Energy Technology Data Exchange (ETDEWEB)
Faraggi, A.E.
1996-08-01
Superstring phenomenology aims at achieving two goals. The first is to reproduce the observed physics of the Standard Model. The second is to identify experimental signatures of superstring unification which, if observed, will provide further evidence for the validity of superstring theory. I discuss such potential signatures of superstring unification. I propose that proton lifetime constraints imply that the Standard Model gauge group must be obtained directly at the string level. In this case the unifying gauge group, for example SO(10), is broken to the Standard Model gauge group by ``Wilson lines``. The symmetry breaking by ``Wilson line`` has important implications. It gives rise to exotic massless states which cannot fit into multiplets of the original unifying gauge group. This is an important feature because it results in conservation laws which forbid the interaction of the exotic ``Wilsonian`` states with the Standard Model states. The ``Wilsonian`` matter states then have important phenomenological implications. I discuss two such implications: exotic ``Wilsonian`` states as dark matter candidates and ``Wilsonian`` matter as the messenger sector in gauge mediated dynamical SUSY breaking scenarios.
The phenomenological movement: implications for nursing research.
Walters, A J
1995-10-01
This paper presents a comparison of the phenomenologies of Edmund Husserl and Martin Heidegger with the aim of highlighting some of the critical distinctions between these two 'schools' of phenomenology concerning the methodological implications of each approach for nursing research. Specifically, the paper examines: the implications of epistemology versus ontology; issues relating to validity; the involvement of the researcher, and aspects relating to interpretation.
Phenomenological three center model
Poenaru, D N; Gherghescu, R A; Nagame, Y; Hamilton, J H; Ramayya, A V
2001-01-01
Experimental results on ternary fission of sup 2 sup 5 sup 2 Cf suggest the existence of a short-lived quasi-molecular state. We present a three-center phenomenological model able to explain such a state by producing a new minimum in the deformation energy at a separation distance very close to the touching point. The shape parametrization chosen by us allows to describe the essential geometry of the systems in terms of one independent coordinate, namely, the distance between the heavy fragment centers. The shell correction (also treated phenomenologically) only produces quantitative effects; qualitatively it is not essential for the new minimum. Half-lives of some quasi-molecular states which could be formed in sup 1 sup 0 B accompanied fission of sup 2 sup 3 sup 6 U, sup 2 sup 3 sup 6 Pu, sup 2 sup 4 sup 6 Cm, sup 2 sup 5 sup 2 Cf, sup 2 sup 5 sup 2 sup , sup 2 sup 5 sup 6 Fm, sup 2 sup 5 sup 6 sup , sup 2 sup 6 sup 0 No, and sup 2 sup 6 sup 2 Rf are roughly estimated. (authors)
Phenomenology beyond the standard model
Energy Technology Data Exchange (ETDEWEB)
Lykken, Joseph D.; /Fermilab
2005-03-01
An elementary review of models and phenomenology for physics beyond the Standard Model (excluding supersymmetry). The emphasis is on LHC physics. Based upon a talk given at the ''Physics at LHC'' conference, Vienna, 13-17 July 2004.
Phenomenological Modeling for Langmuir Monolayers
Baptiste, Dimitri; Kelly, David; Safford, Twymun; Prayaga, Chandra; Varney, Christopher N.; Wade, Aaron
Experimentally, Langmuir monolayers have applications in molecular optical, electronic, and sensor devices. Traditionally, Langmuir monolayers are described by a rigid rod model where the rods interact via a Leonard-Jones potential. Here, we propose effective phenomenological models and utilize Monte Carlo simulations to analyze the phase behavior and compare with experimental isotherms. Research reported in this abstract was supported by UWF NIH MARC U-STAR 1T34GM110517-01.
Next Generation Transport Phenomenology Model
Strickland, Douglas J.; Knight, Harold; Evans, J. Scott
2004-01-01
This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.
Some phenomenology of intersecting D-brane models
Energy Technology Data Exchange (ETDEWEB)
Kane, Gordon L.; Kumar, Piyush; /Michigan U., MCTP; Lykken, Joseph D.; /Fermilab; Wang, Ting T.; /Michigan U., MCTP
2004-11-01
We present some phenomenology of a new class of intersecting D-brane models. Soft SUSY breaking terms for these models are calculated in the complex structure (u)-moduli dominant SUSY breaking approach (in type IIA). In this case, the dependence of the soft terms on the Yukawas and Wilson lines drops out. These soft terms have a different pattern compared to the usual heterotic string models. Phenomenological implications for dark matter are discussed.
Clinical Implications of a Phenomenological Study: Being Regarded ...
African Journals Online (AJOL)
ISSN (print) : 2079-7222. Clinical Implications of a Phenomenological Study: ..... This continued until the workplace seemed weighted under an ... elements or constituents could be identified and then ...... and diverse socio-economic backgrounds. .... Empirical and hermeneutic approaches to phenomenological research in.
From doing to performing phenomenology: implications and possibilities
Merx, S.
2011-01-01
This commentary focuses on the implications of staging phenomenological research. In my opinion the authors of ‘Performing phenomenology: negotiating presence in intermedial theatre’ missed an opportunity to stress more what W (Double U), a performance of CREW, has to offer postphenomenology and wha
Phenomenological modeling of Geometric Metasurfaces
Ye, Weimin; Xiang, Yuanjiang; Fan, Dianyuan; Zhang, Shuang
2015-01-01
Metasurfaces, with their superior capability in manipulating the optical wavefront at the subwavelength scale and low manufacturing complexity, have shown great potential for planar photonics and novel optical devices. However, vector field simulation of metasurfaces is so far limited to periodic-structured metasurfaces containing a small number of meta-atoms in the unit cell by using full-wave numerical methods. Here, we propose a general phenomenological method to analytically model metasurfaces made up of arbitrarily distributed meta-atoms based on the assumption that the meta-atoms possess localized resonances with Lorentz-Drude forms, whose exact form can be retrieved from the full wave simulation of a single element. Applied to phase modulated geometric metasurfaces, our analytical results show good agreement with full-wave numerical simulations. The proposed theory provides an efficient method to model and design optical devices based on metasurfaces.
Battistel, O. A.; Pimenta, T. H.; Dallabona, G.
2016-10-01
In the present work we consider the phenomenological consequences of a predictive formulation of the Nambu-Jona-Lasinio (NJL) model at the one loop level of perturbative calculations. The investigation reported here can be considered as an extension of previously made ones on the same issue. In the study made in this work we have included vector and tensor couplings, simultaneously, as well as S U (2 ) isospin symmetry breaking terms. As a consequence of the last ingredient mentioned, there are different masses in the model amplitudes. In spite of this, within the context of the adopted procedure, we verify that it is possible to eliminate unphysical dependencies on the arbitrary choices for the routing of internal lines momenta as well as Ward identities violating contributions and scale ambiguous terms, from the corresponding one loop amplitudes, through the simple and universal Consistency Relations. The total content of divergence of the amplitudes is reduced to only two basic divergent objects. They are related to two inputs of the model in a way that, due to their scale properties, an unique arbitrariness remains. However, due to the critical condition found in the mechanism which generates the constituent quark mass, within our approach, this arbitrariness is also removed turning the model predictive in the sense that its phenomenological consequences is not dependent in possible choices made in intermediary steps of the calculations, as occurs in usual treatments. In this scenario, we investigate the most typical static properties of the scalar, pseudoscalar, vector and axial-vector mesons at low-energy. Special attention is given to the consequences of the S U (2 ) isospin symmetry breaking for the phenomenological predictions. The implications of the tensor couplings for the model observables, which can be considered an original contribution of the present work, at the level of the content and not only in the form, is analyzed in a detailed way. The found
Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Feng, Jonathan L. [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States); Moroi, Takeo [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States)
2000-05-01
We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: M{sub aux}, m{sub 0}, tan {beta}, and sgn({mu}). The renormalization group equations exhibit a novel ''focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b{yields}s{gamma}, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron. (c) 2000 The American Physical Society.
Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking
Feng, Jonathan L.; Moroi, Takeo
2000-05-01
We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: Maux, m0, tan β, and sgn(μ). The renormalization group equations exhibit a novel ``focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b-->sγ, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron.
Nelson, Barnaby; Sass, Louis A; Skodlar, Borut
2009-01-01
The early intervention movement for treatment of schizophrenia and other psychotic disorders has extended to include pharmacological and psychological treatment of putatively prodromal (or 'ultra-high risk') patients. The psychotherapy that has been trialed to date is cognitive-behaviour therapy (CBT), due to its apparent success with patients with established psychotic disorder and its current popularity as a therapeutic modality. This paper presents phenomenological models of psychotic, particularly schizophrenic, vulnerability, which emphasise a disturbed basic sense of self (ipseity) and intersubjectivity. We argue that these phenomenological models indicate that CBT may not be the most suitable therapy for prodromal patients, and may even be counterproductive. A central element of this argument is that CBT's emphasis on cognitive reflection and challenging may encourage a core pathological process in these patients (hyper-reflexive awareness). The paper explores alternatives for psychotherapy that emerge from phenomenological accounts of psychosis, while recognising the paradoxical aspects of psychotherapy with these patients. These alternatives include strategies that provide an intersubjective space where patients can evolve a more robust pre-reflective self-awareness (first-person perspective), second-person perspective and experience of trustworthy relationships when encountering others, empathic attunement afforded by the phenomenological approach's sensitivity to psychotic experience, and strategies that encourage a form of immersion or absorption in present activity, including mindfulness and creative 'flow'. We also suggest the possible value of combining therapeutic modalities (even ones that may seem contradictory) and of the need to empirically test therapeutic strategies other than CBT in the ultra-high risk population.
The tilt illusion: phenomenology and functional implications.
Clifford, Colin W G
2014-11-01
The perceived orientation of a line or grating is affected by the orientation structure of the surrounding image: the tilt illusion. Here, I offer a selective review of the literature on the tilt illusion, focusing on functional aspects. The review explores the merits of mechanistic accounts of the tilt illusion based upon sensory gain control in which neuronal responses are normalized by the pooled activity of other units. The role of inhibition between orientation-selective neurons is discussed, and it is argued that their associated disinhibition must also be taken into account in order to model the full angular dependence of the tilt illusion on surround orientation. Parallels are drawn with adaptation as modulation by the temporal rather than spatial context within which an image fragment is processed. The chromatic selectivity of the tilt illusion and the extent of its dependence on the visibility of the surround are used to infer characteristics of the neuronal normalization pools and the loci in the cortical processing hierarchy at which gain control operates. Finally, recent evidence is discussed as to the possible clinical relevance of the tilt illusion as a biomarker for schizophrenia.
Electroweak and Strong Interactions Phenomenology, Concepts, Models
Scheck, Florian
2012-01-01
Electroweak and Strong Interaction: Phenomenology, Concepts, Models, begins with relativistic quantum mechanics and some quantum field theory which lay the foundation for the rest of the text. The phenomenology and the physics of the fundamental interactions are emphasized through a detailed discussion of the empirical fundamentals of unified theories of strong, electromagnetic, and weak interactions. The principles of local gauge theories are described both in a heuristic and a geometric framework. The minimal standard model of the fundamental interactions is developed in detail and characteristic applications are worked out. Possible signals of physics beyond that model, notably in the physics of neutrinos are also discussed. Among the applications scattering on nucleons and on nuclei provide salient examples. Numerous exercises with solutions make the text suitable for advanced courses or individual study. This completely updated revised new edition contains an enlarged chapter on quantum chromodynamics an...
Photochemical Phenomenology Model for the New Millennium
Bishop, James; Evans, J. Scott
2001-01-01
The "Photochemical Phenomenology Model for the New Millennium" project tackles the issue of reengineering and extension of validated physics-based modeling capabilities ("legacy" computer codes) to application-oriented software for use in science and science-support activities. While the design and architecture layouts are in terms of general particle distributions involved in scattering, impact, and reactive interactions, initial Photochemical Phenomenology Modeling Tool (PPMT) implementations are aimed at construction and evaluation of photochemical transport models with rapid execution for use in remote sensing data analysis activities in distributed systems. Current focus is on the Composite Infrared Spectrometer (CIRS) data acquired during the CASSINI flyby of Jupiter. Overall, the project has stayed on the development track outlined in the Year 1 annual report and most Year 2 goals have been met. The issues that have required the most attention are: implementation of the core photochemistry algorithms; implementation of a functional Java Graphical User Interface; completion of a functional CORBA Component Model framework; and assessment of performance issues. Specific accomplishments and the difficulties encountered are summarized in this report. Work to be carried out in the next year center on: completion of testing of the initial operational implementation; its application to analysis of the CASSINI/CIRS Jovian flyby data; extension of the PPMT to incorporate additional phenomenology algorithms; and delivery of a mature operational implementation.
Quark Models and Quark Phenomenology
Lipkin, Harry Jeannot
1997-01-01
Overwhelming experimental evidence for quarks as real physical constituents of hadrons along with the QCD analogs of the Balmer Formula, Bohr Atom and Schroedinger Equation already existed in 1966. A model of colored quarks interacting with a one-gluon-exchange potential explained the systematics of the meson and baryon spectrum and gave a hadron mass formula in surprising agreement with experiment. The simple quark model dismissed as heresy and witchcraft by the establishment predicted quantum numbers of an enormous number of hadronic states as well as relations between masses, reaction cross sections and electromagnetic properties, all unexplained by other approaches. Further developments leading to QCD included confinement in the large $N_c$ limit, duality, dual resonance and string models, high energy scattering systematics, unified treatment of mesons and baryons, no exotics and no free quarks.
Phenomenological analysis of the interacting boson model
Hatch, R. L.; Levit, S.
1982-01-01
The classical Hamiltonian of the interacting boson model is defined and expressed in terms of the conventional quadrupole variables. This is used in the analyses of the dynamics in the various limits of the model. The purpose is to determine the range and the features of the collective phenomena which the interacting boson model is capable of describing. In the commonly used version of the interacting boson model with one type of the s and d bosons and quartic interactions, this capability has certain limitations and the model should be used with care. A more sophisticated version of the interacting boson model with neutron and proton bosons is not discussed. NUCLEAR STRUCTURE Interacting bosons, classical IBM Hamiltonian in quadrupole variables, phenomenological content of the IBM and its limitations.
Rougier, E.; Knight, E. E.
2015-12-01
The Source Physics Experiments (SPE) is a project funded by the U.S. Department of Energy at the National Nuclear Security Site. The project consists of a series of underground explosive tests designed to gain more insight on the generation and propagation of seismic energy from underground explosions in hard rock media, granite. Until now, four tests (SPE-1, SPE-2, SPE-3 and SPE-4Prime) with yields ranging from 87 kg to 1000 kg have been conducted in the same borehole. The generation and propagation of seismic waves is heavily influenced by the different damage mechanisms occurring at different ranges from the explosive source. These damage mechanisms include pore crushing, compressive (shear) damage, joint damage, spallation and fracture and fragmentation, etc. Understanding these mechanisms and how they interact with each other is essential to the interpretation of the characteristics of close-in seismic observables. Recent observations demonstrate that, for relatively small and shallow chemical explosions in granite, such as SPE-1, -2 and -3, the formation of a cavity around the working point is not the main mechanism responsible for the release of seismic moment. Shear dilatancy (bulking occurring as a consequence of compressive damage) of the medium around the source has been proposed as an alternative damage mechanism that explains the seismic moment release observed in the experiments. In this work, the interaction between cavity formation and bulking is investigated via a series of computer simulations for the SPE-2 event. The simulations are conducted using a newly developed material model, called AZ_Frac. AZ_Frac is a continuum-based-visco-plastic strain-rate-dependent material model. One of its key features is its ability to describe continuum fracture processes, while properly handling anisotropic material characteristics. The implications of the near source numerical results on the close-in seismic quantities, such as reduced displacement potentials
The flavour of supersymmetry: Phenomenological implications of sfermion mixing
Arana-Catania, M
2013-01-01
We study the phenomenological implications of sfermion flavour mixing in supersymmetry in the context of Non-Minimal Flavour Violation (NMFV). We study the general flavour mixing hypothesis, parametrizing the squark and slepton mass matrices by a complete set of delta^XY_ij (X,Y=L,R; i,j= t,c,u or b,s,d for squarks/1,2,3 for sleptons). With respect to the squark sector, we study the behaviour of the B-physics observables BR(B -> Xs gamma), BR(Bs -> mu+ mu-) and delta M_B_s and update the constraints to the delta parameters coming from them. We present one-loop corrections to the Higgs boson masses in the MSSM with NMFV in the squark sector, and taking into account the previous constraints we evaluate them, finding sizable corrections, exceeding sometimes tens of GeV for the light Higgs boson. These corrections might be used to set further constraints on the delta parameters from the Higgs boson mass measurement. With respect to the slepton sector, we explore the implications on charged lepton flavour violatin...
Phenomenological model for light-projectile breakup
Kalbach, C.
2017-01-01
Background: Projectile breakup can make a large contribution to reactions induced by projectiles with mass numbers 2, 3, and 4, yet there is no global model for it and no clear agreement on the details of the reaction mechanism. Purpose: This project aims to develop a phenomenological model for light-projectile breakup that can guide the development of detailed theories and provide a useful tool for applied calculations. Method: An extensive database of double-differential cross sections for the breakup of deuterons, 3He ions, and α particles was assembled from the literature and analyzed in a consistent way. Results: Global systematics for the centroid energies, peak widths, and angular distributions of the breakup peaks have been extracted from the data. The dominant mechanism appears to be absorptive breakup, where the unobserved projectile fragment fuses with the target nucleus during the initial interaction. The global target-mass-number and incident-energy dependencies of the absorptive breakup cross section have also been determined, along with channel-specific normalization constants. Conclusions: Results from the model generally agree with the original data after subtraction of a reasonable underlying continuum. Absorptive breakup can account for as much as 50%-60% of the total reaction cross section.
Photochemical Phenomenology Model for the New Millenium
Bishop, James; Evans, J. Scott
2000-01-01
This project tackles the problem of conversion of validated a priori physics-based modeling capabilities, specifically those relevant to the analysis and interpretation of planetary atmosphere observations, to application-oriented software for use in science and science-support activities. The software package under development, named the Photochemical Phenomenology Modeling Tool (PPMT), has particular focus on the atmospheric remote sensing data to be acquired by the CIRS instrument during the CASSINI Jupiter flyby and orbital tour of the Saturnian system. Overall, the project has followed the development outline given in the original proposal, and the Year 1 design and architecture goals have been met. Specific accomplishments and the difficulties encountered are summarized in this report. Most of the effort has gone into complete definition of the PPMT interfaces within the context of today's IT arena: adoption and adherence to the CORBA Component Model (CCM) has yielded a solid architecture basis, and CORBA-related issues (services, specification options, development plans, etc.) have been largely resolved. Implementation goals have been redirected somewhat so as to be more relevant to the upcoming CASSINI flyby of Jupiter, with focus now being more on data analysis and remote sensing retrieval applications.
Constituent quark model description of charmonium phenomenology
Segovia, J; Fernandez, F; Hernandez, E
2013-01-01
We review how quark models are able to describe the phenomenology of the charm meson sector. The spectroscopy and decays of charmonium and open charm mesons are described in a particular quark model and compared with the data and the results of other existing models in the literature. A quite reasonable global description of the heavy meson spectra is reached. A new assignment of the $\\psi(4415)$ resonance as a 3D state leaving aside the 4S state to the X(4360) is tested through the analysis of the resonance structure in $e^{+}e^{-}$ exclusive reactions around the $\\psi(4415)$ energy region. We make tentative assignments of some of the $XYZ$ mesons. To elucidate the structure of the $1^{+}$ $c\\bar{s}$ states, i.e. $D_{s1}(2460)$ and $D_{s1}(2536)$, we study the strong decay properties of the $D_{s1}(2536)$ meson. We also perform a calculation of the branching fractions for the semileptonic decays of $B$ and $B_{s}$ mesons into final states containing orbitally excited charmed and charmed-strange mesons, which...
Interpretive and Critical Phenomenological Crime Studies: A Model Design
Miner-Romanoff, Karen
2012-01-01
The critical and interpretive phenomenological approach is underutilized in the study of crime. This commentary describes this approach, guided by the question, "Why are interpretive phenomenological methods appropriate for qualitative research in criminology?" Therefore, the purpose of this paper is to describe a model of the interpretive…
Phenomenology of non-universal gaugino masses and implications for the Higgs boson decay
Indian Academy of Sciences (India)
K Huitu; J Laamanen; P N Pandita; Sourov Roy
2007-11-01
Grand unified theories (GUTs) can lead to non-universal gaugino masses at the unification scale. We study the implications of such non-universal gaugino masses for the composition of the lightest neutralino in supersymmetric (SUSY) theories based on (5) gauge group. We also consider the phenomenological implications of non-universal gaugino masses for the phenomenology of Higgs bosons in the context of large hadron collider.
LHC phenomenology of supersymmetric models beyond the MSSM
Porod, Werner
2010-01-01
We discuss various phenomenological aspects of supersymmetric models beyond the MSSM. A particular focus is on models which can correctly explain neutrino data and the possiblities of LHC to identify the underlying scenario.
Model building and phenomenology in supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Kim Jong Soo
2008-09-15
Supersymmetry (SUSY) stabilizes the hierarchy between the electroweak scale and the scale of grand unified theories (GUT) or the Planck scale. The simplest supersymmetric extension of the SM, the minimal supersymmetric SM (MSSM) solves several phenomenological problems, e. g. the gauge couplings unify and the lightest supersymmetric particle (LSP) is a dark matter candidate. In this thesis, Jarlskog invariants, squark pair production at the LHC and massive neutrinos are discussed in the framework of the MSSM and its extensions. (orig.)
How to develop a phenomenological model of disability
DEFF Research Database (Denmark)
Martiny, Kristian Møller Moltke
2015-01-01
During recent decades various researchers from health and social sciences have been debating what it means for a person to be disabled. A rather overlooked approach has developed alongside this debate, primarily inspired by the philosophical tradition called phenomenology. This paper develops...... a phenomenological model of disability by arguing for a different methodological and conceptual framework from that used by the existing phenomenological approach. The existing approach is developed from the phenomenology of illness, but the paper illustrates how the case of congenital disabilities, looking...... at the congenital disorder called cerebral palsy (CP), presents a fundamental problem for the approach. In order to understand such congenital cases as CP, the experience of disability is described as being gradually different from, rather than a disruption of, the experience of being abled, and it is argued...
Phenomenological Implications of an S4 x SU(5) SUSY GUT of Flavour
Dimou, Maria; Luhn, Christoph
2015-01-01
We discuss the low energy phenomenological implications of an SU(5) Supersymmetric Grand Unified Theory (SUSY GUT) whose flavour structure is controlled by the family symmetry S4 x U(1), which provides a good description of all quark and lepton masses, mixings as well as CP violation. Although the model closely mimics Minimal Flavour Violation (MFV) as shown in arXiv:1511.07886, here we focus on the differences. We first present numerical estimates of the low energy mass insertion parameters, including canonical normalisation and renormalisation group running, for well-defined ranges of SUSY parameters and compare the naive model expectations to the numerical scans and the experimental bounds. Our results are then used to estimate the predictions for Electric Dipole Moments (EDMs), Lepton Flavour Violation (LFV), B and K meson mixing as well as rare B decays. The largest observable deviations from MFV come from the LFV process mu --> e gamma and the EDMs.
Curiel, A M; Temes, D; Curiel, Ana M.; Herrero, Maria J.; Temes, David
2003-01-01
We consider a plausible scenario in the Minimal Supersymmetric Standard Model (MSSM) where all the genuine supersymmetric (SUSY) particles are heavier than the electroweak scale. In this situation, indirect searches via their radiative corrections to low energy observables are complementary to direct searches, and they can be crucial if the SUSY masses are at the TeV energy range. We summarize the most relevant heavy SUSY radiative effects in Higgs boson physics and emphasize those that manifest a non-decoupling behaviour. We focus, in particular, on the SUSY-QCD non-decoupling effects in fermionic Higgs decays, flavour changing Higgs decays and Yukawa couplings. Some of their phenomenological implications at future colliders are also studied.
The Spectral Quark Model and Light Cone Phenomenology
Ruiz-Arriola, E; Broniowsk, Wojciech
2003-01-01
Chiral quark models offer a practical and simple tool to describe covariantly both low and high energy phenomenology in combination with QCD evolution. This can be done in full harmony with chiral symmetry and electromagnetic gauge invariance. We review the recently proposed spectral quark model where all these constraints are implemented.
Perturbation to TBM mixing and its phenomenological implications
M., Sruthilaya
2016-01-01
To accommodate the recently observed non-zero reactor mixing angle $\\theta_{13}$, we consider the lepton mixing matrix as Tri-bimaximal mixing (TBM) form in the leading order along with a perturbation in neutrino sector. The perturbation is taken to be a rotation in 23 plane followed by a rotation in 13 plane, i.e., $R_{23}(\\theta_{23}')R_{13}(\\theta_{13}',\\phi)$. We obtain the allowed values of the parameters $\\theta_{23}'$, $\\theta_{13}'$ and $\\phi$, which can accommodate all the observed mixing angles consistently and calculate the phenomenological observables such as the Dirac CP violating phase ($\\delta_{CP}$), Jarlskog invariant ($J_{CP}$), effective majorana mass $M_{ee}^{\
Phenomenology of the minimal $SO(10)$ SUSY model
Indian Academy of Sciences (India)
Stuart Raby
2004-02-01
In this talk I define what I call the minimal $SO(10)$ SUSY model. I then discuss the phenomenological consequences of this theory, vis-a-vis gauge and Yukawa coupling unification, Higgs and super-particle masses, the anomalous magnetic moment of the muon, the decay $B_{s}→ ^{+}^{-}$ and dark matter.
The theory and phenomenology of coloured quark models
Close, F E
1975-01-01
A general introduction to coloured quark models is given and their phenomenology is described with particular reference to the new particles. It is shown that there are essentially three types of colour models with colour excitation when the colour group is SU(3)- Han-Nambu, Greenberg and a model which has the same charges as that of Tati and which can be thought of as the Gell-Mann colour scheme with excitation of the colour degrees of freedom. Particular attention is paid to the four problems of colour models for psi phenomenology-the radiative decays, the G parity conservation, the lack of deep inelastic threshold phenomena and the apparent discovery of dileptons at SPEAR. (40 refs).
How to develop a phenomenological model of disability.
Martiny, Kristian Moltke
2015-11-01
During recent decades various researchers from health and social sciences have been debating what it means for a person to be disabled. A rather overlooked approach has developed alongside this debate, primarily inspired by the philosophical tradition called phenomenology. This paper develops a phenomenological model of disability by arguing for a different methodological and conceptual framework from that used by the existing phenomenological approach. The existing approach is developed from the phenomenology of illness, but the paper illustrates how the case of congenital disabilities, looking at the congenital disorder called cerebral palsy (CP), presents a fundamental problem for the approach. In order to understand such congenital cases as CP, the experience of disability is described as being gradually different from, rather than a disruption of, the experience of being abled, and it is argued that the experience of disability is complex and dynamically influenced by both intrinsic and extrinsic factors. Different experiential aspects of disability- pre-reflective, attuned and reflective aspects-are described, demonstrating that the experience of disability comes in different degrees. Overall, this paper contributes to the debates about disability by further describing the personal aspects and experience of persons living with disabilities.
Bridging Mechanistic and Phenomenological Models of Complex Biological Systems
Transtrum, Mark K.; Qiu, Peng
2016-01-01
The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM) as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior. PMID:27187545
Electroweak Phenomenology Beyond The Standard Model
Maybury, D W
2005-01-01
This thesis examines low energy consequences of extensions of the Standard Model that call for new particle content and symmetries. In particular, we examine the ramifications of new scalar interactions on pion physics, of induced lepton flavour violation (LFV) in the constrained minimal supersymmetric standard model (CMSSM) with seesaw generated neutrino masses, and of induced LFV in lopsided SO(10) models. New interactions with Lorentz scalar structure, arising from physics beyond the standard model of electroweak interactions, will induce effective pseudoscalar interactions after renormalization by weak interaction loop corrections. Such induced pseudoscalar interactions are strongly constrained by data on π ± → ± lνl decay. These limits on induced pseudoscalar interactions imply limits on the underlying fundamental scalar interactions that in many cases are substantially stronger than limits on scalar interactions from direct, β-decay searches. The see...
Flavor Mixing Phenomenology in Supersymmetric Models
Rehman, Muhammad
2016-01-01
This dissertation investigates the flavor mixing effects in supersymmetric models on electroweak precision observables, Higgs boson mass predictions, B-physics observables, quark flavor violating Higgs decays, lepton flavor violating charged lepton decays and lepton flavor violating Higgs decays. The flavor mixing effects are studied in model independent way i.e. by putting off-diagonal entries in the sfermion mass matrix by hand as well as in the minimal flavor violating constrained MSSM, where mixing can originate from CKM matrix in the case of squarks and from PMNS matrix in the case of sleptons. We found that flavor mixing can have large impact to some observables, enabling us to put new constraints on parameter space in supersymmetric models.
Higgs phenomenology beyond the Standard Model
Logan, Heather E
2011-01-01
Detection of a signal in one of the standard LHC Higgs search channels does not guarantee that the particle discovered is the Standard Model (SM) Higgs. In this talk I survey some general classes of alternatives and ways to tell them apart.
Barrier traversal times using a phenomenological track formation model
Palao, J P; Brouard, S; Jadczyk, A
1997-01-01
A phenomenological model for a measurement of barrier traversal times for particles is proposed. Two idealized detectors for passage and arrival provide entrance and exit times for the barrier traversal. The averaged traversal time is computed over the ensemble of particles detected twice, before and after the barrier. The Hartman effect can still be found when passage detectors that conserve the momentum distribution of the incident packet are used.
Phenomenology of the Utilitarian Supersymmetric Standard Model
Fraser, Sean; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza
2016-01-01
We study the 2010 specific version of the 2002 proposed $U(1)_X$ extension of the supersymmetric standard model, which has no $\\mu$ term and conserves baryon number and lepton number separately and automatically. We consider in detail the scalar sector as well as the extra $Z_X$ gauge boson, and their interactions with the necessary extra color-triplet particles of this model, which behave as leptoquarks. We show how the diphoton excess at 750 GeV, recently observed at the LHC, may be explained within this context. We identify a new fermion dark-matter candidate and discuss its properties. An important byproduct of this study is the discovery of relaxed supersymmetric constraints on the Higgs boson's mass of 125 GeV.
Phenomenology of the utilitarian supersymmetric standard model
Fraser, Sean; Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza
2016-08-01
We study the 2010 specific version of the 2002 proposed U(1)X extension of the supersymmetric standard model, which has no μ term and conserves baryon number and lepton number separately and automatically. We consider in detail the scalar sector as well as the extra ZX gauge boson, and their interactions with the necessary extra color-triplet particles of this model, which behave as leptoquarks. We show how the diphoton excess at 750 GeV, recently observed at the LHC, may be explained within this context. We identify a new fermion dark-matter candidate and discuss its properties. An important byproduct of this study is the discovery of relaxed supersymmetric constraints on the Higgs boson's mass of 125 GeV.
PHENOMENOLOGICAL DAMAGE MODELS OF ANISOTROPIC STRUCTURAL MATERIALS
Bobyr, M.; Khalimon, O.; Bondarets, O.
2015-01-01
Damage in metals is mainly the process of the initiation and growth of voids. A formulation for anisotropic damage is established in the framework of the principle of strain equivalence, principle of increment complementary energy equivalence and principle of elastic energy equivalence. This paper presents the development of an anisotropic damage theory. This work is focused on the development of evolution anisotropic damage models which is based on a Young’s modulus/Poisson’s ratio change of...
Mental Imagery in Depression: Phenomenology, Potential Mechanisms, and Treatment Implications.
Holmes, Emily A; Blackwell, Simon E; Burnett Heyes, Stephanie; Renner, Fritz; Raes, Filip
2016-01-01
Mental imagery is an experience like perception in the absence of a percept. It is a ubiquitous feature of human cognition, yet it has been relatively neglected in the etiology, maintenance, and treatment of depression. Imagery abnormalities in depression include an excess of intrusive negative mental imagery; impoverished positive imagery; bias for observer perspective imagery; and overgeneral memory, in which specific imagery is lacking. We consider the contribution of imagery dysfunctions to depressive psychopathology and implications for cognitive behavioral interventions. Treatment advances capitalizing on the representational format of imagery (as opposed to its content) are reviewed, including imagery rescripting, positive imagery generation, and memory specificity training. Consideration of mental imagery can contribute to clinical assessment and imagery-focused psychological therapeutic techniques and promote investigation of underlying mechanisms for treatment innovation. Research into mental imagery in depression is at an early stage. Work that bridges clinical psychology and neuroscience in the investigation of imagery-related mechanisms is recommended.
Phenomenological Hints from a Class of String Motivated Model Constructions
Directory of Open Access Journals (Sweden)
Hans Peter Nilles
2015-01-01
Full Text Available We use string theory constructions towards the generalisation of the supersymmetric standard model of strong and electroweak interactions. Properties of the models depend crucially on the location of fields in extradimensional compact space. This allows us to extract some generic lessons for the phenomenological properties of the low energy effective action. Within this scheme we present a compelling model based on local grand unification and mirage mediation of supersymmetry breakdown. We analyse the properties of the specific model towards its possible tests at the LHC and the complementarity to direct dark matter searches.
Progress in studying scintillator proportionality: Phenomenological model
Energy Technology Data Exchange (ETDEWEB)
Bizarri, Gregory; Cherepy, Nerine; Choong, Woon-Seng; Hull, Giulia; Moses, William; Payne, Sephen; Singh, Jai; Valentine, John; Vasilev, Andrey; Williams, Richard
2009-04-30
We present a model to describe the origin of non-proportional dependence of scintillator light yield on the energy of an ionizing particle. The non-proportionality is discussed in terms of energy relaxation channels and their linear and non-linear dependences on the deposited energy. In this approach, the scintillation response is described as a function of the deposited energy deposition and the kinetic rates of each relaxation channel. This mathematical framework allows both a qualitative interpretation and a quantitative fitting representation of scintillation non-proportionality response as function of kinetic rates. This method was successfully applied to thallium doped sodium iodide measured with SLYNCI, a new facility using the Compton coincidence technique. Finally, attention is given to the physical meaning of the dominant relaxation channels, and to the potential causes responsible for the scintillation non-proportionality. We find that thallium doped sodium iodide behaves as if non-proportionality is due to competition between radiative recombinations and non-radiative Auger processes.
Multiscale modeling of complex materials phenomenological, theoretical and computational aspects
Trovalusci, Patrizia
2014-01-01
The papers in this volume deal with materials science, theoretical mechanics and experimental and computational techniques at multiple scales, providing a sound base and a framework for many applications which are hitherto treated in a phenomenological sense. The basic principles are formulated of multiscale modeling strategies towards modern complex multiphase materials subjected to various types of mechanical, thermal loadings and environmental effects. The focus is on problems where mechanics is highly coupled with other concurrent physical phenomena. Attention is also focused on the historical origins of multiscale modeling and foundations of continuum mechanics currently adopted to model non-classical continua with substructure, for which internal length scales play a crucial role.
Twist decomposition of Drell-Yan structure functions: phenomenological implications
Brzeminski, Dawid; Sadzikowski, Mariusz; Stebel, Tomasz
2016-01-01
The forward Drell--Yan process in $pp$ scattering at the LHC at $\\sqrt{S}=14$ TeV is considered. We analyze the Drell--Yan structure functions assuming the dominance of a Compton-like emission of a virtual photon from a fast quark scattering off the small $x$ gluons. The color dipole framework is applied to perform quantitatively the twist decomposition of all the Drell--Yan structure functions. Two models of the color dipole scattering are applied: the Golec-Biernat--W\\"{u}sthoff model and the dipole cross section obtained from the Balitsky--Fadin--Kuraev--Lipatov evolution equation. The two models have essentially different higher twist content and the gluon transverse momentum distribution and lead to different significant effects beyond the collinear leading twist description. It is found that the gluon transverse momentum effects are significant in the Drell--Yan structure functions for all Drell--Yan pair masses $M$, and the higher twist effects become important for $M \\lesssim 10$ GeV. It is found that...
Twist decomposition of Drell-Yan structure functions: phenomenological implications
Brzemiński, Dawid; Motyka, Leszek; Sadzikowski, Mariusz; Stebel, Tomasz
2017-01-01
The forward Drell-Yan process in pp scattering at the LHC at √{S} = 14 TeV is considered. We analyze the Drell-Yan structure functions assuming the dominance of a Compton-like emission of a virtual photon from a fast quark scattering off the small x gluons. The color dipole framework is applied to perform quantitatively the twist decomposition of all the Drell-Yan structure functions. Two models of the color dipole scattering are applied: the Golec-Biernat-Wüsthoff model and the dipole cross section obtained from the Balitsky-Fadin-Kuraev-Lipatov evolution equation. The two models have essentially different higher twist content and the gluon transverse momentum distribution and lead to different significant effects beyond the collinear leading twist description. It is found that the gluon transverse momentum effects are significant in the Drell-Yan structure functions for all Drell-Yan pair masses M, and the higher twist effects become important for M ≲ 10GeV. It is found that the structure function W TT related to the A 2 angular coefficient and the Lam-Tung observable A 0 - A 2 are particularly sensitive to the gluon k T effects and to the higher twist effects. A procedure is suggested how to disentangle the higher twist effects from the gluon transverse momentum effects.
Phenomenological modeling of long range noncontact friction in micro- and nanoresonators
Energy Technology Data Exchange (ETDEWEB)
Gusso, Andre [Departamento de Ciencias Exatas-EEIMVR, Universidade Federal Fluminense, Volta Redonda, 27255-125 RJ (Brazil)
2011-09-15
Motivated by the results of an experiment using atomic force microscopy performed by Gotsmann and Fuchs [Phys. Rev. Lett. 86, 2597 (2001)], where a strong energy loss due to the tip-sample interaction was measured, we investigate the potential implications of this energy loss channel to the quality factor of suspended micro- and nanoresonators. Because the observed tip-sample dissipation remains without a satisfactory theoretical explanation, two phenomenological models are proposed to generalize the experimental observations. In the minimal phenomenological model the range of validity of the power law found experimentally for the damping coefficient is assumed to be valid for larger separations. A more elaborate phenomenological model assumes that the noncontact friction is a consequence of the Casimir force acting between the closely spaced surfaces. Both models provide quantitative results for the noncontact friction between any two objects which are then used to estimate the energy loss for suspended bar micro- and nanoresonators. It is concluded that the energy loss due to the unknown mechanism has the potential to seriously restrict the quality factor of both micro- and nanoresonators.
Identification and communication of uncertainties of phenomenological models in PSA
Energy Technology Data Exchange (ETDEWEB)
Pulkkinen, U.; Simola, K. [VTT Automation (Finland)
2001-11-01
This report aims at presenting a view upon uncertainty analysis of phenomenological models with an emphasis on the identification and documentation of various types of uncertainties and assumptions in the modelling of the phenomena. In an uncertainty analysis, it is essential to include and document all unclear issues, in order to obtain a maximal coverage of unresolved issues. This holds independently on their nature or type of the issues. The classification of uncertainties is needed in the decomposition of the problem and it helps in the identification of means for uncertainty reduction. Further, an enhanced documentation serves to evaluate the applicability of the results to various risk-informed applications. (au)
Collider Phenomenology of the 3-3-1 Model
Cao, Qing-Hong
2016-01-01
We study collider phenomenology of the so-called 331 model with $SU(3)_C\\otimes SU(3)_L\\otimes U(1)_X$ gauge structure at the large hadron collider, including single and double Higgs boson productions, Higgs boson rare decay, $Z^\\prime$ boson production, new charged gauge boson pair production, and heavy quark pair production. We discuss all the possible collider signatures of new particle productions. Four benchmark 331 models, $\\beta=\\pm \\sqrt{3}$ and $\\beta=\\pm 1/\\sqrt{3}$, are studied in this work.
Phenomenology of the Little Higgs model with X-Parity
Freitas, A; Wyler, D
2009-01-01
In the popular littlest Higgs model, T-parity can be broken by Wess-Zumino-Witten (WZW) terms induced by a strongly coupled UV completion. On the other hand, certain models with multiple scalar multiplets (called moose models) permit the implementation of an exchange symmetry (X-parity) such that it is not broken by the WZW terms. Here we present a concrete and realistic construction of such a model. The little Higgs model with X-Parity is a concrete and realistic implementation of this idea. In this contribution, the properties of the model are reviewed and the collider phenomenology is discussed in some detail. We also present new results on the decay properties and LHC signatures of the light triplet scalars that are predicted by this model.
Phenomenological models of the dynamics of muscle during isotonic shortening.
Yeo, Sang Hoon; Monroy, Jenna A; Lappin, A Kristopher; Nishikawa, Kiisa C; Pai, Dinesh K
2013-09-27
We investigated the effectiveness of simple, Hill-type, phenomenological models of the force-length-velocity relationship for simulating measured length trajectories during muscle shortening, and, if so, what forms of the model are most useful. Using isotonic shortening data from mouse soleus and toad depressor mandibulae muscles, we showed that Hill-type models can indeed simulate the shortening trajectories with sufficiently good accuracy. However, we found that the standard form of the Hill-type muscle model, called the force-scaling model, is not a satisfactory choice. Instead, the results support the use of less frequently used models, the f-max scaling model and force-scaling with parallel spring, to simulate the shortening dynamics of muscle.
Phenomenology of Left-Right Models in the quark sector
Silva, Luiz Vale
2016-01-01
A natural avenue to extend the Standard Model (SM) is to embed it into a more symmetric framework. Here, I focus in Left-Right (LR) Models, which treat left- and right-handed chiralities on equal footing. Important information about the structure of LR Models comes from meson-mixing observables. Due to the impact of the new contributions to these processes, I consider the calculation of the short-distance QCD effects correcting the LR Model contributions to meson-mixing observables at the Next-to-Leading Order. I then revisit the phenomenology of a simple realization of LR Models, containing doublet scalars, and combine in a global fit electroweak precision observables, direct searches of the new gauge bosons and meson oscillation observables, a task performed within the CKMfitter statistical framework. Finally, I also cover a different issue, namely the modeling of theoretical uncertainties, a class of uncertainties specially important for flavour physics. Different frequentist schemes are compared, and thei...
Phenomenology of S_4 Flavor Symmetric extra U(1) model
Daikoku, Yasuhiro
2013-01-01
We study several phenomenologies of an E_6 inspired extra U(1) model with S_4 flavor symmetry. With the assignment of left-handed quarks and leptons to S_4-doublet, SUSY flavor problem is softened. As the extra Higgs bosons are neutrinophilic, baryon number asymmetry in the universe is realized by leptogenesis without causing gravitino overproduction. We find that the allowed region for the lightest chargino mass is given by 100-140 GeV, if the dark matter is a singlino dominated neutralino whose mass is about 36 GeV.
Phenomenologically varying \\Lambda and a toy model for the Universe
Khurshudyan, M; Chubaryan, E; Farahani, H
2014-01-01
We consider a model of the Universe with variable G and {\\Lambda}. Subject of our interest is a phenomenological model for {\\Lambda} proposed and considered in this article first time (up to our knowledge). Modification based on an assumption that ghost dark energy exists and Universe will feel it through {\\Lambda}. In that case we would like to consider possibility that there exist some unusual connections between different components of the fluids existing in Universe. We would like to stress, that this is just an assumption and could be very far from the reality. We are interested by this model as a phenomenological and mathematical and unfortunately, we will not discuss about physical conditions and possibilities of having such modifications. To test our assumption and to observe behavior of the Universe, we will consider toy models filled by a barotropic fluid and modified Chaplyagin gas. To complete the logic of the research we will consider interaction between barotropic fluid or Chaplygin gas with gho...
LHC Phenomenology of Composite 2-Higgs Doublet Models
De Curtis, Stefania; Yagyu, Kei; Yildirim, Emine
2016-01-01
We investigate the phenomenology of Composite 2-Higgs Doublet Models (C2HDMs) of various Yukawa types based on the global symmetry breaking $SO(6)\\to SO(4)\\times SO(2)$. The kinetic term and the Yukawa Lagrangian are constructed in terms of the pseudo Nambu-Goldstone Boson (pNGB) matrix and a 6-plet of fermions under $SO(6)$. The scalar potential is assumed to be the same as that of the Elementary 2-Higgs Doublet Model (E2HDM) with a softly-broken discrete $Z_2$ symmetry. We then discuss the phenomenological differences between the E2HDM and C2HDM by focusing on the deviations from Standard Model (SM) couplings of the discovered Higgs state ($h$) as well as on the production cross sections and Branching Ratios (BRs) at the Large Hadron Collider (LHC) of extra Higgs bosons. We find that, even if the same deviation in the $hVV$ ($V=W,Z$) coupling is assumed in both scenarios, there appear significant differences between E2HDM and C2HDM from the structure of the Yukawa couplings, so that production and decay fea...
A phenomenological model for the collective landing of bird flocks.
Daruka, István
2009-03-07
A three-dimensional phenomenological model was developed to describe the collective landing of bird flocks. The employed individual based model included the landscape (as an external field) and a continuous internal variable G, to characterize the landing intent of the birds. The birds' interaction with the landscape was coupled adaptively to their landing intent. During the flight, a sharp crossover is observed in the dynamics of the landing intent, i.e. from the initial, non-landing state (small G) to the landing state (large G) that was terminated by the landing of the flock. In the model, the landing process appears to be a highly concerted, collective motion of the birds, in agreement with the field observations.
Phenomenology of non-minimal supersymmetric models at linear colliders
Energy Technology Data Exchange (ETDEWEB)
Porto, Stefano
2015-06-15
The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics
Phenomenological models of elastic nucleon scattering and predictions for LHC
Kundrat, V; Lokajicek, M; Prochazka, J
2011-01-01
The hitherto analyses of elastic collisions of charged nucleons involving common influence of Coulomb and hadronic scattering have been based practically on West and Yennie formula. However, this approach has been shown recently to be inadequate from experimental as well as theoretical points of view. The eikonal model enabling to determine physical characteristics in impact parameter space seems to be more pertinent. The contemporary phenomenological models admit, of course, different distributions of collision processes in the impact parameter space and cannot give any definite answer. Nevertheless, some predictions for the planned LHC energy that have been given on their basis may be useful, as well as the possibility of determining the luminosity from elastic scattering. (C) 2010 Elsevier B.V. All rights reserved.
Phenomenological vs. biophysical models of thermal stress in aquatic eggs.
Martin, Benjamin T; Pike, Andrew; John, Sara N; Hamda, Natnael; Roberts, Jason; Lindley, Steven T; Danner, Eric M
2017-01-01
Predicting species responses to climate change is a central challenge in ecology. These predictions are often based on lab-derived phenomenological relationships between temperature and fitness metrics. We tested one of these relationships using the embryonic stage of a Chinook salmon population. We parameterised the model with laboratory data, applied it to predict survival in the field, and found that it significantly underestimated field-derived estimates of thermal mortality. We used a biophysical model based on mass transfer theory to show that the discrepancy was due to the differences in water flow velocities between the lab and the field. This mechanistic approach provides testable predictions for how the thermal tolerance of embryos depends on egg size and flow velocity of the surrounding water. We found support for these predictions across more than 180 fish species, suggesting that flow and temperature mediated oxygen limitation is a general mechanism underlying the thermal tolerance of embryos.
Droplet actuation induced by coalescence: experimental evidences and phenomenological modeling
Sellier, Mathieu; Gaubert, Cécile; Verdier, Claude
2012-01-01
This paper considers the interaction between two droplets placed on a substrate in immediate vicinity. We show here that when the two droplets are of different fluids and especially when one of the droplet is highly volatile, a wealth of fascinating phenomena can be observed. In particular, the interaction may result in the actuation of the droplet system, i.e. its displacement over a finite length. In order to control this displacement, we consider droplets confined on a hydrophilic stripe created by plasma-treating a PDMS substrate. This controlled actuation opens up unexplored opportunities in the field of microfluidics. In order to explain the observed actuation phenomenon, we propose a simple phenomenological model based on Newton's second law and a simple balance between the driving force arising from surface energy gradients and the viscous resistive force. This simple model is able to reproduce qualitatively and quantitatively the observed droplet dynamics.
Phenomenology of Standard Model in spontaneously broken mirror symmetry
Dyatlov, Igor T
2016-01-01
Violated mirror symmetry (MS) is capable of reproducing observed qualitative properties of weak mixing for quarks and leptons. In violated MS, lepton phenomenology, that is, small neutrino masses and mixing properties different from those of quarks, requires the Dirac nature of neutrinos and existence of processes that change the total lepton number. Such processes involve heavy mirror neutrinos, and therefore occur at very high energies. CP non-conservation would mean here that the parity conserving MS Lagrangian must be non-invariant to both time reversal T and (according to the CPT theorem) the charge conjugation C. All these properties create appropriate conditions for leptogenesis, a mechanism for generating baryon-lepton asymmetry of the Universe in violated MS models.
Phenomenology of 3-3-1-1 model
Dong, P V; Queiroz, Farinaldo S; Thuy, N T
2014-01-01
In this work we discuss a new model, 3-3-1-1 for short, that overhauls the theoretical and phenomenological aspects of the known 3-3-1 models. Additionally, we sift the outcome of the 3-3-1-1 model from precise electroweak bounds to dark matter observables. We advocate that B-L is conserved as electric charge, thus the standard model gauge symmetry extension to SU(3)_C X SU(3)_L X U(1)_X X U(1)_N (3-3-1-1) provides a minimal, self-contained framework that unifies all weak, electromagnetic and B-L interactions, apart from the strong interaction. W-parity (similar to R-parity) arises as a remnant subgroup of broken 3-3-1-1 gauge symmetry. The mass spectra of scalar and gauge sectors are diagonalized when the scale of 3-3-1-1 symmetry breaking is compatible to that of ordinary 3-3-1 symmetry breaking. All interactions of gauge bosons with fermions and scalars are obtained. The standard model Higgs boson H is naturally light with the consistent mass due to a seesaw mechanism. The 3-3-1-1 model provides two dark m...
