NCG and IKKT model in 2 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Ydri, Badis, E-mail: ydri@stp.dias.ie

    2016-12-10

    We present a new multitrace matrix model, which is a generalization of the real quartic one matrix model, exhibiting dynamical emergence of a fuzzy two-sphere and its non-commutative gauge theory. This provides a novel and a much simpler alternative to Connes non-commutative geometry and to the IKKT matrix model for emergent geometry in two dimensions. However, in higher dimensions this mechanism is not known to exist and the systematic frameworks of NCG and IKKT are expected to hold sway.

  12. Unified continuum damage model for matrix cracking in composite rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Pollayi, Hemaraju; Harursampath, Dineshkumar [Nonlinear Multifunctional Composites - Analysis and Design Lab (NMCAD Lab) Department of Aerospace Engineering Indian Institute of Science Bangalore - 560012, Karnataka (India)

    2015-03-10

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.

  13. Unified continuum damage model for matrix cracking in composite rotor blades

    International Nuclear Information System (INIS)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    2015-01-01

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load

  14. Matrix models of 2d gravity

    International Nuclear Information System (INIS)

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date

  15. A Class of Weighted Low Rank Approximation of the Positive Semidefinite Hankel Matrix

    Directory of Open Access Journals (Sweden)

    Jianchao Bai

    2015-01-01

    Full Text Available We consider the weighted low rank approximation of the positive semidefinite Hankel matrix problem arising in signal processing. By using the Vandermonde representation, we firstly transform the problem into an unconstrained optimization problem and then use the nonlinear conjugate gradient algorithm with the Armijo line search to solve the equivalent unconstrained optimization problem. Numerical examples illustrate that the new method is feasible and effective.

  16. Stability of the matrix model in operator interpretation

    Directory of Open Access Journals (Sweden)

    Katsuta Sakai

    2017-12-01

    Full Text Available The IIB matrix model is one of the candidates for nonperturbative formulation of string theory, and it is believed that the model contains gravitational degrees of freedom in some manner. In some preceding works, it was proposed that the matrix model describes the curved space where the matrices represent differential operators that are defined on a principal bundle. In this paper, we study the dynamics of the model in this interpretation, and point out the necessity of the principal bundle from the viewpoint of the stability and diffeomorphism invariance. We also compute the one-loop correction which yields a mass term for each field due to the principal bundle. We find that the stability is not violated.

  17. Matrix method for acoustic levitation simulation.

    Science.gov (United States)

    Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C

    2011-08-01

    A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.

  18. Development of Positive Matrix Factorization Model (PMF) to Annual Study of the PM2.5 Organic Composition in ChapinerIa

    International Nuclear Information System (INIS)

    Pindado, O.; Perez, R. M.; Garcia, S.

    2013-01-01

    The Positive Matrix Factorization (PMF) application to a set of PM2.5 data collected in a rural area of Madrid for a period of 1 year has been developed. Results has let describing the particulate faction of atmospheric aerosol collected in Chapineria according to 7 factor, among them fossil fuel combustion by traffic, wax plants, primary emissions of organic carbon, crustal material, and secondary organic aerosol. Five of these factors are related to primary particles; meanwhile only one factor has been associated to secondary particles. Finally, a factor has not been associated to any known source of particulate matter. (Author)

  19. Higher genus correlators for the complex matrix model

    International Nuclear Information System (INIS)

    Ambjorn, J.; Kristhansen, C.F.; Makeenko, Y.M.

    1992-01-01

    In this paper, the authors describe an iterative scheme which allows us to calculate any multi-loop correlator for the complex matrix model to any genus using only the first in the chain of loop equations. The method works for a completely general potential and the results contain no explicit reference to the couplings. The genus g contribution to the m-loop correlator depends on a finite number of parameters, namely at most 4g - 2 + m. The authors find the generating functional explicitly up to genus three. The authors show as well that the model is equivalent to an external field problem for the complex matrix model with a logarithmic potential

  20. The Particle-Matrix model: limitations and further improvements needed

    DEFF Research Database (Denmark)

    Cepuritis, Rolands; Jacobsen, Stefan; Spangenberg, Jon

    According to the Particle-Matrix Model (PMM) philosophy, the workability of concrete dependson the properties of two phases and the volumetric ratio between them: the fluid matrix phase (≤0.125 mm) and the solid particle phase (> 0.125 mm). The model has been successfully appliedto predict concrete...... workability for different types of concrete, but has also indicated that somepotential cases exist when its application is limited. The paper presents recent studies onimproving the method by analysing how the PMM one-point flow parameter λQ can beexpressed by rheological models (Bingham and Herschel-Bulkley)....

  1. Matrix models and stochastic growth in Donaldson-Thomas theory

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Richard J. [Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS, United Kingdom and Maxwell Institute for Mathematical Sciences, Edinburgh (United Kingdom); Tierz, Miguel [Grupo de Fisica Matematica, Complexo Interdisciplinar da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, PT-1649-003 Lisboa (Portugal); Departamento de Analisis Matematico, Facultad de Ciencias Matematicas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid (Spain)

    2012-10-15

    We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kaehler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.

  2. Matrix models and stochastic growth in Donaldson-Thomas theory

    International Nuclear Information System (INIS)

    Szabo, Richard J.; Tierz, Miguel

    2012-01-01

    We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kähler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.

  3. Transfer matrix in 1D Schroedinger problems with constant and position-dependent mass

    International Nuclear Information System (INIS)

    Perez-Alvarez, R.; Rodriguez-Coppola, H.

    1987-10-01

    We consider the transfer matrix method for obtaining properties of standard wells and barriers in one-dimensional Schroedinger problems with constant and position-dependent mass. We report the formulae for the energy levels of a well and the transmission coefficient of a barrier. We demonstrate the continuity between virtual bound states and bound states in a well of position-dependent mass and the relation between the zero energy gap states of a periodic potential problem with the corresponding energies of the non-periodic ones with transmission coefficient equal to one. The calculations were carried out for a wide class of potential profiles. (author). 30 refs, 2 figs

  4. Stage-structured matrix models for organisms with non-geometric development times

    Science.gov (United States)

    Andrew Birt; Richard M. Feldman; David M. Cairns; Robert N. Coulson; Maria Tchakerian; Weimin Xi; James M. Guldin

    2009-01-01

    Matrix models have been used to model population growth of organisms for many decades. They are popular because of both their conceptual simplicity and their computational efficiency. For some types of organisms they are relatively accurate in predicting population growth; however, for others the matrix approach does not adequately model...

  5. NONLINEAR PLANT PIECEWISE-CONTINUOUS MODEL MATRIX PARAMETERS ESTIMATION

    Directory of Open Access Journals (Sweden)

    Roman L. Leibov

    2017-09-01

    Full Text Available This paper presents a nonlinear plant piecewise-continuous model matrix parameters estimation technique using nonlinear model time responses and random search method. One of piecewise-continuous model application areas is defined. The results of proposed approach application for aircraft turbofan engine piecewisecontinuous model formation are presented

  6. The brush model - a new approach to numerical modeling of matrix diffusion in fractured clay stone

    International Nuclear Information System (INIS)

    Lege, T.; Shao, H.

    1998-01-01

    A special approach for numerical modeling of contaminant transport in fractured clay stone is presented. The rock matrix and the fractures are simulated with individual formulations for FE grids and transport, coupled into a single model. The capacity of the rock matrix to take up contaminants is taken into consideration with a discrete simulation of matrix diffusion. Thus, the natural process of retardation due to matrix diffusion can be better simulated than by a standard introduction of an empirical parameter into the transport equation. Transport in groundwater in fractured clay stone can be simulated using a model called a 'brush model'. The 'brush handle' is discretized by 2-D finite elements. Advective-dispersive transport in groundwater in the fractures is assumed. The contaminant diffuses into 1D finite elements perpendicular to the fractures, i.e., the 'bristles of the brush'. The conclusion is drawn that matrix diffusion is an important property of fractured clay stone for contaminant retardation. (author)

  7. Partial chord diagrams and matrix models

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Fuji, Hiroyuki; Manabe, Masahide

    In this article, the enumeration of partial chord diagrams is discussed via matrix model techniques. In addition to the basic data such as the number of backbones and chords, we also consider the Euler characteristic, the backbone spectrum, the boundary point spectrum, and the boundary length spe...

  8. On spin and matrix models in the complex plane

    International Nuclear Information System (INIS)

    Damgaard, P.H.; Heller, U.M.

    1993-01-01

    We describe various aspects of statistical mechanics defined in the complex temperature or coupling-constant plane. Using exactly solvable models, we analyse such aspects as renormalization group flows in the complex plane, the distribution of partition function zeros, and the question of new coupling-constant symmetries of complex-plane spin models. The double-scaling form of matrix models is shown to be exactly equivalent to finite-size scaling of two-dimensional spin systems. This is used to show that the string susceptibility exponents derived from matrix models can be obtained numerically with very high accuracy from the scaling of finite-N partition function zeros in the complex plane. (orig.)

  9. A new coal-permeability model: Internal swelling stress and fracture-matrix interaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Rutqvist, J.

    2009-10-01

    We have developed a new coal-permeability model for uniaxial strain and constant confining stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal deformation processes and is based on a newly proposed internal-swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated with data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH{sub 4} gas production, as well as with published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this work using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams.

  10. Coulomb matrix elements in multi-orbital Hubbard models.

    Science.gov (United States)

    Bünemann, Jörg; Gebhard, Florian

    2017-04-26

    Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.

  11. Enhanced Map-Matching Algorithm with a Hidden Markov Model for Mobile Phone Positioning

    Directory of Open Access Journals (Sweden)

    An Luo

    2017-10-01

    Full Text Available Numerous map-matching techniques have been developed to improve positioning, using Global Positioning System (GPS data and other sensors. However, most existing map-matching algorithms process GPS data with high sampling rates, to achieve a higher correct rate and strong universality. This paper introduces a novel map-matching algorithm based on a hidden Markov model (HMM for GPS positioning and mobile phone positioning with a low sampling rate. The HMM is a statistical model well known for providing solutions to temporal recognition applications such as text and speech recognition. In this work, the hidden Markov chain model was built to establish a map-matching process, using the geometric data, the topologies matrix of road links in road network and refined quad-tree data structure. HMM-based map-matching exploits the Viterbi algorithm to find the optimized road link sequence. The sequence consists of hidden states in the HMM model. The HMM-based map-matching algorithm is validated on a vehicle trajectory using GPS and mobile phone data. The results show a significant improvement in mobile phone positioning and high and low sampling of GPS data.

  12. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure.

    Science.gov (United States)

    Hoy, Erik P; Mazziotti, David A

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.

  13. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Hoy, Erik P.; Mazziotti, David A., E-mail: damazz@uchicago.edu [Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.

  14. SHMF: Interest Prediction Model with Social Hub Matrix Factorization

    Directory of Open Access Journals (Sweden)

    Chaoyuan Cui

    2017-01-01

    Full Text Available With the development of social networks, microblog has become the major social communication tool. There is a lot of valuable information such as personal preference, public opinion, and marketing in microblog. Consequently, research on user interest prediction in microblog has a positive practical significance. In fact, how to extract information associated with user interest orientation from the constantly updated blog posts is not so easy. Existing prediction approaches based on probabilistic factor analysis use blog posts published by user to predict user interest. However, these methods are not very effective for the users who post less but browse more. In this paper, we propose a new prediction model, which is called SHMF, using social hub matrix factorization. SHMF constructs the interest prediction model by combining the information of blogs posts published by both user and direct neighbors in user’s social hub. Our proposed model predicts user interest by integrating user’s historical behavior and temporal factor as well as user’s friendships, thus achieving accurate forecasts of user’s future interests. The experimental results on Sina Weibo show the efficiency and effectiveness of our proposed model.

  15. Scattering of long folded strings and mixed correlators in the two-matrix model

    International Nuclear Information System (INIS)

    Bourgine, J.-E.; Hosomichi, K.; Kostov, I.; Matsuo, Y.

    2008-01-01

    We study the interactions of Maldacena's long folded strings in two-dimensional string theory. We find the amplitude for a state containing two long folded strings to come and go back to infinity. We calculate this amplitude both in the worldsheet theory and in the dual matrix model, the matrix quantum mechanics. The matrix model description allows to evaluate the amplitudes involving any number of long strings, which are given by the mixed trace correlators in an effective two-matrix model

  16. Life Modeling and Design Analysis for Ceramic Matrix Composite Materials

    Science.gov (United States)

    2005-01-01

    The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.

  17. Followee recommendation in microblog using matrix factorization model with structural regularization.

    Science.gov (United States)

    Yu, Yan; Qiu, Robin G

    2014-01-01

    Microblog that provides us a new communication and information sharing platform has been growing exponentially since it emerged just a few years ago. To microblog users, recommending followees who can serve as high quality information sources is a competitive service. To address this problem, in this paper we propose a matrix factorization model with structural regularization to improve the accuracy of followee recommendation in microblog. More specifically, we adapt the matrix factorization model in traditional item recommender systems to followee recommendation in microblog and use structural regularization to exploit structure information of social network to constrain matrix factorization model. The experimental analysis on a real-world dataset shows that our proposed model is promising.

  18. Hermitian versus anti-hermitian one-matrix models and their hierarchies

    International Nuclear Information System (INIS)

    Hollowood, T.; Miramontes, L.; Pasquinucci, A.; Nappi, C.

    1992-01-01

    Building on a recent work of C. Crnkovic, M. Douglas and G. Moore, a study of multi-critical multi-cut one-matrix models and their associated sl(2, C) integrable hierarchies, is further pursued. The double-scaling limits of hermitian matrix models with different scaling ansaetze, lead to the KdV hierarchy, to the modified KdV hierarchy and part of the non-linear Schroedinger hierarchy. Instead, the anti-hermitian matrix model, in the 2-arc sector, results in the Zakharov-Shabat hierarchy, which contains both KdV and mKdV as reductions. For all the hierarchies it is found that the Virasoro constraints act on the associated τ-functions. Whereas it is known that the ZS and KdV models lead to the Virasoro constraints of an sl(2, C) vacuum, we find that the mKdV model leads to the Virasoro constraints of a highest-weight state with arbitrary conformal dimension. (orig.)

  19. The Modeling of Competitive Positions of Enterprises of Real Sector of Economy in the Domestic Market

    Directory of Open Access Journals (Sweden)

    Kutsyk Valentuna A.

    2017-12-01

    Full Text Available Topicality of rational choice of methodical instrumentaqrium in assessing competitive positions of enterprises is substantiated. A wide list of methodical approaches to assessment of competitive positions of enterprises in market environment is presented, and the spheres of their practical application, general disadvantages and advantages, are characterized. The characteristics of matrix models (GE/McKinsey, SHELL/DPM, PIMS, BCG are presented on a selective basis, so that, proceeding from a wide range of models, supported by the proper information provision, they can be assigned as the exact ones. Given the lack of information provision, disadvantages, and advantages of existing models and considering it as a means of system management, the authors have proposed to use the map of the «portfolio of competitive advantages» in the form of a nine-celled model matrix (3x3 with two-dimensional system of coordinates. The proposed model of «competitiveness / share of the national market» is an expression of competitive position of enterprises of the real sector of economy taking into consideration dynamic influence of factors of competitive environment and, at the same time, a methodical means for substantiation of competitive strategy. However, an important step in choosing the basic variant of competitive strategy for an enterprise in the real sector of economy is to determine the functional objectives to its efficient implementation.

  20. Standard error propagation in R-matrix model fitting for light elements

    International Nuclear Information System (INIS)

    Chen Zhenpeng; Zhang Rui; Sun Yeying; Liu Tingjin

    2003-01-01

    The error propagation features with R-matrix model fitting 7 Li, 11 B and 17 O systems were researched systematically. Some laws of error propagation were revealed, an empirical formula P j = U j c / U j d = K j · S-bar · √m / √N for describing standard error propagation was established, the most likely error ranges for standard cross sections of 6 Li(n,t), 10 B(n,α0) and 10 B(n,α1) were estimated. The problem that the standard error of light nuclei standard cross sections may be too small results mainly from the R-matrix model fitting, which is not perfect. Yet R-matrix model fitting is the most reliable evaluation method for such data. The error propagation features of R-matrix model fitting for compound nucleus system of 7 Li, 11 B and 17 O has been studied systematically, some laws of error propagation are revealed, and these findings are important in solving the problem mentioned above. Furthermore, these conclusions are suitable for similar model fitting in other scientific fields. (author)

  1. Matrix theory

    CERN Document Server

    Franklin, Joel N

    2003-01-01

    Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

  2. A matrix approach to the statistics of longevity in heterogeneous frailty models

    Directory of Open Access Journals (Sweden)

    Hal Caswell

    2014-09-01

    Full Text Available Background: The gamma-Gompertz model is a fixed frailty model in which baseline mortality increasesexponentially with age, frailty has a proportional effect on mortality, and frailty at birth follows a gamma distribution. Mortality selects against the more frail, so the marginal mortality rate decelerates, eventually reaching an asymptote. The gamma-Gompertz is one of a wider class of frailty models, characterized by the choice of baseline mortality, effects of frailty, distributions of frailty, and assumptions about the dynamics of frailty. Objective: To develop a matrix model to compute all the statistical properties of longevity from thegamma-Gompertz and related models. Methods: I use the vec-permutation matrix formulation to develop a model in which individuals are jointly classified by age and frailty. The matrix is used to project the age and frailty dynamicsof a cohort and the fundamental matrix is used to obtain the statistics of longevity. Results: The model permits calculation of the mean, variance, coefficient of variation, skewness and all moments of longevity, the marginal mortality and survivorship functions, the dynamics of the frailty distribution, and other quantities. The matrix formulation extends naturally to other frailty models. I apply the analysis to the gamma-Gompertz model (for humans and laboratory animals, the gamma-Makeham model, and the gamma-Siler model, and to a hypothetical dynamic frailty model characterized by diffusion of frailty with reflecting boundaries.The matrix model permits partitioning the variance in longevity into components due to heterogeneity and to individual stochasticity. In several published human data sets, heterogeneity accounts for less than 10Š of the variance in longevity. In laboratory populations of five invertebrate animal species, heterogeneity accounts for 46Š to 83Š ofthe total variance in longevity.

  3. Higher genus correlators from the hermitian one-matrix model

    International Nuclear Information System (INIS)

    Ambjoern, J.; Chekhov, L.; Makeenko, Yu.

    1992-01-01

    We develop an iterative algorithm for the genus expansion of the hermitian NxN one-matrix model (is the Penner model in an external field). By introducing moments of the external field, we prove that the genus g contribution to the m-loop correlator depends only on 3g-2+m lower moments (3g-2 for the partition function). We present the explicit results for the partition function and the one-loop correlator in genus one. We compare the correlators for the hermitian one-matrix model with those at zero momenta for c=1 CFT and show an agreement of the one-loop correlators for genus zero. (orig.)

  4. Universal correlators for multi-arc complex matrix models

    International Nuclear Information System (INIS)

    Akemann, G.

    1997-01-01

    The correlation functions of the multi-arc complex matrix model are shown to be universal for any finite number of arcs. The universality classes are characterized by the support of the eigenvalue density and are conjectured to fall into the same classes as the ones recently found for the Hermitian model. This is explicitly shown to be true for the case of two arcs, apart from the known result for one arc. The basic tool is the iterative solution of the loop equation for the complex matrix model with multiple arcs, which provides all multi-loop correlators up to an arbitrary genus. Explicit results for genus one are given for any number of arcs. The two-arc solution is investigated in detail, including the double-scaling limit. In addition universal expressions for the string susceptibility are given for both the complex and Hermitian model. (orig.)

  5. Three-dimensional simplicial quantum gravity and generalized matrix models

    International Nuclear Information System (INIS)

    Ambjoern, J.; Durhuus, B.; Jonsson, T.

    1990-11-01

    We consider a discrete model of Euclidean quantum gravity in three dimensions based on a summation over random simplicial manifolds. We derive some elementary properties of the model and discuss possible 'matrix' models for 3d gravity. (orig.)

  6. The Female Population Growth Projection Year 2021 in Trenggalek Regency by Leslie Matrix Model on the Birth Rate and Life Expectancy

    Directory of Open Access Journals (Sweden)

    Dewi Anggreini

    2017-10-01

    Full Text Available This research aims to determine the number of female residents in Trenggalek Regency in 2021 based on data on birth rate and life expectancy. The use of eigenvalues and eigenvectors aims to determine the dividing age distribution by Leslie matrix model. The eigenvectors are used to determine the number of female populations of each age interval, while the eigenvalues are used to determine population growth rates. The research method used is to determine the subject of research. The next stage is to collect research data, then analyze the data and last draw conclusions. The research data is obtained from BPS Kabupaten Trenggalek and BPS East Java Province that is data of woman population from year 2010-2015. The result of this research using Leslie matrix model for female population in Trenggalek Regency that is discrete model. The discrete model is divided into fourteen age intervals constructed using the birthrate and life expectancy. The conclusions of the study showed that the number of female population in Trenggalek Regency tended to increase with positive eigen value greater than one. In other words, the growth rate of female population in Trenggalek Regency tends to be positive. The success of Leslie's matrix model is the application of case studies in predicting the number of female populations in Trenggalek District by 2021 using the MAPLE 16 Program.

  7. Parallelized preconditioned model building algorithm for matrix factorization

    OpenAIRE

    Kaya, Kamer; Birbil, İlker; Birbil, Ilker; Öztürk, Mehmet Kaan; Ozturk, Mehmet Kaan; Gohari, Amir

    2017-01-01

    Matrix factorization is a common task underlying several machine learning applications such as recommender systems, topic modeling, or compressed sensing. Given a large and possibly sparse matrix A, we seek two smaller matrices W and H such that their product is as close to A as possible. The objective is minimizing the sum of square errors in the approximation. Typically such problems involve hundreds of thousands of unknowns, so an optimizer must be exceptionally efficient. In this study, a...

  8. Unravelling the nuclear matrix proteome

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Knol, Jaco C; Jimenez, Connie R

    2009-01-01

    The nuclear matrix (NM) model posits the presence of a protein/RNA scaffold that spans the mammalian nucleus. The NM proteins are involved in basic nuclear function and are a promising source of protein biomarkers for cancer. Importantly, the NM proteome is operationally defined as the proteins...

  9. H∞ /H2 model reduction through dilated linear matrix inequalities

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2012-01-01

    This paper presents sufficient dilated linear matrix inequalities (LMI) conditions to the $H_{infty}$ and $H_{2}$ model reduction problem. A special structure of the auxiliary (slack) variables allows the original model of order $n$ to be reduced to an order $r=n/s$ where $n,r,s in field{N}$. Arb......This paper presents sufficient dilated linear matrix inequalities (LMI) conditions to the $H_{infty}$ and $H_{2}$ model reduction problem. A special structure of the auxiliary (slack) variables allows the original model of order $n$ to be reduced to an order $r=n/s$ where $n,r,s in field...

  10. HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS.

    Science.gov (United States)

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2011-01-01

    The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied.

  11. Dynamics Analysis for Hydroturbine Regulating System Based on Matrix Model

    Directory of Open Access Journals (Sweden)

    Jiafu Wei

    2017-01-01

    Full Text Available The hydraulic turbine model is the key factor which affects the analysis precision of the hydraulic turbine governing system. This paper discusses the basic principle of the hydraulic turbine matrix model and gives two methods to realize. Using the characteristic matrix to describe unit flow and torque and their relationship with the opening and unit speed, it can accurately represent the nonlinear characteristics of the turbine, effectively improve the convergence of simulation process, and meet the needs of high precision real-time simulation of power system. Through the simulation of a number of power stations, it indicates that, by analyzing the dynamic process of the hydraulic turbine regulating with 5-order matrix model, the calculation results and field test data will have good consistency, and it can better meet the needs of power system dynamic simulation.

  12. Finding Positive Feedback Loops in Environmental Models: A Mathematical Investigation

    Science.gov (United States)

    Sheikholeslami, R.; Razavi, S.

    2016-12-01

    Dynamics of most earth and environmental systems are generally governed by interactions between several hydrological (e.g., soil moisture and precipitation), geological (e.g., and erosion), geochemical (e.g., nutrient loading), and atmospheric (e.g., temperature) processes which operate on a range of spatio-temporal scales. These interactions create numerous feedback mechanisms with complex behaviours, and their understanding and representation can vary depending on the scale in space and/or time at which the system is analyzed. One of the most crucial characteristics of such complex systems is the existence of positive feedback loops. The presence of positive feedbacks may increase complexity, accelerate change, or trigger multiple stable states in the underlying dynamical system. Furthermore, because of the inherent non-linearity, it is often very difficult to obtain a general idea of their complex dynamics. Feedback loops in environmental systems have been well recognized and qualitatively discussed. With a quantitative/mathematical view, in this presentation, we address the question of how the positive feedback loops can be identified/implemented in environmental models. We investigate the nature of different feedback mechanisms and dynamics of simple example case studies that underlie fundamental processes such as vegetation, precipitation and soil moisture. To do this, we apply the concept of "interaction graph" from mathematics which is built from the Jacobian matrix of the dynamical system. The Jacobian matrix contains information on how variations of one state variable depends on variations of other variables, and thus can be used to understand the dynamical possibilities of feedback mechanisms in the underlying system. Moreover, this study highlights that there are some situations where the existence of positive feedback loops can cause multiple stable states, and thereby regime shifts in environmental systems. Systems with multiple stable states are

  13. The Requirement of a Positive Definite Covariance Matrix of Security Returns for Mean-Variance Portfolio Analysis: A Pedagogic Illustration

    Directory of Open Access Journals (Sweden)

    Clarence C. Y. Kwan

    2010-07-01

    Full Text Available This study considers, from a pedagogic perspective, a crucial requirement for the covariance matrix of security returns in mean-variance portfolio analysis. Although the requirement that the covariance matrix be positive definite is fundamental in modern finance, it has not received any attention in standard investment textbooks. Being unaware of the requirement could cause confusion for students over some strange portfolio results that are based on seemingly reasonable input parameters. This study considers the requirement both informally and analytically. Electronic spreadsheet tools for constrained optimization and basic matrix operations are utilized to illustrate the various concepts involved.

  14. Gravitational lensing by eigenvalue distributions of random matrix models

    Science.gov (United States)

    Martínez Alonso, Luis; Medina, Elena

    2018-05-01

    We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove that these models can be applied to describe lensing by systems of edge-on galaxies. We illustrate our analysis with the Gaussian and the quartic unitary matrix ensembles.

  15. Bayesian hierarchical model for large-scale covariance matrix estimation.

    Science.gov (United States)

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  16. Phase Structure Of Fuzzy Field Theories And Multi trace Matrix Models

    International Nuclear Information System (INIS)

    Tekel, J.

    2015-01-01

    We review the interplay of fuzzy field theories and matrix models, with an emphasis on the phase structure of fuzzy scalar field theories. We give a self-contained introduction to these topics and give the details concerning the saddle point approach for the usual single trace and multi trace matrix models. We then review the attempts to explain the phase structure of the fuzzy field theory using a corresponding random matrix ensemble, showing the strength and weaknesses of this approach. We conclude with a list of challenges one needs to overcome and the most interesting open problems one can try to solve. (author)

  17. Continuum-level modelling of cellular adhesion and matrix production in aggregates.

    Science.gov (United States)

    Geris, Liesbet; Ashbourn, Joanna M A; Clarke, Tim

    2011-05-01

    Key regulators in tissue-engineering processes such as cell culture and cellular organisation are the cell-cell and cell-matrix interactions. As mathematical models are increasingly applied to investigate biological phenomena in the biomedical field, it is important, for some applications, that these models incorporate an adequate description of cell adhesion. This study describes the development of a continuum model that represents a cell-in-gel culture system used in bone-tissue engineering, namely that of a cell aggregate embedded in a hydrogel. Cell adhesion is modelled through the use of non-local (integral) terms in the partial differential equations. The simulation results demonstrate that the effects of cell-cell and cell-matrix adhesion are particularly important for the survival and growth of the cell population and the production of extracellular matrix by the cells, concurring with experimental observations in the literature.

  18. Exact solution of Chern-Simons-matter matrix models with characteristic/orthogonal polynomials

    International Nuclear Information System (INIS)

    Tierz, Miguel

    2016-01-01

    We solve for finite N the matrix model of supersymmetric U(N) Chern-Simons theory coupled to N f fundamental and N f anti-fundamental chiral multiplets of R-charge 1/2 and of mass m, by identifying it with an average of inverse characteristic polynomials in a Stieltjes-Wigert ensemble. This requires the computation of the Cauchy transform of the Stieltjes-Wigert polynomials, which we carry out, finding a relationship with Mordell integrals, and hence with previous analytical results on the matrix model. The semiclassical limit of the model is expressed, for arbitrary N f , in terms of a single Hermite polynomial. This result also holds for more general matter content, involving matrix models with double-sine functions.

  19. Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model

    Directory of Open Access Journals (Sweden)

    JA DeQuach

    2012-06-01

    Full Text Available Peripheral artery disease (PAD currently affects approximately 27 million patients in Europe and North America, and if untreated, may progress to the stage of critical limb ischemia (CLI, which has implications for amputation and potential mortality. Unfortunately, few therapies exist for treating the ischemic skeletal muscle in these conditions. Biomaterials have been used to increase cell transplant survival as well as deliver growth factors to treat limb ischemia; however, existing materials do not mimic the native skeletal muscle microenvironment they are intended to treat. Furthermore, no therapies involving biomaterials alone have been examined. The goal of this study was to develop a clinically relevant injectable hydrogel derived from decellularized skeletal muscle extracellular matrix and examine its potential for treating PAD as a stand-alone therapy by studying the material in a rat hindlimb ischemia model. We tested the mitogenic activity of the scaffold’s degradation products using an in vitro assay and measured increased proliferation rates of smooth muscle cells and skeletal myoblasts compared to collagen. In a rat hindlimb ischemia model, the femoral artery was ligated and resected, followed by injection of 150 µL of skeletal muscle matrix or collagen 1 week post-injury. We demonstrate that the skeletal muscle matrix increased arteriole and capillary density, as well as recruited more desmin-positive and MyoD-positive cells compared to collagen. Our results indicate that this tissue-specific injectable hydrogel may be a potential therapy for treating ischemia related to PAD, as well as have potential beneficial effects on restoring muscle mass that is typically lost in CLI.

  20. Metamotifs - a generative model for building families of nucleotide position weight matrices

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-06-01

    Full Text Available Abstract Background Development of high-throughput methods for measuring DNA interactions of transcription factors together with computational advances in short motif inference algorithms is expanding our understanding of transcription factor binding site motifs. The consequential growth of sequence motif data sets makes it important to systematically group and categorise regulatory motifs. It has been shown that there are familial tendencies in DNA sequence motifs that are predictive of the family of factors that binds them. Further development of methods that detect and describe familial motif trends has the potential to help in measuring the similarity of novel computational motif predictions to previously known data and sensitively detecting regulatory motifs similar to previously known ones from novel sequence. Results We propose a probabilistic model for position weight matrix (PWM sequence motif families. The model, which we call the 'metamotif' describes recurring familial patterns in a set of motifs. The metamotif framework models variation within a family of sequence motifs. It allows for simultaneous estimation of a series of independent metamotifs from input position weight matrix (PWM motif data and does not assume that all input motif columns contribute to a familial pattern. We describe an algorithm for inferring metamotifs from weight matrix data. We then demonstrate the use of the model in two practical tasks: in the Bayesian NestedMICA model inference algorithm as a PWM prior to enhance motif inference sensitivity, and in a motif classification task where motifs are labelled according to their interacting DNA binding domain. Conclusions We show that metamotifs can be used as PWM priors in the NestedMICA motif inference algorithm to dramatically increase the sensitivity to infer motifs. Metamotifs were also successfully applied to a motif classification problem where sequence motif features were used to predict the family of

  1. A holographic view on matrix model of black hole

    International Nuclear Information System (INIS)

    Suyama, Takao; Yi Piljin

    2004-01-01

    We investigate a deformed matrix model proposed by Kazakov et.al. in relation to Witten's two-dimensional black hole. The existing conjectures assert the equivalence of the two by mapping each to a deformed c=1 theory called the sine-Liouville theory. We point out that the matrix theory in question may be naturally interpreted as a gauged quantum mechanics deformed by insertion of an exponentiated Wilson loop operator, which gives us more direct and holographic map between the two sides. The matrix model in the usual scaling limit must correspond to the bosonic SL(2,R)/U(1) theory in genus expansion but exact in α'. We successfully test this by computing the Wilson loop expectation value and comparing it against the bulk computation. For the latter, we employ the α'-exact geometry proposed by Dijkgraaf, Verlinde, and Verlinde, which was further advocated by Tseytlin. We close with comments on open problems. (author)

  2. Application of positive matrix factorization to identify potential sources of PAHs in soil of Dalian, China

    International Nuclear Information System (INIS)

    Wang Degao; Tian Fulin; Yang Meng; Liu Chenlin; Li Yifan

    2009-01-01

    Soil derived sources of polycyclic aromatic hydrocarbons (PAHs) in the region of Dalian, China were investigated using positive matrix factorization (PMF). Three factors were separated based on PMF for the statistical investigation of the datasets both in summer and winter. These factors were dominated by the pattern of single sources or groups of similar sources, showing seasonal and regional variations. The main sources of PAHs in Dalian soil in summer were the emissions from coal combustion average (46%), diesel engine (30%), and gasoline engine (24%). In winter, the main sources were the emissions from coal-fired boiler (72%), traffic average (20%), and gasoline engine (8%). These factors with strong seasonality indicated that coal combustion in winter and traffic exhaust in summer dominated the sources of PAHs in soil. These results suggested that PMF model was a proper approach to identify the sources of PAHs in soil. - PMF model is a proper approach to identify potential sources of PAHs in soil based on the PAH profiles measured in the field and those published in the literature.

  3. Macro-mechanical material model for fiber reinforced metal matrix composites

    CERN Document Server

    Banks-Sills, L

    1999-01-01

    The stress-strain behavior of a metal matrix composite reinforced with unidirectional, continuous and periodic fibers is investigated. Three-dimensional micro-mechanical analyses of a unit cell by means of the finite element method $9 and homogenization-localization are carried out. These calculations allow the determination of material behavior of the in-plane, as well as the fiber directions. The fibers are assumed to be elastic and the matrix elasto-plastic. $9 The matrix material is governed by a von Mises yield surface, isotropic hardening and an associated flow rule. With the aid of these analyses, the foundation to a macro-mechanical material model is presented which is employed to $9 consider an elementary problem. The model includes an anisotropic yield surface with isotropic hardening and an associated flow rule. A beam in bending containing square fibers under plane strain conditions is analyzed by means of $9 the model. Two cases are considered: one in which the fibers are symmetric with respect t...

  4. DLCQ and plane wave matrix Big Bang models

    Science.gov (United States)

    Blau, Matthias; O'Loughlin, Martin

    2008-09-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  5. DLCQ and plane wave matrix Big Bang models

    International Nuclear Information System (INIS)

    Blau, Matthias; O'Loughlin, Martin

    2008-01-01

    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  6. Quantum behavior near a spacelike boundary in the c=1 matrix model

    International Nuclear Information System (INIS)

    Karczmarek, Joanna L.

    2008-01-01

    Certain time-dependent configurations in the c=1 matrix model correspond to string theory backgrounds which have spacelike boundaries and appear geodesically incomplete. We investigate quantum mechanical properties of a class of such configurations in the matrix model, in terms of fermionic eigenvalues. We describe Hamiltonian evolution of the eigenvalue density using several different time variables, some of which are infinite and some of which are finite in extent. We derive unitary transformations relating these different descriptions, and use those to calculate fermion correlators in the time-dependent background. Using the chiral formalism, we write the time-dependent configurations as a state in the original matrix model Hilbert space.

  7. Possilibity of estimating payoff matrix from model for hit phenomena

    International Nuclear Information System (INIS)

    Ishii, Akira; Sakaidani, Shota; Iwanaga, Saori

    2016-01-01

    The conflicts of topics on social media is considered using an extended mathematical model based on the mathematical model for hit phenomena that has been used to analyze entertainment hits. The social media platform used in this study was blog. The calculation results shows examples of strong conflict, weak conflict, and no conflict cases. Since the conflict of two topics can be considered in the framework of game theory, the results can be used to determine each matrix element of the payoff matrix of game theory.

  8. Analytical Model of Water Flow in Coal with Active Matrix

    Science.gov (United States)

    Siemek, Jakub; Stopa, Jerzy

    2014-12-01

    This paper presents new analytical model of gas-water flow in coal seams in one dimension with emphasis on interactions between water flowing in cleats and coal matrix. Coal as a flowing system, can be viewed as a solid organic material consisting of two flow subsystems: a microporous matrix and a system of interconnected macropores and fractures. Most of gas is accumulated in the microporous matrix, where the primary flow mechanism is diffusion. Fractures and cleats existing in coal play an important role as a transportation system for macro scale flow of water and gas governed by Darcy's law. The coal matrix can imbibe water under capillary forces leading to exchange of mass between fractures and coal matrix. In this paper new partial differential equation for water saturation in fractures has been formulated, respecting mass exchange between coal matrix and fractures. Exact analytical solution has been obtained using the method of characteristics. The final solution has very simple form that may be useful for practical engineering calculations. It was observed that the rate of exchange of mass between the fractures and the coal matrix is governed by an expression which is analogous to the Newton cooling law known from theory of heat exchange, but in present case the mass transfer coefficient depends not only on coal and fluid properties but also on time and position. The constant term of mass transfer coefficient depends on relation between micro porosity and macro porosity of coal, capillary forces, and microporous structure of coal matrix. This term can be expressed theoretically or obtained experimentally. W artykule zaprezentowano nowy model matematyczny przepływu wody i gazu w jednowymiarowej warstwie węglowej z uwzględnieniem wymiany masy między systemem szczelin i matrycą węglową. Węgiel jako system przepływowy traktowany jest jako układ o podwójnej porowatości i przepuszczalności, składający się z mikroporowatej matrycy węglowej oraz z

  9. Polyakov lines in Yang-Mills matrix models

    International Nuclear Information System (INIS)

    Austing, Peter; Wheater, John F.; Vernizzi, Graziano

    2003-01-01

    We study the Polyakov line in Yang-Mills matrix models, which include the IKKT model of IIB string theory. For the gauge group SU(2) we give the exact formulae in the form of integral representations which are convenient for finding the asymptotic behaviour. For the SU(N) bosonic models we prove upper bounds which decay as a power law at large momentum p. We argue that these capture the full asymptotic behaviour. We also indicate how to extend the results to some correlation functions of Polyakov lines. (author)

  10. Risk matrix model applied to the outsourcing of logistics' activities

    Directory of Open Access Journals (Sweden)

    Fouad Jawab

    2015-09-01

    Full Text Available Purpose: This paper proposes the application of the risk matrix model in the field of logistics outsourcing. Such an application can serve as the basis for decision making regarding the conduct of a risk management in the logistics outsourcing process and allow its prevention. Design/methodology/approach: This study is based on the risk management of logistics outsourcing in the field of the retail sector in Morocco. The authors identify all possible risks and then classify and prioritize them using the Risk Matrix Model. Finally, we have come to four possible decisions for the identified risks. The analysis was made possible through interviews and discussions with the heads of departments and agents who are directly involved in each outsourced activity. Findings and Originality/value: It is possible to improve the risk matrix model by proposing more personalized prevention measures according to each company that operates in the mass-market retailing. Originality/value: This study is the only one made in the process of logistics outsourcing in the retail sector in Morocco through Label’vie as a case study. First, we had identified as thorough as we could all possible risks, then we applied the Risk Matrix Model to sort them out in an ascending order of importance and criticality. As a result, we could hand out to the decision-makers the mapping for an effective control of risks and a better guiding of the process of risk management.

  11. Exact results for quantum chaotic systems and one-dimensional fermions from matrix models

    International Nuclear Information System (INIS)

    Simons, B.D.; Lee, P.A.; Altshuler, B.L.

    1993-01-01

    We demonstrate a striking connection between the universal parametric correlations of the spectra of quantum chaotic systems and a class of integrable quantum hamiltonians. We begin by deriving a non-perturbative expression for the universal m-point correlation function of the spectra of random matrix ensembles in terms of a non-linear supermatrix σ-model. These results are shown to coincide with those from previous studies of weakly disordered metallic systems. We then introduce a continuous matrix model which describes the quantum mechanics of the Sutherland hamiltonian describing particles interacting through an inverse-square pairwise potential. We demonstrate that a field theoretic approach can be employed to determine exact analytical expressions for correlations of the quantum hamiltonian. The results, which are expressed in terms of a non-linear σ-model, are shown to coincide with those for analogous correlation functions of random matrix ensembles after an appropriate change of variables. We also discuss possible generalizations of the matrix model to higher dimensions. These results reveal a common mathematical structure which underlies branches of theoretical physics ranging from continuous matrix models to strongly interacting quantum hamiltonians, and universalities in the spectra of quantum chaotic systems. (orig.)

  12. Suprathel-antiseptic matrix: in vitro model for local antiseptic treatment?

    Science.gov (United States)

    Ryssel, Henning; Andreas Radu, Christian; Germann, Guenter; Kloeters, Oliver; Riedel, Katrin; Otte, Maximilian; Kremer, Thomas

    2011-02-01

    Acetic acid is a traditional antiseptic agent that has been used for more than 6000 years. The main goal of this study was to demonstrate the suitability of Suprathel (PolyMedics Innovations GmbH, Denkendorf, Germany) in combination with various antiseptic agents to create an "antiseptic-matrix" especially designed for problematic microorganisms such as Proteus vulgaris, Acinetobacter baumannii, or Pseudomonas aeruginosa, which are frequently associated with burns. The study was designed to test the in vitro antimicrobial effect of a "Suprathel-antiseptic matrix" (Suprathel combined with acetic acid 3%, povidone-iodine 11% [Betaisodona], polyhexanide 0.04% [Lavasept], phenoxyethanol 2%/octenidine dihydrochloride 0.1% [Octenisept], mafenide acetate 5%, and chlorhexidine gluconate 1.5%/cetrimid 15% [Hibicet]). As a means to assess the typical bacterial spectrum of a burn unit, the following Gram-negative and Gram-positive bacteria strains were tested: Escherichia coli, P vulgaris, P aeruginosa, A baumannii, Enterococcus faecalis, Staphylococcus epidermidis, Staphylococcus aureus, methicillin-resistant S aureus, and β-hemolytic streptococcus groups A and B. The tests showed a positive bactericidal effect of the Suprathel-antiseptic matrix, particularly with problematic Gram-negative bacteria such as P vulgaris, P aeruginosa, and A baumannii, except for the combination of Suprathel and mafenide acetate. It can be concluded that Suprathel-antiseptic matrix appears to be suitable as a local antiseptic agent, but clinical studies need to be performed to confirm these in vitro observations. The authors' previous studies have shown that acetic acid demonstrates a wide antiseptic spectrum for microorganisms typically found in burn patients. The combination of Suprathel and acetic acid worked well in this study and appears to be promising for future clinical application.