Higgs Phenomenology in the Standard Model and Beyond
Field, Bryan Jonathan; Dawson, Sally
2005-01-01
The way in which the electroweak symmetry is broken in nature is currently unknown. The electroweak symmetry is theoretically broken in the Standard Model by the Higgs mechanism which generates masses for the particle content and introduces a single scalar to the particle spectrum, the Higgs boson. This particle has not yet been observed and the value of it mass is a free parameter in the Standard Model. The observation of one (or more) Higgs bosons would confirm our understanding of the Standard Model. In this thesis, we study the phenomenology of the Standard Model Higgs boson and compare its production observables to those of the Pseudoscalar Higgs boson and the lightest scalar Higgs boson of the Minimally Supersymmetric Standard Model. We study the production at both the Fermilab Tevatron and the future CERN Large Hadron Collider (LHC). In the first part of the thesis, we present the results of our calculations in the framework of perturbative QCD. In the second part, we present our resummed calculations.
Phenomenological Magnetic Model in Tsai-Type Approximants
Sugimoto, Takanori; Tohyama, Takami; Hiroto, Takanobu; Tamura, Ryuji
Recent neutron diffraction study has reported a curious ferromagnetism in Tsai-type approximants Au-Si-RE (RE=Tb,Dy,Ho), which have the same local structure as quasi-crystals with a translational symmetry simultaneously. In these materials, magnetic moments of rare-earth atoms have a single-ion anisotropy determined locally via spin-orbit coupling around crystal fields satisfying a distorted icosahedral crystal structure. We phenomenologically propose a possible magnetic model reproducing the magnetic structure and the thermodynamical quantities. The corresponding energies of the single-ion anisotropy and RKKY exchange couplings are also estimated by comparing magnetization curves and susceptibility of our model and experiments. Moreover, simulated annealing calculations with the energies in our model coincide with the strange ferromagnetism. In conclusion, a distortion of icosahedral cluster in body-centered cubic structure plays a key role to emerge the peculiar magnetic structure. Our magnetic model does not only explain magnetic behaviors in quasi-crystal approximants, but also can approach to a coexistence of a long-ranged order and a quasi-periodicity.
Phenomenological model of maize starches expansion by extrusion
Kristiawan, M.; Della Valle, G.; Kansou, K.; Ndiaye, A.; Vergnes, B.
2016-10-01
During extrusion of starchy products, the molten material is forced through a die so that the sudden abrupt pressure drop causes part of the water to vaporize giving an expanded, cellular structure. The objective of this work was to elaborate a phenomenological model of expansion and couple it with Ludovic® mechanistic model of twin screw extrusion process. From experimental results that cover a wide range of thermomechanical conditions, a concept map of influence relationships between input and output variables was built. It took into account the phenomena of bubbles nucleation, growth, coalescence, shrinkage and setting, in a viscoelastic medium. The input variables were the moisture content MC, melt temperature T, specific mechanical energy SME, shear viscosity η at the die exit, computed by Ludovic®, and the melt storage moduli E'(at T > Tg). The outputs of the model were the macrostructure (volumetric expansion index VEI, anisotropy) and cellular structure (fineness F) of solid foams. Then a general model was established: VEI = α (η/η0)n in which α and n depend on T, MC, SME and E' and the link between anisotropy and fineness was established.
Phenomenological aspects of no-scale inflation models
Energy Technology Data Exchange (ETDEWEB)
Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics,King’s College London,WC2R 2LS London (United Kingdom); Theory Division, CERN,CH-1211 Geneva 23 (Switzerland); Garcia, Marcos A.G. [William I. Fine Theoretical Physics Institute, School of Physics and Astronomy,University of Minnesota,116 Church Street SE, Minneapolis, MN 55455 (United States); Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics andAstronomy, Texas A& M University,College Station, 77843 Texas (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, 77381 Texas (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, 10679 Athens (Greece); Olive, Keith A. [William I. Fine Theoretical Physics Institute, School of Physics and Astronomy,University of Minnesota,116 Church Street SE, Minneapolis, MN 55455 (United States)
2015-10-01
We discuss phenomenological aspects of inflationary models wiith a no-scale supergravity Kähler potential motivated by compactified string models, in which the inflaton may be identified either as a Kähler modulus or an untwisted matter field, focusing on models that make predictions for the scalar spectral index n{sub s} and the tensor-to-scalar ratio r that are similar to the Starobinsky model. We discuss possible patterns of soft supersymmetry breaking, exhibiting examples of the pure no-scale type m{sub 0}=B{sub 0}=A{sub 0}=0, of the CMSSM type with universal A{sub 0} and m{sub 0}≠0 at a high scale, and of the mSUGRA type with A{sub 0}=B{sub 0}+m{sub 0} boundary conditions at the high input scale. These may be combined with a non-trivial gauge kinetic function that generates gaugino masses m{sub 1/2}≠0, or one may have a pure gravity mediation scenario where trilinear terms and gaugino masses are generated through anomalies. We also discuss inflaton decays and reheating, showing possible decay channels for the inflaton when it is either an untwisted matter field or a Kähler modulus. Reheating is very efficient if a matter field inflaton is directly coupled to MSSM fields, and both candidates lead to sufficient reheating in the presence of a non-trivial gauge kinetic function.
Phenomenological Modelling of a Group of Eclipsing Binary Stars
Andronov, Ivan L.; Tkachenko, Mariia G.; Chinarova, Lidia L.
2016-03-01
Phenomenological modeling of variable stars allows determination of a set of the parameters, which are needed for classification in the "General Catalogue of Variable Stars" and similar catalogs. We apply a recent method NAV ("New Algol Variable") to eclipsing binary stars of different types. Although all periodic functions may be represented as Fourier series with an infinite number of coefficients, this is impossible for a finite number of the observations. Thus one may use a restricted Fourier series, i.e. a trigonometric polynomial (TP) of order s either for fitting the light curve, or to make a periodogram analysis. However, the number of parameters needed drastically increases with decreasing width of minimum. In the NAV algorithm, the special shape of minimum is used, so the number of parameters is limited to 10 (if the period and initial epoch are fixed) or 12 (not fixed). We illustrate the NAV method by application to a recently discovered Algol-type eclipsing variable 2MASS J11080308-6145589 (in the field of previously known variable star RS Car) and compare results to that obtained using the TP fits. For this system, the statistically optimal number of parameters is 44, but the fit is still worse than that of the NAV fit. Application to the system GSC 3692-00624 argues that the NAV fit is better than the TP one even for the case of EW-type stars with much wider eclipses. Model parameters are listed.
Phenomenological Model of Charge Localization in the Layered Manganites
Gray, Kenneth E.; Badica, Elvira
2003-03-01
The connection of magnetic order with charge delocalization in manganites has received considerable interest recently, and the need to go beyond double exchange (DE) to explain the localized state above TC was first introduced by Millis, et al [Phys. Rev. Lett. 74, 5144 (1995)]. In this spirit, we propose a simple model that can explain the various ground states for layered manganites, La_2-2xSr_1+2xMn_2O_7, in terms of the relative energy gain due to DE compared to a phenomenological localization parameter. This model includes antiferromagnetic (AF) superexchange and thus can also be used for layered manganites exhibiting A-type AF order within the bilayer that we find to be either conducting (x=0.54) or insulating (x=0.48). In a magnetic field, the latter case shows a first order metal-insulator transition that is a signature of a crossover of these energies of the localized and delocalized states. Experimentally, localized states seem to be most strongly favored for x 0.50 although the low-temperature state is not always the CE state and quasi-bi-strip charge order has been observed for x=0.48 by Kubota, et al [J. Phys. Soc. Japan, 69, 1986 (2000)].
Theory and Phenomenology of an Exceptional Supersymmetric Standard Model
King, S F; Nevzorov, R
2006-01-01
We make a comprehensive study of the theory and phenomenology of a low energy supersymmetric standard model originating from a string-inspired $E_6$ grand unified gauge group. The Exceptional Supersymmetric Standard Model (ESSM) considered here is based on the low energy SM gauge group together with an extra $Z'$ corresponding to an extra $U(1)_{N}$ gauge symmetry under which right--handed neutrinos have zero charge. The low energy matter content of the ESSM corresponds to three 27 representations of the $E_6$ symmetry group, to ensure anomaly cancellation, plus an additional pair of Higgs--like doublets as required for high energy gauge coupling unification. The ESSM is therefore a low energy alternative to the MSSM or NMSSM. The ESSM involves extra matter beyond the MSSM contained in three $5+5^*$ representations of SU(5), plus three SU(5) singlets which carry $U(1)_{N}$ charges, one of which develops a VEV, providing the effective $\\mu$ term for the Higgs doublets, as well as the necessary exotic fermion m...
Phenomenological Model for Creep Behaviour in Cu-8.5 at.% Al Alloy
Directory of Open Access Journals (Sweden)
Abo-Elsoud M.
2006-07-01
Full Text Available Creep experiments were conducted on Cu-8.5 at.% Al alloy in the intermediate temperature range from 673 to 873 K, corresponding to 0.46–0.72 Tm where Tm is the absolute melting temperature. The present analysis reveals the presence of two distinct deformation regions (climb and viscous glide in the plot of log ̇ε vs. log σ. The implications of these results on the transition from power-law to exponential creep regime are examined. The results indicated that the rate controlling mechanism for creep is the obstacle-controlled dislocation glide. A phenomenological model is proposed which assumes that cell boundaries with sub-grains act as sources and obstacles to gliding dislocations.
LHC phenomenology of the three-site Higgsless model
Energy Technology Data Exchange (ETDEWEB)
Speckner, Christian
2009-07-01
In the last years, extra dimensional models have been proposed which can evade these constraints by delocalizing the Standard Model fermions within the extra dimension, thus allowing to tune the couplings to the new resonances in order to avoid these constraints. This way, such models are a viable method of breaking the electroweak symmetry and retaining perturbative TeV scale unitarity without introducing a fundamental Higgs field. However, extra dimensional models (excluding trivial cases) are intrinsically nonrenormalizable and valid only below a cutoff scale, with most of the new resonances lying in fact above the cutoff. Conceptionally, a honest extension of the Standard Model should only contain the structure below this cutoff, incorporating the extra dimensional mechanism of breaking the symmetry and delaying unitarity violation without making assumptions on the high energy physics above the cutoff scale. The Three-Site Higgsless Model is a minimal implementation of this idea. While it can be motivated by extra dimensional Higgsless models of electroweak symmetry breaking, it in fact contains only one set of extra resonances which lies below the cutoff, delaying unitarity violation to {approx}2-3 TeV. The non-Standard Model part of the spectrum consists of a set of heavy partners for all Standard Model particles with the exception of photon and gluon. The analysis of the experimental constraints reveals that, while the model is consistent with the precision observables, the couplings between the new heavy gauge bosons and the Standard Model fermions have to be exceedingly small ({approx}1% of the isospin gauge coupling) while the new fermions are constrained to be rather heavy with masses above 1.8 TeV. In this thesis, we explored the LHC phenomenology of this scenario. To this end, we calculated the couplings and widths of all the new particles and implemented the model into the Monte-Carlo event generator and WHIZARD / O'Mega. With this implementation
Insights on raft behavior from minimal phenomenological models
Garbès Putzel, G.; Schick, M.
2011-07-01
We construct a simple phenomenological theory of phase separation in ternary mixtures of cholesterol and saturated and unsaturated lipids. Such separation is relevant to the formation of 'rafts' in the plasma membrane. We also show how simple cross-linking of proteins which prefer one form of lipid to the other can trigger raft-formation, the first step in a signaling pathway.
Phenomenological Behavior-Exchange Models of Marital Success.
Gottman, John; And Others
The objective of two studies was to devise an assessment procedure for the evaluation of therapy with distressed marriages. An extension of behavior exchange theory was proposed to include phenomenological ratings by the couple of the intent of messages sent and the impact of messages received. Convergent criteria were used to select 14…
Gomberg, Joan
2010-01-01
This paper introduces the special section on the "phenomenology, underlying processes, and hazard implications of aseismic slip and nonvolcanic tremor" by highlighting key results of the studies published in it. Many of the results indicate that seismic and aseismic manifestations of slow slip reflect transient shear displacements on the plate interface, with the outstanding exception of northern Cascadia where tremor sources have been located on and above the plate interface (differing models of the plate interface there also need to be reconciled). Slow slip phenomena appear to result from propagating deformation that may develop with persistent gaps and segment boundaries. Results add to evidence that when tectonic deformation is relaxed via slow slip, most relaxation occurs aseismically but with seismic signals providing higher-resolution proxies for the aseismic slip. Instead of two distinct slip modes as suggested previously, lines between "fast" and "slow" slip more appropriately may be described as blurry zones. Results reported also show that slow slip sources do not coincide with a specific temperature or metamorphic reaction. Their associations with zones of high conductivity and low shear to compressional wave velocity ratios corroborate source models involving pore fluid pressure buildup and release. These models and spatial anticorrelations between earthquake and tremor activity also corroborate a linkage between slow slip and frictional properties transitional between steady state and stick-slip. Finally, this special section highlights the benefits of global and multidisciplinary studies, which demonstrate that slow phenomena are not confined to beneath the locked zone but exist in many settings.
Phenomenological implications of an S U (5 )×S4×U (1 ) SUSY GUT of flavor
Dimou, Maria; King, Stephen F.; Luhn, Christoph
2016-04-01
We discuss the characteristic low energy phenomenological implications of an S U (5 ) supersymmetric (SUSY) grand unified theory whose flavor structure is controlled by the family symmetry S4×U (1 ), which provides a good description of all quark and lepton masses, mixings as well as charge parity violation. Although the model closely mimics minimal flavor violation (MFV) as shown in M. Dimou, S. F. King, and C. Luhn, J. High Energy Phys. 02 (2016) 118., here we focus on the differences. We first present numerical estimates of the low energy mass insertion parameters, including canonical normalization and renormalization group running, for well-defined ranges of SUSY parameters and compare the naive model expectations to the numerical scans and the experimental bounds. Our results are then used to estimate the model-specific predictions for electric dipole moments (EDMs), lepton flavor violation (LFV), B and K meson mixing as well as rare B decays. The largest observable deviations from MFV come from the LFV process μ →e γ and the electron EDM.
Phenomenological implications of 3/7 (reversed) -split-like supersymmetry scenario
Indian Academy of Sciences (India)
Mansi Dhuria
2016-02-01
A phenomenological model is presented which can be obtained as a local Swiss-Cheese Calabi–Yau string-theoretic compactification with a mobile 3- and fluxed stacks of wrapped 7-branes. It provides a natural realization of (reversed) -split-like supersymmetry wherein the squarks, sleptons, gauginos, higgsino and one of the Higgs doublets are very heavy while with some fine tuning, it is possible to obtain another light Higgs of mass 125 GeV. We discuss the role of the heavy quarks/sleptons and the light Higgs inobtaining long-lived gluinos (a natural consequence of split SUSY),verifying that the NLSP decays to the gravitino LSP respects the BBN constraints with the lifetime of the LSP (gravitino) coming out to be of the order or larger than the age of the Universe,getting gravitino relic abundance of around 0.1 andobtaining electronic EDM close to the experimental upper bounds.
Insights on raft behavior from minimal phenomenological models
Energy Technology Data Exchange (ETDEWEB)
Garbes Putzel, G; Schick, M [Department of Physics, University of Washington, Box 351560, Seattle, WA 98195-1560 (United States)
2011-07-20
We construct a simple phenomenological theory of phase separation in ternary mixtures of cholesterol and saturated and unsaturated lipids. Such separation is relevant to the formation of 'rafts' in the plasma membrane. We also show how simple cross-linking of proteins which prefer one form of lipid to the other can trigger raft-formation, the first step in a signaling pathway.
A hybrid phenomenological model for ferroelectroelastic ceramics. Part I: Single phased materials
Stark, S.; Neumeister, P.; Balke, H.
2016-10-01
In this part I of a two part series, a rate-independent hybrid phenomenological constitutive model applicable for single phased polycrystalline ferroelectroelastic ceramics is presented. The term "hybrid" refers to the fact that features from macroscopic phenomenological models and micro-electromechanical phenomenological models are combined. In particular, functional forms for a switching function and the Helmholtz free energy are assumed as in many macroscopic phenomenological models; and the volume fractions of domain variants are used to describe the internal material state, which is a key feature of micro-electromechanical phenomenological models. The approach described in this paper is an attempt to combine the advantages of macroscopic and micro-electromechanical material models. Its potential is demonstrated by comparison with experimental data for barium titanate. Finally, it is shown that the model for single phased materials cannot reproduce the material behavior of morphotropic PZT ceramics based on a realistic choice for the material parameters. This serves as a motivation for part II of the series, which deals with the modeling of morphotropic PZT ceramics taking into account the micro-structural specifics of these materials.
An inverse model for magnetorheological dampers based on a restructured phenomenological model
Qian, Li-Jun; Liu, Bo; Chen, Peng; Bai, Xian-Xu
2016-04-01
Magnetorheological dampers (MRDs), a semi-active actuator based on MR effect, have great potential in vibration/shock control systems. However, it is difficult to establish its inverse model due to its intrinsic strong nonlinear hysteresis behaviors, and sequentially the precise, fast and effective control could not be realized effectively. This paper presents an inverse model for MRDs based on a restructured phenomenological model with incorporation of the "normalization" concept. The proposed inverse model of MRDs is validated by the simulation of the force tracking. The research results indicate that the inverse model could be applied for the damping force control with consideration of the strong nonlinear hysteresis behaviors of the MRDs.
Gauged R-symmetry and its anomalies in 4D N=1 supergravity and phenomenological implications
Antoniadis, I.; Knoops, R.
2015-01-01
We consider a class of models with gauged U(1)_R symmetry in 4D N=1 supergravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and K\\"ors and apply their results to the special case of a U(1)_R symmetry, in the presence of the Fayet-Iliopoulos term ($\\xi$) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the "naive" field theory approach in global SUSY, in which case U(1)_R cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditi...
DEFF Research Database (Denmark)
Chowell, Gerardo; Hincapie-Palacio, Doracelly; Ospina, Juan
2016-01-01
on the epidemiology of the disease (e.g., the role of asymptomatic transmission, generation interval, incubation period, and key drivers). When insight is limited, phenomenological models provide a starting point for estimation of key transmission parameters, such as the reproduction number, and forecasts of epidemic...... impact. METHODS: We obtained daily counts of suspected Zika cases by date of symptoms onset from the Secretary of Health of Antioquia, Colombia during January-April 2016. We calibrated the generalized Richards model, a phenomenological model that accommodates a variety of early exponential and sub...
Ibáñez, Luis E
2015-01-01
This chapter reviews a number of topics in the field of string phenomenology, focusing on orientifold/F-theory models yielding semirealistic low-energy physics. The emphasis is on the extraction of the low-energy effective action and possible tests of specific models at the LHC.
Phenomenology of a left-right-symmetric model inspired by the trinification model
Energy Technology Data Exchange (ETDEWEB)
Hetzel, Jamil
2015-02-04
The trinification model is an interesting extension of the Standard Model based on the gauge group SU(3){sub C} x SU(3){sub L} x SU(3){sub R}. It naturally explains parity violation as a result of spontaneous symmetry breaking, and the observed fermion masses and mixings can be reproduced using only a few parameters. We study the low-energy phenomenology of the trinification model in order to compare its predictions to experiment. To this end, we construct a low-energy effective field theory, thereby reducing the number of particles and free parameters that need to be studied. We constrain the model parameters using limits from new-particle searches as well as precision measurements. The scalar sector of the model allows for various phenomenological scenarios, such as the presence of a light fermiophobic scalar in addition to a Standard-Model-like Higgs, or a degenerate (twin) Higgs state at 126 GeV. We show how a measurement of the Higgs couplings can be used to distinguish such scenarios from the Standard Model. We find that the trinification model predicts that several new scalar particles have masses in the O(100 GeV) range. Moreover, large regions of the parameter space lead to measurable deviations from Standard-Model predictions of the Higgs couplings. Hence the trinification model awaits crucial tests at the Large Hadron Collider in the coming years.
Dark matter, dark radiation and Higgs phenomenology in the hidden sector DM models
Ko, P
2015-01-01
I present a class of hidden sector dark matter (DM) models with local dark gauge symmetries, where DM is stable due to unbroken local dark gauge symmetry, or due topology, or it is long-lived because of some accidental symme- tries, and the particle contents and their dynamics are completely fixed by local gauge symmetries. In these models, one have two types of natural force mediators, dark gauge bosons and dark Higgs boson, which would affect DM and Higgs phenomenology in important ways. I discuss various phenomenological issues including the GeV scale gamma-ray excess from the galactic center (GC), (in)direct detection signatures, dark radiation, Higgs phenomenology and Higgs inflation assisted by dark Higgs.
Finite Unification: phenomenology
Energy Technology Data Exchange (ETDEWEB)
Heinemeyer, S; Ma, E; Mondragon, M; Zoupanos, G, E-mail: sven.heinemeyer@cern.ch, E-mail: ma@phyun8.ucr.edu, E-mail: myriarn@fisica.unam.mx, E-mail: george.zoupanos@cern.ch
2010-11-01
We study the phenomenological implications of Finite Unified Theories (FUTs). In particular we look at the predictions for the lightest Higgs mass and the s-spectra of two all-loop finite models with SU(5) as gauge group. We also consider a two-loop finite model with gauge group SU(3){sup 3}, which is finite if and only if there are exactly three generations. In this latter model we concetrate here only on the predictions for the third generation of quark masses.
Phenomenology of a left-right-symmetric model inspired by the trinification model
Hetzel, Jamil
2015-01-01
The trinification model is an interesting extension of the Standard Model based on the gauge group $SU(3)_C\\times SU(3)_L\\times SU(3)_R$. It naturally explains parity violation as a result of spontaneous symmetry breaking, and the observed fermion masses and mixings can be reproduced using only a few parameters. We study the low-energy phenomenology of the trinification model in order to compare its predictions to experiment. To this end, we construct a low-energy effective field theory, thereby reducing the number of particles and free parameters that need to be studied. We constrain the model parameters using limits from new-particle searches as well as precision measurements. The scalar sector of the model allows for various phenomenological scenarios, such as the presence of a light fermiophobic scalar in addition to a Standard-Model-like Higgs, or a degenerate (twin) Higgs state at 126 GeV. We show how a measurement of the Higgs couplings can be used to distinguish such scenarios from the Standard Model....
Lei, Yaguo; Liu, Zongyao; Lin, Jing; Lu, Fanbo
2016-05-01
Condition monitoring and fault diagnosis of epicyclic gearboxes using vibration signals are not as straightforward as that of fixed-axis gearboxes since epicyclic gearboxes behave quite differently from fixed-axis gearboxes in many aspects, like spectral structures. Aiming to present the spectral structures of vibration signals of epicyclic gearboxes, phenomenological models of vibration signals of epicyclic gearboxes are developed by algebraic equations and spectral structures of these models are deduced using Fourier series analysis. In the phenomenological models, all the possible vibration transfer paths from gear meshing points to a fixed transducer and the effects of angular shifts of planet gears on the spectral structures are considered. Accordingly, time-varying vibration transfer paths from sun-planet/ring-planet gear meshing points to the fixed transducer due to carrier rotation are given by window functions with different amplitudes. And an angular shift in one planet gear position is introduced in the process of modeling. After the theoretical derivations, three experiments are conducted on an epicyclic gearbox test rig and the spectral structures of collected vibration signals are analyzed. As a result, the effects of angular shifts of planet gears are verified, and the phenomenological models of vibration signals when a local fault occurs on the sun gear and the planet gear are validated, respectively. The experiment results demonstrate that the established phenomenological models in this paper are helpful to the condition monitoring and fault diagnosis of epicyclic gearboxes.
Luther, Rachel A.
2015-01-01
Phenomenological experiences based on an openness to the synesthesia of natural environments are a powerful pathway to the development of erotic relationships with and within a place. These relationships are beneficial for beginning scholars and those taking new jobs who find themselves adapting to a new place and career. First, I describe the…
Institute of Scientific and Technical Information of China (English)
钟维烈; 王玉国; 张沛霖; 曲保东
1997-01-01
The relationship between the transverse field Ising model and the Landau phenomenological theory for ferroelectrics is analyzed, and the Landau free energy expression for ferroelectrics having surfaces is derived. It is pointed out that the traditional expression in which the surface integral has only a term of the square polarization is valid only for special cases, in general a term of the polarization to the four should be included as well. By use of the newly derived free energy expression, the thickness-dependence of the spontaneous polarization and Curie temperature of ferroelectric films is calculated; thereby some experimental results incompatible with the traditional phenomenological theory are successfully explained.
Phenomenological theory of mortality
Azbel, Mark Ya.
1997-09-01
Extensive demographic studies relate aging to the increase in mortality, terminated by the species-specific lifespan limit. Meanwhile, recent experiments demonstrate that medfly mortality decreases at older ages, and challenge a limited lifespan paradigm. This paper proves that there exists a genetically programmed probability to die at any given age, and presents its phenomenological theory. The implications of the universal mortality law crucially depend on the cohort heterogeneity. For relatively high heterogeneity the law predicts unitarily vanishing old age mortality; this is verified with medfly data. For relatively low heterogeneity it predicts a precipitous drop in mortality fluctuations in old age. This is verified with demographic data. If comprehensive studies verify a species-specific characteristic age, then that age may be genetically manipulated. If the studies verify a unitary law of mortality, the results may be generalized to all species. A phenomenological model of mortality is presented.
Williams, Dana E.
2012-01-01
The purpose of this qualitative phenomenological study was to explore factors for selecting a business model for scaling online enrollment by institutions of higher education. The goal was to explore the lived experiences of academic industry experts involved in the selection process. The research question for this study was: What were the lived…
Williams, Dana E.
2012-01-01
The purpose of this qualitative phenomenological study was to explore factors for selecting a business model for scaling online enrollment by institutions of higher education. The goal was to explore the lived experiences of academic industry experts involved in the selection process. The research question for this study was: What were the lived…
Creating Leaders: A Pilot Pre/Post Evaluation of an Ontological/Phenomenological Model
Carney, Nancy; Jensen, Michael; Ballarini, Nicolas; Echeverria, Jeronima; Nettleton, Tracie; Stillwell, Molly; Erhard, Werner
2016-01-01
This pilot is a pre/post comparative assessment of a leadership course developed and delivered using an innovative, ontological/phenomenological model of education. Participants in the course delivered in Singapore in July of 2014 provided measures of the effectiveness of their leadership before and after the course, using a scale from 1 (least…
Phenomenological modeling of critical heat flux: The GRAMP code and its validation
Energy Technology Data Exchange (ETDEWEB)
Ahmad, M. [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); Chandraker, D.K. [Bhabha Atomic Research Centre, Mumbai (India); Hewitt, G.F. [Imperial College, London SW7 2BX (United Kingdom); Vijayan, P.K. [Bhabha Atomic Research Centre, Mumbai (India); Walker, S.P., E-mail: s.p.walker@imperial.ac.uk [Imperial College, London SW7 2BX (United Kingdom)
2013-01-15
Highlights: Black-Right-Pointing-Pointer Assessment of CHF limits is vital for LWR optimization and safety analysis. Black-Right-Pointing-Pointer Phenomenological modeling is a valuable adjunct to pure empiricism. Black-Right-Pointing-Pointer It is based on empirical representations of the (several, competing) phenomena. Black-Right-Pointing-Pointer Phenomenological modeling codes making 'aggregate' predictions need careful assessment against experiments. Black-Right-Pointing-Pointer The physical and mathematical basis of a phenomenological modeling code GRAMP is presented. Black-Right-Pointing-Pointer The GRAMP code is assessed against measurements from BARC (India) and Harwell (UK), and the Look Up Tables. - Abstract: Reliable knowledge of the critical heat flux is vital for the design of light water reactors, for both safety and optimization. The use of wholly empirical correlations, or equivalently 'Look Up Tables', can be very effective, but is generally less so in more complex cases, and in particular cases where the heat flux is axially non-uniform. Phenomenological models are in principle more able to take into account of a wider range of conditions, with a less comprehensive coverage of experimental measurements. These models themselves are in part based upon empirical correlations, albeit of the more fundamental individual phenomena occurring, rather than the aggregate behaviour, and as such they too require experimental validation. In this paper we present the basis of a general-purpose phenomenological code, GRAMP, and then use two independent 'direct' sets of measurement, from BARC in India and from Harwell in the United Kingdom, and the large dataset embodied in the Look Up Tables, to perform a validation exercise on it. Very good agreement between predictions and experimental measurements is observed, adding to the confidence with which the phenomenological model can be used. Remaining important uncertainties in the
A phenomenological model for the dynamics of cell cycle in responding to X-rays
Institute of Scientific and Technical Information of China (English)
Zhang Sheng; Ao Bin; Ye Caiyong; Yang Lei; Zhou Guangming
2015-01-01
Objective To establish a model to predict the cell-cycle process in response to ionizing radiation.Methods Human choroidal malignant melanoma 92-1 cells were used and the cell cycle distribution of cells was analyzed in 0-96 h after exposure to X-rays.A phenomenological model was constructed based on biological knowledge to describe the cell cycle dynamics in experiments.Results In the present study,a phenomenological model was constructed to describe the cellcycle dynamics of synchronized 92-1 cells in responding to various doses of ionizing radiation.The simulation results obtained with the model were consistent with the experimental data,demonstrating that the model had a good expansibility and could be used to predict the dynamics of cell cycle in responding to ionizing radiation.Further theoretical modeling of the cellcycle dynamics was made and the results were consistent with the simulation.Conclusions A phenomenological model was constructed which could be used to describe the dynamics of cell cycle of cells exposed to ionizing radiation and was supported by the experimental data.Because this model is easy to run by the written code,it has a good expansibility for studying the behaviors of cell populations under various conditions.
Neutrinos: Theory and Phenomenology
Energy Technology Data Exchange (ETDEWEB)
Parke, Stephen
2013-10-22
The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.
Simulation of ultra-thin sheet metal forming using phenomenological and crystal plasticity models
Adzima, F.; Manach, PY; Balan, T.; Tabourot, L.; Toutain, S.; Diot, JL
2016-08-01
Micro-forming of ultra-thin sheet metals raises numerous challenges. In this investigation, the predictions of state-of-the-art crystal plasticity (CP) and phenomenological models are compared in the framework of industrial bending-dominated forming processes. Sheet copper alloys 0.1mm-thick are considered, with more than 20 grains through the thickness. Consequently, both model approaches are valid on theoretical ground. The phenomenological models’ performance was conditioned by the experimental database used for parameter identification. The CP approach was more robust with respect to parameter identification, while allowing for a less flexible description of kinematic hardening, at the cost of finer mesh and specific grain-meshing strategies. The conditions for accurate springback predictions with CP-based models are investigated, in an attempt to bring these models at the robustness level required for industrial application.
Photo darkening in Ytterbium doped fibers: phenomenological model and experiment
DEFF Research Database (Denmark)
Mattsson, Kent Erik
2011-01-01
Photo darkening (PD) of ytterbium co-doped silica fibers are experimentally investigated and a numeric model for PD is proposed. The spectral response of PD is discussed based on a chemical bond formation model.......Photo darkening (PD) of ytterbium co-doped silica fibers are experimentally investigated and a numeric model for PD is proposed. The spectral response of PD is discussed based on a chemical bond formation model....
Introcaso, Antonio; Giménez, Mario; Martínez, María Patricia; Ruiz, Francisco
2012-01-01
A plastic rheology, partially phenomenological model is presented to explain the isostatically compensated Andean relief formation. This model considers a combination of lithospheric heating with long period relaxation and successive crustal shortenings on a north section of Argentina located at 24°S latitude. The present size of the Andean root –related to the Andes construction– was obtained by inverting regionalized Bouguer anomalies, also consistent with geoi...
Interaction Design for and with the Lived Body: Some Implications of Merleau-Ponty’s Phenomenology
DEFF Research Database (Denmark)
Svanæs, Dag
2013-01-01
In 2001, Paul Dourish proposed the term embodied interaction to describe a new paradigm for interaction design that focuses on the physical, bodily, and social aspects of our interaction with digital technology. Dourish used Merleau-Ponty’s phenomenology of perception as the theoretical basis...... for his discussion of the bodily nature of embodied interaction. This article extends Dourish’s work to introduce the human-computer interaction community to ideas related to Merleau-Ponty’s concept of the lived body. It also provides a detailed analysis of two related topics: (1) embodied perception...
Phenomenological Models of Holographic Superconductors and Hall currents
Aprile, Francesco; Rodriguez-Gomez, Diego; Russo, Jorge G
2010-01-01
We study general models of holographic superconductivity parametrized by four arbitrary functions of a neutral scalar field of the bulk theory. The models can accommodate several features of real superconductors, like arbitrary critical temperatures and critical exponents in a certain range, and perhaps impurities, boundary or thickness effects. We find analytical expressions for the critical exponents of the general model and show that they satisfy the Rushbrooke identity. An important subclass of models exhibits second order phase transitions. A study of the specific heat shows that general models can also describe holographic superconductors undergoing first, second and third (or higher) order phase transitions. We discuss how small deformations of the HHH model lead to the appearance of resonance peaks in the conductivity, which become narrower as the temperature is gradually decreased, without the need for tuning mass of the scalar to be close to the Breitenlohner-Freedman bound. Finally, we investigate ...
Numerical models for the phenomenological study of flameless combustion
Directory of Open Access Journals (Sweden)
Bernardo Argemiro Herrera Múnera
2010-07-01
Full Text Available Flameless combustion is a technique which offers environmental advantages such as lower than 100 ppm NOx and CO emis- sions due to below 200 K temperature gradients. Flameless combustion also supplies higher than 70% energy efficiency. Knowledge of the phenomena in this combustion regime has been facilitated by using numerical simulation. This paper reviewed the specialised literature about the most commonly used turbulence, combustion, heat transfer and NOx formation models in modelling flameless combustion with CFD codes. The review concluded that the k-ε standard model is the most used for turbu- lence. Finite rate/eddy dissipation with modified constants and eddy dissipation concept models are suitable for combustion reac- tions, discrete ordinates and weighted sum gray gas (WSGG models are used for radiation and thermal, prompt and N2O inter- mediate models are used for NOx.
Physics beyond the Standard Model and Collider Phenomenology
Burikham, P
2005-01-01
We briefly review the Standard Model of the particle physics focussing on the gauge hierachy problem and the naturalness problem regarding the stabilization of the light Higgs mass. We list the alternative models which address the hierachy problem in addition to conventional Supersymmetric models and Composite models. They include extra dimensional models and Little Higgs models. We investigate the production of heavy $W_{H}$ at the linear $e^{+}e^{-}$ collider at high centre-of-mass energies at 3 and 5 TeV using the Littlest Higgs model where the global group is $SU(5)/SO(5)$. In certain region of the parameter space, the heavy boson induced signals could be distinguishable from the Standard Model background. Based on tree-level open-string scattering amplitudes in the low string-scale scenario, we derive the massless fermion scattering amplitudes. The amplitudes are required to reproduce those of the Standard Model at tree level in the low energy limit. We then obtain four-fermion contact interactions by ex...
Pouya, Ahmad
2010-01-01
Several families of elastic anisotropies were introduced by Saint Venant (1863) for which the polar diagram of elastic parameters in different directions of the material (indicator surface) are ellipsoidal. These families recover a large variety of models introduced in recent years for damaged materials or as effective modulus of heterogeneous materials. On the other hand, ellipsoidal anisotropy has been used as a guideline in phenomenological modeling of materials. A question that then naturally arises is to know in which conditions the assumption that some indicator surfaces are ellipsoidal allows one to entirely determine the elastic constants. This question has not been rigorously studied in the literature. In this paper, first several basic classes of ellipsoidal anisotropy are presented. Then the problem of determination of the elastic parameters from indicator surfaces is discussed in several basic cases that can occur in phenomenological modelling. Finally the compatibility between the assumption of e...
Phenomenological study of extended seesaw model for light sterile neutrino
Nath, Newton; Goswami, Srubabati; Gupta, Shivani
2016-01-01
We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to $\\sim$ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet $S$ are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, $ m_{\
Luther, Rachel A.
2015-03-01
Phenomenological experiences based on an openness to the synesthesia of natural environments are a powerful pathway to the development of erotic relationships with and within a place. These relationships are beneficial for beginning scholars and those taking new jobs who find themselves adapting to a new place and career. First, I describe the value and formation of erotic relationships and how they can be constructed through synesthesia and the phenomenological experience through my understanding of the ocean Other. Second, I describe how I have used mindfulness and lived experiences in the natural world to mediate the demands of being a new faculty, and how these provide a pathway to develop and foster relationships that are mutually beneficial and conserving. Among other sustaining qualities, mindfully experiencing natural phenomena reduce stress and increase mental function and emotional well-being. These experiences also connect us with the larger community, where we gain a sense of belonging, more readily establish roots and reasons for care of the Other that sustains us.
Modelling theoretical uncertainties in phenomenological analyses for particle physics
Charles, Jérôme; Niess, Valentin; Silva, Luiz Vale
2016-01-01
The determination of the fundamental parameters of the Standard Model (and its extensions) is often limited by the presence of statistical and theoretical uncertainties. We present several models for the latter uncertainties (random, nuisance, external) in the frequentist framework, and we derive the corresponding $p$-values. In the case of the nuisance approach where theoretical uncertainties are modeled as biases, we highlight the important, but arbitrary, issue of the range of variation chosen for the bias parameters. We introduce the concept of adaptive $p$-value, which is obtained by adjusting the range of variation for the bias according to the significance considered, and which allows us to tackle metrology and exclusion tests with a single and well-defined unified tool, which exhibits interesting frequentist properties. We discuss how the determination of fundamental parameters is impacted by the model chosen for theoretical uncertainties, illustrating several issues with examples from quark flavour p...
Modeling theoretical uncertainties in phenomenological analyses for particle physics
Energy Technology Data Exchange (ETDEWEB)
Charles, Jerome [CNRS, Aix-Marseille Univ, Universite de Toulon, CPT UMR 7332, Marseille Cedex 9 (France); Descotes-Genon, Sebastien [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay Cedex (France); Niess, Valentin [CNRS/IN2P3, UMR 6533, Laboratoire de Physique Corpusculaire, Aubiere Cedex (France); Silva, Luiz Vale [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay Cedex (France); Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Groupe de Physique Theorique, Institut de Physique Nucleaire, Orsay Cedex (France); J. Stefan Institute, Jamova 39, P. O. Box 3000, Ljubljana (Slovenia)
2017-04-15
The determination of the fundamental parameters of the Standard Model (and its extensions) is often limited by the presence of statistical and theoretical uncertainties. We present several models for the latter uncertainties (random, nuisance, external) in the frequentist framework, and we derive the corresponding p values. In the case of the nuisance approach where theoretical uncertainties are modeled as biases, we highlight the important, but arbitrary, issue of the range of variation chosen for the bias parameters. We introduce the concept of adaptive p value, which is obtained by adjusting the range of variation for the bias according to the significance considered, and which allows us to tackle metrology and exclusion tests with a single and well-defined unified tool, which exhibits interesting frequentist properties. We discuss how the determination of fundamental parameters is impacted by the model chosen for theoretical uncertainties, illustrating several issues with examples from quark flavor physics. (orig.)
A T' Flavour Model for Fermions and its Phenomenology
Merlo, Luca
2011-01-01
We present a supersymmetric flavour model based on the T' discrete group, which explains fermion masses and mixings. The flavour symmetry, acting in the supersymmetric sector, provides well defined sfermion mass matrices and the resulting supersymmetric spectrum accounts for sufficiently light particles that could be seen at LHC. Furthermore, several contributions to FCNC processes are present and they can be useful to test the model in the present and future experiments. We will review the main results for both leptons and quarks.
A Phenomenological Model for the Evolution of Proto-Galaxies
Tabatabaei, F K
2003-01-01
The contraction model of Field and Colgate for proto-galaxies, first proposed to describe the observed properties of quasars, is generalized and used to investigate the evolution of galaxies. The LEDA data base for elliptical, spiral, compact and diffuse galaxies is employed and it is shown that the above model is consistent with observational evidences regarding their dynamical evolution, star formation rate and different morphologies.
Implications of Yukawa texture in the charged Higgs boson phenomenology within 2HDM-III
Cordero-Cid, A; Hernandez-Sanchez, Jaime; Noriega-Papaqui, R
2011-01-01
We discuss the implications of assuming a four-zero Yukawa texture for the properties of the charged Higgs boson within the context of the general 2-Higgs Doublet Model of Type III. We present the charged Higgs boson couplings with heavy quarks and the resulting pattern for its decays, including the decay $H^+ \\to W^+ \\gamma$ at 1-loop level. The parameters chosen can still avoid the $B \\to X_s \\gamma$ constraint, the perturbativity and $\\rho_0$ bound. Also, we present the constraints of $ B0-\\bar{B}0$ mixing and of the radiative corrections to the $Z b \\bar{b}$ vertex in the regime small $ \\tan \\beta$. The production of charged Higgs bosons is also sensitive to the modifications of its couplings, so that we also evaluate the resulting effects on `direct' $c\\bar{b}\\to H^++c. c.$ and `indirect' $q\\bar q,gg\\to \\bar t b H^++c. c.$ production. Significant scope exists at the Large Hadron Collider for several $H^\\pm$ production and decay channels combined to enable one to distinguish between such a model and alter...
Reproducing Phenomenology of Peroxidation Kinetics via Model Optimization
Ruslanov, Anatole D.; Bashylau, Anton V.
2010-06-01
We studied mathematical modeling of lipid peroxidation using a biochemical model system of iron (II)-ascorbate-dependent lipid peroxidation of rat hepatocyte mitochondrial fractions. We found that antioxidants extracted from plants demonstrate a high intensity of peroxidation inhibition. We simplified the system of differential equations that describes the kinetics of the mathematical model to a first order equation, which can be solved analytically. Moreover, we endeavor to algorithmically and heuristically recreate the processes and construct an environment that closely resembles the corresponding natural system. Our results demonstrate that it is possible to theoretically predict both the kinetics of oxidation and the intensity of inhibition without resorting to analytical and biochemical research, which is important for cost-effective discovery and development of medical agents with antioxidant action from the medicinal plants.
Phenomenology of Friedberg-Lee Texture in Left-Right Symmetric Model
Luo, Min-Jie; Liu, Qiu-Yu
2008-08-01
We consider that the Higgs triplet Yukawa coupling takes the Friedberg Lee texture, and the Higgs doublet Yukawa coupling simply identifies with the diagonal Yukawa coupling of charged lepton in the context of left-right symmetric model. In this scenario, the phenomenology, including effective neutrino masses, mixings, and thermal flavor-dependent leptogenesis and lepton flavor violation decays are studied. We investigate the combined constrain of the parameters in this scenario and test its consistency with present data.
The transverse-momentum distribution in the central region in a phenomenological dual model
Bebel, D
1974-01-01
A phenomenological dual amplitude for double pomeron exchange is evaluated for the transverse-momentum distribution at x=0. It shows an exp(-bp/sub perpendicular to /) dependence for low p/sub perpendicular to / values and a subsequent flattening-off for larger p/sub perpendicular to /. The results are compared with ISR data. Some analogies to the statistical bootstrap model are discussed. (14 refs).
Phenomenology of Friedberg-Lee Texture in Left-Right Symmetric Model
Institute of Scientific and Technical Information of China (English)
LUO Min-Jie; LIU Qiu-Yu
2008-01-01
We consider that the Higgs triplet Yukawa coupling takes the Friedberg-Lee texture, and the Higgs doublet Yukawa coupling simply identifies with the diagonal Yukawa coupling of charged lepton in the context of left-right symmetric model. In this scenario, the phenomenology, including effective neutrino masses, mixings, and thermal flavor-dependent leptogenesis and lepton flavor violation decays are studied. We investigate the combined constrain of the parameters in this scenario and test its consistency with present data.
Indian Academy of Sciences (India)
Shigeki Matsumoto; Nobuchika Okada
2007-11-01
We have studied the phenomenology of dark matter at the ILC and cosmic positron experiments based on model-independent approach. We have found a strong correlation between dark matter signatures at the ILC and those in the indirect detection experiments of dark matter. Once the dark matter is discovered in the positron experiments such as the PAMELA, its nature will be investigated in detail at the ILC.
Phenomenological tests of the Kharzeev-Levin-Nardi Model
Energy Technology Data Exchange (ETDEWEB)
Carvalho, F. [Dep. de Mat. e Comp., Fac. de Tec., UERJ, RJ (Brazil); Duraes, F.O.; Szpigel, S. [Centro de Ciencias e Humanidades, UPM, Sao Paulo, SP (Brazil); Navarra, F.S. [Instituto de Fisica, USP, Sao Paulo, SP (Brazil)
2010-02-15
We show that the Kharzeev-Levin-Nardi (KLN) model of the low x gluon distributions gives a good description of the recent HERA data on F{sub L} and F{sub 2}{sup c} (F{sub 2}{sup b}). We use it to predict F{sub L} and F{sub 2}{sup c} be measured in a future electron-ion collider. The results are similar to those obtained with the Florian-Sassot and Eskola-Paukkunen-Salgado nuclear gluon distributions. Our analysis suggests that the KLN model may still be used as an auxiliary tool to make estimates for both heavy-ion and electron-ion collisions.
Radiative Type III Seesaw Model and its collider phenomenology
von der Pahlen, Federico; Restrepo, Diego; Zapata, Oscar
2016-01-01
We analyze the present bounds of a scotogenic model, the Radiative Type III Seesaw (RSIII), in which an additional scalar doublet and at least two fermion triplets of $SU(2)_L$ are added to the Standard Model (SM). In the RSIII the new physics (NP) sector is odd under an exact global $Z_2$ symmetry. This symmetry guaranties that the lightest NP neutral particle is stable, providing a natural dark matter (DM) candidate, and leads to naturally suppressed neutrino masses generated by a one-loop realization of an effective Weinberg operator. We focus on the region with the highest sensitivity in present and future LHC searches, with light scalar DM and at least one NP fermion triplet at the sub-TeV scale. This region allows for significant production cross-sections of NP fermion pairs at the LHC. We reinterpret a set of searches for supersymmetric particles at the LHC obtained using the package CheckMATE, to set limits on our model as a function of the masses of the NP particles and their Yukawa interactions. The...
Arora, Sanchi; Laha, Animesh; Majumdar, Abhijit; Butola, Bhupendra Singh
2017-08-01
Prediction models for the viscosity curve of a shear thickening fluid (STF) over a wide range of shear rate at different temperatures were developed using phenomenological and artificial neural network (ANN) models. STF containing 65% (w/w) silica nanoparticles was prepared using polyethylene glycol (PEG) as dispersion medium, and tested for rheological behavior at different temperatures. The experimental data set was divided into training data and testing data for the model development and validation, respectively. For both the models, the viscosity of STF was estimated for all the zones with good fit between experimental and predicted viscosity, for both training and testing data sets.
Phenomenological Model for Grown of Volumes Digital Data
Makarenko, Andrey V
2011-01-01
Currently, experts from IT industry are closely monitoring the soaring total volume of digital data. Moreover the problem is not purely technical, it directly affects human civilization as a whole. The growth rate of the all increasing and is already very large. Began is actively appear apocalyptic scenarios of development IT technology, and humanity as a whole. In this paper we propose a constructive alternative to these emotional ideas. Invited to consider the digital industry as a complete system that is developing in close connection with human civilization. Moreover, system self-organizing and essentially nonlinear in its behavior. To study this system is applied system-cybernetic approach. The mathematical model is developed, shows that in the future rate of production of digital data is stabilize at 13.2 ZB per year.
A Phenomenological Cost Model for High Energy Particle Accelerators
Shiltsev, Vladimir
2014-01-01
Accelerator-based high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.
Quinn, G. D.; Giuseppetti, A.A.; Hoffman, K. H.
2014-01-01
The edge chipping resistances of six CAD/CAM dental restoration materials are analyzed and correlated to other mechanical properties. A new quadratic relationship that is based on a phenomenological model is presented.
Energy Technology Data Exchange (ETDEWEB)
Andrei, Petru [Electrical and Computer Engineering Department, Florida State Unviersity, Tallahassee, FL 32310 (United States) and Electrical and Computer Engineering Department, Florida A and M Unviersity, Tallahassee, FL 32310 (United States)]. E-mail: pandrei@eng.fsu.edu; Oniciuc, Liviu [Electrical and Computer Engineering Department, Florida State Unviersity, Tallahassee, FL 32310 (United States); Stancu, Alexandru [Faculty of Physics, ' Al. I. Cuza' University, Iasi 700506 (Romania); Stoleriu, Laurentiu [Faculty of Physics, ' Al. I. Cuza' University, Iasi 700506 (Romania)
2007-09-15
An identification technique for the parameters of phenomenological models of hysteresis is presented. The basic idea of our technique is to set up a system of equations for the parameters of the model as a function of known quantities on the major or minor hysteresis loops (e.g. coercive force, susceptibilities at various points, remanence), or other magnetization curves. This system of equations can be either over or underspecified and is solved by using the conjugate gradient method. Numerical results related to the identification of parameters in the Energetic, Jiles-Atherton, and Preisach models are presented.
The Collider Phenomenology Of Supersymmetric Models (charged Higgs Boson, Tau Leptons)
Müller, D J
1998-01-01
The purpose of this study is to investigate the phenomenology of various supersymmetric models. First, the Minimal Supersymmetric Standard Model (MSSM) is investigated. This model contains an extended Higgs sector that includes a charged boson. The effect that this charged Higgs boson has on the signatures for top quark pair production at the Tevatron is investigated. The rest of the work is devoted to the phenomenology of models with gauge mediated supersymmetry breaking (GMSB). In GMSB models, the lighter stau can be the next to lightest supersymmetric particle. The signals at hadronic colliders for GMSB models with minimal visible sector content are explored for this case. A GMSB model with non-minimal visible sector content is also explored. This is the left-right symmetric GMSB model which contains doubly charged bosons and fermions that could be light enough in mass to be produced at Run II of the Tevatron. Findings and conclusions. The presence of a charged Higgs boson that is lighter than the top quar...
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Ramirez, C. [Grupo de Fisica Nuclear, Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain)], E-mail: cesar@nuc2.fis.ucm.es; Moya de Guerra, E. [Grupo de Fisica Nuclear, Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain); Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain)
2008-02-21
We investigate the importance of crossing symmetry in effective field models and the effects of phenomenological nucleon resonance widths on the paradigmatic case of pion photoproduction. We use reaction models containing four star resonances up to 1.8 GeV ({delta}(1232), N(1440), N(1520), N(1535), {delta}(1620), N(1650), {delta}(1700), and N(1720)) with different prescriptions for crossed terms and widths, to fit the latest world database on pion photoproduction. We compare {chi}{sup 2} results from selected multipoles and fits. The {chi}{sup 2} is highly dependent on the fulfillment of crossing symmetry and the inclusion of u channels.
Scalar Sector Phenomenology of Three-Loop Radiative Neutrino Mass Models
Ahriche, Amine; Nasri, Salah
2015-01-01
We perform a phenomenological study of the scalar sector of two models that generate neutrino mass at the three-loop level and contain viable dark matter candidates. Both models contain a charged singlet scalar and a larger scalar multiplet (triplet or quintuplet). We investigate the effect of the extra scalars on the Higgs mass and analyze the modifications to the triple Higgs coupling. The new scalars can give observable changes to the Higgs decay channel $h\\rightarrow\\gamma \\gamma$ and, furthermore, we find that the electroweak phase transition becomes strongly first-order in large regions of parameter space.
Study on Mass Distribution of n+233U Fission With Phenomenological Model
Institute of Scientific and Technical Information of China (English)
LIU; Li-le; SHU; Neng-chuan; LIU; Ting-jin; CHEN; Xiao-song; SUN; Zheng-jun; CHEN; Yong-jing; QIAN; Jing
2012-01-01
<正>The yields, as well as the dependences on incident energy, of n+233U fission are important in study of the Th/U fuel cycle. A phenomenological model was used to study the yield mass distribution over the incident neutron energy of 0-20 MeV, which has 11 parameters and were determined by fitting to the measured cumulative yields. The model could well reproduce the measured data, which had a significant improvement, comparing with the results of systematic calculation program CYFP and Talys.
Mcelroy, Paul M.; Lawson, Daniel D.
1990-01-01
Adhesion and interfacial stress between metal films and structural composite material substrates is discussed. A theoretical and conceptual basis for selecting coating materials for composite mirror substrates is described. A phenomenological model that interrelates cohesive tensile strength of thin film coatings and interfacial peeling stresses is presented. The model serves as a basis in determining gradiated materials response and compatibility of composite substrate and coating combinations. Parametric evaluation of material properties and geometrical factors such as coating thickness are used to determine the threshold stress levels for maintaining adhesion at the different interfaces.
Phenomenology of the Inert (2+1) and (4+2) Higgs Doublet Models
Keus, Venus; Moretti, Stefano
2014-01-01
We make a phenomenological study of a model with two inert doublets plus one Higgs doublet (I(2+1)HDM) which is symmetric under a Z$_2$ group, preserved after Electro-Weak Symmetry Breaking (EWSB) by the vacuum alignment $(0,0,v)$. This model may be regarded as an extension to the model with one inert doublet plus one Higgs doublet (I(1+1)HDM), by the addition of an extra inert scalar doublet. The neutral fields from the two inert doublets provide a viable Dark Matter (DM) candidate which is stabilised by the conserved $Z_2$ symmetry. We study the new Higgs decay channels offered by the scalar fields from the extra doublets and their effect on the Standard Model (SM) Higgs couplings, including a new decay channel into photon(s) plus missing energy, which distinguishes the I(2+1)HDM from the I(1+1)HDM. Motivated by Supersymmetry, which requires an even number of doublets, we then extend this model into a model with four inert doublets plus two Higgs doublets (I(4+2)HDM) and study the phenomenology of the model...
Phenomenology of OCD: lessons from a large multicenter study and implications for ICD-11.
Shavitt, Roseli G; de Mathis, Maria Alice; Oki, Fábio; Ferrao, Ygor A; Fontenelle, Leonardo F; Torres, Albina R; Diniz, Juliana B; Costa, Daniel L C; do Rosário, Maria Conceição; Hoexter, Marcelo Q; Miguel, Euripedes C; Simpson, H Blair
2014-10-01
This study aimed to investigate the phenomenology of obsessive-compulsive disorder (OCD), addressing specific questions about the nature of obsessions and compulsions, and to contribute to the World Health Organization's (WHO) revision of OCD diagnostic guidelines. Data from 1001 patients from the Brazilian Research Consortium on Obsessive-Compulsive Spectrum Disorders were used. Patients were evaluated by trained clinicians using validated instruments, including the Dimensional Yale-Brown Obsessive-Compulsive Scale, the University of Sao Paulo Sensory Phenomena Scale, and the Brown Assessment of Beliefs Scale. The aims were to compare the types of sensory phenomena (SP, subjective experiences that precede or accompany compulsions) in OCD patients with and without tic disorders and to determine the frequency of mental compulsions, the co-occurrence of obsessions and compulsions, and the range of insight. SP were common in the whole sample, but patients with tic disorders were more likely to have physical sensations and urges only. Mental compulsions occurred in the majority of OCD patients. It was extremely rare for OCD patients to have obsessions without compulsions. A wide range of insight into OCD beliefs was observed, with a small subset presenting no insight. The data generated from this large sample will help practicing clinicians appreciate the full range of OCD symptoms and confirm prior studies in smaller samples the degree to which insight varies. These findings also support specific revisions to the WHO's diagnostic guidelines for OCD, such as describing sensory phenomena, mental compulsions and level of insight, so that the world-wide recognition of this disabling disorder is increased.
Comparison between phenomenological and ab-initio reaction and relaxation models in DSMC
Sebastião, Israel B.; Kulakhmetov, Marat; Alexeenko, Alina
2016-11-01
New state-specific vibrational-translational energy exchange and dissociation models, based on ab-initio data, are implemented in direct simulation Monte Carlo (DSMC) method and compared to the established Larsen-Borgnakke (LB) and total collision energy (TCE) phenomenological models. For consistency, both the LB and TCE models are calibrated with QCT-calculated O2+O data. The model comparison test cases include 0-D thermochemical relaxation under adiabatic conditions and 1-D normal shockwave calculations. The results show that both the ME-QCT-VT and LB models can reproduce vibrational relaxation accurately but the TCE model is unable to reproduce nonequilibrium rates even when it is calibrated to accurate equilibrium rates. The new reaction model does capture QCT-calculated nonequilibrium rates. For all investigated cases, we discuss the prediction differences based on the new model features.
LENUS (Irish Health Repository)
Flood, Anne
2012-01-31
Phenomenology is a philosophic attitude and research approach. Its primary position is that the most basic human truths are accessible only through inner subjectivity, and that the person is integral to the environment. This paper discusses the theoretical perspectives related to phenomenology, and includes a discussion of the methods adopted in phenomenological research.
Zhu, Cheng; Pouya, Ahmad; Arson, Chloé
2015-11-01
This paper aims to gain fundamental understanding of the microscopic mechanisms that control the transition between secondary and tertiary creep around salt caverns in typical geological storage conditions. We use a self-consistent inclusion-matrix model to homogenize the viscoplastic deformation of halite polycrystals and predict the number of broken grains in a Representative Elementary Volume of salt. We use this micro-macro modeling framework to simulate creep tests under various axial stresses, which gives us the critical viscoplastic strain at which grain breakage (i.e., tertiary creep) is expected to occur. The comparison of simulation results for short-term and long-term creep indicates that the initiation of tertiary creep depends on the stress and the viscoplastic strain. We use the critical viscoplastic deformation as a yield criterion to control the transition between secondary and tertiary creep in a phenomenological viscoplastic model, which we implement into the Finite Element Method program POROFIS. We model a 850-m-deep salt cavern of irregular shape, in axis-symmetric conditions. Simulations of cavern depressurization indicate that a strain-dependent damage evolution law is more suitable than a stress-dependent damage evolution law, because it avoids high damage concentrations and allows capturing the formation of a damaged zone around the cavity. The modeling framework explained in this paper is expected to provide new insights to link grain breakage to phenomenological damage variables used in Continuum Damage Mechanics.
Montag, J. Lee; Family, Fereydoon; Vicsek, Tamas; Nakanishi, Hisao
1985-10-01
We propose a new phenomenological rule for the weight function in the position-space renormalization-group approach for the calculation of the fractal dimension in models of geometrical disorder in order to avoid strong corrections to scaling due to surface effects. In our scheme the radius of gyration is used as a characteristic measure of the spatial extent of the clusters. In addition, an optimization parameter is introduced. Application to diffusion-limited aggregation in two dimensions shows that our method gives good estimates even when relatively small cells are used.
Galactic gamma ray excess and dark matter phenomenology in a U(1) B- L model
Biswas, Anirban; Choubey, Sandhya; Khan, Sarif
2016-08-01
In this work, we have considered a gauged U(1)B-L extension of the Standard Model (SM) with three right handed neutrinos for anomaly cancellation and two additional SM singlet complex scalars with nontrivial B-L charges. One of these is used to spontaneously break the U(1)B-L gauge symmetry, leading to Majorana masses for the neutrinos through the standard Type I seesaw mechanism, while the other becomes the dark matter (DM) candidate in the model. We test the viability of the model to simultaneously explain the DM relic density observed in the CMB data as well as the Galactic Centre (GC) γ-ray excess seen by Fermi-LAT. We show that for DM masses in the range 40-55 GeV and for a wide range of U(1)B-L gauge boson masses, one can satisfy both these constraints if the additional neutral Higgs scalar has a mass around the resonance region. In studying the dark matter phenomenology and GC excess, we have taken into account theoretical as well as experimental constraints coming from vacuum stability condition, Planck bound on DM relic density, LHC and LUX and present allowed areas in the model parameter space consistent with all relevant data, calculate the predicted gamma ray flux from the GC and discuss the related phenomenology.
Horne, Colin D F; Sumner, Christian J; Seeber, Bernhard U
2016-01-01
We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs). The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter, and firing probability) under both monophasic and cathodic-anodic biphasic stimulation, without changing the model's parameters. The response statistics of the model depend on stimulus level and duration of the stimulating pulse, reproducing trends observed in the ANF. In the case of biphasic stimulation, the model reproduces the effects of pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG) of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to ANF data using a procedure that uniquely determines each model parameter. It is thus possible to rapidly parameterize a large population of neurons to reproduce a given set of response statistic distributions. Our work extends the stochastic leaky integrate and fire (SLIF) neuron, a well-studied phenomenological model of the electrically stimulated neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by delaying the moment of spiking. During this delay, spiking may be abolished by anodic current. By this means, the probability of the model neuron responding to a stimulus is reduced when a trailing phase of opposite polarity is introduced. By introducing a minimum wait period that must elapse before a spike may be emitted, the model is able to reproduce the differences in the threshold level observed in the ANF for monophasic and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are reproduced correctly by this model.
Lima, Daniela Dantas; Alves, Vera Lucia Pereira; Turato, Egberto Ribeiro
2014-01-10
A distinguishing characteristic of the biomedical model is its compartmentalized view of man. This way of seeing human beings has its origin in Greek thought; it was stated by Descartes and to this day it still considers humans as beings composed of distinct entities combined into a certain form. Because of this observation, one began to believe that the focus of a health treatment could be exclusively on the affected area of the body, without the need to pay attention to patient's subjectivity. By seeing pain as a merely sensory response, this model was not capable of encompassing chronic pain, since the latter is a complex process that can occur independently of tissue damage. As of the second half of the twentieth century, when it became impossible to deny the relationship between psyche and soma, the current understanding of chronic pain emerges: that of chronic pain as an individual experience, the result of a sum of physical, psychological, and social factors that, for this reason, cannot be approached separately from the individual who expresses pain. This understanding has allowed a significant improvement in perspective, emphasizing the characteristic of pain as an individual experience. However, the understanding of chronic pain as a sum of factors corresponds to the current way of seeing the process of falling ill, for its conception holds a Cartesian duality and the positivist premise of a single reality. For phenomenology, on the other hand, the individual in his/her unity is more than a simple sum of parts. Phenomenology sees a human being as an intending entity, in which body, mind, and the world are intertwined and constitute each other mutually, thus establishing the human being's integral functioning. Therefore, a real understanding of the chronic pain process would only be possible from a phenomenological point of view at the experience lived by the individual who expresses and communicates pain.
A phenomenological memristor model for short-term/long-term memory
Chen, Ling; Li, Chuandong; Huang, Tingwen; Ahmad, Hafiz Gulfam; Chen, Yiran
2014-08-01
Memristor is considered to be a natural electrical synapse because of its distinct memory property and nanoscale. In recent years, more and more similar behaviors are observed between memristors and biological synapse, e.g., short-term memory (STM) and long-term memory (LTM). The traditional mathematical models are unable to capture the new emerging behaviors. In this article, an updated phenomenological model based on the model of the Hewlett-Packard (HP) Labs has been proposed to capture such new behaviors. The new dynamical memristor model with an improved ion diffusion term can emulate the synapse behavior with forgetting effect, and exhibit the transformation between the STM and the LTM. Further, this model can be used in building new type of neural networks with forgetting ability like biological systems, and it is verified by our experiment with Hopfield neural network.
Directory of Open Access Journals (Sweden)
Xiongqi Peng
2012-01-01
Full Text Available This paper presents a phenomenological thermal-mechanical viscoelastic constitutive modeling for polypropylene wood composites. Polypropylene (PP wood composite specimens are compressed at strain rates from 10−4 to 10−2 s−1 and at temperature of , , and , respectively. The mechanical responses are shown to be sensitive both to strain rate and to temperature. Based on the Maxwell viscoelastic model, a nonlinear thermal-mechanical viscoelastic constitutive model is developed for the PP wood composite by decoupling the effect of temperature with that of the strain rate. Corresponding viscoelastic parameters are obtained through curve fitting with experimental data. Then the model is used to simulate thermal compression of the PP wood composite. The predicted theoretical results coincide quite well with experimental data. The proposed constitutive model is then applied to the thermoforming simulation of an automobile interior part with the PP wood composites.
Simplified Models for Higgs Physics: Singlet Scalar and Vector-like Quark Phenomenology
Dolan, Matthew J; Krämer, M; Rizzo, T G
2016-01-01
Simplified models provide a useful tool to conduct the search and exploration of physics beyond the Standard Model in a model-independent fashion. In this work we consider the complementarity of indirect searches for new physics in Higgs couplings and distributions with direct searches for new particles, using a simplified model which includes a new singlet scalar resonance and vector-like fermions that can mix with the SM top-quark. We fit this model to the combined ATLAS and CMS 125 GeV Higgs production and coupling measurements and other precision electroweak constraints, and explore in detail the effects of the new matter content upon Higgs production and kinematics. We highlight some novel features and decay modes of the top partner phenomenology, and discuss prospects for Run II.
Simplified models for Higgs physics: singlet scalar and vector-like quark phenomenology
Dolan, Matthew J.; Hewett, J. L.; Krämer, M.; Rizzo, T. G.
2016-07-01
Simplified models provide a useful tool to conduct the search and exploration of physics beyond the Standard Model in a model-independent fashion. In this work we consider the complementarity of indirect searches for new physics in Higgs couplings and distributions with direct searches for new particles, using a simplified model which includes a new singlet scalar resonance and vector-like fermions that can mix with the SM top-quark. We fit this model to the combined ATLAS and CMS 125 GeV Higgs production and coupling measurements and other precision electroweak constraints, and explore in detail the effects of the new matter content upon Higgs production and kinematics. We highlight some novel features and decay modes of the top partner phenomenology, and discuss prospects for Run II.
Correspondence between phenomenological and IBM-1 models of even isotopes of Yb
A. Okhunov, A.; I. Sharrad, F.; Anwer, A. Al-Sammarraie; U. Khandaker, M.
2015-08-01
Energy levels and the reduced probability of E2- transitions for ytterbium isotopes with proton number Z = 70 and neutron numbers between 100 and 106 have been calculated through phenomenological (PhM) and interacting boson (IBM-1) models. The predicted low-lying levels (energies, spins and parities) and the reduced probability for E2- transitions results are reasonably consistent with the available experimental data. The predicted low-lying levels (gr-, β1- and γ1- band) produced in the PhM are in good agreement with the experimental data compared with those by IBM-1 for all nuclei of interest. In addition, the phenomenological model was successful in predicting the β2-, β3-, β4-, γ2- and 1+ - band while it was a failure with IBM-1. Also, the 3+- band is predicted by the IBM-1 model for 172Yb and 174Yb nuclei. All calculations are compared with the available experimental data. Supported by Fundamental Research Grant Scheme (FRGS) of Ministry of Higher Education of Malaysia (FRGS13-074-0315), Islamic Development Bank (IDB) (36/11201905/35/IRQ/D31, 37/IRQ/P30)
Higgs Phenomenology in the Minimal $SU(3)_L\\times U(1)_X$ Model
Okada, Hiroshi; Orikasa, Yuta; Yagyu, Kei
2016-01-01
We investigate the phenomenology of a model based on the $SU(3)_c\\times SU(3)_L\\times U(1)_X$ gauge theory, the so-called 331 model. In particular, we focus on the Higgs sector of the model which is composed of three $SU(3)_L$ triplet Higgs fields, and this corresponds to the minimal form to realize phenomenologically acceptable scenario. After the spontaneous symmetry breaking $SU(3)_L\\times U(1)_X\\to SU(2)_L\\times U(1)_Y$, our Higgs sector effectively becomes that with two $SU(2)_L$ doublet scalar fields, in which the first and the second generation quarks couple to the different Higgs doublet from that couples to the third generation quarks. This structure causes the flavour changing neutral current mediated by Higgs bosons at the tree level. By taking an alignment limit of the mass matrix for the CP-even Higgs bosons, which is naturally realized in the case with the breaking scale of $SU(3)_L\\times U(1)_X$ to be much larger than that of $SU(2)_L\\times U(1)_Y$, we can avoid current constraints from flavour...
A phenomenological model for self-rippling energy of free graphene monolayers
Wu, Bingjie; Ru, C. Q.
2016-07-01
Several candidate phenomenological expressions are studied for self-rippling energy that drives ripple formation of free single-layer graphene sheets. One phenomenological expression is admitted, while all others are rejected because they cannot admit stable periodic ripple mode. The admitted phenomenological expression contains two terms: one quadratic term which acts like a compressive force and has a destabilizing effect, and another fourth-order term which acts like a nonlinear elastic foundation and has a stabilizing effect. The two associated coefficients depend on specific mechanism of self-rippling and can be determined based on observed wavelength and amplitude of ripple mode. Based on the admitted expression, the effect of an applied force on ripple formation is studied. The present model predicts that the rippling can be controlled or even suppressed with an applied tensile force or collapsed into narrow wrinkles (of deformed wavelengths down to around 2 nm) under an applied compressive force, and the estimated minimum tensile strain to suppress rippling is in remarkable agreement with some known data. Our results show that self-rippling energy dominates ripple formation of sufficiently long free graphene ribbons, although it cannot drive self-rippling of sufficiently short free graphene ribbons. Consequently, a critical length is estimated so that self-rippling occurs only when the length of free single-layer graphene ribbons is much longer than the critical length. The estimated critical length is reasonably consistent with the known fact that self-rippling cannot occur in shorter free graphene sheets (say, of length below 20 nm).
A phenomenological model for the X-ray spectrum of Nova V2491 Cygni
Pinto, Ciro; Verbunt, Frank; Kaastra, Jelle S; Costantini, Elisa; Detmers, Rob G
2012-01-01
The X-ray flux of Nova V2491 Cyg reached a maximum some forty days after optical maximum. The X-ray spectrum at that time, obtained with the RGS of XMM-Newton, shows deep, blue-shifted absorption by ions of a wide range of ionization. We show that the deep absorption lines of the X-ray spectrum at maximum, and nine days later, are well described by the following phenomenological model with emission from a central blackbody and from a collisionally ionized plasma (CIE). The blackbody spectrum (BB) is absorbed by three main highly-ionized expanding shells; the CIE and BB are absorbed by cold circumstellar and interstellar matter that includes dust. The outflow density does not decrease monotonically with distance. The abundances of the shells indicate that they were ejected from an O-Ne white dwarf. We show that the variations on time scales of hours in the X-ray spectrum are caused by a combination of variation in the central source and in the column density of the ionized shells. Our phenomenological model gi...
A Phenomenological Model for Decay Process of Long-Persistent Phosphorescence
Institute of Scientific and Technical Information of China (English)
CHEN Bin; HAO Hong-Chen; ZHU Jiang; LU Ming
2011-01-01
A sum of two or more exponential decay functions is empirically adopted nowadays to analyze the decay curve of long-persistent phosphor.However, the fitting parameters of this empirical model lack well-defined physical meanings, especially when the number of exponential decay function is greater than two.We propose a phenomenological model to describe the decay curve of long-persistent phosphor based on an analysis of the relationship between carrier concentration and light-emitting intensity.This model has a few fitting parameters with well-defined physical meanings as compared to the current empirical one.With this model, we quantitatively analyze the decay processes of typical long-persistent phosphors of SrAl2O4:Eu,Dy and obtain reasonable fitting results.%@@ A sum of two or more exponential decay functions is empirically adopted nowadays to analyze the decay curve of long-persistent phosphor.However,the fitting parameters of this empirical model lack well-defined physical meanings,especially when the number of exponential decay function is greater than two.We propose a phenomenological model to describe the decay curve oflong-persistent phosphor based on an analysis of the relationship between carrier concentration and light-emitting intensity.This model has a few fitting parameters with well-defined physical meanings as compared to the current empirical one.With this model,we quantitatively analyze the decay processes of typical long-persistent phosphors of SrAl2O4:Eu,Dy and obtain reasonable fitting results.
Lectures on superstring phenomenology
Quevedo, Fernando
1996-02-20
The phenomenological aspects of string theory are briefly reviewed. Emphasis is given to the status of 4D string model building, effective Lagrangians, model independent results, supersymmetry breaking and duality symmetries.
A hybrid phenomenological model for ferroelectroelastic ceramics. Part II: Morphotropic PZT ceramics
Stark, S.; Neumeister, P.; Balke, H.
2016-10-01
In this part II of a two part series, the rate-independent hybrid phenomenological constitutive model introduced in part I is modified to account for the material behavior of morphotropic lead zirconate titanate ceramics (PZT ceramics). The modifications are based on a discussion of the available literature results regarding the micro-structure of these materials. In particular, a monoclinic phase and a highly simplified representation of the hierarchical structure of micro-domains and nano-domains observed experimentally are incorporated into the model. It is shown that experimental data for the commercially available morphotropic PZT material PIC151 (PI Ceramic GmbH, Lederhose, Germany) can be reproduced and predicted based on the modified hybrid model.
Jenny, Lee; Pang, Dan-Yang; Han, Yin-Lu; B. Tsang, M.
2014-09-01
Global phenomenological GDP08 and microscopic helium-3 optical model potentials have been recently derived. We evaluate these two potential sets by comparing the elastic scattering data of 25 MeV 3He on 16O, 18O, 19F, 23Na, 24Mg, 25Mg, 26Mg, 27Al, 28Si, 30Si, 31P, 32S, 34S, 35Cl, 37Cl, and 39K isotopes. Using the deuteron angular distributions calculated with the distorted wave Born approximation model, we extract the ground-state proton spectroscopic factors from (3He, d) reactions on the same set of nuclei. The extracted proton spectroscopic factors are compared with the large-basis shell-model calculations.
Ishigure, Yoshiaki; Santa, Akiteru
2016-01-01
Universal extra dimension models with Kaluza-Klein parity provide us excellent candidates for dark matter. We consider phenomenological universal extra dimension models where the Kaluza-Klein (KK) mass spectrum is different from that of the minimal universal extra dimension model, and compute the thermal relic abundance of the first KK mode of the photon taking into account the production of second KK particles. It is pointed out that its thermal relic abundance depends significantly on the mass degeneracy between the KK-photon and other KK particles because of considerable coannihilation effects. The cosmologically favored compactification scale is shown to range from around 1 TeV to a few TeV even in the cases where one of the first KK particles is tightly degenerate with the first KK photon in mass.
Study of creep-fatigue behavior in a 1000 MW rotor using a phenomenological lifetime model
Energy Technology Data Exchange (ETDEWEB)
Zhao, Nailong; Wang, Weizhe; Jiang, Jishen; Liu, Yingzheng [School of Mechanical Engineering, Shanghai (China)
2017-02-15
In this study, the phenomenological lifetime model was applied to part of an ultra-supercritical steam turbine rotor model to predict its lifetime as a post processing of the finite element method. To validate the accuracy and adaptation of the post processing program, stress strain hysteresis loops of a cylinderal model under service-like load cycle conditions in cycle N = 1 and 300 were constructed, and the comparison of the results with experimental data on the same cylinderal specimen showed them to be satisfactory. The temperature and von Mises stress distributions of the rotor during a startup-running-shutdown-natural cool process were numerically studied using ABAQUS and the damage caused by the interaction of creep and fatigue was subsequently computed and discussed. It was found that the maximum damage appeared at the inlet notch zone, with the blade groove areas and the front notch areas also suffering a large damage amplitude.
Generalized phenomenological model for the effect of electromigration on interfacial reaction
Hsu, Chia-Ming; Wong, David Shan-Hill; Chen, Sinn-Wen
2007-07-01
Intermetallic compound (IMC) formation is important for the reliability of microelectronic devices. In this work, a generalized phenomenological model was developed to explain the effects of electromigration on IMC growth by considering reaction and diffusion of two species. When both reaction and mass transfer are important, the model predicts cathode enhancement and anode thinning if the electromigration effect on the dominant diffusion species is more pronounced. Cathode suppression and anode enhancement occur when the electromigration effect on the minor diffusion species is more pronounced. Simultaneous cathode and anode suppressions happen when there are two diffusion species and the diffusion and electromigration fluxes are comparable. Simultaneous cathode and anode enhancements occur when mass transfer is the limiting step and diffusion flux is negligible compared to electromigration. This model was found to be consistent with experiment data on IMC growth in the literature given the limited amount of information on effective charge of various species.
Phenomenological force and swelling models for rechargeable lithium-ion battery cells
Oh, Ki-Yong; Epureanu, Bogdan I.; Siegel, Jason B.; Stefanopoulou, Anna G.
2016-04-01
Three phenomenological force and swelling models are developed to predict mechanical phenomena caused by Li-ion intercalation: a 1-D force model, a 1st order relaxation model, and a 3-D swelling model. The 1-D force model can estimate the Li-ion intercalation induced force for actual pack conditions with preloads. The model incorporates a nonlinear elastic stiffness to capture the mechanical consequences of Li-ion intercalation swelling. The model also separates the entire state of charge range into three regions considering phase transitions. The 1st order relaxation model predicts dynamic swelling during relaxation periods. A coefficient of relaxation is estimated from dynamic and quasi-static swelling at operational conditions. The 3-D swelling model predicts the swelling shape on the battery surface for all states of charge. This model introduces an equivalent modulus of elasticity, which is dependent on the state of charge, to capture material transformations of the electrodes, and the orthotropic expansion of the jellyroll in a direction perpendicular to the electrode surfaces. Considering the simplicity of the measurements and direct physical correlations between stress and strain, the proposed models can enhance battery management systems and power management strategies.
Fuks, Benjamin; Herrmann, Björn; Klasen, Michael
2009-03-01
We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large "collider-friendly" regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.
Fuks, B; Klasen, M
2008-01-01
We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large "collider-friendly" regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.
Energy Technology Data Exchange (ETDEWEB)
Fuks, Benjamin [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79106 Freiburg im Breisgau (Germany); Herrmann, Bjoern [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3/INPG, 53 Avenue des Martyrs, F-38026 Grenoble (France); Klasen, Michael [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3/INPG, 53 Avenue des Martyrs, F-38026 Grenoble (France)], E-mail: klasen@lpsc.in2p3.fr
2009-03-21
We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large 'collider-friendly' regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.
A phenomenological model for improving understanding of the ammonium nitrate agglomeration process
Directory of Open Access Journals (Sweden)
Videla Leiva Alvaro
2016-01-01
Full Text Available Ammonium nitrate is intensively used as explosive in the mining industry as the main component of ANFO. The ammonium nitrate is known to be a strong hygroscopic crystal matter which generates problems due to the creation of water bridges between crystals leading later to nucleation and crystallization forming an agglomerated solid cake. The agglomeration process damages the ammonium nitrate performance and is undesirable. Usually either organic or inorganic coatings are used to control agglomeration. In the present work a characterization method of humidity adsorption of the ammonium nitrate crystal was performed under laboratory conditions. Several samples were exposed into a defined humidity in a controlled chamber during 5 hours after which the samples were tested to measure agglomeration as the resistance force to compression. A clear relation was found between coating protection level, humidity and agglomeration. Agglomeration can be then predicted by a phenomenological model based of combination of the mono-layer BET adsorption and CNT nucleation models.
Collider phenomenology of Higgs bosons in Left-Right symmetric Randall-Sundrum models
Lillie, Benjamin Huntington
2006-01-01
We investigate the collider phenomenology of a left-right symmetric Randall-Sundrum model with fermions and gauge bosons in the bulk. We find that the model is allowed by precision electroweak data as long as the ratio of the (unwarped) Higgs vev to the curvature scale is $v/k \\le 1/4$. In that region there can be substantial modifications to the Higgs properties. In particular, the couplings to $WW$ and $ZZ$ are reduced, the coupling to gluons is enhanced, and the coupling to $\\gamma\\gamma$ can receive shifts in either direction. The Higgs mass bound from LEP II data can potentially be relaxed to $m_H \\gtrsim 80$ GeV.
DEFF Research Database (Denmark)
Cherry, John F.; Frandsen, Mads T.; Shoemaker, Ian M.
2015-01-01
We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... cross sections has already been reached in a class of models. Moreover, the compatibility of dark matter direct detection experiments can be compared directly in $E_{{\\rm min}}$ space without making assumptions about DM astrophysics, mass, or scattering form factors. Lastly, when DM has direct couplings...... to nuclei, the limit from annihilation to relativistic particles in the Sun can be stronger than that of conventional non-relativistic direct detection by more than three orders of magnitude for masses in a 2-7 GeV window....
Wang, Zhi-Wei; Steele, T G; Mann, R B; Hanif, T
2016-01-01
We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. Two different scenarios depending on whether the global U(1) symmetry is broken or not have been studied. In the unbroken phase, the decay of the complex singlet is protected by the global U(1) symmetry which leads to an ideal cold dark matter candidate. In the broken phase, we are able to provide a second Higgs at $554\\,\\rm{GeV}$. In addition, gauging the global U(1) symmetry, we can construct an asymptotically safe U(1)' leptophobic model. We combine the notion of asymptotic safety with conformal symmetry and use the renormalization group equations as a bridge to connect UV boundary conditions and Electroweak/ TeV scale physics. We also provide a detailed example to show that these boundary conditions will lead to phenomenological signatures such as diboson excesses which could be tested at the LHC.
Kauranen, P. S.
1993-04-01
In the solid state concept of a direct methanol fuel cell (DMFC), methanol is directly oxidized at the anode of a solid polymer electrolyte fuel cell (SPEFC). Mathematical modelling of the transport and reaction phenomena within the electrodes and the electrolyte membrane is needed in order to get a closer insight into the operation of the fuel cell. In the work, macro-homogenous porous electrode and dilute solution theories are used to derive the phenomenological equations describing the transport and reaction mechanisms in a SPEFC single cell. The equations are first derived for a conventional H2/air SPEFC, and then extended for a DMFC. The basic model is derived in a one dimensional form in which it is assumed that species transport take place only in the direction crossing the cell sandwich. In addition, two dimensional descriptions of the catalyst layer are reviewed.
Vermolen, F.J.; Gefen, A.
2012-01-01
A phenomenological model for the evolution of shape transition of cells is considered. These transitions are determined by the emission of growth-factors, as well as mechanical interaction if cells are subjected to hard impingement. The originality of this model necessitates a formal treatment of th
Chachamis, G
2015-01-01
We present some of the topics covered in a series of lectures under the same title that was given at the "Summer School on High Energy Physics at the LHC: New trends in HEP" in Natal, Brazil. In particular, after some general thoughts on phenomenology we give a pedagogical introduction to the BFKL formalism and we discuss recent BFKL phenomenological studies for LHC observables.
Phenomenological implications of the intrinsic charm in the Z boson production at the LHC
Energy Technology Data Exchange (ETDEWEB)
Bailas, G. [Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, Aubiere Cedex (France); Universidade Federal de Pelotas, High and Medium Energy Group, Instituto de Fisica e Matematica, Pelotas, RS (Brazil); Goncalves, V.P. [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden); Universidade Federal de Pelotas, High and Medium Energy Group, Instituto de Fisica e Matematica, Pelotas, RS (Brazil)
2016-03-15
In this paper we study the Z, Z+jet, Z+c, and Z+c+jet production in pp collisions at the LHC considering different models for the intrinsic charm content of the proton. We analyze the impact of the intrinsic charm in the rapidity and transversemomentum distributions for these different processes. Our results indicated that differently from the other processes, the Z+c cross section is strongly affected by the presence of the intrinsic charm. Moreover, we propose the analysis of the ratios R(Z +c/Z) ≡ σ(Z+c)/σ(Z) and R(Z+c/Z+jet) ≡ σ(Z+c)/σ(Z+jet) and we demonstrate that these observables can be used as a probe of the intrinsic charm. (orig.)
Phenomenological implications of the intrinsic charm in the $Z$ boson production at the LHC
Bailas, G
2015-01-01
In this paper we study the $Z$, $Z+$ jet, $Z+c$ and $Z+c+$ jet production in $pp$ collisions at the LHC considering different models for an intrinsic charm content of the proton. We analyse the impact of the intrinsic charm in the rapidity and transverse momentum distributions for these different processes. Our results indicated that differently from the other processes, the $Z+c$ cross section is strongly affected by the presence of the intrinsic charm. Moreover, we propose the analysis of the ratios $R(Z+c/Z) \\equiv \\sigma(Z+c)/\\sigma(Z)$ and $R(Z+c/Z+\\mbox{jet}) \\equiv \\sigma(Z+c)/\\sigma(Z+\\mbox{jet})$ and demonstrate that these observables can be used as a probe of the intrinsic charm.
General RG Equations for Physical Neutrino Parameters and their Phenomenological Implications
Casas, J A; Ibarra, Alejandro; Navarro, I
2000-01-01
The neutral leptonic sector of the Standard Model presumably consists of three neutrinos with non-zero Majorana masses with properties further determined by three mixing angles and three CP-violating phases. We derive the general renormalization group equations for these physical parameters and apply them to study the impact of radiative effects on neutrino physics. In particular, we examine the existing solutions to the solar and atmospheric neutrino problems, derive conclusions on their theoretical naturalness, and show how some of the measured neutrino parameters could be determined by purely radiative effects. For example, the mass splitting and mixing angle suggested by solar neutrino data could be entirely explained as a radiative effect if the small angle MSW solution is realized. On the other hand, the mass splitting required by atmospheric neutrino data is probably determined by unknown physics at a high energy scale. We also discuss the effect of non-zero CP-violating phases on radiative corrections...
A CP-violating phase in a two Higgs triplet scenario : some phenomenological implications
Chaudhuri, Avinanda
2016-01-01
We consider a scenario where, along with the usual Higgs doublet, two scalar triplets are present. The extension of the triplet sector is required for the Type~II mechanism for the generation of neutrino masses, if this mechanism has to generate a neutrino mass matrix with two-zero texture. One CP-violating phase has been retained in the scalar potential of the model, and all parameters have been chosen consistently with the observed neutrino mass and mixing patterns. We find that a large phase ($\\gtrsim 60^{\\circ}$) splits the two doubly-charged scalar mass eigenstates wider apart, so that the decay $H_1^{++} \\rightarrow H_2^{++} h$ is dominant (with h being the $125$ GeV scalar). We identify a set of benchmark points where this decay dominates. This is complementary to the situation, reported in our earlier work, where the heavier doubly-charged scalar decays as $H_1^{++} \\rightarrow H_2^+ W^+$. We point out the rather spectacular signal, ensuing from $H_1^{++} \\rightarrow H_2^{++} h$, in the form of Higgs ...
Phenomenology of the standard model under conditions of spontaneously broken mirror symmetry
Energy Technology Data Exchange (ETDEWEB)
Dyatlov, I. T., E-mail: dyatlov@thd.pnpi.spb.ru [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation)
2017-03-15
Spontaneously broken mirror symmetry is able to reproduce observed qualitative properties of weak mixing for quark and leptons. Under conditions of broken mirror symmetry, the phenomenology of leptons—that is, small neutrino masses and a mixing character other than that in the case of quarks—requires the Dirac character of the neutrinos and the existence of processes violating the total lepton number. Such processes involve heavy mirror neutrinos; that is, they proceed at very high energies. Here, CP violation implies that a P-even mirror-symmetric Lagrangian must simultaneously be T-odd and, according to the CPT theorem, C-odd. All these properties create preconditions for the occurrence of leptogenesis, which is a mechanism of the emergence of the baryon–lepton asymmetry of the universe in models featuring broken mirror symmetry.
Sampson, Enrique, Jr.
Many aerospace workers believe transferring work projects abroad has an erosive effect on the U.S. aerospace industry (Pritchard, 2002). This qualitative phenomenological study examines factors for outsourcing decisions and the perceived effects of outsourcing on U.S. aerospace workers. The research sample consists of aerospace industry leaders and nonleaders from the East Coast, Midwest, and West Coast of the United States. Moustakas' modified van Kaam methods of analysis (1994) and Decision Explorer analysis software were applied to the interview transcripts. Resultant data identified five core themes: communication, best value, opportunities, cost, and offset consideration. The themes provided the framework for a model designed to assist leaders in making effective decisions and communicating the benefits of those decisions when considering outsourcing of work projects.
Reuber, Markus; Brown, Richard J
2017-01-01
Psychogenic Nonepileptic Seizures (PNES) are one of the commonest differential diagnoses of epilepsy. This paper provides a narrative review of what has been learnt in the last 25 years regarding the visible manifestations, physiological features, subjective experiences and interactional aspects of PNES. We then explore how current insights into PNES semiology and phenomenology map onto the Integrative Cognitive Model (ICM), a new account of these phenomena that unifies previous approaches within a single explanatory framework. We discuss to what extent recent psychological and neurophysiological research is consistent with the ICM and indicate how the more detailed analysis of physiological data, connectivity analyses of EEG and functional or structural MRI data may provide greater insights into the biopsychosocial underpinnings of a disabling and under-researched disorder. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Phenomenological consequences of supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Hinchliffe, I.; Littenberg, L.
1982-01-01
This report deals with the phenomenological consequences of supersymmetric theories, and with the implications of such theories for future high energy machines. It is concerned only with high energy predictions of supersymmetry; low energy consequences (for example in the K/sub o/anti K/sub o/ system) are discussed in the context of future experiments by another group, and will be mentioned briefly only in the context of constraining existing models. However a brief section is included on the implication for proton decay, although detailed experimental questions are not discussed. The report is organized as follows. Section I consists of a brief review of supersymmetry and the salient features of existing supersymmetric models; this section can be ignored by those familiar with such models since it contains nothing new. Section 2 deals with the consequences for nucleon decay of SUSY. The remaining sections then discuss the physics possibilities of various machines; e anti e in Section 3, ep in Section 4, pp (or anti pp) colliders in Section 5 and fixed target hadron machines in Section 6.
Phenomenology of the Basis-Independent CP-Violating Two-Higgs Doublet Model [Dissertation
O'Neil, Deva
2009-01-01
The Two-Higgs Doublet Model (2HDM) is a model of low-energy particle interactions that is identical to the Standard Model except for the addition of an extra Higgs doublet. This extended Higgs sector would appear in experiments as the presence of multiple Higgs particles, both neutral and charged. The neutral states may either be eigenstates of CP (in the CP-conserving 2HDM), or be mixtures of CP eigenstates (in the CP-violating 2HDM). In order to understand how to measure the couplings of these new particles, this document presents the theory of the CP-violating 2HDM in a basis-independent formalism and explicitly identifies the physical parameters of the model, including a discussion of tan(beta)-like parameters. The CP-conserving limit, decoupling limit, and the custodial limit of the model are presented. In addition, phenomenological constraints from the oblique parameters (S, T, and U) are discussed. A survey of the parameter space of this model shows that the 2HDM is consistent with a large range of pos...
Oh, Ki-Yong; Epureanu, Bogdan I.
2017-10-01
A 1-D phenomenological force model of a Li-ion battery pack is proposed to enhance the control performance of Li-ion battery cells in pack conditions for efficient performance and health management. The force model accounts for multiple swelling sources under the operational environment of electric vehicles to predict swelling-induced forces in pack conditions, i.e. mechanically constrained. The proposed force model not only incorporates structural nonlinearities due to Li-ion intercalation swelling, but also separates the overall range of states of charge into three ranges to account for phase transitions. Moreover, an approach to study cell-to-cell variations in pack conditions is proposed with serial and parallel combinations of linear and nonlinear stiffness, which account for battery cells and other components in the battery pack. The model is shown not only to accurately estimate the reaction force caused by swelling as a function of the state of charge, battery temperature and environmental temperature, but also to account for cell-to-cell variations due to temperature variations, SOC differences, and local degradation in a wide range of operational conditions of electric vehicles. Considering that the force model of Li-ion battery packs can account for many possible situations in actual operation, the proposed approach and model offer potential utility for the enhancement of current battery management systems and power management strategies.
A novel phenomenological multi-physics model of Li-ion battery cells
Oh, Ki-Yong; Samad, Nassim A.; Kim, Youngki; Siegel, Jason B.; Stefanopoulou, Anna G.; Epureanu, Bogdan I.
2016-09-01
A novel phenomenological multi-physics model of Lithium-ion battery cells is developed for control and state estimation purposes. The model can capture electrical, thermal, and mechanical behaviors of battery cells under constrained conditions, e.g., battery pack conditions. Specifically, the proposed model predicts the core and surface temperatures and reaction force induced from the volume change of battery cells because of electrochemically- and thermally-induced swelling. Moreover, the model incorporates the influences of changes in preload and ambient temperature on the force considering severe environmental conditions electrified vehicles face. Intensive experimental validation demonstrates that the proposed multi-physics model accurately predicts the surface temperature and reaction force for a wide operational range of preload and ambient temperature. This high fidelity model can be useful for more accurate and robust state of charge estimation considering the complex dynamic behaviors of the battery cell. Furthermore, the inherent simplicity of the mechanical measurements offers distinct advantages to improve the existing power and thermal management strategies for battery management.
Conscious Connections: Phenomenology and Decoding the Disciplines
Currie, Genevieve
2017-01-01
This chapter describes how seven disciplinary bottlenecks from four diverse disciplines were analyzed using a phenomenological perspective and includes a discussion of embodied knowing and implications for educators.
A phenomenological continuum model for force-driven nano-channel liquid flows
Ghorbanian, Jafar; Celebi, Alper T.; Beskok, Ali
2016-11-01
A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.
A phenomenological model of the muon density profile on the ground of very inclined air showers
Dembinski, H. P.; Billoir, P.; Deligny, O.; Hebbeker, T.
2010-09-01
Ultra-high energy cosmic rays generate extensive air showers in Earth's atmosphere. A standard approach to reconstruct the energy of an ultra-high energy cosmic rays is to sample the lateral profile of the particle density on the ground of the air shower with an array of surface detectors. For cosmic rays with large inclinations, this reconstruction is based on a model of the lateral profile of the muon density observed on the ground, which is fitted to the observed muon densities in individual surface detectors. The best models for this task are derived from detailed Monte-Carlo simulations of the air shower development. We present a phenomenological parametrization scheme which allows to derive a model of the average lateral profile of the muon density directly from a fit to a set of individual Monte-Carlo simulated air showers. The model reproduces the detailed simulations with a high precision. As an example, we generate a muon density model which is valid in the energy range 10 18 eV < E < 10 20 eV and the zenith angle range 60°<θ<90°. We will further demonstrate a way to speed up the simulation of such muon profiles by three orders of magnitude, if only the muons in the shower are of interest.
Energy Technology Data Exchange (ETDEWEB)
Bui, V.A
1998-10-01
The objective of this work is to address the modeling of the thermal hydrodynamic phenomena and interactions occurring during the progression of reactor severe accidents. Integrated phenomenological models are developed to describe the accident scenarios, which consist of many processes, while mechanistic modeling, including direct numerical simulation, is carried out to describe separate effects and selected physical phenomena of particular importance 88 refs, 54 figs, 7 tabs
Vatandoost, Hossein; Norouzi, Mahmood; Masoud Sajjadi Alehashem, Seyed; Smoukov, Stoyan K.
2017-06-01
Tension-compression operation in MR elastomers (MREs) offers both the most compact design and superior stiffness in many vertical load-bearing applications, such as MRE bearing isolators in bridges and buildings, suspension systems and engine mounts in cars, and vibration control equipment. It suffers, however, from lack of good computational models to predict device performance, and as a result shear-mode MREs are widely used in the industry, despite their low stiffness and load-bearing capacity. We start with a comprehensive review of modeling of MREs and their dynamic characteristics, showing previous studies have mostly focused on dynamic behavior of MREs in shear mode, though the MRE strength and MR effect are greatly decreased at high strain amplitudes, due to increasing distance between the magnetic particles. Moreover, the characteristic parameters of the current models assume either frequency, or strain, or magnetic field are constant; hence, new model parameters must be recalculated for new loading conditions. This is an experimentally time consuming and computationally expensive task, and no models capture the full dynamic behavior of the MREs at all loading conditions. In this study, we present an experimental setup to test MREs in a coupled tension-compression mode, as well as a novel phenomenological model which fully predicts the stress-strain material behavior as a function of magnetic flux density, loading frequency and strain. We use a training set of experiments to find the experimentally derived model parameters, from which can predict by interpolation the MRE behavior in a relatively large continuous range of frequency, strain and magnetic field. We also challenge the model to make extrapolating predictions and compare to additional experiments outside the training experimental data set with good agreement. Further development of this model would allow design and control of engineering structures equipped with tension-compression MREs and all
Implications of b{yields}s{gamma} in the Weinberg three-Higgs-doublet models
Energy Technology Data Exchange (ETDEWEB)
Chang, Darwin; Chen, Chuan-Hung; Geng, Chao-Qiang [National Tsing Hua Univ., Hsinchu, TW (China). Dept. of Physics
1996-06-01
Using recent experimental measurements on Br(b{yields}s{gamma}) from CLEO, we study the constraints on the charged Higgs sector in various three-Higgs-doublet models. Some phenomenological implications in these models with emphasis on CP violation are presented. In particular, in some of these models, the CP violating muon polarization in K{sub {mu}3} can be detected using the current KEK experiment E246. (author)
Testing a Phenomenologically Extended DGP Model with Upcoming Weak Lensing Surveys
Camera, Stefano; Cardone, Vincenzo F
2011-01-01
A phenomenological extension of the well-known brane-world cosmology of Dvali, Gabadadze and Porrati (eDGP) has recently been proposed. In this model, a cosmological-constant-like term is explicitly present as a non-vanishing tension sigma on the brane, and an extra parameter alpha tunes the cross-over scale r_c, the scale at which higher dimensional gravity effects become non negligible. Since the Hubble parameter in this cosmology reproduces the same LCDM expansion history, we study how upcoming weak lensing surveys, such as Euclid and DES (Dark Energy Survey), can confirm or rule out this class of models. We perform Markov Chain Monte Carlo simulations to determine the parameters of the model, using Type Ia Supernov\\ae, H(z) data, Gamma Ray Bursts and Baryon Acoustic Oscillations. We also fit the power spectrum of the temperature anisotropies of the Cosmic Microwave Background to obtain the correct normalisation for the density perturbation power spectrum. Then, we compute the matter and the cosmic shear p...
Galactic Gamma Ray Excess and Dark Matter Phenomenology in a $U(1)_{B-L}$ Model
Biswas, Anirban; Khan, Sarif
2016-01-01
In this work, we have considered a gauged $U(1)_{\\rm B-L}$ extension of the Standard Model (SM) with three right handed neutrinos for anomaly cancellation and two additional SM singlet complex scalars with non-trivial B-L charges. One of these is used to spontaneously break the $U(1)_{\\rm B-L}$ gauge symmetry, leading to Majorana masses for the neutrinos through the standard Type I seesaw mechanism, while the other becomes the dark matter (DM) candidate in the model. We test the viability of the model to simultaneously explain the DM relic density observed in the CMB data as well as the Galactic Centre (GC) $\\gamma$-ray excess seen by Fermi-LAT. We show that for DM masses in the range 40-55 GeV and for a wide range of $U(1)_{\\rm B-L}$ gauge boson masses, one can satisfy both these constraints if the additional neutral Higgs scalar has a mass around the resonance region. In studying the dark matter phenomenology and GC excess, we have taken into account theoretical as well as experimental constraints coming fr...
Phenomenological and mathematical modeling of a high pressure steam driven jet injector. Part 2
Energy Technology Data Exchange (ETDEWEB)
Anand, G.
1993-12-31
An injector is a particular type of jet pump which uses condensable vapor to entrain a liquid and discharge against a pressure higher than either motive or suction pressures. The injector has no moving parts and requires no external power supply nor any complex control system. Thus, the injector is particularly suited for emergency core cooling operations. A detailed survey has indicated that various injector designs are available for operating pressures below 250 psig. However, the design of these injectors from the viewpoint of a basic understanding of heat and mass transfer processes has not been well developed. A critical review of the models showed serious discrepancies between the analytical models and the experimental observations. The discrepancies evolved from the neglect of non-equilibrium aspects of the flow. The origin of the non-equilibrium aspects can be traced to the extremely small time scales governing the flow in the injector. Thus, time scales of the order of 10{sup {minus}2} seconds are involved in the injector, accompanied by mass, momentum, and heat transfer rates of orders of magnitude higher than that observed in conventional two-phase flows. The present study focuses on the phenomenological and mathematical modeling of the processes in the injector from the viewpoint of its non-equilibrium nature.