  13. Matrix completion by deep matrix factorization.

    Science.gov (United States)

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Identification of the sources of PM10 in a subway tunnel using positive matrix factorization.

    Science.gov (United States)

    Park, Duckshin; Lee, Taejeong; Hwang, Doyeon; Jung, Wonseok; Lee, Yongil; Cho, KiChul; Kim, Dongsool; Lees, Kiyoung

    2014-12-01

    The level of particulate matter of less than 10 μm diameter (PM10) at subway platforms can be significantly reduced by installing a platform screen-door system. However, both workers and passengers might be exposed to higher PM10 levels while the cars are within the tunnel because it is a more confined environment. This study determined the PM10 levels in a subway tunnel, and identified the sources of PM10 using elemental analysis and receptor modeling. Forty-four PM10 samples were collected in the tunnel between the Gireum and Mia stations on Line 4 in metropolitan Seoul and analyzed using inductively coupled plasma-atomic emission spectrometry and ion chromatography. The major PM10 sources were identified using positive matrix factorization (PMF). The average PM10 concentration in the tunnels was 200.8 ± 22.0 μg/m3. Elemental analysis indicated that the PM10 consisted of 40.4% inorganic species, 9.1% anions, 4.9% cations, and 45.6% other materials. Iron was the most abundant element, with an average concentration of 72.5 ± 10.4 μg/m3. The PM10 sources characterized by PMF included rail, wheel, and brake wear (59.6%), soil combustion (17.0%), secondary aerosols (10.0%), electric cable wear (8.1%), and soil and road dust (5.4%). Internal sources comprising rail, wheel, brake, and electric cable wear made the greatest contribution to the PM10 (67.7%) in tunnel air. Implications: With installation of a platform screen door, PM10 levels in subway tunnels were higher than those on platforms. Tunnel PM10 levels exceeded 150 µg/m3 of the Korean standard for subway platform. Elemental analysis of PM10 in a tunnel showed that Fe was the most abundant element. Five PM10 sources in tunnel were identified by positive matrix factorization. Railroad-related sources contributed 68% of PM10 in the subway tunnel.

  15. Form of multicomponent Fickian diffusion coefficients matrix

    International Nuclear Information System (INIS)

    Wambui Mutoru, J.; Firoozabadi, Abbas

    2011-01-01

    Highlights: → Irreversible thermodynamics establishes form of multicomponent diffusion coefficients. → Phenomenological coefficients and thermodynamic factors affect sign of diffusion coefficients. → Negative diagonal elements of diffusion coefficients matrix can occur in non-ideal mixtures. → Eigenvalues of the matrix of Fickian diffusion coefficients may not be all real. - Abstract: The form of multicomponent Fickian diffusion coefficients matrix in thermodynamically stable mixtures is established based on the form of phenomenological coefficients and thermodynamic factors. While phenomenological coefficients form a symmetric positive definite matrix, the determinant of thermodynamic factors matrix is positive. As a result, the Fickian diffusion coefficients matrix has a positive determinant, but its elements - including diagonal elements - can be negative. Comprehensive survey of reported diffusion coefficients data for ternary and quaternary mixtures, confirms that invariably the determinant of the Fickian diffusion coefficients matrix is positive.

  16. Positive matrix factorization and trajectory modelling for source identification: A new look at Indian Ocean Experiment ship observations

    Science.gov (United States)

    Bhanuprasad, S. G.; Venkataraman, Chandra; Bhushan, Mani

    The sources of aerosols on a regional scale over India have only recently received attention in studies using back trajectory analysis and chemical transport modelling. Receptor modelling approaches such as positive matrix factorization (PMF) and the potential source contribution function (PSCF) are effective tools in source identification of urban and regional-scale pollution. In this work, PMF and PSCF analysis is applied to identify categories and locations of sources that influenced surface concentrations of aerosols in the Indian Ocean Experiment (INDOEX) domain measured on-board the research vessel Ron Brown [Quinn, P.K., Coffman, D.J., Bates, T.S., Miller, T.L., Johnson, J.E., Welton, E.J., et al., 2002. Aerosol optical properties during INDOEX 1999: means, variability, and controlling factors. Journal of Geophysical Research 107, 8020, doi:10.1029/2000JD000037]. Emissions inventory information is used to identify sources co-located with probable source regions from PSCF. PMF analysis identified six factors influencing PM concentrations during the INDOEX cruise of the Ron Brown including a biomass combustion factor (35-40%), three industrial emissions factors (35-40%), primarily secondary sulphate-nitrate, balance trace elements and Zn, and two dust factors (20-30%) of Si- and Ca-dust. The identified factors effectively predict the measured submicron PM concentrations (slope of regression line=0.90±0.20; R2=0.76). Probable source regions shifted based on changes in surface and elevated flows during different times in the ship cruise. They were in India in the early part of the cruise, but in west Asia, south-east Asia and Africa, during later parts of the cruise. Co-located sources include coal-fired electric utilities, cement, metals and petroleum production in India and west Asia, biofuel combustion for energy and crop residue burning in India, woodland/forest burning in north sub-Saharan Africa and forest burning in south-east Asia. Significant findings

  17. Hadron matrix elements of quark operators in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Bando, Masako; Toya, Mihoko [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, Hiroshi

    1979-07-01

    General formulae for evaluating matrix elements of two- and four-quark operators sandwiched by one-hadron states are presented on the basis of the relativistic quark model. Observed hadronic quantities are expressed in terms of those matrix elements of two- and four-quark operators. One observes various type of relativistic expression for the matrix elements which in the non-relativistic case reduce to simple expression of the so-called ''the wave function at the origin /sup +/psi(0)/sup +/''.

  18. Hadron matrix elements of quark operators in the relativistic quark model, 2. Model calculation

    Energy Technology Data Exchange (ETDEWEB)

    Arisue, H; Bando, M; Toya, M [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, H

    1979-11-01

    Phenomenological studies of the matrix elements of two- and four-quark operators are made on the basis of relativistic independent quark model for typical three cases of the potentials: rigid wall, linearly rising and Coulomb-like potentials. The values of the matrix elements of two-quark operators are relatively well reproduced in each case, but those of four-quark operators prove to be too small in the independent particle treatment. It is suggested that the short-range two-quark correlations must be taken into account in order to improve the values of the matrix elements of the four-quark operators.

  19. Spectral properties in supersymmetric matrix models

    International Nuclear Information System (INIS)

    Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro

    2012-01-01

    We formulate a general sufficiency criterion for discreteness of the spectrum of both supersymmmetric and non-supersymmetric theories with a fermionic contribution. This criterion allows an analysis of Hamiltonians in complete form rather than just their semiclassical limits. In such a framework we examine spectral properties of various (1+0) matrix models. We consider the BMN model of M-theory compactified on a maximally supersymmetric pp-wave background, different regularizations of the supermembrane with central charges and a non-supersymmetric model comprising a bound state of N D2 with m D0. While the first two examples have a purely discrete spectrum, the latter has a continuous spectrum with a lower end given in terms of the monopole charge.

  20. Deformed type 0A matrix model and super-Liouville theory for fermionic black holes

    International Nuclear Information System (INIS)

    Ahn, Changrim; Kim, Chanju; Park, Jaemo; Suyama, Takao; Yamamoto, Masayoshi

    2006-01-01

    We consider a c-circumflex = 1 model in the fermionic black hole background. For this purpose we consider a model which contains both the N 1 and the N = 2 super-Liouville interactions. We propose that this model is dual to a recently proposed type 0A matrix quantum mechanics model with vortex deformations. We support our conjecture by showing that non-perturbative corrections to the free energy computed by both the matrix model and the super-Liouville theories agree exactly by treating the N = 2 interaction as a small perturbation. We also show that a two-point function on sphere calculated from the deformed type 0A matrix model is consistent with that of the N = 2 super-Liouville theory when the N = 1 interaction becomes small. This duality between the matrix model and super-Liouville theories leads to a conjecture for arbitrary n-point correlation functions of the N = 1 super-Liouville theory on the sphere

  1. arXiv Supersymmetric gauged matrix models from dimensional reduction on a sphere

    CERN Document Server

    Closset, Cyril; Seong, Rak-Kyeong

    2018-05-04

    It was recently proposed that $ \\mathcal{N} $ = 1 supersymmetric gauged matrix models have a duality of order four — that is, a quadrality — reminiscent of infrared dualities of SQCD theories in higher dimensions. In this note, we show that the zero-dimensional quadrality proposal can be inferred from the two-dimensional Gadde-Gukov-Putrov triality. We consider two-dimensional $ \\mathcal{N} $ = (0, 2) SQCD compactified on a sphere with the half-topological twist. For a convenient choice of R-charge, the zero-mode sector on the sphere gives rise to a simple $ \\mathcal{N} $ = 1 gauged matrix model. Triality on the sphere then implies a triality relation for the supersymmetric matrix model, which can be completed to the full quadrality.

  2. Efficient Matrix Models for Relational Learning

    Science.gov (United States)

    2009-10-01

    base learners and h1:r is the ensemble learner. For example, consider the case where h1, . . . , hr are linear discriminants. The weighted vote of...a multilinear form naturally leads one to consider tensor factorization: e.g., UAV T is a special case of Tucker decomposition [129] on a 2D- tensor , a...matrix. Our five modeling choices can also be used to differentiate tensor factorizations, but the choices may be subtler for tensors than for

  3. The genealogical decomposition of a matrix population model with applications to the aggregation of stages.

    Science.gov (United States)

    Bienvenu, François; Akçay, Erol; Legendre, Stéphane; McCandlish, David M

    2017-06-01

    Matrix projection models are a central tool in many areas of population biology. In most applications, one starts from the projection matrix to quantify the asymptotic growth rate of the population (the dominant eigenvalue), the stable stage distribution, and the reproductive values (the dominant right and left eigenvectors, respectively). Any primitive projection matrix also has an associated ergodic Markov chain that contains information about the genealogy of the population. In this paper, we show that these facts can be used to specify any matrix population model as a triple consisting of the ergodic Markov matrix, the dominant eigenvalue and one of the corresponding eigenvectors. This decomposition of the projection matrix separates properties associated with lineages from those associated with individuals. It also clarifies the relationships between many quantities commonly used to describe such models, including the relationship between eigenvalue sensitivities and elasticities. We illustrate the utility of such a decomposition by introducing a new method for aggregating classes in a matrix population model to produce a simpler model with a smaller number of classes. Unlike the standard method, our method has the advantage of preserving reproductive values and elasticities. It also has conceptually satisfying properties such as commuting with changes of units. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Aroma behaviour during steam cooking within a potato starch-based model matrix.

    Science.gov (United States)

    Descours, Emilie; Hambleton, Alicia; Kurek, Mia; Debeaufort, Fréderic; Voilley, Andrée; Seuvre, Anne-Marie

    2013-06-05

    To help understand the organoleptic qualities of steam cooked foods, the kinetics of aroma release during cooking in a potato starch based model matrix was studied. Behaviour of components having a major impact in potato flavour were studied using solid phase micro extraction-gas chromatography (SPME-GC). Evolution of microstructure of potato starch model-matrix during steam cooking process was analyzed using environmental scanning electron microscopy (ESEM). Both aroma compounds that are naturally present in starch matrix and those that were added were analyzed. Both the aroma compounds naturally presented and those added had different behaviour depending on their physico-chemical properties (hydrophobicity, saturation vapour pressure, molecular weight, etc.). The physical state of potato starch influences of the retention of aromatized matrix with Starch gelatinization appearing to be the major phenomenon influencing aroma release. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Massive quiver matrix models for massive charged particles in AdS

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, Curtis T.; Denef, Frederik [Department of Physics, Columbia University,538 West 120th Street, New York, New York 10027 (United States); Dzienkowski, Eric [Department of Physics, Broida Hall, University of California Santa Barbara,Santa Barbara, California 93106 (United States)

    2016-01-11

    We present a new class of N=4 supersymmetric quiver matrix models and argue that it describes the stringy low-energy dynamics of internally wrapped D-branes in four-dimensional anti-de Sitter (AdS) flux compactifications. The Lagrangians of these models differ from previously studied quiver matrix models by the presence of mass terms, associated with the AdS gravitational potential, as well as additional terms dictated by supersymmetry. These give rise to dynamical phenomena typically associated with the presence of fluxes, such as fuzzy membranes, internal cyclotron motion and the appearance of confining strings. We also show how these models can be obtained by dimensional reduction of four-dimensional supersymmetric quiver gauge theories on a three-sphere.

  6. A direct derivation of the exact Fisther information matrix of Gaussian vector state space models

    NARCIS (Netherlands)

    Klein, A.A.B.; Neudecker, H.

    2000-01-01

    This paper deals with a direct derivation of Fisher's information matrix of vector state space models for the general case, by which is meant the establishment of the matrix as a whole and not element by element. The method to be used is matrix differentiation, see [4]. We assume the model to be

  7. Perturbation analysis of nonlinear matrix population models

    Directory of Open Access Journals (Sweden)

    Hal Caswell

    2008-03-01

    Full Text Available Perturbation analysis examines the response of a model to changes in its parameters. It is commonly applied to population growth rates calculated from linear models, but there has been no general approach to the analysis of nonlinear models. Nonlinearities in demographic models may arise due to density-dependence, frequency-dependence (in 2-sex models, feedback through the environment or the economy, and recruitment subsidy due to immigration, or from the scaling inherent in calculations of proportional population structure. This paper uses matrix calculus to derive the sensitivity and elasticity of equilibria, cycles, ratios (e.g. dependency ratios, age averages and variances, temporal averages and variances, life expectancies, and population growth rates, for both age-classified and stage-classified models. Examples are presented, applying the results to both human and non-human populations.

  8. MODELING OF DYNAMIC SYSTEMS WITH MODULATION BY MEANS OF KRONECKER VECTOR-MATRIX REPRESENTATION

    Directory of Open Access Journals (Sweden)

    A. S. Vasilyev

    2015-09-01

    Full Text Available The paper deals with modeling of dynamic systems with modulation by the possibilities of state-space method. This method, being the basis of modern control theory, is based on the possibilities of vector-matrix formalism of linear algebra and helps to solve various problems of technical control of continuous and discrete nature invariant with respect to the dimension of their “input-output” objects. Unfortunately, it turned its back on the wide group of control systems, which hardware environment modulates signals. The marked system deficiency is partially offset by this paper, which proposes Kronecker vector-matrix representations for purposes of system representation of processes with signal modulation. The main result is vector-matrix representation of processes with modulation with no formal difference from continuous systems. It has been found that abilities of these representations could be effectively used in research of systems with modulation. Obtained model representations of processes with modulation are best adapted to the state-space method. These approaches for counting eigenvalues of Kronecker matrix summaries, that are matrix basis of model representations of processes described by Kronecker vector products, give the possibility to use modal direction in research of dynamics for systems with modulation. It is shown that the use of controllability for eigenvalues of general matrixes applied to Kronecker structures enabled to divide successfully eigenvalue spectrum into directed and not directed components. Obtained findings including design problems for models of dynamic processes with modulation based on the features of Kronecker vector and matrix structures, invariant with respect to the dimension of input-output relations, are applicable in the development of alternate current servo drives.

  9. Hyperstate matrix models : extending demographic state spaces to higher dimensions

    NARCIS (Netherlands)

    Roth, G.; Caswell, H.

    2016-01-01

    1. Demographic models describe population dynamics in terms of the movement of individuals among states (e.g. size, age, developmental stage, parity, frailty, physiological condition). Matrix population models originally classified individuals by a single characteristic. This was enlarged to two

  10. Numerical transfer-matrix study of a model with competing metastable states

    DEFF Research Database (Denmark)

    Fiig, T.; Gorman, B.M.; Rikvold, P.A.

    1994-01-01

    transition. A recently developed transfer-matrix formalism is applied to the model to obtain complex-valued ''constrained'' free-energy densities f(alpha). For particular eigenvectors of the transfer matrix, the f(alpha) exhibit finite-rangescaling behavior in agreement with the analytically continued...... 'metastable free-energy density This transfer-matrix approach gives a free-energy cost of nucleation that supports the proportionality relation for the decay rate of the metastable phase T proportional to\\Imf alpha\\, even in cases where two metastable states compete. The picture that emerges from this study...

  11. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    Science.gov (United States)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  12. Mathematical model for choosing the nuclear safe matrix compositions for fissile material immobilization

    International Nuclear Information System (INIS)

    Gorshtein, A.I.; Matyunin, Yu.I.; Poluehktov, P.P.

    2000-01-01

    A mathematical model is proposed for preliminary choice of the nuclear safe matrix compositions for fissile material immobilization. The IBM PC computer software for nuclear safe matrix composition calculations is developed. The limiting concentration of fissile materials in the some used and perspective nuclear safe matrix compositions for radioactive waste immobilization is calculated [ru

  13. Positivity of Fundamental Matrix and Exponential Stability of Delay Differential System

    Directory of Open Access Journals (Sweden)

    Alexander Domoshnitsky

    2014-01-01

    Full Text Available The classical Wazewski theorem established that nonpositivity of all nondiagonal elements pij  (i≠j,  i,j=1,…,n is necessary and sufficient for nonnegativity of the fundamental (Cauchy matrix and consequently for applicability of the Chaplygin approach of approximate integration for system of linear ordinary differential equations xi′t+∑j=1n‍pijtxjt=fit,   i=1,…,n. Results on nonnegativity of the Cauchy matrix for system of delay differential equations xi′t+∑j=1n‍pijtxjhijt=fit,   i=1,…,n, which were based on nonpositivity of all diagonal elements, were presented in the previous works. Then examples, which demonstrated that nonpositivity of nondiagonal coefficients pij is not necessary for systems of delay equations, were found. In this paper first sufficient results about nonnegativity of the Cauchy matrix of the delay system without this assumption are proven. A necessary condition of nonnegativity of the Cauchy matrix is proposed. On the basis of these results on nonnegativity of the Cauchy matrix, necessary and sufficient conditions of the exponential stability of the delay system are obtained.

  14. S matrix theory of the massive Thirring model

    International Nuclear Information System (INIS)

    Berg, B.

    1980-01-01

    The S matrix theory of the massive Thirring model, describing the exact quantum scattering of solitons and their boundstates, is reviewed. Treated are: Factorization equations and their solution, boundstates, generalized Jost functions and Levinson's theorem, scattering of boundstates, 'virtual' and anomalous thresholds. (orig.) 891 HSI/orig. 892 MKO

  15. Resilient organizations: matrix model and service line management.

    Science.gov (United States)

    Westphal, Judith A

    2005-09-01

    Resilient organizations modify structures to meet the demands of the marketplace. The author describes a structure that enables multihospital organizations to innovate and rapidly adapt to changes. Service line management within a matrix model is an evolving organizational structure for complex systems in which nurses are pivotal members.

  16. Covariant field equations, gauge fields and conservation laws from Yang-Mills matrix models

    International Nuclear Information System (INIS)

    Steinacker, Harold

    2009-01-01

    The effective geometry and the gravitational coupling of nonabelian gauge and scalar fields on generic NC branes in Yang-Mills matrix models is determined. Covariant field equations are derived from the basic matrix equations of motions, known as Yang-Mills algebra. Remarkably, the equations of motion for the Poisson structure and for the nonabelian gauge fields follow from a matrix Noether theorem, and are therefore protected from quantum corrections. This provides a transparent derivation and generalization of the effective action governing the SU(n) gauge fields obtained in [1], including the would-be topological term. In particular, the IKKT matrix model is capable of describing 4-dimensional NC space-times with a general effective metric. Metric deformations of flat Moyal-Weyl space are briefly discussed.

  17. From polymers to quantum gravity: Triple-scaling in rectangular random matrix models

    International Nuclear Information System (INIS)

    Myers, R.C.; Periwal, V.

    1993-01-01

    Rectangular NxM matrix models can be solved in several qualitatively distinct large-N limits, since two independent parameters govern the size of the matrix. Regarded as models of random surfaces, these matrix models interpolate between branched polymer behaviour and two-dimensional quantum gravity. We solve such models in a 'triple-scaling' regime in this paper, with N and M becoming large independently. A correspondence between phase transitions and singularities of mappings from R 2 to R 2 is indicated. At different critical points, the scaling behaviour is determined by (i) two decoupled ordinary differential equations; (ii) an ordinary differential equation and a finite-difference equation; or (iii) two coupled partial differential equations. The Painleve II equation arises (in conjunction with a difference equation) at a point associated with branched polymers. For critical points described by partial differential equations, there are dual weak-coupling/strong-coupling expansions. It is conjectured that the new physics is related to microscopic topology fluctuations. (orig.)

  18. Matrix orderings and their associated skew fields

    International Nuclear Information System (INIS)

    Mahdavi-Hezavehi, M.

    1990-08-01

    Matrix orderings on rings are investigated. It is shown that in the commutative case they are essentially positive cones. This is proved by reducing it to the field case; similarly one can show that on a skew field, matrix positive cones can be reduced to positive cones by using the Dieudonne determinant. Our main result shows that there is a natural bijection between the matrix positive cones on a ring R and the ordered epic R-fields. (author). 7 refs

  19. Extracellular matrix metalloproteinase inducer (EMMPRIN) remodels the extracellular matrix through enhancing matrix metalloproteinases (MMPs) and inhibiting tissue inhibitors of MMPs expression in HPV-positive cervical cancer cells.

    Science.gov (United States)

    Xu, Q; Cao, X; Pan, J; Ye, Y; Xie, Y; Ohara, N; Ji, H

    2015-01-01

    PUPOSE OF INVESTIGATION: To study the expression of extracellular matrix metalloproteinase inducer (EMMPRIN), matrix metalloproteinases (MMPs), and tissue inhibitors of MMP (TIMPs) in uterine cervical cancer cell lines in vitro. EMMPRIN, MMPs, and TIMPs expression were assessed by Western blot and real-time RT-PCR from cervical carcinoma SiHa, HeLa, and C33-A cells. EMMPRIN recombinant significantly increased MMP-2, MMP-9 protein and mRNA expression in SiHa and Hela cells, but not in C33-A cells by Western blot analysis and real-time RT-PCR. EMMPRIN recombinant significantly inhibited TIMP-1 protein and mRNA levels in SiHa and Hela cells, but not in C33-A cells. There was no difference on the TIMP-2 expression in those cells with the treatment of EMMPRIN recombinant. EMMPRIN RNAi decreased MMP-2 and MMP-9 and increased TIMP-1 expression in SiHa and HeLa cells, but not in C33-A cells. There was no change on the expression of TIMP-2 mRNA levels in SiHa, HeLa and C33-A cells transfected with siEMMPRIN. EMMPRIN may induce MMP-2 and MMP-9, and downregulate TIMP-1 in HPV-positive cervical cancer cells in vitro.

  20. Interacting hadron resonance gas model in the K -matrix formalism

    Science.gov (United States)

    Dash, Ashutosh; Samanta, Subhasis; Mohanty, Bedangadas

    2018-05-01

    An extension of hadron resonance gas (HRG) model is constructed to include interactions using relativistic virial expansion of partition function. The noninteracting part of the expansion contains all the stable baryons and mesons and the interacting part contains all the higher mass resonances which decay into two stable hadrons. The virial coefficients are related to the phase shifts which are calculated using K -matrix formalism in the present work. We have calculated various thermodynamics quantities like pressure, energy density, and entropy density of the system. A comparison of thermodynamic quantities with noninteracting HRG model, calculated using the same number of hadrons, shows that the results of the above formalism are larger. A good agreement between equation of state calculated in K -matrix formalism and lattice QCD simulations is observed. Specifically, the lattice QCD calculated interaction measure is well described in our formalism. We have also calculated second-order fluctuations and correlations of conserved charges in K -matrix formalism. We observe a good agreement of second-order fluctuations and baryon-strangeness correlation with lattice data below the crossover temperature.

  1. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  2. W-infinity ward identities and correlation functions in the c = 1 matrix model

    International Nuclear Information System (INIS)

    Das, S.R.; Dhar, A.; Mandal, G.; Wadia, S.R.

    1992-01-01

    In this paper, the authors explore consequences of W-infinity symmetry in the fermionic field theory of the c = 1 matrix model. The authors derive exact Ward identities relating correlation functions of the bilocal operator. These identities can be expressed as equations satisfied by the effective action of a three-dimensional theory and contain non-perturbative information about the model. The authors use thee identities to calculate the two-point function of the bilocal operator in the double scaling limit. The authors extract the operator whose two-point correlator has a single pole at an (imaginary) integer value of the energy. The authors then rewrite the W-infinity charges in terms of operators in the matrix model and use this to derive constraints satisfied by the partition function of the matrix model with a general time dependent potential

  3. Regularization of quantum gravity in the matrix model approach

    International Nuclear Information System (INIS)

    Ueda, Haruhiko

    1991-02-01

    We study divergence problem of the partition function in the matrix model approach for two-dimensional quantum gravity. We propose a new model V(φ) = 1/2Trφ 2 + g 4 /NTrφ 4 + g'/N 4 Tr(φ 4 ) 2 and show that in the sphere case it has no divergence problem and the critical exponent is of pure gravity. (author)

  4. Reformulation of the Hermitean 1-matrix model as an effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Klitz, Alexander

    2009-07-15

    The formal Hermitean 1-matrix model is shown to be equivalent to an effective field theory. The correlation functions and the free energy of the matrix model correspond directly to the correlation functions and the free energy of the effective field theory. The loop equation of the field theory coupling constants is stated. Despite its length, this loop equation is simpler than the loop equations in the matrix model formalism itself since it does not contain operator inversions in any sense, but consists instead only of derivative operators and simple projection operators. Therefore the solution of the loop equation could be given for an arbitrary number of cuts up to the fifth order in the topological expansion explicitly. Two different methods of obtaining the contributions to the free energy of the higher orders are given, one depending on an operator H and one not depending on it. (orig.)

  5. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes

    DEFF Research Database (Denmark)

    Terp, G E; Christensen, I T; Jørgensen, Flemming Steen

    2000-01-01

    Matrix metalloproteinases are extracellular enzymes taking part in the remodeling of extracellular matrix. The structures of the catalytic domain of MMP1, MMP3, MMP7 and MMP8 are known, but structures of enzymes belonging to this family still remain to be determined. A general approach...... to the homology modeling of matrix metalloproteinases, exemplified by the modeling of MMP2, MMP9, MMP12 and MMP14 is described. The models were refined using an energy minimization procedure developed for matrix metalloproteinases. This procedure includes incorporation of parameters for zinc and calcium ions...... in the AMBER 4.1 force field, applying a non-bonded approach and a full ion charge representation. Energy minimization of the apoenzymes yielded structures with distorted active sites, while reliable three-dimensional structures of the enzymes containing a substrate in active site were obtained. The structural...

  6. Multidisciplinary Product Decomposition and Analysis Based on Design Structure Matrix Modeling

    DEFF Research Database (Denmark)

    Habib, Tufail

    2014-01-01

    Design structure matrix (DSM) modeling in complex system design supports to define physical and logical configuration of subsystems, components, and their relationships. This modeling includes product decomposition, identification of interfaces, and structure analysis to increase the architectural...... interactions across subsystems and components. For this purpose, Cambridge advanced modeler (CAM) software tool is used to develop the system matrix. The analysis of the product (printer) architecture includes clustering, partitioning as well as structure analysis of the system. The DSM analysis is helpful...... understanding of the system. Since product architecture has broad implications in relation to product life cycle issues, in this paper, mechatronic product is decomposed into subsystems and components, and then, DSM model is developed to examine the extent of modularity in the system and to manage multiple...

  7. Investigation of the existence and uniqueness of extremal and positive definite solutions of nonlinear matrix equations

    Directory of Open Access Journals (Sweden)

    Abdel-Shakoor M Sarhan

    2016-05-01

    Full Text Available Abstract We consider two nonlinear matrix equations X r ± ∑ i = 1 m A i ∗ X δ i A i = I $X^{r} \\pm \\sum_{i = 1}^{m} A_{i}^{*}X^{\\delta_{i}}A_{i} = I$ , where − 1 < δ i < 0 $- 1 < \\delta_{i} < 0$ , and r, m are positive integers. For the first equation (plus case, we prove the existence of positive definite solutions and extremal solutions. Two algorithms and proofs of their convergence to the extremal positive definite solutions are constructed. For the second equation (negative case, we prove the existence and the uniqueness of a positive definite solution. Moreover, the algorithm given in (Duan et al. in Linear Algebra Appl. 429:110-121, 2008 (actually, in (Shi et al. in Linear Multilinear Algebra 52:1-15, 2004 for r = 1 $r = 1$ is proved to be valid for any r. Numerical examples are given to illustrate the performance and effectiveness of all the constructed algorithms. In Appendix, we analyze the ordering on the positive cone P ( n ‾ $\\overline{P(n}$ .

  8. Higher genus correlators for the hermitian matrix model with multiple cuts

    International Nuclear Information System (INIS)

    Akemann, G.

    1996-01-01

    An iterative scheme is set up for solving the loop equation of the hermitian one-matrix model with a multi-cut structure. Explicit results are presented for genus one for an arbitrary but finite number of cuts. Due to the complicated form of the boundary conditions, the loop correlators now contain elliptic integrals. This demonstrates the existence of new universality classes for the hermitian matrix model. The two-cut solution is investigated in more detail, including the double scaling limit. It is shown that in special cases it differs from the known continuum solution with one cut. (orig.)

  9. Exact 2-point function in Hermitian matrix model

    International Nuclear Information System (INIS)

    Morozov, A.; Shakirov, Sh.

    2009-01-01

    J. Harer and D. Zagier have found a strikingly simple generating function [1,2] for exact (all-genera) 1-point correlators in the Gaussian Hermitian matrix model. In this paper we generalize their result to 2-point correlators, using Toda integrability of the model. Remarkably, this exact 2-point correlation function turns out to be an elementary function - arctangent. Relation to the standard 2-point resolvents is pointed out. Some attempts of generalization to 3-point and higher functions are described.

  10. Character expansion methods for matrix models of dually weighted graphs

    International Nuclear Information System (INIS)

    Kazakov, V.A.; Staudacher, M.; Wynter, T.

    1996-01-01

    We consider generalized one-matrix models in which external fields allow control over the coordination numbers on both the original and dual lattices. We rederive in a simple fashion a character expansion formula for these models originally due to Itzykson and Di Francesco, and then demonstrate how to take the large N limit of this expansion. The relationship to the usual matrix model resolvent is elucidated. Our methods give as a by-product an extremely simple derivation of the Migdal integral equation describing the large N limit of the Itzykson-Zuber formula. We illustrate and check our methods by analysing a number of models solvable by traditional means. We then proceed to solve a new model: a sum over planar graphs possessing even coordination numbers on both the original and the dual lattice. We conclude by formulating equations for the case of arbitrary sets of even, self-dual coupling constants. This opens the way for studying the deep problem of phase transitions from random to flat lattices. (orig.). With 4 figs

  11. Using Population Matrix Modeling to Predict AEGIS Fire Controlmen Community Structure

    National Research Council Canada - National Science Library

    McKeon, Thomas J

    2007-01-01

    .... A Population Matrix with Markov properties was used to develop the AEGIS FC aging model. The goal of this model was to provide an accurate predication of the future AEGIS FC community structure based upon variables...

  12. The spherical sector of the Calogero model as a reduced matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Hakobyan, Tigran, E-mail: hakob@yerphi.am [Yerevan State University, 1 Alex Manoogian, 0025 Yerevan (Armenia); Yerevan Physics Institute, 2 Alikhanyan Br., 0036 Yerevan (Armenia); Lechtenfeld, Olaf, E-mail: lechtenf@itp.uni-hannover.de [Leibniz Universitaet Hannover, Institut fuer Theoretische Physik, Appelstr. 2, D-30167 Hannover (Germany); Nersessian, Armen, E-mail: arnerses@ysu.am [Yerevan State University, 1 Alex Manoogian, 0025 Yerevan (Armenia)

    2012-05-11

    We investigate the matrix-model origin of the spherical sector of the rational Calogero model and its constants of motion. We develop a diagrammatic technique which allows us to find explicit expressions of the constants of motion and calculate their Poisson brackets. In this way we obtain all functionally independent constants of motion to any given order in the momenta. Our technique is related to the valence-bond basis for singlet states.

  13. Modeling the curing process of thermosetting resin matrix composites

    Science.gov (United States)

    Loos, A. C.

    1986-01-01

    A model is presented for simulating the curing process of a thermosetting resin matrix composite. The model relates the cure temperature, the cure pressure, and the properties of the prepreg to the thermal, chemical, and rheological processes occurring in the composite during cure. The results calculated with the computer code developed on the basis of the model were compared with the experimental data obtained from autoclave-curved composite laminates. Good agreement between the two sets of results was obtained.

  14. Matrix models from localization of five-dimensional supersymmetric noncommutative U(1) gauge theory

    International Nuclear Information System (INIS)

    Lee, Bum-Hoon; Ro, Daeho; Yang, Hyun Seok

    2017-01-01

    We study localization of five-dimensional supersymmetric U(1) gauge theory on S 3 ×ℝ θ 2 where ℝ θ 2 is a noncommutative (NC) plane. The theory can be isomorphically mapped to three-dimensional supersymmetric U(N→∞) gauge theory on S 3 using the matrix representation on a separable Hilbert space on which NC fields linearly act. Therefore the NC space ℝ θ 2 allows for a flexible path to derive matrix models via localization from a higher-dimensional supersymmetric NC U(1) gauge theory. The result shows a rich duality between NC U(1) gauge theories and large N matrix models in various dimensions.

  15. A planar model study of creep in metal matrix composites with misaligned short fibres

    DEFF Research Database (Denmark)

    Sørensen, N.J.

    1993-01-01

    The effect of fibre misalignment on the creep behaviour of metal matrix composites is modelled, including hardening behaviour (stage 1), dynamic recovery and steady state creep (stage 2) of the matrix material, using an internal variable constitutive model for the creep behaviour of the metal...... matrix. Numerical plane strain results in terms of average properties and detailed local deformation behaviour up to large strains are needed to show effects of fibre misalignment on the development of inelastic strains and the resulting over-all creep resistance of the material. The creep resistance...

  16. Form factors in quantum integrable models with GL(3)-invariant R-matrix

    Energy Technology Data Exchange (ETDEWEB)

    Pakuliak, S., E-mail: pakuliak@theor.jinr.ru [Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Reg. (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Reg. (Russian Federation); Institute of Theoretical and Experimental Physics, 117259 Moscow (Russian Federation); Ragoucy, E., E-mail: eric.ragoucy@lapth.cnrs.fr [Laboratoire de Physique Théorique LAPTH, CNRS and Université de Savoie, BP 110, 74941 Annecy-le-Vieux Cedex (France); Slavnov, N.A., E-mail: nslavnov@mi.ras.ru [Steklov Mathematical Institute, Moscow (Russian Federation)

    2014-04-15

    We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3)-invariant R-matrix. We obtain determinant representations for form factors of off-diagonal entries of the monodromy matrix. These representations can be used for the calculation of form factors and correlation functions of the XXX SU(3)-invariant Heisenberg chain.

  17. Universality of correlation functions in random matrix models of QCD

    International Nuclear Information System (INIS)

    Jackson, A.D.; Sener, M.K.; Verbaarschot, J.J.M.

    1997-01-01

    We demonstrate the universality of the spectral correlation functions of a QCD inspired random matrix model that consists of a random part having the chiral structure of the QCD Dirac operator and a deterministic part which describes a schematic temperature dependence. We calculate the correlation functions analytically using the technique of Itzykson-Zuber integrals for arbitrary complex supermatrices. An alternative exact calculation for arbitrary matrix size is given for the special case of zero temperature, and we reproduce the well-known Laguerre kernel. At finite temperature, the microscopic limit of the correlation functions are calculated in the saddle-point approximation. The main result of this paper is that the microscopic universality of correlation functions is maintained even though unitary invariance is broken by the addition of a deterministic matrix to the ensemble. (orig.)

  18. Numerical modelling of transdermal delivery from matrix systems: parametric study and experimental validation with silicone matrices.

    Science.gov (United States)

    Snorradóttir, Bergthóra S; Jónsdóttir, Fjóla; Sigurdsson, Sven Th; Másson, Már

    2014-08-01

    A model is presented for transdermal drug delivery from single-layered silicone matrix systems. The work is based on our previous results that, in particular, extend the well-known Higuchi model. Recently, we have introduced a numerical transient model describing matrix systems where the drug dissolution can be non-instantaneous. Furthermore, our model can describe complex interactions within a multi-layered matrix and the matrix to skin boundary. The power of the modelling approach presented here is further illustrated by allowing the possibility of a donor solution. The model is validated by a comparison with experimental data, as well as validating the parameter values against each other, using various configurations with donor solution, silicone matrix and skin. Our results show that the model is a good approximation to real multi-layered delivery systems. The model offers the ability of comparing drug release for ibuprofen and diclofenac, which cannot be analysed by the Higuchi model because the dissolution in the latter case turns out to be limited. The experiments and numerical model outlined in this study could also be adjusted to more general formulations, which enhances the utility of the numerical model as a design tool for the development of drug-loaded matrices for trans-membrane and transdermal delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. A Taxonomy of Latent Structure Assumptions for Probability Matrix Decomposition Models.

    Science.gov (United States)

    Meulders, Michel; De Boeck, Paul; Van Mechelen, Iven

    2003-01-01

    Proposed a taxonomy of latent structure assumptions for probability matrix decomposition (PMD) that includes the original PMD model and a three-way extension of the multiple classification latent class model. Simulation study results show the usefulness of the taxonomy. (SLD)

  20. Use of shell model calculations in R-matrix studies of neutron-induced reactions

    International Nuclear Information System (INIS)

    Knox, H.D.

    1986-01-01

    R-matrix analyses of neutron-induced reactions for many of the lightest p-shell nuclei are difficult due to a lack of distinct resonance structure in the reaction cross sections. Initial values for the required R-matrix parameters, E,sub(lambda) and γsub(lambdac) for states in the compound system, can be obtained from shell model calculations. In the present work, the results of recent shell model calculations for the lithium isotopes have been used in R-matrix analyses of 6 Li+n and 7 Li+n reactions for E sub(n) 7 Li and 8 Li on the 6 Li+n and 7 Li+n reaction mechanisms and cross sections are discussed. (author)

  1. Modeling the tumor extracellular matrix: Tissue engineering tools repurposed towards new frontiers in cancer biology.

    Science.gov (United States)

    Gill, Bartley J; West, Jennifer L

    2014-06-27

    Cancer progression is mediated by complex epigenetic, protein and structural influences. Critical among them are the biochemical, mechanical and architectural properties of the extracellular matrix (ECM). In recognition of the ECM's important role, cancer biologists have repurposed matrix mimetic culture systems first widely used by tissue engineers as new tools for in vitro study of tumor models. In this review we discuss the pathological changes in tumor ECM, the limitations of 2D culture on both traditional and polyacrylamide hydrogel surfaces in modeling these characteristics and advances in both naturally derived and synthetic scaffolds to facilitate more complex and controllable 3D cancer cell culture. Studies using naturally derived matrix materials like Matrigel and collagen have produced significant findings related to tumor morphogenesis and matrix invasion in a 3D environment and the mechanotransductive signaling that mediates key tumor-matrix interaction. However, lack of precise experimental control over important matrix factors in these matrices have increasingly led investigators to synthetic and semi-synthetic scaffolds that offer the engineering of specific ECM cues and the potential for more advanced experimental manipulations. Synthetic scaffolds composed of poly(ethylene glycol) (PEG), for example, facilitate highly biocompatible 3D culture, modular bioactive features like cell-mediated matrix degradation and complete independent control over matrix bioactivity and mechanics. Future work in PEG or similar reductionist synthetic matrix systems should enable the study of increasingly complex and dynamic tumor-ECM relationships in the hopes that accurate modeling of these relationships may reveal new cancer therapeutics targeting tumor progression and metastasis. © 2013 Published by Elsevier Ltd.

  2. Dealing with project complexity by matrix-based propagation modelling for project risk analysis

    OpenAIRE

    Fang , Chao; Marle , Franck

    2012-01-01

    International audience; Engineering projects are facing a growing complexity and are thus exposed to numerous and interdependent risks. In this paper, we present a quantitative method for modelling propagation behaviour in the project risk network. The construction of the network requires the involvement of the project manager and related experts using the Design Structure Matrix (DSM) method. A matrix-based risk propagation model is introduced to calculate risk propagation and thus to re-eva...

  3. In vitro evaluation of matrix metalloproteinases as predictive testing for nickel, a model sensitizing agent

    International Nuclear Information System (INIS)

    Lamberti, Monica; Perfetto, Brunella; Costabile, Teresa; Canozo, Nunzia; Baroni, Adone; Liotti, Francesco; Sannolo, Nicola; Giuliano, Mariateresa

    2004-01-01

    The identification of potential damage due to chemical exposure in the workplace is a major health and regulatory concern. Traditional tests that measure both sensitization and elicitation responses require the use of animals. An alternative to this widespread use of experimental animals could have a crucial impact on risk assessment, especially for the preliminary screening of new molecules. We developed an in vitro model for the screening of potential toxic compounds. Human keratinocytes (HaCat) were used as target cells while matrix metalloproteinases (MMP) were selected as responders because they are key enzymes involved in extracellular matrix (ECM) degradation in physiological and pathological conditions. Chemical exposure was performed using nickel sulphate as a positive tester. Nickel contact induced upregulation of MMP-2 and IL-8 mRNA production. Molecular activation occurred even at very low nickel concentrations even though no phenotypic changes were observed. MMP-9 accumulation was found in the medium of treated cells with respect to controls. These observations led to the hypothesis that even minimal exposure can accumulate transcriptional activity resulting in long-term clinical signs after contact. Our simple in vitro model can be applied as a useful preliminary complement to the animal studies to screen the effects of new potential toxic compounds

  4. Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells

    Science.gov (United States)

    Prokopius, P. R.; Easter, R. W.