A phenomenological model of mass-exchange between the inside and outside of a cavitation bubble
Institute of Scientific and Technical Information of China (English)
GAO XianXian; CHEN WeiZhong; HUANG Wei; XU JunFeng; XU XingHua; LIU YaNan; LIANG Yue
2009-01-01
The mass-exchange between the inside and outside of a cavitation bubble is a complicated process with several kinds of exchange forms acting together, such as gas diffusion, gas-liquid phase transition, chemical reactions and so on. A phenomenological model of mass-exchange was proposed, in which the pressure difference is considered as the drive. Compared with the previous physical models, It has a simpler form and less computational cost. Combining it with Rayleigh-Pleseet equation, the equilib-rium radius is calculated when the mass-exchange achieves the dynamic balance. The result shows that the equilibrium radius has multiple values. The relationships between the equilibrium radius and the driving ultrasound (pressure amplitude and frequency) are evaluated. We also investigated how these relationships were affected by the model parameters. Finally, the bubble radius evolution in the sulfuric acid driven by different pressures was measured. The experimental result that the equilibrium radius changes with the pressure agrees with the numerical results well.
Energy Technology Data Exchange (ETDEWEB)
Liebler, Stefan Rainer
2011-09-15
The standard model of particle physics lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. Using lepton number violating terms in the context of bilinear R-parity violation and the {mu}{nu}SSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. This thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and
Energy Technology Data Exchange (ETDEWEB)
Alboteanu, A.M.
2007-07-01
Within this work we study the phenomenological consequences of a possible realization of QFT on noncommutative space-time. In the first part we performed a phenomenological analysis of the hadronic process pp {yields} Z{sub {gamma}} {yields} l{sup +}l{sup -}{gamma} at the LHC and of electron-positron pair annihilation into a Z boson and a photon at the International Linear Collider (ILC). The noncommutative extension of the SM considered within this work relies on two building blocks: the Moyal-Weyl *-product of functions on ordinary space-time and the Seiberg-Witten maps. A consequence of the noncommutativity of space-time is the violation of rotational invariance with respect to the beam axis. This effect shows up in the azimuthal dependence of cross sections, which is absent in the SM as well as in other models beyond the SM. We have found this dependence to be best suited for deriving the sensitivity bounds on the noncommutative scale NC. By studying pp{yields}Z{sub {gamma}} {yields}l{sup +}l{sup -}{gamma} to first order in the noncommutative parameter {theta}, we show in the first part of this work that measurements at the LHC are sensitive to noncommutative effects only in certain cases, giving bounds on the noncommutative scale of {lambda}{sub NC} >or similar 1.2 TeV. By means of e{sup +}e{sup -} {yields} Z{sub {gamma}} {yields} l{sup +}l{sup -}{gamma} to O({theta}) we have shown that ILC measurements are complementary to LHC measurements of the noncommutative parameters. In addition, the bounds on {lambda}{sub NC} derived from the ILC are significantly higher and reach {lambda}{sub NC} >or similar 6 TeV. In the second part of this work we expand the neutral current sector of the noncommutative SM to second order in {theta}. We found that, against the general expectation, the theory must be enlarged by additional parameters. The new parameters enter the theory as ambiguities of the Seiberg-Witten maps. The latter are not uniquely determined and differ by
LHC Phenomenology and Cosmology of String-Inspired Intersecting D-Brane Models
Anchordoqui, Luis A; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R; Vlcek, Brian
2012-01-01
We discuss the phenomenology and cosmology of a Standard-like Model inspired by string theory, in which the gauge fields are localized on D-branes wrapping certain compact cycles on an underlying geometry, whose intersection can give rise to chiral fermions. The energy scale associated with string physics is assumed to be near the Planck mass. To develop our program in the simplest way, we work within the construct of a minimal model with gauge-extended sector U (3)_B \\times Sp (1)_L \\times U (1)_{I_R} \\times U (1)_L. The resulting U (1) content gauges the baryon number B, the lepton number L, and a third additional abelian charge I_R which acts as the third isospin component of an SU(2)_R. All mixing angles and gauge couplings are fixed by rotation of the U(1) gauge fields to a basis diagonal in hypercharge Y and in an anomaly free linear combination of I_R and B-L. The anomalous $Z'$ gauge boson obtains a string scale St\\"uckelberg mass via a 4D version of the Green-Schwarz mechanism. To keep the realizatio...
Phenomenology of the lightest Higgs boson in the Next-to-Minimal Supersymmetric Standard Model
Jia-Wei, Fan; Yu-Qiao, Shen; Guo-Ming, Chen; He-Sheng, Chen; Gascon-Shotkin, S; Lethuillier, M; Sgandurra, L
2013-01-01
The CMS and ATLAS experiments at the LHC announced an excess with mass at about 125 $GeV/c^{2}$ in the search of Standard Model Higgs with mainly the final decaying state $\\gamma\\gamma$ and $ZZ$ to four leptons. Considering the recent results on the Higgs searching from the LHC, we study the phenomenology of the lightest Higgs boson $h_{1}$ in the Next-to-Minimal Supersymmetric Standard Model by restricting the second lightest Higgs boson $h_{2}$ to be the observed 125 $GeV/c^{2}$ state. We perform a scan over the relevant NMSSM parameter space that is favoured by low fine-tuning considerations. Moreover, we also take into account the experimental constraints from direct searches, $b$-physics, relic density and anomalous magnetic moment of the muon measurements as well as the theoretical considerations in our specific scan. We find that the signal rate in the two photons final state for NMSSM Higgs boson $h_{1}$ with the mass range from about 80 $GeV/c^{2}$ to about 122 $GeV/c^{2}$ can be enhanced by a factor...
Singh, Ashmeet
2014-01-01
Cool cluster cores are in global thermal equilibrium but are locally thermally unstable. We study a nonlinear phenomenological model for the evolution of density perturbations in the ICM due to local thermal instability and gravity. We have analyzed and extended a model for the evolution of an over dense blob in the ICM. We find two regimes in which the over-dense blobs can cool to thermally stable low temperatures. One for large $t_{{\\rm {cool}}} / t_{\\rm {ff}}$ ($t_{{\\rm {cool}}}$ is the cooling time and $t_{{\\rm {ff}}}$ is the free fall time), where a large initial over-density is required for thermal runaway to occur; this is the regime which was previously analyzed in detail. We discover a second regime for $t_{\\rm {cool}} / t_{\\rm {ff}} \\lesssim 1$ (in agreement with Cartesian simulations of local thermal instability in an external gravitational field), where runaway cooling happens for arbitrarily small amplitudes. Numerical simulations have shown that cold gas condenses out more easily in a spherical ...
Phenomenological model for torsional galloping of an elastic flat plate due to hydrodynamic loads
Institute of Scientific and Technical Information of China (English)
FERNANDES Antonio Carlos; ARMANDEI Mohammadmehdi
2014-01-01
This study investigates the torsional galloping phenomenon, an instability type flow-induced oscillation, in an elastic stru-cture due to hydrodynamic loads into the water current. The structure applied here is a rectangular flat plate with an elastic axis in its mid-chord length. The elasticity is provided by torsion spring. The flat plate has only one degree of freedom which is rotation in pure yaw about its axis. It is observed that as the current speed is higher than a critical velocity, the flat plate becomes unstable. The instability leads to torsional galloping occurrence, as a result of which the flat plate begins to yaw about the elastic axis. By testing two different chord lengths each with several torsion spring rates, the flat plate behavior is investigated and three different responses are recognized. Then, a phenomenological model is developed with the original kernel in the form of the van der Pol-Duffing equa-tion. The model explains these three responses observed experimentally.
Kenkmann, Thomas; Hergarten, Stefan; Kuhn, Thomas; Wilk, Jakob
2016-08-01
Several models of shatter cone formation require a heterogeneity at the cone apex of high impedance mismatch to the surrounding bulk rock. This heterogeneity is the source of spherically expanding waves that interact with the planar shock front or the following release wave. While these models are capable of explaining the overall conical shape of shatter cones, they are not capable of explaining the subcone structure and the diverging and branching striations that characterize the surface of shatter cones and lead to the so-called horse-tailing effect. Here, we use the hierarchical arrangement of subcone ridges of shatter cone surfaces as key for understanding their formation. Tracing a single subcone ridge from its apex downward reveals that each ridge branches after some distance into two symmetrically equivalent subcone ridges. This pattern is repeated to form new branches. We propose that subcone ridges represent convex-curved fracture surfaces and their intersection corresponds to the bifurcation axis. The characteristic diverging striations are interpreted as the intersection lineations delimiting each subcone. Multiple symmetric crack branching is the result of rapid fracture propagation that may approach the Raleigh wave speed. We present a phenomenological model that fully constructs the shatter cone geometry to any order. The overall cone geometry including apex angle of the enveloping cone and the degree of concavity (horse-tailing) is largely governed by the convexity of the subcone ridges. Straight cones of various apical angles, constant slope, and constant bifurcation angles form if the subcone convexity is low (30°). Increasing subcone convexity leads to a stronger horse-tailing effect and the bifurcation angles increase with increasing distance from the enveloping cone apex. The model predicts possible triples of enveloping cone angle, bifurcation angle, and subcone angle. Measurements of these quantities on four shatter cones from different
Testing a phenomenologically extended DGP model with upcoming weak lensing surveys
Energy Technology Data Exchange (ETDEWEB)
Camera, Stefano; Diaferio, Antonaldo [Dipartimento di Fisica Generale ' ' A. Avogadro' ' , Università di Torino, via P. Giuria 1, 10125 Torino (Italy); Cardone, Vincenzo F., E-mail: camera@ph.unito.it, E-mail: diaferio@ph.unito.it, E-mail: winnyenodrac@gmail.com [Dipartimento di Scienze e Tecnologie per l' Ambiente e il Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche (Italy)
2011-01-01
A phenomenological extension of the well-known brane-world cosmology of Dvali, Gabadadze and Porrati (eDGP) has recently been proposed. In this model, a cosmological-constant-like term is explicitly present as a non-vanishing tension σ on the brane, and an extra parameter α tunes the cross-over scale r{sub c}, the scale at which higher dimensional gravity effects become non negligible. Since the Hubble parameter in this cosmology reproduces the same ΛCDM expansion history, we study how upcoming weak lensing surveys, such as Euclid and DES (Dark Energy Survey), can confirm or rule out this class of models. We perform Monte Carlo Markov Chain simulations to determine the parameters of the model, using Type Ia Supernovæ, H(z) data, Gamma Ray Bursts and Baryon Acoustic Oscillations. We also fit the power spectrum of the temperature anisotropies of the Cosmic Microwave Background to obtain the correct normalisation for the density perturbation power spectrum. Then, we compute the matter and the cosmic shear power spectra, both in the linear and non-linear régimes. The latter is calculated with the two different approaches of Hu and Sawicki (2007) (HS) and Khoury and Wyman (2009) (KW). With the eDGP parameters coming from the Markov Chains, KW reproduces the ΛCDM matter power spectrum at both linear and non-linear scales and the ΛCDM and eDGP shear signals are degenerate. This result does not hold with the HS prescription. Indeed, Euclid can distinguish the eDGP model from ΛCDM because their expected power spectra roughly differ by the 3σ uncertainty in the angular scale range 700∼
Cho, Hee-Suk
2015-01-01
The phenomenological gravitational waveform models, i.e. the PhenomA, the PhenomB and the PhenomC, generate full inspiral-merger-ringdown waveforms of coalescing binary back holes (BBHs). These models are defined in the Fourier domain and thus can be used for fast matched filtering in the gravitational wave search. The PhenomA has been developed for nonspinning BBH waveforms, while the PhenomB and the PhenomC can model the nonprecessing BBH waveforms. In this work, we study the validity of the phenomenological models for nonspinning BBH searches at low masses, $m_{1,2}\\geq 4 M_{sun}$ and $m_1+m_2\\equiv M \\leq 30 M_{sun}$, with Advanced LIGO sensitivity. As our complete signal waveform model, we adopt the EOBNRv2 that is a time domain inspiral-merger-ringdown waveform model. To investigate the search efficiency of the phenomenological templates, we calculate fitting factors by exploring overlap surfaces. We find that only the PhenomC is valid to obtain the fitting factors better than 0.97 in the mass range of ...
A phenomenological form of the q{sub 2} parameter in the Gurson model
Energy Technology Data Exchange (ETDEWEB)
Dutta, B.K. [Reactor Safety Division, Hall-7, Bhabha Atomic Research Centre, Mumbai 400 085 (India)], E-mail: b.k.dutta@barc.gov.in; Guin, S.; Sahu, M.K.; Samal, M.K. [Reactor Safety Division, Hall-7, Bhabha Atomic Research Centre, Mumbai 400 085 (India)
2008-04-15
Continuum damage mechanics is applied to compute fracture J-initiation and the J-resistance (J-R) curve for SA333 Gr.6 carbon steel material. A parametric study is carried out to assess the effects of variation of Gurson material parameters on the J-R curve. A difficulty is experienced to obtain a set of Gurson parameters that can compute J-initiation as well as the entire J-R curve close to the measured values. It has been found that a phenomenological form of the q{sub 2} parameter, used in the Gurson constitutive model, based on experimental observation helps to overcome this difficulty. The new form of q{sub 2} has an exponential spatial variation near the crack tip and has two constants. These additional constants help analysts to compute the complete J-R curve (including J-initiation) close to experimental data. The same set of constants has also been found to be useful for other fracture specimens, materials and two piping components of a nuclear plant.
Directory of Open Access Journals (Sweden)
Claude Valery Ngayihi Abbe
2016-01-01
Full Text Available To meet more stringent norms and standards concerning engine performances and emissions, engine manufacturers need to develop new technologies enhancing the nonpolluting properties of the fuels. In that sense, the testing and development of alternative fuels such as biodiesel are of great importance. Fuel testing is nowadays a matter of experimental and numerical work. Researches on diesel engine’s fuel involve the use of surrogates, for which the combustion mechanisms are well known and relatively similar to the investigated fuel. Biodiesel, due to its complex molecular configuration, is still the subject of numerous investigations in that area. This study presents the comparison of four biodiesel surrogates, methyl-butanoate, ethyl-butyrate, methyl-decanoate, and methyl-9-decenoate, in a 0D phenomenological combustion model. They were investigated for in-cylinder pressure, thermal efficiency, and NOx emissions. Experiments were performed on a six-cylinder turbocharged DI diesel engine fuelled by methyl ester (MEB and ethyl ester (EEB biodiesel from wasted frying oil. Results showed that, among the four surrogates, methyl butanoate presented better results for all the studied parameters. In-cylinder pressure and thermal efficiency were predicted with good accuracy by the four surrogates. NOx emissions were well predicted for methyl butanoate but for the other three gave approximation errors over 50%.
Measurements and Phenomenological Modeling of Magnetic FluxBuildup in Spheromak Plasmas
Energy Technology Data Exchange (ETDEWEB)
Romero-Talamas, C A; Hooper, E B; Jayakumar, R; McLean, H S; Wood, R D; Moller, J M
2007-12-14
Internal magnetic field measurements and high-speed imaging at the Sustained Spheromak Physics Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, R. H. Bulmer, Nucl. Fusion 39, 863 (1999)] are used to study spheromak formation and field buildup. The measurements are analyzed in the context of a phenomenological model of magnetic helicity based on the topological constraint of minimum helicity in the open flux before reconnecting and linking closed flux. Two stages are analyzed: (1) the initial spheromak formation, i. e. when all flux surfaces are initially open and reconnect to form open and closed flux surfaces, and (2) the stepwise increase of closed flux when operating the gun on a new mode that can apply a train of high-current pulses to the plasma. In the first stage, large kinks in the open flux surfaces are observed in the high-speed images taken shortly after plasma breakdown, and coincide with large magnetic asymmetries recorded in a fixed insertable magnetic probe that spans the flux conserver radius. Closed flux (in the toroidal average sense) appears shortly after this. This stage is also investigated using resistive magnetohydrodynamic simulations. In the second stage, a time lag in response between open and closed flux surfaces after each current pulse is interpreted as the time for the open flux to build helicity, before transferring it through reconnection to the closed flux. Large asymmetries are seen during these events, which then relax to a slowly decaying spheromak before the next pulse.
Directory of Open Access Journals (Sweden)
Felipe Quintão de Almeida
2013-12-01
Full Text Available This paper discusses the uses of phenomenology in Physical Education in Brazil. In methodological terms, it describes five studies that belong to this theoretical framework in the field, represented by authors such as Silvino Santin, Manuel Sérgio, Wagner Wey Moreira, Elenor Kunz and Terezinha Petrúcia da Nóbrega. It problematizes some aspects of this reception, by highlighting not only its boundaries, but also the challenges for research and reflection within this tradition in physical education
Energy Technology Data Exchange (ETDEWEB)
Kwon, Young Min; Lee, Ki Rim; Ha, Kwi Seok; Chang, Won Pyo; Suk, Soo Dong
2009-03-15
The safety aspects of the KALIMER design results from the advanced safety performance characteristics of its ternary alloy metallic fuel. The superior thermal, mechanical, and neutronic performance of the metal-fueled core assures inherent safety response to unprotected and multiple fault accidents which are HCDA initiating events. HCDA has received great attentions because of its significant consequence, leading to substantial core disruption, although its probability of occurrence is very low. The SAS4A code provides an integrated quantitative framework for examining the phenomenological behaviors under HCDA conditions. Various phenomenological models such as prefailure characterization, transient pin response, margins to cladding failure, axial in-pin fuel relocation prior to cladding breach, and molten fuel relocation after cladding breach are required for the HCDA analysis. The important mechanisms which introduce negative reactivity during HCDA are fuel extrusion and in-pin fuel relocation, and structural feedback through thermal-mechanical neutronic effects. This report describes the safety performance characteristics of the metal fuel as observed in ex-pile and in-pile tests, and describes associated theoretical models employed into the SAS4A HCDA analysis code. Most of such tests and experiments, and development of theoretical models have been performed for the IFR program by ANL. This report provides a phenomenological basis for gaining an understanding of the metal fuel performance characteristics that obtained from expile experiments and in-pile tests. This report will provide insight and direction for planning HCDA experiments and developing theoretical models in Korea later.
Evnin, O E
1997-01-01
Inner and empirically consistent model of elementary particles, including two matter structural levels beyond the quark one is built. Excitements spectra, masses and interactions are analysed using the phenomenological notion of non-pertubative vacuum condensate. Essential low-energy predictions of developed concepts are classified. Effective gauge U(1)xU(1)xSU(2)-theory of quark-lepton excitements behavior based on the performed analysis of preon-subpreon phenomenology is consistently built. The ability of its expansion with fermions and scalar leptoquark coupling is also considered. Shown that the coupling constants family hierarchy is the same as family hierarchy of quark masses. Using the built theory cross-sections of d-quark-positron scattering processes with both charged and neutral currents are calculated. The obtained resonance peak is proposed to be a possible explanation of deviating from Standard Model predictions discovered in DESY in the beginning of 1997 year.
DEFF Research Database (Denmark)
Aggerholm, Kenneth; Moltke Martiny, Kristian
. Through exceptional cases we can gain a deeper understanding of the ordinary. This was already a guiding thread in Merleau-Ponty’s phenomenological investigations, but this paper will take the idea further by grounding the methodology in ‘hands on’ research in elite sport (football) and pathological cases...
Kawasaki, Zen
This paper presents a phenomenological idea about lightning flash to share the back ground understanding for this special issue. Lightning discharges are one of the terrible phenomena, and Benjamin Franklin has led this natural phenomenon to the stage of scientific investigation. Technical aspects like monitoring and location are also summarized in this article.
Felstead, Ian S; Springett, Kate
2016-02-01
Patients' expectations of being cared for by a nurse who is caring, competent, and professional are particularly pertinent in current health and social care practice. The current drive for NHS values-based recruitment serves to strengthen this. How nursing students' development of professionalism is shaped is not fully known, though it is acknowledged that their practice experience strongly shapes behaviour. This study (in 2013-14) explored twelve adult nursing students' lived experiences of role modelling through an interpretive phenomenological analysis approach, aiming to understand the impact on their development as professional practitioners. Clinical nurses influenced student development consistently. Some students reported that their experiences allowed them to learn how not to behave in practice; a productive learning experience despite content. Students also felt senior staff influence on their development to be strong, citing 'leading by example.' The impact of patients on student professional development was also a key finding. Through analysing information gained, identifying and educating practice-based mentors who are ready, willing, and able to role model professional attributes appear crucial to developing professionalism in nursing students. Those involved in nurse education, whether service providers or universities, may wish to acknowledge the influence of clinical nurse behaviour observed by students both independent of and in direct relation to care delivery and the impact on student nurse professional development. A corollary relates to how students should be guided and briefed/debriefed to work with a staff to ensure their exposure to a variety of practice behaviours. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phenomenology of glueballs and scalar-isoscalar quarkonia within an effective hadronic model of QCD
Energy Technology Data Exchange (ETDEWEB)
Janowski, Stanislaus
2015-11-06
This thesis is addressed to study the vacuum phenomenology of the scalar-isoscalar sector in the energy region between 1 and 2 GeV in the framework of the extended linear sigma model (eLSM). We found two solutions of the eLSM in the case of N{sub f}=2. In both solutions the resonance f{sub 0}(1370) was predominantly the non-strange anti qq state while the glueball was in one solution predominantly f{sub 0}(1500) and in the other one predominantly f{sub 0}(1710). Calculations of the three-flavored eLSM yield an unambiguous result where f{sub 0}(1370) was, as previously, predominantly the non-strange, while f{sub 0}(1500) is predominantly the strange quark-antiquark meson, and finally the resonance f{sub 0}(1710) turns out to be predominantly a scalar glueball. Our calculations are based on the assumption that the decay width of the scalar glueball is narrow (Γ{sub G}
On deformation twinning in a 17.5% Mn-TWIP steel: A physically based phenomenological model
Energy Technology Data Exchange (ETDEWEB)
Soulami, A.; Choi, K.S. [Computational Science and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Shen, Y.F. [Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang 110004 (China); Liu, W.N. [Computational Science and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Sun, X., E-mail: xin.sun@pnl.gov [Computational Science and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Khaleel, M.A. [Computational Science and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States)
2011-01-25
Research highlights: {yields} Physically based phenomenological model (dislocations, SFE, twin volume fraction). {yields} Twins nucleation and evolution is modeled based on physical considerations. {yields} The model is able to capture the exceptional work hardening of TWIP steel. {yields} SEM and TEM observations are used to support the model predictions. - Abstract: TWinning Induced Plasticity (TWIP) steel is a typical representative of the 2nd generation advanced high strength steels (AHSS) which exhibits a combination of high strength and excellent ductility due to the deformation twinning mechanisms. This paper discusses the principal features of deformation twinning in faced-centered cubic austenitic steels and shows how a physically based macroscopic model can be derived from microscopic-level considerations. In fact, a dislocation-based phenomenological model, with internal state variables including dislocation density and micro-twins volume fraction describing the microstructure evolution during deformation process, is proposed to model the deformation behavior of TWIP steels. The originality of this work lies in the incorporation of a physically based model on twin nucleation and volume fraction evolution in a conventional dislocation-based approach. Microstructural level experimental observations with scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques together with the macroscopic quasi-static tensile test, for the TWIP steel Fe-17.5 wt.% Mn-1.4 wt.% Al-0.56 wt.% C, are used to validate and verify the modeling assumptions. The model could be regarded as a semi-phenomenological approach with sufficient links between microstructure and the overall mechanical properties, and therefore offers good predictive capabilities. Its simplicity also allows a modular implementation in finite element-based metal forming simulations.
Energy Technology Data Exchange (ETDEWEB)
Soln, Josip [Army Research Laboratory (ret.), JZS Phys-Tech, Vienna, VA 22182 (United States)], E-mail: soln.phystech@cox.net
2009-08-15
For the electroweak interactions, the massive neutrino perturbative kinematical procedure is developed in the massive neutrino Fock space. The perturbation expansion parameter is the ratio of neutrino mass to its energy. This procedure, within the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)-modified electroweak Lagrangian, calculates the cross-sections with the new neutrino energy projection operators in the massive neutrino Fock space, resulting in the dominant Lorentz invariant standard model massless flavor neutrino cross-sections. As a consequence of the kinematical relations between the massive and massless neutrinos, some of the neutrino oscillation cross-sections are Lorentz invariance violating. But all these oscillating cross-sections, some of which violate the flavor conservation, being proportional to the squares of neutrino masses are practically unobservable in the laboratory. However, these neutrino oscillating cross-sections are consistent with the original Pontecorvo neutrino oscillating transition probability expression at short time (baseline), as presented by Dvornikov. From these comparisons, by mimicking the time dependence of the original Pontecorvo neutrino oscillating transition probability, one can formulate the dimensionless neutrino intensity-probability I, by phenomenologically extrapolating the time t, or, equivalently the baseline distance L away from the collision point for the oscillating differential cross-section. For the incoming neutrino of 10 MeV in energy and neutrino masses from Fritzsch analysis with the neutrino mixing matrix of Harrison, Perkins and Scott, the baseline distances at the first two maxima of the neutrino intensity are L{approx_equal}281 and 9279 km. The intensity I at the first maximum conserves the flavor, while at the second maximum, the intensities violate the flavor, respectively, in the final and initial state. At the end some details are given as to how one should be able to verify experimentally these
Directory of Open Access Journals (Sweden)
Irene Pagano Dritto
2015-12-01
Full Text Available The study search the Rorschach point of view phenomenologycal. The phenomenology explore the psychopathological Erlebnis of subject. Psychic phenomena have the form and content. The phenomenological approach to Rorschach projective technique begins with the assessment of psychogram, which explores the subject’s cognitive, affective and adaptive processes and then the object of psychopathology. In psychogram that expresses an aspect of the way of life inkblots by the person defining the location, the determinant, the presence of particular phenomena, the content in relation to the answers of the Protocol. This approach establish structure, levels of psychic functioning of the subject and consent to make a differential diagnosis.
Fekete, Charles-Antoine Collins; Doolan, Paul; Dias, Marta F; Beaulieu, Luc; Seco, Joao
2015-07-07
To develop an accurate phenomenological model of the cubic spline path estimate of the proton path, accounting for the initial proton energy and water equivalent thickness (WET) traversed. Monte Carlo (MC) simulations were used to calculate the path of protons crossing various WET (10-30 cm) of different material (LN300, water and CB2-50% CaCO3) for a range of initial energies (180-330 MeV). For each MC trajectory, cubic spline trajectories (CST) were constructed based on the entrance and exit information of the protons and compared with the MC using the root mean square (RMS) metric. The CST path is dependent on the direction vector magnitudes (|P0,1|). First, |P0,1| is set to the proton path length (with factor Λ(Norm)(0,1) = 1.0). Then, two optimal factor Λ(0,1) are introduced in |P0,1|. The factors are varied to minimize the RMS difference with MC paths for every configuration. A set of Λ(opt)(0,1) factors, function of WET/water equivalent path length (WEPL), that minimizes the RMS are presented. MTF analysis is then performed on proton radiographs of a line-pair phantom reconstructed using the CST trajectories. Λ(opt)(0,1) was fitted to the WET/WEPL ratio using a quadratic function (Y = A + BX(2) where A = 1.01,0.99, B = 0.43,- 0.46 respectively for Λ(opt)(0), Λ(opt)(1)). The RMS deviation calculated along the path, between the CST and the MC, increases with the WET. The increase is larger when using Λ(Norm)(0,1) than Λ(opt)(0,1) (difference of 5.0% with WET/WEPL = 0.66). For 230/330 MeV protons, the MTF10% was found to increase by 40/16% respectively for a thin phantom (15 cm) when using the Λ(opt)(0,1) model compared to the Λ(Norm)(0,1) model. Calculation times for Λ(opt)(0,1) are scaled down compared to MLP and RMS deviation are similar within standard deviation.B ased on the results of this study, using CST with the Λ(opt)(0,1) factors reduces the RMS deviation and increases the spatial resolution when reconstructing proton
Hernández-Pinto, R J
2014-01-01
Quantum Chromodynamics is the most successful theory in particle physics. The understanding of all different signals at hadron colliders have been achieved due to the correct interpretation of the theory. In this paper we review some basic features of the theory of strong interactions and how it could be used in order to provide phenomenological distributions for the Large Hadron Collider. The main results presented in here can be found in Ref [1].
Elastic scattering phenomenology
Energy Technology Data Exchange (ETDEWEB)
Mackintosh, R.S. [The Open University, School of Physical Sciences, Milton Keynes (United Kingdom)
2017-04-15
We argue that, in many situations, fits to elastic scattering data that were historically, and frequently still are, considered ''good'', are not justifiably so describable. Information about the dynamics of nucleon-nucleus and nucleus-nucleus scattering is lost when elastic scattering phenomenology is insufficiently ambitious. It is argued that in many situations, an alternative approach is appropriate for the phenomenology of nuclear elastic scattering of nucleons and other light nuclei. The approach affords an appropriate means of evaluating folding models, one that fully exploits available empirical data. It is particularly applicable for nucleons and other light ions. (orig.)
Indian Academy of Sciences (India)
Katri Huitu
2003-02-01
In this paper I will discuss the phenomenology of radion of the Randall–Sundrum type models. I will consider the radion couplings and its production and decay, in the same time taking into account the mixing of radion with Higgs.
Fratini, Simone; Ciuchi, Sergio; Mayou, Didier
2014-01-01
We provide a phenomenological formula which describes the low-frequency optical absorption of charge carriers in disordered systems with localization. This allows to extract, from experimental data on the optical conductivity, the relevant microscopic parameters determining the transport properties, such as the carrier localization length and the elastic and inelastic scattering times. This general formula is tested and applied here to organic semiconductors, where dynamical molecular disorde...
On deformation twinning in a 17.5%Mn-TWIP steel: A physically-based phenomenological model
Energy Technology Data Exchange (ETDEWEB)
Soulami, Ayoub; Choi, Kyoo Sil; Shen, Y. F.; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.
2011-01-25
TWinning Induced Plasticity (TWIP) steel is a typical representative of the 2nd generation of advanced high strength steel (AHSS) which exhibits a combination of high strength and excellent ductility due to the twinning mechanisms. This paper discusses the principal features of deformation twinning in faced-centered cubic austenitic steels and shows how a physiscally-based macroscopic model can be derived from microscopic considerations. In fact, a dislocation-based phenomenological model, with internal state variables such as dislocation density and micro-twins volume fraction representing the microstructure evolution during deformation process, is proposed to describe the deformation behavior of TWIP steels. The contribution of this work is the incorporation of a physically-based twin’s nucleation and volume fraction evolution model in a conventional dislocation-based approach. Microstructural level investigations, using scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques, for the TWIP steel Fe–17.5 wt.% Mn–1.4 wt.% Al- 0.56 wt.% C, are used to validate and verify modeling assumptions. The model could be regarded as a semi-phenomenological approach with sufficient links between microstructure and overall properties and therefore offers good predictive capabilities. Its simplicity also allows a modular implementation in finite element-based metal forming simulations.
Benassi, Marcello; Strigari, Lidia
2016-01-01
An overview of radiotherapy (RT) induced normal tissue complication probability (NTCP) models is presented. NTCP models based on empirical and mechanistic approaches that describe a specific radiation induced late effect proposed over time for conventional RT are reviewed with particular emphasis on their basic assumptions and related mathematical translation and their weak and strong points. PMID:28044088
The phenomenology of trapped inflation
Pearce, Lauren; Sorbo, Lorenzo
2016-01-01
Trapped inflation is a mechanism in which particle production from the moving inflaton is the main source of friction in the inflaton equation of motion. The produced fields source inflaton perturbations, which dominate over the vacuum ones. We employ the set of equations for the inflaton zero mode and its perturbations which was developed in the original work on trapped inflation, and which we extend to second order in the perturbations. We build on this study by updating the experimental constraints, and by replacing the existing approximate solutions with more accurate ones. We obtain a different numerical value for the amplitude of the scalar power spectrum, and a parametrically different result for the bispectrum. This has implications for the allowed region of parameter space in models of trapped inflation, and for some of the phenomenological results obtained in this region. The main results in the allowed region are the following: monomial inflaton potentials, such as $V \\propto \\varphi,\\, \\varphi^2$ ...
Khan, Sebastian; Husa, Sascha; Hannam, Mark; Ohme, Frank; Pürrer, Michael; Forteza, Xisco Jiménez; Bohé, Alejandro
2016-02-01
We present a new frequency-domain phenomenological model of the gravitational-wave signal from the inspiral, merger and ringdown of nonprecessing (aligned-spin) black-hole binaries. The model is calibrated to 19 hybrid effective-one-body-numerical-relativity waveforms up to mass ratios of 1 ∶18 and black-hole spins of |a /m |˜0.85 (0.98 for equal-mass systems). The inspiral part of the model consists of an extension of frequency-domain post-Newtonian expressions, using higher-order terms fit to the hybrids. The merger ringdown is based on a phenomenological ansatz that has been significantly improved over previous models. The model exhibits mismatches of typically less than 1% against all 19 calibration hybrids and an additional 29 verification hybrids, which provide strong evidence that, over the calibration region, the model is sufficiently accurate for all relevant gravitational-wave astronomy applications with the Advanced LIGO and Virgo detectors. Beyond the calibration region the model produces physically reasonable results, although we recommend caution in assuming that any merger-ringdown waveform model is accurate outside its calibration region. As an example, we note that an alternative nonprecessing model, SEOBNRv2 (calibrated up to spins of only 0.5 for unequal-mass systems), exhibits mismatch errors of up to 10% for high spins outside its calibration region. We conclude that waveform models would benefit most from a larger number of numerical-relativity simulations of high-aligned-spin unequal-mass binaries.
A Bayesian Model for Discovering Typological Implications
Daumé, Hal
2009-01-01
A standard form of analysis for linguistic typology is the universal implication. These implications state facts about the range of extant languages, such as ``if objects come after verbs, then adjectives come after nouns.'' Such implications are typically discovered by painstaking hand analysis over a small sample of languages. We propose a computational model for assisting at this process. Our model is able to discover both well-known implications as well as some novel implications that deserve further study. Moreover, through a careful application of hierarchical analysis, we are able to cope with the well-known sampling problem: languages are not independent.
Energy Technology Data Exchange (ETDEWEB)
Pawloski, G.A.
1999-09-21
Although it is well accepted that underground nuclear explosions modify the in situ geologic media around the explosion point, the details of these changes are neither well understood nor well documented. As part of the engineering and containment process before a nuclear test, the physical environment is characterized to some extent to predict how the explosion will interact with the in situ media. However, a more detailed characterization of the physical environment surrounding an expended site is needed to successfully model radionuclide transport in the groundwater away from the detonation point. It is important to understand how the media have been altered and where the radionuclides are deposited. Once understood, this information on modified geologic media can be incorporated into a phenomenological model that is suitable for input to computer simulations of groundwater flow and radionuclide transport. The primary goals of this study are to (1) identify the modification of the media at a pertinent scale, and (2) provide this information to researchers modeling radionuclide transport in groundwater for the US Department of Energy (DOE) Nevada Operations Office Underground Test Area (UGTA) Project. Results from this study are most applicable at near-field scale (a model domain of about 500 m) and intermediate-field scale (a model domain of about 5 km) for which detailed information can be maximized as it is incorporated in the modeling grids. UGTA collected data on radionuclides in groundwater during recent drilling at the ER-20-5 site, which is near BENHAM and TYBO on Pahute Mesa at the Nevada Test Site (NTS). Computer simulations are being performed to better understand radionuclide transport. The objectives of this modeling effort include: evaluating site-specific information from the BENHAM and TYBO tests on Pahute Mesa; augmenting the above data set with generalized containment data; and developing a phenomenological model suitable for input to
Cokelaer, Thomas
2007-01-01
Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from ground-based interferometers. One of the key aspects of the detection process is the deployment of a set of templates, also called a template bank, to cover the astrophysically interesting region of the parameter space. In a companion paper, we described the template-bank algorithm used in the analysis of LIGO data to search for signals from non-spinning binaries made of neutron star and/or stellar-mass black holes; this template bank is based upon physical template families. In this paper, we describe the phenomenological template bank that was used to search for gravitational waves from non-spinning black hole binaries (from stellar mass formation) in the second, third and fourth LIGO science runs. We briefly explain the design of the bank, whose templates are based on a phenomenological detection template family. We show that this template bank gives matches greater than 95% with the physical t...
Elliott, Elizabeth C; Walden, Marlene; Young, Anne; Symes, Lene; Fredland, Nina
2017-06-01
The purpose of this study was to describe the lived experiences of nurse practitioners (NPs) practicing within the Transformational Advanced Professional Practice (TAPP) Model, a professional practice model (PPM). A descriptive phenomenological analysis using semistructured interviews of 11 NPs across multiple inpatient and outpatient clinical areas at Texas Children's Hospital. Member checking and theming data occurred using Colaizzi's Method concurrently with Mind Mapping technique. Main themes included: (a) transforming professional practice, (b) cultivating the inner self, and (c) mentoring professional transitions. The findings of this study provide qualitative evidence that the TAPP Model influences role transition and professional development. Transforming NP practice within organizations and within the nursing profession itself will take mindfulness with an intentional approach to design PPMs specifically for NPs. ©2017 American Association of Nurse Practitioners.
Energy Technology Data Exchange (ETDEWEB)
Gongalsky, Maxim B., E-mail: mgongalsky@gmail.com; Timoshenko, Victor Yu. [Faculty of Physics, Moscow State M.V. Lomonosov University, 119991 Moscow (Russian Federation)
2014-12-28
We propose a phenomenological model to explain photoluminescence degradation of silicon nanocrystals under singlet oxygen generation in gaseous and liquid systems. The model considers coupled rate equations, which take into account the exciton radiative recombination in silicon nanocrystals, photosensitization of singlet oxygen generation, defect formation on the surface of silicon nanocrystals as well as quenching processes for both excitons and singlet oxygen molecules. The model describes well the experimentally observed power law dependences of the photoluminescence intensity, singlet oxygen concentration, and lifetime versus photoexcitation time. The defect concentration in silicon nanocrystals increases by power law with a fractional exponent, which depends on the singlet oxygen concentration and ambient conditions. The obtained results are discussed in a view of optimization of the photosensitized singlet oxygen generation for biomedical applications.
Energy Technology Data Exchange (ETDEWEB)
CHEN,KEN S.; EVANS,GREGORY H.; LARSON,RICHARD S.; NOBLE,DAVID R.; HOUF,WILLIAM G.
2000-01-01
A phenomenological model was developed for multicomponent transport of charged species with simultaneous electrochemical reactions in concentrated solutions, and was applied to model processes in a thermal battery cell. A new general framework was formulated and implemented in GOMA (a multidimensional, multiphysics, finite-element computer code developed and being enhanced at Sandia) for modeling multidimensional, multicomponent transport of neutral and charged species in concentrated solutions. The new framework utilizes the Stefan-Maxwell equations that describe multicomponent diffusion of interacting species using composition-insensitive binary diffusion coefficients. The new GOMA capability for modeling multicomponent transport of neutral species was verified and validated using the model problem of ternary gaseous diffusion in a Stefan tube. The new GOMA-based thermal battery computer model was verified using an idealized battery cell in which concentration gradients are absent; the full model was verified by comparing with that of Bernardi and Newman (1987) and validated using limited thermal battery discharge-performance data from the open literature (Dunning 1981) and from Sandia (Guidotti 1996). Moreover, a new Liquid Chemkin Software Package was developed, which allows the user to handle manly aspects of liquid-phase kinetics, thermodynamics, and transport (particularly in terms of computing properties). Lastly, a Lattice-Boltzmann-based capability was developed for modeling pore- or micro-scale phenomena involving convection, diffusion, and simplified chemistry; this capability was demonstrated by modeling phenomena in the cathode region of a thermal battery cell.
Resonant Diphoton Phenomenology Simplified
Panico, Giuliano; Wulzer, Andrea
2016-01-01
A framework is proposed to describe resonant diphoton phenomenology at hadron colliders in full generality. It can be employed for a comprehensive model-independent interpretation of the experimental data. Within the general framework, few benchmark scenarios are defined as representative of the various phenomenological options and/or of motivated new physics scenarios. Their usage is illustrated by performing a characterization of the 750 GeV excess, based on a recast of available experimental results. We also perform an assessment of which properties of the resonance could be inferred, after discovery, by a careful experimental study of the diphoton distributions. These include the spin J of the new particle and its dominant production mode. Partial information on its CP-parity can also be obtained, but only for J >= 2. The complete determination of the resonance CP properties requires studying the pattern of the initial state radiation that accompanies the resonance production.
Directory of Open Access Journals (Sweden)
Samurović S.
2007-01-01
Full Text Available In this paper the problem of the phenomenological modelling of elliptical galaxies using various available observational data is presented. Recently, Tortora, Cardona and Piedipalumbo (2007 suggested a double power law expression for the global cumulative mass-to-light ratio of elliptical galaxies. We tested their expression on a sample of ellipticals for which we have the estimates of the mass-to-light ratio beyond ~ 3 effective radii, a region where dark matter is expected to play an important dynamical role. We found that, for all the galaxies in our sample, we have α + β > 0, but that this does not necessarily mean a high dark matter content. The galaxies with higher mass (and higher dark matter content also have higher value of α+β. It was also shown that there is an indication that the galaxies with higher value of the effective radius also have higher dark matter content. .
Samurovic, S.
2007-06-01
In this paper the problem of the phenomenological modelling of elliptical galaxies using various available observational data is presented. Recently, Tortora, Cardona and Piedipalumbo (2007) suggested a double power law expression for the global cumulative mass-to-light ratio of elliptical galaxies. We tested their expression on a sample of ellipticals for which we have the estimates of the mass-to-light ratio beyond ˜ 3 effective radii, a region where dark matter is expected to play an important dynamical role. We found that, for all the galaxies in our sample, we have α+β>0, but that this does not necessarily mean a high dark matter content. The galaxies with higher mass (and higher dark matter content) also have higher value of α +β. It was also shown that there is an indication that the galaxies with higher value of the effective radius also have higher dark matter content.
Tokuyama, Michio
2017-01-01
The renormalized simplified model is proposed to investigate indirectly how the static structure factor plays an important role in renormalizing a quadratic nonlinear term in the ideal mode-coupling memory function near the glass transition. The renormalized simplified recursion equation is then derived based on the time-convolutionless mode-coupling theory (TMCT) proposed recently by the present author. This phenomenological approach is successfully applied to check from a unified point of view how strong liquids are different from fragile liquids. The simulation results for those two types of liquids are analyzed consistently by the numerical solutions of the recursion equation. Then, the control parameter dependence of the renormalized nonlinear exponent in both types of liquids is fully investigated. Thus, it is shown that there exists a novel difference between the universal behavior in strong liquids and that in fragile liquids not only for their transport coefficients but also for their dynamics.
Sarrazin, Michael
2014-01-01
It is suggested that two turbostratic graphene layers can be described through a formalism previously introduced for the study of braneworlds in high energy physics. It is demonstrated that any graphene bilayer can be conveniently described as a noncommutative two-sheeted (2+1) spacetime. The model Hamiltonian contains a coupling term connecting the two layers which is a reminiscent of the coupling which may exist between two braneworlds at a quantum level. In the present case, this term is related to a K-K' intervalley coupling. Phenomenological consequences are emphasized such as exciton swapping between the two graphene sheets. An experimental device is suggested to study this possible new effect. If demonstrated, this effet could lead to new technological applications. Incidentally, this demonstration could be also an indirect way to test the braneworld hypothesis.
Phenomenological study of $Z'$ in the minimal $B-L$ model at LHC
M., Balasubramaniam K
2016-01-01
The phenomenological study of neutral heavy gauge boson ($Z^{\\prime}_{B-L}$) of the minimal B-L extension was done on the dimuon production channel of the LHC. The study begins with the LEP-II constraints on $Z'$ searches, and the dimuon events are simulated at the parton level at the CM energies of 7 TeV and 8 TeV and studied with an integrated luminosity of 1.21 $fb^{-1}$ and 20.5 $fb^{-1}$ respectively. Later, the ATLAS detector-specific cuts unique to the Muon Pairs are imposed followed by the signal-selection-cuts on the Invariant Mass of the dimuon which restrict the events that are to be passed for Signal-Background Analysis, that are finally compared with the ATLAS data, and accounted for no experimental detection of $Z^{\\prime}_{B-L}$ boson. It has been simulated further at the CM energy of 14 TeV with an integrated luminosity of 300 $fb^{-1}$ to predict a possible discovery of this B-L neutral-heavy gauge boson with a mass corresponding to 1.5 TeV and a $Z'$ coupling strength of 0.2 based on the sig...
de Haan, Sanneke; Rietveld, Erik; Stokhof, Martin; Denys, Damiaan
2013-01-01
People suffering from Obsessive-Compulsive Disorder (OCD) do things they do not want to do, and/or they think things they do not want to think. In about 10% of OCD patients, none of the available treatment options is effective. A small group of these patients is currently being treated with deep brain stimulation (DBS). DBS involves the implantation of electrodes in the brain. These electrodes give a continuous electrical pulse to the brain area in which they are implanted. It turns out that patients may experience profound changes as a result of DBS treatment. It is not just the symptoms that change; patients rather seem to experience a different way of being in the world. These global effects are insufficiently captured by traditional psychiatric scales, which mainly consist of behavioral measures of the severity of the symptoms. In this article we aim to capture the changes in the patients' phenomenology and make sense of the broad range of changes they report. For that we introduce an enactive, affordance-based model that fleshes out the dynamic interactions between person and world in four aspects. The first aspect is the patients' experience of the world. We propose to specify the patients' world in terms of a field of affordances, with the three dimensions of broadness of scope ("width" of the field), temporal horizon ("depth"), and relevance of the perceived affordances ("height"). The second aspect is the person-side of the interaction, that is, the patients' self-experience, notably their moods and feelings. Thirdly, we point to the different characteristics of the way in which patients relate to the world. And lastly, the existential stance refers to the stance that patients take toward the changes they experience: the second-order evaluative relation to their interactions and themselves. With our model we intend to specify the notion of being in the world in order to do justice to the phenomenological effects of DBS treatment.
Zandanel, Fabio
2014-01-01
Cosmological hydrodynamical simulations of galaxy clusters are still challenged to produce a model for the intracluster medium that matches all aspects of current X-ray and Sunyaev-Zel'dovich observations. To facilitate such comparisons with future simulations and to enable realistic cluster population studies for modeling e.g., non-thermal emission processes, we construct a phenomenological model for the intracluster medium that is based on a representative sample of observed X-ray clusters. We create a mock galaxy cluster catalog based on the large collisionless N-body simulation MultiDark, by assigning our gas density model to each dark matter cluster halo. Our clusters are classified as cool-core and non cool-core according to a dynamical disturbance parameter. We demonstrate that our gas model matches the various observed Sunyaev-Zel'dovich and X-ray scaling relations as well as the X-ray luminosity function, thus enabling to build a reliable mock catalog for present surveys and forecasts for future expe...
Kim, Pyeongeun; Young-Gonzales, Amanda R.; Richert, Ranko
2016-08-01
We have re-measured the third harmonic non-linear dielectric response of supercooled glycerol using zero-bias sinusoidal electric fields, with the aim of comparing the resulting susceptibilities with a phenomenological model of non-linear dielectric responses. In the absence of known chemical effects in this liquid, the present model accounts for three sources of non-linear behavior: dielectric saturation, field induced entropy reduction, and energy absorption from the time dependent field. Using parameters obtained from static high field results, the present model reproduces the characteristic features observed in the third harmonic susceptibility spectra: a low frequency plateau originating from dielectric saturation and a peak positioned below the loss peak frequency whose amplitude increases with decreasing temperature. Semi-quantitative agreement is achieved between experiment and the present model, which does not involve spatial scales or dynamical correlations explicitly. By calculating the three contributions separately, the model reveals that the entropy effect is the main source of the "hump" feature of this third harmonic response.
Tsiklauri, David
2002-09-01
It is known that a boundary slip velocity starts to play an important role when the length scale over which the fluid velocity changes approaches the slip length, i.e., when the fluid is highly confined, for example, fluid flow through porous rock or blood vessel capillaries. Zhu and Granick [Phys. Rev. Lett. 87, 096105 (2001)] have recently experimentally established the existence of a boundary slip in a Newtonian liquid. They reported typical values of the slip length of the order of few micrometers. In this light, the effect of introduction of the boundary slip into the theory of propagation of elastic waves in a fluid-saturated porous medium formulated by Biot [J. Acoust. Soc. Am. 28, 179-191 (1956)] is investigated. Namely, the effect of introduction of boundary slip upon the function F(kappa) that measures the deviation from Poiseuille flow friction as a function of frequency parameter kappa is studied. By postulating phenomenological dependence of the slip velocity upon frequency, notable deviations in the domain of intermediate frequencies in the behavior of F(kappa) are introduced with the incorporation of the boundary slip into the model. It is known that F(kappa) crucially enters Biot's equations, which describe dynamics of fluid-saturated porous solid. Thus, consequences of the nonzero boundary slip by calculating the phase velocities and attenuation coefficients of both rotational and dilatational waves with the variation of frequency are investigated. The new model should allow one to fit the experimental seismic data in circumstances when Biot's theory fails, as the introduction of phenomenological dependence of the slip velocity upon frequency, which is based on robust physical arguments, adds an additional degree of freedom to the model. In fact, it predicts higher than the Biot's theory values of attenuation coefficients of the both rotational and dilatational waves in the intermediate frequency domain, which is in qualitative agreement with the
Physics on Smallest Scales - An Introduction to Minimal Length Phenomenology
Sprenger, Martin; Bleicher, Marcus
2012-01-01
Many modern theories which try to unite gravity with the Standard Model of particle physics, as e.g. string theory, propose two key modifications to the commonly known physical theories: i) the existence of additional space dimensions; ii) the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide coverage in publications over the last ten years (especially due to the prediction of micro black hole production at the LHC), the phenomenology of models with a minimal length is still less investigated. In a summer study project for bachelor students in 2010 we have explored some phenomenological implications of the potential existence of a minimal length. In this paper we review the idea and formalism of a quantum gravity induced minimal length in the generalised uncertainty principle framework as well as in the coherent state approach to non-commutative geometry. These approaches are effective models which can make model-independent predictions for experiments a...