    1972-01-01

    Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.

  5. Ability of matrix models to explain the past and predict the future of plant populations.

    Science.gov (United States)

    McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.

    2013-01-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  6. Ability of matrix models to explain the past and predict the future of plant populations.

    Science.gov (United States)

    Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S

    2013-10-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. © 2013 Society for Conservation Biology.

  7. A major protein component of the Bacillus subtilis biofilm matrix.

    Science.gov (United States)

    Branda, Steven S; Chu, Frances; Kearns, Daniel B; Losick, Richard; Kolter, Roberto

    2006-02-01

    Microbes construct structurally complex multicellular communities (biofilms) through production of an extracellular matrix. Here we present evidence from scanning electron microscopy showing that a wild strain of the Gram positive bacterium Bacillus subtilis builds such a matrix. Genetic, biochemical and cytological evidence indicates that the matrix is composed predominantly of a protein component, TasA, and an exopolysaccharide component. The absence of TasA or the exopolysaccharide resulted in a residual matrix, while the absence of both components led to complete failure to form complex multicellular communities. Extracellular complementation experiments revealed that a functional matrix can be assembled even when TasA and the exopolysaccharide are produced by different cells, reinforcing the view that the components contribute to matrix formation in an extracellular manner. Having defined the major components of the biofilm matrix and the control of their synthesis by the global regulator SinR, we present a working model for how B. subtilis switches between nomadic and sedentary lifestyles.

  8. An Uncertainty Structure Matrix for Models and Simulations

    Science.gov (United States)

    Green, Lawrence L.; Blattnig, Steve R.; Hemsch, Michael J.; Luckring, James M.; Tripathi, Ram K.

    2008-01-01

    Software that is used for aerospace flight control and to display information to pilots and crew is expected to be correct and credible at all times. This type of software is typically developed under strict management processes, which are intended to reduce defects in the software product. However, modeling and simulation (M&S) software may exhibit varying degrees of correctness and credibility, depending on a large and complex set of factors. These factors include its intended use, the known physics and numerical approximations within the M&S, and the referent data set against which the M&S correctness is compared. The correctness and credibility of an M&S effort is closely correlated to the uncertainty management (UM) practices that are applied to the M&S effort. This paper describes an uncertainty structure matrix for M&S, which provides a set of objective descriptions for the possible states of UM practices within a given M&S effort. The columns in the uncertainty structure matrix contain UM elements or practices that are common across most M&S efforts, and the rows describe the potential levels of achievement in each of the elements. A practitioner can quickly look at the matrix to determine where an M&S effort falls based on a common set of UM practices that are described in absolute terms that can be applied to virtually any M&S effort. The matrix can also be used to plan those steps and resources that would be needed to improve the UM practices for a given M&S effort.

  9. Description of identical particles via gauged matrix models: a generalization of the Calogero-Sutherland system

    International Nuclear Information System (INIS)

    Park, Jeong-Hyuck

    2003-01-01

    We elaborate the idea that the matrix models equipped with the gauge symmetry provide a natural framework to describe identical particles. After demonstrating the general prescription, we study an exactly solvable harmonic oscillator type gauged matrix model. The model gives a generalization of the Calogero-Sutherland system where the strength of the inverse square potential is not fixed but dynamical bounded by below

  10. Convergent J-matrix calculation of the Poet-Temkin model of electron-hydrogen scattering

    International Nuclear Information System (INIS)

    Konovalov, D.A.; McCarthy, I.E.

    1994-01-01

    It is shown that the Poet-Temkin model of electron-hydrogen scattering could be solved to any required accuracy using the J-matrix method. The convergence in the basis size is achieved to an accuracy of better than 2% with the inclusion of 37 basis L 2 functions. Previously observed pseudoresonances in the J-matrix calculation naturally disappear with an increase in basis size. No averaging technique is necessary to smooth the convergent J-matrix results. (Author)

  11. Testing Constancy of the Error Covariance Matrix in Vector Models against Parametric Alternatives using a Spectral Decomposition

    DEFF Research Database (Denmark)

    Yang, Yukay

    I consider multivariate (vector) time series models in which the error covariance matrix may be time-varying. I derive a test of constancy of the error covariance matrix against the alternative that the covariance matrix changes over time. I design a new family of Lagrange-multiplier tests against...... to consider multivariate volatility modelling....

  12. On low rank classical groups in string theory, gauge theory and matrix models

    International Nuclear Information System (INIS)

    Intriligator, Ken; Kraus, Per; Ryzhov, Anton V.; Shigemori, Masaki; Vafa, Cumrun

    2004-01-01

    We consider N=1 supersymmetric U(N), SO(N), and Sp(N) gauge theories, with two-index tensor matter and added tree-level superpotential, for general breaking patterns of the gauge group. By considering the string theory realization and geometric transitions, we clarify when glueball superfields should be included and extremized, or rather set to zero; this issue arises for unbroken group factors of low rank. The string theory results, which are equivalent to those of the matrix model, refer to a particular UV completion of the gauge theory, which could differ from conventional gauge theory results by residual instanton effects. Often, however, these effects exhibit miraculous cancellations, and the string theory or matrix model results end up agreeing with standard gauge theory. In particular, these string theory considerations explain and remove some apparent discrepancies between gauge theories and matrix models in the literature

  13. Modelling of high temperature interfacial reactions in continuously reinforced Ti/SiC metal matrix composites (MMCs)

    International Nuclear Information System (INIS)

    Fox, K.M.

    1993-01-01

    Previous experimental work by Gundel and Wawner showed that the matrix alloy has a strong effect on reaction layer growth in Ti alloy/SCS-6 composite systems. A finite difference technique was used to model the reaction layer growth, which predicts the same trends as those exhibited by the experimental data. Matrix alloying elements such as Mo and Cr in metastable β alloys will affect the equilibrium compositions and diffusivities in the matrix, but matrix diffusion is not found to be rate controlling. Regular solution thermodynamic models indicate that the main affect of matrix composition is in controlling carbon-flux through the reaction layer by altering equilibrium C-TiC-Ti interfacial compositions. (orig.)

  14. Large N Penner matrix model and a novel asymptotic formula for the generalized Laguerre polynomials

    International Nuclear Information System (INIS)

    Deo, N

    2003-01-01

    The Gaussian Penner matrix model is re-examined in the light of the results which have been found in double-well matrix models. The orthogonal polynomials for the Gaussian Penner model are shown to be the generalized Laguerre polynomials L (α) n (x) with α and x depending on N, the size of the matrix. An asymptotic formula for the orthogonal polynomials is derived following closely the orthogonal polynomial method of Deo (1997 Nucl. Phys. B 504 609). The universality found in the double-well matrix model is extended to include non-polynomial potentials. An asymptotic formula is also found for the Laguerre polynomial using the saddle-point method by rescaling α and x with N. Combining these results a novel asymptotic formula is found for the generalized Laguerre polynomials (different from that given in Szego's book) in a different asymptotic regime. This may have applications in mathematical and physical problems in the future. The density-density correlators are derived and are the same as those found for the double-well matrix models. These correlators in the smoothed large N limit are sensitive to odd and even N where N is the size of the matrix. These results for the two-point density-density correlation function may be useful in finding eigenvalue effects in experiments in mesoscopic systems or small metallic grains. There may be applications to string theory as well as the tunnelling of an eigenvalue from one valley to the other being an important quantity there

  15. Critical behavior in dome D = 1 large-N matrix models

    International Nuclear Information System (INIS)

    Das, S.R.; Dhar, A.; Sengupta, A.M.; Wadia, D.R.

    1990-01-01

    The authors study the critical behavior in D = 1 large-N matrix models. The authors also look at the subleading terms in susceptibility in order to find out the dimensions of some of the operators in the theory

  16. Refined open intersection numbers and the Kontsevich-Penner matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, Alexander [Center for Geometry and Physics, Institute for Basic Science (IBS),Pohang 37673 (Korea, Republic of); Centre de Recherches Mathématiques (CRM), Université de Montréal,Montréal (Canada); Department of Mathematics and Statistics, Concordia University,Montréal (Canada); Institute for Theoretical and Experimental Physics (ITEP),Moscow (Russian Federation); Buryak, Alexandr [Department of Mathematics, ETH Zurich, Zurich (Switzerland); Tessler, Ran J. [Institute for Theoretical Studies, ETH Zurich,Zurich (Switzerland)

    2017-03-23

    A study of the intersection theory on the moduli space of Riemann surfaces with boundary was recently initiated in a work of R. Pandharipande, J.P. Solomon and the third author, where they introduced open intersection numbers in genus 0. Their construction was later generalized to all genera by J.P. Solomon and the third author. In this paper we consider a refinement of the open intersection numbers by distinguishing contributions from surfaces with different numbers of boundary components, and we calculate all these numbers. We then construct a matrix model for the generating series of the refined open intersection numbers and conjecture that it is equivalent to the Kontsevich-Penner matrix model. An evidence for the conjecture is presented. Another refinement of the open intersection numbers, which describes the distribution of the boundary marked points on the boundary components, is also discussed.

  17. Refined open intersection numbers and the Kontsevich-Penner matrix model

    International Nuclear Information System (INIS)

    Alexandrov, Alexander; Buryak, Alexandr; Tessler, Ran J.

    2017-01-01

    A study of the intersection theory on the moduli space of Riemann surfaces with boundary was recently initiated in a work of R. Pandharipande, J.P. Solomon and the third author, where they introduced open intersection numbers in genus 0. Their construction was later generalized to all genera by J.P. Solomon and the third author. In this paper we consider a refinement of the open intersection numbers by distinguishing contributions from surfaces with different numbers of boundary components, and we calculate all these numbers. We then construct a matrix model for the generating series of the refined open intersection numbers and conjecture that it is equivalent to the Kontsevich-Penner matrix model. An evidence for the conjecture is presented. Another refinement of the open intersection numbers, which describes the distribution of the boundary marked points on the boundary components, is also discussed.

  18. Identifying sources of atmospheric fine particles in Havana City using Positive Matrix Factorization technique

    International Nuclear Information System (INIS)

    Pinnera, I.; Perez, G.; Ramos, M.; Guibert, R.; Aldape, F.; Flores M, J.; Martinez, M.; Molina, E.; Fernandez, A.

    2011-01-01

    In previous study a set of samples of fine and coarse airborne particulate matter collected in a urban area of Havana City were analyzed by Particle-Induced X-ray Emission (PIXE) technique. The concentrations of 14 elements (S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br and Pb) were consistently determined in both particle sizes. The analytical database provided by PIXE was statistically analyzed in order to determine the local pollution sources. The Positive Matrix Factorization (PMF) technique was applied to fine particle data in order to identify possible pollution sources. These sources were further verified by enrichment factor (EF) calculation. A general discussion about these results is presented in this work. (Author)

  19. General structure of democratic mass matrix of quark sector in E{sub 6} model

    Energy Technology Data Exchange (ETDEWEB)

    Ciftci, R., E-mail: rciftci@cern.ch [Ankara (Turkey); Çiftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch [Ankara University, Ankara (Turkey)

    2016-03-25

    An extension of the Standard Model (SM) fermion sector, which is inspired by the E{sub 6} Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.

  20. Position Error Covariance Matrix Validation and Correction

    Science.gov (United States)

    Frisbee, Joe, Jr.

    2016-01-01

    In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.

  1. Investigating the properties of six-quark bag by means of P-matrix

    International Nuclear Information System (INIS)

    Grach, I.L.; Veselov, A.I.; Konyukhova, N.B.; Shmatikov, M.Zh.

    1983-01-01

    The P-matrix for NN states with definite orbital momenta P 1 S 0 , 1 1 , 3 P 0 , 3 P 1 , 1 D 2 , 3 D 2 is calculated. The position of P-matrix poles determined from the results of phase shift analysis with the account of inelastic channels are compared to the predictions of the bag models for masses of six-quark states. The possible use of the low-energy behaviour of the P-matrix for the determination of the six-quark-bag radius is discussed

  2. Realizing three generations of the Standard Model fermions in the type IIB matrix model

    International Nuclear Information System (INIS)

    Aoki, Hajime; Nishimura, Jun; Tsuchiya, Asato

    2014-01-01

    We discuss how the Standard Model particles appear from the type IIB matrix model, which is considered to be a nonperturbative formulation of superstring theory. In particular, we are concerned with a constructive definition of the theory, in which we start with finite-N matrices and take the large-N limit afterwards. In that case, it was pointed out recently that realizing chiral fermions in the model is more difficult than it had been thought from formal arguments at N=∞ and that introduction of a matrix version of the warp factor is necessary. Based on this new insight, we show that two generations of the Standard Model fermions can be realized by considering a rather generic configuration of fuzzy S"2 and fuzzy S"2×S"2 in the extra dimensions. We also show that three generations can be obtained by squashing one of the S"2’s that appear in the configuration. Chiral fermions appear at the intersections of the fuzzy manifolds with nontrivial Yukawa couplings to the Higgs field, which can be calculated from the overlap of their wave functions.

  3. M(atrix) theory: matrix quantum mechanics as a fundamental theory

    International Nuclear Information System (INIS)

    Taylor, Washington

    2001-01-01

    This article reviews the matrix model of M theory. M theory is an 11-dimensional quantum theory of gravity that is believed to underlie all superstring theories. M theory is currently the most plausible candidate for a theory of fundamental physics which reconciles gravity and quantum field theory in a realistic fashion. Evidence for M theory is still only circumstantial -- no complete background-independent formulation of the theory exists as yet. Matrix theory was first developed as a regularized theory of a supersymmetric quantum membrane. More recently, it has appeared in a different guise as the discrete light-cone quantization of M theory in flat space. These two approaches to matrix theory are described in detail and compared. It is shown that matrix theory is a well-defined quantum theory that reduces to a supersymmetric theory of gravity at low energies. Although its fundamental degrees of freedom are essentially pointlike, higher-dimensional fluctuating objects (branes) arise through the non-Abelian structure of the matrix degrees of freedom. The problem of formulating matrix theory in a general space-time background is discussed, and the connections between matrix theory and other related models are reviewed

  4. Matrix Model for Choosing Green Marketing Sustainable Strategic Alternatives

    Directory of Open Access Journals (Sweden)

    Cătălina Sitnikov

    2015-08-01

    Full Text Available Green marketing examines the symbiotic role played by marketing in ensuring sustainable business, exploring issues concerning the environment and the way strategic decisions can influence it. At present, the environmental issues concern more and more the competitive approach any organization can implement. Based on this approach, organizations can gain competitive advantage by managing environmental variables and by developing and implementing green marketing strategies. Considering the importance and impact of green marketing, by using theoretical concepts and defining a set of research directions, the paper and the research conducted were focused on creating a matrix model for choosing the optimal green marketing strategy, oriented towards competitive advantage. The model is based on the correlation that can be established among the generic strategies of competitive advantage, the variables of extended marketing mix (7Ps and the green marketing strategy matrix. There are also analyzed the implications that may be generated within a company by the adoption of a green marketing strategy and its role in promoting the environmental benefits of products.

  5. Modeling of interaction layer growth between U-Mo particles and an Al matrix

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Horman, G. L.; Ryu, Ho Jin; Park, Jong Man; Robinson, A. B.; Wachs, D. M.

    2013-01-01

    Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL) growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication and any follow-on heating process before irradiation, out-of-pile heating test data were used to develop kinetic correlations. Two out-of-pile correlations, one for the pure Al matrix and the other for the Al matrix with Si addition, respectively, were developed, which are Arrhenius equations that include temperature and time. For IL growth predictions during irradiation, the out-of-pile correlations were modified to include a fission-rate term to consider fission enhanced diffusion, and multiplication factors to incorporate the Si addition effect and the effect of the Mo content. The in-pile correlation is applicable for a pure Al matrix and an Al matrix with the Si content up to 8 wt%, for fuel temperatures up to 200 .deg. C, and for Mo content in the range of 6 - 10wt%. In order to cover these ranges, in-pile data were included in modeling from various tests, such as the US RERTR-4, -5, -6, -7 and -9 tests and Korea's KOMO-4 test, that were designed to systematically examine the effects of the fission rate, temperature, Si content in Al matrix, and Mo content in U-Mo particles. A model converting the IL thickness to the IL volume fraction in the meat was also developed

  6. MODELING OF INTERACTION LAYER GROWTH BETWEEN U-Mo PARTICLES AND AN Al MATRIX

    Directory of Open Access Journals (Sweden)

    YEON SOO KIM

    2013-12-01

    Full Text Available Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication and any follow-on heating process before irradiation, out-of-pile heating test data were used to develop kinetic correlations. Two out-of-pile correlations, one for the pure Al matrix and the other for the Al matrix with Si addition, respectively, were developed, which are Arrhenius equations that include temperature and time. For IL growth predictions during irradiation, the out-of-pile correlations were modified to include a fission-rate term to consider fission enhanced diffusion, and multiplication factors to incorporate the Si addition effect and the effect of the Mo content. The in-pile correlation is applicable for a pure Al matrix and an Al matrix with the Si content up to 8 wt%, for fuel temperatures up to 200 °C, and for Mo content in the range of 6 – 10wt%. In order to cover these ranges, in-pile data were included in modeling from various tests, such as the US RERTR-4, -5, -6, -7 and -9 tests and Korea's KOMO-4 test, that were designed to systematically examine the effects of the fission rate, temperature, Si content in Al matrix, and Mo content in U-Mo particles. A model converting the IL thickness to the IL volume fraction in the meat was also developed.

  7. Source Apportionment of PM10 by Positive Matrix Factorization in Urban Area of Mumbai, India

    Directory of Open Access Journals (Sweden)

    Indrani Gupta

    2012-01-01

    Full Text Available Particulate Matter (PM10 has been one of the main air pollutants exceeding the ambient standards in most of the major cities in India. During last few years, receptor models such as Chemical Mass Balance, Positive Matrix Factorization (PMF, PCA–APCS and UNMIX have been used to provide solutions to the source identification and contributions which are accepted for developing effective and efficient air quality management plans. Each site poses different complexities while resolving PM10 contributions. This paper reports the variability of four sites within Mumbai city using PMF. Industrial area of Mahul showed sources such as residual oil combustion and paved road dust (27%, traffic (20%, coal fired boiler (17%, nitrate (15%. Residential area of Khar showed sources such as residual oil combustion and construction (25%, motor vehicles (23%, marine aerosol and nitrate (19%, paved road dust (18% compared to construction and natural dust (27%, motor vehicles and smelting work (25%, nitrate (16% and biomass burning and paved road dust (15% in Dharavi, a low income slum residential area. The major contributors of PM10 at Colaba were marine aerosol, wood burning and ammonium sulphate (24%, motor vehicles and smelting work (22%, Natural soil (19%, nitrate and oil burning (18%.

  8. From the topological development of matrix models to the topological string theory: arrangement of surfaces through algebraic geometry

    International Nuclear Information System (INIS)

    Orantin, N.

    2007-09-01

    The 2-matrix model has been introduced to study Ising model on random surfaces. Since then, the link between matrix models and arrangement of discrete surfaces has strongly tightened. This manuscript aims to investigate these deep links and extend them beyond the matrix models, following my work's evolution. First, I take care to define properly the hermitian 2 matrix model which gives rise to generating functions of discrete surfaces equipped with a spin structure. Then, I show how to compute all the terms in the topological expansion of any observable by using algebraic geometry tools. They are obtained as differential forms on an algebraic curve associated to the model: the spectral curve. In a second part, I show how to define such differentials on any algebraic curve even if it does not come from a matrix model. I then study their numerous symmetry properties under deformations of the algebraic curve. In particular, I show that these objects coincide with the topological expansion of the observable of a matrix model if the algebraic curve is the spectral curve of this model. Finally, I show that the fine tuning of the parameters ensures that these objects can be promoted to modular invariants and satisfy the holomorphic anomaly equation of the Kodaira-Spencer theory. This gives a new hint that the Dijkgraaf-Vafa conjecture is correct. (author)

  9. Complete S-matrix of the O(2N) Gross-Neveu model

    International Nuclear Information System (INIS)

    Karowski, M.; Thun, H.J.

    1980-11-01

    We present the complete S-matrix of the O(2N) Gross-Neveu model including kinks, elementary fermions, and higher bound states. In addition to the S-matrix factorization, unitarity, and crossing conditions we make essential use of constraints which follow from the fact that particles in the spectrum are bound states of each other. A consistent solution can only be obtained if the kinks obey generalized statistics. Remarkably, some quantities related to this such as 'spins' and Klein factors show Bott periodicity. (orig.)

  10. Borel and Stokes Nonperturbative Phenomena in Topological String Theory and c=1 Matrix Models

    CERN Document Server

    Pasquetti, Sara

    2010-01-01

    We address the nonperturbative structure of topological strings and c=1 matrix models, focusing on understanding the nature of instanton effects alongside with exploring their relation to the large-order behavior of the 1/N expansion. We consider the Gaussian, Penner and Chern-Simons matrix models, together with their holographic duals, the c=1 minimal string at self-dual radius and topological string theory on the resolved conifold. We employ Borel analysis to obtain the exact all-loop multi-instanton corrections to the free energies of the aforementioned models, and show that the leading poles in the Borel plane control the large-order behavior of perturbation theory. We understand the nonperturbative effects in terms of the Schwinger effect and provide a semiclassical picture in terms of eigenvalue tunneling between critical points of the multi-sheeted matrix model effective potentials. In particular, we relate instantons to Stokes phenomena via a hyperasymptotic analysis, providing a smoothing of the nonp...

  11. Calibration of the x-ray ring quadrupoles, BPMs, and orbit correctors using the measured orbit response matrix

    International Nuclear Information System (INIS)

    Safranek, J.; Lee, M.

    1994-02-01

    The quadrupole strengths, beam position monitor (BPM) gains, and orbit correction magnet strengths were adjusted in a computer model of the NSLS X-Ray ring in order to best fit the model orbit response matrix to the measured matrix. The model matrix was fit tot the 4320 data points in the measured matrix with an rms difference of only 2 to 3 microns, which is due primarily to noise in the BPM measurements. The strengths of the 56 individual quadrupoles in the X-Ray ring were determined to an accuracy of about 0.2%. The BPM and orbit corrector calibrations were also accurately determined. A through analysis of both random and systematic errors is included

  12. Bag-model matrix elements of the parity-violating weak hamiltonian for charmed baryons

    International Nuclear Information System (INIS)

    Ebert, D.; Kallies, W.

    1983-01-01

    Baryon matrix elements of the parity-violating part of the charmchanging weak Hamiltonian might be significant and comparable with those of the parity-conserving one due to large symmetry breaking. Expression for these new matrix elements by using the MIT-bag model are derived and their implications on earlier calculations of nonleptonic charmed-baryon decays are estimated

  13. Matrix Solution of Coupled Differential Equations and Looped Car Following Models

    Science.gov (United States)

    McCartney, Mark

    2008-01-01

    A simple mathematical model for the behaviour of how vehicles follow each other along a looped stretch of road is described. The resulting coupled first order differential equations are solved using appropriate matrix techniques and the physical significance of the model is discussed. A number possible classroom exercises are suggested to help…

  14. Examining the Determinants of China’s Inward FDI Using Grey Matrix Relational Analysis Model

    Directory of Open Access Journals (Sweden)

    Hang JIANG

    2017-12-01

    Full Text Available Grey relational analysis (GRA model is an important part of grey system theory, which is used to ascertain the relational grade between an influential factor and the major behavior factor. Most of GRA models are mainly applied to the field in which the behavior factor and influential factor are the cross-sectional or time series data in a given system. However, owing to the panel data contains plenty information including individual and time characteristics, the traditional GRA model cannot be applied to panel data analysis. To overcome this drawback, the grey matrix relational analysis model is applied to measure the similarity of panel data from two dimensions of individual and time on the basis of the definition of the matrix sequence of a discrete data sequence. This paper examines the determinants of inward foreign direct investment (IFDI in China using grey matrix relational analysis model. The study finds that the GDP per capita, enrollment of regular institutions of higher education, and internal expenditure on R&D are the key factors of IFDI.

  15. A computational technique to identify the optimal stiffness matrix for a discrete nuclear fuel assembly model

    International Nuclear Information System (INIS)

    Park, Nam-Gyu; Kim, Kyoung-Joo; Kim, Kyoung-Hong; Suh, Jung-Min

    2013-01-01

    Highlights: ► An identification method of the optimal stiffness matrix for a fuel assembly structure is discussed. ► The least squares optimization method is introduced, and a closed form solution of the problem is derived. ► The method can be expanded to the system with the limited number of modes. ► Identification error due to the perturbed mode shape matrix is analyzed. ► Verification examples show that the proposed procedure leads to a reliable solution. -- Abstract: A reactor core structural model which is used to evaluate the structural integrity of the core contains nuclear fuel assembly models. Since the reactor core consists of many nuclear fuel assemblies, the use of a refined fuel assembly model leads to a considerable amount of computing time for performing nonlinear analyses such as the prediction of seismic induced vibration behaviors. The computational time could be reduced by replacing the detailed fuel assembly model with a simplified model that has fewer degrees of freedom, but the dynamic characteristics of the detailed model must be maintained in the simplified model. Such a model based on an optimal design method is proposed in this paper. That is, when a mass matrix and a mode shape matrix are given, the optimal stiffness matrix of a discrete fuel assembly model can be estimated by applying the least squares minimization method. The verification of the method is completed by comparing test results and simulation results. This paper shows that the simplified model's dynamic behaviors are quite similar to experimental results and that the suggested method is suitable for identifying reliable mathematical model for fuel assemblies

  16. Joint refinement model for the spin resolved one-electron reduced density matrix of YTiO3 using magnetic structure factors and magnetic Compton profiles data.

    Science.gov (United States)

    Gueddida, Saber; Yan, Zeyin; Kibalin, Iurii; Voufack, Ariste Bolivard; Claiser, Nicolas; Souhassou, Mohamed; Lecomte, Claude; Gillon, Béatrice; Gillet, Jean-Michel

    2018-04-28

    In this paper, we propose a simple cluster model with limited basis sets to reproduce the unpaired electron distributions in a YTiO 3 ferromagnetic crystal. The spin-resolved one-electron-reduced density matrix is reconstructed simultaneously from theoretical magnetic structure factors and directional magnetic Compton profiles using our joint refinement algorithm. This algorithm is guided by the rescaling of basis functions and the adjustment of the spin population matrix. The resulting spin electron density in both position and momentum spaces from the joint refinement model is in agreement with theoretical and experimental results. Benefits brought from magnetic Compton profiles to the entire spin density matrix are illustrated. We studied the magnetic properties of the YTiO 3 crystal along the Ti-O 1 -Ti bonding. We found that the basis functions are mostly rescaled by means of magnetic Compton profiles, while the molecular occupation numbers are mainly modified by the magnetic structure factors.

  17. Matrix Diffusion for Performance Assessment - Experimental Evidence, Modelling Assumptions and Open Issues

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, A

    2004-07-01

    In this report a comprehensive overview on the matrix diffusion of solutes in fractured crystalline rocks is presented. Some examples from observations in crystalline bedrock are used to illustrate that matrix diffusion indeed acts on various length scales. Fickian diffusion is discussed in detail followed by some considerations on rock porosity. Due to the fact that the dual-porosity medium model is a very common and versatile method for describing solute transport in fractured porous media, the transport equations and the fundamental assumptions, approximations and simplifications are discussed in detail. There is a variety of geometrical aspects, processes and events which could influence matrix diffusion. The most important of these, such as, e.g., the effect of the flow-wetted fracture surface, channelling and the limited extent of the porous rock for matrix diffusion etc., are addressed. In a further section open issues and unresolved problems related to matrix diffusion are mentioned. Since matrix diffusion is one of the key retarding processes in geosphere transport of dissolved radionuclide species, matrix diffusion was consequently taken into account in past performance assessments of radioactive waste repositories in crystalline host rocks. Some issues regarding matrix diffusion are site-specific while others are independent of the specific situation of a planned repository for radioactive wastes. Eight different performance assessments from Finland, Sweden and Switzerland were considered with the aim of finding out how matrix diffusion was addressed, and whether a consistent picture emerges regarding the varying methodology of the different radioactive waste organisations. In the final section of the report some conclusions are drawn and an outlook is given. An extensive bibliography provides the reader with the key papers and reports related to matrix diffusion. (author)

  18. A kinetic model for the stability of spent fuel matrix under oxic conditions

    International Nuclear Information System (INIS)

    Bruno, J.; Cera, E.; Duro, L.; Eriksen, T.E.

    1996-01-01

    A kinetic model for the UO 2 -spent fuel dissolution has been developed by integrating all the fundamental and experimental evidence about the redox buffer capacity of the UO 2 matrix itself within the methodological framework of heterogeneous redox reactions and dissolution kinetics. The purpose of the model is to define the geochemical stability of the spent fuel matrix and its resistance to internal and external disturbances. The model has been built in basis the reductive capacity (RDC) of the spent fuel/water system. A sensitivity analysis has been performed in order to identify the main parameters that affect the RDC of the system, the oxidant consumption and the radionuclide release. The number of surface co-ordination sites, the surface area to volume ratio, the kinetics of oxidants generation by radiolysis and the kinetics of oxidative dissolution of UO 2 , have been found to be the main parameters that can affect the reductive capacity of the spent fuel matrix. The model has been checked against some selected UO 2 and spent fuel dissolution data, performed under oxidizing conditions. The results are quite encouraging. (orig.)

  19. CHARACTERISTIC FEATURES OF MUELLER MATRIX PATTERNS FOR POLARIZATION SCATTERING MODEL OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    E DU

    2014-01-01

    Full Text Available We developed a model to describe polarized photon scattering in biological tissues. In this model, tissues are simplified to a mixture of scatterers and surrounding medium. There are two types of scatterers in the model: solid spheres and infinitely long solid cylinders. Variables related to the scatterers include: the densities and sizes of the spheres and cylinders, the orientation and angular distribution of cylinders. Variables related to the surrounding medium include: the refractive index, absorption coefficient and birefringence. In this paper, as a development we introduce an optical activity effect to the model. By comparing experiments and Monte Carlo simulations, we analyze the backscattering Mueller matrix patterns of several tissue-like media, and summarize the different effects coming from anisotropic scattering and optical properties. In addition, we propose a possible method to extract the optical activity values for tissues. Both the experimental and simulated results show that, by analyzing the Mueller matrix patterns, the microstructure and optical properties of the medium can be obtained. The characteristic features of Mueller matrix patterns are potentially powerful tools for studying the contrast mechanisms of polarization imaging for medical diagnosis.

  20. Discrete state moduli of string theory from c=1 matrix model

    CERN Document Server

    Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R

    1995-01-01

    We propose a new formulation of the space-time interpretation of the c=1 matrix model. Our formulation uses the well-known leg-pole factor that relates the matrix model amplitudes to that of the 2-dimensional string theory, but includes fluctuations around the fermi vacuum on {\\sl both sides} of the inverted harmonic oscillator potential of the double-scaled model, even when the fluctuations are small and confined entirely within the asymptotes in the phase plane. We argue that including fluctuations on both sides of the potential is essential for a consistent interpretation of the leg-pole transformed theory as a theory of space-time gravity. We reproduce the known results for the string theory tree level scattering amplitudes for flat space and linear dilaton background as a special case. We show that the generic case corresponds to more general space-time backgrounds. In particular, we identify the parameter corresponding to background metric perturbation in string theory (black hole mass) in terms of the ...

  1. Higher order spin-dependent terms in D0-brane scattering from the matrix model

    International Nuclear Information System (INIS)

    McArthur, I.N.

    1998-01-01

    The potential describing long-range interactions between D0-branes contains spin-dependent terms. In the matrix model, these should be reproduced by the one-loop effective action computed in the presence of a non-trivial fermionic background ψ. The v 3 ψ 2 /r 8 term in the effective action has been computed by Kraus and shown to correspond to a spin-orbit interaction between D0-branes, and the ψ 8 /r 11 term in the static potential has been obtained by Barrio et al. In this paper, the v 2 ψ 4 /r 9 term is computing in the matrix model and compared with the corresponding results of Morales et al. obtained using string theoretic methods. The technique employed is adapted to the underlying supersymmetry of the matrix model, and should be useful in the calculation of spin-dependent effects in more general Dp-brane scatterings. (orig.)

  2. Mechanistic modelling of drug release from polymer-coated and swelling and dissolving polymer matrix systems.

    Science.gov (United States)

    Kaunisto, Erik; Marucci, Mariagrazia; Borgquist, Per; Axelsson, Anders

    2011-10-10

    The time required for the design of a new delivery device can be sensibly reduced if the release mechanism is understood and an appropriate mathematical model is used to characterize the system. Once all the model parameters are obtained, in silico experiments can be performed, to provide estimates of the release from devices with different geometries and compositions. In this review coated and matrix systems are considered. For coated formulations, models describing the diffusional drug release, the osmotic pumping drug release, and the lag phase of pellets undergoing cracking in the coating due to the build-up of a hydrostatic pressure are reviewed. For matrix systems, models describing pure polymer dissolution, diffusion in the polymer and drug release from swelling and eroding polymer matrix formulations are reviewed. Importantly, the experiments used to characterize the processes occurring during the release and to validate the models are presented and discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Matrix and position correction of shuffler assays by application of the alternating conditional expectation algorithm to shuffler data

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Rinard, P.M.

    1992-01-01

    The 252 Cf shuffler assays fissile uranium and plutonium using active neutron interrogation and then counting the induced delayed neutrons. Using the shuffler, we conducted over 1700 assays of 55-gal. drums with 28 different matrices and several different fissionable materials. We measured the drums to dispose the matrix and position effects on 252 Cf shuffler assays. We used several neutron flux monitors during irradiation and kept statistics on the count rates of individual detector banks. The intent of these measurements was to gauge the effect of the matrix independently from the uranium assay. Although shufflers have previously been equipped neutron monitors, the functional relationship between the flux monitor sepals and the matrix-induced perturbation has been unknown. There are several flux monitors so the problem is multivariate, and the response is complicated. Conventional regression techniques cannot address complicated multivariate problems unless the underlying functional form and approximate parameter values are known in advance. Neither was available in this case. To address this problem, we used a new technique called alternating conditional expectations (ACE), which requires neither the functional relationship nor the initial parameters. The ACE algorithm develops the functional form and performs a numerical regression from only the empirical data. We applied the ACE algorithm to the shuffler-assay and flux-monitor data and developed an analytic function for the matrix correction. This function was optimized using conventional multivariate techniques. We were able to reduce the matrix-induced-bias error for homogeneous samples to 12.7%. The bias error for inhomogeneous samples was reduced to 13.5%. These results used only a few adjustable parameters compared to the number of available data points; the data were not ''over fit,'' but rather the results are general and robust

  4. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  5. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets.

    Science.gov (United States)

    Prod'hom, Guy; Bizzini, Alain; Durussel, Christian; Bille, Jacques; Greub, Gilbert

    2010-04-01

    An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.

  6. Comparison of Damage Models for Predicting the Non-Linear Response of Laminates Under Matrix Dominated Loading Conditions

    Science.gov (United States)

    Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.

    2010-01-01

    Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.

  7. Ultracentrifuge separative power modeling with multivariate regression using covariance matrix

    International Nuclear Information System (INIS)

    Migliavacca, Elder

    2004-01-01

    In this work, the least-squares methodology with covariance matrix is applied to determine a data curve fitting to obtain a performance function for the separative power δU of a ultracentrifuge as a function of variables that are experimentally controlled. The experimental data refer to 460 experiments on the ultracentrifugation process for uranium isotope separation. The experimental uncertainties related with these independent variables are considered in the calculation of the experimental separative power values, determining an experimental data input covariance matrix. The process variables, which significantly influence the δU values are chosen in order to give information on the ultracentrifuge behaviour when submitted to several levels of feed flow rate F, cut θ and product line pressure P p . After the model goodness-of-fit validation, a residual analysis is carried out to verify the assumed basis concerning its randomness and independence and mainly the existence of residual heteroscedasticity with any explained regression model variable. The surface curves are made relating the separative power with the control variables F, θ and P p to compare the fitted model with the experimental data and finally to calculate their optimized values. (author)

  8. Matrix theory selected topics and useful results

    CERN Document Server

    Mehta, Madan Lal

    1989-01-01

    Matrices and operations on matrices ; determinants ; elementary operations on matrices (continued) ; eigenvalues and eigenvectors, diagonalization of normal matrices ; functions of a matrix ; positive definiteness, various polar forms of a matrix ; special matrices ; matrices with quaternion elements ; inequalities ; generalised inverse of a matrix ; domain of values of a matrix, location and dispersion of eigenvalues ; symmetric functions ; integration over matrix variables ; permanents of doubly stochastic matrices ; infinite matrices ; Alexander matrices, knot polynomials, torsion numbers.

  9. The Matrix model, a driven state variables approach to non-equilibrium thermodynamics

    NARCIS (Netherlands)

    Jongschaap, R.J.J.

    2001-01-01

    One of the new approaches in non-equilibrium thermodynamics is the so-called matrix model of Jongschaap. In this paper some features of this model are discussed. We indicate the differences with the more common approach based upon internal variables and the more sophisticated Hamiltonian and GENERIC

  10. Exploring Mixed Membership Stochastic Block Models via Non-negative Matrix Factorization

    KAUST Repository

    Peng, Chengbin

    2014-12-01

    Many real-world phenomena can be modeled by networks in which entities and connections are represented by nodes and edges respectively. When certain nodes are highly connected with each other, those nodes forms a cluster, which is called community in our context. It is usually assumed that each node belongs to one community only, but evidences in biology and social networks reveal that the communities often overlap with each other. In other words, one node can probably belong to multiple communities. In light of that, mixed membership stochastic block models (MMB) have been developed to model those networks with overlapping communities. Such a model contains three matrices: two incidence matrices indicating in and out connections and one probability matrix. When the probability of connections for nodes between communities are significantly small, the parameter inference problem to this model can be solved by a constrained non-negative matrix factorization (NMF) algorithm. In this paper, we explore the connection between the two models and propose an algorithm based on NMF to infer the parameters of MMB. The proposed algorithms can detect overlapping communities regardless of knowing or not the number of communities. Experiments show that our algorithm can achieve a better community detection performance than the traditional NMF algorithm. © 2014 IEEE.

  11. Study of ionization process of matrix molecules in matrix-assisted laser desorption ionization

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kazumasa; Sato, Asami; Hashimoto, Kenro; Fujino, Tatsuya, E-mail: fujino@tmu.ac.jp

    2013-06-20

    Highlights: ► Proton transfer and adduction reaction of matrix in MALDI were studied. ► Hydroxyl group forming intramolecular hydrogen bond was related to the ionization. ► Intramolecular proton transfer in the electronic excited state was the initial step. ► Non-volatile analytes stabilized protonated matrix in the ground state. ► A possible mechanism, “analyte support mechanism”, has been proposed. - Abstract: Proton transfer and adduction reaction of matrix molecules in matrix-assisted laser desorption ionization were studied. By using 2,4,6-trihydroxyacetophenone (THAP), 2,5-dihydroxybenzoic acid (DHBA), and their related compounds in which the position of a hydroxyl group is different, it was clarified that a hydroxyl group forming an intramolecular hydrogen bond is related to the ionization of matrix molecules. Intramolecular proton transfer in the electronic excited state of the matrix and subsequent proton adduction from a surrounding solvent to the charge-separated matrix are the initial steps for the ionization of matrix molecules. Nanosecond pump–probe NIR–UV mass spectrometry confirmed that the existence of analyte molecules having large dipole moment in their structures is necessary for the stabilization of [matrix + H]{sup +} in the electronic ground state.

  12. An Ar threesome: Matrix models, 2d conformal field theories, and 4dN=2 gauge theories

    International Nuclear Information System (INIS)

    Schiappa, Ricardo; Wyllard, Niclas

    2010-01-01

    We explore the connections between three classes of theories: A r quiver matrix models, d=2 conformal A r Toda field theories, and d=4N=2 supersymmetric conformal A r quiver gauge theories. In particular, we analyze the quiver matrix models recently introduced by Dijkgraaf and Vafa (unpublished) and make detailed comparisons with the corresponding quantities in the Toda field theories and the N=2 quiver gauge theories. We also make a speculative proposal for how the matrix models should be modified in order for them to reproduce the instanton partition functions in quiver gauge theories in five dimensions.

  13. Spin observables in p-barp → ΛΛ and density-matrix constraints

    International Nuclear Information System (INIS)

    Elchikh, Mokhtar; Richard, Jean-Marc

    2005-01-01

    The positivity conditions of the spin density matrix constrain the spin observables of the reaction p-barp → Λ-barΛ, leading to model-independent, non-trivial inequalities. The formalism is briefly presented and examples of inequalities are provided

  14. Linear programming models and methods of matrix games with payoffs of triangular fuzzy numbers

    CERN Document Server

    Li, Deng-Feng

    2016-01-01

    This book addresses two-person zero-sum finite games in which the payoffs in any situation are expressed with fuzzy numbers. The purpose of this book is to develop a suite of effective and efficient linear programming models and methods for solving matrix games with payoffs in fuzzy numbers. Divided into six chapters, it discusses the concepts of solutions of matrix games with payoffs of intervals, along with their linear programming models and methods. Furthermore, it is directly relevant to the research field of matrix games under uncertain economic management. The book offers a valuable resource for readers involved in theoretical research and practical applications from a range of different fields including game theory, operational research, management science, fuzzy mathematical programming, fuzzy mathematics, industrial engineering, business and social economics. .

  15. Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.

  16. Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization

    Energy Technology Data Exchange (ETDEWEB)

    Shiga, Motoki, E-mail: shiga_m@gifu-u.ac.jp [Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1, Yanagido, Gifu 501-1193 (Japan); Tatsumi, Kazuyoshi; Muto, Shunsuke [Advanced Measurement Technology Center, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Tsuda, Koji [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561 (Japan); Center for Materials Research by Information Integration, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi Koto-ku, Tokyo 135-0064 (Japan); Yamamoto, Yuta [High-Voltage Electron Microscope Laboratory, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Mori, Toshiyuki [Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Tanji, Takayoshi [Division of Materials Research, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan)

    2016-11-15

    Advances in scanning transmission electron microscopy (STEM) techniques have enabled us to automatically obtain electron energy-loss (EELS)/energy-dispersive X-ray (EDX) spectral datasets from a specified region of interest (ROI) at an arbitrary step width, called spectral imaging (SI). Instead of manually identifying the potential constituent chemical components from the ROI and determining the chemical state of each spectral component from the SI data stored in a huge three-dimensional matrix, it is more effective and efficient to use a statistical approach for the automatic resolution and extraction of the underlying chemical components. Among many different statistical approaches, we adopt a non-negative matrix factorization (NMF) technique, mainly because of the natural assumption of non-negative values in the spectra and cardinalities of chemical components, which are always positive in actual data. This paper proposes a new NMF model with two penalty terms: (i) an automatic relevance determination (ARD) prior, which optimizes the number of components, and (ii) a soft orthogonal constraint, which clearly resolves each spectrum component. For the factorization, we further propose a fast optimization algorithm based on hierarchical alternating least-squares. Numerical experiments using both phantom and real STEM-EDX/EELS SI datasets demonstrate that the ARD prior successfully identifies the correct number of physically meaningful components. The soft orthogonal constraint is also shown to be effective, particularly for STEM-EELS SI data, where neither the spatial nor spectral entries in the matrices are sparse. - Highlights: • Automatic resolution of chemical components from spectral imaging is considered. • We propose a new non-negative matrix factorization with two new penalties. • The first penalty is sparseness to choose the number of components from data. • Experimental results with real data demonstrate effectiveness of our method.

  17. Is a matrix exponential specification suitable for the modeling of spatial correlation structures?

    Science.gov (United States)

    Strauß, Magdalena E; Mezzetti, Maura; Leorato, Samantha

    2017-05-01

    This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms.

  18. The scattering matrix is non-trivial for weakly coupled P(phi)2 models

    International Nuclear Information System (INIS)

    Osterwalder, K.; Seneor, R.

    1976-01-01

    It is shown that for sufficiently small coupling constant lambda the lambdaP(phi) 2 quantum field theory models have a scattering matrix which is different from 1. The other method is to write the scattering matrix elements as polynomials in lambda, whose coefficients, though themselves functions of lamda, are uniformly bounded for lambda sufficiently small. The first order term in that expansion is the one given by perturbation theory. (Auth.)

  19. Extracellular matrix proteins: a positive feedback loop in lung fibrosis?

    NARCIS (Netherlands)

    Blaauboer, M.E.; van Boeijen, F.R.; Emson, C.L.; Turner, S.M.; Zandieh-Doulabi, B.; Hanemaaijer, R.; Smit, T.H.; Stoop, R.; Everts, V.

    2014-01-01

    Lung fibrosis is characterized by excessive deposition of extracellular matrix. This not only affects tissue architecture and function, but it also influences fibroblast behavior and thus disease progression. Here we describe the expression of elastin, type V collagen and tenascin C during the

  20. Extracellular matrix proteins: A positive feedback loop in lung fibrosis?

    NARCIS (Netherlands)

    Blaauboer, M.E.; Boeijen, F.R.; Emson, C.L.; Turner, S.M.; Zandieh-Doulabi, B.; Hanemaaijer, R.; Smit, T.H.; Stoop, R.; Everts, V.

    2014-01-01

    Lung fibrosis is characterized by excessive deposition of extracellular matrix. This not only affects tissue architecture and function, but it also influences fibroblast behavior and thus disease progression. Here we describe the expression of elastin, type V collagen and tenascin C during the

  1. Characterization and modeling of three-dimensional self-healing shape memory alloy-reinforced metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, Michele Viola [University of Florida, Gainesville; Zhu, Pingping [Northwestern University, Evanston; Newman, John A. [NASA Langely Research Center (LaRC), Virginia; Wright, M Clara [NASA Kennedy Space Center, FL; Brinson, L Catherine [Northwestern University, Evanston; Kesler, Michael S. [ORNL

    2016-09-10

    In this paper, three-dimensional metal-matrix composites (MMCs) reinforced by shape memory alloy (SMA) wires are modeled and simulated, by adopting an SMA constitutive model accounting for elastic deformation, phase transformation and plastic behavior. A modeling method to create composites with pre-strained SMA wires is also proposed to improve the self-healing ability. Experimental validation is provided with a composite under three-point bending. This modeling method is applied in a series of finite element simulations to investigate the self-healing effects in pre-cracked composites, especially the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain in the SMA. The results demonstrate that SMA reinforcements provide stronger shape recovery ability than other, non-transforming materials. The softening property of the metallic matrix and the pre-strain in SMA are also beneficial to help crack closure and healing. This modeling approach can serve as an efficient tool to design SMA-reinforced MMCs with optimal self-healing properties that have potential applications in components needing a high level of reliability.

  2. The accuracy of matrix population model projections for coniferous trees in the Sierra Nevada, California

    Science.gov (United States)

    van Mantgem, P.J.; Stephenson, N.L.

    2005-01-01

    1 We assess the use of simple, size-based matrix population models for projecting population trends for six coniferous tree species in the Sierra Nevada, California. We used demographic data from 16 673 trees in 15 permanent plots to create 17 separate time-invariant, density-independent population projection models, and determined differences between trends projected from initial surveys with a 5-year interval and observed data during two subsequent 5-year time steps. 2 We detected departures from the assumptions of the matrix modelling approach in terms of strong growth autocorrelations. We also found evidence of observation errors for measurements of tree growth and, to a more limited degree, recruitment. Loglinear analysis provided evidence of significant temporal variation in demographic rates for only two of the 17 populations. 3 Total population sizes were strongly predicted by model projections, although population dynamics were dominated by carryover from the previous 5-year time step (i.e. there were few cases of recruitment or death). Fractional changes to overall population sizes were less well predicted. Compared with a null model and a simple demographic model lacking size structure, matrix model projections were better able to predict total population sizes, although the differences were not statistically significant. Matrix model projections were also able to predict short-term rates of survival, growth and recruitment. Mortality frequencies were not well predicted. 4 Our results suggest that simple size-structured models can accurately project future short-term changes for some tree populations. However, not all populations were well predicted and these simple models would probably become more inaccurate over longer projection intervals. The predictive ability of these models would also be limited by disturbance or other events that destabilize demographic rates. ?? 2005 British Ecological Society.

  3. Symmetry breaking in the double-well hermitian matrix models

    International Nuclear Information System (INIS)

    Brower, R.C.; Deo, N.; Jain, S.; Tan, C.I.

    1993-01-01

    We study symmetry breaking in Z 2 symmetric large N matrix models. In the planar approximation for both the symmetric double-well φ 4 model and the symmetric Penner model, we find there is an infinite family of broken symmetry solutions characterized by different sets of recursion coefficients R n and S n that all lead to identical free energies and eigenvalue densities. These solutions can be parameterized by an arbitrary angle θ(x), for each value of x=n/N 4 theory the double scaling string equations are parameterized by a conserved angular momentum parameter in the range 0≤l<∞ and a single arbitrary U(1) phase angle. (orig.)

  4. Dynamic densification of metal matrix-coated fibre composites: modelling and processing

    International Nuclear Information System (INIS)

    Peng, H.X.; Dunne, F.P.E.; Grant, P.S.; Cantor, B.

    2005-01-01

    The consolidation processing of Ti-6Al-4V matrix-coated fibre (MCF) composite under vacuum hot pressing (VHP) has been investigated. A new test methodology has been developed for the determination of in situ matrix coating creep properties. In using the methodology, only a single, simple test is required, together with finite element modelling of the single fibre compression test. The creep coefficient and stress index have been determined for electron beam evaporated physical vapour deposited Ti-6Al-4V at 900 deg. C to be 1.23 x 10 -5 and 1.3, respectively. Consolidation experiments have been carried out on multi-ply MCF arrays under vacuum hot pressing. Finite element models have been developed for the dynamic consolidation of both square and hexagonal fibre packings. The creep constants for the Ti-6Al-4V, determined using the single fibre test, were assigned to the coating in the finite element models. Excellent agreement between predicted and experimental results was achieved, providing verification of the single fibre test methodology for the determination of creep constants

  5. Towards Tuning the Mechanical Properties of Three-Dimensional Collagen Scaffolds Using a Coupled Fiber-Matrix Model

    Directory of Open Access Journals (Sweden)

    Shengmao Lin

    2015-08-01

    Full Text Available Scaffold mechanical properties are essential in regulating the microenvironment of three-dimensional cell culture. A coupled fiber-matrix numerical model was developed in this work for predicting the mechanical response of collagen scaffolds subjected to various levels of non-enzymatic glycation and collagen concentrations. The scaffold was simulated by a Voronoi network embedded in a matrix. The computational model was validated using published experimental data. Results indicate that both non-enzymatic glycation-induced matrix stiffening and fiber network density, as regulated by collagen concentration, influence scaffold behavior. The heterogeneous stress patterns of the scaffold were induced by the interfacial mechanics between the collagen fiber network and the matrix. The knowledge obtained in this work could help to fine-tune the mechanical properties of collagen scaffolds for improved tissue regeneration applications.

  6. Hybrid-dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions

    Science.gov (United States)

    Brenner, Konstantin; Hennicker, Julian; Masson, Roland; Samier, Pierre

    2018-03-01

    In this work, we extend, to two-phase flow, the single-phase Darcy flow model proposed in [26], [12] in which the (d - 1)-dimensional flow in the fractures is coupled with the d-dimensional flow in the matrix. Three types of so called hybrid-dimensional two-phase Darcy flow models are proposed. They all account for fractures acting either as drains or as barriers, since they allow pressure jumps at the matrix-fracture interfaces. The models also permit to treat gravity dominated flow as well as discontinuous capillary pressure at the material interfaces. The three models differ by their transmission conditions at matrix fracture interfaces: while the first model accounts for the nonlinear two-phase Darcy flux conservations, the second and third ones are based on the linear single phase Darcy flux conservations combined with different approximations of the mobilities. We adapt the Vertex Approximate Gradient (VAG) scheme to this problem, in order to account for anisotropy and heterogeneity aspects as well as for applicability on general meshes. Several test cases are presented to compare our hybrid-dimensional models to the generic equi-dimensional model, in which fractures have the same dimension as the matrix, leading to deep insight about the quality of the proposed reduced models.

  7. Control of Pan-tilt Mechanism Angle using Position Matrix Method

    Directory of Open Access Journals (Sweden)

    Hendri Maja Saputra

    2013-12-01

    Full Text Available Control of a Pan-Tilt Mechanism (PTM angle for the bomb disposal robot Morolipi-V2 using inertial sensor measurement unit, x-IMU, has been done. The PTM has to be able to be actively controlled both manually and automatically in order to correct the orientation of the moving Morolipi-V2 platform. The x-IMU detects the platform orientation and sends the result in order to automatically control the PTM. The orientation is calculated using the quaternion combined with Madwick and Mahony filter methods. The orientation data that consists of angles of roll (α, pitch (β, and yaw (γ from the x-IMU are then being sent to the camera for controlling the PTM motion (pan & tilt angles after calculating the reverse angle using position matrix method. Experiment results using Madwick and Mahony methods show that the x-IMU can be used to find the robot platform orientation. Acceleration data from accelerometer and flux from magnetometer produce noise with standard deviation of 0.015 g and 0.006 G, respectively. Maximum absolute errors caused by Madgwick and Mahony method with respect to Xaxis are 48.45º and 33.91º, respectively. The x-IMU implementation as inertia sensor to control the Pan-Tilt Mechanism shows a good result, which the probability of pan angle tends to be the same with yaw and tilt angle equal to the pitch angle, except a very small angle shift due to the influence of roll angle..

  8. MDL, Collineations and the Fundamental Matrix

    OpenAIRE

    Maybank , Steve; Sturm , Peter

    1999-01-01

    International audience; Scene geometry can be inferred from point correspondences between two images. The inference process includes the selection of a model. Four models are considered: background (or null), collineation, affine fundamental matrix and fundamental matrix. It is shown how Minimum Description Length (MDL) can be used to compare the different models. The main result is that there is little reason for preferring the fundamental matrix model over the collineation model, even when ...

  9. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method

    Directory of Open Access Journals (Sweden)

    Sette Alessandro

    2005-05-01

    Full Text Available Abstract Background Many processes in molecular biology involve the recognition of short sequences of nucleic-or amino acids, such as the binding of immunogenic peptides to major histocompatibility complex (MHC molecules. From experimental data, a model of the sequence specificity of these processes can be constructed, such as a sequence motif, a scoring matrix or an artificial neural network. The purpose of these models is two-fold. First, they can provide a summary of experimental results, allowing for a deeper understanding of the mechanisms involved in sequence recognition. Second, such models can be used to predict the experimental outcome for yet untested sequences. In the past we reported the development of a method to generate such models called the Stabilized Matrix Method (SMM. This method has been successfully applied to predicting peptide binding to MHC molecules, peptide transport by the transporter associated with antigen presentation (TAP and proteasomal cleavage of protein sequences. Results Herein we report the implementation of the SMM algorithm as a publicly available software package. Specific features determining the type of problems the method is most appropriate for are discussed. Advantageous features of the package are: (1 the output generated is easy to interpret, (2 input and output are both quantitative, (3 specific computational strategies to handle experimental noise are built in, (4 the algorithm is designed to effectively handle bounded experimental data, (5 experimental data from randomized peptide libraries and conventional peptides can easily be combined, and (6 it is possible to incorporate pair interactions between positions of a sequence. Conclusion Making the SMM method publicly available enables bioinformaticians and experimental biologists to easily access it, to compare its performance to other prediction methods, and to extend it to other applications.

  10. Structure and philosophy of pharmacy management using a matrix organization, Part I: a conceptual model.

    Science.gov (United States)

    Fine, D J

    1985-02-01

    The resource, systems, information, and therapy management responsibilities of a director of pharmacy services are used to illustrate the horizontal decision making opportunities made available through matrix management. When compared with traditionally vertical decision models, the matrix offers the probability of broad consensus and support, but can have a risk of lowest-common-denominator determinations. The role and function of a management matrix in the hospital context are introduced and contrasted to power-oriented decision making.

  11. Characterization of agarose as immobilization matrix model for a microbial biosensor

    Directory of Open Access Journals (Sweden)

    Pernetti Mimma

    2003-01-01

    Full Text Available Microbial biosensors are promising tools for the detection of specific substances in different fields, such as environmental, biomedical, food or agricultural. They allow rapid measurements, no need for complex sample preparation or specialized personnel and easy handling. In order to enhance the managing, miniaturization and stability of the biosensor and to prevent cell leaching, bacteria immobilization is desirable. A systematic characterization procedure to choose a suitable immobilization method and matrix, was proposed in this study. Physical properties, storage stability mass transport phenomena and biocompatibility were evaluated, employing agarose as the model matrix. Preliminary essays with bioluminescent bacteria detecting Tributyltin were also carried out.

  12. Anderson localization through Polyakov loops: Lattice evidence and random matrix model

    International Nuclear Information System (INIS)

    Bruckmann, Falk; Schierenberg, Sebastian; Kovacs, Tamas G.

    2011-01-01

    We investigate low-lying fermion modes in SU(2) gauge theory at temperatures above the phase transition. Both staggered and overlap spectra reveal transitions from chaotic (random matrix) to integrable (Poissonian) behavior accompanied by an increasing localization of the eigenmodes. We show that the latter are trapped by local Polyakov loop fluctuations. Islands of such ''wrong'' Polyakov loops can therefore be viewed as defects leading to Anderson localization in gauge theories. We find strong similarities in the spatial profile of these localized staggered and overlap eigenmodes. We discuss possible interpretations of this finding and present a sparse random matrix model that reproduces these features.

  13. An Efficient GPU General Sparse Matrix-Matrix Multiplication for Irregular Data

    DEFF Research Database (Denmark)

    Liu, Weifeng; Vinter, Brian

    2014-01-01

    General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block for numerous applications such as algebraic multigrid method, breadth first search and shortest path problem. Compared to other sparse BLAS routines, an efficient parallel SpGEMM algorithm has to handle extra...... irregularity from three aspects: (1) the number of the nonzero entries in the result sparse matrix is unknown in advance, (2) very expensive parallel insert operations at random positions in the result sparse matrix dominate the execution time, and (3) load balancing must account for sparse data in both input....... Load balancing builds on the number of the necessary arithmetic operations on the nonzero entries and is guaranteed in all stages. Compared with the state-of-the-art GPU SpGEMM methods in the CUSPARSE library and the CUSP library and the latest CPU SpGEMM method in the Intel Math Kernel Library, our...

  14. Significance of matrix diagonalization in modelling inelastic electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Z. [University of Ulm, Ulm 89081 (Germany); Hambach, R. [University of Ulm, Ulm 89081 (Germany); University of Jena, Jena 07743 (Germany); Kaiser, U.; Rose, H. [University of Ulm, Ulm 89081 (Germany)

    2017-04-15

    Electron scattering is always applied as one of the routines to investigate nanostructures. Nowadays the development of hardware offers more and more prospect for this technique. For example imaging nanostructures with inelastic scattered electrons may allow to produce component-sensitive images with atomic resolution. Modelling inelastic electron scattering is therefore essential for interpreting these images. The main obstacle to study inelastic scattering problem is its complexity. During inelastic scattering, incident electrons entangle with objects, and the description of this process involves a multidimensional array. Since the simulation usually involves fourdimensional Fourier transforms, the computation is highly inefficient. In this work we have offered one solution to handle the multidimensional problem. By transforming a high dimensional array into twodimensional array, we are able to perform matrix diagonalization and approximate the original multidimensional array with its twodimensional eigenvectors. Our procedure reduces the complicated multidimensional problem to a twodimensional problem. In addition, it minimizes the number of twodimensional problems. This method is very useful for studying multiple inelastic scattering. - Highlights: • 4D problems are involved in modelling inelastic electron scattering. • By means of matrix diagonalization, the 4D problems can be simplified as 2D problems. • The number of 2D problems is minimized by using this approach.

  15. 1,8-Bis(dimethylamino)naphthalene/9-aminoacridine: A new binary matrix for lipid fingerprinting of intact bacteria by matrix assisted laser desorption ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Calvano, C.D., E-mail: cosimadamiana.calvano@uniba.it [Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy); Monopoli, A.; Ditaranto, N. [Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy); Palmisano, F. [Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy); Centro Interdipartimentale di Ricerca S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy)

    2013-10-10

    Graphical abstract: -- Highlights: •New binary matrix for less ionizable lipid analysis with no interfering peaks. •Combined MALDI and X-ray photoelectron spectroscopy (XPS) analyses. •Fast lipid fingerprint on Gram positive and Gram negative bacteria by MALDI MS. •Mapping of phospholipids by XPS imaging. •Very fast membrane lipid extraction procedure. -- Abstract: The effectiveness of a novel binary matrix composed of 1,8-bis(dimethylamino)naphthalene (DMAN; proton sponge) and 9-aminoacridine (9AA) for the direct lipid analysis of whole bacterial cells by matrix assisted laser desorption ionization mass spectrometry (MALDI MS) is demonstrated. Deprotonated analyte signals nearly free of matrix-related ions were observed in negative ion mode. The effect of the most important factors (laser energy, pulse voltage, DMAN/9AA ratio, analyte/matrix ratio) was investigated using a Box–Behnken response surface design followed by multi-response optimization in order to simultaneously maximize signal-to-noise (S/N) ratio and resolution. The chemical surface composition of single or mixed matrices was explored by X-ray photoelectron spectroscopy (XPS). Moreover, XPS imaging was used to map the spatial distribution of a model phospholipid in single or binary matrices. The DMAN/9AA binary matrix was then successfully applied to the analysis of intact Gram positive (Lactobacillus sanfranciscensis) or Gram negative (Escherichia coli) microorganisms. About fifty major membrane components (free fatty acids, mono-, di- and tri-glycerides, phospholipids, glycolipids and cardiolipins) were quickly and easily detected over a mass range spanning from ca. 200 to ca. 1600 m/z. Moreover, mass spectra with improved S/N ratio (compared to single matrices), reduced chemical noise and no formation of matrix-clusters were invariably obtained demonstrating the potential of this binary matrix to improve sensitivity.

  16. 1,8-Bis(dimethylamino)naphthalene/9-aminoacridine: A new binary matrix for lipid fingerprinting of intact bacteria by matrix assisted laser desorption ionization mass spectrometry

    International Nuclear Information System (INIS)

    Calvano, C.D.; Monopoli, A.; Ditaranto, N.; Palmisano, F.

    2013-01-01

    Graphical abstract: -- Highlights: •New binary matrix for less ionizable lipid analysis with no interfering peaks. •Combined MALDI and X-ray photoelectron spectroscopy (XPS) analyses. •Fast lipid fingerprint on Gram positive and Gram negative bacteria by MALDI MS. •Mapping of phospholipids by XPS imaging. •Very fast membrane lipid extraction procedure. -- Abstract: The effectiveness of a novel binary matrix composed of 1,8-bis(dimethylamino)naphthalene (DMAN; proton sponge) and 9-aminoacridine (9AA) for the direct lipid analysis of whole bacterial cells by matrix assisted laser desorption ionization mass spectrometry (MALDI MS) is demonstrated. Deprotonated analyte signals nearly free of matrix-related ions were observed in negative ion mode. The effect of the most important factors (laser energy, pulse voltage, DMAN/9AA ratio, analyte/matrix ratio) was investigated using a Box–Behnken response surface design followed by multi-response optimization in order to simultaneously maximize signal-to-noise (S/N) ratio and resolution. The chemical surface composition of single or mixed matrices was explored by X-ray photoelectron spectroscopy (XPS). Moreover, XPS imaging was used to map the spatial distribution of a model phospholipid in single or binary matrices. The DMAN/9AA binary matrix was then successfully applied to the analysis of intact Gram positive (Lactobacillus sanfranciscensis) or Gram negative (Escherichia coli) microorganisms. About fifty major membrane components (free fatty acids, mono-, di- and tri-glycerides, phospholipids, glycolipids and cardiolipins) were quickly and easily detected over a mass range spanning from ca. 200 to ca. 1600 m/z. Moreover, mass spectra with improved S/N ratio (compared to single matrices), reduced chemical noise and no formation of matrix-clusters were invariably obtained demonstrating the potential of this binary matrix to improve sensitivity

  17. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Direct Bacterial Identification from Positive Blood Culture Pellets ▿

    OpenAIRE

    Prod'hom, Guy; Bizzini, Alain; Durussel, Christian; Bille, Jacques; Greub, Gilbert

    2010-01-01

    An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.

  18. Three-Body Nuclear Forces from a Matrix Model

    CERN Document Server

    Hashimoto, Koji

    2010-01-01

    We compute three-body nuclear forces at short distances by using the nuclear matrix model of holographic QCD proposed in our previous paper with P. Yi. We find that the three-body forces at short distances are repulsive for (a) aligned three neutrons with averaged spins, and (b) aligned proton-proton-neutron / proton-neutron-neutron. These indicate that in dense states of neutrons such as cores of neutron stars, or in Helium-3 / tritium nucleus, the repulsive forces are larger than the ones estimated from two-body forces only.

  19. Neutrinoless double-β decay matrix elements in large shell-model spaces with the generator-coordinate method

    Science.gov (United States)

    Jiao, C. F.; Engel, J.; Holt, J. D.

    2017-11-01

    We use the generator-coordinate method (GCM) with realistic shell-model interactions to closely approximate full shell-model calculations of the matrix elements for the neutrinoless double-β decay of 48Ca, 76Ge, and 82Se. We work in one major shell for the first isotope, in the f5 /2p g9 /2 space for the second and third, and finally in two major shells for all three. Our coordinates include not only the usual axial deformation parameter β , but also the triaxiality angle γ and neutron-proton pairing amplitudes. In the smaller model spaces our matrix elements agree well with those of full shell-model diagonalization, suggesting that our Hamiltonian-based GCM captures most of the important valence-space correlations. In two major shells, where exact diagonalization is not currently possible, our matrix elements are only slightly different from those in a single shell.

  20. On the exact S-matrix from CP sup(n-1) and SU(n) chiral Thirring model

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.

    1980-03-01

    The S-matrix of CP sub(n-1) and SU(n) Thirring model is calculated, perturbatively, up to 2 loops. The calculation shows striking similarities, but the S -matrix has some deviations from the expected exact one. (Author) [pt

  1. Spin observables in antiproton-proton to AntiLambda-Lambda and density-matrix constraints

    OpenAIRE

    Elchikh, Mokhtar; Richard, Jean-Marc

    2005-01-01

    The positivity conditions of the spin density matrix constrain the spin observables of the reaction antiproton-proton to AntiLambda-Lambda, leading to model-independent, non-trivial inequalities. The formalism is briefly presented and examples of inequalities are provided.

  2. Models based on multichannel R-matrix theory for evaluating light element reactions

    International Nuclear Information System (INIS)

    Dodder, D.C.; Hale, G.M.; Nisley, R.A.; Witte, K.; Young, P.G.

    1975-01-01

    Multichannel R-matrix theory has been used as a basis for models for analysis and evaluation of light nuclear systems. These models have the characteristic that data predictions can be made utilizing information derived from other reactions related to the one of primary interest. Several examples are given where such an approach is valid and appropriate. (auth.)

  3. Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE

    International Nuclear Information System (INIS)

    Castellote, M.; Andrade, C.

    2008-01-01

    This paper presents a model for the carbonation of cementitious matrixes (UR-CORE). The model is based on the principles of the 'unreacted-core' systems, typical of chemical engineering processes, in which the reacted product remains in the solid as a layer of inert ash, adapted for the specific case of carbonation. Development of the model has been undertaken in three steps: 1) Establishment of the controlling step in the global carbonation rate, by using data of fractional conversion of different phases of the cementitious matrixes, obtained by the authors through neutron diffraction data experiments, and reported in [M. Castellote, C. Andrade, X. Turrillas, J. Campo, G. Cuello, Accelerated carbonation of cement pastes in situ monitored by neutron diffraction, Cem. Concr. Res. (2008), doi:10.1016/j.cemconres.2008.07.002]. 2) Then, the model has been adapted and applied to the cementitious materials using different concentrations of CO 2 , with the introduction of the needed assumptions and factors. 3) Finally, the model has been validated with laboratory data at different concentrations (taken from literature) and for long term natural exposure of concretes. As a result, the model seems to be reliable enough to be applied to cementitious materials, being able to extrapolate the results from accelerated tests in any conditions to predict the rate of carbonation in natural exposure, being restricted, at present stage, to conditions with a constant relative humidity

  4. Symmetries and Interactions in Matrix String Theory

    NARCIS (Netherlands)

    Hacquebord, F.H.

    1999-01-01

    This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory

  5. A Diode Matrix model M792

    CERN Multimedia

    A diode matrix is an extremely low-density form of read-only memory. It's one of the earliest forms of ROMs (dating back to the 1950s). Each bit in the ROM is represented by the presence or absence of one diode. The ROM is easily user-writable using a soldering iron and pair of wire cutters.This diode matrix board is a floppy disk boot ROM for a PDP-11, and consists of 32 16-bit words. When you access an address on the ROM, the circuit returns the represented data from that address.

  6. Dielectric matrix, dynamical matrix and phonon dispersion in hcp transition metal scandium

    International Nuclear Information System (INIS)

    Singh, Joginder; Singh, Natthi; Prakash, S.

    1976-01-01

    Complete dielectric matrix is evaluated for hcp transition metal scandium using the non-interacting s- and d-band model. The local field corrections which are consequence of the non-diagonal part of the dielectric matrix are calculated explicitly. The free electron approximation is used for the s-electrons and the simple tight-binding approximation is used for the d-electrons. The theory developed by Singh and others is used to invert the dielectric matrix and the explicit expressions for the dynamical matrix are obtained. The phonon dispersion relations are investigated by using the renormalized Animalu transition metal model potential (TMMP) for bare ion potential. The contribution due to non-central forces which arise due to local fields is found to be 20%. The results are found in resonably good agreement with the experimental values. (author)

  7. On reducibility and ergodicity of population projection matrix models

    DEFF Research Database (Denmark)

    Stott, Iain; Townley, Stuart; Carslake, David

    2010-01-01

    from all stages to all other stages) and therefore ergodic (whatever initial stage structure is used in the population projection, it will always exhibit the same stable asymptotic growth rate). 2. Evaluation of 652 PPM models for 171 species from the literature suggests that 24·7% of PPM models...... structure used in the population projection). In our sample of published PPMs, 15·6% are non-ergodic. 3. This presents a problem: reducible–ergodic models often defy biological rationale in their description of the life cycle but may or may not prove problematic for analysis as they often behave similarly...... of reducibility in published PPMs, with significant implications for the predictive power of such models in many cases. We suggest that as a general rule, reducibility of PPM models should be avoided. However, we provide a guide to the pertinent analysis of reducible matrix models, largely based upon whether...

  8. One-point functions of non-SUSY operators at arbitrary genus in a matrix model for type IIA superstrings

    Directory of Open Access Journals (Sweden)

    Tsunehide Kuroki

    2017-06-01

    Full Text Available In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.

  9. One-point functions of non-SUSY operators at arbitrary genus in a matrix model for type IIA superstrings

    Energy Technology Data Exchange (ETDEWEB)

    Kuroki, Tsunehide, E-mail: kuroki@dg.kagawa-nct.ac.jp [General Eduction, National Institute of Technology, Kagawa College, 551 Kohda, Takuma-cho, Mitoyo, Kagawa 769-1192 (Japan); Sugino, Fumihiko, E-mail: fusugino@gmail.com [Okayama Institute for Quantum Physics, Furugyocho 1-7-36, Naka-ku, Okayama 703-8278 (Japan)

    2017-06-15

    In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.

  10. One-point functions of non-SUSY operators at arbitrary genus in a matrix model for type IIA superstrings

    International Nuclear Information System (INIS)

    Kuroki, Tsunehide; Sugino, Fumihiko

    2017-01-01

    In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.

  11. Source contributions to PM10 and arsenic concentrations in Central Chile using positive matrix factorization

    Science.gov (United States)

    Hedberg, Emma; Gidhagen, Lars; Johansson, Christer

    Sampling of particles (PM10) was conducted during a one-year period at two rural sites in Central Chile, Quillota and Linares. The samples were analyzed for elemental composition. The data sets have undergone source-receptor analyses in order to estimate the sources and their abundance's in the PM10 size fraction, by using the factor analytical method positive matrix factorization (PMF). The analysis showed that PM10 was dominated by soil resuspension at both sites during the summer months, while during winter traffic dominated the particle mass at Quillota and local wood burning dominated the particle mass at Linares. Two copper smelters impacted the Quillota station, and contributed to 10% and 16% of PM10 as an average during summer and winter, respectively. One smelter impacted Linares by 8% and 19% of PM10 in the summer and winter, respectively. For arsenic the two smelters accounted for 87% of the monitored arsenic levels at Quillota and at Linares one smelter contributed with 72% of the measured mass. In comparison with PMF, the use of a dispersion model tended to overestimate the smelter contribution to arsenic levels at both sites. The robustness of the PMF model was tested by using randomly reduced data sets, where 85%, 70%, 50% and 33% of the samples were included. In this way the ability of the model to reconstruct the sources initially found by the original data set could be tested. On average for all sources the relative standard deviation increased from 7% to 25% for the variables identifying the sources, when decreasing the data set from 85% to 33% of the samples, indicating that the solution initially found was very stable to begin with. But it was also noted that sources due to industrial or combustion processes were more sensitive for the size of the data set, compared to the natural sources as local soil and sea spray sources.

  12. Mass balance modelling of contaminants in river basins: a flexible matrix approach.

    Science.gov (United States)

    Warren, Christopher; Mackay, Don; Whelan, Mick; Fox, Kay

    2005-12-01

    A novel and flexible approach is described for simulating the behaviour of chemicals in river basins. A number (n) of river reaches are defined and their connectivity is described by entries in an n x n matrix. Changes in segmentation can be readily accommodated by altering the matrix entries, without the need for model revision. Two models are described. The simpler QMX-R model only considers advection and an overall loss due to the combined processes of volatilization, net transfer to sediment and degradation. The rate constant for the overall loss is derived from fugacity calculations for a single segment system. The more rigorous QMX-F model performs fugacity calculations for each segment and explicitly includes the processes of advection, evaporation, water-sediment exchange and degradation in both water and sediment. In this way chemical exposure in all compartments (including equilibrium concentrations in biota) can be estimated. Both models are designed to serve as intermediate-complexity exposure assessment tools for river basins with relatively low data requirements. By considering the spatially explicit nature of emission sources and the changes in concentration which occur with transport in the channel system, the approach offers significant advantages over simple one-segment simulations while being more readily applicable than more sophisticated, highly segmented, GIS-based models.

  13. Phase transition for a uniformly frustrated 19-vertex model by use of the density matrix renormalization group

    International Nuclear Information System (INIS)

    Honda, Yasushi; Horiguchi, Tsuyoshi

    2001-01-01

    We investigate a uniformly frustrated 19-vertex model with an anisotropy parameter η by use of the density matrix renormalization group for the transfer matrix for 0.6≤η≤1.3. The scaling dimension x is calculated from eigenvalues of the transfer matrix for several values η. The finite-size scaling analyses with a logarithmic correction are carried out in order to determine transition temperatures. It is found that there are two kinds of phase transitions, although there is a possibility of a single transition. This result is not compatible with the result for the uniformly frustrated XY model

  14. Modeling the modified drug release from curved shape drug delivery systems - Dome Matrix®.

    Science.gov (United States)

    Caccavo, D; Barba, A A; d'Amore, M; De Piano, R; Lamberti, G; Rossi, A; Colombo, P

    2017-12-01

    The controlled drug release from hydrogel-based drug delivery systems is a topic of large interest for research in pharmacology. The mathematical modeling of the behavior of these systems is a tool of emerging relevance, since the simulations can be of use in the design of novel systems, in particular for complex shaped tablets. In this work a model, previously developed, was applied to complex-shaped oral drug delivery systems based on hydrogels (Dome Matrix®). Furthermore, the model was successfully adopted in the description of drug release from partially accessible Dome Matrix® systems (systems with some surfaces coated). In these simulations, the erosion rate was used asa fitting parameter, and its dependence upon the surface area/volume ratio and upon the local fluid dynamics was discussed. The model parameters were determined by comparison with the drug release profile from a cylindrical tablet, then the model was successfully used for the prediction of the drug release from a Dome Matrix® system, for simple module configuration and for module assembled (void and piled) configurations. It was also demonstrated that, given the same initial S/V ratio, the drug release is independent upon the shape of the tablets but it is only influenced by the S/V evolution. The model reveals itself able to describe the observed phenomena, and thus it can be of use for the design of oral drug delivery systems, even if complex shaped. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Simplified microstrip discontinuity modeling using the transmission line matrix method interfaced to microwave CAD

    Science.gov (United States)

    Thompson, James H.; Apel, Thomas R.

    1990-07-01

    A technique for modeling microstrip discontinuities is presented which is derived from the transmission line matrix method of solving three-dimensional electromagnetic problems. In this technique the microstrip patch under investigation is divided into an integer number of square and half-square (triangle) subsections. An equivalent lumped-element model is calculated for each subsection. These individual models are then interconnected as dictated by the geometry of the patch. The matrix of lumped elements is then solved using either of two microwave CAD software interfaces with each port properly defined. Closed-form expressions for the lumped-element representation of the individual subsections is presented and experimentally verified through the X-band frequency range. A model demonstrating the use of symmetry and block construction of a circuit element is discussed, along with computer program development and CAD software interface.

  16. Reduction of false positives in the detection of architectural distortion in mammograms by using a geometrically constrained phase portrait model

    International Nuclear Information System (INIS)

    Ayres, Fabio J.; Rangayyan, Rangaraj M.

    2007-01-01

    Objective One of the commonly missed signs of breast cancer is architectural distortion. We have developed techniques for the detection of architectural distortion in mammograms, based on the analysis of oriented texture through the application of Gabor filters and a linear phase portrait model. In this paper, we propose constraining the shape of the general phase portrait model as a means to reduce the false-positive rate in the detection of architectural distortion. Material and methods The methods were tested with one set of 19 cases of architectural distortion and 41 normal mammograms, and with another set of 37 cases of architectural distortion. Results Sensitivity rates of 84% with 4.5 false positives per image and 81% with 10 false positives per image were obtained for the two sets of images. Conclusion The adoption of a constrained phase portrait model with a symmetric matrix and the incorporation of its condition number in the analysis resulted in a reduction in the false-positive rate in the detection of architectural distortion. The proposed techniques, dedicated for the detection and localization of architectural distortion, should lead to efficient detection of early signs of breast cancer. (orig.)

  17. Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography.

    Science.gov (United States)

    Zyout, Imad; Czajkowska, Joanna; Grzegorzek, Marcin

    2015-12-01

    The high number of false positives and the resulting number of avoidable breast biopsies are the major problems faced by current mammography Computer Aided Detection (CAD) systems. False positive reduction is not only a requirement for mass but also for calcification CAD systems which are currently deployed for clinical use. This paper tackles two problems related to reducing the number of false positives in the detection of all lesions and masses, respectively. Firstly, textural patterns of breast tissue have been analyzed using several multi-scale textural descriptors based on wavelet and gray level co-occurrence matrix. The second problem addressed in this paper is the parameter selection and performance optimization. For this, we adopt a model selection procedure based on Particle Swarm Optimization (PSO) for selecting the most discriminative textural features and for strengthening the generalization capacity of the supervised learning stage based on a Support Vector Machine (SVM) classifier. For evaluating the proposed methods, two sets of suspicious mammogram regions have been used. The first one, obtained from Digital Database for Screening Mammography (DDSM), contains 1494 regions (1000 normal and 494 abnormal samples). The second set of suspicious regions was obtained from database of Mammographic Image Analysis Society (mini-MIAS) and contains 315 (207 normal and 108 abnormal) samples. Results from both datasets demonstrate the efficiency of using PSO based model selection for optimizing both classifier hyper-parameters and parameters, respectively. Furthermore, the obtained results indicate the promising performance of the proposed textural features and more specifically, those based on co-occurrence matrix of wavelet image representation technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Optimal Substrate Preheating Model for Thermal Spray Deposition of Thermosets onto Polymer Matrix Composites

    Science.gov (United States)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.

    2003-01-01

    High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.

  19. A framework for general sparse matrix-matrix multiplication on GPUs and heterogeneous processors

    DEFF Research Database (Denmark)

    Liu, Weifeng; Vinter, Brian

    2015-01-01

    General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block for numerous applications such as algebraic multigrid method (AMG), breadth first search and shortest path problem. Compared to other sparse BLAS routines, an efficient parallel SpGEMM implementation has to handle...... extra irregularity from three aspects: (1) the number of nonzero entries in the resulting sparse matrix is unknown in advance, (2) very expensive parallel insert operations at random positions in the resulting sparse matrix dominate the execution time, and (3) load balancing must account for sparse data...... memory space and efficiently utilizes the very limited on-chip scratchpad memory. Parallel insert operations of the nonzero entries are implemented through the GPU merge path algorithm that is experimentally found to be the fastest GPU merge approach. Load balancing builds on the number of necessary...

  20. Moyal Deformations of Gravity via SU ( N ) Gauge Theories, Branes and Topological Chern-Simons Matrix Models

    CERN Document Server

    Castro \\C

    2003-01-01

    Moyal noncommutative star-product deformations of higher dimensional gravitational Einstein-Hilbert actions via lower-dimensional SU(\\infty) gauge theories are constructed explicitly based on the holographic reduction principle. New reparametrization invariant p-brane actions and their Moyal star product deformations follows. It is conjectured that topological Chern-Simons brane actions associated with higher-dimensional "knots" have a one-to-one correspondence with topological Chern-Simons Matrix models in the large N limit. The corresponding large N limit of Topological BF Matrix models leads to Kalb-Ramond couplings of antisymmetric-tensor fields to p-branes. The former Chern-Simons branes display higher-spin W_\\infty symmetries which are very relevant in the study of W_\\infty Gravity, the Quantum Hall effect and its higher-dimensional generalizations. We conclude by arguing why this interplay between condensed matter models, higher-dimensional extensions of the Quantum Hall effect, Chern-Simons Matrix mod...

  1. On the remarkable spectrum of a non-Hermitian random matrix model

    International Nuclear Information System (INIS)

    Holz, D E; Orland, H; Zee, A

    2003-01-01

    A non-Hermitian random matrix model proposed a few years ago has a remarkably intricate spectrum. Various attempts have been made to understand the spectrum, but even its dimension is not known. Using the Dyson-Schmidt equation, we show that the spectrum consists of a non-denumerable set of lines in the complex plane. Each line is the support of the spectrum of a periodic Hamiltonian, obtained by the infinite repetition of any finite sequence of the disorder variables. Our approach is based on the 'theory of words'. We make a complete study of all four-letter words. The spectrum is complicated because our matrix contains everything that will ever be written in the history of the universe, including this particular paper

  2. Matrix Elements in Fermion Dynamical Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    LIU Guang-Zhou; LIU Wei

    2002-01-01

    In a neutron-proton system, the matrix elements of the generators for SO(8) × SO(8) symmetry areconstructed explicitly, and with these matrix elements the low-lying excitation spectra obtained by diagonalization arepresented. The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe, Ba, andCe isotopes are calculated, and comparison with the experimental results is carried out.

  3. Matrix Elements in Fermion Dynamical Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    LIUGuang-Zhou; LIUWei

    2002-01-01

    In a neutron-proton system,the matrix elements of the generators for SO(8)×SO(8) symmetry are constructed exp;icitly,and with these matrix elements the low-lying excitation spsectra obtained by diagonalization are presented.The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe,Ba,and Ce isotopes are calculated,and comparison with the experimental results is carried out.

  4. Modeling and predictions of biphasic mechanosensitive cell migration altered by cell-intrinsic properties and matrix confinement.