Phenomenological Implications of the $p_T$ Spectra of $\\phi$ and $\\Omega$ produced at LHC and RHIC
Hwa, Rudolph C
2016-01-01
The data on the $p_T$ spectra of $\\phi$ and $\\Omega$ at LHC can be presented in a format that shows exponential behavior up to $p_T\\approx 6$ GeV/c with the same slope for both particles and for nearly all centralities. They are empirical properties that are shared at lower energies with the inverse slope showing a power-law dependence on $\\sqrt{s_{NN}}$. The shared properties of the spectra are shown to emerge naturally from the recombination model. No flow is needed. We find experimental hints for the possibility that $\\phi$ and $\\Omega$ are mostly produced in the ridge that are generated by minijets. Appropriate experimental test is suggested.
Towards a multisensory phenomenology
DEFF Research Database (Denmark)
Jensen, Martin Trandberg
This paper illustrates a multisensory phenomenology that extends hermeneutic phenomenologies in tourism through the embracing of non-representational approaches. The novel co-integration of audio, visual, impressionistic and netnographic accounts allows us to rethink the textual nature and symbolic...... meaning confining phenomenological research. Our analysis is centred on an under-researched European tourism phenomenon, interrailing. This sensuous account provides an original reading of phenomenology focused on how rhythms, sounds and temperatures construct interrail encounters. The analysis...
Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song; Schramm, Jesper
2015-05-01
In this work, a two-dimensional computational fluid dynamics study is reported of an n-heptane combustion event and the associated soot formation process in a constant volume combustion chamber. The key interest here is to evaluate the sensitivity of the chemical kinetics and submodels of a semi-empirical soot model in predicting the associated events. Numerical computation is performed using an open-source code and a chemistry coordinate mapping approach is used to expedite the calculation. A library consisting of various phenomenological multi-step soot models is constructed and integrated with the spray combustion solver. Prior to the soot modelling, combustion simulations are carried out. Numerical results show that the ignition delay times and lift-off lengths exhibit good agreement with the experimental measurements across a wide range of operating conditions, apart from those in the cases with ambient temperature lower than 850 K. The variation of the soot precursor production with respect to the change of ambient oxygen levels qualitatively agrees with that of the conceptual models when the skeletal n-heptane mechanism is integrated with a reduced pyrene chemistry. Subsequently, a comprehensive sensitivity analysis is carried out to appraise the existing soot formation and oxidation submodels. It is revealed that the soot formation is captured when the surface growth rate is calculated using a square root function of the soot specific surface area and when a pressure-dependent model constant is considered. An optimised soot model is then proposed based on the knowledge gained through this exercise. With the implementation of optimised model, the simulated soot onset and transport phenomena before reaching quasi-steady state agree reasonably well with the experimental observation. Also, variation of spatial soot distribution and soot mass produced at oxygen molar fractions ranging from 10.0 to 21.0% for both low and high density conditions are reproduced.
Weak decays. [Lectures, phenomenology
Energy Technology Data Exchange (ETDEWEB)
Wojcicki, S.
1978-11-01
Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references
Scanning the phenomenological MSSM
Wuerzinger, Jonas
2017-01-01
A framework to perform scans in the 19-dimensional phenomenological MSSM is developed and used to re-evaluate the ATLAS experiments' sensitivity to R-parity-conserving supersymmetry with LHC Run 2 data ($\\sqrt{s}=13$ TeV), using results from 14 separate ATLAS searches. We perform a $\\tilde{t}_1$ dedicated scan, only considering models with $m_{\\tilde{t}_1}<1$ TeV, while allowing both a neutralino ($\\tilde{\\chi}_1^0$) and a sneutrino ($\\tilde{\
Farzinnia, Arsham
2012-01-01
The present Thesis is dedicated to a formal and phenomenological investigation of extensions to two separate sectors of the Standard Model of particle physics (SM): the electroweak sector and the strong sector. The Thesis is divided into two main parts: Part I focuses on the Lee-Wick Standard Model (LW SM), which, by providing a solution to the Hierarchy problem, forms a natural extension of the electroweak sector, while Part II studies the coloron theory, arising from extending the strong sector gauge group. Providing a general introduction about the current state of the SM and the associated challenges in Chapter 1, we proceed in Chapter 2 to analyze the tension between naturalness and isospin violation in the LW SM. Chapter 3 discusses the global symmetries and the renormalizability of LW scalar QED. A first complete calculation of QCD corrections to the production of a massive color-octet vector boson (colorons) is reported in Chapter 4. Finally, we conclude the Thesis in Chapter 5 by summarizing the disc...
Phenomenology of the SU(3)_C \\otimes SU(2)_L \\otimes SU(3)_R \\otimes U(1)_X gauge model
Dong, P V; Loi, D V; Nhuan, N T; Ngan, N T K
2016-01-01
We study the left-right asymmetric model based on SU(3)_C\\otimes SU(2)_L \\otimes SU(3)_R\\otimes U(1)_X gauge group, which improves the theoretical and phenomenological aspects of the known left-right symmetric model. This new gauge symmetry yields that the fermion generation number is three, and the tree-level flavor-changing neutral currents arise in both gauge and scalar sectors. Also, it can provide the observed neutrino masses as well as dark matter automatically. Further, we investigate the mass spectrum of the gauge and scalar fields. All the gauge interactions of the fermions and scalars are derived. We examine the tree-level contributions of the new neutral vector, Z'_R, and new neutral scalar, H_2, to flavor-violating neutral meson mixings, say K-\\bar{K}, B_d-\\bar{B}_d, and B_s-\\bar{B}_s, which strongly constrain the new physics scale as well as the elements of the right-handed quark mixing matrices. The bounds for the new physics scale are in agreement with those coming from the \\rho-parameter as we...
Energy Technology Data Exchange (ETDEWEB)
Levay, B
2004-08-02
A phenomenological model describing the temperature dependence of the positronium yields (I{sub Ps}, %) was tested in pure liquids of different polarity. The investigated solvents were: m-xylene (m-Xy) and iso-octane (i-C8) as aromatic and aliphatic nonpolar hydrocarbons, methanol (MeOH), water and dimethyl formamide as polar solvents with and without OH group. Arrhenius type linear relationship predicted by the model for the lnQ vs 1/T function, where Q=(100/I{sub Ps}-1), was found to be valid in all cases. The slopes of the lines correspond to the activation energy differences ({delta}E{sup *}=E{sub rec}-E{sub Ps}) between the two main competing reaction pathways in the positron spur, i.e., solvent recombination (e{sup -} + M{sup +}) and positronium formation (e{sup -} + e{sup +}). The slopes were positive, i.e., {delta}E{sup *}<0 and E{sub rec}
Rajagopalan, Shibi
2010-01-01
In this thesis we examine three different models in the MSSM context, all of which have significant supergravity anomaly contributions to their soft masses. These models are the so-called Minimal, Hypercharged, and Gaugino Anomaly Mediated Supersymmetry Breaking models. We explore some of the string theoretical motivations for these models and proceed by understanding how they would appear at the Large Hadron Collider (LHC). Our major results include calculating the LHC reach for each model's parameter space and prescribing a method for distinguishing the models after the collection of 100 fb^-1 at sqrt{s}=14 TeV. AMSB models are notorious for predicting too low a dark matter relic density. To counter this argument we explore several proposed mechanisms for $non$-$thermal$ dark matter production that act to augment abundances from the usual thermal calculations. Interestingly, we find that future direct detection dark matter experiments potentially have a much better reach than the LHC for these models.
Pragmatic phenomenological types.
Goranson, Ted; Cardier, Beth; Devlin, Keith
2015-12-01
We approach a well-known problem: how to relate component physical processes in biological systems to governing imperatives in multiple system levels. The intent is to further practical tools that can be used in the clinical context. An example proposes a formal type system that would support this kind of reasoning, including in machines. Our example is based on a model of the connection between a quality of mind associated with creativity and neuropsychiatric dynamics: constructing narrative as a form of conscious introspection, which allows the manipulation of one's own driving imperatives. In this context, general creativity is indicated by an ability to manage multiple heterogeneous worldviews simultaneously in a developing narrative. 'Narrative' in this context is framed as the organizing concept behind rational linearization that can be applied to metaphysics as well as modeling perceptive dynamics. Introspection is framed as the phenomenological 'tip' that allows a perceiver to be within experience or outside it, reflecting on and modifying it. What distinguishes the approach is the rooting in well founded but disparate disciplines: phenomenology, ontic virtuality, two-sorted geometric logics, functional reactive programming, multi-level ontologies and narrative cognition. This paper advances the work by proposing a type strategy within a two-sorted reasoning system that supports cross-ontology structure. The paper describes influences on this approach, and presents an example that involves phenotype classes and monitored creativity enhanced by both soft methods and transcranial direct-current stimulation. The proposed solution integrates pragmatic phenomenology, situation theory, narratology and functional programming in one framework.
Directory of Open Access Journals (Sweden)
Minárová Mária
2014-12-01
Full Text Available The paper deals with rheological models and creep and relaxation tests on matters which are represented by models. Three models based on two fundamental components (Hooke’s elastic and Newton’s viscous compounds are performed. The models originated from several fundamental matters by their parallel or serial connections. The corresponding constitutive equations are derived. The behavior of the models under the creep and relaxation tests is observed and is expressed by corresponding stress - strain formulas and illustrated in the figures.
Siddiq, A.
2013-09-01
We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary affected zone (GBAZ). A crystal plasticity model that accounts for the transition from partial dislocation to full dislocation mediated plasticity is used for the grain interior. Isotropic porous plasticity model with further extension to account for failure due to the void coalescence was used for the GBAZ. The extended model contains all the deformation phases, i.e. elastic deformation, plastic deformation including deviatoric and volumetric plasticity (void growth) followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. Lastly we show the model\\'s ability to predict the damage and fracture of a dog-bone shaped specimen as observed experimentally. © 2013 Elsevier B.V.
The custodially protected Randall-Sundrum model. Theoretical aspects and flavour phenomenology
Energy Technology Data Exchange (ETDEWEB)
Blanke, Monika
2009-07-24
Models with a warped extra dimension, so-called Randall-Sundrum models, provide an appealing solution to the gauge and flavour hierarchy problems of the Standard Model. After introducing the theoretical basics of such models, we concentrate on a specific model whose symmetry structure is extended to protect the T parameter and the Zb{sub L} anti b{sub L} coupling from large corrections. We introduce the basic action and discuss in detail effects of electroweak symmetry breaking and the flavour structure of the model. Then we analyse meson-antimeson mixing and rare decays that are affected by new tree level contributions from the Kaluza-Klein modes of the gauge bosons and from the Z boson in an important manner. After deriving analytic expressions for the most important K and B physics observables, we perform a global numerical analysis of the new effects in the model in question. We confirm the recent findings that a stringent constraint on the model is placed by CP-violation in K{sup 0} - anti K{sup 0} mixing. However, even for Kaluza-Klein particles in the reach of the LHC an agreement with all available data can be obtained without significant fine-tuning. We find possible large effects in either CP-violating effects in the B{sub s} - anti B{sub s} system or in the rare K decays, but not simultaneously. In any case the deviations from the Standard Model predictions in the rare B decays are small and difficult to measure. The specific pattern of new flavour effects allows to distinguish this model from other New Physics frameworks, which we demonstrate explicitly for the case of models with Minimal Flavour Violation and for the Littlest Higgs model with T-parity. (orig.)
Logan, Heather E
2011-01-01
The analyses of the first 1-2/fb of Large Hadron Collider (LHC) data are already having significant impacts on a wide range of models. In this talk I give my perspective on why we expect to find new physics at the LHC, and how such a discovery might unfold.
LHC phenomenology of general SU(2)×SU(2)×U(1) models
Ježo, Tomáš; Klasen, Michael; Schienbein, Ingo
2012-08-01
General SU(2)×SU(2)×U(1) models represent a well-motivated intermediate step towards the unification of the standard model gauge groups. Based on a recent global analysis of low-energy and LEP constraints of these models, we perform numerical scans of their various signals at the LHC. We show that total cross sections for lepton and third-generation quark pairs, while experimentally easily accessible, provide individually only partial information about the model realized in nature. In contrast, correlations of these cross sections in the neutral and charged current channels may well lead to a unique identification.
LHC phenomenology of general SU(2)xSU(2)xU(1) models
Ježo, Tomáš; Schienbein, Ingo
2012-01-01
General SU(2)xSU(2)xU(1) models represent a well-motivated intermediate step towards the unification of the Standard Model gauge groups. Based on a recent global analysis of low-energy and LEP constraints of these models, we perform numerical scans of their various signals at the LHC. We show that total cross sections for lepton and third-generation quark pairs, while experimentally easily accessible, provide individually only partial information about the model realized in Nature. In contrast, correlations of these cross sections in the neutral and charged current channels may well lead to a unique identification.
Twin-unified SU(5) × SU(5)′ GUT and phenomenology
Indian Academy of Sciences (India)
Zurab Tavartkiladze
2016-02-01
In this article, after a short introduction, grand unified SU(5) × SU(5)′ model augmented by 2 parity has been discussed. The latter turns out to be important for phenomenology. Specific pattern of the GUT symmetry breaking causes new strong dynamics at low energies. Consequently, the Standard Model leptons, along with right-handed/sterile neutrinos, come out as composite states. Issues of the gauge coupling unification, generation of the charged fermion and neutrino masses will be presented. Also, various phenomenological implications and constraints will be discussed.
A phenomenological two-phase constitutive model for porous shape memory alloys
El Sayed, Tamer S.
2012-07-01
We present a two-phase constitutive model for pseudoelastoplastic behavior of porous shape memory alloys (SMAs). The model consists of a dense SMA phase and a porous plasticity phase. The overall response of the porous SMA is obtained by a weighted average of responses of individual phases. Based on the chosen constitutive model parameters, the model incorporates the pseudoelastic and pseudoplastic behavior simultaneously (commonly reported for porous SMAs) as well as sequentially (i.e. dense SMAs; pseudoelastic deformation followed by the pseudoplastic deformation until failure). The presented model also incorporates failure due to the deviatoric (shear band formation) and volumetric (void growth and coalescence) plastic deformation. The model is calibrated by representative volume elements (RVEs) with different sizes of spherical voids that are solved by unit cell finite element calculations. The overall response of the model is tested against experimental results from literature. Finally, application of the presented constitutive model has been presented by performing finite element simulations of the deformation and failure in unaixial dog-bone shaped specimen and compact tension (CT) test specimen. Results show a good agreement with the experimental data reported in the literature. © 2012 Elsevier B.V. All rights reserved.
Elementary cuspoid catastrophes as the models of phenomenological equations of state
Directory of Open Access Journals (Sweden)
Alexander V. Tatarenko
2011-03-01
Full Text Available The suggested earlier approach based on the equation of state expressed as the equilibrium surface of cuspoid catastrophes has been expanded and developed. The family of equations of state with arbitrary critical point degeneracy has been obtained. In other words, the order of a partial derivative of pressure with respect to volume at the critical point has become an arbitrary assigned variable. This, in turn, has led to more realistic, as compared to the classic case, behaviour of fluid in the immediate vicinity of the critical point. The critical exponents became functions of the degree of critical point degeneracy. By suitable selection of the degree of degeneracy it is possible to obtain the preset values of critical exponents. A simple nonanalytic equation of state has been obtained. This equation allows us to describe some non-classical phenomena in the vicinity of critical point liquid-gas without using scaling. The same equation holds in the ideal gas area without using crossover. One more implication arising from the suggested approach is a singularity in the equations of state – endpoint of gas-liquid equilibrium at low pressures.
Results from EDGES High-band. I. Constraints on Phenomenological Models for the Global 21 cm Signal
Monsalve, Raul A.; Rogers, Alan E. E.; Bowman, Judd D.; Mozdzen, Thomas J.
2017-09-01
We report constraints on the global 21 cm signal due to neutral hydrogen at redshifts 14.8≥slant z≥slant 6.5. We derive our constraints from low-foreground observations of the average sky brightness spectrum conducted with the EDGES High-band instrument between 2015 September 7 and October 26. Observations were calibrated by accounting for the effects of antenna beam chromaticity, antenna and ground losses, signal reflections, and receiver parameters. We evaluate the consistency between the spectrum and phenomenological models for the global 21 cm signal. For tanh-based representations of the ionization history during the epoch of reionization, we rule out, at ≥slant 2σ significance, models with duration of up to {{Δ }}z=1 at z≈ 8.5 and higher than {{Δ }}z=0.4 across most of the observed redshift range under the usual assumption that the 21 cm spin temperature is much larger than the temperature of the cosmic microwave background during reionization. We also investigate a “cold” intergalactic medium (IGM) scenario that assumes perfect Lyα coupling of the 21 cm spin temperature to the temperature of the IGM, but that the latter is not heated by early stars or stellar remants. Under this assumption, we reject tanh-based reionization models of duration {{Δ }}z≲ 2 over most of the observed redshift range. Finally, we explore and reject a broad range of Gaussian models for the 21 cm absorption feature expected in the First Light era. As an example, we reject 100 mK Gaussians with duration (full width at half maximum) {{Δ }}z≤slant 4 over the range 14.2≥slant z≥slant 6.5 at ≥slant 2σ significance.
Top-Higgs and top-pion phenomenology in the top triangle moose model
Chivukula, R. Sekhar; Simmons, Elizabeth H.; Coleppa, Baradhwaj; Logan, Heather E.; Martin, Adam
2011-03-01
We discuss the deconstructed version of a topcolor-assisted technicolor model wherein the mechanism of top quark mass generation is separated from the rest of electroweak symmetry breaking. The minimal deconstructed version of this scenario is a “triangle moose” model, where the top quark gets its mass from coupling to a top-Higgs field, while the gauge boson masses are generated from a Higgsless sector. The spectrum of the model includes scalar (top-Higgs) and pseudoscalar (top-pion) states. In this paper, we study the properties of these particles, discuss their production mechanisms and decay modes, and suggest how best to search for them at the LHC.
Top-Higgs and Top-pion phenomenology in the Top Triangle Moose model
Chivukula, R Sekhar; Logan, Heather E; Martin, Adam; Simmons, Elizabeth H
2011-01-01
We discuss the deconstructed version of a topcolor-assisted technicolor model wherein the mechanism of top quark mass generation is separated from the rest of electroweak symmetry breaking. The minimal deconstructed version of this scenario is a "triangle moose" model, where the top quark gets its mass from coupling to a top-Higgs field, while the gauge boson masses are generated from a Higgsless sector. The spectrum of the model includes scalar (top-Higgs) and pseudoscalar (top-pion) states. In this paper, we study the properties of these particles, discuss their production mechanisms and decay modes, and suggest how best to search for them at the LHC.
A phenomenological model of two-phase (air/fuel droplet developing and breakup
Directory of Open Access Journals (Sweden)
Pavlović Radomir R.
2013-01-01
Full Text Available Effervescent atomization namely the air-filled liquid atomization comprehends certain complex two-phase phenomenon that are difficult to be modeled. Just a few researchers have found the mathematical expressions for description of the complex atomization model of the two-phase mixture air/diesel fuel. In the following review, developing model of twophase (air/fuel droplet of Cummins spray pump-injector is shown. The assumption of the same diameters of the droplet and the opening of the atomizer is made, while the air/fuel mass ratio inside the droplet varies.
Phenomenological Model for the metal-insulator transition in two dimensions
Weisz, J. F.
2009-01-01
The resistivity measured in two-dimensional MOSFET geometry is modeled by considering that the resistivity is a function of the temperature and the areal density of charges (electrons or holes). The logistics differential equation is proposed for the behaviour of the resistivity as a function of temperature, so that the two phases are obtained in a natural manner. At low temperatures, the Drude model behaviour is assumed for the resistivity as a function of density. Two characteristics then f...
Hadron Mass Scaling in Regge Phenomenology
Burakovsky, L
1998-01-01
We show that Regge phenomenology is consistent with the only universal scaling law for hadron masses, M^\\ast /M=(\\alpha ^{'}/\\alpha ^{'\\ast})^{1/2}, where asterisk indicates a finite-temperature quantity. Phenomenological models further suggest the following expression of the above scaling in terms of the temperature-dependent gluon condensate: M^\\ast /M=
A Critique of a Phenomenological Fiber Breakage Model for Stress Rupture of Composite Materials
Reeder, James R.
2010-01-01
Stress rupture is not a critical failure mode for most composite structures, but there are a few applications where it can be critical. One application where stress rupture can be a critical design issue is in Composite Overwrapped Pressure Vessels (COPV's), where the composite material is highly and uniformly loaded for long periods of time and where very high reliability is required. COPV's are normally required to be proof loaded before being put into service to insure strength, but it is feared that the proof load may cause damage that reduces the stress rupture reliability. Recently, a fiber breakage model was proposed specifically to estimate a reduced reliability due to proof loading. The fiber breakage model attempts to model physics believed to occur at the microscopic scale, but validation of the model has not occurred. In this paper, the fiber breakage model is re-derived while highlighting assumptions that were made during the derivation. Some of the assumptions are examined to assess their effect on the final predicted reliability.
A time-dependent phenomenological model for cell mechano-sensing.
Borau, Carlos; Kamm, Roger D; García-Aznar, José Manuel
2014-04-01
Adherent cells normally apply forces as a generic means of sensing and responding to the mechanical nature of their surrounding environment. How these forces vary as a function of the extracellular rigidity is critical to understanding the regulatory functions that drive important phenomena such as wound healing or muscle contraction. In recognition of this fact, experiments have been conducted to understand cell rigidity-sensing properties under known conditions of the extracellular environment, opening new possibilities for modeling this active behavior. In this work, we provide a physics-based constitutive model taking into account the main structural components of the cell to reproduce its most significant contractile properties such as the traction forces exerted as a function of time and the extracellular stiffness. This model shows how the interplay between the time-dependent response of the acto-myosin contractile system and the elastic response of the cell components determines the mechano-sensing behavior of single cells.
LHC phenomenology of a two-Higgs-doublet neutrino mass model
Davidson, Shainen M.; Logan, Heather E.
2010-01-01
We study the LHC search prospects for a model in which the neutrinos obtain Dirac masses from couplings to a second Higgs doublet with tiny vacuum expectation value. The model contains a charged Higgs boson that decays to l nu with branching fractions controlled by the neutrino masses and mixing angles as measured in neutrino oscillation experiments. The most promising signal is electroweak production of H+ H- pairs with decays to l l' pTmiss, where l l' = e+ e-, mu+ mu-, and e+- mu-+. We fin...
Mansour, N A
2003-01-01
The results from the cubic polynomial (CP) formula of the square of the angular velocity and the nuclear moments of inertia are compared with those from the variable moment of inertia (VMI) model and the available experimental information on transition energies for yrast line in even-even nuclei. The evaluated model parameters lead to an excellent fit for all energy levels ( I approx 24). The calculated critical spin for backbending in the zeta - omega sup 2 plot is found to be in agreement with the experimental data. (author)
Phenomenology of minimal Z' models: from the LHC to the GUT scale
Accomando, Elena; Rose, Luigi Delle; Fiaschi, Juri; Marzo, Carlo; Moretti, Stefano
2016-01-01
We consider a class of minimal abelian extensions of the Standard Model with an extra neutral gauge boson $Z'$ at the TeV scale. In these scenarios an extended scalar sector and heavy right-handed neutrinos are naturally envisaged. We present some of their striking signatures at the Large Hadron Collider, the most interesting arising from a $Z'$ decaying to heavy neutrino pairs as well as a heavy scalar decaying to two Standard Model Higgses. Using renormalisation group methods, we characterise the high energy behaviours of these extensions and exploit the constraints imposed by the embedding into a wider GUT scenario.
DEFF Research Database (Denmark)
Gernaey, Krist; Flores Alsina, Xavier; Rosen, Christian
2011-01-01
Activated Sludge Models are widely used for simulation-based evaluation of wastewater treatment plant (WWTP) performance. However, due to the high workload and cost of a measuring campaign on a full-scale WWTP, many simulation studies suffer from lack of sufficiently long influent flow rate and c...
Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking
Directory of Open Access Journals (Sweden)
Katsuya Hashino
2016-01-01
Full Text Available Classical scale invariance (CSI may be one of the solutions for the hierarchy problem. Realistic models for electroweak symmetry breaking based on CSI require extended scalar sectors without mass terms, and the electroweak symmetry is broken dynamically at the quantum level by the Coleman–Weinberg mechanism. We discuss discriminative features of these models. First, using the experimental value of the mass of the discovered Higgs boson h(125, we obtain an upper bound on the mass of the lightest additional scalar boson (≃543 GeV, which does not depend on its isospin and hypercharge. Second, a discriminative prediction on the Higgs-photon–photon coupling is given as a function of the number of charged scalar bosons, by which we can narrow down possible models using current and future data for the di-photon decay of h(125. Finally, for the triple Higgs boson coupling a large deviation (∼+70% from the SM prediction is universally predicted, which is independent of masses, quantum numbers and even the number of additional scalars. These models based on CSI can be well tested at LHC Run II and at future lepton colliders.
Phenomenological model for predicting the catabolic potential of an arbitrary nutrient.
Seaver, Samuel M D; Sales-Pardo, Marta; Guimerà, Roger; Amaral, Luís A Nunes
2012-01-01
The ability of microbial species to consume compounds found in the environment to generate commercially-valuable products has long been exploited by humanity. The untapped, staggering diversity of microbial organisms offers a wealth of potential resources for tackling medical, environmental, and energy challenges. Understanding microbial metabolism will be crucial to many of these potential applications. Thermodynamically-feasible metabolic reconstructions can be used, under some conditions, to predict the growth rate of certain microbes using constraint-based methods. While these reconstructions are powerful, they are still cumbersome to build and, because of the complexity of metabolic networks, it is hard for researchers to gain from these reconstructions an understanding of why a certain nutrient yields a given growth rate for a given microbe. Here, we present a simple model of biomass production that accurately reproduces the predictions of thermodynamically-feasible metabolic reconstructions. Our model makes use of only: i) a nutrient's structure and function, ii) the presence of a small number of enzymes in the organism, and iii) the carbon flow in pathways that catabolize nutrients. When applied to test organisms, our model allows us to predict whether a nutrient can be a carbon source with an accuracy of about 90% with respect to in silico experiments. In addition, our model provides excellent predictions of whether a medium will produce more or less growth than another (p<10(-6)) and good predictions of the actual value of the in silico biomass production.
Phenomenological model for predicting the catabolic potential of an arbitrary nutrient.
Directory of Open Access Journals (Sweden)
Samuel M D Seaver
Full Text Available The ability of microbial species to consume compounds found in the environment to generate commercially-valuable products has long been exploited by humanity. The untapped, staggering diversity of microbial organisms offers a wealth of potential resources for tackling medical, environmental, and energy challenges. Understanding microbial metabolism will be crucial to many of these potential applications. Thermodynamically-feasible metabolic reconstructions can be used, under some conditions, to predict the growth rate of certain microbes using constraint-based methods. While these reconstructions are powerful, they are still cumbersome to build and, because of the complexity of metabolic networks, it is hard for researchers to gain from these reconstructions an understanding of why a certain nutrient yields a given growth rate for a given microbe. Here, we present a simple model of biomass production that accurately reproduces the predictions of thermodynamically-feasible metabolic reconstructions. Our model makes use of only: i a nutrient's structure and function, ii the presence of a small number of enzymes in the organism, and iii the carbon flow in pathways that catabolize nutrients. When applied to test organisms, our model allows us to predict whether a nutrient can be a carbon source with an accuracy of about 90% with respect to in silico experiments. In addition, our model provides excellent predictions of whether a medium will produce more or less growth than another (p<10(-6 and good predictions of the actual value of the in silico biomass production.
Bakhet, Nady; Hussein, Tarek
2015-01-01
Large Extra Dimensions Models have been proposed to remove the hierarchy problem and give an explanation why the gravity is so much weaker than the other three forces. In this work, we present an analysis of Monte Carlo data events for new physics signatures of spin-2 Graviton in context of ADD model with total dimensions $D=4+\\delta,$ $\\delta = 1,2,3,4,5,6 $ where $ \\delta $ is the extra special dimension, this model involves missing momentum $P_{T}^{miss}$ in association with jet in the final state via the process $pp(\\bar{p}) \\rightarrow G+jet$, Also, we present an analysis in context of the RS model with 5-dimensions via the process $pp(\\bar{p}) \\rightarrow G+jet$, $G \\rightarrow e^{+}e^{-}$ with final state $e^{+}e^{-}+jet$. We used Monte Carlo event generator Pythia8 to produce efficient signal selection rules at the Large Hadron Collider with $\\sqrt{s}$=14TeV and at the Tevatron $\\sqrt{s}$=1.96TeV .
General model of wood in typical coupled tasks. Part I. – Phenomenological approach
Directory of Open Access Journals (Sweden)
Petr Koňas
2008-01-01
Full Text Available The main aim of this work is focused on FE modeling of wood structure. This task is conditioned mainly by different organized structures/regions (tissues, anomalies... and leads to homogenization process of multiphysics declaration of common scientific and engineering problems. The crucial role in this paper is played by derivation of coefficient form of general PDE which is solvable by nowadays numerical solvers. Generality of supposed model is given by wide range of coupled physical fields included in the model. Used approach summarizes and brings together models for various fields of matter and energy common in wood material in wood drying process, but is also suitable for a lot of different tasks of similar materials. Namely microwave drying of wood with orthotropic, visco-elastic material properties together with time, moisture and temperature dependency of structural strains by modified mechanical properties were included. Specific matrixes of elasticity for individual fields were derived. Thermal field in wood was described by conduction type of spreading. Coupling of physical fields is based on diffusive character of temperature, moisture, static pressure fields movement.
Phenomenology of a Higgs triplet model at future $e^{+}e^{-}$ colliders
Blunier, Sylvain; Díaz, Marco Aurelio; Koch, Benjamin
2016-01-01
In this work, we investigate the prospects of future $e^{+}e^{-}$ colliders in testing a Higgs triplet model with a scalar triplet and a scalar singlet under $SU(2)$. The parameters of the model are fixed so that the lightest $CP-$even state corresponds to the Higgs particle observed at the LHC at around $125$ GeV. This study investigates if the second heaviest $CP-$even, the heaviest $CP-$odd and the singly charged states can be observed at existing and future colliders by computing their accessible production and decay channels. In particular, the LHC is not well equipped to produce a Higgs boson which is not mainly doublet-like, so we turn our focus to lepton colliders. We find distinctive features of this model in cases when the second heaviest $CP-$even Higgs is triplet-like, singlet-like or a mixture. These features could distinguish the model from other scenarios at future $e^{+}e^{-}$ colliders.
Energy Technology Data Exchange (ETDEWEB)
Salas, P., E-mail: patysalasc@hotmail.com; Fortes, M.; Solís, M.A.; Sevilla, F.J.
2016-05-15
Highlights: • We present a superconductivity model which includes the Boson–Fermion model and extend it to layered structures. • The model straightforwardly predicts and reproduces the electronic specific heat of underdoped cuprates. • The linear component of the electronic specific heat, and the quadratic and cubic behaviors for low temperatures are obtained. • The total specific heat is built giving very satisfactory results. • The mass anisotropy is explained through this model. - Abstract: We adapt the Boson–Fermion superconductivity model to include layered systems such as underdoped cuprate superconductors. These systems are represented by an infinite layered structure containing a mixture of paired and unpaired fermions. The former, which stand for the superconducting carriers, are considered as noninteracting zero spin composite-bosons with a linear energy–momentum dispersion relation in the CuO{sub 2} planes where superconduction is predominant, coexisting with the unpaired fermions in a pattern of stacked slabs. The inter-slab, penetrable, infinite planes are generated by a Dirac comb potential, while paired and unpaired electrons (or holes) are free to move parallel to the planes. Composite-bosons condense at a critical temperature at which they exhibit a jump in their specific heat. These two values are assumed to be equal to the superconducting critical temperature T{sub c} and the specific heat jump reported for YBa{sub 2}Cu{sub 3}O{sub 6.80} to fix our model parameters namely, the plane impenetrability and the fraction of superconducting charge carriers. We then calculate the isochoric and isobaric electronic specific heats for temperatures lower than T{sub c} of both, the composite-bosons and the unpaired fermions, which matches the latest experimental curves. From the latter, we extract the linear coefficient (γ{sub n}) at T{sub c}, as well as the quadratic (αT{sup 2}) term for low temperatures. We also calculate the lattice
LHC signatures and cosmological implications of the E6 inspired SUSY models
Nevzorov, R
2015-01-01
The phenomenological implications of the E6 inspired supersymmetric models based on the Standard Model gauge group together with extra U(1)_N gauge symmetry under which right-handed neutrinos have zero charge are examined. In these models single discrete symmetry forbids the tree-level flavour changing processes and the most dangerous operators that violate baryon and lepton numbers. The two-loop renormalisation group flow of the gauge and Yukawa couplings is explored and the qualitative pattern of the Higgs spectrum in the case of the quasi-fixed point scenario is discussed. These E6 inspired models contain two dark-matter candidates. The presence of exotic states in these models gives rise to the nonstandard decays of the lightest Higgs boson which are also considered.
Reconstructing ATLAS SU3 in the CMSSM and relaxed phenomenological supersymmetry models
Fowlie, Andrew
2011-01-01
Assuming that the LHC makes a positive end-point measurement indicative of low-energy supersymmetry, we examine the prospects of reconstructing the parameter values of a typical low-mass point in the framework of the Constrained MSSM and in several other supersymmetry models that have more free parameters and fewer assumptions than the CMSSM. As a case study, we consider the ATLAS SU3 benchmark point with a Bayesian approach and with a Gaussian approximation to the likelihood for the measured masses and mass differences. First we investigate the impact of the hypothetical ATLAS measurement alone and show that it significantly narrows the confidence intervals of relevant, otherwise fairly unrestricted, model parameters. Next we add information about the relic density of neutralino dark matter to the likelihood and show that this further narrows the confidence intervals. We confirm that the CMSSM has the best prospects for parameter reconstruction; its results had little dependence on our choice of prior, in co...
Phenomenological Model for Infrared Emissions from High-Explosive Detonation Fireballs
2007-09-01
Beckstead, Merrill W., Karthik Puduppakkam, Piyush Thakre, and Vigor Yang. “Modeling of combus- tion and ignition of solid-propellant ingredients...244, 2005. 22. Cooper, Paul W. Explosives Engineering. VCH Publishers, New York, New York, 1996. 23. Crow , Dennis, Charles Coker, and Wayne Keen...Fast Line-of-sight Imagery for Target and Exhaust- plume Signatures (FLITES) scene generation program”. Proceedings of SPIE, 6208, 2006. 24. Crow , Dennis
Collider Phenomenology of Higgs Bosons in Left-Right Symmetric Randall-Sundrum Models
Lillie, Benjamin Huntington
2005-01-01
We study the corrections to Higgs physics in a model of a single warped extra dimension with all fields except the Higgs in the bulk, and a gauge symmetry extended to $SU(2)_L\\times SU(2)_R \\times U(1)_{B-L}$. We find that generically the Higgs coupling to electroweak gauge boson pairs is suppressed, the coupling to gluons is enhanced, and the coupling to photons is often suppressed, but can be enhanced.
Khan, Kamran
2012-11-09
We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.
Grasa, J; Sierra, M; Muñoz, M J; Soteras, F; Osta, R; Calvo, B; Miana-Mena, F J
2014-11-01
The present study shows a new computational FEM technique to simulate the evolution of the mechanical response of 3D muscle models subjected to fatigue. In an attempt to obtain very realistic models, parameters needed to adjust the mathematical formulation were obtained from in vivo experimental tests. The fatigue contractile properties of three different rat muscles (Tibialis Anterior, Extensor Digitorium Longus and Soleus) subjected to sustained maximal isometric contraction were determined. Experiments were conducted on three groups [Formula: see text] of male Wistar rats [Formula: see text] using a protocol previously developed by the authors for short tetanic contractions. The muscles were subjected to an electrical stimulus to achieve tetanic contraction during 10 s. The parameters obtained for each muscle were incorporated into a finite strain formulation for simulating active and passive behavior of muscles with different fiber metabolisms. The results show the potential of the model to predict muscle fatigue under high-frequency stimulation and the 3D distribution of mechanical variables such as stresses and strains.
Phenomenology of Sarks and Dileptons
Chaudhry, Jyoti
We have studied three extensions of the standard model; the sark model, the vector quark model and the 331 model. The sark model has a gauge group SU(2) _{X}otimes SU(3)_{C} otimes SU(2)_{S}otimes U(1) _{Q}, where all gauge symmetries are unbroken. The vector-quark model contains an extra vector-like quark doublet. Finally, the 331 model has a gauge group SU(3)_{C}otimes SU(3)_{L}otimes U(1)_{X } where SU(3)otimes U(1)_ {X} contains the standard electroweak group SU(2)_{L}otimes U(1) _{Y}. This model contains three extended fermion families with the third family treated differently and additional vector gauge bosons. In the sark model, the number of quark-lepton families is constrained to three by the asymptotic freedom for the SU(2)_{X} group. Further, quantization of the electric charge is achieved by the anomaly cancellation conditions. Neutral sark baryons, called narks, are candidates for the cosmological dark matter having the characteristics designed for WIMPS. Further phenomenological implications of sarks are analyzed including electron-positron annihilation, Z^{0 } decay, flavor-changing neutral currents, baryon-number non-conservation, sarkonium and the neutron electric dipole moment. Next, we have studied the CP violation parameter Re(epsilon^'/epsilon) in the vector-quark model and also in the 331 model. For a given value of m_{t}, the vector quark model tends to reduce Re(epsilon ^'/epsilon) whereas the 331 model tends to increase it. If m_{t } is discovered around 150 GeV and the lower experimental value for Re(epsilon^ '/epsilon) (0.74+/- 0.60times 10^{-3}, Fermilab) is confirmed, the standard model is acceptable. But, if its higher value (2.3+/- 0.65times 10 ^{-3}, CERN) persists, a dynamics like the 331 model seems to be favored. Lastly, we have looked for the signatures of the dileptons in e^-p and e ^-e^+ colliders. At HERA, with the center-of-mass energy 314 GeV, a dilepton mass above 150 GeV is inaccessible but at LEPII-LHC, with a 1790 Ge
Wulf, Gerwin; Kenkmann, Thomas
2015-02-01
The ejecta blankets of impact craters in volatile-rich environments often possess characteristic layered ejecta morphologies. The so-called double-layered ejecta (DLE) craters are characterized by two ejecta layers with distinct morphologies. The analysis of high-resolution image data, especially HiRISE and CTX, provides new insights into the formation of DLE craters. A new phenomenological excavation and ejecta emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim—a well-preserved DLE crater—and studies of other DLE craters. The observations show that the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a debris avalanche or (if saturated with water) a debris flow mode after landing, overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits during the emplacement stage that overrun and superimpose parts of the outer ejecta layer. Based on our model, DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock-induced vaporization and melting of ground ice, leading to high ejection angles, proximal landing positions, and an ejecta curtain with relatively wet (in terms of water in liquid form) composition in the distal part versus dryer composition in the proximal part. As a consequence, basal melting of ice components in the ejecta at the transient crater rim, which is induced by frictional heating and the enhanced pressure at depth, initiates an outwards directed collapse of crater rim material in a translational slide mode. Our results indicate that similar processes may also be applicable for other planetary bodies with volatile-rich environments, such as Ganymede, Europa, and the Earth.
Phenomenological study of the minimal R-symmetric supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Diessner, Philip
2016-10-20
The Standard Model (SM) of particle physics gives a comprehensive description of numerous phenomena concerning the fundamental components of nature. Still, open questions and a clouded understanding of the underlying structure remain. Supersymmetry is a well motivated extension that may account for the observed density of dark matter in the universe and solve the hierarchy problem of the SM. The minimal supersymmetric extension of the SM (MSSM) provides solutions to these challenges. Furthermore, it predicts new particles in reach of current experiments. However, the model has its own theoretical challenges and is under fire from measurements provided by the Large Hadron Collider (LHC). Nevertheless, the concept of supersymmetry has an elegance which not only shines in the MSSM. Hence, it is also of interest to examine non-minimal supersymmetric models. They have benefits similar to the MSSM and may solve its shortcomings. R-symmetry is the only global symmetry allowed that does not commutate with supersymmetry and Lorentz symmetry. Thus, extending a supersymmetric model with R-symmetry is a theoretically well motivated endeavor to achieve the complete symmetry content of a field theory. Such a model provides a natural explanation for non-discovery in the early runs of the LHC and leads to further predictions distinct from those of the MSSM. The work described in this thesis contributes to the effort by studying the minimal R-symmetric supersymmetric extension of the SM (MRSSM). Important aspects of its physics and the dependence of observables on the parameter space of the MRSSM are investigated. The discovery of a scalar particle compatible with the Higgs boson of the SM at the LHC was announced in 2012. It is the first and crucial task of this thesis to understand the underlying mechanisms leading to the correct Higgs boson mass prediction in the MRSSM. Then, the relevant regions of parameter space are investigated and it is shown that they are also in agreement
Salehghaffari, Shahab; Dhaher, Yasin Y
2015-07-16
In this paper, we sought to expand the fidelity of a validated model of the anterior cruciate ligament reconstruction (ACL-R) procedure by incorporating a stick-slip contact model with linear pressure-overclosure relationship at the interface. The suggested model is characterized by three unknown parameters, friction coefficient, shear stress softening and contact stiffness. In the absence of any isolated experiments exploring the graft-tunnel interactions during an aggregate joint load, the calibration data used in this study are derived from a reported biomechanical study. A Bayesian calibration procedure was employed to find the unknown probability distribution function (PDF) of these contact parameters. Initially, the response surface approximations of the predicted graft forces from laxity test simulations was adopted to estimate the likelihood of noisy experimental data reported in the literature. Then, the wide domain of contact parameters was sampled sequentially based on the Marcov Chain Monte Carlo (MCMC) method with acceptance-rejection criteria to search for population of samples in significantly narrower domain of unknown parameters that are associated with the highest occurrence likelihood of noisy experimental data. Our simulations with calibrated contact parameters indicate that pre-tensioning applied at 30° of flexion leads to larger graft force after the joint is fully extended compared to the graft force when the same pre-tensioning force is applied at full extension. Moreover, regardless of the pre-tensioning force, the graft-tunnel contact pressure is larger when the fixation of the graft is performed at full extension, increasing with the pre-tensioning force.
Salas, P.; Fortes, M.; Solís, M. A.; Sevilla, F. J.
2016-05-01
We adapt the Boson-Fermion superconductivity model to include layered systems such as underdoped cuprate superconductors. These systems are represented by an infinite layered structure containing a mixture of paired and unpaired fermions. The former, which stand for the superconducting carriers, are considered as noninteracting zero spin composite-bosons with a linear energy-momentum dispersion relation in the CuO2 planes where superconduction is predominant, coexisting with the unpaired fermions in a pattern of stacked slabs. The inter-slab, penetrable, infinite planes are generated by a Dirac comb potential, while paired and unpaired electrons (or holes) are free to move parallel to the planes. Composite-bosons condense at a critical temperature at which they exhibit a jump in their specific heat. These two values are assumed to be equal to the superconducting critical temperature Tc and the specific heat jump reported for YBa2Cu3O6.80 to fix our model parameters namely, the plane impenetrability and the fraction of superconducting charge carriers. We then calculate the isochoric and isobaric electronic specific heats for temperatures lower than Tc of both, the composite-bosons and the unpaired fermions, which matches the latest experimental curves. From the latter, we extract the linear coefficient (γn) at Tc, as well as the quadratic (αT2) term for low temperatures. We also calculate the lattice specific heat from the ARPES phonon spectrum, and add it to the electronic part, reproducing the experimental total specific heat at and below Tc within a 5% error range, from which the cubic (ßT3) term for low temperatures is obtained. In addition, we show that this model reproduces the cuprates mass anisotropies.
Phenomenological neutron star equations of state. 3-window modeling of QCD matter
Energy Technology Data Exchange (ETDEWEB)
Kojo, Toru [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, Illinois (United States)
2016-03-15
We discuss the 3-window modeling of cold, dense QCD matter equations of state at density relevant to neutron star properties. At low baryon density, n{sub B}
A phenomenological model for the dynamic response of wind turbines to turbulent wind
Energy Technology Data Exchange (ETDEWEB)
Rauh, Alexander; Peinke, Joachim [Institut fur Physik, Universitat Oldenburg, D-26111 Oldenburg (Germany)
2004-02-01
To predict the average power output of a wind turbine, a response model is proposed which takes into account: (1) the delayed response to the longitudinal wind speed fluctuations; (2) a response function of the turbine with arbitrary frequency dependence; and (3) wind fields of arbitrary turbulence intensity. In the limit of low turbulence intensity, the dynamical ansatz as proposed in 1992 by Rosen and Sheinman is reproduced. It is shown, how the response function of the turbine can be obtained from simulation experiments of a specific wind turbine. For two idealized situations the dynamic effect of fluctuating wind is estimated at turbulence intensities 0{<=}I{sub u}{<=}0.5. At the special mean wind speed V=8m/s, the turbine response function is determined from simulation data published by Sheinman and Rosen in 1992 and 1994.
CP-violating phenomenology of flavor conserving two Higgs doublet models
Inoue, Satoru; Ramsey-Musolf, Michael J.; Zhang, Yue
2014-06-01
We analyze the constraints on CP-violating, flavor conserving two Higgs doublet models implied by measurements of Higgs boson properties at the Large Hadron Collider (LHC) and by the nonobservation of permanent electric dipole moments (EDMs) of molecules, atoms, and neutrons. We find that the LHC and EDM constraints are largely complementary, with the LHC studies constraining the mixing between the neutral CP-even states and the EDMs probing the effect of mixing between the CP-even and CP-odd scalars. Presently, the most stringent constraints are implied by the nonobservation of the ThO molecule EDM signal. Future improvements in the sensitivity of neutron and diamagnetic atom EDM searches could yield competitive or even more severe constraints. We analyze the quantitative impact of hadronic and nuclear theory uncertainties on the interpretation of the latter systems and conclude that these uncertainties cloud the impact of projected improvements in the corresponding experimental sensitivities.
Fitting the Phenomenological MSSM
AbdusSalam, S S; Quevedo, F; Feroz, F; Hobson, M
2010-01-01
We perform a global Bayesian fit of the phenomenological minimal supersymmetric standard model (pMSSM) to current indirect collider and dark matter data. The pMSSM contains the most relevant 25 weak-scale MSSM parameters, which are simultaneously fit using `nested sampling' Monte Carlo techniques in more than 15 years of CPU time. We calculate the Bayesian evidence for the pMSSM and constrain its parameters and observables in the context of two widely different, but reasonable, priors to determine which inferences are robust. We make inferences about sparticle masses, the sign of the $\\mu$ parameter, the amount of fine tuning, dark matter properties and the prospects for direct dark matter detection without assuming a restrictive high-scale supersymmetry breaking model. We find the inferred lightest CP-even Higgs boson mass as an example of an approximately prior independent observable. This analysis constitutes the first statistically convergent pMSSM global fit to all current data.
Phenomenological Quantum Gravity
Kimberly, D; Kimberly, Dagny; Magueijo, Joao
2005-01-01
These notes summarize a set of lectures on phenomenological quantum gravity which one of us delivered and the other attended with great diligence. They cover an assortment of topics on the border between theoretical quantum gravity and observational anomalies. Specifically, we review non-linear relativity in its relation to loop quantum gravity and high energy cosmic rays. Although we follow a pedagogic approach we include an open section on unsolved problems, presented as exercises for the student. We also review varying constant models: the Brans-Dicke theory, the Bekenstein varying $\\alpha$ model, and several more radical ideas. We show how they make contact with strange high-redshift data, and perhaps other cosmological puzzles. We conclude with a few remaining observational puzzles which have failed to make contact with quantum gravity, but who knows... We would like to thank Mario Novello for organizing an excellent school in Mangaratiba, in direct competition with a very fine beach indeed.
Santamaria, L; Ajith, P; Bruegmann, B; Dorband, N; Hannam, M; Husa, S; Moesta, P; Pollney, D; Reisswig, C; Seiler, J; Krishnan, B
2010-01-01
We present a new phenomenological gravitational waveform model for he inspiral and coalescence of non-precessing spinning black hole binaries. Our approach is based on a frequency domain matching of post-Newtonian inspiral waveforms with numerical relativity based binary black hole coalescence waveforms. We quantify the various possible sources of systematic errors that arise in matching post-Newtonian and numerical relativity waveforms, and we use a matching criteria based on minimizing these errors; we find that the dominant source of errors are those in the post-Newtonian waveforms near the merger. An analytical formula for the dominant mode of the gravitational radiation of non-precessing black hole binaries is presented that captures the phenomenology of the hybrid waveforms. Its implementation in the current searches for gravitational waves should allow cross-checks of other inspiral-merger-ringdown waveform families and improve the reach of gravitational wave searches.
EASEE: an open architecture approach for modeling battlespace signal and sensor phenomenology
Waldrop, Lauren E.; Wilson, D. Keith; Ekegren, Michael T.; Borden, Christian T.
2017-04-01
Open architecture in the context of defense applications encourages collaboration across government agencies and academia. This paper describes a success story in the implementation of an open architecture framework that fosters transparency and modularity in the context of Environmental Awareness for Sensor and Emitter Employment (EASEE), a complex physics-based software package for modeling the effects of terrain and atmospheric conditions on signal propagation and sensor performance. Among the highlighted features in this paper are: (1) a code refactorization to separate sensitive parts of EASEE, thus allowing collaborators the opportunity to view and interact with non-sensitive parts of the EASEE framework with the end goal of supporting collaborative innovation, (2) a data exchange and validation effort to enable the dynamic addition of signatures within EASEE thus supporting a modular notion that components can be easily added or removed to the software without requiring recompilation by developers, and (3) a flexible and extensible XML interface, which aids in decoupling graphical user interfaces from EASEE's calculation engine, and thus encourages adaptability to many different defense applications. In addition to the outlined points above, this paper also addresses EASEE's ability to interface with both proprietary systems such as ArcGIS. A specific use case regarding the implementation of an ArcGIS toolbar that leverages EASEE's XML interface and enables users to set up an EASEE-compliant configuration for probability of detection or optimal sensor placement calculations in various modalities is discussed as well.