    Science.gov (United States)

    Pathak, Amit

    2018-04-12

    Motile cells sense the stiffness of their extracellular matrix (ECM) through adhesions and respond by modulating the generated forces, which in turn lead to varying mechanosensitive migration phenotypes. Through modeling and experiments, cell migration speed is known to vary with matrix stiffness in a biphasic manner, with optimal motility at an intermediate stiffness. Here, we present a two-dimensional cell model defined by nodes and elements, integrated with subcellular modeling components corresponding to mechanotransductive adhesion formation, force generation, protrusions and node displacement. On 2D matrices, our calculations reproduce the classic biphasic dependence of migration speed on matrix stiffness and predict that cell types with higher force-generating ability do not slow down on very stiff matrices, thus disabling the biphasic response. We also predict that cell types defined by lower number of total receptors require stiffer matrices for optimal motility, which also limits the biphasic response. For a cell type with robust biphasic migration on 2D surface, simulations in channel-like confined environments of varying width and height predict faster migration in more confined matrices. Simulations performed in shallower channels predict that the biphasic mechanosensitive cell migration response is more robust on 2D micro-patterns as compared to the channel-like 3D confinement. Thus, variations in the dimensionality of matrix confinement alters the way migratory cells sense and respond to the matrix stiffness. Our calculations reveal new phenotypes of stiffness- and topography-sensitive cell migration that critically depend on both cell-intrinsic and matrix properties. These predictions may inform our understanding of various mechanosensitive modes of cell motility that could enable tumor invasion through topographically heterogeneous microenvironments. © 2018 IOP Publishing Ltd.

  5. Asymptotic Expansion of β Matrix Models in the One-cut Regime

    Science.gov (United States)

    Borot, G.; Guionnet, A.

    2013-01-01

    We prove the existence of a 1/ N expansion to all orders in β matrix models with a confining, offcritical potential corresponding to an equilibrium measure with a connected support. Thus, the coefficients of the expansion can be obtained recursively by the "topological recursion" derived in Chekhov and Eynard (JHEP 0612:026, 2006). Our method relies on the combination of a priori bounds on the correlators and the study of Schwinger-Dyson equations, thanks to the uses of classical complex analysis techniques. These a priori bounds can be derived following (Boutet de Monvel et al. in J Stat Phys 79(3-4):585-611, 1995; Johansson in Duke Math J 91(1):151-204, 1998; Kriecherbauer and Shcherbina in Fluctuations of eigenvalues of matrix models and their applications, 2010) or for strictly convex potentials by using concentration of measure (Anderson et al. in An introduction to random matrices, Sect. 2.3, Cambridge University Press, Cambridge, 2010). Doing so, we extend the strategy of Guionnet and Maurel-Segala (Ann Probab 35:2160-2212, 2007), from the hermitian models ( β = 2) and perturbative potentials, to general β models. The existence of the first correction in 1/ N was considered in Johansson (1998) and more recently in Kriecherbauer and Shcherbina (2010). Here, by taking similar hypotheses, we extend the result to all orders in 1/ N.

  6. General beam position controlling method for 3D optical systems based on the method of solving ray matrix equations

    Science.gov (United States)

    Chen, Meixiong; Yuan, Jie; Long, Xingwu; Kang, Zhenglong; Wang, Zhiguo; Li, Yingying

    2013-12-01

    A general beam position controlling method for 3D optical systems based on the method of solving ray matrix equations has been proposed in this paper. As a typical 3D optical system, nonplanar ring resonator of Zero-Lock Laser Gyroscopes has been chosen as an example to show its application. The total mismatching error induced by Faraday-wedge in nonplanar ring resonator has been defined and eliminated quite accurately with the error less than 1 μm. Compared with the method proposed in Ref. [14], the precision of the beam position controlling has been improved by two orders of magnitude. The novel method can be used to implement automatic beam position controlling in 3D optical systems with servo circuit. All those results have been confirmed by related alignment experiments. The results in this paper are important for beam controlling, ray tracing, cavity design and alignment in 3D optical systems.

  7. Thermal modelling of normal distributed nanoparticles through thickness in an inorganic material matrix

    Science.gov (United States)

    Latré, S.; Desplentere, F.; De Pooter, S.; Seveno, D.

    2017-10-01

    Nanoscale materials showing superior thermal properties have raised the interest of the building industry. By adding these materials to conventional construction materials, it is possible to decrease the total thermal conductivity by almost one order of magnitude. This conductivity is mainly influenced by the dispersion quality within the matrix material. At the industrial scale, the main challenge is to control this dispersion to reduce or even eliminate thermal bridges. This allows to reach an industrially relevant process to balance out the high material cost and their superior thermal insulation properties. Therefore, a methodology is required to measure and describe these nanoscale distributions within the inorganic matrix material. These distributions are either random or normally distributed through thickness within the matrix material. We show that the influence of these distributions is meaningful and modifies the thermal conductivity of the building material. Hence, this strategy will generate a thermal model allowing to predict the thermal behavior of the nanoscale particles and their distributions. This thermal model will be validated by the hot wire technique. For the moment, a good correlation is found between the numerical results and experimental data for a randomly distributed form of nanoparticles in all directions.

  8. Modelling prospects for in situ matrix diffusion at Palmottu natural analogue site, SW Finland

    International Nuclear Information System (INIS)

    Rasilainen, K.; Suksi, J.

    1994-01-01

    Concentration distributions of natural decay chains 4n+2 and 4n+3 in crystalline rock intersected by a natural fracture were measured. Calcite coating on the same fracture surface was dated. Material properties of the rock matrix, and nuclide concentrations in groundwater were measured. The interpretation of the concentration distributions is based on the classical matrix diffusion concept. Although support was obtained, this calibration exercise does not yet validate the model. Besides initial and boundary conditions, matrix properties are uncertain due to the small amount of rock material. Experimental sorption data was not available, but its importance and the need for systematic studies was demonstrated. (orig.) (10 refs., 5 figs., 5 tabs.)

  9. Symmetry breaking in the double-well hermitian matrix models

    CERN Document Server

    Brower, R C; Jain, S; Tan, C I; Brower, Richard C.; Deo, Nevidita; Jain, Sanjay; Tan, Chung-I

    1993-01-01

    We study symmetry breaking in $Z_2$ symmetric large $N$ matrix models. In the planar approximation for both the symmetric double-well $\\phi^4$ model and the symmetric Penner model, we find there is an infinite family of broken symmetry solutions characterized by different sets of recursion coefficients $R_n$ and $S_n$ that all lead to identical free energies and eigenvalue densities. These solutions can be parameterized by an arbitrary angle $\\theta(x)$, for each value of $x = n/N < 1$. In the double scaling limit, this class reduces to a smaller family of solutions with distinct free energies already at the torus level. For the double-well $\\phi^4$ theory the double scaling string equations are parameterized by a conserved angular momentum parameter in the range $0 \\le l < \\infty$ and a single arbitrary $U(1)$ phase angle.

  10. Effects of sample size on estimates of population growth rates calculated with matrix models.

    Directory of Open Access Journals (Sweden)

    Ian J Fiske

    Full Text Available BACKGROUND: Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. METHODOLOGY/PRINCIPAL FINDINGS: Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. CONCLUSIONS/SIGNIFICANCE: We found significant bias at small sample sizes when survival was low (survival = 0.5, and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high

  11. Effects of sample size on estimates of population growth rates calculated with matrix models.

    Science.gov (United States)

    Fiske, Ian J; Bruna, Emilio M; Bolker, Benjamin M

    2008-08-28

    Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. We found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities.

  12. Determination of static moduli in fractured rocks by T-matrix model

    Czech Academy of Sciences Publication Activity Database

    Chalupa, F.; Vilhelm, J.; Petružálek, Matěj; Bukovská, Z.

    2017-01-01

    Roč. 22, č. 1 (2017), s. 22-31 ISSN 1335-1788 Institutional support: RVO:67985831 Keywords : fractured rocks * dynamic and static moduli * T-matrix model * elastic wave velocity * well logging Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 0.769, year: 2016 http://actamont.tuke.sk/pdf/2017/n1/3chalupa.pdf

  13. Calculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms

    Directory of Open Access Journals (Sweden)

    Abolfazl Asadian

    2014-06-01

    Full Text Available The helicopter-borne electromagnetic (HEM frequency-domain exploration method is an airborne electromagnetic (AEM technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise and efficient technique provided by a forward modelling algorithm. The exact calculation of the sensitivity matrix or Jacobian is also of the utmost importance. As such, the main objective of this study is to design an efficient algorithm for the forward modelling of HEM frequency-domain data for the configuration of horizontal coplanar (HCP coils using fast Hankel transforms (FHTs. An attempt is also made to use an analytical approach to derive the required equations for the Jacobian matrix. To achieve these goals, an elaborated algorithm for the simultaneous calculation of the forward computation and sensitivity matrix is provided. Finally, using two synthetic models, the accuracy of the calculations of the proposed algorithm is verified. A comparison indicates that the obtained results of forward modelling are highly consistent with those reported in Simon et al. (2009 for a four-layer model. Furthermore, the comparison of the results for the sensitivity matrix for a two-layer model with those obtained from software is being used by the BGR Centre in Germany, showing that the proposed algorithm enjoys a high degree of accuracy in calculating this matrix.

  14. Population matrix models and palm resource management

    Directory of Open Access Journals (Sweden)

    1992-01-01

    Full Text Available MATRICES DE POPULATIONS ET MISE EN VALEUR DES PALMIERS. Au cours des 20 dernières années, les structures de population de nombreuses espèces de palmiers ont été décrites et discutées. La croissance et la stabilité des populations ont été analysées à l’aide de matrices. Dans cet article, nous reprenons un modèle et en discutons les aspects méthodologiques en vue d’une estimation des paramètres de l’histoire de la vie des palmiers. Les généralisations résultant de précédentes études sont présentées et les conséquences pour la mise en valeur des palmiers, concernant en particulier la confection de toitures, les fruits, la récolte des stipes, sont discutées. MATRICES DE POBLACIONES Y MANEJO DE PALMERAS. En los últimos 20 años, las estructuras de población de numerosas especies de palmeras han sido descritas y discutidas. El crecimiento y la estabilidad de las poblaciones han sido analizadas, utilizando matrices. En el presente artículo, presentamos un modelo y discutimos los aspectos metodológicos específicos para hacer una estimación de los parámetros de la historia de la vida de las palmeras. Son presentadas las generalizaciones diseñadas por estudios previos, y discutidas las implicancias en el manejo de las palmeras, en cuanto a techado, frutas, cosecha de los estípites. Population structures of numerous palm species have been described and discussed in the last 20 years. Population growth and stability have been analyzed with matrix models. In this paper we review matrix models and discuss methodological issues specific to estimating palm life history parameters. Generalizations drawn from previous studies are presented and implications for palm resource management, specifically for thatch, fruit, and stem harvest, are discussed.

  15. A constitutive model for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures

    Directory of Open Access Journals (Sweden)

    Song Wei-Dong

    2013-01-01

    Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.

  16. A random matrix model for elliptic curve L-functions of finite conductor

    International Nuclear Information System (INIS)

    Dueñez, E; Huynh, D K; Keating, J P; Snaith, N C; Miller, S J

    2012-01-01

    We propose a random-matrix model for families of elliptic curve L-functions of finite conductor. A repulsion of the critical zeros of these L-functions away from the centre of the critical strip was observed numerically by Miller (2006 Exp. Math. 15 257–79); such behaviour deviates qualitatively from the conjectural limiting distribution of the zeros (for large conductors this distribution is expected to approach the one-level density of eigenvalues of orthogonal matrices after appropriate rescaling). Our purpose here is to provide a random-matrix model for Miller’s surprising discovery. We consider the family of even quadratic twists of a given elliptic curve. The main ingredient in our model is a calculation of the eigenvalue distribution of random orthogonal matrices whose characteristic polynomials are larger than some given value at the symmetry point in the spectra. We call this sub-ensemble of SO(2N) the excised orthogonal ensemble. The sieving-off of matrices with small values of the characteristic polynomial is akin to the discretization of the central values of L-functions implied by the formulae of Waldspurger and Kohnen–Zagier. The cut-off scale appropriate to modelling elliptic curve L-functions is exponentially small relative to the matrix size N. The one-level density of the excised ensemble can be expressed in terms of that of the well-known Jacobi ensemble, enabling the former to be explicitly calculated. It exhibits an exponentially small (on the scale of the mean spacing) hard gap determined by the cut-off value, followed by soft repulsion on a much larger scale. Neither of these features is present in the one-level density of SO(2N). When N → ∞ we recover the limiting orthogonal behaviour. Our results agree qualitatively with Miller’s discrepancy. Choosing the cut-off appropriately gives a model in good quantitative agreement with the number-theoretical data. (paper)

  17. Positive matrix factorization as source apportionment of soil lead and cadmium around a battery plant (Changxing County, China).

    Science.gov (United States)

    Xue, Jian-long; Zhi, Yu-you; Yang, Li-ping; Shi, Jia-chun; Zeng, Ling-zao; Wu, Lao-sheng

    2014-06-01

    Chemical compositions of soil samples are multivariate in nature and provide datasets suitable for the application of multivariate factor analytical techniques. One of the analytical techniques, the positive matrix factorization (PMF), uses a weighted least square by fitting the data matrix to determine the weights of the sources based on the error estimates of each data point. In this research, PMF was employed to apportion the sources of heavy metals in 104 soil samples taken within a 1-km radius of a lead battery plant contaminated site in Changxing County, Zhejiang Province, China. The site is heavily contaminated with high concentrations of lead (Pb) and cadmium (Cd). PMF successfully partitioned the variances into sources related to soil background, agronomic practices, and the lead battery plants combined with a geostatistical approach. It was estimated that the lead battery plants and the agronomic practices contributed 55.37 and 29.28%, respectively, for soil Pb of the total source. Soil Cd mainly came from the lead battery plants (65.92%), followed by the agronomic practices (21.65%), and soil parent materials (12.43%). This research indicates that PMF combined with geostatistics is a useful tool for source identification and apportionment.

  18. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling

    Science.gov (United States)

    Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.

    2018-02-01

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  19. In vitro model to study the effects of matrix stiffening on Ca2+ handling and myofilament function in isolated adult rat cardiomyocytes.

    Science.gov (United States)

    van Deel, Elza D; Najafi, Aref; Fontoura, Dulce; Valent, Erik; Goebel, Max; Kardux, Kim; Falcão-Pires, Inês; van der Velden, Jolanda

    2017-07-15

    This paper describes a novel model that allows exploration of matrix-induced cardiomyocyte adaptations independent of the passive effect of matrix rigidity on cardiomyocyte function. Detachment of adult cardiomyocytes from the matrix enables the study of matrix effects on cell shortening, Ca 2+ handling and myofilament function. Cell shortening and Ca 2+ handling are altered in cardiomyocytes cultured for 24 h on a stiff matrix. Matrix stiffness-impaired cardiomyocyte contractility is reversed upon normalization of extracellular stiffness. Matrix stiffness-induced reduction in unloaded shortening is more pronounced in cardiomyocytes isolated from obese ZSF1 rats with heart failure with preserved ejection fraction compared to lean ZSF1 rats. Extracellular matrix (ECM) stiffening is a key element of cardiac disease. Increased rigidity of the ECM passively inhibits cardiac contraction, but if and how matrix stiffening also actively alters cardiomyocyte contractility is incompletely understood. In vitro models designed to study cardiomyocyte-matrix interaction lack the possibility to separate passive inhibition by a stiff matrix from active matrix-induced alterations of cardiomyocyte properties. Here we introduce a novel experimental model that allows exploration of cardiomyocyte functional alterations in response to matrix stiffening. Adult rat cardiomyocytes were cultured for 24 h on matrices of tuneable stiffness representing the healthy and the diseased heart and detached from their matrix before functional measurements. We demonstrate that matrix stiffening, independent of passive inhibition, reduces cell shortening and Ca 2+ handling but does not alter myofilament-generated force. Additionally, detachment of adult cultured cardiomyocytes allowed the transfer of cells from one matrix to another. This revealed that stiffness-induced cardiomyocyte changes are reversed when matrix stiffness is normalized. These matrix stiffness-induced changes in cardiomyocyte

  20. Online transition matrix identification of the state evolution model for the extended Kalman filter in electrical impedance tomography

    International Nuclear Information System (INIS)

    Moura, Fernando S; Aya, Julio C C; Lima, Raul G; Fleury, Agenor T

    2008-01-01

    One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on contour electrical potential measurements caused by an imposed electrical current distribution into the boundary. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, it is observed poor tracking ability of the Extended Kalman Filter (EKF). An analytically developed evolution model is not feasible at this moment. The present work investigates the possibility of identifying the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model is identified using the history of resistivity distribution obtained by a sensitivity matrix based algorithm. To numerically identify the linear evolution model, it is used the Ibrahim Time Domain Method, normally used to identify the transition matrix on structural dynamics. The investigation was performed by numerical simulations of a time varying domain with the addition of noise. Numerical dificulties to compute the transition matrix were solved using a Tikhonov regularization. The EKF numerical simulations suggest that the tracking ability is significantly improved.

  1. Large-N limit of the two-Hermitian-matrix model by the hidden BRST method

    International Nuclear Information System (INIS)

    Alfaro, J.

    1993-01-01

    This paper discusses the large-N limit of the two-Hermitian-matrix model in zero dimensions, using the hidden Becchi-Rouet-Stora-Tyutin method. A system of integral equations previously found is solved, showing that it contained the exact solution of the model in leading order of large N

  2. Efficient methodologies for system matrix modelling in iterative image reconstruction for rotating high-resolution PET

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno, J E; Kontaxakis, G; Rubio, J L; Santos, A [Departamento de Ingenieria Electronica (DIE), Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Guerra, P [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain)], E-mail: juanen@die.upm.es

    2010-04-07

    A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.

  3. Matrix Metalloproteinases Are Differentially Regulated and Responsive to Compression Therapy in a Red Duroc Model of Hypertrophic Scar.

    Science.gov (United States)

    Travis, Taryn E; Ghassemi, Pejhman; Prindeze, Nicholas J; Moffatt, Lauren T; Carney, Bonnie C; Alkhalil, Abdulnaser; Ramella-Roman, Jessica C; Shupp, Jeffrey W

    2018-01-01

    Objective: Proteins of the matrix metalloproteinases family play a vital role in extracellular matrix maintenance and basic physiological processes in tissue homeostasis. The function and activities of matrix metalloproteinases in response to compression therapies have yet to be defined. Here, a swine model of hypertrophic scar was used to profile the transcription of all known 26 matrix metalloproteinases in scars treated with a precise compression dose. Methods: Full-thickness excisional wounds were created. Wounds underwent healing and scar formation. A subset of scars underwent 2 weeks of compression therapy. Biopsy specimens were preserved, and microarrays, reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry were performed to characterize the transcription and expression of various matrix metalloproteinase family members. Results: Microarray results showed that 13 of the known 26 matrix metalloproteinases were differentially transcribed in wounds relative to the preinjury skin. The predominant upregulation of these matrix metalloproteinases during early wound-healing stages declined gradually in later stages of wound healing. The use of compression therapy reduced this decline in 10 of the 13 differentially regulated matrix metalloproteinases. Further investigation of MMP7 using reverse transcription-polymerase chain reaction confirmed the effect of compression on transcript levels. Assessment of MMP7 at the protein level using Western blotting and immunohistochemistry was concordant. Conclusions: In a swine model of hypertrophic scar, the application of compression to hypertrophic scar attenuated a trend of decreasing levels of matrix metalloproteinases during the process of hypertrophic wound healing, including MMP7, whose enzyme regulation was confirmed at the protein level.

  4. Degenerate RFID Channel Modeling for Positioning Applications

    Directory of Open Access Journals (Sweden)

    A. Povalac

    2012-12-01

    Full Text Available This paper introduces the theory of channel modeling for positioning applications in UHF RFID. It explains basic parameters for channel characterization from both the narrowband and wideband point of view. More details are given about ranging and direction finding. Finally, several positioning scenarios are analyzed with developed channel models. All the described models use a degenerate channel, i.e. combined signal propagation from the transmitter to the tag and from the tag to the receiver.

  5. Matrix population models from 20 studies of perennial plant populations

    Science.gov (United States)

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the 'Testing Matrix Models' working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  6. Efficient fully 3D list-mode TOF PET image reconstruction using a factorized system matrix with an image domain resolution model

    International Nuclear Information System (INIS)

    Zhou, Jian; Qi, Jinyi

    2014-01-01

    A factorized system matrix utilizing an image domain resolution model is attractive in fully 3D time-of-flight PET image reconstruction using list-mode data. In this paper, we study a factored model based on sparse matrix factorization that is comprised primarily of a simplified geometrical projection matrix and an image blurring matrix. Beside the commonly-used Siddon’s ray-tracer, we propose another more simplified geometrical projector based on the Bresenham’s ray-tracer which further reduces the computational cost. We discuss in general how to obtain an image blurring matrix associated with a geometrical projector, and provide theoretical analysis that can be used to inspect the efficiency in model factorization. In simulation studies, we investigate the performance of the proposed sparse factorization model in terms of spatial resolution, noise properties and computational cost. The quantitative results reveal that the factorization model can be as efficient as a non-factored model, while its computational cost can be much lower. In addition we conduct Monte Carlo simulations to identify the conditions under which the image resolution model can become more efficient in terms of image contrast recovery. We verify our observations using the provided theoretical analysis. The result offers a general guide to achieve the optimal reconstruction performance based on a sparse factorization model with an image domain resolution model. (paper)

  7. NLTE steady-state response matrix method.

    Science.gov (United States)

    Faussurier, G.; More, R. M.

    2000-05-01

    A connection between atomic kinetics and non-equilibrium thermodynamics has been recently established by using a collisional-radiative model modified to include line absorption. The calculated net emission can be expressed as a non-local thermodynamic equilibrium (NLTE) symmetric response matrix. In the paper, this connection is extended to both cases of the average-atom model and the Busquet's model (RAdiative-Dependent IOnization Model, RADIOM). The main properties of the response matrix still remain valid. The RADIOM source function found in the literature leads to a diagonal response matrix, stressing the absence of any frequency redistribution among the frequency groups at this order of calculation.

  8. Wetting and dewetting of extracellular matrix and glycocalix models

    International Nuclear Information System (INIS)

    Tanaka, Motomu; Rehfeldt, Florian; Schneider, Matthias F; Mathe, Gerald; Albersdoerfer, Antero; Neumaier, Klaus R; Purrucker, Oliver; Sackmann, Erich

    2005-01-01

    In this paper, we study wetting and dewetting of hydrated biopolymer layers mediating cell-cell and cell-tissue contacts, called the extracellular matrix and cell surface glycocalix, by the combination of various physical techniques. Here, the sum of the net effects of the various interfacial forces, which is referred to as the disjoining pressure, is used as a semi-quantitative measure to describe the thermodynamics of hydrated interlayers. The disjoining pressure can be measured by applying external forces to maintain the equilibrium distance between two parallel surfaces (in biology, two neighbouring plasma membranes). Using artificial models of the extracellular matrix and glycocalix, we describe stable cell-cell contacts in terms of the wetting (or spreading) of complex fluids on polymer surfaces. In fact, the adjustment of the wetting interaction via thin hydrating layers enables us to transform three-dimensional cell membranes into quasi-two-dimensional films on macroscopically large surfaces. Fine-tuning of local wetting conditions at the interface further allows for the selective wetting of native cell membranes on microstructured polysaccharide films, which has a large potential for individual detection of biological functions in confined geometries

  9. Old and New about Positive Definite Matrices

    Czech Academy of Sciences Publication Activity Database

    Fiedler, Miroslav

    2015-01-01

    Roč. 484, 1 November (2015), s. 496-503 ISSN 0024-3795 R&D Projects: GA ČR(CZ) GAP108/11/0853 Institutional support: RVO:67985807 Keywords : positive definite matrix * normalized positive definite matrix * sign pattern Subject RIV: BA - General Mathematics Impact factor: 0.965, year: 2015

  10. Efficiency criterion for teleportation via channel matrix, measurement matrix and collapsed matrix

    Directory of Open Access Journals (Sweden)

    Xin-Wei Zha

    Full Text Available In this paper, three kinds of coefficient matrixes (channel matrix, measurement matrix, collapsed matrix associated with the pure state for teleportation are presented, the general relation among channel matrix, measurement matrix and collapsed matrix is obtained. In addition, a criterion for judging whether a state can be teleported successfully is given, depending on the relation between the number of parameter of an unknown state and the rank of the collapsed matrix. Keywords: Channel matrix, Measurement matrix, Collapsed matrix, Teleportation

  11. Identification of pathogenic microorganisms directly from positive blood vials by matrix-assisted laser desorption/ionization time of flight mass spectrometry

    DEFF Research Database (Denmark)

    Nonnemann, Bettina; Tvede, Michael; Bjarnsholt, Thomas

    2013-01-01

    Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is a promising and fast method for identifying fungi and bacteria directly from positive blood cultures. Various pre-treatment methods for MALDI-TOF MS identification have been reported for this purpose. In......-house results for identification of bacterial colonies by MALDI-TOF MS using a cut-off score of 1.5 did not reduce the diagnostic accuracy compared with the recommended cut-off score of 1.8. A 3-month consecutive study of positive blood cultures was carried out in our laboratory to evaluate whether...... the Sepsityper™ Kit (Bruker Daltonics) with Biotyper 2.0 software could be used as a fast diagnostic tool for bacteria and fungi and whether a 1.5 cut-off score could improve species identification compared with the recommended score of 1.8. Two hundred and fifty-six positive blood vials from 210 patients and 19...

  12. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Stevenson, Lindsay G; Drake, Steven K; Murray, Patrick R

    2010-02-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid, accurate method for identifying bacteria and fungi recovered on agar culture media. We report herein a method for the direct identification of bacteria in positive blood culture broths by MALDI-TOF mass spectrometry. A total of 212 positive cultures were examined, representing 32 genera and 60 species or groups. The identification of bacterial isolates by MALDI-TOF mass spectrometry was compared with biochemical testing, and discrepancies were resolved by gene sequencing. No identification (spectral score of blood culture broth. Of the bacteria with a spectral score of > or = 1.7, 162 (95.3%) of 170 isolates were correctly identified. All 8 isolates of Streptococcus mitis were misidentified as being Streptococcus pneumoniae isolates. This method provides a rapid, accurate, definitive identification of bacteria within 1 h of detection in positive blood cultures with the caveat that the identification of S. pneumoniae would have to be confirmed by an alternative test.

  13. Binding of matrix metalloproteinase inhibitors to extracellular matrix: 3D-QSAR analysis.

    Science.gov (United States)

    Zhang, Yufen; Lukacova, Viera; Bartus, Vladimir; Nie, Xiaoping; Sun, Guorong; Manivannan, Ethirajan; Ghorpade, Sandeep R; Jin, Xiaomin; Manyem, Shankar; Sibi, Mukund P; Cook, Gregory R; Balaz, Stefan

    2008-10-01

    Binding to the extracellular matrix, one of the most abundant human protein complexes, significantly affects drug disposition. Specifically, the interactions with extracellular matrix determine the free concentrations of small molecules acting in tissues, including signaling peptides, inhibitors of tissue remodeling enzymes such as matrix metalloproteinases, and other drug candidates. The nature of extracellular matrix binding was elucidated for 63 matrix metalloproteinase inhibitors, for which the association constants to an extracellular matrix mimic were reported here. The data did not correlate with lipophilicity as a common determinant of structure-nonspecific, orientation-averaged binding. A hypothetical structure of the binding site of the solidified extracellular matrix surrogate was analyzed using the Comparative Molecular Field Analysis, which needed to be applied in our multi-mode variant. This fact indicates that the compounds bind to extracellular matrix in multiple modes, which cannot be considered as completely orientation-averaged and exhibit structural dependence. The novel comparative molecular field analysis models, exhibiting satisfactory descriptive and predictive abilities, are suitable for prediction of the extracellular matrix binding for the untested chemicals, which are within applicability domains. The results contribute to a better prediction of the pharmacokinetic parameters such as the distribution volume and the tissue-blood partition coefficients, in addition to a more imminent benefit for the development of more effective matrix metalloproteinase inhibitors.

  14. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    Science.gov (United States)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  15. Mouse models of estrogen receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Shakur Mohibi

    2011-01-01

    Full Text Available Breast cancer is the most frequent malignancy and second leading cause of cancer-related deaths among women. Despite advances in genetic and biochemical analyses, the incidence of breast cancer and its associated mortality remain very high. About 60 - 70% of breast cancers are Estrogen Receptor alpha (ER-α positive and are dependent on estrogen for growth. Selective estrogen receptor modulators (SERMs have therefore provided an effective targeted therapy to treat ER-α positive breast cancer patients. Unfortunately, development of resistance to endocrine therapy is frequent and leads to cancer recurrence. Our understanding of molecular mechanisms involved in the development of ER-α positive tumors and their resistance to ER antagonists is currently limited due to lack of experimental models of ER-α positive breast cancer. In most mouse models of breast cancer, the tumors that form are typically ER-negative and independent of estrogen for their growth. However, in recent years more attention has been given to develop mouse models that develop different subtypes of breast cancers, including ER-positive tumors. In this review, we discuss the currently available mouse models that develop ER-α positive mammary tumors and their potential use to elucidate the molecular mechanisms of ER-α positive breast cancer development and endocrine resistance.

  16. Unitarity of CKM Matrix

    CERN Document Server

    Saleem, M

    2002-01-01

    The Unitarity of the CKM matrix is examined in the light of the latest available accurate data. The analysis shows that a conclusive result cannot be derived at present. Only more precise data can determine whether the CKM matrix opens new vistas beyond the standard model or not.

  17. Noncommutative gauge theory and symmetry breaking in matrix models

    International Nuclear Information System (INIS)

    Grosse, Harald; Steinacker, Harold; Lizzi, Fedele

    2010-01-01

    We show how the fields and particles of the standard model can be naturally realized in noncommutative gauge theory. Starting with a Yang-Mills matrix model in more than four dimensions, an SU(n) gauge theory on a Moyal-Weyl space arises with all matter and fields in the adjoint of the gauge group. We show how this gauge symmetry can be broken spontaneously down to SU(3) c xSU(2) L xU(1) Q [resp. SU(3) c xU(1) Q ], which couples appropriately to all fields in the standard model. An additional U(1) B gauge group arises which is anomalous at low energies, while the trace-U(1) sector is understood in terms of emergent gravity. A number of additional fields arise, which we assume to be massive, in a pattern that is reminiscent of supersymmetry. The symmetry breaking might arise via spontaneously generated fuzzy spheres, in which case the mechanism is similar to brane constructions in string theory.

  18. ABCD Matrix Method a Case Study

    CERN Document Server

    Seidov, Zakir F; Yahalom, Asher

    2004-01-01

    In the Israeli Electrostatic Accelerator FEL, the distance between the accelerator's end and the wiggler's entrance is about 2.1 m, and 1.4 MeV electron beam is transported through this space using four similar quadrupoles (FODO-channel). The transfer matrix method (ABCD matrix method) was used for simulating the beam transport, a set of programs is written in the several programming languages (MATHEMATICA, MATLAB, MATCAD, MAPLE) and reasonable agreement is demonstrated between experimental results and simulations. Comparison of ABCD matrix method with the direct "numerical experiments" using EGUN, ELOP, and GPT programs with and without taking into account the space-charge effects showed the agreement to be good enough as well. Also the inverse problem of finding emittance of the electron beam at the S1 screen position (before FODO-channel), by using the spot image at S2 screen position (after FODO-channel) as function of quad currents, is considered. Spot and beam at both screens are described as tilted eel...

  19. Direct identification of bacteria from positive BacT/ALERT blood culture bottles using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry.

    Science.gov (United States)

    Mestas, Javier; Felsenstein, Susanna; Bard, Jennifer Dien

    2014-11-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is a fast and robust method for the identification of bacteria. In this study, we evaluate the performance of a laboratory-developed lysis method (LDT) for the rapid identification of bacteria from positive BacT/ALERT blood culture bottles. Of the 168 positive bottles tested, 159 were monomicrobial, the majority of which were Gram-positive organisms (61.0% versus 39.0%). Using a cut-off score of ≥1.7, 80.4% of the organisms were correctly identified to the species level, and the identification rate of Gram-negative organisms (90.3%) was found to be significantly greater than that of Gram-positive organisms (78.4%). The simplicity and cost-effectiveness of the LDT enable it to be fully integrated into the routine workflow of the clinical microbiology laboratory, allowing for rapid identification of Gram-positive and Gram-negative bacteria within an hour of blood culture positivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Evaluating the efficacy of Regulated 12-Session Matrix Model in reducing susceptibility in methamphetamine-dependent individuals

    Directory of Open Access Journals (Sweden)

    Zahra Amiri

    2016-02-01

    Full Text Available Methamphetamine (abuse have gained popularity among youth and is increasingly become a part of mainstream culture. Methamphetamine(abuse is dangerous because of its wide range adverse outcomes and hazardous sustaining side effects. Its dependence is hardly withdrawn by routine therapeutic methods. This study is devoted to evaluate the efficacy of Regulated 12-Session Matrix Model in outpatient methamphetamine-dependent individuals. 24 individuals were chosen according to inclusion/exclusion criteria of the study and randomly assigned to equal experimental (age range 19-41; mean age: 46.9 and control groups (age range: 21-42; mean age: 27.8. Experimental group members partook Regulated 12-Session Matrix Model once a week in 12 consecutive weeks, while control group members remained at waitlist. Independent t-test in 12th week showed that experimental group had lower methamphetamine use, comparing to control group (p<.05.Phillai’s Trace, Wilk’s Lambda, HotellingLawley's trace, and Roy's largest root showed that there are significant association between experimental and control groups in reduction of methamphetamine-use lapse (p<.05.Within-subject F ratio revealed that “methamphetamine use” was significantly reduced in experimental group after clinical intervention (p<.001. Findings of the study indicate the efficacy of Regulated 12-Session Matrix Model in craving management and control as well as reduction of lapse and substance (abuse in methamphetamine-dependent patients. It appears that the Regulated 12-Session Matrix Model would be a new reliable solution to treat methamphetamine-dependence in Iran and other alike cultural and social atmospheres. Limitations and future implications are discussed.

  1. Three-Dimensional In Vitro Skin and Skin Cancer Models Based on Human Fibroblast-Derived Matrix.

    Science.gov (United States)

    Berning, Manuel; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-09-01

    Three-dimensional in vitro skin and skin cancer models help to dissect epidermal-dermal and tumor-stroma interactions. In the model presented here, normal human dermal fibroblasts isolated from adult skin self-assembled into dermal equivalents with their specific fibroblast-derived matrix (fdmDE) over 4 weeks. The fdmDE represented a complex human extracellular matrix that was stabilized by its own heterogeneous collagen fiber meshwork, largely resembling a human dermal in vivo architecture. Complemented with normal human epidermal keratinocytes, the skin equivalent (fdmSE) thereof favored the establishment of a well-stratified and differentiated epidermis and importantly allowed epidermal regeneration in vitro for at least 24 weeks. Moreover, the fdmDE could be used to study the features of cutaneous skin cancer. Complementing fdmDE with HaCaT cells in different stages of malignancy or tumor-derived cutaneous squamous cell carcinoma cell lines, the resulting skin cancer equivalents (fdmSCEs) recapitulated the respective degree of tumorigenicity. In addition, the fdmSCE invasion phenotypes correlated with their individual degree of tissue organization, disturbance in basement membrane organization, and presence of matrix metalloproteinases. Together, fdmDE-based models are well suited for long-term regeneration of normal human epidermis and, as they recapitulate tumor-specific growth, differentiation, and invasion profiles of cutaneous skin cancer cells, also provide an excellent human in vitro skin cancer model.

  2. Matrix models, Argyres-Douglas singularities and double scaling limits

    International Nuclear Information System (INIS)

    Bertoldi, Gaetano

    2003-01-01

    We construct an N = 1 theory with gauge group U(nN) and degree n+1 tree level superpotential whose matrix model spectral curve develops an Argyres-Douglas singularity. The calculation of the tension of domain walls in the U(nN) theory shows that the standard large-N expansion breaks down at the Argyres-Douglas points, with tension that scales as a fractional power of N. Nevertheless, it is possible to define appropriate double scaling limits which are conjectured to yield the tension of 2-branes in the resulting N = 1 four dimensional non-critical string theories as proposed by Ferrari. (author)

  3. Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites.

    Science.gov (United States)

    Liu, Junjie; Zhu, Wenqing; Yu, Zhongliang; Wei, Xiaoding

    2018-07-01

    Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve

  4. Matrix algebra for higher order moments

    NARCIS (Netherlands)

    Meijer, Erik

    2005-01-01

    A large part of statistics is devoted to the estimation of models from the sample covariance matrix. The development of the statistical theory and estimators has been greatly facilitated by the introduction of special matrices, such as the commutation matrix and the duplication matrix, and the

  5. Teaching Improvement Model Designed with DEA Method and Management Matrix

    Science.gov (United States)

    Montoneri, Bernard

    2014-01-01

    This study uses student evaluation of teachers to design a teaching improvement matrix based on teaching efficiency and performance by combining management matrix and data envelopment analysis. This matrix is designed to formulate suggestions to improve teaching. The research sample consists of 42 classes of freshmen following a course of English…

  6. Construction of fuzzy spaces and their applications to matrix models

    Science.gov (United States)

    Abe, Yasuhiro

    Quantization of spacetime by means of finite dimensional matrices is the basic idea of fuzzy spaces. There remains an issue of quantizing time, however, the idea is simple and it provides an interesting interplay of various ideas in mathematics and physics. Shedding some light on such an interplay is the main theme of this dissertation. The dissertation roughly separates into two parts. In the first part, we consider rather mathematical aspects of fuzzy spaces, namely, their construction. We begin with a review of construction of fuzzy complex projective spaces CP k (k = 1, 2, · · ·) in relation to geometric quantization. This construction facilitates defining symbols and star products on fuzzy CPk. Algebraic construction of fuzzy CPk is also discussed. We then present construction of fuzzy S 4, utilizing the fact that CP3 is an S2 bundle over S4. Fuzzy S4 is obtained by imposing an additional algebraic constraint on fuzzy CP3. Consequently it is proposed that coordinates on fuzzy S4 are described by certain block-diagonal matrices. It is also found that fuzzy S8 can analogously be constructed. In the second part of this dissertation, we consider applications of fuzzy spaces to physics. We first consider theories of gravity on fuzzy spaces, anticipating that they may offer a novel way of regularizing spacetime dynamics. We obtain actions for gravity on fuzzy S2 and on fuzzy CP3 in terms of finite dimensional matrices. Application to M(atrix) theory is also discussed. With an introduction of extra potentials to the theory, we show that it also has new brane solutions whose transverse directions are described by fuzzy S 4 and fuzzy CP3. The extra potentials can be considered as fuzzy versions of differential forms or fluxes, which enable us to discuss compactification models of M(atrix) theory. In particular, compactification down to fuzzy S4 is discussed and a realistic matrix model of M-theory in four-dimensions is proposed.

  7. The Einstein action for algebras of matrix valued functions - Toy models

    International Nuclear Information System (INIS)

    Hajac, P.M.

    1995-10-01

    Two toy models are considered within the framework of noncommutative differential geometry. In the first one, the Einstein action of the Levi-Civita connection is computed for the algebra of matrix valued functions on a torus. It is shown that, assuming some constraints on the metric, this action splits into a classical-like, a quantum-like and a mixed term. In the second model, an analogue of the Palatini method of variation is applied to obtain critical points of the Einstein action functional for M 4 (R). It is pointed out that a solution to the Palatini variational problem is not necessarily a Levi-Civita connection. In this model, no additional assumptions regarding metrics are made. (author). 14 refs

  8. Expressions of matrix metalloproteinase-2 and extracellular matrix metalloproteinase inducer in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Yu-Hong Cheng

    2015-07-01

    Full Text Available AIM: To investigate expressions of matrix metalloproteinase-2(MMP-2and extracellular matrix metalloproteinase inducer(EMMPRINin retinoblastoma(Rband the relationships between MMP-2, EMMPRIN and tumor development.METHODS:Immunohistochemical technique was used to detect expressions of MMP-2 and EMMPRIN in 39 cases of paraffin embedded Rb samples. Quantitative analysis of expressions of MMP-2 and EMMPRIN were assessed by measuring the mean gray scale of Rb tissue with LEICA IM50 Color Pathologic Analysis System. The differences of expressions of MMP-2 and EMMPRIN in each clinical and pathological stage were statistically analyzed, and the same step was also undertaken to study the relationship between Rb with MMP-2 positive expression and that with EMMPRIN positive expression.RESULTS: The positive expression rate of MMP-2 was 90%(Gray value: 109.64±14.52; 35/39, and that of EMMPRIN was 85%(Gray value: 108.01±13.60; 33/39. The expressions of MMP-2 and EMMPRIN were significantly higher in tumors of glaucomatous stage(Gray value: 108.21±11.47 and 107.56±14.32than those in intraocular stage(Gray value: 121.13±11.32 and 119.34±12.66; PPPPPPCONCLUSION: The positive expression levels of MMP-2 and EMMPRIN may correlate with tumor infiltration and metastasis.

  9. Universality in invariant random-matrix models: Existence near the soft edge

    International Nuclear Information System (INIS)

    Kanzieper, E.; Freilikher, V.

    1997-01-01

    We consider two non-Gaussian ensembles of large Hermitian random matrices with strong level confinement and show that near the soft edge of the spectrum both scaled density of states and eigenvalue correlations follow so-called Airy laws inherent in the Gaussian unitary ensemble. This suggests that the invariant one-matrix models should display universal eigenvalue correlations in the soft-edge scaling limit. copyright 1997 The American Physical Society

  10. COMBINING THE CONCEPTS OF BENCHMARKING AND MATRIX GAME IN MARKETING (RE)POSITIONING OF SEAPORTS

    OpenAIRE

    Senka Sekularac-Ivošević; Sanja Bauk; Mirjana Gligorijević

    2013-01-01

    This paper considers the effects of combination of two different approaches in developing seaports positioning strategy. The first one is based on comparing the most important quantitative and qualitative seaports choice criteria by benchmarking method. Benchmarking has been used in creating the appropriate model for efficient marketing positioning of Aegean, Adriatic and Black Sea seaports. The criteria that describe the degree of these seaports competitiveness are chosen upon the investigat...

  11. Potential Applications of Matrix Organization Theory for the New Jersey Department of Education. Position Paper.

    Science.gov (United States)

    Hanson, J. Robert

    Matrix organization focuses on the shift from cost center or process input planning to product output or results planning. Matrix organization puts the personnel and the resources where they are needed to get the job done. This management efficiency is brought about by dividing all organizational activities into two areas: (1) input or maintenance…

  12. The thermal non-equilibrium porous media modelling for CFD study of woven wire matrix of a Stirling regenerator

    International Nuclear Information System (INIS)

    Costa, S.C.; Barreno, I.; Tutar, M.; Esnaola, J.A.; Barrutia, H.

    2015-01-01

    Highlights: • A numerical procedure to derive porous media’s coefficients is proposed. • The local thermal non-equilibrium porous media model is more suitable for regenerators. • The regenerator temperature profiles can be better fitted to a logarithmic curve. • The wound woven wire matrix provides lower performance compared to stacked. • The numerical characterization methodology is useful for the multi-D Stirling engine models. - Abstract: Different numerical methods can be applied to the analysis of the flow through the Stirling engine regenerator. One growing approach is to model the regenerator as porous medium to simulate and design the full Stirling engine in three-dimensional (3-D) manner. In general, the friction resistance coefficients and heat transfer coefficient are experimentally obtained to describe the flow and thermal non-equilibrium through a porous medium. A finite volume method (FVM) based non-thermal equilibrium porous media modelling approach characterizing the fluid flow and heat transfer in a representative small detailed flow domain of the woven wire matrix is proposed here to obtain the porous media coefficients without further requirement of experimental studies. The results are considered to be equivalent to those obtained from the detailed woven wire matrix for the pressure drop and heat transfer. Once the equivalence between the models is verified, this approach is extended to model oscillating regeneration cycles through a full size regenerator porous media for two different woven wire matrix configurations of stacked and wound types. The results suggest that the numerical modelling approach proposed here can be applied with confidence to model the regenerator as a porous media in the multi-dimensional (multi-D) simulations of Stirling engines

  13. Fibre-Matrix Interaction in Soft Tissue

    International Nuclear Information System (INIS)

    Guo, Zaoyang

    2010-01-01

    Although the mechanical behaviour of soft tissue has been extensively studied, the interaction between the collagen fibres and the ground matrix has not been well understood and is therefore ignored by most constitutive models of soft tissue. In this paper, the human annulus fibrosus is used as an example and the potential fibre-matrix interaction is identified by careful investigation of the experimental results of biaxial and uniaxial testing of the human annulus fibrosus. First, the uniaxial testing result of the HAF along the axial direction is analysed and it is shown that the mechanical behaviour of the ground matrix can be well simulated by the incompressible neo-Hookean model when the collagen fibres are all under contraction. If the collagen fibres are stretched, the response of the ground matrix can still be described by the incompressible neo-Hookean model, but the effective stiffness of the matrix depends on the fibre stretch ratio. This stiffness can be more than 10 times larger than the one obtained with collagen fibres under contraction. This phenomenon can only be explained by the fibre-matrix interaction. Furthermore, we find that the physical interpretation of this interaction includes the inhomogeneity of the soft tissue and the fibre orientation dispersion. The dependence of the tangent stiffness of the matrix on the first invariant of the deformation tensor can also be explained by the fibre orientation dispersion. The significant effect of the fibre-matrix interaction strain energy on mechanical behaviour of the soft tissue is also illustrated by comparing some simulation results.

  14. Data-Driven Learning of Q-Matrix

    Science.gov (United States)

    Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang

    2012-01-01

    The recent surge of interests in cognitive assessment has led to developments of novel statistical models for diagnostic classification. Central to many such models is the well-known "Q"-matrix, which specifies the item-attribute relationships. This article proposes a data-driven approach to identification of the "Q"-matrix and estimation of…

  15. Aligning Animal Models of Clinical Germinal Matrix Hemorrhage, From Basic Correlation to Therapeutic Approach.

    Science.gov (United States)

    Lekic, Tim; Klebe, Damon; Pichon, Pilar; Brankov, Katarina; Sultan, Sally; McBride, Devin; Casel, Darlene; Al-Bayati, Alhamza; Ding, Yan; Tang, Jiping; Zhang, John H

    2017-01-01

    Germinal matrix hemorrhage is a leading cause of mortality and morbidity from prematurity. This brain region is vulnerable to bleeding and re-bleeding within the first 72 hours of preterm life. Cerebroventricular expansion of blood products contributes to the mechanisms of brain injury. Consequences include lifelong hydrocephalus, cerebral palsy, and intellectual disability. Unfortunately little is known about the therapeutic needs of this patient population. This review discusses the mechanisms of germinal matrix hemorrhage, the animal models utilized, and the potential therapeutic targets. Potential therapeutic approaches identified in pre-clinical investigations include corticosteroid therapy, iron chelator administration, and transforming growth factor-β pathway modulation, which all warrant further investigation. Thus, effective preclinical modeling is essential for elucidating and evaluating novel therapeutic approaches, ahead of clinical consideration. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Transfer matrix representation for periodic planar media

    Science.gov (United States)

    Parrinello, A.; Ghiringhelli, G. L.

    2016-06-01

    Sound transmission through infinite planar media characterized by in-plane periodicity is faced by exploiting the free wave propagation on the related unit cells. An appropriate through-thickness transfer matrix, relating a proper set of variables describing the acoustic field at the two external surfaces of the medium, is derived by manipulating the dynamic stiffness matrix related to a finite element model of the unit cell. The adoption of finite element models avoids analytical modeling or the simplification on geometry or materials. The obtained matrix is then used in a transfer matrix method context, making it possible to combine the periodic medium with layers of different nature and to treat both hard-wall and semi-infinite fluid termination conditions. A finite sequence of identical sub-layers through the thickness of the medium can be handled within the transfer matrix method, significantly decreasing the computational burden. Transfer matrices obtained by means of the proposed method are compared with analytical or equivalent models, in terms of sound transmission through barriers of different nature.

  17. Head midline position for preventing the occurrence or extension of germinal matrix-intraventricular hemorrhage in preterm infants.

    Science.gov (United States)

    Romantsik, Olga; Calevo, Maria Grazia; Bruschettini, Matteo

    2017-07-20

    Preterm birth is known to constitute the major risk factor for development of germinal matrix-intraventricular hemorrhage (GM-IVH). Head position may affect cerebral hemodynamics and thus may be involved indirectly in development of GM-IVH. Turning the head toward one side may functionally occlude jugular venous drainage on the ipsilateral side while increasing intracranial pressure and cerebral blood volume. Thus, it has been suggested that cerebral venous pressure is reduced and hydrostatic brain drainage improved if the patient is in supine midline position with the bed tilted 30°. The midline position might be achieved in the supine position and, with the use of physical aids, in the lateral position as well. Midline position should be kept, at least when the incidence of GM-IVH is greatest, that is, during the first two to three days of life. Primary objective To assess whether head midline position is more effective than any other head position for preventing or extending germinal matrix-intraventricular hemorrhage in infants born at ≤ 32 weeks' gestational age. Secondary objectives To perform subgroup analyses regarding gestational age, birth weight, intubated versus not intubated, and with or without GM-IVH at trial entry. We used the standard search strategy of the Cochrane Neonatal Review Group to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 8), MEDLINE via PubMed (1966 to September 19, 2016), Embase (1980 to September 19,.2016), and the Cumulative Index to Nursing and Allied Health Literature (CINAHL; 1982 to September 19, 2016). We searched clinical trials databases, conference proceedings, and reference lists of retrieved articles for randomized controlled trials and quasi-randomized trials. Randomized clinical controlled trials, quasi-randomized trials, and cluster-randomized controlled trials comparing placing very preterm infants in a head midline position versus placing them in a prone or lateral decubitus

  18. Some remarks on estimating a covariance structure model from a sample correlation matrix

    OpenAIRE

    Maydeu Olivares, Alberto; Hernández Estrada, Adolfo

    2000-01-01

    A popular model in structural equation modeling involves a multivariate normal density with a structured covariance matrix that has been categorized according to a set of thresholds. In this setup one may estimate the covariance structure parameters from the sample tetrachoricl polychoric correlations but only if the covariance structure is scale invariant. Doing so when the covariance structure is not scale invariant results in estimating a more restricted covariance structure than the one i...

  19. Source apportionment and location by selective wind sampling and Positive Matrix Factorization.

    Science.gov (United States)

    Venturini, Elisa; Vassura, Ivano; Raffo, Simona; Ferroni, Laura; Bernardi, Elena; Passarini, Fabrizio

    2014-10-01

    In order to determine the pollution sources in a suburban area and identify the main direction of their origin, PM2.5 was collected with samplers coupled with a wind select sensor and then subjected to Positive Matrix Factorization (PMF) analysis. In each sample, soluble ions, organic carbon, elemental carbon, levoglucosan, metals, and Polycyclic Aromatic Hydrocarbons (PAHs) were determined. PMF results identified six main sources affecting the area: natural gas home appliances, motor vehicles, regional transport, biomass combustion, manufacturing activities, and secondary aerosol. The connection of factor temporal trends with other parameters (i.e., temperature, PM2.5 concentration, and photochemical processes) confirms factor attributions. PMF analysis indicated that the main source of PM2.5 in the area is secondary aerosol. This should be mainly due to regional contributions, owing to both the secondary nature of the source itself and the higher concentration registered in inland air masses. The motor vehicle emission source contribution is also important. This source likely has a prevalent local origin. The most toxic determined components, i.e., PAHs, Cd, Pb, and Ni, are mainly due to vehicular traffic. Even if this is not the main source in the study area, it is the one of greatest concern. The application of PMF analysis to PM2.5 collected with this new sampling technique made it possible to obtain more detailed results on the sources affecting the area compared to a classical PMF analysis.

  20. The impact of initialization procedures on unsupervised unmixing of hyperspectral imagery using the constrained positive matrix factorization

    Science.gov (United States)

    Masalmah, Yahya M.; Vélez-Reyes, Miguel

    2007-04-01

    The authors proposed in previous papers the use of the constrained Positive Matrix Factorization (cPMF) to perform unsupervised unmixing of hyperspectral imagery. Two iterative algorithms were proposed to compute the cPMF based on the Gauss-Seidel and penalty approaches to solve optimization problems. Results presented in previous papers have shown the potential of the proposed method to perform unsupervised unmixing in HYPERION and AVIRIS imagery. The performance of iterative methods is highly dependent on the initialization scheme. Good initialization schemes can improve convergence speed, whether or not a global minimum is found, and whether or not spectra with physical relevance are retrieved as endmembers. In this paper, different initializations using random selection, longest norm pixels, and standard endmembers selection routines are studied and compared using simulated and real data.

  1. Salient Object Detection via Structured Matrix Decomposition.

    Science.gov (United States)

    Peng, Houwen; Li, Bing; Ling, Haibin; Hu, Weiming; Xiong, Weihua; Maybank, Stephen J

    2016-05-04

    Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the spatial and pattern relations of image regions. Second, when the low-rank and sparse matrices are relatively coherent, e.g., when there are similarities between the salient objects and background or when the background is complicated, it is difficult for previous models to disentangle them. To address these problems, we propose a novel structured matrix decomposition model with two structural regularizations: (1) a tree-structured sparsity-inducing regularization that captures the image structure and enforces patches from the same object to have similar saliency values, and (2) a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space. Furthermore, high-level priors are integrated to guide the matrix decomposition and boost the detection. We evaluate our model for salient object detection on five challenging datasets including single object, multiple objects and complex scene images, and show competitive results as compared with 24 state-of-the-art methods in terms of seven performance metrics.

  2. The Einstein action for algebras of matrix valued functions - Toy models

    Energy Technology Data Exchange (ETDEWEB)

    Hajac, P M

    1995-10-01

    Two toy models are considered within the framework of noncommutative differential geometry. In the first one, the Einstein action of the Levi-Civita connection is computed for the algebra of matrix valued functions on a torus. It is shown that, assuming some constraints on the metric, this action splits into a classical-like, a quantum-like and a mixed term. In the second model, an analogue of the Palatini method of variation is applied to obtain critical points of the Einstein action functional for M{sub 4}(R). It is pointed out that a solution to the Palatini variational problem is not necessarily a Levi-Civita connection. In this model, no additional assumptions regarding metrics are made. (author). 14 refs.

  3. A supersymmetric matrix model: II. Exploring higher-fermion-number sectors

    CERN Document Server

    Veneziano, Gabriele

    2006-01-01

    Continuing our previous analysis of a supersymmetric quantum-mechanical matrix model, we study in detail the properties of its sectors with fermion number F=2 and 3. We confirm all previous expectations, modulo the appearance, at strong coupling, of {\\it two} new bosonic ground states causing a further jump in Witten's index across a previously identified critical 't Hooft coupling $\\lambda_c$. We are able to elucidate the origin of these new SUSY vacua by considering the $\\lambda \\to \\infty$ limit and a strong coupling expansion around it.

  4. Random matrix model of adiabatic quantum computing

    International Nuclear Information System (INIS)

    Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.

    2005-01-01

    We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size

  5. Positioning graphical objects on computer screens: a three-phase model.

    Science.gov (United States)

    Pastel, Robert

    2011-02-01

    This experiment identifies and models phases during the positioning of graphical objects (called cursors in this article) on computer displays. The human computer-interaction community has traditionally used Fitts' law to model selection in graphical user interfaces, whereas human factors experiments have found the single-component Fitts' law inadequate to model positioning of real objects. Participants (N=145) repeatedly positioned variably sized square cursors within variably sized rectangular targets using computer mice. The times for the cursor to just touch the target, for the cursor to enter the target, and for participants to indicate positioning completion were observed. The positioning tolerances were varied from very precise and difficult to imprecise and easy. The time for the cursor to touch the target was proportional to the initial cursor-target distance. The time for the cursor to completely enter the target after touching was proportional to the logarithms of cursor size divided by target tolerances. The time for participants to indicate positioning after entering was inversely proportional to the tolerance. A three-phase model defined by regions--distant, proximate, and inside the target--was proposed and could model the positioning tasks. The three-phase model provides a framework for ergonomists to evaluate new positioning techniques and can explain their deficiencies. The model provides a means to analyze tasks and enhance interaction during positioning.

  6. The Effectiveness of Matrix Model in Relapse Prevention and Coping Skills Enhancement in Participants with Substance Dependency

    Directory of Open Access Journals (Sweden)

    Ali Farnam

    2013-05-01

    Full Text Available Aim: The aim of this study was to determine the effectiveness of Matrix model in relapse prevention and enhancement of coping skills in participants with opiate substance dependency. Method: In a semi-experimental study, 23 participants with diagnosis of opiate dependency who successfully detoxified, selected by cluster random sampling and they were divided into two experimental and control groups. The experimental group received 32 sessions of Matrix model training and the control group did not receive any treatment. All subjects were assessed by alcohol abuse coping response inventory (AACRI and Morphine test before treatment, randomly during treatment, after treatment, and after 3-months follow up stage. Results: The results showed that experimental and control groups had a significant differed in relapse rates. In addition, Analysis of Covariance (ANCOVA showed a significant difference between two groups in coping skills enhancement at periods of post test and follow up. Conclusion: With consideration of the results of the present study indicated that matrix model is effective in relapse prevention and coping skills enhancement in people with opiate substance dependency.

  7. Fourier-positivity constraints on QCD dipole models

    Directory of Open Access Journals (Sweden)

    Bertrand G. Giraud

    2016-09-01

    Full Text Available Fourier-positivity (F-positivity, i.e. the mathematical property that a function has a positive Fourier transform, can be used as a constraint on the parametrization of QCD dipole-target cross-sections or Wilson line correlators in transverse position space r. They are Bessel transforms of positive transverse momentum dependent gluon distributions. Using mathematical F-positivity constraints on the limit r→0 behavior of the dipole amplitudes, we identify the common origin of the violation of F-positivity for various, however phenomenologically convenient, dipole models. It is due to the behavior r2+ϵ, ϵ>0 softer, even slightly, than color transparency. F-positivity seems thus to conflict with the present dipole formalism when it includes a QCD running coupling constant α(r.

  8. A Note on Inclusion Intervals of Matrix Singular Values

    Directory of Open Access Journals (Sweden)

    Shu-Yu Cui

    2012-01-01

    Full Text Available We establish an inclusion relation between two known inclusion intervals of matrix singular values in some special case. In addition, based on the use of positive scale vectors, a known inclusion interval of matrix singular values is also improved.

  9. Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform

    NARCIS (Netherlands)

    Xu, S.; Xue, W.; Lin, H.X.

    2011-01-01

    In this article, we discuss the performance modeling and optimization of Sparse Matrix-Vector Multiplication (SpMV) on NVIDIA GPUs using CUDA. SpMV has a very low computation-data ratio and its performance is mainly bound by the memory bandwidth. We propose optimization of SpMV based on ELLPACK from

  10. Connecting Majorana phases to the geometric parameters of the Majorana unitarity triangle in a neutrino mass matrix model

    Science.gov (United States)

    Verma, Surender; Bhardwaj, Shankita

    2018-05-01

    We have investigated a possible connection between the Majorana phases and geometric parameters of Majorana unitarity triangle (MT) in two-texture zero neutrino mass matrix. Such analytical relations can, also, be obtained for other theoretical models viz. hybrid textures, neutrino mass matrix with vanishing minors and have profound implications for geometric description of C P violation. As an example, we have considered the two-texture zero neutrino mass model to obtain a relation between Majorana phases and MT parameters that may be probed in various lepton number violating processes. In particular, we find that Majorana phases depend on only one of the three interior angles of the MT in each class of two-texture zero neutrino mass matrix. We have also constructed the MT for class A , B , and C neutrino mass matrices. Nonvanishing areas and nontrivial orientations of these Majorana unitarity triangles indicate nonzero C P violation as a generic feature of this class of mass models.

  11. Positive-definite matrix processes of finite variation

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Stelzer, Robert

    2007-01-01

    Processes of finite variation, which take values in the positive semidefinite matrices and are representable as the sum of an integral with respect to time and one with respect to an extended Poisson random measure, are considered. For such processes we derive conditions for the square root (and ...

  12. Positive-Definite Matrix Processes of Finite Variation

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Stelzer, Robert

    Processes of finite variation, which take values in the positive semidefinite matrices and are representable as the sum of an integral with respect to time and one with respect to an extended Poisson random measure, are considered. For such processes we derive conditions for the square root (and ...

  13. EXPERIMENTAL DESIGN AND RESPONSE SURFACE MODELING OF PI/PES-ZEOLITE 4A MIXED MATRIX MEMBRANE FOR CO2 SEPARATION

    Directory of Open Access Journals (Sweden)

    T. D. KUSWORO

    2015-09-01

    Full Text Available This paper investigates the effect of preparation of polyimide/polyethersulfone (PI/PES blending-zeolite mixed matrix membrane through the manipulation of membrane production variables such as polymer concentration, blending composition and zeolite loading. Combination of central composite design and response surface methodology were applied to determine the main effect and interaction effects of these variables on membrane separation performance. The quadratic models between each response and the independent parameters were developed and the response surface models were tested with analysis of variance (ANOVA. In this study, PI/ (PES–zeolite 4A mixed matrix membranes were casted using dry/wet phase inversion technique. The separation performance of mixed matrix membrane had been tested using pure gases such as CO2 and CH4. The results showed that zeolite loading was the most significant variable that influenced the CO2/CH4 selectivity among three variables and the experimental results were in good agreement with those predicted by the proposed regression models. The gas separation performance of the membrane was relatively higher as compare to polymeric membrane. Therefore, combination of central composite design and response surface methodology can be used to prepare optimal condition for mixed matrix membrane fabrication. The incorporation of 20 wt% zeolite 4A into 25 wt% of PI/PES matrix had resulted in a high separation performance of membrane material.

  14. The solution space of the unitary matrix model string equation and the Sato Grassmannian

    International Nuclear Information System (INIS)

    Anagnostopoulos, K.N.; Bowick, M.J.; Schwarz, A.

    1992-01-01

    The space of all solutions to the string equation of the symmetric unitary one-matrix model is determined. It is shown that the string equations is equivalent to simple conditions on points V 1 and V 2 in the big cell Gr (0) of the Sato Grassmannian Gr. This is a consequence of a well-defined continuum limit in which the string equation has the simple form [P, 2 - ]=1, with P and 2 - 2x2 matrices of differential operators. These conditions on V 1 and V 2 yield a simple system of first order differential equations whose analysis determines the space of all solutions to the string equation. This geometric formulation leads directly to the Virasoro constraints L n (n≥0), where L n annihilate the two modified-KdV τ-functions whose product gives the partition function of the Unitary Matrix Model. (orig.)

  15. Periodic matrix models for seasonal dynamics of structured populations with application to a seabird population.

    Science.gov (United States)

    Cushing, J M; Henson, Shandelle M

    2018-02-03

    For structured populations with an annual breeding season, life-stage interactions and behavioral tactics may occur on a faster time scale than that of population dynamics. Motivated by recent field studies of the effect of rising sea surface temperature (SST) on within-breeding-season behaviors in colonial seabirds, we formulate and analyze a general class of discrete-time matrix models designed to account for changes in behavioral tactics within the breeding season and their dynamic consequences at the population level across breeding seasons. As a specific example, we focus on egg cannibalism and the daily reproductive synchrony observed in seabirds. Using the model, we investigate circumstances under which these life history tactics can be beneficial or non-beneficial at the population level in light of the expected continued rise in SST. Using bifurcation theoretic techniques, we study the nature of non-extinction, seasonal cycles as a function of environmental resource availability as they are created upon destabilization of the extinction state. Of particular interest are backward bifurcations in that they typically create strong Allee effects in population models which, in turn, lead to the benefit of possible (initial condition dependent) survival in adverse environments. We find that positive density effects (component Allee effects) due to increased adult survival from cannibalism and the propensity of females to synchronize daily egg laying can produce a strong Allee effect due to a backward bifurcation.

  16. A Matrix Transition Model for an Uneven-Aged, Oak-Hickory Forest in the Missouri Ozark Highlands

    Science.gov (United States)

    James R. Lootens; David R. Larsen; Edward F. Loewenstein

    1999-01-01

    We present a matrix growth model for an uneven-aged, oak-hickory forest in the Ozark Highlands of Missouri. The model was developed to predict ingrowth, growth of surviving trees, and mortality by diameter class for a five-year period. Tree removal from management activities is accounted for in the model. We evaluated a progression of models from a static, fixed-...

  17. Local effect of zoledronic acid on new bone formation in posterolateral spinal fusion with demineralized bone matrix in a murine model.

    Science.gov (United States)

    Zwolak, Pawel; Farei-Campagna, Jan; Jentzsch, Thorsten; von Rechenberg, Brigitte; Werner, Clément M

    2018-01-01

    Posterolateral spinal fusion is a common orthopaedic surgery performed to treat degenerative and traumatic deformities of the spinal column. In posteriolateral spinal fusion, different osteoinductive demineralized bone matrix products have been previously investigated. We evaluated the effect of locally applied zoledronic acid in combination with commercially available demineralized bone matrix putty on new bone formation in posterolateral spinal fusion in a murine in vivo model. A posterolateral sacral spine fusion in murine model was used to evaluate the new bone formation. We used the sacral spine fusion model to model the clinical situation in which a bone graft or demineralized bone matrix is applied after dorsal instrumentation of the spine. In our study, group 1 received decortications only (n = 10), group 2 received decortication, and absorbable collagen sponge carrier, group 3 received decortication and absorbable collagen sponge carrier with zoledronic acid in dose 10 µg, group 4 received demineralized bone matrix putty (DBM putty) plus decortication (n = 10), and group 5 received DBM putty, decortication and locally applied zoledronic acid in dose 10 µg. Imaging was performed using MicroCT for new bone formation assessment. Also, murine spines were harvested for histopathological analysis 10 weeks after surgery. The surgery performed through midline posterior approach was reproducible. In group with decortication alone there was no new bone formation. Application of demineralized bone matrix putty alone produced new bone formation which bridged the S1-S4 laminae. Local application of zoledronic acid to demineralized bone matrix putty resulted in significant increase of new bone formation as compared to demineralized bone matrix putty group alone. A single local application of zoledronic acid with DBM putty during posterolateral fusion in sacral murine spine model increased significantly new bone formation in situ in our model. Therefore, our

  18. Accelerator modeling at SPEAR

    International Nuclear Information System (INIS)

    LeBlanc, G.; Corbett, W.J.

    1997-01-01

    The response matrix, consisting of the closed orbit change at each beam position monitor (BPM) due to corrector magnet excitations, was measured and analyzed in order to calibrate a linear optics model of SPEAR. The model calibration was accomplished by varying model parameters to minimize the chi-square difference between the measured and the model response matrices. The singular value decomposition (SVD) matrix inversion method was used to solve the simultaneous equations. The calibrated model was then used to calculate corrections to the operational lattice. The results of the calibration and correction procedures are presented

  19. Phenomenology of the CKM matrix

    International Nuclear Information System (INIS)

    Nir, Y.

    1989-01-01

    The way in which an exact determination of the CKM matrix elements tests the standard Model is demonstrated by a two-generation example. The determination of matrix elements from meson semileptonic decays is explained, with an emphasis on the respective reliability of quark level and meson level calculations. The assumptions involved in the use of loop processes are described. Finally, the state of the art of the knowledge of the CKM matrix is presented. 19 refs., 2 figs

  20. Highly accelerated cardiac cine parallel MRI using low-rank matrix completion and partial separability model

    Science.gov (United States)

    Lyu, Jingyuan; Nakarmi, Ukash; Zhang, Chaoyi; Ying, Leslie

    2016-05-01

    This paper presents a new approach to highly accelerated dynamic parallel MRI using low rank matrix completion, partial separability (PS) model. In data acquisition, k-space data is moderately randomly undersampled at the center kspace navigator locations, but highly undersampled at the outer k-space for each temporal frame. In reconstruction, the navigator data is reconstructed from undersampled data using structured low-rank matrix completion. After all the unacquired navigator data is estimated, the partial separable model is used to obtain partial k-t data. Then the parallel imaging method is used to acquire the entire dynamic image series from highly undersampled data. The proposed method has shown to achieve high quality reconstructions with reduction factors up to 31, and temporal resolution of 29ms, when the conventional PS method fails.

  1. Random Correlation Matrix and De-Noising

    OpenAIRE

    Ken-ichi Mitsui; Yoshio Tabata

    2006-01-01

    In Finance, the modeling of a correlation matrix is one of the important problems. In particular, the correlation matrix obtained from market data has the noise. Here we apply the de-noising processing based on the wavelet analysis to the noisy correlation matrix, which is generated by a parametric function with random parameters. First of all, we show that two properties, i.e. symmetry and ones of all diagonal elements, of the correlation matrix preserve via the de-noising processing and the...

  2. Convergent j-matrix calculation of electron-helium resonances

    International Nuclear Information System (INIS)

    Konovalov, D.A.; McCarthy, I.E.

    1994-12-01

    Resonance structures in n=2 and n=3 electron-helium excitation cross sections are calculated using the J-matrix method. The number of close-coupled helium bound and continuum states is taken to convergence, e.g. about 100 channels are coupled for each total spin and angular momentum. It is found that the present J-matrix results are in good shape agreement with recent 29-state R-matrix calculations. However the J-matrix absolute cross sections are slightly lower due to the influence of continuum channels included in the present method. Experiment and theory agree on the positions of n=2 and n=3 resonances. 22 refs., 1 tab.; 3 figs

  3. Emergent gravity and noncommutative branes from Yang-Mills matrix models

    International Nuclear Information System (INIS)

    Steinacker, Harold

    2009-01-01

    The framework of emergent gravity arising from Yang-Mills matrix models is developed further, for general noncommutative branes embedded in R D . The effective metric on the brane turns out to have a universal form reminiscent of the open string metric, depending on the dynamical Poisson structure and the embedding metric in R D . A covariant form of the tree-level equations of motion is derived, and the Newtonian limit is discussed. This points to the necessity of branes in higher dimensions. The quantization is discussed qualitatively, which singles out the IKKT model as a prime candidate for a quantum theory of gravity coupled to matter. The Planck scale is then identified with the scale of N=4 SUSY breaking. A mechanism for avoiding the cosmological constant problem is exhibited

  4. Parametric level correlations in random-matrix models

    International Nuclear Information System (INIS)

    Weidenmueller, Hans A

    2005-01-01

    We show that parametric level correlations in random-matrix theories are closely related to a breaking of the symmetry between the advanced and the retarded Green functions. The form of the parametric level correlation function is the same as for the disordered case considered earlier by Simons and Altshuler and is given by the graded trace of the commutator of the saddle-point solution with the particular matrix that describes the symmetry breaking in the actual case of interest. The strength factor differs from the case of disorder. It is determined solely by the Goldstone mode. It is essentially given by the number of levels that are strongly mixed as the external parameter changes. The factor can easily be estimated in applications

  5. Matrix-assisted relaxation in Fe(phen)2(NCS)2 spin-crossover microparticles, experimental and theoretical investigations

    International Nuclear Information System (INIS)

    Enachescu, Cristian; Stancu, Alexandru; Tanasa, Radu; Tissot, Antoine; Laisney, Jérôme; Boillot, Marie-Laure

    2016-01-01

    In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen) 2 (NCS) 2 (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.

  6. Direct bacterial identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry: A systematic review and meta-analysis.

    Science.gov (United States)

    Ruiz-Aragón, Jesús; Ballestero-Téllez, Mónica; Gutiérrez-Gutiérrez, Belén; de Cueto, Marina; Rodríguez-Baño, Jesús; Pascual, Álvaro

    2017-10-27

    The rapid identification of bacteraemia-causing pathogens could assist clinicians in the timely prescription of targeted therapy, thereby reducing the morbidity and mortality of this infection. In recent years, numerous techniques that rapidly and directly identify positive blood cultures have been marketed, with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) being one of the most commonly used. The aim of this systematic review and meta-analysis was to evaluate the accuracy of MALDI-TOF (Bruker ® ) for the direct identification of positive blood culture bottles. A meta-analysis was performed to summarize the results of the 32 studies evaluated. The overall quality of the studies was moderate. For Gram-positive bacteria, overall rates of correct identification of the species ranged from 0.17 to 0.98, with a cumulative rate (random-effects model) of 0.72 (95% CI: 0.64-0.80). For Gram-negative bacteria, correct identification rates ranged from 0.66 to 1.00, with a cumulative effect of 0.92 (95% CI: 0.88-0.95). For Enterobacteriaceae, the rate was 0.96 (95% CI: 0.94-0.97). MALDI-TOF mass spectrometry shows high accuracy for the correct identification of Gram-negative bacteria, particularly Enterobacteriaceae, directly from positive blood culture bottles, and moderate accuracy for the identification of Gram-positive bacteria (low for some species). Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  7. Effect of Fiber Poisson Contraction on Matrix Multicracking Evolution of Fiber-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Longbiao, Li

    2015-12-01

    An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.

  8. Separation of variables in anisotropic models and non-skew-symmetric elliptic r-matrix

    Science.gov (United States)

    Skrypnyk, Taras

    2017-05-01

    We solve a problem of separation of variables for the classical integrable hamiltonian systems possessing Lax matrices satisfying linear Poisson brackets with the non-skew-symmetric, non-dynamical elliptic so(3)⊗ so(3)-valued classical r-matrix. Using the corresponding Lax matrices, we present a general form of the "separating functions" B( u) and A( u) that generate the coordinates and the momenta of separation for the associated models. We consider several examples and perform the separation of variables for the classical anisotropic Euler's top, Steklov-Lyapunov model of the motion of anisotropic rigid body in the liquid, two-spin generalized Gaudin model and "spin" generalization of Steklov-Lyapunov model.

  9. Modelling the diffusion-available pore space of an unaltered granitic rock matrix using a micro-DFN approach

    Science.gov (United States)

    Svensson, Urban; Löfgren, Martin; Trinchero, Paolo; Selroos, Jan-Olof

    2018-04-01

    In sparsely fractured rock, the ubiquitous heterogeneity of the matrix, which has been observed in different laboratory and in situ experiments, has been shown to have a significant influence on retardation mechanisms that are of importance for the safety of deep geological repositories for nuclear waste. Here, we propose a conceptualisation of a typical heterogeneous granitic rock matrix based on micro-Discrete Fracture Networks (micro-DFN). Different sets of fractures are used to represent grain-boundary pores as well as micro fractures that transect different mineral grains. The micro-DFN model offers a great flexibility in the way inter- and intra-granular space is represented as the different parameters that characterise each fracture set can be fine tuned to represent samples of different characteristics. Here, the parameters of the model have been calibrated against experimental observations from granitic rock samples taken at Forsmark (Sweden) and different variant cases have been used to illustrate how the model can be tied to rock samples with different attributes. Numerical through-diffusion simulations have been carried out to infer the bulk properties of the model as well as to compare the computed mass flux with the experimental data from an analogous laboratory experiment. The general good agreement between the model results and the experimental observations shows that the model presented here is a reliable tool for the understanding of retardation mechanisms occurring at the mm-scale in the matrix.

  10. A new Expert Finding model based on Term Correlation Matrix

    Directory of Open Access Journals (Sweden)

    Ehsan Pornour

    2015-09-01

    Full Text Available Due to the enormous volume of unstructured information available on the Web and inside organization, finding an answer to the knowledge need in a short time is difficult. For this reason, beside Search Engines which don’t consider users individual characteristics, Recommender systems were created which use user’s previous activities and other individual characteristics to help users find needed knowledge. Recommender systems usage is increasing every day. Expert finder systems also by introducing expert people instead of recommending information to users have provided this facility for users to ask their questions form experts. Having relation with experts not only causes information transition, but also with transferring experiences and inception causes knowledge transition. In this paper we used university professors academic resume as expert people profile and then proposed a new expert finding model that recommends experts to users query. We used Term Correlation Matrix, Vector Space Model and PageRank algorithm and proposed a new hybrid model which outperforms conventional methods. This model can be used in internet environment, organizations and universities that experts have resume dataset.

  11. Positioning performance of the NTCM model driven by GPS Klobuchar model parameters

    Science.gov (United States)

    Hoque, Mohammed Mainul; Jakowski, Norbert; Berdermann, Jens

    2018-03-01

    Users of the Global Positioning System (GPS) utilize the Ionospheric Correction Algorithm (ICA) also known as Klobuchar model for correcting ionospheric signal delay or range error. Recently, we developed an ionosphere correction algorithm called NTCM-Klobpar model for single frequency GNSS applications. The model is driven by a parameter computed from GPS Klobuchar model and consecutively can be used instead of the GPS Klobuchar model for ionospheric corrections. In the presented work we compare the positioning solutions obtained using NTCM-Klobpar with those using the Klobuchar model. Our investigation using worldwide ground GPS data from a quiet and a perturbed ionospheric and geomagnetic activity period of 17 days each shows that the 24-hour prediction performance of the NTCM-Klobpar is better than the GPS Klobuchar model in global average. The root mean squared deviation of the 3D position errors are found to be about 0.24 and 0.45 m less for the NTCM-Klobpar compared to the GPS Klobuchar model during quiet and perturbed condition, respectively. The presented algorithm has the potential to continuously improve the accuracy of GPS single frequency mass market devices with only little software modification.

  12. A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation.

    Science.gov (United States)

    Edgar, Lowell T; Sibole, Scott C; Underwood, Clayton J; Guilkey, James E; Weiss, Jeffrey A

    2013-01-01

    Recent interest in the process of vascularisation within the biomedical community has motivated numerous new research efforts focusing on the process of angiogenesis. Although the role of chemical factors during angiogenesis has been well documented, the role of mechanical factors, such as the interaction between angiogenic vessels and the extracellular matrix, remains poorly understood. In vitro methods for studying angiogenesis exist; however, measurements available using such techniques often suffer from limited spatial and temporal resolutions. For this reason, computational models have been extensively employed to investigate various aspects of angiogenesis. This paper outlines the formulation and validation of a simple and robust computational model developed to accurately simulate angiogenesis based on length, branching and orientation morphometrics collected from vascularised tissue constructs. Microvessels were represented as a series of connected line segments. The morphology of the vessels was determined by a linear combination of the collagen fibre orientation, the vessel density gradient and a random walk component. Excellent agreement was observed between computational and experimental morphometric data over time. Computational predictions of microvessel orientation within an anisotropic matrix correlated well with experimental data. The accuracy of this modelling approach makes it a valuable platform for investigating the role of mechanical interactions during angiogenesis.

  13. Matrix model approximations of fuzzy scalar field theories and their phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Tekel, Juraj [Department of Theoretical Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina, Bratislava, 842 48 (Slovakia)

    2015-12-29

    We present an analysis of two different approximations to the scalar field theory on the fuzzy sphere, a nonperturbative and a perturbative one, which are both multitrace matrix models. We show that the former reproduces a phase diagram with correct features in a qualitative agreement with the previous numerical studies and that the latter gives a phase diagram with features not expected in the phase diagram of the field theory.

  14. Continuous Modeling Technique of Fiber Pullout from a Cement Matrix with Different Interface Mechanical Properties Using Finite Element Program

    Directory of Open Access Journals (Sweden)

    Leandro Ferreira Friedrich

    Full Text Available Abstract Fiber-matrix interface performance has a great influence on the mechanical properties of fiber reinforced composite. This influence is mainly presented during fiber pullout from the matrix. As fiber pullout process consists of fiber debonding stage and pullout stage which involve complex contact problem, numerical modeling is a best way to investigate the interface influence. Although many numerical research works have been conducted, practical and effective technique suitable for continuous modeling of fiber pullout process is still scarce. The reason is in that numerical divergence frequently happens, leading to the modeling interruption. By interacting the popular finite element program ANSYS with the MATLAB, we proposed continuous modeling technique and realized modeling of fiber pullout from cement matrix with desired interface mechanical performance. For debonding process, we used interface elements with cohesive surface traction and exponential failure behavior. For pullout process, we switched interface elements to spring elements with variable stiffness, which is related to the interface shear stress as a function of the interface slip displacement. For both processes, the results obtained are very good in comparison with other numerical or analytical models and experimental tests. We suggest using the present technique to model toughening achieved by randomly distributed fibers.

  15. Lectures on matrix field theory

    CERN Document Server

    Ydri, Badis

    2017-01-01

    These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.

  16. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state: an aerosol microphysical module for global atmospheric models

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2008-10-01

    Full Text Available A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS climate model (ModelE are described. This module, which is based on the quadrature method of moments (QMOM, represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations.

    A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment

  17. Modeling the Effects of Interfacial Characteristics on Gas Permeation Behavior of Nanotube-Mixed Matrix Membranes.

    Science.gov (United States)

    Chehrazi, Ehsan; Sharif, Alireza; Omidkhah, Mohammadreza; Karimi, Mohammad

    2017-10-25

    Theoretical approaches that accurately predict the gas permeation behavior of nanotube-containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters, "interfacial thickness" (a int ) and "interfacial permeation resistance" (R int ), are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of a int , independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of a int and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without the need to resort to any adjustable parameter. The data includes 10 sets of CO 2 /CH 4 permeation, 12 sets of CO 2 /N 2 permeation, 3 sets of CO 2 /O 2 permeation, and 2 sets of CO 2 /H 2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data presented in the current work would be a simple alternative to complex approaches that are usually utilized to estimate interfacial thickness in polymer composites.

  18. Determination of Hamiltonian matrix for IBM4 and compare it is self value with shells model

    International Nuclear Information System (INIS)

    Slyman, S.; Hadad, S.; Souman, H.

    2004-01-01

    The Hamiltonian is determined using the procedure OAI and the mapping of (IBM4) states into the shell model, which is based on the seniority classification scheme. A boson sub-matrix of the shell model Hamiltonian for the (sd) 4 configuration is constructed, and is proved to produce the same eigenvalues as the shell model Hamiltonian for the corresponding fermion states. (authors)

  19. Blind separation of positive sources by globally convergent gradient search.

    Science.gov (United States)

    Oja, Erkki; Plumbley, Mark

    2004-09-01

    The instantaneous noise-free linear mixing model in independent component analysis is largely a solved problem under the usual assumption of independent nongaussian sources and full column rank mixing matrix. However, with some prior information on the sources, like positivity, new analysis and perhaps simplified solution methods may yet become possible. In this letter, we consider the task of independent component analysis when the independent sources are known to be nonnegative and well grounded, which means that they have a nonzero pdf in the region of zero. It can be shown that in this case, the solution method is basically very simple: an orthogonal rotation of the whitened observation vector into nonnegative outputs will give a positive permutation of the original sources. We propose a cost function whose minimum coincides with nonnegativity and derive the gradient algorithm under the whitening constraint, under which the separating matrix is orthogonal. We further prove that in the Stiefel manifold of orthogonal matrices, the cost function is a Lyapunov function for the matrix gradient flow, implying global convergence. Thus, this algorithm is guaranteed to find the nonnegative well-grounded independent sources. The analysis is complemented by a numerical simulation, which illustrates the algorithm.

  20. Modeling extracellular matrix (ECM) alterations in ovarian cancer by multiphoton excited fabrication of stromal models (Conference Presentation)

    Science.gov (United States)

    Campagnola, Paul J.; Ajeti, Visar; Lara, Jorge; Eliceiri, Kevin W.; Patankar, Mansh

    2016-04-01

    A profound remodeling of the extracellular matrix (ECM) occurs in human ovarian cancer but it unknown how this affects tumor growth, where this understanding could lead to better diagnostics and therapeutic approaches. We investigate the role of these ECM alterations by using multiphoton excited (MPE) polymerization to fabricate biomimetic models to investigate operative cell-matrix interactions in invasion/metastasis. First, we create nano/microstructured gradients mimicking the basal lamina to study adhesion/migration dynamics of ovarian cancer cells of differing metastatic potential. We find a strong haptotactic response that depends on both contact guidance and ECM binding cues. While we found enhanced migration for more invasive cells, the specifics of alignment and directed migration also depend on cell polarity. We further use MPE fabrication to create collagen scaffolds with complex, 3D submicron morphology. The stromal scaffold designs are derived directly from "blueprints" based on SHG images of normal, high risk, and malignant ovarian tissues. The models are seeded with different cancer cell lines and this allows decoupling of the roles of cell characteristics (metastatic potential) and ECM structure and composition (normal vs cancer) on adhesion/migration dynamics. We found the malignant stroma structure promotes enhanced migration and proliferation and also cytoskeletal alignment. Creating synthetic models based on fibers patterns further allows decoupling the topographic roles of the fibers themselves vs their alignment within the tissue. These models cannot be synthesized by other conventional fabrication methods and we suggest the MPE image-based fabrication method will enable a variety of studies in cancer biology.