Whitmarsh, Tom
2013-07-01
There is a great overlap between the way of seeing the world in clinical homeopathy and in the technical philosophical system known as phenomenology. A knowledge of phenomenologic principles reveals Hahnemann to have been an unwitting phenomenologist. The ideas of phenomenology as applied to medicine show that homeopathy is the ideal medical system to fulfill the goals of coming ever closer to true patient concerns and experience of illness.
Hofmann, Fabian
2016-01-01
Social phenomenological analysis is presented as a research method to study gallery talks or guided tours in art museums. The research method is based on the philosophical considerations of Edmund Husserl and sociological/social science concepts put forward by Max Weber and Alfred Schuetz. Its starting point is the everyday lifeworld; the…
Warped Phenomenology of Higher-Derivative Gravity
Energy Technology Data Exchange (ETDEWEB)
Rizzo, T.
2004-12-06
We examine the phenomenological implications at colliders for the existence of higher-derivative gravity terms as extensions to the Randall-Sundrum model. Such terms are expected to arise on rather general grounds, e.g., from string theory. In 5-d, if we demand that the theory be unitary and ghost free, these new contributions to the bulk action are uniquely of the Gauss-Bonnet form. We demonstrate that the usual expectations for the production cross section and detailed properties of graviton Kaluza-Klein resonances and TeV-scale black holes can be substantially altered by existence of these additional contributions. It is shown that measurements at future colliders will be highly sensitive to the presence of such terms.
Physics on smallest scales. An introduction to minimal length phenomenology
Energy Technology Data Exchange (ETDEWEB)
Sprenger, Martin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Goethe Univ., Frankfurt am Main (Germany). Inst. for Theoretical Physics and Frankfurt Institute for Advanced Studies; Nicolini, Piero; Bleicher, Marcus [Goethe Univ., Frankfurt am Main (Germany). Inst. for Theoretical Physics and Frankfurt Institute for Advanced Studies
2012-02-15
Many modern theories which try to unite gravity with the Standard Model of particle physics, as e.g. string theory, propose two key modifications to the commonly known physical theories: - the existence of additional space dimensions - the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide coverage in publications over the last ten years (especially due to the prediction of micro black hole production at the LHC), the phenomenology of models with a minimal length is still less investigated. In a summer study project for bachelor students in 2010 we have explored some phenomenological implications of the potential existence of a minimal length. In this paper we review the idea and formalism of a quantum gravity induced minimal length in the generalised uncertainty principle framework as well as in the coherent state approach to non- commutative geometry. These approaches are effective models which can make model-independent predictions for experiments and are ideally suited for phenomenological studies. Pedagogical examples are provided to grasp the effects of a quantum gravity induced minimal length. (orig.)
胡塞尔现象学的发展脉络及思想意蕴%The Development Train and Ideological Implication of Husserl＇s Phenomenology
Institute of Scientific and Technical Information of China (English)
刘寒春; 陈君
2011-01-01
Husserl is the founder and main representative of phenomenology.The development of Husserl＇s phenomenologyical thought had experienced a winding exploring process.Through criticizing the psychological doctrine Husserl sprouted his thought of phenomenology and gradually put forward abundant phenomenological method and principle that were phenomenologyical reduction、epoche、the theory of intentionality、essential intuition、transcendental reduction and the life world,etc..These ideas have had great impacts on the development of modern western philosophy.%胡塞尔是现象学的开创者和主要代表,胡塞尔现象学思想的发展经历了一个曲折的探索过程。胡塞尔通过批判心理主义,萌发了现象学的思想,逐步提出了现象学的还原、悬搁、意向性理论、本质直观、先验还原、生活世界等内蕴丰富的现象学方法和原则,这些对现代西方哲学的发展产生了重大影响。
Directory of Open Access Journals (Sweden)
Qinghui Zhou
2011-06-01
Full Text Available A new phenomenological model, the TP (Temperature Phase model, is presented to carry out optimization calculations for turbulent diffusion combustion in a high-pressure common rail diesel engine. Temperature is the most important parameter in the TP model, which includes two parts: an auto-ignition and a soot model. In the auto-ignition phase, different reaction mechanisms are built for different zones. For the soot model, different methods are used for different temperatures. The TP model is then implemented in KIVA code instead of original model to carry out optimization. The results of cylinder pressures, the corresponding heat release rates, and soot with variation of injection time, variation of rail pressure and variation of speed among TP model, KIVA standard model and experimental data are analyzed. The results indicate that the TP model can carry out optimization and CFD (computational fluid dynamics and can be a useful tool to study turbulent diffusion combustion.
Amedeo Giorgis Empirical Phenomenology.
Alexandersson, Claes
In August 1979, Amedeo Giorgi presented a workshop on "Phenomenological Theory and Method" at the University of Goteborg (Sweden). This report describes that workshop. First, the major concepts of phenomenology are introduced (Intentionality, Description, Reduction, and Essence), followed by a brief description of Husserl's philosophical…
Amedeo Giorgis Empirical Phenomenology.
Alexandersson, Claes
In August 1979, Amedeo Giorgi presented a workshop on "Phenomenological Theory and Method" at the University of Goteborg (Sweden). This report describes that workshop. First, the major concepts of phenomenology are introduced (Intentionality, Description, Reduction, and Essence), followed by a brief description of Husserl's philosophical…
Hanich, Julian; Ferencz-Flatz, Christian
2016-01-01
In this article Christian Ferencz-Flatz and I try to give an answer to the question what film phenomenology actually is. We proceed in three steps. First, we provide a survey of five different research practices within current film phenomenological writing: We call them excavation, explanation, exem
Khan, Sebastian; Hannam, Mark; Ohme, Frank; Pürrer, Michael; Forteza, Xisco Jiménez; Bohé, Alejandro
2015-01-01
We present a new frequency-domain phenomenological model of the gravitational-wave signal from the inspiral, merger and ringdown of non-precessing (aligned-spin) black-hole binaries. The model is calibrated to 19 hybrid effective-one-body--numerical-relativity waveforms up to mass ratios of 1:18 and black-hole spins of $|a/m| \\sim 0.85$ ($0.98$ for equal-mass systems). The inspiral part of the model consists of an extension of frequency-domain post-Newtonian expressions, using higher-order terms fit to the hybrids. The merger-ringdown is based on a phenomenological ansatz that has been significantly improved over previous models. The model exhibits mismatches of typically less than 1\\% against all 19 calibration hybrids, and an additional 29 verification hybrids, which provide strong evidence that, over the calibration region, the model is sufficiently accurate for all relevant gravitational-wave astronomy applications with the Advanced LIGO and Virgo detectors. Beyond the calibration region the model produce...
Phenomenology of universal extra dimensions
Energy Technology Data Exchange (ETDEWEB)
Kong, Kyoungchul; Matchev, Konstantin T.; /Florida U.
2006-10-01
In this proceeding, the phenomenology of Universal Extra Dimensions (UED), in which all the Standard Model fields propagate, is explored. We focus on models with one universal extra dimension, compactified on an S{sub 1}/Z{sub 2} orbifold. We revisit calculations of Kaluza-Klein (KK) dark matter without an assumption of the KK mass degeneracy including all possible coannihilations. We then contrast the experimental signatures of low energy supersymmetry and UED.
Phenomenology of stochastic exponential growth
Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya
2017-06-01
Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.
Modeling Thermal Dust Emission and Implications
Liang, Zhuohan
2014-01-01
An accurate model of thermal dust emission at the far-infrared and millimeter wavelengths is important for studying the cosmic microwave background anisotropies and for understanding the cycling of matter and energy between stars and the interstellar medium. I will present results of fitting all-sky one-component dust models with fixed or variable emissivity spectral index to the 210-channel dust spectra from the COBE-FIRAS, the 100 - 240 μm maps from the COBE-DIRBE, and the 94 GHz dust map from the WMAP. I will also discuss the implications of the analysis on understanding astrophysical processes and the physical properties of dust grains.
Research approaches related to phenomenology: negotiating a complex landscape.
Dowling, Maura; Cooney, Adeline
2012-01-01
To provide a comprehensive overview of the many research approaches related to phenomenology and their philosophical underpinnings. Phenomenological research approaches are varied and often difficult to apply appropriately. Some researchers persist in labelling their studies as examples of Heideggerian or Husserlian phenomenology without fully understanding the implications of the underpinning philosophical assumptions. Methodological sources related to phenomenology as a philosophy and phenomenology as a research approach are used to illustrate the range of phenomenological methods and their philosophical underpinnings. The origins of phenomenology are the writings of Husserl and the advancement of his thoughts by Merleau-Ponty, Heidegger, Gadamer and Ricoeur. The importance of fully understanding a methodology and its philosophical underpinnings before using it, or claiming to use it, is emphasised. In addition, the variety of phenomenological research approaches that have evolved over the past 50 years are explored and placed in the context of their philosophical underpinnings. There is no single way to conduct a phenomenological study. There are many approaches from which researchers can choose. This has resulted in a range of labels and often in different descriptions for the same approach. It is essential that researchers planning to use phenomenology are familiar with the many approaches available. This knowledge will help researchers choose the approaches that best suit the aims of their studies.
To be objective in Experimental Phenomenology: a Psychophysics application.
Burro, Roberto
2016-01-01
Several scientific psychologists consider the approach for the study of perceptive problems of the Experimental Phenomenology is problematic, namely that the phenomenological demonstrations are subjectively based and they do not produce quantifiable results. The aim of this study is to show that Experimental Phenomenology can lead to conclusions objective and quantifiable and propose a procedure allowing to obtain objective measuring using the Rasch mathematical model able to describe the experimental data gathered in Experimental Phenomenology procedures. In order to demonstrate this, a Psychophysics simulated study is proposed. It is possible to carry out a fundamental measurement starting from Experimental Phenomenology by way of the Theory of Conjoint Measurement.
Hernández-Sánchez, J; Noriega-Papaqui, R; Rosado, A
2013-01-01
We discuss flavor-violating constraints and consequently possible charged Higgs boson phenomenology emerging from a four-zero Yukawa texture embedded within the Type-III 2-Higgs Doublet Model (2HDM-III). Firstly, we show in detail how we can obtain several kinds of 2HDMs when some parameters in the Yukawa texture are absent. Secondly, we present a comprehensive study of the main $B$-physics constraints on such parameters induced by flavor-changing processes, in particular on the off-diagonal terms of such a texture: i.e., from $\\mu -e$ universality in $\\tau$ decays, several leptonic B-decays ($B \\to \\tau \
Benson, A J
2014-01-01
We constrain a highly simplified semi-analytic model of galaxy formation using the $z\\approx 0$ stellar mass function of galaxies. Particular attention is paid to assessing the role of random and systematic errors in the determination of stellar masses, to systematic uncertainties in the model, and to correlations between bins in the measured and modeled stellar mass functions, in order to construct a realistic likelihood function. We derive constraints on model parameters and explore which aspects of the observational data constrain particular parameter combinations. We find that our model, once constrained, provides a remarkable match to the measured evolution of the stellar mass function to $z=1$, although fails dramatically to match the local galaxy HI mass function. Several "nuisance parameters" contribute significantly to uncertainties in model predictions. In particular, systematic errors in stellar mass estimate are the dominant source of uncertainty in model predictions at $z\\approx 1$, with addition...
Phenomenology of neutrino oscillations
Indian Academy of Sciences (India)
G Rajasekaran
2000-07-01
The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.
Perspectives on string phenomenology
Kane, Gordon; Kumar, Piyush
2015-01-01
The remarkable recent discovery of the Higgs boson at the CERN Large Hadron Collider completed the Standard Model of particle physics and has paved the way for understanding the physics which may lie beyond it. String/M theory has emerged as a broad framework for describing a plethora of diverse physical systems, which includes condensed matter systems, gravitational systems as well as elementary particle physics interactions. If string/M theory is to be considered as a candidate theory of Nature, it must contain an effectively four-dimensional universe among its solutions that is indistinguishable from our own. In these solutions, the extra dimensions of string/M Theory are “compactified” on tiny scales which are often comparable to the Planck length. String phenomenology is the branch of string/M theory that studies such solutions, relates their properties to data, and aims to answer many of the outstanding questions of particle physics beyond the Standard Model. This book contains perspectives on stri...
"Phenomenology" and qualitative research methods.
Nakayama, Y
1994-01-01
Phenomenology is generally based on phenomenological tradition from Husserl to Heidegger and Merleau-Ponty. As philosophical stances provide the assumptions in research methods, different philosophical stances produce different methods. However, the term "phenomenology" is used in various ways without the definition being given, such as phenomenological approach, phenomenological method, phenomenological research, etc. The term "phenomenology" is sometimes used as a paradigm and it is sometimes even viewed as synonymous with qualitative methods. As a result, the term "phenomenology" leads to conceptual confusions in qualitative research methods. The purpose of this paper is to examine the term "phenomenology" and explore philosophical assumptions, and discuss the relationship between philosophical stance and phenomenology as a qualitative research method in nursing.
Phenomenological aspects of mirage mediation
Energy Technology Data Exchange (ETDEWEB)
Loewen, Valeri
2009-07-15
We consider the possibility that string theory vacua with spontaneously broken supersymmetry and a small positive cosmological constant arise due to hidden sector matter interactions, known as F-uplifting/F-downlifting. We analyze this procedure in a model-independent way in the context of type IIB and heterotic string theory. Our investigation shows that the uplifting/downlifting sector has very important consequences for the resulting phenomenology. Not only does it adjust the vacuum energy, but it can also participate in the process of moduli stabilization. In addition, we find that this sector is the dominant source of supersymmetry breaking. It leads to a hybrid mediation scheme and its signature is a relaxed mirage pattern of the soft supersymmetry breaking terms. The low energy spectra exhibit distinct phenomenological properties and di er from conventional schemes considered so far. (orig.)
Quay, John
2016-01-01
Phenomenology has been with us for many years, and yet grasping phenomenology remains a difficult task. Heidegger, too, experienced this difficulty and devoted much of his teaching to the challenge of working phenomenologically. This article draws on aspects of Heidegger's commentary in progressing the teaching and learning of phenomenology,…
Pringuey, Dominique
2011-10-01
A phenomenology of dreams searches for meaning, with the aim not only of explaining but also of understanding the experience. What and who is it for? And what about the nearly forgotten dream among the moderns, the banal returning to the nightmare, sleepiness, or dreamlike reverie. Nostalgia for the dream, where we saw a very early state of light, not a ordinaire qu duel. Regret for the dreamlike splendor exceeded by the modeling power of modern aesthetics--film and the explosion of virtual imaging technologies. Disappointment at the discovery of a cognitive permanence throughout sleep and a unique fit with the real upon awaking? An excess of methodological rigor where we validate the logic of the dream, correlating the clinical improvement in psychotherapy and the ability to interpret one's own dreams. The dangerous psychological access when the dream primarily is mine, viewed as a veiled expression of an unspoken desire, or when the dream reveals to me, in an existential conception of man, through time and space, my daily life, my freedom beyond my needs. Might its ultimate sense also mean its abolition? From the story of a famous forgotten dream, based on unexpected scientific data emerges the question: do we dream to forget? The main thing would not be consciousness but confidence, when " the sleeping man, his regard extinguished, dead to himself seizes the light in the night " (Heraclitus).
Setting the Stage for a Non-Supersymmetric UV-Complete String Phenomenology
Abel, Steven; Mavroudi, Eirini
2016-01-01
In this talk, I discuss our recent work concerning the construction of non-supersymmetric heterotic string models which have exponentially suppressed dilaton tadpoles and cosmological constants, and thus greatly enhanced stability properties. The existence of such models opens the door to non-supersymmetric string model-building, and I discuss how semi-realistic string models resembling the Standard Model or any of its unified variants may be constructed within this framework. These models maintain modular invariance and exhibit a misaligned supersymmetry which ensures UV finiteness, even without spacetime supersymmetry. I also discuss the potential implications for phenomenology.
Castillo, Andrés; Morales, John; Tarazona, Carlos G
2016-01-01
We study the vacuum behavior of an extended Higgs sector with two doublets in a scenario with a softly broken \\texorpdfstring{$U(1)$}{lg} global symmetry. The soft-violation term is introduced to avoid massless-axion particles arising when the global symmetry becomes spontaneously broken. This model has metastable states through the possible presence of multiple non-degenerate minima, which is unwanted from the phenomenological point of view if the metastable state is not long-lived enough. The analysis of this fact leads to find possible exclusion limits over parameter space of quartic couplings. Results improve the individual behavior of initial conditions for renormalization group equations; also determining unstable zones for the effective Higgs potential at one loop level. Besides vacuum stability analyses, the influence of absence of charge violation minima is considered as a limiting case excluding zones in the parameter space. Extremal cases for the model as well as criticality phenomena are discussed...
Phenomenology and connectionism.
Yoshimi, Jeff
2011-01-01
I show how the dynamics of consciousness can be formally derived from the "open dynamics" of neural activity, and develop a mathematical framework for neuro-phenomenological investigation. I describe the space of possible brain states, the space of possible conscious states, and a "supervenience function" linking them. I show how this framework can be used to associate phenomenological structures with neuro-computational structures, and vice-versa. I pay special attention to the relationship between (1) the relatively fast dynamics of consciousness and neural activity, and (2) the slower dynamics of knowledge update and brain development.
Phenomenology and Connectionism
Directory of Open Access Journals (Sweden)
Jeffrey K Yoshimi
2011-11-01
Full Text Available I show how the dynamics of consciousness can be formally derived from the open dynamics of neural activity, and develop a mathematical framework for neuro-phenomenological investigation. I describe the space of possible brain states, the space of possible conscious states, and a supervenience function linking them. I show how this framework can be used to associate phenomenological structures with neuro-computational structures, and vice-versa. I pay special attention to the relationship between (1 the relatively fast dynamics of consciousness and neural activity, and (2 the slower dynamics of knowledge update and brain development.
De la Macorra, A
1995-01-01
We consider the low energy phenomenology of superstrings. In particular we analyse supersymmetry breaking via gaugino condensate and we compare the phenomenology of the two different approaches to stabilize the dilaton field. We study the cosmological constant problem and we show that it is possible to have supersymmetry broken and zero cosmological constant. Finally, we discuss the possibility of having an inflationary potential. Requiring that the potential does not destabilize the dilaton field imposes an upper limit to the density fluctuations which can be consistent with the COBE data.
Husserl, phenomenology and nursing.
Paley, J
1997-07-01
Discussions of phenomenological research in nursing consistently appeal to either Husserl or Heidegger in justifying the technical and conceptual resources they deploy. This paper focuses on Husserl, and examines the relationship between his phenomenology and the accounts of it that are to be found in the nursing literature. Three central ideas are given particular attention: the phenomenological reduction, phenomena, and essence. It is argued that nurse researchers largely misunderstand these concepts and that, as a result, their version of Husserl's philosophy bears little resemblance to the original. A further consequence is that the project of identifying the 'essential structure' of a phenomenon, typically adopted by the nurse researchers who cite Husserl as an authority, comes close to being unintelligible. It is suggested that, while the methods used in 'phenomenological' nursing research may still have some legitimacy, they cannot achieve what they are alleged to achieve, and they should be detached from the framework of Husserlian ideas and terminology which is supposed to justify them.
The Phenomenology of Democracy
Shaw, Robert
2009-01-01
Human beings originate votes, and democracy constitutes decisions. This is the essence of democracy. A phenomenological analysis of the vote and of the decision reveals for us the inherent strength of democracy and its deficiencies. Alexis de Tocqueville pioneered this form of enquiry into democracy and produced positive results from it.…
Phenomenology and Meaning Attribution
African Journals Online (AJOL)
... may be both confusing and disorienting to academic and clinical practitioners who ... questions of students of phenomenology often are the most appropriate ... Meaning attribution is the psychological study of the ... a best-seller with my publisher. But, except for ..... perhaps listening to music, having a chat, and things are ...
The Phenomenology of Democracy
Shaw, Robert
2009-01-01
Human beings originate votes, and democracy constitutes decisions. This is the essence of democracy. A phenomenological analysis of the vote and of the decision reveals for us the inherent strength of democracy and its deficiencies. Alexis de Tocqueville pioneered this form of enquiry into democracy and produced positive results from it.…
Phenomenology from lattice QCD
Lellouch, L P
2003-01-01
After a short presentation of lattice QCD and some of its current practical limitations, I review recent progress in applications to phenomenology. Emphasis is placed on heavy-quark masses and on hadronic weak matrix elements relevant for constraining the CKM unitarity triangle. The main numerical results are highlighted in boxes.
Phenomenology of Dihadron Fragmentation Function
Courtoy, A
2016-01-01
We report on the phenomenological results obtained through Dihadron Fragmentation Functions related processes. In 2015, an update on the fitting techniques for the Dihadron Fragmentation Functions has led to an improved extraction of the transversity PDF and, as a consequence, the nucleon tensor charge. We discuss the impact of the determination of the latter on search for physics Beyond the Standard Model, focusing on the error treatment. We also comment on the future of the extraction of the subleading-twist PDF $e(x)$ from JLab soon-to-be-released Beam Spin Asymmetry data.
Bergamino, Maurizio; Barletta, Laura; Castellan, Lucio; Mancardi, Gianluigi; Roccatagliata, Luca
2015-12-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a well-established technique for studying blood-brain barrier (BBB) permeability that allows measurements to be made for a wide range of brain pathologies, including multiple sclerosis and brain tumors (BT). This latter application is particularly interesting, because high-grade gliomas are characterized by increased microvascular permeability and a loss of BBB function due to the structural abnormalities of the endothelial layer. In this study, we compared the extended Tofts-Kety (ETK) model and an extended derivate class from phenomenological universalities called EU1 in 30 adult patients with different BT grades. A total of 75 regions of interest were manually drawn on the MRI and subsequently analyzed using the ETK and EU1 algorithms. Significant linear correlations were found among the parameters obtained by these two algorithms. The means of R (2) obtained using ETK and EU1 models for high-grade tumors were 0.81 and 0.91, while those for low-grade tumors were 0.82 and 0.85, respectively; therefore, these two models are equivalent. In conclusion, we can confirm that the application of the EU1 model to the DCE-MRI experimental data might be a useful alternative to pharmacokinetic models in the study of BT, because the analytic results can be generated more quickly and easily than with the ETK model.
Phenomenological and neurocognitive perspectives on delusions: A critical overview
Sass, Louis; Byrom, Greg
2015-01-01
There is considerable overlap between phenomenological and neurocognitive perspectives on delusions. In this paper, we first review major phenomenological accounts of delusions, beginning with Jaspers’ ideas regarding incomprehensibility, delusional mood, and disturbed “cogito” (basic, minimal, or core self-experience) in what he termed “delusion proper” in schizophrenia. Then we discuss later studies of decontextualization and delusional mood by Matussek, changes in self and world in delusion formation according to Conrad's notions of “apophany” and “anastrophe”, and the implications of ontological transformations in the felt sense of reality in some delusions. Next we consider consistencies between: a) phenomenological models stressing minimal-self (ipseity) disturbance and hyperreflexivity in schizophrenia, and b) recent neurocognitive models of delusions emphasizing salience dysregulation and prediction error. We voice reservations about homogenizing tendencies in neurocognitive explanations of delusions (the “paranoia paradigm”), given experiential variations in states of delusion. In particular we consider shortcomings of assuming that delusions necessarily or always involve “mistaken beliefs” concerning objective facts about the world. Finally, we offer some suggestions regarding possible neurocognitive factors. Current models that stress hypersalience (banal stimuli experienced as strange) might benefit from considering the potential role of hyposalience in delusion formation. Hyposalience – associated with experiencing the strange as if it were banal, and perhaps with activation of the default mode network – may underlie a kind of delusional derealization and an “anything goes” attitude. Such an attitude would be conducive to delusion formation, yet differs significantly from the hypersalience emphasized in current neurocognitive theories. PMID:26043327
Energy Technology Data Exchange (ETDEWEB)
Mohan, S; Kim, Y; Siegel, JB; Samad, NA; Stefanopoulou, AG
2014-09-19
A phenomenological model of the bulk force exerted by a lithium ion cell during various charge, discharge, and temperature operating conditions is developed. The measured and modeled force resembles the carbon expansion behavior associated with the phase changes during intercalation, as there are ranges of state of charge (SOC) with a gradual force increase and ranges of SOC with very small change in force. The model includes the influence of temperature on the observed force capturing the underlying thermal expansion phenomena. Moreover the model is capable of describing the changes in force during thermal transients, when internal battery heating due to high C-rates or rapid changes in the ambient temperature, which create a mismatch in the temperature of the cell and the holding fixture. It is finally shown that the bulk force model can be very useful for a more accurate and robust SOC estimation based on fusing information from voltage and force (or pressure) measurements. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email oa@electrochem.org. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Nelson, R.A. Jr.; Pimentel, D.A.; Jolly-Woodruff, S.; Spore, J.
1998-04-01
In this report, a phenomenological model of simultaneous bottom-up and top-down quenching is developed and discussed. The model was implemented in the TRAC-PF1/MOD2 computer code. Two sets of closure relationships were compared within the study, the Absolute set and the Conditional set. The Absolute set of correlations is frequently viewed as the pure set because the correlations is frequently viewed as the pure set because the correlations utilize their original coefficients as suggested by the developer. The Conditional set is a modified set of correlations with changes to the correlation coefficient only. Results for these two sets indicate quite similar results. This report also summarizes initial results of an effort to investigate nonlinear optimization techniques applied to the closure model development. Results suggest that such techniques can provide advantages for future model development work, but that extensive expertise is required to utilize such techniques (i.e., the model developer must fully understand both the physics of the process being represented and the computational techniques being employed). The computer may then be used to improve the correlation of computational results with experiments.
‘Firewall’ phenomenology with astrophysical neutrinos
Afshordi, Niayesh; Yazdi, Yasaman K.
2016-12-01
One of the most fundamental features of a black hole in general relativity is its event horizon: a boundary from which nothing can escape. There has been a recent surge of interest in the nature of these event horizons and their local neighbourhoods. In an attempt to resolve black hole information paradox(es), and more generally, to better understand the path towards quantum gravity, ‘firewalls’ have been proposed as an alternative to black hole event horizons. In this paper, we explore the phenomenological implications of black holes possessing a surface or ‘firewall’, and predict a potentially detectable signature of these firewalls in the form of a high energy astrophysical neutrino flux. We compute the spectrum of this neutrino flux in different models and show that it is a possible candidate for the source of the PeV neutrinos recently detected by IceCube. This opens up a new area of research, bridging the non-perturbative physics of quantum gravity with the observational black hole and high energy astrophysics.
Phenomenological aspects of the cognitive rumination construct
Directory of Open Access Journals (Sweden)
Leonardo Fernandez Meyer
2015-03-01
Full Text Available Objective: To evaluate the importance of phenomenological aspects of the cognitive rumination (CR construct in current empirical psychiatric research.Method: We searched SciELO, Scopus, ScienceDirect, MEDLINE, OneFile (GALE, SpringerLink, Cambridge Journals and Web of Science between February and March of 2014 for studies whose title and topic included the following keywords: cognitive rumination; rumination response scale; and self-reflection. The inclusion criteria were: empirical clinical study; CR as the main object of investigation; and study that included a conceptual definition of CR. The studies selected were published in English in biomedical journals in the last 10 years. Our phenomenological analysis was based on Karl Jaspers' General Psychopathology.Results: Most current empirical studies adopt phenomenological cognitive elements in conceptual definitions. However, these elements do not seem to be carefully examined and are indistinctly understood as objective empirical factors that may be measured, which may contribute to misunderstandings about CR, erroneous interpretations of results and problematic theoretical models.Conclusion: Empirical studies fail when evaluating phenomenological aspects of the cognitive elements of the CR construct. Psychopathology and phenomenology may help define the characteristics of CR elements and may contribute to their understanding and hierarchical organization as a construct. A review of the psychopathology principles established by Jasper may clarify some of these issues.
Phenomenological aspects of the cognitive rumination construct.
Meyer, Leonardo Fernandez; Taborda, José Geraldo Vernet; da Costa, Fábio Antônio; Soares, Ana Luiza Alfaya Galego; Mecler, Kátia; Valença, Alexandre Martins
2015-01-01
To evaluate the importance of phenomenological aspects of the cognitive rumination (CR) construct in current empirical psychiatric research. We searched SciELO, Scopus, ScienceDirect, MEDLINE, OneFile (GALE), SpringerLink, Cambridge Journals and Web of Science between February and March of 2014 for studies whose title and topic included the following keywords: cognitive rumination; rumination response scale; and self-reflection. The inclusion criteria were: empirical clinical study; CR as the main object of investigation; and study that included a conceptual definition of CR. The studies selected were published in English in biomedical journals in the last 10 years. Our phenomenological analysis was based on Karl Jaspers' General Psychopathology. Most current empirical studies adopt phenomenological cognitive elements in conceptual definitions. However, these elements do not seem to be carefully examined and are indistinctly understood as objective empirical factors that may be measured, which may contribute to misunderstandings about CR, erroneous interpretations of results and problematic theoretical models. Empirical studies fail when evaluating phenomenological aspects of the cognitive elements of the CR construct. Psychopathology and phenomenology may help define the characteristics of CR elements and may contribute to their understanding and hierarchical organization as a construct. A review of the psychopathology principles established by Jasper may clarify some of these issues.
Light Higgs bosons in phenomenological NMSSM
Energy Technology Data Exchange (ETDEWEB)
Mahmoudi, F. [CERN, Geneva (Switzerland); Clermont Univ., CNRS/IN2P3, LPC, Clermont-Ferrand (France); Rathsman, J. [Uppsala Univ. (Sweden). High-Energy Physics; Lund Univ. (Sweden). Theoretical High Energy Physics; Staal, O. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zeune, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Goettingen Univ. (Germany). II. Physikalisches Inst.
2010-12-15
We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavour physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed. (orig.)
Statistical turbulence theory and turbulence phenomenology
Herring, J. R.
1973-01-01
The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.
Phenomenological MSSM interpretation of CMS results
Bein, Samuel Louis
2016-01-01
Using a global Bayesian analysis, it is shown how the results from 7 and 8 $\\textrm{TeV}$ searches for supersymmetry performed by the CMS experiment constrain the Minimal Supersymmetric StandardModel (MSSM). The study is performed within the framework of the phenomenologicalMSSM (pMSSM), a 19-parameter realization of the R-parity conserving weak scale MSSM, that captures most of the latter's phenomenological features and which,therefore, permits robust conclusions to be drawn about the MSSM.
Frederickson, A. R.
1985-01-01
A model was developed which places radiation induced discharge pulse results into a unified conceptual framework. Only two phenomena are required to interpret all space and laboratory results: (1) radiation produces large electrostatic fields inside insulators via the trapping of a net space charge density; and (2) the electrostatic fields initiate discharge streamer plasmas similar to those investigated in high voltage electrical insulation materials; these streamer plasmas generate the pulsing phenomena. The apparent variability and diversity of results seen is an inherent feature of the plasma streamer mechanism acting in the electric fields which is created by irradiation of the dielectrics. The implications of the model are extensive and lead to constraints over what can be done about spacecraft pulsing.
Phenomenology of the S U (3 )C⊗S U (2 )L⊗S U (3 )R⊗U (1 )X gauge model
Dong, P. V.; Huong, D. T.; Loi, D. V.; Nhuan, N. T.; Ngan, N. T. K.
2017-04-01
We study the left-right asymmetric model based on the S U (3 )C⊗S U (2 )L⊗S U (3 )R⊗U (1 )X gauge group, which improves the theoretical and phenomenological aspects of the known left-right symmetric model. This new gauge symmetry yields that the fermion generation number is 3, and the tree-level flavor-changing neutral currents arise in both gauge and scalar sectors. Also, it can provide the observed neutrino masses, as well as dark matter, automatically. Further, we investigate the mass spectrum of the gauge and scalar fields. All the gauge interactions of the fermions and scalars are derived. We examine the tree-level contributions of the new neutral vector, ZR', and new neutral scalar, H2, to flavor-violating neutral meson mixings, say K -K ¯, Bd-B¯d, and Bs-B¯s, which strongly constrain the new physics scale as well as the elements of the right-handed quark mixing matrices. The bounds for the new physics scale are in agreement with those coming from the ρ -parameter, as well as the mixing parameters between W , Z bosons and new gauge bosons.
Phenomenology of the Sterile Neutrinos
Tabrizi, Zahra
2016-01-01
In this thesis we investigate several topics in neutrino physics, with an em- phasis on the phenomenology of the sterile neutrinos. We study the existence of a light sterile neutrino within the so called 3+1 scenario using the data of the medium baseline reactor experiments. We will also probe the parameters of the Large Extra Dimension model with the high energy atmospheric data of the IceCube experiment, and will find an equivalence between the Kaluza Klein modes and the sterile neutrinos. We will study the secret interaction of the ster- ile neutrinos which is proposed to solve the tension between cosmology and the sterile neutrino hypothesis. In addition to these, we will show that a minimal 2-Higgs-Doublet-Model extended with a U(1) or Z_2 symmetry cannot explain the smallness of the neutrino masses.
Environmental modeling framework invasiveness: analysis and implications
Environmental modeling frameworks support scientific model development by providing an Application Programming Interface (API) which model developers use to implement models. This paper presents results of an investigation on the framework invasiveness of environmental modeling frameworks. Invasiven...
Contemporary Phenomenology at Its Best
Dan Zahavi; Andrei Simionescu-Panait
2014-01-01
This time around, we have the chance of getting to know Prof. Dan Zahavi of the University of Copenhagen, one of phenomenology's top researchers, whose thought expresses a particular voice in the philosophy of mind and interdisciplinary cognitive research. Today, we shall explore topics regarding phenomenology in our present scientific context, Edmund Husserl's takes on phenomenology, the influence of the history of philosophy on shaping contemporary cognitive research and the links and possi...
Hartimo, Mirja
2010-01-01
During Edmund Husserl,s lifetime, modern logic and mathematics rapidly developed toward their current outlook and Husserl,s writings can be fruitfully compared and contrasted with both 19th century figures (Boole, Schroder, Weierstrass) as well as the 20th century characters (Heyting, Zermelo, Godel). Besides the more historical studies, the internal ones on Husserl alone and the external ones attempting to clarify his role in the more general context of the developing mathematics and logic, Husserl,s phenomenology offers also a systematically rich but little researched area of investigation.
Sornette, Didier; Kamm, James R; Ide, Kayo
2007-01-01
Validation is often defined as the process of determining the degree to which a model is an accurate representation of the real world from the perspective of its intended uses. Validation is crucial as industries and governments depend increasingly on predictions by computer models to justify their decisions. In this article, we survey the model validation literature and propose to formulate validation as an iterative construction process that mimics the process occurring implicitly in the minds of scientists. We thus offer a formal representation of the progressive build-up of trust in the model, and thereby replace incapacitating claims on the impossibility of validating a given model by an adaptive process of constructive approximation. This approach is better adapted to the fuzzy, coarse-grained nature of validation. Our procedure factors in the degree of redundancy versus novelty of the experiments used for validation as well as the degree to which the model predicts the observations. We illustrate the n...
A method of phenomenological interviewing.
Bevan, Mark T
2014-01-01
In this article I propose a method of interviewing for descriptive phenomenological research that offers an explicit, theoretically based approach for researchers. My approach enables application of descriptive phenomenology as a total method for research, and not one just focused on data analysis. This structured phenomenological approach to interviewing applies questions based on themes of experience contextualization, apprehending the phenomenon and its clarification. The method of questioning employs descriptive and structural questioning as well as novel use of imaginative variation to explore experience. The approach will help researchers understand how to undertake descriptive phenomenological research interviews.
Gauged U(1) Lμ -Lτ model in light of muon g - 2 anomaly, neutrino mass and dark matter phenomenology
Patra, Sudhanwa; Rao, Soumya; Sahoo, Nirakar; Sahu, Narendra
2017-04-01
Gauged U(1) Lμ -Lτ model has been advocated for a long time in light of muon g - 2 anomaly, which is a more than 3σ discrepancy between the experimental measurement and the standard model prediction. We augment this model with three right-handed neutrinos (Ne ,Nμ ,Nτ) and a vector-like singlet fermion (χ) to explain simultaneously the non-zero neutrino masses and dark matter content of the Universe, while satisfying the anomalous muon g - 2 constraints. We find that the model suffers stringent constraints from the simultaneous explanation of neutrino trident production and muon g - 2 anomaly. In a large region of the parameter space, where contribution to muon g - 2 anomaly comes partially and yet not ruled out by neutrino trident production, the model can explain the positron excess, observed at PAMELA, Fermi-LAT and AMS-02 through dark matter annihilation, while satisfying the relic density and direct detection limits.
Some reflections on clinical supervision: an existential-phenomenological paradigm.
Jones, A
1998-03-01
This paper reviews psychotherapy, counselling, and nursing literature related to ideas of clinical supervision and attempts to illuminate areas important to effective health related practice and specifically palliative care. Included are explorations of existentialism, phenomenology, existential phenomenology and psychoanalytical concepts. The phenomenological idea of lived experience is outlined and the Heideggerian notion of authenticity is explored in context. The paper also examines dynamic forces such as hope, trust and personal values that might influence clinical supervision design and so inform a framework for practice. An existential-phenomenological method of supervision is offered as one basis for professional practice. The central recommendation of this paper is, however, to identify relevant value and belief systems to direct clinical supervision. Nursing models might appropriately instruct approaches to supervision. The writer considers the phenomenological idea of the lived experiences as a means by which to at once capture the essence of palliative care nursing and guide the supervision towards the existential idea of authenticity.
Fan, Ting-Bo; Liu, Zhen-Bo; Zhang, Zhe; Zhang, Dong; Gong, Xiu-Fen
2009-08-01
A theoretical model of the nonlinear propagation in multi-layered tissues for strong focused ultrasound is proposed. In this model, the spheroidal beam equation (SBE) is utilized to describe the nonlinear sound propagation in each layer tissue, and generalized oblique incidence theory is used to deal with the sound transmission between two layer tissues. Computer simulation is performed on a fat-muscle-liver tissue model under the irradiation of a 1 MHz focused transducer with a large aperture angle of 35°. The results demonstrate that the tissue layer would change the amplitude of sound pressure at the focal region and cause the increase of side petals.
Phenomenology and Neuroaesthetics
Directory of Open Access Journals (Sweden)
Elio Franzini
2015-05-01
Full Text Available Phenomenology is not the simple description of a fact, but rather the description of an intentional immanent moment, and it presents itself as a science of essences, and not of matter of facts. The Leib, the lived body of the phenomenological tradition, is not a generic corporeal reality, but rather an intentional subject, a transcendental reference point, on the base of which the connections between physical body and psychic body should be grasped. So, the reduction of empathy to mirror neurons amounts to an “objectivisation”, with the consequent absolutisation of a process that is a function of the Leib as intentional subject, not as a physical reality. The main task of the philosophical research, bracketed by the new “neuro” researches, thus emphasizing their theoretical limits as soon as they depart from experimental enquiries, is then to understand the conditions of possibility of cognitive procedures, that is to say, in other words, the genesis of consciousness, that in aesthetics becomes “the genesis of aesthetic consciousness”. Interdisciplinarity is already an ancient and out of fashion word, now it is the time of “dialogue”, being aware however that the “logoi” not always require synthesis, and that the unity of the corporeal reality implies, as Husserl emphasizes, very different descriptive behaviours.
Directory of Open Access Journals (Sweden)
Pete Hay
2006-05-01
Full Text Available The question is posed: is a coherent theory of islandness – nissology – possible? Faultlines within constructions of islands and islandness are noted. Some of these axes of contestation have remained latent but have the potential to be sharply divisive. Three of the identified faultlines are examined – the nature of the island ‘edge’, the import for questions of island memory and identity of massive inward and outward movements of people, and the appropriation of island ‘realness’ by those for whom ‘island’ best functions as metaphor. A case is made for the excision of the latter from the purview of island studies. Despite apparent irreconcilability within island studies’ emerging faultlines, it is argued that place theory does constitute a theoretical framing that can work for island studies. Following a brief overview of the faultlines that also exist within place studies, it is noted that the difference-respecting and identity focused nature of phenomenology of place is particularly apposite for island studies, and the paper concludes with a consideration of what a phenomenology of islands might look like.
Sisto, Renata; Shera, Christopher A.; Moleti, Arturo; Botti, Teresa
2013-01-01
Recent basilar-membrane (BM) vibration experiments show that the phase slope of the distortion product (DP) in the cochlear region in which a backward-traveling wave is expected is negative, which is typical of a forward-traveling wave, according to the predictions of quasi-linear approximate solutions of classical 1-D transmission-line cochlear models. This phase behavior has been interpreted as suggesting a strong deviation from the “classical” models of the otoacoustic emission (OAE) generation and transmission. In this paper, the DP phase inversion phenomenon is approached from a conservative point of view. The DP phase is calculated in a classical cochlear model. The main conclusion is that deviations from the classical model are not necessary to account for the observed phase behavior. PMID:24376285
Sisto, Renata; Shera, Christopher A.; Moleti, Arturo; Botti, Teresa
2011-11-01
Recent basilar-membrane (BM) vibration experiments show that the phase slope of the distortion product (DP) in the cochlear region in which a backward-traveling wave is expected is negative, which is typical of a forward-traveling wave, according to the predictions of quasi-linear approximate solutions of classical 1-D transmission-line cochlear models. This phase behavior has been interpreted as suggesting a strong deviation from the "classical" models of the otoacoustic emission (OAE) generation and transmission. In this paper, the DP phase inversion phenomenon is approached from a conservative point of view. The DP phase is calculated in a classical cochlear model. The main conclusion is that deviations from the classical model are not necessary to account for the observed phase behavior.
Energy Technology Data Exchange (ETDEWEB)
Causa, F., E-mail: federica.causa@enea.it; Pacella, D.; Romano, A.; Claps, G.; Gabellieri, L.
2015-11-01
An empirical model is presented to study the operational characteristics of GEM detectors in the X-ray range and, in particular, its energy discrimination potential. Physical processes are modelled from a macroscopic point of view, to provide a simple but effective simulation tool. Experimental data from monochromatic and combined, two-line fluorescence sources, are used to validate the model and provide realistic estimates of the empirical parameters used in the description. The model is instrumental in understanding the role of threshold, gain and operational conditions to achieve energy-discriminating response. Appropriate choices of gas mixtures, threshold and gain will permit to best utilise this new functionality of the GEM to improve the efficiency of image detectors in applications ranging from in-situ imaging in harsh environments, such as tokamaks, to composite materials analysis and medical imaging of tissues.
Raykin, Julia; Rachev, Alexander I; Gleason, Rudolph L
2009-10-01
Mechanical stimulation has been shown to dramatically improve mechanical and functional properties of gel-derived tissue engineered blood vessels (TEBVs). Adjusting factors such as cell source, type of extracellular matrix, cross-linking, magnitude, frequency, and time course of mechanical stimuli (among many other factors) make interpretation of experimental results challenging. Interpretation of data from such multifactor experiments requires modeling. We present a modeling framework and simulations for mechanically mediated growth, remodeling, plasticity, and damage of gel-derived TEBVs that merge ideas from classical plasticity, volumetric growth, and continuum damage mechanics. Our results are compared with published data and suggest that this model framework can predict the evolution of geometry and material behavior under common experimental loading scenarios.
Phenomenology of an SU(2) × SU(2) × U(1) model with lepton-flavour non-universality
Boucenna, Sofiane M.; Celis, Alejandro; Fuentes-Martín, Javier; Vicente, Avelino; Virto, Javier
2016-12-01
We investigate a gauge extension of the Standard Model in light of the observed hints of lepton universality violation in b → cℓν and b → sℓ + ℓ - decays at BaBar, Belle and LHCb. The model consists of an extended gauge group SU(2)1 × SU(2)2 × U(1) Y which breaks spontaneously around the TeV scale to the electroweak gauge group. Fermion mixing effects with vector-like fermions give rise to potentially large new physics contributions in flavour transitions mediated by W' and Z' bosons. This model can ease tensions in B-physics data while satisfying stringent bounds from flavour physics, and electroweak precision data. Possible ways to test the proposed new physics scenario with upcoming experimental measurements are discussed. Among other predictions, the ratios R M = Γ( B → M μ + μ -) /Γ( B → Me + e -), with M = K * , ϕ, are found to be reduced with respect to the Standard Model expectation R M ≃ 1.
DEFF Research Database (Denmark)
Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song
2015-01-01
with the spray combustion solver. Prior to the soot modelling, combustion simulations are carried out. Numerical results show that the ignition delay times and lift-off lengths exhibit good agreement with the experimental measurements across a wide range of operating conditions, apart from those in the cases...
Phenomenological analysis of D-brane Pati-Salam vacua
Anastasopoulos, P.; Leontaris, G. K.; Vlachos, N. D.
2010-05-01
In the present work, we perform a phenomenological analysis of the effective low energy models with Pati-Salam (PS) gauge symmetry derived in the context of D-branes. The main issue in these models arises from the fact that the right-handed fermions and the PS-symmetry breaking Higgs field transform identically under the symmetry, causing unnatural matter-Higgs mixing effects. We argue that this problem can be solved in particular D-brane setups where these fields arise in different intersections. We further observe that whenever a large Higgs mass term is being generated in a particular class of mass spectra, a splitting mechanism -reminiscent of the doublet triplet splitting- may protect the neutral Higgs components from becoming heavy. We analyze the implications of each individual representation available in these models in order to specify the minimal spectrum required to build up a consistent model that reconciles the low energy data. A short discussion is devoted to the effects of stringy instanton corrections, particularly those generating missing Yukawa couplings and contributing to the fermion mass textures. We discuss the correlations of the intersecting D-brane spectra with those obtained from Gepner constructions and analyze the superpotential, the resulting mass textures and the low energy implications of some examples of the latter along the lines proposed above.
Exploring the Phenomenology of Suicide
Pompili, Maurizio
2010-01-01
Phenomenology studies conscious experience as experienced from the subjective or first-person point of view. This paper was developed with the aim of shedding light on the phenomenology of suicide; that is, to focus on suicide as a phenomenon affecting a unique individual with unique motives for the suicidal act. To explore this topic, the author…
Phenomenology Depends on Human Nature
Reber, Rolf
2006-01-01
This paper comments on the article "Psychology and Phenomenology: A Clarification" by H. H. Kendler. Kendler contrasted objective phenomena going on in the mind with phenomenological convictions. He concluded, on the basis of a thoughtful analysis, that scientific psychology cannot validate moral principles, which have to be agreed upon by…
Towards a Non-Supersymmetric String Phenomenology
Abel, Steven; Mavroudi, Eirini
2015-01-01
Over the past three decades, considerable effort has been devoted to studying the rich and diverse phenomenologies of heterotic strings exhibiting spacetime supersymmetry. Unfortunately, during this same period, there has been relatively little work studying the phenomenologies associated with their non-supersymmetric counterparts. The primary reason for this relative lack of attention is the fact that strings without spacetime supersymmetry are generally unstable, exhibiting large one-loop dilaton tadpoles. In this paper, we demonstrate that this hurdle can be overcome in a class of tachyon-free four-dimensional string models realized through coordinate-dependent compactifications. Moreover, as we shall see, it is possible to construct models in this class whose low-lying states resemble the Standard Model (or even potential unified extensions thereof) --- all without any light superpartners, and indeed without supersymmetry at any energy scale. The existence of such models thus opens the door to general stu...
Phenomenology of Bilinear Broken R-parity
Restrepo, D A
2001-01-01
The straightforward supersymmetrization of the Standard Model (SM) results in a phenomenologically inconsistent theory in which Baryon number ($B$) and Lepton number ($L$) are violated by dimension 4 operators, inducing fast proton decay. Proton stability allows only for separate $L$ or $B$ violation and, if neutrinos are massive Majorana particles, $L$ violating terms must be present. In this thesis I will study a Supersymmetric Standard Model (SSM) realization with $B$ conservation and minimal $L$ violation. In this framework $L$ is mildly violated only by super-renormalizable terms, allowing for small neutrino Majorana masses. This model is more predictive than the Baryon-Parity SSM. The induced dimension 4 $L$ violating couplings are not arbitrary, and automatically satisfy all experimental constraints. After introducing the theoretical framework for supersymmetric models without Lepton number, I will discuss the phenomenology of the (unstable) lightest neutralino and of the lightest stop. I will show tha...
Deconstruction and the Transformation of Husserlian Phenomenology
Directory of Open Access Journals (Sweden)
Chung Chin-Yi
2008-12-01
Full Text Available In this paper I will examine Husserl’s attempt to establish a ground for science with the so called transcendental reduction. This will entail both an identification of the problems that Husserl was attempting to solve as well as a careful analysis of Husserl’s account of his methodology. I will then examine how Derrida’s reading, which affirms the phenomenological project in many of its essential aspects, begins to signal a subtle yet ultimately radical disagreement. This disagreement will have lasting implications for our understanding of the possibilities designated by the transcendental method in Husserl’s thinking.
Phenomenology of chiral damping in noncentrosymmetric magnets
Akosa, Collins Ashu
2016-06-21
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.
Armstrong, Cameron R; David, John A; Thompson, John R
2015-07-13
We present a simple numerical model that is used in conjunction with a systematic algorithm for parameter optimization to understand the three-dimensional stochastic intensity dynamics of stimulated Brillouin scattering in a two-mode optical fiber. The primary factors driving the complex dynamics appear to be thermal density fluctuations, transverse pump fluctuations, and asymmetric transverse mode fractions over the beam cross-section.
Solar neutrino oscillation phenomenology
Indian Academy of Sciences (India)
Srubabati Goswami
2004-02-01
This article summarises the status of the solar neutrino oscillation phenomenology at the end of 2002 in the light of the SNO and KamLAND results. We first present the allowed areas obtained from global solar analysis and demonstrate the preference of the solar data towards the large-mixing-angle (LMA) MSW solution. A clear confirmation in favour of the LMA solution comes from the KamLAND reactor neutrino data. the KamLAND spectral data in conjunction with the global solar data further narrows down the allowed LMA region and splits it into two allowed zones - a low $ m^{2}$ region (low-LMA) and high $ m^{2}$ region (high-LMA). We demonstrate through a projected analysis that with an exposure of 3 kton-year (kTy) KamLAND can remove this ambiguity.