  1. Positive/negative liquid secondary ion mass spectrometry of Ln-EDTA (1:1) complexes. Formation of molecular ion adducts with neutral species of the matrix or Ln-EDTA

    International Nuclear Information System (INIS)

    Plaziak, A.S.; Lis, S.; Elbanowski, M.

    1992-01-01

    The mass spectra of 1:1 complexes of EDTA with lanthanide cations (Ln=Sm, Eu, Gd, Tb or Dy) upon positive/negative LSIMS are presented. In glycerol used as a matrix, adduct-ions such as [M+H] + , [M+H+nGly] + , [2M+H] + , [2M+H+Gly] + (positive LSIMS) or [M-H] - , [M-H+nGly] - , [2M-H] - , [2M-H+Gly] - (negative LSIMS), where n=1-3, are formed. Reactions leading to the formation of adduct-ions are suggested. (authors)

  2. Improved spring model-based collaborative indoor visible light positioning

    Science.gov (United States)

    Luo, Zhijie; Zhang, WeiNan; Zhou, GuoFu

    2016-06-01

    Gaining accuracy with indoor positioning of individuals is important as many location-based services rely on the user's current position to provide them with useful services. Many researchers have studied indoor positioning techniques based on WiFi and Bluetooth. However, they have disadvantages such as low accuracy or high cost. In this paper, we propose an indoor positioning system in which visible light radiated from light-emitting diodes is used to locate the position of receivers. Compared with existing methods using light-emitting diode light, we present a high-precision and simple implementation collaborative indoor visible light positioning system based on an improved spring model. We first estimate coordinate position information using the visible light positioning system, and then use the spring model to correct positioning errors. The system can be employed easily because it does not require additional sensors and the occlusion problem of visible light would be alleviated. We also describe simulation experiments, which confirm the feasibility of our proposed method.

  3. Modeling the Monotonic and Cyclic Tensile Stress-Strain Behavior of 2D and 2.5D Woven C/SiC Ceramic-Matrix Composites

    Science.gov (United States)

    Li, L. B.

    2018-05-01

    The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.

  4. Parallel R-matrix computation

    International Nuclear Information System (INIS)

    Heggarty, J.W.

    1999-06-01

    For almost thirty years, sequential R-matrix computation has been used by atomic physics research groups, from around the world, to model collision phenomena involving the scattering of electrons or positrons with atomic or molecular targets. As considerable progress has been made in the understanding of fundamental scattering processes, new data, obtained from more complex calculations, is of current interest to experimentalists. Performing such calculations, however, places considerable demands on the computational resources to be provided by the target machine, in terms of both processor speed and memory requirement. Indeed, in some instances the computational requirements are so great that the proposed R-matrix calculations are intractable, even when utilising contemporary classic supercomputers. Historically, increases in the computational requirements of R-matrix computation were accommodated by porting the problem codes to a more powerful classic supercomputer. Although this approach has been successful in the past, it is no longer considered to be a satisfactory solution due to the limitations of current (and future) Von Neumann machines. As a consequence, there has been considerable interest in the high performance multicomputers, that have emerged over the last decade which appear to offer the computational resources required by contemporary R-matrix research. Unfortunately, developing codes for these machines is not as simple a task as it was to develop codes for successive classic supercomputers. The difficulty arises from the considerable differences in the computing models that exist between the two types of machine and results in the programming of multicomputers to be widely acknowledged as a difficult, time consuming and error-prone task. Nevertheless, unless parallel R-matrix computation is realised, important theoretical and experimental atomic physics research will continue to be hindered. This thesis describes work that was undertaken in

  5. Chern-Simons Theory, Matrix Models, and Topological Strings

    International Nuclear Information System (INIS)

    Walcher, J

    2006-01-01

    This book is a find. Marino meets the challenge of filling in less than 200 pages the need for an accessible review of topological gauge/gravity duality. He is one of the pioneers of the subject and a clear expositor. It is no surprise that reading this book is a great pleasure. The existence of dualities between gauge theories and theories of gravity remains one of the most surprising recent discoveries in mathematical physics. While it is probably fair to say that we do not yet understand the full reach of such a relation, the impressive amount of evidence that has accumulated over the past years can be regarded as a substitute for a proof, and will certainly help to delineate the question of what is the most fundamental quantum mechanical theory. Here is a brief summary of the book. The journey begins with matrix models and an introduction to various techniques for the computation of integrals including perturbative expansion, large-N approximation, saddle point analysis, and the method of orthogonal polynomials. The second chapter, on Chern-Simons theory, is the longest and probably the most complete one in the book. Starting from the action we meet Wilson loop observables, the associated perturbative 3-manifold invariants, Witten's exact solution via the canonical duality to WZW models, the framing ambiguity, as well as a collection of results on knot invariants that can be derived from Chern-Simons theory and the combinatorics of U (∞) representation theory. The chapter also contains a careful derivation of the large-N expansion of the Chern-Simons partition function, which forms the cornerstone of its interpretation as a closed string theory. Finally, we learn that Chern-Simons theory can sometimes also be represented as a matrix model. The story then turns to the gravity side, with an introduction to topological sigma models (chapter 3) and topological string theory (chapter 4). While this presentation is necessarily rather condensed (and the beginner may

  6. Using matrix organization to manage health care delivery organizations.

    Science.gov (United States)

    Allcorn, S

    1990-01-01

    Matrix organization can provide health care organization managers enhanced information processing, faster response times, and more flexibility to cope with greater organization complexity and rapidly changing operating environments. A review of the literature informed by work experience reveals that the use of matrix organization creates hard-to-manage ambiguity and balances of power in addition to providing positive benefits for health care organization managers. Solutions to matrix operating problems generally rely on the use of superior information and decision support systems and extensive staff training to develop attitudes and behavior consistent with the more collegial matrix organization culture. Further improvement in understanding the suitability of matrix organization for managing health care delivery organizations will involve appreciating the impact of partial implementation of matrix organization, temporary versus permanent uses of matrix organization, and the impact of the ambiguity created by dual lines of authority upon the exercise of power and authority.

  7. CAPTURING UNCERTAINTY IN UNSATURATED-ZONE FLOW USING DIFFERENT CONCEPTUAL MODELS OF FRACTURE-MATRIX INTERACTION

    International Nuclear Information System (INIS)

    SUSAN J. ALTMAN, MICHAEL L. WILSON, GUMUNDUR S. BODVARSSON

    1998-01-01

    Preliminary calculations show that the two different conceptual models of fracture-matrix interaction presented here yield different results pertinent to the performance of the potential repository at Yucca Mountain. Namely, each model produces different ranges of flow in the fractures, where radionuclide transport is thought to be most important. This method of using different flow models to capture both conceptual model and parameter uncertainty ensures that flow fields used in TSPA calculations will be reasonably calibrated to the available data while still capturing this uncertainty. This method also allows for the use of three-dimensional flow fields for the TSPA-VA calculations

  8. Paths correlation matrix.

    Science.gov (United States)

    Qian, Weixian; Zhou, Xiaojun; Lu, Yingcheng; Xu, Jiang

    2015-09-15

    Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions.

  9. Bulk-boundary correlators in the hermitian matrix model and minimal Liouville gravity

    International Nuclear Information System (INIS)

    Bourgine, Jean-Emile; Ishiki, Goro; Rim, Chaiho

    2012-01-01

    We construct the one matrix model (MM) correlators corresponding to the general bulk-boundary correlation numbers of the minimal Liouville gravity (LG) on the disc. To find agreement between both discrete and continuous approach, we investigate the resonance transformation mixing boundary and bulk couplings. It leads to consider two sectors, depending on whether the matter part of the LG correlator is vanishing due to the fusion rules. In the vanishing case, we determine the explicit transformation of the boundary couplings at the first order in bulk couplings. In the non-vanishing case, no bulk-boundary resonance is involved and only the first order of pure boundary resonances have to be considered. Those are encoded in the matrix polynomials determined in our previous paper. We checked the agreement for the bulk-boundary correlators of MM and LG in several non-trivial cases. In this process, we developed an alternative method to derive the boundary resonance encoding polynomials.

  10. Low-rank matrix approximation with manifold regularization.

    Science.gov (United States)

    Zhang, Zhenyue; Zhao, Keke

    2013-07-01

    This paper proposes a new model of low-rank matrix factorization that incorporates manifold regularization to the matrix factorization. Superior to the graph-regularized nonnegative matrix factorization, this new regularization model has globally optimal and closed-form solutions. A direct algorithm (for data with small number of points) and an alternate iterative algorithm with inexact inner iteration (for large scale data) are proposed to solve the new model. A convergence analysis establishes the global convergence of the iterative algorithm. The efficiency and precision of the algorithm are demonstrated numerically through applications to six real-world datasets on clustering and classification. Performance comparison with existing algorithms shows the effectiveness of the proposed method for low-rank factorization in general.

  11. Floating Node Method and Virtual Crack Closure Technique for Modeling Matrix Cracking-Delamination Migration

    Science.gov (United States)

    DeCarvalho, Nelson V.; Chen, B. Y.; Pinho, Silvestre T.; Baiz, P. M.; Ratcliffe, James G.; Tay, T. E.

    2013-01-01

    A novel approach is proposed for high-fidelity modeling of progressive damage and failure in composite materials that combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. In this study, the approach is applied to the modeling of delamination migration in cross-ply tape laminates. Delamination, matrix cracking, and migration are all modeled using fracture mechanics based failure and migration criteria. The methodology proposed shows very good qualitative and quantitative agreement with experiments.

  12. Matrix models with Penner interaction inspired by interacting ...

    Indian Academy of Sciences (India)

    distribution of structure with temperature calculated from the NL model .... where φi are the random Hermitian matrices of size (N × N) placed at each base position ..... PB thanks UGC for research fellowships and ND thanks CSIR Project No.

  13. Multi-target detection and positioning in crowds using multiple camera surveillance

    Science.gov (United States)

    Huang, Jiahu; Zhu, Qiuyu; Xing, Yufeng

    2018-04-01

    In this study, we propose a pixel correspondence algorithm for positioning in crowds based on constraints on the distance between lines of sight, grayscale differences, and height in a world coordinates system. First, a Gaussian mixture model is used to obtain the background and foreground from multi-camera videos. Second, the hair and skin regions are extracted as regions of interest. Finally, the correspondences between each pixel in the region of interest are found under multiple constraints and the targets are positioned by pixel clustering. The algorithm can provide appropriate redundancy information for each target, which decreases the risk of losing targets due to a large viewing angle and wide baseline. To address the correspondence problem for multiple pixels, we construct a pixel-based correspondence model based on a similar permutation matrix, which converts the correspondence problem into a linear programming problem where a similar permutation matrix is found by minimizing an objective function. The correct pixel correspondences can be obtained by determining the optimal solution of this linear programming problem and the three-dimensional position of the targets can also be obtained by pixel clustering. Finally, we verified the algorithm with multiple cameras in experiments, which showed that the algorithm has high accuracy and robustness.

  14. Phosphodiesterase inhibition mediates matrix metalloproteinase activity and the level of collagen degradation fragments in a liver fibrosis ex vivo rat model

    Directory of Open Access Journals (Sweden)

    Veidal Sanne Skovgård

    2012-12-01

    Full Text Available Abstract Background Accumulation of extracellular matrix (ECM and increased matrix metalloproteinase (MMP activity are hallmarks of liver fibrosis. The aim of the present study was to develop a model of liver fibrosis combining ex vivo tissue culture of livers from CCl4 treated animals with an ELISA detecting a fragment of type III collagen generated in vitro by MMP-9 (C3M, known to be associated with liver fibrosis and to investigate cAMP modulation of MMP activity and liver tissue turnover in this model. Findings In vivo: Rats were treated for 8 weeks with CCl4/Intralipid. Liver slices were cultured for 48 hours. Levels of C3M were determined in the supernatants of slices cultured without treatment, treated with GM6001 (positive control or treated with IBMX (phosphodiesterase inhibitor. Enzymatic activity of MMP-2 and MMP-9 were studied by gelatin zymography. Ex vivo: The levels of serum C3M increased 77% in the CCl4-treated rats at week 8 (p 4-treated animals had highly increased MMP-9, but not MMP-2 activity, compared to slices derived from control animals. Conclusions We have combined an ex vivo model of liver fibrosis with measurement of a biochemical marker of collagen degradation in the condition medium. This technology may be used to evaluate the molecular process leading to structural fibrotic changes, as collagen species are the predominant structural part of fibrosis. These data suggest that modulation of cAMP may play a role in regulation of collagen degradation associated with liver fibrosis.

  15. Combining dendrochronology and matrix modelling in demographic studies: An evaluation for Juniperus procera in Ethiopia

    NARCIS (Netherlands)

    Couralet, C.; Sass, U.G.W.; Sterck, F.J.; Zuidema, P.A.

    2005-01-01

    Tree demography was analysed by applying dendrochronological techniques and matrix modelling on a static data set of Juniperus procera populations of Ethiopian dry highland forests. Six permanent sample plots were established for an inventory of diameters and 11 stem discs were collected for

  16. Interface matrix method in AFEN framework

    Energy Technology Data Exchange (ETDEWEB)

    Pogosbekyan, Leonid; Cho, Jin Young; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    In this study, we extend the application of the interface-matrix(IM) method for reflector modeling to Analytic Flux Expansion Nodal (AFEN) method. This include the modifications of the surface-averaged net current continuity and the net leakage balance conditions for IM method in accordance with AFEN formula. AFEN-interface matrix (AFEN-IM) method has been tested against ZION-1 benchmark problem. The numerical result of AFEN-IM method shows 1.24% of maximum error and 0.42% of root-mean square error in assembly power distribution, and 0.006% {Delta} k of neutron multiplication factor. This result proves that the interface-matrix method for reflector modeling can be useful in AFEN method. 3 refs., 4 figs. (Author)

  17. Interface matrix method in AFEN framework

    Energy Technology Data Exchange (ETDEWEB)

    Pogosbekyan, Leonid; Cho, Jin Young; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    In this study, we extend the application of the interface-matrix(IM) method for reflector modeling to Analytic Flux Expansion Nodal (AFEN) method. This include the modifications of the surface-averaged net current continuity and the net leakage balance conditions for IM method in accordance with AFEN formula. AFEN-interface matrix (AFEN-IM) method has been tested against ZION-1 benchmark problem. The numerical result of AFEN-IM method shows 1.24% of maximum error and 0.42% of root-mean square error in assembly power distribution, and 0.006% {Delta} k of neutron multiplication factor. This result proves that the interface-matrix method for reflector modeling can be useful in AFEN method. 3 refs., 4 figs. (Author)

  18. The mass spectrum of the Schwinger model with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Poznan Univ. (Poland). Faculty of Physics; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Cyprus Univ., Nicosia (Cyprus). Dept. of Physics

    2013-07-15

    We show the feasibility of tensor network solutions for lattice gauge theories in Hamiltonian formulation by applying matrix product states algorithms to the Schwinger model with zero and non-vanishing fermion mass. We introduce new techniques to compute excitations in a system with open boundary conditions, and to identify the states corresponding to low momentum and different quantum numbers in the continuum. For the ground state and both the vector and scalar mass gaps in the massive case, the MPS technique attains precisions comparable to the best results available from other techniques.

  19. Modeling And Position Control Of Scara Type 3D Printer

    Directory of Open Access Journals (Sweden)

    Ahmet Saygamp305n Ogulmuamp351

    2015-08-01

    Full Text Available In this work a scara robot type 3D printer system is dynamically modeled and position control of the system is realized. For this aim computer aided design model of three degrees of freedom robotic system is created using SolidWorks program then obtained model is exported to MATLABSimMechanics software for position control. Also mathematical model of servo motors used in robotic 3D printer system is included in control methodology to design proportional controllers. Uncontrolled and controlled position results are simulated and given in the form of the graphics.

  20. Matrix-based introduction to multivariate data analysis

    CERN Document Server

    Adachi, Kohei

    2016-01-01

    This book enables readers who may not be familiar with matrices to understand a variety of multivariate analysis procedures in matrix forms. Another feature of the book is that it emphasizes what model underlies a procedure and what objective function is optimized for fitting the model to data. The author believes that the matrix-based learning of such models and objective functions is the fastest way to comprehend multivariate data analysis. The text is arranged so that readers can intuitively capture the purposes for which multivariate analysis procedures are utilized: plain explanations of the purposes with numerical examples precede mathematical descriptions in almost every chapter. This volume is appropriate for undergraduate students who already have studied introductory statistics. Graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis will also find the book useful, as it is based on modern matrix formulations with a special emphasis on ...

  1. Logo2PWM: a tool to convert sequence logo to position weight matrix.

    Science.gov (United States)

    Gao, Zhen; Liu, Lu; Ruan, Jianhua

    2017-10-03

    position weight matrix (PWM) and sequence logo are the most widely used representations of transcription factor binding site (TFBS) in biological sequences. Sequence logo - a graphical representation of PWM, has been widely used in scientific publications and reports, due to its easiness of human perception, rich information, and simple format. Different from sequence logo, PWM works great as a precise and compact digitalized form, which can be easily used by a variety of motif analysis software. There are a few available tools to generate sequence logos from PWM; however, no tool does the reverse. Such tool to convert sequence logo back to PWM is needed to scan a TFBS represented in logo format in a publication where the PWM is not provided or hard to be acquired. A major difficulty in developing such tool to convert sequence logo to PWM is to deal with the diversity of sequence logo images. We propose logo2PWM for reconstructing PWM from a large variety of sequence logo images. Evaluation results on over one thousand logos from three sources of different logo format show that the correlation between the reconstructed PWMs and the original PWMs are constantly high, where median correlation is greater than 0.97. Because of the high recognition accuracy, the easiness of usage, and, the availability of both web-based service and stand-alone application, we believe that logo2PWM can readily benefit the study of transcription by filling the gap between sequence logo and PWM.

  2. Reconstructing 1/2 BPS space-time metrics from matrix models and spin chains

    International Nuclear Information System (INIS)

    Vazquez, Samuel E.

    2007-01-01

    Using the anti-de Sitter/conformal field theories (AdS/CFT) correspondence, we address the question of how to measure complicated space-time metrics using gauge theory probes. In particular, we consider the case of the 1/2 Bogomol'nyi-Prasad-Sommerfield geometries of type IIB supergravity. These geometries are classified by certain droplets in a two-dimensional spacelike hypersurface. We show how to reconstruct the full metric inside these droplets using the one-loop N=4 super Yang-Mills theory dilatation operator. This is done by considering long operators in the SU(2) sector, which are dual to fast rotating strings on the droplets. We develop new powerful techniques for large N complex matrix models that allow us to construct the Hamiltonian for these strings. We find that the Hamiltonian can be mapped to a dynamical spin chain. That is, the length of the chain is not fixed. Moreover, all of these spin chains can be explicitly constructed using an interesting algebra which is derived from the matrix model. Our techniques work for general droplet configurations. As an example, we study a single elliptical droplet and the hypotrochoid

  3. Comparison of Experimental Methods for Estimating Matrix Diffusion Coefficients for Contaminant Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Telfeyan, Katherine Christina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ware, Stuart Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-06

    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  4. Matrix diffusion user guide (release 2)

    International Nuclear Information System (INIS)

    Herbert, A.W.; Preece, T.E.

    1989-04-01

    This report presents an introduction to the use of the matrix diffusion option of the finite-element package NAMMU. The facilities available in the package are described; and the process of preparing the necessary input data is illustrated with an example. The matrix diffusion option of NAMMU models the transport of radionuclides in groundwater in a flow field governed by Darcy's Law. A detailed description of the mathematical model used for this option is given. The package uses the finite-element method. This allows the easy modelling of complex geological structures. (author)

  5. Schwinger-Dyson loop equations as the w1+∞-like constraints for hermitian multi-matrix chain model at finite N

    International Nuclear Information System (INIS)

    Cheng, Yi-Xin

    1992-01-01

    The Schwinger-Dyson loop equations for the hermitian multi-matrix chain models at finite N, are derived from the Ward identities of the partition functional under the infinitesimal field transformations. The constraint operators W n (m) satisfy the w 1+∞ -like algebra up to a linear combination of the lower spin operators. We find that the all the higher spin constraints are reducible to the Virasoro-type constraints for all the matrix chain models. (author)

  6. Additive model for thermal comfort generated by matrix experiment using orthogonal array

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Reuy-Lung [Department of Occupational Safety and Health, China Medical University, 91 Huseh-shin Road, Taichung 404 (China); Lin, Tzu-Ping [Department of Leisure Planning, National Formosa University, 64 Wen-hua Road, Huwei, Yunlin 632 (China); Liang, Han-Hsi [Department of Architecture, National United University, No. 1, Lien Da, Kung-Ching Li, Miaoli 360 (China); Yang, Kuan-Hsiug; Yeh, Tsung-Chyn [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yet-Sen University, No. 91, Lien-hai Road, Kaohsiung (China)

    2009-08-15

    In addition to ensuring the thermal comfort of occupants, monitoring and controlling indoor thermal environments can reduce the energy consumed by air conditioning systems. This study develops an additive model for predicting thermal comfort with rapid and simple arithmetic calculations. The advantage of the additive model is its comprehensibility to administrators of air conditioning systems, who are unfamiliar with the PMV-PPD model but want to adjust an indoor environment to save energy without generating complaints of discomfort from occupants. In order to generate the additive model, a laboratory chamber experiment based on matrix experiment using orthogonal array, was performed. By applying the analysis of variance on observed thermal sensation votes and percentage of dissatisfaction, the factor effects of environmental variables that account for the additive model were determined. Additionally, the applicability of the PMV-PPD model in hot and humid climates is discussed in this study, based on experimental results. (author)

  7. Size-resolved particle number emission patterns under real-world driving conditions using positive matrix factorization.

    Science.gov (United States)

    Domínguez-Sáez, Aida; Viana, Mar; Barrios, Carmen C; Rubio, Jose R; Amato, Fulvio; Pujadas, Manuel; Querol, Xavier

    2012-10-16

    A novel on-board system was tested to characterize size-resolved particle number emission patterns under real-world driving conditions, running in a EURO4 diesel vehicle and in a typical urban circuit in Madrid (Spain). Emission profiles were determined as a function of driving conditions. Source apportionment by Positive Matrix Factorization (PMF) was carried out to interpret the real-world driving conditions. Three emission patterns were identified: (F1) cruise conditions, with medium-high speeds, contributing in this circuit with 60% of total particle number and a particle size distribution dominated by particles >52 nm and around 60 nm; (F2) transient conditions, stop-and-go conditions at medium-high speed, contributing with 25% of the particle number and mainly emitting particles in the nucleation mode; and (F3) creep-idle conditions, representing traffic congestion and frequent idling periods, contributing with 14% to the total particle number and with particles in the nucleation mode (emissions depending on particle size and driving conditions. Differences between real-world emission patterns and regulatory cycles (NEDC) are also presented, which evidence that detecting particle number emissions real-world driving conditions.

  8. The covariance matrix of the Potts model: A random cluster analysis

    International Nuclear Information System (INIS)

    Borgs, C.; Chayes, J.T.

    1996-01-01

    We consider the covariance matrix, G mn = q 2 x ,m); δ(σ y ,n)>, of the d-dimensional q-states Potts model, rewriting it in the random cluster representation of Fortuin and Kasteleyn. In many of the q ordered phases, we identify the eigenvalues of this matrix both in terms of representations of the unbroken symmetry group of the model and in terms of random cluster connectivities and covariances, thereby attributing algebraic significance to these stochastic geometric quantities. We also show that the correlation length and the correlation length corresponding to the decay rate of one on the eigenvalues in the same as the inverse decay rate of the diameter of finite clusters. For dimension of d=2, we show that this correlation length and the correlation length of two-point function with free boundary conditions at the corresponding dual temperature are equal up to a factor of two. For systems with first-order transitions, this relation helps to resolve certain inconsistencies between recent exact and numerical work on correlation lengths at the self-dual point β o . For systems with second order transitions, this relation implies the equality of the correlation length exponents from above below threshold, as well as an amplitude ratio of two. In the course of proving the above results, we establish several properties of independent interest, including left continuity of the inverse correlation length with free boundary conditions and upper semicontinuity of the decay rate for finite clusters in all dimensions, and left continuity of the two-dimensional free boundary condition percolation probability at β o . We also introduce DLR equations for the random cluster model and use them to establish ergodicity of the free measure. In order to prove these results, we introduce a new class of events which we call decoupling events and two inequalities for these events

  9. Matrix model of the grinding process of cement clinker in the ball mill

    Science.gov (United States)

    Sharapov, Rashid R.

    2018-02-01

    In the article attention is paid to improving the efficiency of production of fine powders, in particular Portland cement clinker. The questions of Portland cement clinker grinding in closed circuit ball mills. Noted that the main task of modeling the grinding process is predicting the granulometric composition of the finished product taking into account constructive and technological parameters used ball mill and separator. It is shown that the most complete and informative characterization of the grinding process in a ball mill is a grinding matrix taking into account the transformation of grain composition inside the mill drum. Shows how the relative mass fraction of the particles of crushed material, get to corresponding fraction. Noted, that the actual task of reconstruction of the matrix of grinding on the experimental data obtained in the real operating installations. On the basis of experimental data obtained on industrial installations, using matrix method to determine the kinetics of the grinding process in closed circuit ball mills. The calculation method of the conversion of the grain composition of the crushed material along the mill drum developed. Taking into account the proposed approach can be optimized processing methods to improve the manufacturing process of Portland cement clinker.

  10. A corner transfer matrix renormalization group investigation of the vertex-interacting self-avoiding walk model

    Energy Technology Data Exchange (ETDEWEB)

    Foster, D P; Pinettes, C [Laboratoire de Physique Theorique et Modelisation (CNRS UMR 8089), Universite de Cergy-Pontoise, 5 Mail Gay-Lussac 95031, Cergy-Pontoise Cedex (France)

    2003-10-17

    A recently introduced extension of the corner transfer matrix renormalization group method useful for the study of self-avoiding walk-type models is presented in detail and applied to a class of interacting self-avoiding walks due to Bloete and Nienhuis. This model displays two different types of collapse transition depending on model parameters. One is the standard {theta}-point transition. The other is found to give rise to a first-order collapse transition despite being known to be in other respects critical.

  11. Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems.

    Science.gov (United States)

    Wang, An; Cao, Yang; Shi, Quan

    2018-01-01

    In this paper, we demonstrate a complete version of the convergence theory of the modulus-based matrix splitting iteration methods for solving a class of implicit complementarity problems proposed by Hong and Li (Numer. Linear Algebra Appl. 23:629-641, 2016). New convergence conditions are presented when the system matrix is a positive-definite matrix and an [Formula: see text]-matrix, respectively.

  12. Micromechanics of deformation of metallic-glass-matrix composites from in situ synchrotron strain measurements and finite element modeling

    International Nuclear Information System (INIS)

    Ott, R.T.; Sansoz, F.; Molinari, J.F.; Almer, J.; Ramesh, K.T.; Hufunagel, T.C.

    2005-01-01

    In situ X-ray scattering and finite element modeling (FEM) were used to examine the micromechanics of deformation of in situ formed metallic-glass-matrix composites consisting of Ta-rich particles dispersed in an amorphous matrix. The strain measurements show that under uniaxial compression the second-phase particles yield at an applied stress of approx. 325 MPa. After yielding, the particles do not strain harden significantly; we show that this is due to an increasingly hydrostatic stress state arising from the lateral constraint on deformation of the particles imposed by the elastic matrix. Shear band initiation in the matrix is not due to the difference in elastic properties between the matrix and the particles. Rather, the development of a plastic misfit strain causes stress concentrations around the particles, resulting in localized yielding of the matrix by shear band formation at an applied stress of approx. 1450 MPa, considerably lower than the macroscopic yield stress of the composite (approx. 1725 MPa). Shear bands do not propagate at the lower stress because the yield criterion of the matrix is only satisfied in the region immediately around the particles. At the higher stresses, the yield criterion is satisfied in large regions of the matrix, allowing extensive shear band propagation and significant macroscopic plastic deformation. However, the presence of the particles makes the stress state highly inhomogeneous, which may partially explain why fracture is suppressed in the composite, allowing the development of large plastic strains

  13. Matrix-assisted relaxation in Fe(phen){sub 2}(NCS){sub 2} spin-crossover microparticles, experimental and theoretical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Enachescu, Cristian, E-mail: cristian.enachescu@uaic.ro; Stancu, Alexandru [Faculty of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Tanasa, Radu [Faculty of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom); Tissot, Antoine [Institut de Chimie Moléculaire et des Matériaux d' Orsay, Université Paris Sud, Université Paris-Saclay, CNRS, 91405 Orsay (France); Institut Lavoisier de Versailles, UMR 8180, CNRS, Université de Versailles-Saint Quentin en Yvelines, 78035 Versailles (France); Laisney, Jérôme; Boillot, Marie-Laure, E-mail: marie-laure.boillot@u-psud.fr [Institut de Chimie Moléculaire et des Matériaux d' Orsay, Université Paris Sud, Université Paris-Saclay, CNRS, 91405 Orsay (France)

    2016-07-18

    In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen){sub 2}(NCS){sub 2} (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.

  14. MATLAB matrix algebra

    CERN Document Server

    Pérez López, César

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...

  15. The string difference equation of the D = 1 matrix model and W1+∞ symmetry of the KP hierarchy

    International Nuclear Information System (INIS)

    Awada, M.A.; Sin, S.J.

    1992-01-01

    In this paper, the authors give a connection between the D = 1 matrix model and the generalized KP hierarchy. First, the authors find a difference equation satisfied by F, the Legendre transformation of the free energy of the D = 1 matrix model on a circle of radius R. Then the authors show that it is a special case of the difference equation of the generalized KP hierarchy with its zero mode identified with the scaling variable of the D = 1 string theory. The authors propose that the massive D = 1 matrix model is described by the generalized KP hierarchy, which implies the manifest integrability of D = 1 string theory. The authors also show that the (generalized) KP hierarchy has an underlying W 1 + ∞ symmetry. By reduction, we prove that the generalized KdV hierarchy has a subalgebra of the above symmetry which again forms a W 1+ ∞ . The authors argue that there are no W constraints in D = 1 string theory, which is in contrast to D 1 + ∞ constraints

  16. Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position

    International Nuclear Information System (INIS)

    Malinowski, Kathleen T.; McAvoy, Thomas J.; George, Rohini; Dieterich, Sonja; D'Souza, Warren D.

    2012-01-01

    Purpose: To investigate the effect of tumor site, measurement precision, tumor–surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor–surrogate correlation and the precision in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor–surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3–3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.

  17. Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Kathleen T. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States); McAvoy, Thomas J. [Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States); Department of Chemical and Biomolecular Engineering and Institute of Systems Research, University of Maryland, College Park, MD (United States); George, Rohini [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Dieterich, Sonja [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); D' Souza, Warren D., E-mail: wdsou001@umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States)

    2012-04-01

    Purpose: To investigate the effect of tumor site, measurement precision, tumor-surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor-surrogate correlation and the precision in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor-surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3-3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.

  18. System management model based on the design SWOT-matrix and quality management system for energy complex enterprise

    OpenAIRE

    Novikov, Vladimir

    2010-01-01

    The article deals with categorical apparatus of information management systems to build a model pairing SWOT-matrix and the quality management system, which is especially important for the energytion industry.

  19. Pollutant Dispersion Modeling in Natural Streams Using the Transmission Line Matrix Method

    Directory of Open Access Journals (Sweden)

    Safia Meddah

    2015-09-01

    Full Text Available Numerical modeling has become an indispensable tool for solving various physical problems. In this context, we present a model of pollutant dispersion in natural streams for the far field case where dispersion is considered longitudinal and one-dimensional in the flow direction. The Transmission Line Matrix (TLM, which has earned a reputation as powerful and efficient numerical method, is used. The presented one-dimensional TLM model requires a minimum input data and provides a significant gain in computing time. To validate our model, the results are compared with observations and experimental data from the river Severn (UK. The results show a good agreement with experimental data. The model can be used to predict the spatiotemporal evolution of a pollutant in natural streams for effective and rapid decision-making in a case of emergency, such as accidental discharges in a stream with a dynamic similar to that of the river Severn (UK.

  20. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  1. Matrix Design: An Alternative Model for Organizing the School or Department.

    Science.gov (United States)

    Salem, Philip J.; Gratz, Robert D.

    1984-01-01

    Explains the matrix organizational structure and describes conditions or pressures that lead an administrator to consider the matrix approach. Provides examples of how it operates in a department or school. (PD)

  2. Matrix Metalloproteinases Contribute to Neuronal Dysfunction in Animal Models of Drug Dependence, Alzheimer's Disease, and Epilepsy

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizoguchi

    2011-01-01

    Full Text Available Matrix metalloproteinases (MMPs and tissue inhibitors of metalloproteinases (TIMPs remodel the pericellular environment by regulating the cleavage of extracellular matrix proteins, cell surface components, neurotransmitter receptors, and growth factors that mediate cell adhesion, synaptogenesis, synaptic plasticity, and long-term potentiation. Interestingly, increased MMP activity and dysregulation of the balance between MMPs and TIMPs have also been implicated in various pathologic conditions. In this paper, we discuss various animal models that suggest that the activation of the gelatinases MMP-2 and MMP-9 is involved in pathogenesis of drug dependence, Alzheimer's disease, and epilepsy.

  3. Matrix precipitation: a general strategy to eliminate matrix interference for pharmaceutical toxic impurities analysis.

    Science.gov (United States)

    Yang, Xiaojing; Xiong, Xuewu; Cao, Ji; Luan, Baolei; Liu, Yongjun; Liu, Guozhu; Zhang, Lei

    2015-01-30

    Matrix interference, which can lead to false positive/negative results, contamination of injector or separation column, incompatibility between sample solution and the selected analytical instrument, and response inhibition or even quenching, is commonly suffered for the analysis of trace level toxic impurities in drug substance. In this study, a simple matrix precipitation strategy is proposed to eliminate or minimize the above stated matrix interference problems. Generally, a sample of active pharmaceutical ingredients (APIs) is dissolved in an appropriate solvent to achieve the desired high concentration and then an anti-solvent is added to precipitate the matrix substance. As a result, the target analyte is extracted into the mixed solution with very less residual of APIs. This strategy has the characteristics of simple manipulation, high recovery and excellent anti-interference capability. It was found that the precipitation ratio (R, representing the ability to remove matrix substance) and the proportion of solvent (the one used to dissolve APIs) in final solution (P, affecting R and also affecting the method sensitivity) are two important factors of the precipitation process. The correlation between R and P was investigated by performing precipitation with various APIs in different solvent/anti-solvent systems. After a detailed mathematical reasoning process, P=20% was proved to be an effective and robust condition to perform the precipitation strategy. The precipitation method with P=20% can be used as a general strategy for toxic impurity analysis in APIs. Finally, several typical examples are described in this article, where the challenging matrix interference issues have been resolved successfully. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix

    International Nuclear Information System (INIS)

    Kochetov, R; Andritsch, T; Morshuis, P H F; Smit, J J; Korobko, A V; Picken, S J

    2011-01-01

    In this paper the thermal conductivity of epoxy-based composite materials is analysed. Two- and three-phase Lewis-Nielsen models are proposed for fitting the experimental values of the thermal conductivity of epoxy-based polymer composites. Various inorganic nano- and micro- particles were used, namely aluminium oxide, aluminium nitride, magnesium oxide and silicon dioxide with average particle size between 20 nm and 20 μm. It is shown that the filler-matrix interface plays a dominant role in the thermal conduction process of the nanocomposites. The two-phase model was proposed as an initial step for describing systems containing 2 constituents, i.e. an epoxy matrix and an inorganic filler. The three-phase model was introduced to specifically address the properties of the interfacial zone between the host polymer and the surface modified nanoparticles.

  5. D-brane probes in the matrix model

    International Nuclear Information System (INIS)

    Ferrari, Frank

    2014-01-01

    Recently, a new approach to large N gauge theories, based on a generalization of the concept of D-brane probes to any gauge field theory, was proposed. In the present note, we compute the probe action in the one matrix model with a quartic potential. This allows to illustrate several non-trivial aspects of the construction in an exactly solvable set-up. One of our main goal is to test the bare bubble approximation. The approximate free energy found in this approximation, which can be derived from a back-of-an-envelope calculation, matches the exact result for all values of the 't Hooft coupling with a surprising accuracy. Another goal is to illustrate the remarkable properties of the equivariant partial gauge-fixing procedure, which is at the heart of the formalism. For this we use a general ξ-gauge to compute the brane action. The action depends on ξ in a very non-trivial way, yet we show explicitly that its critical value does not and coincides with twice the free energy, as required by general consistency. This is made possible by a phenomenon of ghost condensation and the spontaneous breaking of the equivariant BRST symmetry

  6. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    OpenAIRE

    Bauer , S. E.; Wright , D.; Koch , D.; Lewis , E. R.; Mcgraw , R.; Chang , L.-S.; Schwartz , S. E.; Ruedy , R.

    2008-01-01

    A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) are described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mod...

  7. From Real Materials to Model Hamiltonians With Density Matrix Downfolding

    Directory of Open Access Journals (Sweden)

    Huihuo Zheng

    2018-05-01

    Full Text Available Due to advances in computer hardware and new algorithms, it is now possible to perform highly accurate many-body simulations of realistic materials with all their intrinsic complications. The success of these simulations leaves us with a conundrum: how do we extract useful physical models and insight from these simulations? In this article, we present a formal theory of downfolding–extracting an effective Hamiltonian from first-principles calculations. The theory maps the downfolding problem into fitting information derived from wave functions sampled from a low-energy subspace of the full Hilbert space. Since this fitting process most commonly uses reduced density matrices, we term it density matrix downfolding (DMD.

  8. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-01-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders. -- Highlights: ► New superposition T-matrix code is applied to soot aerosols. ► Quasi-Rayleigh side-scattering peak in linear depolarization (LD) is explained. ► LD measurements can be used for morphological characterization of soot aerosols

  9. Quantification of uncertainties in turbulence modeling: A comparison of physics-based and random matrix theoretic approaches

    International Nuclear Information System (INIS)

    Wang, Jian-Xun; Sun, Rui; Xiao, Heng

    2016-01-01

    Highlights: • Compared physics-based and random matrix methods to quantify RANS model uncertainty. • Demonstrated applications of both methods in channel ow over periodic hills. • Examined the amount of information introduced in the physics-based approach. • Discussed implications to modeling turbulence in both near-wall and separated regions. - Abstract: Numerical models based on Reynolds-Averaged Navier-Stokes (RANS) equations are widely used in engineering turbulence modeling. However, the RANS predictions have large model-form uncertainties for many complex flows, e.g., those with non-parallel shear layers or strong mean flow curvature. Quantification of these large uncertainties originating from the modeled Reynolds stresses has attracted attention in the turbulence modeling community. Recently, a physics-based Bayesian framework for quantifying model-form uncertainties has been proposed with successful applications to several flows. Nonetheless, how to specify proper priors without introducing unwarranted, artificial information remains challenging to the current form of the physics-based approach. Another recently proposed method based on random matrix theory provides the prior distributions with maximum entropy, which is an alternative for model-form uncertainty quantification in RANS simulations. This method has better mathematical rigorousness and provides the most non-committal prior distributions without introducing artificial constraints. On the other hand, the physics-based approach has the advantages of being more flexible to incorporate available physical insights. In this work, we compare and discuss the advantages and disadvantages of the two approaches on model-form uncertainty quantification. In addition, we utilize the random matrix theoretic approach to assess and possibly improve the specification of priors used in the physics-based approach. The comparison is conducted through a test case using a canonical flow, the flow past

  10. GNSS Positioning Performance Analysis Using PSO-RBF Estimation Model

    Directory of Open Access Journals (Sweden)

    Jgouta Meriem

    2017-06-01

    Full Text Available Positioning solutions need to be more precise and available. The most frequent method used nowadays includes a GPS receiver, sometimes supported by other sensors. Generally, GPS and GNSS suffer from spreading perturbations that produce biases on pseudo-range measurements. With a view to optimize the use of the satellites received, we offer a positioning algorithm with pseudo range error modelling with the contribution of an appropriate filtering process. Extended Kalman Filter, The Rao- Blackwellized filter are among the most widely used algorithms to predict errors and to filter the high frequency noise. This paper describes a new method of estimating the pseudo-range errors based on the PSO-RBF model which achieves an optimal training criterion. This model is appropriate of its method to predict the GPS corrections for accurate positioning, it reduce the positioning errors at high velocities by more than 50% compared to the RLS or EKF methods.

  11. THE ROLE OF MATRIX METALLOPROTEINASES IN PROCESSES OF HEART RE-MODELING IN CHILDREN WITH RESTRICTIVE CARDIOMYOPATHY

    Directory of Open Access Journals (Sweden)

    T.V. Bershova

    2009-01-01

    Full Text Available Restrictive cardiomyopathy (RCMP is heart disorder with unclear etiology; it can be characterized as disease with disorder of diastolic myocardium function of left ventricle, conditioned by restriction. The chronic heart failure as a syndrome of RCMP can develop as a result of disbalance in system of complex biochemical, structural, and geometrical mechanisms of myocardium re-modeling. Extra cellular matrix play significant role in heart structure and geometry breaking. The destruction of heart is realized by matrix metalloproteinases (MMP. The activity of MMP, in its turn, is controlled by its tissue inhibitors. The present study analyzed the role of MMP in process of collagen’s synthesis and catabolism deregulation, myocardium fibrosis, change of heart chambers, and development of diastolic dysfunction in children with RCMP.Key words: children, chronic heart failure, restrictive cardiomyopathy, matrix metalloproteinases.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2009;8(5:36-39

  12. Periodic matrix population models: growth rate, basic reproduction number, and entropy.

    Science.gov (United States)

    Bacaër, Nicolas

    2009-10-01

    This article considers three different aspects of periodic matrix population models. First, a formula for the sensitivity analysis of the growth rate lambda is obtained that is simpler than the one obtained by Caswell and Trevisan. Secondly, the formula for the basic reproduction number R0 in a constant environment is generalized to the case of a periodic environment. Some inequalities between lambda and R0 proved by Cushing and Zhou are also generalized to the periodic case. Finally, we add some remarks on Demetrius' notion of evolutionary entropy H and its relationship to the growth rate lambda in the periodic case.