Phenomenology of atmospheric neutrinos
Directory of Open Access Journals (Sweden)
Fedynitch Anatoli
2016-01-01
Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.
Management practice: phenomenological approach
Directory of Open Access Journals (Sweden)
Myriam Siqueira da Cunha
2005-01-01
Full Text Available This work has the aim of understanding the lived experiences by managers in relation to organizational changes in an enterprise in the food area, located in the State of Rio Grande do Sul, Brazil. The role of managers has been constantly evaluated and their capacity of continuous learning and also the ability of transforming the learning in good organizational results is reacquired every instant. In this work, my intention is to show, using an interpretative analysis, real and practical situations, from lived experiences. The methodological way followed was the hermeneutic phenomenological approach, trying to give a global and a contextual treatment to the theme. The results achieved offer subsides for a new look over the management practice and point out the importance of the study of what is lived, as an inspiration source for the strategic decisions in the enterprises.
Luo, Meng; Li, Yaning; Gerlach, Joerg; Wierzbicki, Tomasz
2010-06-01
Advanced High Strength Steels (AHSS) draws enormous attentions in automotive industry because it has great potential in reducing weight and improving fuel efficiency. Nonetheless, their relatively low formability also causes many problems in manufacturing processes, such as shear-induced fracture during deep drawing or stamping. This type of fracture could not be predicted using traditional necking-based Forming Limit Diagram (FLD), which is commonly used by the forming community. In the present paper, a recently developed Modified Mohr-Coulomb (MMC)[1] ductile fracture model is employed to make up the deficiency of FLD. In the limiting case of plane stress, the MMC fracture locus consists of four branches when represented on the plane of the equivalent strain to fracture and the stress triaxiality. A transformation of above 2D fracture locus to the space of principal strains was performed which revealed the existence of two new branches not known before. The existence of those branches explains the formation of shear-induced fracture. As an illustration of this new approach, initiation and propagation of cracks in a series of deep drawing tests is predicted and compared with the experimental observations. It was shown that the location of fracture as well as the magnitude of punch travel corresponding to first fracture was correctly predicted by MMC fracture model for both square and circular punch cases.
A phenomenological study on the production of Higgs bosons in the cSMCS model at the LHC
Darvishi, Neda
2016-01-01
In the present work, we intend to predict the production rates of the Higgs bosons in the simplest extension of the Standard Model (SM) by a neutral complex singlet (cSMCS). This model has an additional source of CP violation and provides strong enough first-order electroweak phase transition to generate the baryon asymmetry of universe (BAU). The scalar spectrum of the cSMCS includes three neutral Higgs particles with the lightest one considered to be the 125 GeV Higgs boson found at LHC. The SM-like Higgs boson comes mostly from the SM-like SU(2) doublet, with a small correction from the singlet. To predict the production rates of the Higgs bosons, we use a conventional effective LO QCD framework and the unintegrated parton distribution functions (UPDF) of Kimber-Martin-Ryskin (KMR). We first compute the SM Higgs production cross-section and compare the results to the existing theoretical calculations from different frameworks as well as the experimental data from the CMS and ATLAS collaborations. It is sho...
Phenomenological Implications of the Generalized Uncertainty Principle
Das, Saurya
2009-01-01
Various theories of Quantum Gravity argue that near the Planck scale, the Heisenberg Uncertainty Principle should be replaced by the so called Generalized Uncertainty Principle (GUP). We show that the GUP gives rise to two additional terms in any quantum mechanical Hamiltonian, proportional to \\beta p^4 and \\beta^2 p^6 respectively, where \\beta \\sim 1/(M_{Pl}c)^2 is the GUP parameter. These terms become important at or above the Planck energy. Considering only the first of these, and treating it as a perturbation, we show that the GUP affects the Lamb shift, Landau levels, reflection and transmission coefficients of a potential step and potential barrier, and the current in a Scanning Tunnel Microscope (STM). Although these are too small to be measurable at present, we speculate on the possibility of extracting measurable predictions in the future.
Connectionist Models: Implications in Second Language Acquisition
Directory of Open Access Journals (Sweden)
Farid Ghaemi
2011-10-01
Full Text Available In language acquisition, ‘Emergentists’ claim that simple learning mechanisms, of the kind attested elsewhere in cognition, are sufficient to bring about the emergence of complex language
representations (Gregg, 2003. Connectionist model is one of the models among others proposed by emergentists. This paper attempts to clarify the basic assumptions of this model, its advantages, and the criticisms leveled at it.
Alternative models of DSM-5 PTSD: Examining diagnostic implications.
Murphy, Siobhan; Hansen, Maj; Elklit, Ask; Yong Chen, Yoke; Raudzah Ghazali, Siti; Shevlin, Mark
2017-09-09
The factor structure of DSM-5 posttraumatic stress disorder (PTSD) has been extensively debated with evidence supporting the recently proposed seven-factor Hybrid model. However, despite myriad studies examining PTSD symptom structure few have assessed the diagnostic implications of these proposed models. This study aimed to generate PTSD prevalence estimates derived from the 7 alternative factor models and assess whether pre-established risk factors associated with PTSD (e.g., transportation accidents and sexual victimisation) produce consistent risk estimates. Seven alternative models were estimated within a confirmatory factor analytic framework using the PTSD Checklist for DSM-5 (PCL-5). Data were analysed from a Malaysian adolescent community sample (n = 481) of which 61.7% were female, with a mean age of 17.03 years. The results indicated that all models provided satisfactory model fit with statistical superiority for the Externalising Behaviours and seven-factor Hybrid models. The PTSD prevalence estimates varied substantially ranging from 21.8% for the DSM-5 model to 10.0% for the Hybrid model. Estimates of risk associated with PTSD were inconsistent across the alternative models, with substantial variation emerging for sexual victimisation. These findings have important implications for research and practice and highlight that more research attention is needed to examine the diagnostic implications emerging from the alternative models of PTSD. Copyright © 2017. Published by Elsevier B.V.
Ng, Kwong Bor
2002-01-01
Discussion of human-computer interaction and planned action focuses on the belief that it is impossible to consider an action without an a priori plan, even according to the phenomenological position taken for granted by the situated action theory. Reports results of a quasi-experiment that focused on plan deviation within an information seeking…
Econometric Model Evaluation: Implications for Program Evaluation.
Ridge, Richard S.; And Others
1990-01-01
The problem associated with evaluating an econometric model using values outside those used in the model estimation is illustrated in the evaluations of a residential load management program during each of two successive years. Analysis reveals that attention must be paid to this problem. (Author/TJH)
Energy Technology Data Exchange (ETDEWEB)
Ecker, Jill
2016-07-27
In this doctoral thesis, various aspects of string model building and phenomenology are investigated within the framework of Type IIA string theory on the T{sup 6}/(Z{sub 2} x Z{sub 6} x ΩR) orbifold with discrete torsion. The aim is the reproduction of supersymmetric versions of well-known particle physics models using intersecting rigid D6-branes wrapped on fractional three-cycles. The models analyzed include the minimal supersymmetric Standard Model as well as supersymmetric Pati-Salam models, left-right symmetric models and SU(5) models. Systematic computer scans test numerous combinations of intersecting D6-branes in order to detect those that give rise to the correct chiral particle content of the considered models. For each type of the afore mentioned models, concrete examples will be found which satisfy the constraints on the particle spectrum and fulfill all consistency conditions. Finally, the thesis focuses on phenomenological aspects of the particle physics models found, including the detection of massless U(1) combinations, discrete Z{sub n}-symmetries and cubic couplings such as the Yukawa couplings.
Schizophrenia: from phenomenology to neurobiology.
Wong, Albert Hung Choy; Van Tol, Hubert H M
2003-05-01
Schizophrenia is a common and debilitating illness, characterized by chronic psychotic symptoms and psychosocial impairment that exact considerable human and economic costs. The literature in electronic databases as well as citations and major articles are reviewed with respect to the phenomenology, pathology, treatment, genetics and neurobiology of schizophrenia. Although studied extensively from a clinical, psychological, biological and genetic perspective, our expanding knowledge of schizophrenia provides only an incomplete understanding of this complex disorder. Recent advances in neuroscience have allowed the confirmation or refutation of earlier findings in schizophrenia, and permit useful comparisons between the different levels of organization from which the illness has been studied. Schizophrenia is defined as a clinical syndrome that may include a collection of diseases that share a common presentation. Genetic factors are the most important in the etiology of the disease, with unknown environmental factors potentially modulating the expression of symptoms. Schizophrenia is a complex genetic disorder in which many genes may be implicated, with the possibility of gene-gene interactions and a diversity of genetic causes in different families or populations. A neurodevelopmental rather than degenerative process has received more empirical support as a general explanation of the pathophysiology, although simple dichotomies are not particularly helpful in such a complicated disease. Structural brain changes are present in vivo and post-mortem, with both histopathological and imaging studies in overall agreement that the temporal and frontal lobes of the cerebral cortex are the most affected. Functional imaging, neuropsychological testing and clinical observation are also generally consistent in demonstrating deficits in cognitive ability that correlate with abnormalities in the areas of the brain with structural abnormalities. The dopamine and other
A Phenomenological Research Design Illustrated
Directory of Open Access Journals (Sweden)
Thomas Groenewald
2004-03-01
Full Text Available This article distills the core principles of a phenomenological research design and, by means of a specific study, illustrates the phenomenological methodology. After a brief overview of the developments of phenomenology, the research paradigm of the specific study follows. Thereafter the location of the data, the data-gathering the data-storage methods are explained. Unstructured in-depth phenomenological interviews supplemented by memoing, essays by participants, a focus group discussion and field notes were used. The data explicitation, by means of a simplified version of Hycner's (1999 process, is further explained. The article finally contains commentary about the validity and truthfulness measures, as well as a synopsis of the findings of the study.
Phenomenology and cosmology of weakly coupled string theory
Energy Technology Data Exchange (ETDEWEB)
Gaillard, Mary K.
1998-05-18
The weakly coupled vacuum of E{sub 8} {circle_times} E{sub 8} heterotic string theory remains an attractive scenario for phenomenology and cosmology. The particle spectrum is reviewed and the issues of gauge coupling unification, dilaton stabilization and modular cosmology are discussed. A specific model for condensation and supersymmetry breaking, that respects known constraints from string theory and is phenomenologically viable, is described.
Neutrino oscillations: theory and phenomenology
Energy Technology Data Exchange (ETDEWEB)
Akhmedov, E.K., E-mail: akhmedov@ictp.trieste.it [Department of Theoretical Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm (Sweden)
2011-12-15
A brief overview of selected topics in the theory and phenomenology of neutrino oscillations is given. These include: oscillations in vacuum and in matter; phenomenology of 3-flavour neutrino oscillations; CP and T violation in neutrino oscillations in vacuum and in matter; matter effects on {nu}{sub {mu}}{r_reversible}{nu}{sub {tau}} oscillations; parametric resonance in neutrino oscillations inside the earth; oscillations below and above the MSW resonance; unsettled issues in the theory of neutrino oscillations.
A Statewide Writing Assessment Model: Student Proficiency and Future Implications
Dappen, Leon; Isernhagen, Jody; Anderson, Sue
2008-01-01
This paper is an examination of statewide district writing achievement gain data from the Nebraska Statewide Writing Assessment system and implications for statewide assessment writing models. The writing assessment program is used to gain compliance with the United States No Child Left Behind Law (NCLB), a federal effort to influence school…
Some Instructional Implications from a Mathematical Model of Cognitive Development.
Mierkiewicz, Diane B.
Cognitive development and various educational implications are discussed in terms of Donald Saari's model of the interaction of a learner and the enviroment and the constraints imposed by the inefficiency of the learner's cognitive system. Saari proposed a hierarchical system of cognitive structures such that the relationships between structures…
Organizational Resilience: The Theoretical Model and Research Implication
Directory of Open Access Journals (Sweden)
Xiao Lei
2017-01-01
Full Text Available Organizations are all subject to a diverse and ever changing and uncertain environment. Under this situation organizations should develop a capability which can resist the emergency and recover from the disruption. Base on lot of literature, the paper provides the main concept of organizational resilience; construct the primary theoretical model and some implications for management.
The Generative Learning Model and Its Implications for Science Education.
Osborne, Roger; Wittrock, Merlin
1985-01-01
Suggesting that learning be considered as a generative process, attempts to: (1) place generative learning ideas in the context of other viewpoints of learning; (2) explicate key postulates of the generative learning model; and (3) examine implications of these theoretical ideas for teaching, learning, curriculum development, and research. (JN)
Phenomenology of neutrinophilic Higgs GUT
Energy Technology Data Exchange (ETDEWEB)
Haba, Naoyuki; Kaneta, Kunio; Shimizu, Yasuhiro [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan) and Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Department of Physics, Tohoku University, Sendai 980-8578 (Japan)
2012-07-27
Among three typical energy scales, a neutrino mass scale (m{sub {nu}}{approx}0.1eV), a GUT scale (M{sub GUT}{approx}10{sup 16}GeV), and a TeV-scale (M{sub NP}{approx}1TeV), there is a fascinating relation of M{sub NP} Asymptotically-Equal-To {radical}(m{sub {nu}} Dot-Operator M{sub GUT}) The TeV-scale, M{sub NP}, is a new physics scale beyond the standard model which is regarded as 'supersymmetry' (SUSY) in this letter. We investigate phenomenology of SUSY SU(5) GUT with neutrinophilic Higgs, which realizes the above relation dynamically as well as the suitable magnitude of Dirac mass, m{sub {nu}}, through a tiny vacuum expectation value of neutrinophilic Higgs. As a remarkable feature of this model, accurate gauge coupling unification can be achieved as keeping with a proton stability. We also evaluate flavor changing processes in quark/lepton sectors.
An introduction to elementary particle phenomenology
Ratcliffe, Philip G
2014-01-01
This book deals with the development of particle physics, in particular through the exacting and all-important interplay between theory and experiment, an area that has now become known as phenomenology. Particle physics phenomenology provides the connection between the mathematical models created by theoretical physicists and the experimentalists who explore the building blocks of matter and the forces that operate between them. Assuming no more background knowledge than the basics of quantum mechanics, relativistic mechanics and nuclear physics, the author presents a solid and clear motivation for the developments witnessed by the particle physics community at both high and low energies over that last 50 or 60 years. In particular, the role of symmetries and their violation is central to many of the discussions. Including exercises and many references to original experimental and theoretical papers, as well as other useful sources, it will be essential reading for all students and researchers in ...
Comparison of Phenomenology for Satellite Characterization
Richmond, D.; Spoto, G.
2016-09-01
Techniques for improved characterization of Satellites have been an area of research for several years. Many of these approaches show great promise and have been validated using models and simulations. In this paper, multiple phenomenologies that support satellite characterization will be discussed to include: optical, radar, signals, and Infra-Red. The paper will identify satellite characteristics that could be gleaned from the various data types. Algorithms that support extracting the information will be referenced. Unique collection conditions that enable a phenomenology to yield desired data will be discussed. This paper will discuss the impact of changes to satellite characterization data types over the life of an on-orbit asset. The benefits of such information will be discussed, to include re-acquiring objects after a maneuver.
Vantage perspective during encoding: The effects on phenomenological memory characteristics.
Mooren, Nora; Krans, Julie; Näring, Gérard W B; Moulds, Michelle L; van Minnen, Agnes
2016-05-01
The vantage perspective from which a memory is retrieved influences the memory's emotional impact, intrusiveness, and phenomenological characteristics. This study tested whether similar effects are observed when participants were instructed to imagine the events from a specific perspective. Fifty student participants listened to a verbal report of car-accidents and visualized the scenery from either a field or observer perspective. There were no between-condition differences in emotionality of memories and the number of intrusions, but imagery experienced from a relative observer perspective was rated as less self-relevant. In contrast to earlier studies on memory retrieval, vantage perspective influenced phenomenological memory characteristics of the memory representation such as sensory details, and ratings of vividness and distancing of the memory. However, vantage perspective is most likely not a stable phenomenological characteristic itself. Implications and suggestions for future research are discussed.
Energy Technology Data Exchange (ETDEWEB)
Popov, A.P., E-mail: APPopov@mephi.ru [Moscow Engineering Physics institute (State University), Kashirskoe shosse 31, 115409 Moscow (Russian Federation)
2012-09-15
Simple phenomenological model of ferromagnetic film characterized by equal energies of surface anisotropies at two sides of a film (symmetric film) is considered. The model is used to describe a two-step spin reorientation transition (SRT) in Au/Co/Au sandwich with Co film thickness: the SRT from perpendicular to canted noncollinear (CNC) state at N{sub Up-Tack }=6.3 atomic layers and the subsequent SRT from CNC to in-plane state at N{sub Parallel-To }=10.05 atomic layers. Analytic expressions for the stability criterion of collinear perpendicular and in-plane states of a film are derived with account of discrete location of atomic layers. The dependence of borders that separate regions corresponding to various magnetic states of a film in the (k{sub B},k{sub S})-diagram on film thickness N is established. k{sub S}(k{sub B}) is surface (bulk) reduced anisotropy constant. The comparison of theory with experiment related to Au/Co/Au sandwich shows that there is a whole region in the (k{sub B},k{sub S})-diagram corresponding to experimentally determined values of threshold film thicknesses N{sub Up-Tack }=6.3 and N{sub Parallel-To }=10.05. The comparison of this region with similar region determined earlier for a bare Co/Au film within the same model of asymmetric film and characterized by N{sub Up-Tack }=3.5, N{sub Parallel-To }=5.5 shows that the intersection of these regions is not empty. Hence, both the SRT in Au/Co/Au sandwich and in bare Co/Au film with Co film thickness can be described within the same model using the same magnitudes of model parameters k{sub S}, k{sub B}. Based on this result we conclude that the energy of Neel surface anisotropy at free Co surface is negligible compared to the energy of Co-Au interface anisotropy. It is demonstrated that the destabilization of collinear states in symmetric film leads to occurrence of the ground CNC state and two novel metastable CNC states. These three CNC states exhibit different kinds of symmetry. In case
Phenomenological analysis of D-brane Pati-Salam vacua
Anastasopoulos, Pascal; Vlachos, Nikolaos D
2010-01-01
In the present work we perform a phenomenological analysis of the effective low energy models with Pati-Salam (PS) gauge symmetry derived in the context of D-branes. A main issue in these models arises from the fact that the right-handed fermions and the PS-symmetry breaking Higgs field transform identically under the PS symmetry, causing unnatural matter-Higgs mixing effects. We argue that this problem could be solved in particular D-brane setups where these fields arise in different intersections. We further observe that whenever a large Higgs mass term is generated in a particular class of mass spectra, a splitting mechanism -reminiscent of the doublet triplet splitting- may protect the neutral Higgs components from a heavy mass term. We analyze the implications of each individual representation which in principle is available in these models in order to specify the minimal spectrum required to build up a consistent PS model which reconciles the low energy data. A short discussion is devoted on the effects...
Alternative models of DSM-5 PTSD: Examining diagnostic implications
DEFF Research Database (Denmark)
Murphy, Siobhan; Hansen, Maj; Elklit, Ask
2017-01-01
The factor structure of DSM-5 posttraumatic stress disorder (PTSD) has been extensively debated with evidence supporting the recently proposed seven-factor Hybrid model. However, despite myriad studies examining PTSD symptom structure few have assessed the diagnostic implications of these proposed...... estimated within a confirmatory factor analytic framework using the PTSD Checklist for DSM-5 (PCL-5). Data were analysed from a Malaysian adolescent community sample (n=481) of which 61.7% were female, with a mean age of 17.03 years. The results indicated that all models provided satisfactory model fit...... with statistical superiority for the Externalizing Behaviours and seven-factor Hybrid models. The PTSD prevalence estimates varied substantially ranging from 21.8% for the DSM-5 model to 10.0% for the Hybrid model. Estimates of risk associated with PTSD were inconsistent across the alternative models...
Modeling evolution using the probability of fixation: history and implications.
McCandlish, David M; Stoltzfus, Arlin
2014-09-01
Many models of evolution calculate the rate of evolution by multiplying the rate at which new mutations originate within a population by a probability of fixation. Here we review the historical origins, contemporary applications, and evolutionary implications of these "origin-fixation" models, which are widely used in evolutionary genetics, molecular evolution, and phylogenetics. Origin-fixation models were first introduced in 1969, in association with an emerging view of "molecular" evolution. Early origin-fixation models were used to calculate an instantaneous rate of evolution across a large number of independently evolving loci; in the 1980s and 1990s, a second wave of origin-fixation models emerged to address a sequence of fixation events at a single locus. Although origin fixation models have been applied to a broad array of problems in contemporary evolutionary research, their rise in popularity has not been accompanied by an increased appreciation of their restrictive assumptions or their distinctive implications. We argue that origin-fixation models constitute a coherent theory of mutation-limited evolution that contrasts sharply with theories of evolution that rely on the presence of standing genetic variation. A major unsolved question in evolutionary biology is the degree to which these models provide an accurate approximation of evolution in natural populations.
The changing face of phenomenological research: traditional and American phenomenology in nursing.
Caelli, K
2000-05-01
In recent years, phenomenological researchers in nursing have become concerned about the differences between traditional European phenomenology and the way phenomenology is frequently conducted in nursing. Indeed, Crotty asserts that much of the phenomenology conducted by nurses cannot be phenomenology because it does not espouse the constructionist epistemological position regarded by Husserl as essential to phenomenology. This article explores the differences between traditional European and American phenomenology and argues that the latter approach extends the phenomenological project in valuable and meaningful ways that are particularly appropriate for the health sciences.
Yokoyama, Jun'ichi; Suto, Yasushi
1991-01-01
A phenomenological model to produce isocurvature baryon-number fluctuations is proposed in the framework of inflationary cosmology. The resulting spectrum of density fluctuation is very different from the conventional Harrison-Zel'dovich shape. The model, with the parameters satisfying several requirements from particle physics and cosmology, provides an appropriate initial condition for the minimal baryon isocurvature scenario of galaxy formation discussed by Peebles.
Energy Technology Data Exchange (ETDEWEB)
Rizzo, Thomas G.
2006-10-17
A brief pedagogical overview of the phenomenology of Z{prime} gauge bosons is ILC in determining Z{prime} properties is also discussed. and explore in detail how the LHC may discover and help elucidate the models, review the current constraints on the possible properties of a Z{prime} nature of these new particles. We provide an overview of the Z{prime} studies presented. Such particles can arise in various electroweak extensions of that have been performed by both ATLAS and CMS. The role of the the Standard Model (SM). We provide a quick survey of a number of Z{prime}.
Quantum Gravity and Phenomenological Philosophy
Rosen, Steven M.
2008-06-01
The central thesis of this paper is that contemporary theoretical physics is grounded in philosophical presuppositions that make it difficult to effectively address the problems of subject-object interaction and discontinuity inherent to quantum gravity. The core objectivist assumption implicit in relativity theory and quantum mechanics is uncovered and we see that, in string theory, this assumption leads into contradiction. To address this challenge, a new philosophical foundation is proposed based on the phenomenology of Maurice Merleau-Ponty and Martin Heidegger. Then, through the application of qualitative topology and hypernumbers, phenomenological ideas about space, time, and dimension are brought into focus so as to provide specific solutions to the problems of force-field generation and unification. The phenomenological string theory that results speaks to the inconclusiveness of conventional string theory and resolves its core contradiction.
The Phenomenology of Decision Making
Directory of Open Access Journals (Sweden)
Urban Kordeš
2009-12-01
Full Text Available It is becoming apparent in modern cognitive science that the lack of knowledge about human experiential landscape implies the loss of a very important element, perhaps the very essence. Consequently, a rather new area of research has emerged recently: an attempt at a systematic observation and study of experience. This is the so-called phenomenologically inspired research (or just phenomenological research.Part of this article aims to present this new area of research – it describes the common fundaments of the field and some of its characteristic methodological derivates, relating them to the possibility of studying decision making from the first-person point-of-view, i.e. decision making as an experiential phenomenon (and not as a neurological or behavioural process. The article also presents some of the findings phenomenological studies have led to and some theoretical reflexions encouraged by these insights.
Energy Technology Data Exchange (ETDEWEB)
La, R
1997-12-31
This work deals with the eddy current non-destructive test ing. Its long-term goal is to design an `inverse model` for evaluating the geometry an d the dimensions of steam generator tube flaws from eddy current signals. The approach we adopted requires the preliminary knowledge of a `forward model` that estimates the eddy current signal knowing the geometry and the dimensions of the flaws. A quasi-exhaustive study of the existing forward models showed their inadequacy to solve the inverse problem. Hence, we proposed to build a general forward model, appropriate to the inversion. Using a parametric approach, this model is phenomenological, i.e. it is based on observations made from results of a finite element code. For each position of the coil, the proposed forward model fist discretized the eddy current distribution into `tubes of current`. A parametric description of the shape of these tubes is given according the system constituted of the coil and the tubes of current as a `multi-transformer`, their current signal, can then be deduced. The model was validated in the case of an axisymmetric configuration. Comparisons with both analytical and numerical models showed very good agreements. Then, the proposed model was applied to a three-dimensional configuration. Comparisons with experimental results are sufficiently conclusive to validate the approach to the construction of the phenomenological model. However, before envisaging the inverse problem, the computation time, still too long, ought to be reduced and the parametric description needs to be generalized to other three-dimensional configurations. (author). 92 refs.
Individualized assessment and phenomenological psychology.
Fischer, C T
1979-04-01
Although there is growing openness to tailoring of assessment procedures and reports to the particular client, these efforts typically have been sporadic and incomplete. This article reviews a systematic approach to individualized assessment, one whose practices are referred to as collaborative, contextual, and interventional. Clinical examples of these practices are presented in terms of their grounding in phenomenological psychology. Prior to that, themes such as intentionality, situatedness, dialectics, structuralism, and hermeneutics are introduced briefly. Phenomenological psychology as such is not seen here as necessary for all individualized practices, but it is seen as a critical touchpoint for development of theory and further practices.
Energy Technology Data Exchange (ETDEWEB)
Castellanos, J.; Munoz, J.; Gutierrez, V.; Rieiro, I.; Ruano, O. A.; Carsi, M.
2012-11-01
This paper presents a new phenomenological and differential model (that use differential equations) to predict the flow stress of a metallic polycrystalline material under hot working. The model, called MCC, depends on six parameters and uses two internal variables to consider the strain hardening, dynamic recovery and dynamic recrystallization processes that occur under hot working. The experimental validation of the MCC model has been carried out by means of stress-strain curves from torsion tests at high temperature (900 degree centigrade a 1200 degree centigrade) and moderate high strain rate (0.005 s-1 to 5 s-1) in a high nitrogen steel. The results reveal the very good agreement between experimental and predicted stresses. Furthermore, the Garofalo a-parameter and the strain to reach 50 % of recrystallized volume fraction have been employed as a control check being a first step to the physical interpretation of variables and parameters of the MCC model. (Author) 26 refs.
Implications of the financial crisis for models in monetary policy
Stan du Plessis
2010-01-01
Monetary authorities have been implicated in the financial crisis of 2007-2008. John Muellbauer, for example, has blamed what he thought was initially inadequate policy responses by central banks to the crisis on their models, which are, in his words, “overdue for the scrap heap”. This paper investigates the role of monetary policy models in the crisis and finds that (i) it is likely that monetary policy contributed to the financial crisis and (ii) that an inappropriately narrow suite of mode...
The FIRO model of family therapy: implications of factor analysis.
Hafner, R J; Ross, M W
1989-11-01
Schutz's FIRO model contains three main elements: inclusion, control, and affection. It is used widely in mental health research and practice, but has received little empirical validation. The present study is based on factor analysis of the resources to FIRO questionnaire of 120 normal couples and 191 couples who were attending a clinic for marital/psychiatric problems. Results confirmed the validity of the FIRO model for women only. The differences between the sexes reflected a considerable degree of sex-role stereotyping, the clinical implications of which are discussed.
Resilience to Social Bullying in Academia: A Phenomenological Study.
Wieland, Diane; Beitz, Janice M
2015-01-01
While social bullying, negative workplace behaviors, and incivility are receiving scholarly attention, no research study could be identified targeting resilience to social bullying in nursing programs. This article describes a phenomenological study that investigated resilience to social bullying. Seventeen self-identified bullied nurse faculty were audiotaped. Colaizzi's method guided data analysis. Multiple themes reflected 3 chronologic periods: during bullying, decisional phase, and after bullying. Implications for the health and well-being of nursing faculty are posed.
Phenomenological approaches in psychology and health sciences
DEFF Research Database (Denmark)
Davidsen, A.
2013-01-01
A whole family of qualitative methods is informed by phenomenological philosophy. When applying these methods, the material is analyzed using concepts from this philosophy to interrogate the findings and to enable greater theoretical analysis. However, the phenomenological approach represents dif...
Phenomenology of loop quantum cosmology
Sakellariadou, Mairi
2010-01-01
After introducing the basic ingredients of Loop Quantum Cosmology, I will briefly discuss some of its phenomenological aspects. Those can give some useful insight about the full Loop Quantum Gravity theory and provide an answer to some long-standing questions in early universe cosmology.
Phenomenology of high colour fermions
Energy Technology Data Exchange (ETDEWEB)
Lust, D.; Streng, K.H.; Papantonopoulos, E.; Zoupanos, G.
1986-04-28
We present the phenomenological consequences of a dynamical scenario for electroweak symmetry breaking and generation of fermion masses, involving the presence of fermions which transform under high colour representations. Particular emphasis is given to the predictions for rare processes and to the possible signals in present and future machines. (orig.).
Phenomenology and carnival production chain
National Research Council Canada - National Science Library
Oliveira de Carvalho Santos, Paloma; Madeira, Ney; Joia, Danielle Cardoso; da Silva Assumpção, Fernando
2017-01-01
... of his “The Visible and the Invisible”, a group of teachers and artists enrolled on the theory and practice of the Rio de Janeiro Carnival propose a discussion on the reverberation of his Phenomenology on this field, trying to understand...
Phenomenology and hermeneutics - poles apart?
DEFF Research Database (Denmark)
Keller, Kurt Dauer; Feilberg, Casper
is marked by a similar dichotomy, whereas hermeneutical phenomenologists argue for the necessity of preunderstanding and theorethical perspectives (van Manen), Husserlian phenomenologists insist on the importance of the epoché together with reduction. The existential phenomenology of Heidegger and Merleau-Ponty...
Phenomenological study of polarized leptoproduction
Energy Technology Data Exchange (ETDEWEB)
Chiappetta, P.; Girardi, G.
1989-07-27
In this note we make a phenomenological study of the recent EMC data on polarized structure function g/sub 1//sup p/(x). Using general principles like Regge behaviour and positivity we derive simple parametrizations for quark and gluon polarized distribution function and obtain a consistent description of experimental data. (orig.).
Teacher Reflection: A Phenomenological Study
Wilson, Rebecca E.
2013-01-01
This study is concerned with the reflective practices of middle school teachers. Based on Dewey's theory of reflective practice and Schon's types of reflection, this experience is one of student learning, relationships, curriculum planning, and lesson delivery. This is a qualitative study using the research method of phenomenology through…
Phenomenology of an S U (2 )1×S U (2 )2×U (1 )Y model at the LHC
Chen, Chuan-Hung; Nomura, Takaaki
2017-01-01
We investigate the implications of a minimal S U (2 ) gauge symmetry extension of the standard model at the LHC. To achieve the spontaneous symmetry breaking, a heavy Higgs doublet of the S U (2 ) is introduced. To obtain an anomaly-free model and the decays of new charged gauge bosons, we include a vectorlike quark doublet. We also employ a real scalar boson to dictate the heavy Higgs production via the gluon-gluon fusion processes. We find that the new gauge coupling and the masses of new gauge bosons can be strictly bounded by the electroweak ρ -parameter and dilepton resonance experiments at the LHC. We find that due to the new charged gauge boson enhancement, the cross sections for a heavy scalar boson to diphoton channel measured by ATLAS and CMS can be easily satisfied when the values of Yukawa couplings are properly taken. Furthermore, by adopting event simulation, we find that the significance of p p →(γ γ )H+jet , where the diphoton is from the heavy Higgs decay, can be over 4 σ when the luminosity is above 60 fb-1 .
Phenomenology of SU(5) finite unified theories
Energy Technology Data Exchange (ETDEWEB)
Heinemeyer, S [Instituto de Fisica de Cantabria (CSIC-UC), Edificio Juan Jorda, Avda. de Los Castros s/n, 39005 Santander (Spain); Mondragon, M [Inst. de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, Mexico 01000 D.F. (Mexico); Zoupanos, G, E-mail: heinemey@mail.cern.c, E-mail: myriam@fisica.unam.m, E-mail: zoupanos@mail.cern.c [Physics Department, National Technical University of Athens, Zografou Campus: Heroon Polytechniou 9, 15780 Zografou, Athens (Greece)
2009-06-01
Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) which can be made finite to all-loop orders, leading to a large reduction in the number of free parameters. We confront the predictions of SU(5) FUTs with the top and bottom quark masses, which allows us to discriminate among different models. We include further low-energy phenomenology constraints, such as B physics observables, the bound on the SM Higgs mass and the cold dark matter density, and then are able to make predictions for the lightest Higgs boson mass and the sparticle spectrum.
Susann M. Laverty
2003-01-01
Hermeneutic phenomenology and phenomenology have become increasingly popular as research methodologies, yet confusion still exists about the unique aspects of these two methodologies. This article provides a discussion of the essential similarities and differences between hermeneutic phenomenology and phenomenology from historical and methodological perspectives. Consideration is given to the philosophical bases, assumptions, focus of research and research outcomes that differentiate these ap...
Workshop on Model Uncertainty and its Statistical Implications
1988-01-01
In this book problems related to the choice of models in such diverse fields as regression, covariance structure, time series analysis and multinomial experiments are discussed. The emphasis is on the statistical implications for model assessment when the assessment is done with the same data that generated the model. This is a problem of long standing, notorious for its difficulty. Some contributors discuss this problem in an illuminating way. Others, and this is a truly novel feature, investigate systematically whether sample re-use methods like the bootstrap can be used to assess the quality of estimators or predictors in a reliable way given the initial model uncertainty. The book should prove to be valuable for advanced practitioners and statistical methodologists alike.
Thoughts on Phenomenology, Education, and Art.
Streb, Joseph H.
1984-01-01
The phenomenological method of Edmund Hesserl is discussed. The mode of being of the teacher is phenomoneologically analyzed, and the results of the analysis are used in conjunction with the results of various phenomenological analyses of aesthetics to construct a rudimentary phenomenological theory of art education. (Author/RM)
Fundamental concepts of phenomenology and descriptive psychopathology
Debajit Gogoi
2017-01-01
For a better understanding of what psychiatry is all about, the importance and stronghold of phenomenology and descriptive psychopathology in psychiatry has never been overstated. Biological psychiatry has accumulated enough evidences of mental illnesses until now but that does not mean that phenomenology and psychopathology would lose its shine. Rather psychopathology and phenomenology will afoot stronger as it is the philosophy of psychiatry.
String and string-inspired phenomenology
López, J L
1994-01-01
In these lectures I review the progress made over the last few years in the subject of string and string-inspired phenomenology. I take a practical approach, thereby concentrating more on explicit examples rather than on formal developments. Topics covered include: introduction to string theory the free-fermionic formulation and its general features, generic conformal field theory properties, SU(5)\\times U(1) GUT and string model-building, supersymmetry breaking, the bottom-up approach to string-inspired models, radiative electroweak symmetry breaking, the determination of the allowed parameter space of supergravity models and the experimental constraints on this class of models, and prospects for direct and indirect tests of string-inspired models. (Lectures delivered at the XXII ITEP International Winter School of Physics, Moscow, Russia, February 22 -- March 2, 1994)
Unkelbach, Jan; Menze, Bjoern H; Konukoglu, Ender; Dittmann, Florian; Ayache, Nicholas; Shih, Helen A
2014-02-07
Gliomas differ from many other tumors as they grow infiltratively into the brain parenchyma rather than forming a solid tumor mass with a well-defined boundary. Tumor cells can be found several centimeters away from the central tumor mass that is visible using current imaging techniques. The infiltrative growth characteristics of gliomas question the concept of a radiotherapy target volume that is irradiated to a homogeneous dose-the standard in current clinical practice. We discuss the use of the Fisher-Kolmogorov glioma growth model in radiotherapy treatment planning. The phenomenological tumor growth model assumes that tumor cells proliferate locally and migrate into neighboring brain tissue, which is mathematically described via a partial differential equation for the spatio-temporal evolution of the tumor cell density. In this model, the tumor cell density drops approximately exponentially with distance from the visible gross tumor volume, which is quantified by the infiltration length, a parameter describing the distance at which the tumor cell density drops by a factor of e. This paper discusses the implications for the prescribed dose distribution in the periphery of the tumor. In the context of the exponential cell kill model, an exponential fall-off of the cell density suggests a linear fall-off of the prescription dose with distance. We introduce the dose fall-off rate, which quantifies the steepness of the prescription dose fall-off in units of Gy mm(-1). It is shown that the dose fall-off rate is given by the inverse of the product of radiosensitivity and infiltration length. For an infiltration length of 3 mm and a surviving fraction of 50% at 2 Gy, this suggests a dose fall-off of approximately 1 Gy mm(-1). The concept is illustrated for two glioblastoma patients by optimizing intensity-modulated radiotherapy plans. The dose fall-off rate concept reflects the idea that infiltrating gliomas lack a defined boundary and are characterized by a
Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Ayache, Nicholas; Shih, Helen A.
2014-02-01
Gliomas differ from many other tumors as they grow infiltratively into the brain parenchyma rather than forming a solid tumor mass with a well-defined boundary. Tumor cells can be found several centimeters away from the central tumor mass that is visible using current imaging techniques. The infiltrative growth characteristics of gliomas question the concept of a radiotherapy target volume that is irradiated to a homogeneous dose—the standard in current clinical practice. We discuss the use of the Fisher-Kolmogorov glioma growth model in radiotherapy treatment planning. The phenomenological tumor growth model assumes that tumor cells proliferate locally and migrate into neighboring brain tissue, which is mathematically described via a partial differential equation for the spatio-temporal evolution of the tumor cell density. In this model, the tumor cell density drops approximately exponentially with distance from the visible gross tumor volume, which is quantified by the infiltration length, a parameter describing the distance at which the tumor cell density drops by a factor of e. This paper discusses the implications for the prescribed dose distribution in the periphery of the tumor. In the context of the exponential cell kill model, an exponential fall-off of the cell density suggests a linear fall-off of the prescription dose with distance. We introduce the dose fall-off rate, which quantifies the steepness of the prescription dose fall-off in units of Gy mm-1. It is shown that the dose fall-off rate is given by the inverse of the product of radiosensitivity and infiltration length. For an infiltration length of 3 mm and a surviving fraction of 50% at 2 Gy, this suggests a dose fall-off of approximately 1 Gy mm-1. The concept is illustrated for two glioblastoma patients by optimizing intensity-modulated radiotherapy plans. The dose fall-off rate concept reflects the idea that infiltrating gliomas lack a defined boundary and are characterized by a continuous
Naturalizing phenomenology - A philosophical imperative.
Harney, Maurita
2015-12-01
Phenomenology since Husserl has always had a problematic relationship with empirical science. In its early articulations, there was Husserl's rejection of 'the scientific attitude', Merleau-Ponty's distancing of the scientifically-objectified self, and Heidegger's critique of modern science. These suggest an antipathy to science and to its methods of explaining the natural world. Recent developments in neuroscience have opened new opportunities for an engagement between phenomenology and cognitive science and through this, a re-thinking of science and its hidden assumptions more generally. This is so partly because of the shortcomings of conventional mechanistically-conceived science in dealing with complex and dynamic phenomena such as climate change, brain plasticity, the behaviour of collectives, the dynamics of various microbiological processes, etc. But it is also due to recent phenomenological scholarship focussed on the 'embodied' phenomenology of Husserl's Ideen II and Merleau Ponty's later ontology of nature which have helped to extend the insights of phenomenology beyond the narrowly 'human' to an understanding of nature (which includes the human) more generally. Thus re-contextualised, phenomenology is well placed to examine some of the assumptions that give rise to the reductionism and associated scientism which has characterised conventional science in its approach to the study of natural processes. In light of this, it might be suggested that the 'anti-science' of early articulations of phenomenology is more a hostility to the underlying assumptions of science as conventionally understood than to science itself - that it is scientism rather than science that is targeted. In this paper, I aim to show how a phenomenological naturalism might be seen as a necessary step towards the development of a non-reductionist and non-scientistic approach to scientific inquiry. A key to this is a reconceptualization of nature as inclusive of meanings and of mind. It
Anna, Sandulyak; Alexander, Sandulyak; Vera, Ershova; Maria, Polismakova; Darya, Sandulyak
2017-03-01
It is noted that in most cases, mechanical impurities of technological liquides are ferroimpurities, possessing ferromagnetic properties; therefore for their control (as well as for the decision taking on the possible use of magnetophoresis devices for their removal) the preference should be given to magnetic methods. In the development of the existing options of magnetic control, used in metrology of ferroimpurities control (including ferrography), the main provisions of the relatively new, tested on a number of process liquids (including fuels and lubricants) poly-operational experimental calculation method is set out. Unlike already practiced experimental methods, it allows the implementation of more objective control. Operational data of magnetic control of ferroimpurities in motor oils, gasoline, diesel fuel and others are given. Based on the phenomenological approach (using the method of functional legalization of mass-operational charachteristics in semi-logarithmic coordinates) the expressions for calculating the operating masses (including the forecasted ones outside of the experiment), and, most importantly, for the calculation of the total mass for unlimited and limited number of operations are obtained. Along that expressions (with the relevant data) for determination of the error control during the limitation of the number of operations and inverse expression for the required number of operations subject to the margin of error are receieved. Based on the physical approach (assuming concepts of absorption screen of exponential type) the design formulas correlated with the phenomenological ones for calculating operating mass and the total mass of ferroimpurities (including the residual) in the analyzed sample probe are obtained. The physical meaning of the number of parameters, which were previously considered exclusively empirical, is figured out.
Improving statistical reasoning theoretical models and practical implications
Sedlmeier, Peter
1999-01-01
This book focuses on how statistical reasoning works and on training programs that can exploit people''s natural cognitive capabilities to improve their statistical reasoning. Training programs that take into account findings from evolutionary psychology and instructional theory are shown to have substantially larger effects that are more stable over time than previous training regimens. The theoretical implications are traced in a neural network model of human performance on statistical reasoning problems. This book apppeals to judgment and decision making researchers and other cognitive scientists, as well as to teachers of statistics and probabilistic reasoning.
Implications of complete watershed soil moisture measurements to hydrologic modeling
Engman, E. T.; Jackson, T. J.; Schmugge, T. J.
1983-01-01
A series of six microwave data collection flights for measuring soil moisture were made over a small 7.8 square kilometer watershed in southwestern Minnesota. These flights were made to provide 100 percent coverage of the basin at a 400 m resolution. In addition, three flight lines were flown at preselected areas to provide a sample of data at a higher resolution of 60 m. The low level flights provide considerably more information on soil moisture variability. The results are discussed in terms of reproducibility, spatial variability and temporal variability, and their implications for hydrologic modeling.
Strategic Implications of Cloud Computing for Modeling and Simulation (Briefing)
2016-04-01
of Promises with Cloud • Cost efficiency • Unlimited storage • Backup and recovery • Automatic software integration • Easy access to information...discovered, at an abstract level, any advantage or disadvantage to M&S employed in a cloud infrastructure, that would not be true of any typical...Strategic Implications of Cloud Computing for Modeling and Simulation (Briefing) Amy E. Henninger I N S T I T U T E F O R D E F E N S E A N A L
Brain microstructure of subclinical apathy phenomenology in healthy individuals.
Spalletta, Gianfranco; Fagioli, Sabrina; Caltagirone, Carlo; Piras, Fabrizio
2013-12-01
Although apathy has been extensively studied in relation to neuropsychiatric disorders, it is still unclear whether, in healthy people, it should be considered as a physiological phenomenon or whether it is a risk factor for progression to clinical disturbances. Here, we investigated subclinical apathy phenomenology and its brain microstructural correlates in healthy individuals. We submitted 72 participants to a comprehensive clinical assessment, a high-resolution structural MRI and a diffusion tensor imaging scan protocol. Data of individual microstructural (mean diffusivity and fractional anisotropy) variations were processed across genders in relation to the Apathy Rating Scale score. In females, subclinical apathy phenomenology was associated with microstructural variation of the bilateral thalami, the anterior thalamic radiation, the forceps major, and the corona radiate. These are white matter areas mostly connecting the thalami to the frontal and occipital cortices, regions that are known to be implicated in the expression of apathy in clinical samples. No significant relationship with brain microstructure was found in males who showed a positive correlation between subclinical apathy and somatic phenomenology of depression. In conclusion, our results show that in healthy individuals subclinical apathy phenomenology is associated with different mechanisms across genders, and raise the issue about whether brain microstructural changes associated with subclinical apathy in healthy females could be a precocious marker useful in the prediction of progression to more severe apathetic conditions.
[Sleep: regulation and phenomenology].
Vecchierini, M-F
2013-12-01
This article describes the two-process model of sleep regulation. The 24-hour sleep-wake cycle is regulated by a homeostatic process and an endogenous, 2 oscillators, circadian process, under the influence of external synchronisers. These two processes are partially independent but influence each other, as shown in the two-sleep-process auto-regulation model. A reciprocal inhibition model of two interconnected neuronal groups, "SP on" and "SP off", explains the regular recurrence of paradoxical sleep. Sleep studies have primarily depended on observation of the subject and have determined the optimal conditions for sleep (position, external conditions, sleep duration and need) and have studied the consequences of sleep deprivation or modifications of sleep schedules. Then, electrophysiological recordings permitted the classification of sleep stages according to the observed EEG patterns. The course of a night's sleep is reported on a "hypnogram". The adult subject falls asleep in non-REM sleep (N1), then sleep deepens progressively to stages N2 and N3 with the appearance of spindles and slow waves (N2). Slow waves become more numerous in stage N3. Every 90minutes REM sleep recurs, with muscle atonia and rapid eye movements. These adult sleep patterns develop progressively during the 2 first years of life as total sleep duration decreases, with the reduction of diurnal sleep and of REM sleep. Around 2 to 4 months, spindles and K complexes appear on the EEG, with the differentiation of light and deep sleep with, however, a predominance of slow wave sleep.
Resurrecting No-Scale Supergravity Phenomenology
Ellis, John; Olive, Keith A
2010-01-01
In the context of phenomenological models in which the soft supersymmetry-breaking parameters of the MSSM become universal at some unification scale, M_{in}, above the GUT scale, \\mgut, it is possible that all the scalar mass parameters m_0, the trilinear couplings A_0 and the bilinear Higgs coupling B_0 vanish simultaneously, as in no-scale supergravity. Using these no-scale inputs in a renormalization-group analysis of the minimal supersymmetric SU(5) GUT model, we pay careful attention to the matching of parameters at the GUT scale. We delineate the region of M_{in}, m_{1/2} and \\tan \\beta where the resurrection of no-scale supergravity is possible, taking due account of the relevant phenomenological constraints such as electroweak symmetry breaking, m_h, b \\to s \\gamma, the neutralino cold dark matter density \\ohsq and g_\\mu - 2. No-scale supergravity survives in an L-shaped strip of parameter space, with one side having with one side having m_{1/2} \\gappeq 200 {\\rm GeV}, the second (orthogonal) side havi...
A phenomenological approach to psychoprosthetics.
Mills, Frederick B
2013-05-01
The phenomenology of human embodiment can advance the practitioner's understanding of the lived human body and in particular, what it means to incorporate a prosthetic device into one's body. In order for a prosthesis to be incorporated into the lived body of the patient, the prosthesis must arguably be integrated into the body schema. This article uses the phenomenology of Maurice Merleau-Ponty and others to identify three of the necessary conditions of embodiment that determine the body schema: corporeal understanding, transparency and sensorimotor feedback. It then examines the structure of each of these conditions of embodiment and how they impact the lived body's incorporation of prostheses and other artifacts. [Box: see text].
Gori, Stefania
2017-01-01
The discovery of the Higgs boson at the Large Hadron Collider marks the culmination of a decades-long hunt for the last ingredient of the Standard Model. At the same time, there are still many puzzles in particle physics, foremost the existence of a relatively light Higgs boson, seemingly without any extra weak scale particles that would stabilize the Higgs mass against quantum corrections, and the existence of Dark Matter. This talk will give an overview of the most interesting theories that address these problems and how to test these theories at the LHC.
Implications of the S-Web Model for Impulsive SEPs
Antiochos, Spiro K.; Higginson, Aleida K.; DeVore, C. Richard
2017-08-01
One of the most important discoveries of the STEREO mission is that impulsive Solar Energetic Particle (SEP) events frequently exhibit large longitudinal spread in the heliosphere, up to 100 degrees or more. This result is especially puzzling given the long-standing observations that impulsive SEPs originate in highly localized regions in the corona, angular extent less than one degree, and that the SEPs frequently show so-called drop-outs, effectively ruling out diffusion as a mechanism for the observed spread. We discuss the implications of the S-Web slow solar wind model for the propagation of SEPs and their distribution in the heliosphere. We present results from 3D MHD simulations demonstrating that for commonly-observed coronal magnetic topologies, the connectivity of the corona to heliosphere will be quasi-singular, with small regions near the Sun dynamically connecting to giant arcs in the heliosphere that span tens of degrees in both latitude and longitude. We show that the S-Web model can account for both SEP longitudinal spread and dropouts, and discuss implications for observations from the upcoming Solar Orbiter and Solar Probe Plus missions.This research was supported, in part, by the NASA LWS Program.
Phenomenological Prospects of Noncommutative QED
Álvarez-Gaumé, Luis; Vázquez-Mozo, Miguel A.