  13. Matrix metalloproteinases in exercise and obesity.

    Science.gov (United States)

    Jaoude, Jonathan; Koh, Yunsuk

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs' functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic) on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease.

  14. NMR structural refinement of a tandem G·A mismatched decamer d(CCAAGATTGG)2 via the hybrid matrix procedure

    International Nuclear Information System (INIS)

    Nikonowicz, E.P.; Meadows, R.P.; Fagan, P.; Gorenstein, D.G.

    1991-01-01

    A complete relaxation matrix approach employing a matrix eigenvalue/eigenvector solution to the Bloch equations is used to evaluate the NMR solution structure of a tandemly positioned G·A double mismatch decamer oligodeoxyribonucleotide duplex, d(CCAAGATTGG) 2 . An iterative refinement method using a hybrid relaxation matrix combined with restrained molecular dynamics calculations is shown to provide structures having good agreement with the experimentally derived structures. Distances incorporated into the MD simulations have been calculated from the relaxation rate matrix evaluated from a hybrid NOESY volume matrix whose elements are obtained from the merging of experimental and calculated NOESY intensities. Starting from both A- and B-DNA and mismatch syn and anti models, it is possible to calculate structures that are in good atomic RMS agreement with each other ( 3.6 angstrom). Importantly, the hybrid matrix derived structures are in excellent agreement with the experimental solution conformation as determined by comparison of the 200-ms simulated and experimental NOESY spectra, while the crystallographic data provide spectra that are grossly different

  15. Time-dependent occupation numbers in reduced-density-matrix-functional theory: Application to an interacting Landau-Zener model

    International Nuclear Information System (INIS)

    Requist, Ryan; Pankratov, Oleg

    2011-01-01

    We prove that if the two-body terms in the equation of motion for the one-body reduced density matrix are approximated by ground-state functionals, the eigenvalues of the one-body reduced density matrix (occupation numbers) remain constant in time. This deficiency is related to the inability of such an approximation to account for relative phases in the two-body reduced density matrix. We derive an exact differential equation giving the functional dependence of these phases in an interacting Landau-Zener model and study their behavior in short- and long-time regimes. The phases undergo resonances whenever the occupation numbers approach the boundaries of the interval [0,1]. In the long-time regime, the occupation numbers display correlation-induced oscillations and the memory dependence of the functionals assumes a simple form.

  16. Effects of ductile matrix failure in three dimensional analysis of metal matrix composites

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1998-01-01

    Full three dimensional numerical cell model analyses are carried out for a metal reinforced by short fibers, to study the development of ductile matrix failure. A porous ductile material model is used to describe the effect of the nucleation and growth of voids to coalescence. In each case studied...

  17. Modelling News Media Use. Positing and applying the MC/GC model to the analysis of media use in everyday life and crisis situations

    DEFF Research Database (Denmark)

    Westlund, Oscar; Ghersetti, Marina

    2014-01-01

    The contemporary mediascape offers a plethora of news media and social media, which people can turn to in everyday life and during a crisis. The characteristics of media vary, providing different logics and affordances, and occupying different niches in time and space (medium-centric (MC) approach......). Generations develop routinized media usage patterns in the formative phases of their lives, which they often maintain in their daily habits in everyday life (generation-centric (GC) approach). Crisis events in the vicinity, such as gas emissions, terrorist attacks, pandemics and earthquakes, presumably ignite...... an augmented interest for information and news on the events that may cause a destabilization of established media usage routines. This article aims to conceptualize, describe and explain how four generations envision their media use during such crises. The article posits the MC/GC-model, a 2x2 matrix...

  18. Constrained Perturbation Regularization Approach for Signal Estimation Using Random Matrix Theory

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag

    2016-10-06

    In this work, we propose a new regularization approach for linear least-squares problems with random matrices. In the proposed constrained perturbation regularization approach, an artificial perturbation matrix with a bounded norm is forced into the system model matrix. This perturbation is introduced to improve the singular-value structure of the model matrix and, hence, the solution of the estimation problem. Relying on the randomness of the model matrix, a number of deterministic equivalents from random matrix theory are applied to derive the near-optimum regularizer that minimizes the mean-squared error of the estimator. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods for various estimated signal characteristics. In addition, simulations show that our approach is robust in the presence of model uncertainty.

  19. Numerical study on optimal Stirling engine regenerator matrix designs taking into account the effects of matrix temperature oscillations

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove

    2006-01-01

    A new regenerator matrix design that improves the efficiency of a Stirling engine has been developed in a numerical study of the existing SM5 Stirling engine. A new, detailed, one-dimensional Stirling engine model that delivers results in good agreement with experimental data was used for mapping...... the per- formance of the engine, for mapping the effects of regenerator matrix temperature oscillations, and for optimising the regenerator design. The regenerator matrix temperatures were found to oscillate in two modes. The first mode was oscillation of a nearly linear axial matrix temperature profile...... while the second mode bended the ends of the axial matrix temperature profile when gas flowed into the regenerator with a temperature significantly different from the matrix temperature. The first mode of oscillation improved the efficiency of the engine but the second mode reduced both the work output...

  20. Using 3 × 3 Matrix to Evaluate the Manufacturing Technology in Food Company

    Directory of Open Access Journals (Sweden)

    Ingaldi Manuela

    2016-06-01

    Full Text Available In order to produce goods of sufficient quality finding buyers in the market, a company must have an adequate knowledge of their production technology. Technologies and finished products at the same time will affect the position of the company in the market and hence its existence in this market. Therefore, it is so important for every company to determine the appropriate technological strategy. The 3 × 3 matrix is a very useful tool to do so. This matrix shows the relation between technological possibilities of the company and its position in the market. However, that requires changing the scale used in the matrix. In practice, this means that both those that have a positive impact on the company and those that have a negative impact on it can be included in the factors. The research was conducted in a food industry company. It turned out that the research company was located in field of the matrix marked as ‚Improve marketing’. It means that the company should put more emphasis on improving the factors related to its position in the market.

  1. Loop equations and topological recursion for the arbitrary-$\\beta$ two-matrix model

    CERN Document Server

    Bergère, Michel; Marchal, Olivier; Prats-Ferrer, Aleix

    2012-01-01

    We write the loop equations for the $\\beta$ two-matrix model, and we propose a topological recursion algorithm to solve them, order by order in a small parameter. We find that to leading order, the spectral curve is a "quantum" spectral curve, i.e. it is given by a differential operator (instead of an algebraic equation for the hermitian case). Here, we study the case where that quantum spectral curve is completely degenerate, it satisfies a Bethe ansatz, and the spectral curve is the Baxter TQ relation.

  2. Response matrix method for large LMFBR analysis

    International Nuclear Information System (INIS)

    King, M.J.

    1977-06-01

    The feasibility of using response matrix techniques for computational models of large LMFBRs is examined. Since finite-difference methods based on diffusion theory have generally found a place in fast-reactor codes, a brief review of their general matrix foundation is given first in order to contrast it to the general strategy of response matrix methods. Then, in order to present the general method of response matrix technique, two illustrative examples are given. Matrix algorithms arising in the application to large LMFBRs are discussed, and the potential of the response matrix method is explored for a variety of computational problems. Principal properties of the matrices involved are derived with a view to application of numerical methods of solution. The Jacobi iterative method as applied to the current-balance eigenvalue problem is discussed

  3. The Impact of Goal Setting and Empowerment on Governmental Matrix Organizations

    Science.gov (United States)

    1993-09-01

    shared. In a study of matrix management, Eduardo Vasconcellos further describes various matrix structures in the Galbraith model. In a functional...Technology/LAR, Wright-Patterson AFB OH, 1992. Vasconcellos , Eduardo . "A Model For a Better Understanding of the Matrix Structure," IEEE Transactions on...project matrix, the project manager maintains more influence and the structure lies to the right-of center ( Vasconcellos , 1979:58). Different Types of

  4. Quasi-normal modes from non-commutative matrix dynamics

    Science.gov (United States)

    Aprile, Francesco; Sanfilippo, Francesco

    2017-09-01

    We explore similarities between the process of relaxation in the BMN matrix model and the physics of black holes in AdS/CFT. Focusing on Dyson-fluid solutions of the matrix model, we perform numerical simulations of the real time dynamics of the system. By quenching the equilibrium distribution we study quasi-normal oscillations of scalar single trace observables, we isolate the lowest quasi-normal mode, and we determine its frequencies as function of the energy. Considering the BMN matrix model as a truncation of N=4 SYM, we also compute the frequencies of the quasi-normal modes of the dual scalar fields in the AdS5-Schwarzschild background. We compare the results, and we finda surprising similarity.

  5. Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction.

    Science.gov (United States)

    Liu, Yong; Wu, Min; Miao, Chunyan; Zhao, Peilin; Li, Xiao-Li

    2016-02-01

    In pharmaceutical sciences, a crucial step of the drug discovery process is the identification of drug-target interactions. However, only a small portion of the drug-target interactions have been experimentally validated, as the experimental validation is laborious and costly. To improve the drug discovery efficiency, there is a great need for the development of accurate computational approaches that can predict potential drug-target interactions to direct the experimental verification. In this paper, we propose a novel drug-target interaction prediction algorithm, namely neighborhood regularized logistic matrix factorization (NRLMF). Specifically, the proposed NRLMF method focuses on modeling the probability that a drug would interact with a target by logistic matrix factorization, where the properties of drugs and targets are represented by drug-specific and target-specific latent vectors, respectively. Moreover, NRLMF assigns higher importance levels to positive observations (i.e., the observed interacting drug-target pairs) than negative observations (i.e., the unknown pairs). Because the positive observations are already experimentally verified, they are usually more trustworthy. Furthermore, the local structure of the drug-target interaction data has also been exploited via neighborhood regularization to achieve better prediction accuracy. We conducted extensive experiments over four benchmark datasets, and NRLMF demonstrated its effectiveness compared with five state-of-the-art approaches.

  6. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Analysis of Gram-Positive, Catalase-Negative Cocci Not Belonging to the Streptococcus or Enterococcus Genus and Benefits of Database Extension

    DEFF Research Database (Denmark)

    Christensen, Jens Jørgen; Dargis, Rimtas; Hammer, Monja

    2012-01-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry with a Bruker Daltonics microflex LT system was applied to 90 well-characterized catalase-negative, Gram-positive cocci not belonging to the streptococci or enterococci. Biotyper version 2.0.43.1 software...

  7. Matrix Management: An Organizational Alternative for Libraries.

    Science.gov (United States)

    Johnson, Peggy

    1990-01-01

    Describes various organizational structures and models, presents matrix management as an alternative to traditional hierarchical structures, and suggests matrix management as an appropriate organizational alternative for academic libraries. Benefits that are discussed include increased flexibility, a higher level of professional independence, and…

  8. A Context-Aware Model to Provide Positioning in Disaster Relief Scenarios

    Directory of Open Access Journals (Sweden)

    Daniel Moreno

    2015-09-01

    Full Text Available The effectiveness of the work performed during disaster relief efforts is highly dependent on the coordination of activities conducted by the first responders deployed in the affected area. Such coordination, in turn, depends on an appropriate management of geo-referenced information. Therefore, enabling first responders to count on positioning capabilities during these activities is vital to increase the effectiveness of the response process. The positioning methods used in this scenario must assume a lack of infrastructure-based communication and electrical energy, which usually characterizes affected areas. Although positioning systems such as the Global Positioning System (GPS have been shown to be useful, we cannot assume that all devices deployed in the area (or most of them will have positioning capabilities by themselves. Typically, many first responders carry devices that are not capable of performing positioning on their own, but that require such a service. In order to help increase the positioning capability of first responders in disaster-affected areas, this paper presents a context-aware positioning model that allows mobile devices to estimate their position based on information gathered from their surroundings. The performance of the proposed model was evaluated using simulations, and the obtained results show that mobile devices without positioning capabilities were able to use the model to estimate their position. Moreover, the accuracy of the positioning model has been shown to be suitable for conducting most first response activities.

  9. Regularization of positive definite matrix fields based on multiplicative calculus

    NARCIS (Netherlands)

    Florack, L.M.J.; Bruckstein, A.M.; Haar Romeny, ter B.M.; Bronstein, A.M.; Bronstein, M.M.

    2012-01-01

    Multiplicative calculus provides a natural framework in problems involving positive images and positivity preserving operators. In increasingly important, complex imaging frameworks, such as diffusion tensor imaging, it complements standard calculus in a nontrivial way. The purpose of this article

  10. Constructing stage-structured matrix population models from life tables: comparison of methods

    Directory of Open Access Journals (Sweden)

    Masami Fujiwara

    2017-10-01

    Full Text Available A matrix population model is a convenient tool for summarizing per capita survival and reproduction rates (collectively vital rates of a population and can be used for calculating an asymptotic finite population growth rate (λ and generation time. These two pieces of information can be used for determining the status of a threatened species. The use of stage-structured population models has increased in recent years, and the vital rates in such models are often estimated using a life table analysis. However, potential bias introduced when converting age-structured vital rates estimated from a life table into parameters for a stage-structured population model has not been assessed comprehensively. The objective of this study was to investigate the performance of methods for such conversions using simulated life histories of organisms. The underlying models incorporate various types of life history and true population growth rates of varying levels. The performance was measured by comparing differences in λ and the generation time calculated using the Euler-Lotka equation, age-structured population matrices, and several stage-structured population matrices that were obtained by applying different conversion methods. The results show that the discretization of age introduces only small bias in λ or generation time. Similarly, assuming a fixed age of maturation at the mean age of maturation does not introduce much bias. However, aggregating age-specific survival rates into a stage-specific survival rate and estimating a stage-transition rate can introduce substantial bias depending on the organism’s life history type and the true values of λ. In order to aggregate survival rates, the use of the weighted arithmetic mean was the most robust method for estimating λ. Here, the weights are given by survivorship curve after discounting with λ. To estimate a stage-transition rate, matching the proportion of individuals transitioning, with λ used

  11. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Phan, Anne Q; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V; Gardiner, David M

    2015-08-01

    Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain-of-function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position-specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position-specific, developmental-stage-specific, and heparan sulfate-dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals.

  12. The Virasoro algebra in integrable hierarchies and the method of matrix models

    International Nuclear Information System (INIS)

    Semikhatov, A.M.

    1992-01-01

    The action of the Virasoro algebra on hierarchies of nonlinear integrable equations, and also the structure and consequences of Virasoro constraints on these hierarchies, are studied. It is proposed that a broad class of hierarchies, restricted by Virasoro constraints, can be defined in terms of dressing operators hidden in the structure of integrable systems. The Virasoro-algebra representation constructed on the dressing operators displays a number of analogies with structures in conformal field theory. The formulation of the Virasoro constraints that stems from this representation makes it possible to translate into the language of integrable systems a number of concepts from the method of the 'matrix models' that describe nonperturbative quantum gravity, and, in particular, to realize a 'hierarchical' version of the double scaling limit. From the Virasoro constraints written in terms of the dressing operators generalized loop equations are derived, and this makes it possible to do calculations on a reconstruction of the field-theoretical description. The reduction of the Kadomtsev-Petviashvili (KP) hierarchy, subject to Virasoro constraints, to generalized Korteweg-deVries (KdV) hierarchies is implemented, and the corresponding representation of the Virasoro algebra on these hierarchies is found both in the language of scalar differential operators and in the matrix formalism of Drinfel'd and Sokolov. The string equation in the matrix formalism does not replicate the structure of the scalar string equation. The symmetry algebras of the KP and N-KdV hierarchies restricted by Virasoro constraints are calculated: A relationship is established with algebras from the family W ∞ (J) of infinite W-algebras

  13. Theoretical evaluation of matrix effects on trapped atomic levels

    Energy Technology Data Exchange (ETDEWEB)

    Das, G.P.; Gruen, D.M.

    1986-06-01

    We suggest a theoretical model for calculating the matrix perturbation on the spectra of atoms trapped in rare gas systems. The model requires the ''potential curves'' of the diatomic system consisting of the trapped atom interacting with one from the matrix and relies on the approximation that the total matrix perturbation is a scalar sum of the pairwise interactions with each of the lattice sites. Calculations are presented for the prototype systems Na in Ar. Attempts are made to obtain ab initio estimates of the Jahn-Teller effects for excited states. Comparison is made with our recent Matrix-Isolation Spectroscopic (MIS) data. 10 refs., 3 tabs.

  14. Theoretical evaluation of matrix effects on trapped atomic levels

    International Nuclear Information System (INIS)

    Das, G.P.; Gruen, D.M.

    1986-06-01

    We suggest a theoretical model for calculating the matrix perturbation on the spectra of atoms trapped in rare gas systems. The model requires the ''potential curves'' of the diatomic system consisting of the trapped atom interacting with one from the matrix and relies on the approximation that the total matrix perturbation is a scalar sum of the pairwise interactions with each of the lattice sites. Calculations are presented for the prototype systems Na in Ar. Attempts are made to obtain ab initio estimates of the Jahn-Teller effects for excited states. Comparison is made with our recent Matrix-Isolation Spectroscopic (MIS) data. 10 refs., 3 tabs

  15. Hydrogel core flexible matrix composite (H-FMC) actuators: theory and preliminary modelling

    International Nuclear Information System (INIS)

    Dicker, M P M; Weaver, P M; Bond, I P; Rossiter, J M

    2014-01-01

    The underlying theory of a new actuator concept based on hydrogel core flexible matrix composites (H-FMC) is presented. The key principle that underlines the H-FMC actuator operation is that the three-dimensional swelling of a hydrogel is partially constrained in order to improve the amount of useful work done. The partial constraint is applied to the hydrogel by a flexible matrix composite (FMC) that minimizes the hydrogel's volume expansion while swelling. This constraint serves to maximize the fixed charge density and resulting osmotic pressure, the driving force behind actuation. In addition, for certain FMC fibre orientations the Poisson's ratio of the anisotropic FMC laminate converts previously unused hydrogel swelling in the radial and circumferential directions into useful axial strains. The potential benefit of the H-FMC concept to hydrogel actuator performance is shown through comparison of force–stroke curves and evaluation of improvements in useful actuation work. The model used to achieve this couples chemical and electrical components, represented with the Nernst–Plank and Poisson equations, as well as a linear elastic mechanical material model, encompassing limited geometric nonlinearities. It is found that improvements in useful actuation work in the order of 1500% over bare hydrogel performance are achieved by the H-FMC concept. A parametric study is also undertaken to determine the effect of various FMC design parameters on actuator free strain and blocking stress. A comparison to other actuator concepts is also included. (paper)

  16. User's guide for SAMMY: a computer model for multilevel r-matrix fits to neutron data using Bayes' equations

    International Nuclear Information System (INIS)

    Larson, N.M.; Perey, F.G.

    1980-11-01

    A method is described for determining the parameters of a model from experimental data based upon the utilization of Bayes' theorem. This method has several advantages over the least-squares method as it is commonly used; one important advantage is that the assumptions under which the parameter values have been determined are more clearly evident than in many results based upon least squares. Bayes' method has been used to develop a computer code which can be utilized to analyze neutron cross-section data by means of the R-matrix theory. The required formulae from the R-matrix theory are presented, and the computer implementation of both Bayes' equations and R-matrix theory is described. Details about the computer code and compelte input/output information are given

  17. Refraction effects in 16O + 16O scattering at energy of 124-1120 MeV and S matrix model with Regge poles

    International Nuclear Information System (INIS)

    Kuznichenko, A.V.; Onishchenko, G.M.; Pilipenko, V.V.; Dem'yanova, A.S.; Burtebaev, N.

    2003-01-01

    The analysis of the cross sections of the 16 O + 16 O nuclei elastic scattering by the energy of 124, 145, 250, 350, 480, 704 and 1120 MeV is carried out on the basis of the phenomenological S-matrix model. It is shown, that by high energy the refraction behavior of the opalescent-type cross sections is well described by the simple smooth dependence of the S-matrix on the angular moment and by the energy E ≤ 480 MeV the opalescent-type structures are strongly effected by the Regge poles and S-matrix zeroes, close to the actual axis. The comparison with the results of the cross sections by the optical model is carried out [ru

  18. Early identification of microorganisms in blood culture prior to the detection of a positive signal in the BACTEC FX system using matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Wang, Ming-Cheng; Lin, Wei-Hung; Yan, Jing-Jou; Fang, Hsin-Yi; Kuo, Te-Hui; Tseng, Chin-Chung; Wu, Jiunn-Jong

    2015-08-01

    Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is a valuable method for rapid identification of blood stream infection (BSI) pathogens. Integration of MALDI-TOF MS and blood culture system can speed the identification of causative BSI microorganisms. We investigated the minimal microorganism concentrations of common BSI pathogens required for positive blood culture using BACTEC FX and for positive identification using MALDI-TOF MS. The time to detection with positive BACTEC FX and minimal incubation time with positive MALDI-TOF MS identification were determined for earlier identification of common BSI pathogens. The minimal microorganism concentrations required for positive blood culture using BACTEC FX were >10(7)-10(8) colony forming units/mL for most of the BSI pathogens. The minimal microorganism concentrations required for identification using MALDI-TOF MS were > 10(7) colony forming units/mL. Using simulated BSI models, one can obtain enough bacterial concentration from blood culture bottles for successful identification of five common Gram-positive and Gram-negative bacteria using MALDI-TOF MS 1.7-2.3 hours earlier than the usual time to detection in blood culture systems. This study provides an approach to earlier identification of BSI pathogens prior to the detection of a positive signal in the blood culture system using MALDI-TOF MS, compared to current methods. It can speed the time for identification of BSI pathogens and may have benefits of earlier therapy choice and on patient outcome. Copyright © 2013. Published by Elsevier B.V.

  19. The impact of episodic nonequilibrium fracture-matrix flow on geological repository performance

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.; Chestnut, D.A.

    1991-01-01

    Adequate representation of fracture-matrix interaction during episodic infiltration events is crucial in making valid hydrological predictions of repository performance at Yucca Mountain. Various approximations have been applied to represent fracture-matrix flow interaction, including the Equivalent Continuum Model (ECM), which assumes capillary equilibrium between fractures and matrix, and the Fracture-Matrix Model (FMM), which accounts for nonequilibrium fracture-matrix flow. We analyze the relative impact of matrix imbibition on episodic nonequilibrium fracture-matrix flow for the eight major hydrostratigraphic units in the unsaturated zone at Yucca Mountain. Comparisons are made between ECM and FMM predictions to determine the applicability of the ECM. The implications of nonequilibrium fracture-matrix flow on radionuclide transport are also discussed

  20. Thermal evolution of the Schwinger model with matrix product operators

    International Nuclear Information System (INIS)

    Banuls, M.C.; Cirac, J.I.; Cichy, K.; Jansen, K.; Saito, H.

    2015-10-01

    We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with non-zero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.

  1. Matrix product state calculations for one-dimensional quantum chains and quantum impurity models

    Energy Technology Data Exchange (ETDEWEB)

    Muender, Wolfgang

    2011-09-28

    This thesis contributes to the field of strongly correlated electron systems with studies in two distinct fields thereof: the specific nature of correlations between electrons in one dimension and quantum quenches in quantum impurity problems. In general, strongly correlated systems are characterized in that their physical behaviour needs to be described in terms of a many-body description, i.e. interactions correlate all particles in a complex way. The challenge is that the Hilbert space in a many-body theory is exponentially large in the number of particles. Thus, when no analytic solution is available - which is typically the case - it is necessary to find a way to somehow circumvent the problem of such huge Hilbert spaces. Therefore, the connection between the two studies comes from our numerical treatment: they are tackled by the density matrix renormalization group (DMRG) and the numerical renormalization group (NRG), respectively, both based on matrix product states. The first project presented in this thesis addresses the problem of numerically finding the dominant correlations in quantum lattice models in an unbiased way, i.e. without using prior knowledge of the model at hand. A useful concept for this task is the correlation density matrix (CDM) which contains all correlations between two clusters of lattice sites. We show how to extract from the CDM, a survey of the relative strengths of the system's correlations in different symmetry sectors as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. We demonstrate this by a DMRG study of a one-dimensional spinless extended Hubbard model, while emphasizing that the proposed analysis of the CDM is not restricted to one dimension. The second project presented in this thesis is motivated by two phenomena under ongoing experimental and theoretical investigation in the context of quantum impurity models: optical absorption

  2. Matrix product state calculations for one-dimensional quantum chains and quantum impurity models

    International Nuclear Information System (INIS)

    Muender, Wolfgang

    2011-01-01

    This thesis contributes to the field of strongly correlated electron systems with studies in two distinct fields thereof: the specific nature of correlations between electrons in one dimension and quantum quenches in quantum impurity problems. In general, strongly correlated systems are characterized in that their physical behaviour needs to be described in terms of a many-body description, i.e. interactions correlate all particles in a complex way. The challenge is that the Hilbert space in a many-body theory is exponentially large in the number of particles. Thus, when no analytic solution is available - which is typically the case - it is necessary to find a way to somehow circumvent the problem of such huge Hilbert spaces. Therefore, the connection between the two studies comes from our numerical treatment: they are tackled by the density matrix renormalization group (DMRG) and the numerical renormalization group (NRG), respectively, both based on matrix product states. The first project presented in this thesis addresses the problem of numerically finding the dominant correlations in quantum lattice models in an unbiased way, i.e. without using prior knowledge of the model at hand. A useful concept for this task is the correlation density matrix (CDM) which contains all correlations between two clusters of lattice sites. We show how to extract from the CDM, a survey of the relative strengths of the system's correlations in different symmetry sectors as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. We demonstrate this by a DMRG study of a one-dimensional spinless extended Hubbard model, while emphasizing that the proposed analysis of the CDM is not restricted to one dimension. The second project presented in this thesis is motivated by two phenomena under ongoing experimental and theoretical investigation in the context of quantum impurity models: optical absorption

  3. Novel, Improved Sample Preparation for Rapid, Direct Identification from Positive Blood Cultures Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry

    OpenAIRE

    Schubert, Sören; Weinert, Kirsten; Wagner, Chris; Gunzl, Beatrix; Wieser, Andreas; Maier, Thomas; Kostrzewa, Markus

    2011-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is widely used for rapid and reliable identification of bacteria and yeast grown on agar plates. Moreover, MALDI-TOF MS also holds promise for bacterial identification from blood culture (BC) broths in hospital laboratories. The most important technical step for the identification of bacteria from positive BCs by MALDI-TOF MS is sample preparation to remove blood cells and host proteins. We present a m...

  4. Modeling and Positioning of a PZT Precision Drive System

    Directory of Open Access Journals (Sweden)

    Che Liu

    2017-11-01

    Full Text Available The fact that piezoelectric ceramic transducer (PZT precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied.

  5. Modeling and Positioning of a PZT Precision Drive System.

    Science.gov (United States)

    Liu, Che; Guo, Yanling

    2017-11-08

    The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied.

  6. A cautionary note on generalized linear models for covariance of unbalanced longitudinal data

    KAUST Repository

    Huang, Jianhua Z.

    2012-03-01

    Missing data in longitudinal studies can create enormous challenges in data analysis when coupled with the positive-definiteness constraint on a covariance matrix. For complete balanced data, the Cholesky decomposition of a covariance matrix makes it possible to remove the positive-definiteness constraint and use a generalized linear model setup to jointly model the mean and covariance using covariates (Pourahmadi, 2000). However, this approach may not be directly applicable when the longitudinal data are unbalanced, as coherent regression models for the dependence across all times and subjects may not exist. Within the existing generalized linear model framework, we show how to overcome this and other challenges by embedding the covariance matrix of the observed data for each subject in a larger covariance matrix and employing the familiar EM algorithm to compute the maximum likelihood estimates of the parameters and their standard errors. We illustrate and assess the methodology using real data sets and simulations. © 2011 Elsevier B.V.

  7. Current models of positive mental health

    Directory of Open Access Journals (Sweden)

    Stanojević Dragana Z.

    2012-01-01

    Full Text Available The concept of positive mental health represents not merely the absence of mental disease but presence of high level of happiness and well-being. In this paper we mentioned shortly the earliest concept of mental health, presented by Marie Jahoda in the mid-twentieth century. After that, we described two traditions in understanding and researching of subjective well-being: hedonic and eudaimonic approach. First approach focuses on investigation of positive affects and happiness as emotional and life satisfaction as cognitive component of subjective well-being. Second tradition emphasizes potentials and competences that person develops to the highest level, in personal and social area. Both psychological and social well-being are core concept of positive mental health psychology, designated together as positive functioning. The psychological well-being comprises six dimensions: self-acceptance, positive relations with others, environmental mastery, autonomy, purpose of life and personal growth. Social well-being consists of five dimensions: social integration, social acceptance, social contribution, social actualization and social coherence. By integrating hedonic and eudaimonic well-being as well as absence of mental disease, Corey Keyes introduced concept of complete mental health. People with complete mental health have reported absence of disease during past year and presence of high level of emotional, psychological and social well-being (flourishing. People with incomplete mental health have also reported absence of mental disease but low level of positive functioning (languishing. Keyes thought there are people with complete and incomplete mental illness; both groups report presence of mental disease, but second group has high level of positive functioning. Models of positive mental health are widely used in research studies as well as in programs for prevention and promotion of mental health. .

  8. Enumeration of RNA complexes via random matrix theory

    DEFF Research Database (Denmark)

    Andersen, Jørgen E; Chekhov, Leonid O.; Penner, Robert C

    2013-01-01

    molecules and hydrogen bonds in a given complex. The free energies of this matrix model are computed using the so-called topological recursion, which is a powerful new formalism arising from random matrix theory. These numbers of RNA complexes also have profound meaning in mathematics: they provide......In the present article, we review a derivation of the numbers of RNA complexes of an arbitrary topology. These numbers are encoded in the free energy of the Hermitian matrix model with potential V(x)=x(2)/2 - stx/(1 - tx), where s and t are respective generating parameters for the number of RNA...

  9. Spacetime emergence of the robertson-walker universe from a matrix model.

    Science.gov (United States)

    Erdmenger, Johanna; Meyer, René; Park, Jeong-Hyuck

    2007-06-29

    Using a novel, string theory-inspired formalism based on a Hamiltonian constraint, we obtain a conformal mechanical system for the spatially flat four-dimensional Robertson-Walker Universe. Depending on parameter choices, this system describes either a relativistic particle in the Robertson-Walker background or metric fluctuations of the Robertson-Walker geometry. Moreover, we derive a tree-level M theory matrix model in this time-dependent background. Imposing the Hamiltonian constraint forces the spacetime geometry to be fuzzy near the big bang, while the classical Robertson-Walker geometry emerges as the Universe expands. From our approach, we also derive the temperature of the Universe interpolating between the radiation and matter dominated eras.

  10. Universality in random matrix theory and chiral symmetry breaking in QCD

    International Nuclear Information System (INIS)

    Akemann, G.

    2000-05-01

    In this work we review the topic of random matrix model universality with particular stress on its application to the study of chiral symmetry breaking in QCD. We highlight the role of microscopic and macroscopic matrix model correlation functions played in the description of the deep infrared eigenvalue spectrum of the Dirac operator. The universal microscopic correlation functions are presented for all three chiral symmetry breaking patterns, and the corresponding random matrix universality proofs are given for massless and massive fermions in a unified way. These analytic results have been widely confirmed from QCD lattice data and we present a comparison with the most recent analytic calculations describing data for dynamical SU(2) staggered fermions. The microscopic matrix model results are then re-expressed in terms of the finite-volume partition functions of Leutwyler and Smilga, where some of these expressions have been recently obtained using field theory only. The macroscopic random matrix universality is reviewed for the most simplest examples of bosonic and supersymmetric models. We also give an example for a non-universal deformation of a random matrix model - the restricted trace ensemble. (orig.)

  11. Employing Tropospheric Numerical Weather Prediction Model for High-Precision GNSS Positioning

    Science.gov (United States)

    Alves, Daniele; Gouveia, Tayna; Abreu, Pedro; Magário, Jackes

    2014-05-01

    In the past few years is increasing the necessity of realizing high accuracy positioning. In this sense, the spatial technologies have being widely used. The GNSS (Global Navigation Satellite System) has revolutionized the geodetic positioning activities. Among the existent methods one can emphasize the Precise Point Positioning (PPP) and network-based positioning. But, to get high accuracy employing these methods, mainly in real time, is indispensable to realize the atmospheric modeling (ionosphere and troposphere) accordingly. Related to troposphere, there are the empirical models (for example Saastamoinen and Hopfield). But when highly accuracy results (error of few centimeters) are desired, maybe these models are not appropriated to the Brazilian reality. In order to minimize this limitation arises the NWP (Numerical Weather Prediction) models. In Brazil the CPTEC/INPE (Center for Weather Prediction and Climate Studies / Brazilian Institute for Spatial Researches) provides a regional NWP model, currently used to produce Zenithal Tropospheric Delay (ZTD) predictions (http://satelite.cptec.inpe.br/zenital/). The actual version, called eta15km model, has a spatial resolution of 15 km and temporal resolution of 3 hours. In this paper the main goal is to accomplish experiments and analysis concerning the use of troposphere NWP model (eta15km model) in PPP and network-based positioning. Concerning PPP it was used data from dozens of stations over the Brazilian territory, including Amazon forest. The results obtained with NWP model were compared with Hopfield one. NWP model presented the best results in all experiments. Related to network-based positioning it was used data from GNSS/SP Network in São Paulo State, Brazil. This network presents the best configuration in the country to realize this kind of positioning. Actually the network is composed by twenty stations (http://www.fct.unesp.br/#!/pesquisa/grupos-de-estudo-e-pesquisa/gege//gnss-sp-network2789/). The

  12. Epoxy cracking in the epoxy-impregnated superconducting winding: nonuniform dissipation of stress energy in a wire-epoxy matrix model

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Iwasa, Y.

    1985-01-01

    The authors present the epoxy-crack-induced temperature data of copper wires imbedded in wire-epoxy resin composite model at 4.2 K. The experimental results show that the epoxy-crackinduced temperature rise is higher in the copper wires than in the epoxy matrix, indicating that in stress-induced wire-epoxy failure, stress energy stored in the wire-epoxy matrix is preferrentially dissipated in the wire. A plausible mechanism of the nonuniform dissipation is presented

  13. Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data

    Directory of Open Access Journals (Sweden)

    I. M. Ulbrich

    2009-05-01

    Full Text Available The organic aerosol (OA dataset from an Aerodyne Aerosol Mass Spectrometer (Q-AMS collected at the Pittsburgh Air Quality Study (PAQS in September 2002 was analyzed with Positive Matrix Factorization (PMF. Three components – hydrocarbon-like organic aerosol OA (HOA, a highly-oxygenated OA (OOA-1 that correlates well with sulfate, and a less-oxygenated, semi-volatile OA (OOA-2 that correlates well with nitrate and chloride – are identified and interpreted as primary combustion emissions, aged SOA, and semivolatile, less aged SOA, respectively. The complexity of interpreting the PMF solutions of unit mass resolution (UMR AMS data is illustrated by a detailed analysis of the solutions as a function of number of components and rotational forcing. A public web-based database of AMS spectra has been created to aid this type of analysis. Realistic synthetic data is also used to characterize the behavior of PMF for choosing the best number of factors, and evaluating the rotations of non-unique solutions. The ambient and synthetic data indicate that the variation of the PMF quality of fit parameter (Q, a normalized chi-squared metric vs. number of factors in the solution is useful to identify the minimum number of factors, but more detailed analysis and interpretation are needed to choose the best number of factors. The maximum value of the rotational matrix is not useful for determining the best number of factors. In synthetic datasets, factors are "split" into two or more components when solving for more factors than were used in the input. Elements of the "splitting" behavior are observed in solutions of real datasets with several factors. Significant structure remains in the residual of the real dataset after physically-meaningful factors have been assigned and an unrealistic number of factors would be required to explain the remaining variance. This residual structure appears to be due to variability in the spectra of the components

  14. Modelling the effect of diffusion into the rock matrix on radionuclide migration

    International Nuclear Information System (INIS)

    Lever, D.A.; Bradbury, M.H.; Hemingway, S.J.

    1983-01-01

    Diffusion into the rock matrix is potentially an important retardation mechanism for nuclides leached from an underground radioactive waste repository in a fractured hard rock. Models of this diffusion process are discussed and incorporated into three-dimensional radionuclide migration models. Simple solutions to these models are derived for two regions: the region near to the repository where the nuclide is diffusing into effectively infinite rock, and that much further downstream where the concentrations in the rock and fractures are almost in equilibrium. These solutions are used to evaluate the possible impact on migration. It is shown that retardation factors in excess of 100 and reductions in the peak concentration at a given point on the flow path by three or four orders of magnitude are possibe for non-sorbed ions, which would otherwise be carried by the flow and not retarded at all. (author)

  15. A matrix of social accounting for Asturias

    Directory of Open Access Journals (Sweden)

    Margarita Argüelles

    2003-01-01

    Full Text Available A Social Accounting Matrix is an integrated system of accounts that presents in a double-entry table all the transactions made in an economy among productive sectors, production factors, institutional sectors and the rest of the world. In comparison with an Input-Output Table, it offers a greater deal of information and shows completely the circular process of income, captivating more precisely the effects of exogenous changes. One of the main profits of a Social Accounting Matrix is to serve as a database for the development and application of a computable general equilibrium model. This is, in fact, the aim pursued with the elaboration of the Social Accounting Matrix for the Asturian economy presented here. This Matrix has been constructed with data from the 1995 Regional Accounts of Asturias, and its structure has been adapted to its future use as a database for a computable general equilibrium model of this regional economy.

  16. Numerical study on optimal Stirling engine regenerator matrix designs taking into account the effects of matrix temperature oscillations

    International Nuclear Information System (INIS)

    Andersen, Stig Kildegard; Carlsen, Henrik; Thomsen, Per Grove

    2006-01-01

    A new regenerator matrix design that improves the efficiency of a Stirling engine has been developed in a numerical study of the existing SM5 Stirling engine. A new, detailed, one-dimensional Stirling engine model that delivers results in good agreement with experimental data was used for mapping the performance of the engine, for mapping the effects of regenerator matrix temperature oscillations, and for optimising the regenerator design. The regenerator matrix temperatures were found to oscillate in two modes. The first mode was oscillation of a nearly linear axial matrix temperature profile while the second mode bended the ends of the axial matrix temperature profile when gas flowed into the regenerator with a temperature significantly different from the matrix temperature. The first mode of oscillation improved the efficiency of the engine but the second mode reduced both the work output and efficiency of the engine. A new regenerator with three differently designed matrix sections that amplified the first mode of oscillation and reduced the second improved the efficiency of the engine from the current 32.9 to 33.2% with a 3% decrease in power output. An efficiency of 33.0% was achievable with uniform regenerator matrix properties

  17. Exploring multicollinearity using a random matrix theory approach.

    Science.gov (United States)

    Feher, Kristen; Whelan, James; Müller, Samuel

    2012-01-01

    Clustering of gene expression data is often done with the latent aim of dimension reduction, by finding groups of genes that have a common response to potentially unknown stimuli. However, what is poorly understood to date is the behaviour of a low dimensional signal embedded in high dimensions. This paper introduces a multicollinear model which is based on random matrix theory results, and shows potential for the characterisation of a gene cluster's correlation matrix. This model projects a one dimensional signal into many dimensions and is based on the spiked covariance model, but rather characterises the behaviour of the corresponding correlation matrix. The eigenspectrum of the correlation matrix is empirically examined by simulation, under the addition of noise to the original signal. The simulation results are then used to propose a dimension estimation procedure of clusters from data. Moreover, the simulation results warn against considering pairwise correlations in isolation, as the model provides a mechanism whereby a pair of genes with `low' correlation may simply be due to the interaction of high dimension and noise. Instead, collective information about all the variables is given by the eigenspectrum.

  18. Understanding effects of matrix protease and matrix organization on directional persistence and translational speed in three-dimensional cell migration.

    Science.gov (United States)

    Zaman, Muhammad H; Matsudaira, Paul; Lauffenburger, Douglas A

    2007-01-01

    Recent studies have shown significant differences in migration mechanisms between two- and three-dimensional environments. While experiments have suggested a strong dependence of in vivo migration on both structure and proteolytic activity, the underlying biophysics of such dependence has not been studied adequately. In addition, the existing models of persistent random walk migration are primarily based on two-dimensional movement and do not account for the effect of proteolysis or matrix inhomogeneity. Using lattice Monte Carlo methods, we present a model to study the role of matrix metallo-proteases (MMPs) on directional persistence and speed. The simulations account for a given cell's ability to deform as well as to digest the matrix as the cell moves in three dimensions. Our results show a bimodal dependence of speed and persistence on matrix pore size and suggest high sensitivity on MMP activity, which is in very good agreement with experimental studies carried out in 3D matrices.

  19. Structure of ionic fluids in equilibrium with a microporous ionic matrix

    International Nuclear Information System (INIS)

    Tatlipinar, H.; Pastore, G.

    1993-07-01

    The Ornstein-Zernike equations for the structure of a fluid of positive ions in equilibrium with a disordered matrix formed by chlorine ions are solved numerically in the hypernetted-chain approximation, and the results are compared with those obtained for the corresponding molten salt at complete equilibrium. Quenching of the halogen frame in a model appropriate to CuCl enhances the delocalization of the Cu ions. A similar, though less striking, reductions in the short range order of the metal-ion components is accompanied by an enhancement of its state of intermediate-range order in models appropriate to trivalent metal halides with octahedral or tetrahedral-type coordination. (author). 13 refs, 3 figs

  20. Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Broholm, Mette Martina; Binning, Philip John

    2010-01-01

    Clayey tills contaminated with chlorinated solvents are a threat to groundwater and are difficult to remediate. A numerical model is developed for assessing leaching processes and for simulating the remediation via enhanced anaerobic dechlorination. The model simulates the transport...... to the physical processes, mainly diffusion in the matrix, than to the biogeochemical processes, when dechlorination is assumed to take place in a limited reaction zone only. The inclusion of sequential dechlorination in clay fracture transport models is crucial, as the contaminant flux to the aquifer...