2004-08-01
We study the phenomenological potential of noncommutative QED as obtained from the Seiberg-Witten limit of string theories in the presence of an external B-field. We manage to define the theory free of tachyons by embedding it into {N}=4 noncommutative super Yang-Mills and breaking supersymmetry softly by adding masses to fermions and scalars. However, this requires a fine-tuning of the soft-breaking mass and the resulting theory has massive polarization for the photon.
The myth of phenomenological overflow.
Brown, Richard
2012-06-01
In this paper I examine the dispute between Hakwan Lau, Ned Block, and David Rosenthal over the extent to which empirical results can help us decide between first-order and higher-order theories of consciousness. What emerges from this is an overall argument to the best explanation against the first-order view of consciousness and the dispelling of the mythological notion of phenomenological overflow that comes with it. Copyright © 2011 Elsevier Inc. All rights reserved.
The Limits of Phenomenology: From Behaviorism to Drug Testing and Engineering Design
Bar-Yam, Yaneer
2013-01-01
It is widely believed that theory is useful in physics because it describes simple systems and that strictly empirical phenomenological approaches are necessary for complex biological and social systems. Here we prove based upon an analysis of the information that can be obtained from experimental observations that theory is even more essential in the understanding of complex systems. Implications of this proof revise the general understanding of how we can understand complex systems including the behaviorist approach to human behavior, problems with testing engineered systems, and medical experimentation for evaluating treatments and the FDA approval of medications. Each of these approaches are inherently limited in their ability to characterize real world systems due to the large number of conditions that can affect their behavior. Models are necessary as they can help to characterize behavior without requiring observations for all possible conditions. The testing of models by empirical observations enhance...
Phenomenology of Holographic Quenches
da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2015-10-01
We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.
Nonsteady flow routing in Landlab: implications for modeling watershed evolution
Adams, J. M.; Gasparini, N. M.; Tucker, G. E.; Istanbulluoglu, E.
2016-12-01
Many traditional landscape evolution models assume steady-state when modeling hydrology: water discharge is calculated a function of precipitation and drainage area, and is constant throughout the duration of a precipitation event. Predictive rainfall-runoff models occupy the other end of the spectrum, where discharge is calculated a function of physical parameters such as a surface roughness and channel slope. These physically-based models are often used for short-term modeling experiments, as explicit solutions of the shallow water equations can be computationally expensive. A physically-based, two-dimensional hydrodynamic model used for flood inundation has been built into the new Landlab modeling framework. This algorithm has been optimized, limiting instabilities when solved across longer time scales and steeper terrains. Previous work in landscape evolution modeling has shown that choice of hydrology method (nonsteady versus steady-state) can impact resulting landforms at geomorphic steady-state. This work evolves landforms from the same initial condition, driven by the same rate of tectonic uplift. The nonsteady overland flow and steady-state flow routing methods are run across these landscapes coupled with a stream power incision component. Previous results suggest that, given certain stream power parameters, modeled nonsteady peak discharges exceed predicted steady-state discharge values at the outlet, although total incision depths are greater in the steady-state hydrology case. These differences in peak discharge and erosion rates have implications for evolved basin relief, with greater overall relief in landscapes dominated by nonsteady hydrology. In addition to basin relief, we predict differences in channel concavities, due to increasing downstream erosion. The morphologic signatures of the two different hydrology regimes will be explored, and used to make interpretations about long-term landscape evolution.
Models for integrated pest control and their biological implications.
Tang, Sanyi; Cheke, Robert A
2008-09-01
Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.
Philosophy of phenomenology: how understanding aids research.
Converse, Mary
2012-01-01
To assist the researcher in understanding the similarities and differences between the Husserlian and Heideggerian philosophies of phenomenology, and how that philosophy can inform nursing research as a useful methodology. Nurse researchers using phenomenology as a methodology need to understand the philosophy of phenomenology to produce a research design that is philosophically congruent. However, phenomenology has a long and complex history of development, and may be difficult to understand and apply. The author draws from Heidegger (1962), Gadamer (2004), and nurse scholars and methodologists. To give the reader a sense of the development of the philosophy of phenomenology, the author briefly recounts its historical origins and interpretations, specifically related to Husserl, Heidegger and Gadamer. The author outlines the ontological and epistemological assumptions of Husserlian and Heideggerian phenomenology and guidance for methodology inspired by these philosophers. Difficulties with engaging in phenomenological research are addressed, especially the processes of phenomenological reduction and bracketing, and the lack of clarity about the methods of interpretation. Despite its complexity, phenomenology can provide the nurse researcher with indepth insight into nursing practice. An understanding of phenomenology can guide nurse researchers to produce results that have meaning in nursing patient care.
Aspects Of Grand Unified And String Phenomenology
Walker, J W
2005-01-01
Explored in this report is the essential interconnectedness of Grand Unified and String Theoretic Phenomenology. In order to extract a modeled connection to low-energy physics from the context of superstring theory, it is presently necessary to input some preferred region of parameter space in which to search. This need may be well filled by a parallel study of Grand Unification, which is by contrast in immediate proximity to a wealth of experimental data. The favored GUT so isolated may then reasonably transfer this phenomenological correlation to a string embedding, receiving back by way of trade a greater sense of primary motivation, and potentially enhanced predictability for parameters taken as input in a particle physics context. The Flipped SU(5) GUT will be our preferred framework in which to operate and first receives an extended study in a non-string derived setting. Of particularly timely interest are predictions for super-particle mass ranges and the interrelated question of proton decay lifetime....
Metastable Vacua in Flux Compactifications and Their Phenomenology
Lebedev, O; Mambrini, Y; Nilles, H P; Ratz, M; L\\"owen, Val\\'eri; Lebedev, Oleg; Mambrini, Yann; Nilles, Hans Peter; Ratz, Michael
2007-01-01
In the context of flux compactifications, metastable vacua with a small positive cosmological constant are obtained by combining a sector where supersymmetry is broken dynamically with the sector responsible for moduli stabilization, which is known as the F-uplifting. We analyze this procedure in a model-independent way and study phenomenological properties of the resulting vacua.
Phenomenology of deflected anomaly-mediation
Rattazzi, Riccardo; Wells, J D; Rattazzi, Riccardo; Strumia, Alessandro; Wells, James D.
2000-01-01
We explore the phenomenology of a class of models with anomaly-mediated supersymmetry breaking. These models retain the successful flavor properties of the minimal scenario while avoiding the tachyons. The mass spectrum is predicted in terms of a few parameters. However various qualitatively different spectra are possible, often strongly different from the ones usually employed to explore capabilities of new accelerators. One stable feature is the limited spread of the spectrum, so that squarks and gluinos could be conceivably produced at TEVII. The lightest superpartner of standard particles is often a charged slepton or a neutral higgsino. It behaves as a stable particle in collider experiments but it decays at or before nucleosynthesis. We identify the experimental signatures at hadron colliders that can help distinguish this scenario from the usual ones.
E6SSM vs MSSM gluino phenomenology
Svantesson, Patrik; Hall, Jonathan P; King, Stephen F
2012-01-01
The E6SSM is a promising model based on the group E6, assumed to be broken at the GUT scale, leading to the group SU(3)\\times SU(2)\\times U(1)\\times U(1)' at the TeV scale. It gives a solution to the MSSM {\\mu}-problem without introducing massless axions, gauge anomalies or cosmological domain walls. The model contains three families of complete 27s of E6, giving a richer phenomenology than the MSSM. The E6SSM generically predicts gluino cascade decay chains which are about 2 steps longer than the MSSM's due to the presence of several light neutralino states. This implies less missing (and more visible) transverse momentum in collider experiments and kinematical distributions such as M_eff are different. Scans of parameter space and MC analysis suggest that current SUSY search strategies and exclusion limits have to be reconsidered.
E6SSM vs MSSM gluino phenomenology
Directory of Open Access Journals (Sweden)
Hall Jonathan
2012-06-01
Full Text Available The E6SSM is a promising model based on the group E6, assumed to be broken at the GUT scale, leading to the group SU(3×SU(2×U(1×U(1′ at the TeV scale. It gives a solution to the MSSM μ-problem without introducing massless axions, gauge anomalies or cosmological domain walls. The model contains three families of complete 27s of E6, giving a richer phenomenology than the MSSM. The E6SSM generically predicts gluino cascade decay chains which are about 2 steps longer than the MSSM’s due to the presence of several light neutralino states. This implies less missing (and more visible transverse momentum in collider experiments and kinematical distributions such as Meff are different. Scans of parameter space and MC analysis suggest that current SUSY search strategies and exclusion limits have to be reconsidered.
Effective Lagrangians and Light Gravitino Phenomenology
Luty, M A; Luty, Markus A.; Ponton, Eduardo
1998-01-01
We construct the low-energy effective lagrangian for supersymmetry breaking models with a light gravitino. Our effective lagrangian is written in terms of the spin-1/2 Goldstino (the longitudinal component of the gravitino) transforming under a non-linear realization of supersymmetry. The Goldstino is derivatively coupled. We use this lagrangian to place bounds on the supersymmetry breaking scale \\sqrt{F} from Goldstino phenomenology. The most stringent bounds come from the coupling of a single photon to Goldstino pairs. For gauge-mediated models, this coupling arises at one loop in the effective lagrangian, and supernova cooling allows \\sqrt{F} > 610 GeV or \\sqrt{F} 140 GeV for tan\\beta = 2.
Palatini actions and quantum gravity phenomenology
Energy Technology Data Exchange (ETDEWEB)
Olmo, Gonzalo J., E-mail: gonzalo.olmo@csic.es [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia - CSIC, Facultad de Física, Universidad de Valencia, Burjassot-46100, Valencia (Spain)
2011-10-01
We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmologies of this model also avoid the big bang singularity by means of a big bounce.
Modelling the Implications of Quality Management Elements on Strategic Flexibility
Directory of Open Access Journals (Sweden)
Ana Belén Escrig-Tena
2011-01-01
Full Text Available This paper presents a theoretical and empirical analysis of the implications of a quality management (QM initiative on strategic flexibility. Our study defines flexibility from a strategic approach and examines the extent to which, why, and how the triggering factors of strategic flexibility are related to QM elements. The hypotheses put forward are tested in an empirical study carried out on a sample of Spanish firms, using structural equation models. The results demonstrate the positive effect of adopting an integral QM initiative on enhancing strategic flexibility. QM enhances strategic flexibility more effectively when it is introduced comprehensively rather than in a piecemeal fashion. A series of practices linked to the application of a QM initiative are outlined, which managers can use to improve strategic flexibility. The approach used in the study can be applied to analyse other antecedents of flexibility and to propose possible studies that consider QM as an antecedent of other organisational variables.
SOURCE PHENOMENOLOGY EXPERIMENTS IN ARIZONA
Energy Technology Data Exchange (ETDEWEB)
Jessie L. Bonner; Brian Stump; Mark Leidig; Heather Hooper; Xiaoning (David) Yang; Rongmao Zhou; Tae Sung Kim; William R. Walter; Aaron Velasco; Chris Hayward; Diane Baker; C. L. Edwards; Steven Harder; Travis Glenn; Cleat Zeiler; James Britton; James F. Lewkowicz
2005-09-30
The Arizona Source Phenomenology Experiments (SPE) have resulted in an important dataset for the nuclear monitoring community. The 19 dedicated single-fired explosions and multiple delay-fired mining explosions were recorded by one of the most densely instrumented accelerometer and seismometer arrays ever fielded, and the data have already proven useful in quantifying confinement and excitation effects for the sources. It is very interesting to note that we have observed differences in the phenomenology of these two series of explosions resulting from the differences between the relatively slow (limestone) and fast (granodiorite) media. We observed differences at the two SPE sites in the way the rock failed during the explosions, how the S-waves were generated, and the amplitude behavior as a function of confinement. Our consortium's goal is to use the synergy of the multiple datasets collected during this experiment to unravel the phenomenological differences between the two emplacement media. The data suggest that the main difference between single-fired chemical and delay-fired mining explosion seismograms at regional distances is the increased surface wave energy for the latter source type. The effect of the delay-firing is to decrease the high-frequency P-wave amplitudes while increasing the surface wave energy because of the longer source duration and spall components. The results suggest that the single-fired explosions are surrogates for nuclear explosions in higher frequency bands (e.g., 6-8 Hz Pg/Lg discriminants). We have shown that the SPE shots, together with the mining explosions, are efficient sources of S-wave energy, and our next research stage is to postulate the possible sources contributing to the shear-wave energy.
Post-Phenomenological Sociology of the Body
Directory of Open Access Journals (Sweden)
Tomaž Krpič
2008-12-01
Full Text Available This article discusses the works of two classic philosophic writers, Edmund Husserl and Maurice Merleau-Ponty, by focusing on the significance of both writers for the post-phenomenological nature of the sociology of the body. With their reflections on the “living body” and its position in the world, Husserl and Merleau-Ponty both pave the way to phenomenological thought and consolidate its place in the post-phenomenological sociology of the body.
A PHENOMENOLOGICAL RESEARCH ON MORAL PHILOSOPHY
CIPRIAN IULIAN ŞOPTICĂ
2011-01-01
The subject of this article concerns the what, the how and the whyof moral phenomenology. The first question we take into consideration is „What is moral phenomenology”? The second question which arises is „How to pursue moral phenomenology”? The third question is „Why pursue moral phenomenology”? We will analyze the study Moral phenomenology:foundation issues1, by which the American phenomenologist Uriah Kriegel aims three lines of research: the definition of moral phenomenology and the desc...
Fundamental concepts of phenomenology and descriptive psychopathology
Directory of Open Access Journals (Sweden)
Debajit Gogoi
2017-01-01
Full Text Available For a better understanding of what psychiatry is all about, the importance and stronghold of phenomenology and descriptive psychopathology in psychiatry has never been overstated. Biological psychiatry has accumulated enough evidences of mental illnesses until now but that does not mean that phenomenology and psychopathology would lose its shine. Rather psychopathology and phenomenology will afoot stronger as it is the philosophy of psychiatry.
Phenomenological Anisotropic Study of Surface Finish in Pack Rolling
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A phenomenological anisotropic model has been presented for the surface roughness modeling of pack rolling. The model is an assembly of grains in different orientations and sizes. The grain size is assumed to be in log-normal distribution. To model the macro anisotropic mechanical behavior of the grains induced by the slip deformation, the grains are assumed as isolated anisotropic units. The units have different mechanic behavior, and depend on the crystallographic orientations and the external loading as well as the interaction of the adjunctive grains. In the paper,the material properties of the grains are assumed as uniform distributions. The roughness of the contact surfaces depends on the distribution types and the scatters of the distributions. It is found that the initial roughness of the contact surfaces has a little influence on the surface roughness when the rolling deformation is large. The comparison between the phenomenological model and crystallographic model shows that the phenomenological model can also give out a reasonable result, while it only takes much less CPU time. The agreement between the single sheet model and the pack rolling model shows that in a certain degree the pack rolling model can be replaced by the single sheet model to decrease the CPU time.
The Phenomenology of Animal Life
Directory of Open Access Journals (Sweden)
Lestel, Dominique
2014-11-01
Full Text Available This paper presents a bi-constructivist approach to the study of animal life, which is opposed to the realist-Cartesian paradigm in which most ethology operates. The method is elaborated through the examples of a knot-tying orangutan in a Paris zoo and chile-eating cats in a New York apartment. We show that, when grounded in the operational framework of the phenomenological approach, the interpretation of animal life acquires a much more robust character than is usually supposed.
Phenomenological implementations of TMD evolution
Energy Technology Data Exchange (ETDEWEB)
Boglione, Mariaelena [University of Turin, Torino, Italy; Gonzalez Hernandez, Jose Osvaldo [University of Virginia, Charlottesville, VA; Melis, Stefano [European Centre for Theoretical Studies; Prokudin, Alexey [JLAB
2015-03-01
Although the theoretical set-up of TMD evolution appears to be well established, its phenomenological implementations still require special attention, particularly as far as the interplay between perturbative and non-perturbative contributions is concerned. These issues have been extensively studied in Drell-Yan processes, where they seem to be reasonably under control. Instead, applying the same prescriptions and methodologies to Semi-Inclusive Deep Inelastic (SIDIS) processes is, at present, far from obvious. Some of the controversies related to the applications of TMD Evolution to SIDIS processes will be discussed with practical examples, exploring different kinematical configurations of SIDIS experiments.
[Phenomenology of abnormal body perceptions].
Schäfer, M L
1983-01-01
The present paper deals with the problematic nature of the phenomenological grasping of the consciousness of the body and its pathological modifications. The reasoning is oriented by the doctrine of Husserl of the so-called sentiments as the fundamentals of the experience of the own body. This basic approach does not only seem to be basically for a psychology of the consciousness of the body, but also to give the theoretical-conceptual structure for a great number of psychopathological modifications. Subsequent to a criticism of the conventional use of the term 'hallucination of the body' we attempt to chart elements of a scheme of the abnormal consciousness of the body.
Phenomenological implementations of TMD evolution
Boglione, M; Melis, S; Prokudin, A
2014-01-01
Although the theoretical set-up of TMD evolution appears to be well established, its phenomenological implementations still require special attention, particularly as far as the interplay between perturbative and non-perturbative contributions is concerned. These issues have been extensively studied in Drell-Yan processes, where they seem to be reasonably under control. Instead, applying the same prescriptions and methodologies to Semi-Inclusive Deep Inelastic (SIDIS) processes is, at present, far from obvious. Some of the controversies related to the applications of TMD Evolution to SIDIS processes will be discussed with practical examples, exploring different kinematical configurations of SIDIS experiments.
Phenomenology is not Phenomenalism. Is there such a thing as phenomenology of sport?
Directory of Open Access Journals (Sweden)
Jan Halák
2014-06-01
Full Text Available Background: The application of the philosophical mode of investigation called "phenomenology" in the context of sport. Objective: The goal is to show how and why the phenomenological method is very often misused in sport-related research. Methods: Interpretation of the key texts, explanation of their meaning. Results: The confrontation of concrete sport-related texts with the original meaning of the key phenomenological notions shows mainly three types of misuse - the confusion of phenomenology with immediacy, with an epistemologically subjectivist stance (phenomenalism, and with empirical research oriented towards objects in the world. Conclusions: Many of the discussed authors try to take over the epistemological validity of phenomenology for their research, which itself is not phenomenological, and it seems that this is because they are lacking such a methodological foundation. We believe that an authentically phenomenological analysis of sport is possible, but it must respect the basic distinctions that differentiate phenomenology from other styles of thinking.
Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications
Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman
2014-01-01
Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."
New model of axion monodromy inflation and its cosmological implications
Energy Technology Data Exchange (ETDEWEB)
Cai, Yi-Fu [CAS Key Laboratory for Researches in Galaxies and Cosmology,Department of Astronomy, University of Science and Technology of China,Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Department of Physics, McGill University,Montréal, QC, H3A 2T8 (Canada); Chen, Fang [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, California 93106 (United States); Ferreira, Elisa G.M.; Quintin, Jerome [Department of Physics, McGill University,Montréal, QC, H3A 2T8 (Canada)
2016-06-10
We propose a new realization of axion monodromy inflation in which axion monodromy arises from torsional cycles in a type IIB compactification. A class of monomial potentials is obtained with specific values for the power index. Moreover, the inflaton mass changes profile due to the couplings between various fields after compactification. Consequently, the potential obtains a step-like profile at some critical scale. We study the cosmological implications of one concrete realization of this model. At the background level, it realizes a sufficiently long inflationary stage, which allows for the violation of the slow-roll conditions for a short period of time when the inflaton is close to the critical scale. Accordingly, the Hubble horizon is perturbed and affects the dynamics of primordial cosmological perturbations. In particular, we analyze the angular power spectrum of B-mode polarization and find a boost on very large scales. We also find that the amplitude of scalar perturbations is suppressed near the critical scale. Thus our model provides an interpretation for the low-ℓ suppression of temperature anisotropies in the CMB power spectrum. We examine these effects and confront the model to observations.
Existential and Phenomenological Influences in Educational Philosophy.
Vandenberg, Donald
1979-01-01
Existentialism, methodology, phenomenology, and hermeneutics are defined as they apply to philosophy of education. A chronological presentation of the literature outlines the contributions of each. (JMF)
An update of the constraints on the phenomenological MSSM from the new LHC Higgs results
Energy Technology Data Exchange (ETDEWEB)
Arbey, Alexandre [Université de Lyon (France); Université Lyon 1, F-69622 Villeurbanne Cedex (France); Centre de Recherche Astrophysique de Lyon, Observatoire de Lyon, Saint-Genis Laval Cedex, F-69561 (France); CNRS, UMR 5574 (France); Ecole Normale Supérieure de Lyon (France); CERN, CH-1211 Geneva 23 (Switzerland); Battaglia, Marco, E-mail: MBattaglia@lbl.gov [Santa Cruz Institute of Particle Physics, University of California, Santa Cruz, CA 95064 (United States); CERN, CH-1211 Geneva 23 (Switzerland); Djouadi, Abdelhak [Laboratoire de Physique Théorique, Université Paris XI and CNRS, F-91405 Orsay (France); Mahmoudi, Farvah [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, BP 10448, F-63000 Clermont-Ferrand (France); CERN, CH-1211 Geneva 23 (Switzerland)
2013-03-13
Updated results on the search of Higgs bosons at the LHC with up to 17 fb{sup −1} of data have just been presented by the ATLAS and CMS Collaborations. New constraints are provided by the LHCb and XENON experiments with the observation of the rare decay B{sub s}→μ{sup +}μ{sup −} and new limits on dark matter direct detection. In this Letter, we update and extend the results on the implications of these data on the phenomenological Minimal Supersymmetric extension of the Standard Model (pMSSM) by using high statistics, flat scans of its 19 parameters. The new LHC data on bb{sup ¯} and ττ decays of the lightest Higgs state and the new CMS limits from the ττ searches for the heavier Higgs states set stronger constraints on the pMSSM parameter space.
Cell phenomenology: The first phenomenon.
Pattee, H H
2015-12-01
As a broad academic discipline phenomenology may be summarized as the study from a first person point of view of what appears to subjective human conscious experience. As a historical philosophical movement phenomenology was often motivated by the belief that subjective human experience is the proper foundation of all philosophy. I explore phenomena from a broader evolutionary and physical point of view. I consider a phenomenon as the subjective consequence of a physical interaction with an individual organism. In physical terms, a phenomenon requires some form of detection or measurement. What is detected is determined by the organism, and is potentially functional for the organism as a self or subject. The concept of function has meaning only for living organisms. The classical human mind-body problem is an ill-defined complicated case of the more general epistemic subject-object problem, which at the origin of life I reduce to the primitive symbol-matter problem. I argue that the first memory-based self-replicating unit, like a cell, is the most primitive case of a necessary symbol-matter distinction. The first phenomena, which include all forms or sensing, detection, and measurement, require a subject-object distinction, called the epistemic cut. It is only because of such a subject-object distinction that populations of individual subjects can selectively adapt to their environment by heritable variations. This basic evolutionary process requires distinguishing the individual's subjective phenomena from the objective events of inexorable physical laws.
Directory of Open Access Journals (Sweden)
Roberto Farné
2016-10-01
Full Text Available The success of phenomenology in contemporary culture is due above all to the new approach to knowledge that has been proposed, breaking with the traditional objectivism of scientific knowledge and placing the “phenomenon” at the centre of the relationship between the subject and the world. Everyday reality, the language of concrete things, have become fully-fledged targets of philosophical thought. While Eugen Fink, student of Husserl, elects the phenomenon of play as the “symbol of the world”, the original interpretation of man’s relation to the world, in Italy Piero Bertolini redefines the scientific basis of pedagogy according to phenomenological categories and places play among the fundamental fields of experience of education. On one hand overcoming the traditional educational instrumentalisation of play, on the other its sterile reduction to a consumer experience, Bertolini brings play back to its authentic dimension in which risk, error, adventure are constituent parts, the “active ingredients” of his pedagogy.
Phenomenology between Pathos and Response
Directory of Open Access Journals (Sweden)
Bernhard Waldenfels
2011-03-01
Full Text Available The author calls phenomenological intentionality, into question while taking it, nevertheless, as a starting point. From the analysis of the meaning of phenomena he goes back to a pathic dimension which precedes them. What happens to us or affects us and to what we respond in different ways cannot be reduced to previous horizons. Between pathos and response, there is an irreducible cleft which constitutes a special sort of time-lag. What happens to us comes is always too early; our responses always come too late. Our experience is never completely up to date. In order to explore this pre-semantic and pre-pragmatic depth of experience we need a sort of responsive reduction, which guides all meaning toward something we respond to. In conclusion, the author evokes some areas in which such a revision of phenomenology shows its effects, namely the genesis of life in bioethics, the historical elaboration of memory and the experience of the Other.
Directory of Open Access Journals (Sweden)
CÉSAR AUGUSTO GÓMEZ
2008-12-01
Full Text Available Este trabajo presenta un método para la construcción de Modelos Semifisicos de Base Fenomenológica (MSBF. El método se basa en los fenómenos de transporte, tránsito, transmisión o transferencia, y en el principio de conservación. Se da una descripción detallada de los pasos del método propuesto. Luego se aplica el método en la construcción de un modelo que describe el comportamiento de cinco dinámicas (volumen, biomasa, sustrato, producto y temperatura en un proceso de fermentación en continuo. La simulación muestra que el modelo obtenido puede predecir de forma adecuada el comportamiento dinámico de dicho bioproceso.This work presents a method for building Phenomenological Based Semiphysical Models (PBSM. The method is based on transport, transfer, transmission or transit phenomena and conservation principle. A detailed description of proposed method steps is given. Next, the method is applied to attaining a model for describing the behavior of five dynamics (volume, biomass, substrate, product and temperature of a continuous fermentation process. Model simulation shows that obtained model can predict dynamic performance of real process adequately.
Aspects Of String Phenomenology At The Self Dual Radius
Perkins, J T
2005-01-01
This dissertation is primarily focused on the discussion of heterotic string phenomenology derived from the free fermionic approach. Two models addressing different phenomenological issues, namely optical unification as a solution to the factor of twenty difference between GUT and string scale unification, and observable/hidden sector mirror models that contain an unavoidable gauge (and matter) mirror symmetry breaking for which the broken matter provides a potential dark matter candidate. Lastly, a geometrical interpretation for simultaneous D- and F-flat directions is presented. Chapter two presents the first model constructed from free fermionic strings in which requirements for optical unification [1] may be satisfied. Free fermionic string models generically produce intermediated scale particles, for which specific sets can act as a diverging lens causing the string scale unification point to appear to unify at the GUT scale unification point. In chapter three, a model is discussed in which mirror symmet...
Implications of unitarity and gauge invariance for simplified dark matter models
Energy Technology Data Exchange (ETDEWEB)
Kahlhoefer, Felix; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schwetz, Thomas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Kernphysik; Vogl, Stefan [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Kernphysik; Stockholm Univ. (Sweden). Dept. of Physics
2015-10-15
We show that simplified models used to describe the interactions of dark matter with Standard Model particles do not in general respect gauge invariance and that perturbative unitarity may be violated in large regions of the parameter space. The modifications necessary to cure these inconsistencies may imply a much richer phenomenology and lead to stringent constraints on the model. We illustrate these observations by considering the simplified model of a fermionic dark matter particle and a vector mediator. Imposing gauge invariance then leads to strong constraints from dilepton resonance searches and electroweak precision tests. Furthermore, the new states required to restore perturbative unitarity can mix with Standard Model states and mediate interactions between the dark and the visible sector, leading to new experimental signatures such as invisible Higgs decays. The resulting constraints are typically stronger than the 'classic' constraints on DM simplified models such as monojet searches and make it difficult to avoid thermal overproduction of dark matter.
Implications of unitarity and gauge invariance for simplified dark matter models
Kahlhoefer, Felix; Schwetz, Thomas; Vogl, Stefan
2015-01-01
We show that simplified models used to describe the interactions of dark matter with Standard Model particles do not in general respect gauge invariance and that perturbative unitarity may be violated in large regions of the parameter space. The modifications necessary to cure these inconsistencies may imply a much richer phenomenology and lead to stringent constraints on the model. We illustrate these observations by considering the simplified model of a fermionic dark matter particle and a vector mediator. Imposing gauge invariance then leads to strong constraints from dilepton resonance searches and electroweak precision tests. Furthermore, the new states required to restore perturbative unitarity can mix with Standard Model states and mediate interactions between the dark and the visible sector, leading to new experimental signatures such as invisible Higgs decays. The resulting constraints are typically stronger than the 'classic' constraints on DM simplified models such as monojet searches and make it d...
The Phenomenology of Small-Scale Turbulence
Sreenivasan, K. R.; Antonia, R. A.
I have sometimes thought that what makes a man's work classic is often just this multiplicity [of interpretations], which invites and at the same time resists our craving for a clear understanding. Wright (1982, p. 34), on Wittgenstein's philosophy Small-scale turbulence has been an area of especially active research in the recent past, and several useful research directions have been pursued. Here, we selectively review this work. The emphasis is on scaling phenomenology and kinematics of small-scale structure. After providing a brief introduction to the classical notions of universality due to Kolmogorov and others, we survey the existing work on intermittency, refined similarity hypotheses, anomalous scaling exponents, derivative statistics, intermittency models, and the structure and kinematics of small-scale structure - the latter aspect coming largely from the direct numerical simulation of homogeneous turbulence in a periodic box.
Hypnosis phenomenology and the neurobiology of consciousness.
Rainville, Pierre; Price, Donald D
2003-04-01
Recent developments in the philosophical and neurobiological studies of consciousness provide promising frameworks to investigate the neurobiology of hypnosis. A model of consciousness phenomenology is described to demonstrate that the experiential dimensions characterizing hypnosis (relaxation and mental ease, absorption, orientation and monitoring, and self-agency) reflect basic phenomenal properties of consciousness. Changes in relaxation-mental ease and absorption, produced by standard hypnotic procedures, are further associated with changes in brain activity within structures critically involved in the basic representation of the body-self and the regulation of states of consciousness. The combination of experiential and modern brain imaging methods offers a unique perspective on hypnotic phenomena and provides new observations consistent with the proposition that hypnosis is an altered state of consciousness.
Arterial Calcification in Diabetes Mellitus: Preclinical Models and Translational Implications.
Stabley, John N; Towler, Dwight A
2017-02-01
Diabetes mellitus increasingly afflicts our aging and dysmetabolic population. Type 2 diabetes mellitus and the antecedent metabolic syndrome represent the vast majority of the disease burden-increasingly prevalent in children and older adults. However, type 1 diabetes mellitus is also advancing in preadolescent children. As such, a crushing wave of cardiometabolic disease burden now faces our society. Arteriosclerotic calcification is increased in metabolic syndrome, type 2 diabetes mellitus, and type 1 diabetes mellitus-impairing conduit vessel compliance and function, thereby increasing the risk for dementia, stroke, heart attack, limb ischemia, renal insufficiency, and lower extremity amputation. Preclinical models of these dysmetabolic settings have provided insights into the pathobiology of arterial calcification. Osteochondrogenic morphogens in the BMP-Wnt signaling relay and transcriptional regulatory programs driven by Msx and Runx gene families are entrained to innate immune responses-responses activated by the dysmetabolic state-to direct arterial matrix deposition and mineralization. Recent studies implicate the endothelial-mesenchymal transition in contributing to the phenotypic drift of mineralizing vascular progenitors. In this brief overview, we discuss preclinical disease models that provide mechanistic insights-and point to challenges and opportunities to translate these insights into new therapeutic strategies for our patients afflicted with diabetes mellitus and its arteriosclerotic complications. © 2016 American Heart Association, Inc.
New Results in Light-Front Phenomenology
Brodsky, S J
2004-01-01
The light-front quantization of gauge theories such as QCD in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitarity, and a trivial vacuum. The freedom to choose the light-like quantization four-vector provides an explicitly covariant formulation of light-front quantization and can be used to determine the analytic structure of light-front wave functions and to define a kinematical definition of angular momentum. The AdS/CFT correspondence of large $N_C$ supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes. String/gauge duality also predicts the QCD power-law behavior of light-front Fock-state hadronic wavefunctions with arbitrary orbital angular momentum at high momentum transfer. The...
Resurrecting no-scale supergravity phenomenology
Energy Technology Data Exchange (ETDEWEB)
Ellis, John [CERN, TH Division, PH Department, Geneva 23 (Switzerland); Mustafayev, Azar; Olive, Keith A. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States)
2010-09-15
In the context of phenomenological models in which the soft supersymmetry-breaking parameters of the MSSM become universal at some unification scale, M{sub in}, above the GUT scale, M{sub GUT}, it is possible that all the scalar mass parameters m{sub 0}, the trilinear couplings A{sub 0} and the bilinear Higgs coupling B{sub 0} vanish simultaneously, as in no-scale supergravity. Using these no-scale inputs in a renormalisation-group analysis of the minimal supersymmetric SU(5) GUT model, we pay careful attention to the matching of parameters at the GUT scale. We delineate the region of M{sub in}, m{sub 1/2} and tan {beta} where the resurrection of no-scale supergravity is possible, taking due account of the relevant phenomenological constraints such as electroweak symmetry breaking, m{sub h},b {yields}s {gamma}, the neutralino cold dark matter density {omega}{sub {chi}} h {sup 2} and g{sub {mu}} -2. No-scale supergravity survives in an L-shaped strip of parameter space, with one side having m{sub 1/2}>or similar 200 GeV, the second (orthogonal) side having M{sub in}>or similar 5 x 10 {sup 16} GeV. Depending on the relative signs and magnitudes of the GUT superpotential couplings, these may be connected to form a triangle whose third side is a hypotenuse at larger M{sub in}, m{sub 1/2} and tan {beta}, whose presence and location depend on the GUT superpotential parameters. We compare the prospects for detecting sparticles at the LHC in no-scale supergravity with those in the CMSSM and the NUHM. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Belov, Pavel
2013-06-15
A combination is presented of the inclusive neutral current e{sup {+-}}p scattering cross section data collected by the H1 and ZEUS collaborations during the last months of the HERA II operation period with proton beam energies E{sub p} of 460 and 575 GeV. The kinematic range of the cross section data covers low absolute four-momentum transfers squared, 1.5 GeV{sup 2} {<=} Q{sup 2} {<=} 110 GeV{sup 2}, small values of Bjorken-x, 2.8.10{sup -5} {<=} x {<=} 1.5.10{sup -2}, and high inelasticity y {<=} 0.85. The combination algorithm is based on the method of least squares and takes into account correlations of the systematic uncertainties. The combined data are used in the QCD fits to extract the parton distribution functions. The phenomenological low-x dipole models are tested and parameters of the models are obtained. A good description of the data by the dipole model taking into account the evolution of the gluon distribution is observed. The longitudinal structure function F{sub L} is extracted from the combination of the currently used H1 and ZEUS reduced proton beam energy data with previously published H1 nominal proton beam energy data of 920 GeV. A precision of the obtained values of F{sub L} is improved at medium Q{sup 2} compared to the published results of the H1 collaboration.
Energy Technology Data Exchange (ETDEWEB)
Perez, S. [Universidad de Carabobo, Facultad de Ingenieria, Valencia (Venezuela); Therien, N.; Broadbent, A.D. [Sherbrooke Univ., Faculte de Genie, Quebec (Canada)
2001-07-01
A phenomenological model of the evolution of the humidity and temperature during the drying of a thin fiber cloth in contact with a metal surface heated by electric induction is presented. The model calculates also the temperature inside the cylinder with respect to its position. Differential mass and energy statuses are established and the concept of substantial derivative is used to bind the state variables with respect to the time and position. The conduction, convection, radiant heat transfer, thermal induction, and energy transfer due to water vaporization are explicitly considered. The model takes into consideration the disturbances due to the variations of the humidity of the cloth at the input of the process. It calculates the response of the process in front of these disturbances and in front of the rotation speed of the cylinder and the electric power supplied to the system. Multiple experiments performed on a bench test have permitted to characterize the response of the drying process (temperature of the cylinder, humidity and temperature of the cloth) under different combinations of conditions. (J.S.)
Energy Technology Data Exchange (ETDEWEB)
Perez, S. [Universidad de Carabobo, Facultad de Ingenieria, Valencia (Venezuela); Therien, N.; Broadbent, A.D. [Sherbrooke Univ., Faculte de Genie, Quebec (Canada)
2001-07-01
This work concerns the development of a phenomenological model describing the temperature dynamics of a metal cylinder heated by electric induction. The model used takes into consideration in an explicit way the different mechanisms of energy transfer from the cylinder towards the environment, in particular the convection and radiant heat transfers. The conduction process, which takes place inside the cylinder as a response to the temperature gradient at the periphery of the cylinder, has been characterized too. The process of energy induction inside the cylinder has been characterized in a precise way. The experiments show that the induction is localized in the part of the cylinder facing the inductors and that the induction presents a distributed feature in the induction section. The model proposed is based on the concept of substantial derivative. It calculates the response of the process with respect to these disturbances and with respect to the rotation speed of the cylinder and to the electric power supplied to the system. (J.S.)
PHENOMENOLOGY AND MECHANISMS OF THE SOLUTION OF EXISTENTIAL INTRAPERSONAL CONFLICTS
Directory of Open Access Journals (Sweden)
Krasilnikov Igor Aleksandrovich
2013-05-01
Full Text Available In the article sights of founders of existential psychology at phenomenology and psychological mechanisms of intrapersonal conflicts are considered. It is underlined, that the basic internal conflict is connected with existential anxiety, human life-death. Experience of the existence in the modern social world often has tragical character for the person. The solution of existential intrapersonal conflicts is defined by how the person could realize in itself deep «Me» connected with feeling of finding of internal and external freedom, creative and spontaneity. It is emphasized, that freedom is the main quality of social human life, but the way to it demands from the person of the responsibility, courage and honesty. The authorship of own destiny, personal identity are a source of the solution of existential intrapersonal conflicts. Not each person is capable to keep authenticity in the life. Integrity «Me» cannot be restored, ignoring cultural mental-moral values. Purpose. To study phenomenology and psychological mechanisms of the solution of existential intrapersonal conflicts. Methodology. The qualitative theoretical analysis and synthesis of literary data. Results. In the article general concepts of leading scientists-psychologists of existential orientation to phenomenology and mechanisms of the solution of intrapersonal conflicts are presented. The significant attention is given R. Meya's to sights, as one of the main representatives of existential psychotherapy. Practical implications. Preparation of psychologists in the field of psychotherapeutic consultation.
Some Phenomenological Aspects of the Peak Experience
Rosenblatt, Howard S.; Bartlett, Iris
1976-01-01
This article relates the psychological dynamics of "peak experiences" to two concepts, intentionality and paradoxical intention, within the philosophical orientation of phenomenology. A review of early philosophical theories of self (Kant and Hume) is presented and compared with the experiential emphasis found in the phenomenology of Husserl.…
Phenomenological Research Methods for Counseling Psychology
Wertz, Frederick J.
2005-01-01
This article familiarizes counseling psychologists with qualitative research methods in psychology developed in the tradition of European phenomenology. A brief history includes some of Edmund Husserl's basic methods and concepts, the adoption of existential-phenomenology among psychologists, and the development and formalization of qualitative…
Phenomenological Research Methods for Counseling Psychology
Wertz, Frederick J.
2005-01-01
This article familiarizes counseling psychologists with qualitative research methods in psychology developed in the tradition of European phenomenology. A brief history includes some of Edmund Husserl's basic methods and concepts, the adoption of existential-phenomenology among psychologists, and the development and formalization of qualitative…
Some Phenomenological Aspects of the Peak Experience
Rosenblatt, Howard S.; Bartlett, Iris
1976-01-01
This article relates the psychological dynamics of "peak experiences" to two concepts, intentionality and paradoxical intention, within the philosophical orientation of phenomenology. A review of early philosophical theories of self (Kant and Hume) is presented and compared with the experiential emphasis found in the phenomenology of Husserl.…
Naturalizing Husserlian Phenomenology along a Leibnizian Pathway
Directory of Open Access Journals (Sweden)
Jean-Luc Petit
2014-11-01
Full Text Available A contribution to the history of a formerly hotly discussed, but short-lived scientific project: neurophenomenology , the proposal of weaving together Husserlian phenomenology of consciousness and the neuroscience of brain functioning, this article traces back the opening and closing of an apparent window of opportunity, both in phenomenology and in neuroscience, for the eventually unfulfilled realization of that project.
Existential Speech and the Phenomenology of Communication.
Lanigan, Richard L.
John Searle's book, "Speech Acts," opened with the question, "How do words relate to the world?" This paper suggests a way of answering Searle's question by relying--in spirit if not in method--on Austin's linguistic phenomenology. The existential phenomenology approach is described in Austin's phrase as a "sharpened…
[Analysis phenomenology and application to nursing research].
Huang, Yu-Ping; Kellett, Ursula M; St John, Winsome; Lee, Sheuan
2006-04-01
Phenomenology has been divided into three schools of thought arising from different philosophical assumptions and methods. There is descriptive phenomenology, interpretative phenomenology, and a combination of both. Phenomenology has been adopted as a study method to explore experiences in different nursing fields in Taiwan. Husserlian descriptive phenomenology professes to utilize the skills of epoché, bracketing, and phenomenological reduction not only in order to seek the essence of phenomena, but also to allow the researcher to get into the participant's life-world to gain a deeper understanding of their experience; in other words, to let the true phenomenon or essence be revealed. By contrast, Heideggerian interpretative phenomenology rejected the idea that one can completely suspend one's presuppositions, prejudices or preconceived ideas by simply Being-in-the-world. One is immersed in and absorbing from the world, so one will not be able to notice everything that one is gaining from the world. Heidegger also insisted that any interpretation is only valid when background is taken into account. This not only facilitates the researcher's deeper understanding of the other's experience, but also facilitates more accurate interpretation of context and meaning. When researchers seek to follow Husserl's idea of performing bracketing in descriptive phenomenology, in order to truly put the concept into practice, they should understand their prior assumptions and maintain a written journal of reflections throughout the study.
Running Vacuum in the Universe: current phenomenological status
Sola, Joan
2016-01-01
I review the excellent phenomenological status of a class of dynamical vacuum models in which the vacuum energy density, $\\rho_{\\Lambda}=\\rho_{\\Lambda}(H)$, as a function of the Hubble rate, evolves through its interaction with dark matter and/or through the accompanying running of the gravitational coupling $G$, including the possibility of being self-conserved with a nontrivial effective equation of state. Some of these models have been used to incorporate into a single vacuum structure the rapid stage of inflation, followed by the standard radiation and cold dark matter epochs all the way down until the dark energy era. Remarkably, the running vacuum models (RVM's) render an outstanding phenomenological description of the main cosmological data at a level that is currently challenging the concordance $\\Lambda$CDM model, thereby implying that present observations seem to point to a running vacuum rather than to a rigid cosmological constant $\\Lambda$ in our Universe.
McCarthy-Jones, Simon; Krueger, Joel; Larøi, Frank; Broome, Matthew; Fernyhough, Charles
2013-01-01
One of the leading cognitive models of auditory verbal hallucinations (AVHs) proposes such experiences result from a disturbance in the process by which inner speech is attributed to the self. Research in this area has, however, proceeded in the absence of thorough cognitive and phenomenological investigations of the nature of inner speech, against which AVHs are implicitly or explicitly defined. In this paper we begin by introducing philosophical phenomenology and highlighting its relevance to AVHs, before briefly examining the evolving literature on the relation between inner experiences and AVHs. We then argue for the need for philosophical phenomenology (Phenomenology) and the traditional empirical methods of psychology for studying inner experience (phenomenology) to mutually inform each other to provide a richer and more nuanced picture of both inner experience and AVHs than either could on its own. A critical examination is undertaken of the leading model of AVHs derived from phenomenological philosophy, the ipseity disturbance model. From this we suggest issues that future work in this vein will need to consider, and examine how interdisciplinary methodologies may contribute to advances in our understanding of AVHs. Detailed suggestions are made for the direction and methodology of future work into AVHs, which we suggest should be undertaken in a context where phenomenology and physiology are both necessary, but neither sufficient. PMID:23576974
Directory of Open Access Journals (Sweden)
Simon eMcCarthy-Jones
2013-04-01
Full Text Available One of the leading cognitive models of auditory verbal hallucinations (AVHs proposes such experiences result from a disturbance in the process by which inner speech is attributed to the self. Research in this area has, however, proceeded in the absence of thorough cognitive and phenomenological investigations of the nature of inner speech, against which AVHs are implicitly or explicitly defined. In this paper we begin by introducing philosophical phenomenology and highlighting its relevance to AVHs, before briefly examining the evolving literature on the relation between inner experiences and AVHs. We then argue for the need for philosophical phenomenology (Phenomenology and the traditional empirical methods of psychology for studying inner experience (phenomenology to mutually inform each other to provide a richer and more nuanced picture of both inner experience and AVHs than either could on its own. A critical examination is undertaken of the leading model of AVHs derived from phenomenological philosophy, the ipseity disturbance model. From this we suggest issues that future work in this vein will need to consider, and examine how interdisciplinary methodologies may contribute to advances in our understanding of AVHs. Detailed suggestions are made for the direction and methodology of future work into AVHs, which we suggest should be undertaken in a context where phenomenology and physiology are both necessary, but neither sufficient.
Directory of Open Access Journals (Sweden)
Dourado-Neto D.
1998-01-01
Full Text Available With the purpose of presenting to scientists the implications of the objective in model development and a basic vision of modeling, with its potential applications and limitations in agriculture, an integration of crop modeling professionals with agricultural professionals is suggested. Models mean modernization of the information, of the measurement process and of an efficient way to learn more about complex systems. They are one of the best mechanisms of transforming information in useful knowledge and of transferring this knowledge to others. One of the problems that impede a larger progress in modeling is the lack of communication between modelers and a frequent appearance of modelers without a global vision of reality.
[Reflections on phenomenological research in nursing].
Schoppmann, S; Pohlmann, M
2000-12-01
This essay is concerned with the question which philosophical traditions underpin the phenomenological perspective in nursing research. The word phenomenology is often used synonymously on the level of the theory of science as well as on the level of research methods. Besides the similarity in the designation of phenomenology as a philosophical tradition and as a research method, there are to be found a number of terms in the nursing literature, such as hermeneutic, interpretive or interpretative phenomenology. Therefore it is hard to differentiate between the various accounts and to use them for a concrete inquiry in nursing. The differences and the resulting consequences for phenomenological research methods shall be described whereby the ideas of Edmund Husserl and Martin Heidegger are taken into account.
String Phenomenology: Past, Present and Future Perspectives
Directory of Open Access Journals (Sweden)
Alon E. Faraggi
2014-04-01
Full Text Available The observation of a scalar resonance at the Large Hadron Collider (LHC, compatible with perturbative electroweak symmetry breaking, reinforces the Standard Model (SM parameterisation of all subatomic data. The logarithmic evolution of the SM gauge and matter parameters suggests that this parameterisation remains viable up to the Planck scale, where gravitational effects are of comparable strength. String theory provides a perturbatively consistent scheme to explore how the parameters of the Standard Model may be determined from a theory of quantum gravity. The free fermionic heterotic string models provide concrete examples of exact string solutions that reproduce the spectrum of the Minimal Supersymmetric Standard Model. Contemporary studies entail the development of methods to classify large classes of models. This led to the discovery of exophobic heterotic-string vacua and the observation of spinor-vector duality, which provides an insight to the global structure of the space of (2,0 heterotic-string vacua. Future directions entail the study of the role of the massive string states in these models and their incorporation in cosmological scenarios. A complementary direction is the formulation of quantum gravity from the principle of manifest phase space duality and the equivalence postulate of quantum mechanics, which suggest that space is compact. The compactness of space, which implies intrinsic regularisation, may be tightly related to the intrinsic finite length scale, implied by string phenomenology.
Some phenomenological predictions of charged Higgs bosons in electroweak interactions
Energy Technology Data Exchange (ETDEWEB)
Garcia Canal, C.A.; Santangelo, E.M.
1984-05-01
Some phenomenological consequences of an extended Salam-Weinberg model are studied. In particular, the existence, or absence, of e-..mu.. asymmetry in beam-dump experiments is analyzed and an increase in same sign dilepton cross sections is shown to exist due to the contribution of charged Higgs-mediated diagrams. The model is shown to be compatible with experimental results for other processes.
Phenomenology of magnetospheric radio emissions
Carr, T. D.; Desch, M. D.; Alexander, J. K.
1983-01-01
Jupiter has now been observed over 24 octaves of the radio spectrum, from about 0.01 MHz to 300,000 MHz. Its radio emissions fill the entire spectral region where interplanetary electromagnetic propagation is possible at wavelengths longer than infrared. Three distinct types of radiation are responsible for this radio spectrum. Thermal emission from the atmosphere accounts for virtually all the radiation at the high frequency end. Synchrotron emission from the trapped high-energy particle belt deep within the inner magnetosphere is the dominant spectral component from about 4000 to 40 MHz. The third class of radiation consists of several distinct components of sporadic low frequency emission below 40 MHz. The decimeter wavelength emission is considered, taking into account the discovery of synchrotron emission, radiation by high-energy electrons in a magnetic field, and the present status of Jovian synchrotron phenomenology. Attention is also given to the decameter and hectometer wavelength emission, and emissions at kilometric wavelengths.
Observation and phenomenology of glueballs
Energy Technology Data Exchange (ETDEWEB)
Lindenbaum, S.J.
1985-01-01
The experimental evidence and the relevant phenomenology of glueballs are reviewed. The opinion is expressed that the glueball resonance explanation is the only viable one for the data on g/sub T/, g/sub T/sup 1//, and g/sub T/sup 11//. It is shown that alternative explanations are either incorrect, or do not fit the data, or both, leading to the conclusion that these states are probably produced by glueballs. The OZI rule is explained. Glueball masses and width are considered. Some conclusions are drawn regarding an OZI suppressed reaction ..pi../sup -/p ..-->.. phi phi n. Glueball candidates from the J/psi radiative decay are discussed. 44 refs., 16 figs. (LEW)
Extended class of phenomenological universalities
Molski, Marcin
2017-08-01
The phenomenological universalities (PU) are extended to include quantum oscillatory phenomena, coherence and supersymmetry. It will be proved that this approach generates minimum uncertainty coherent states of time-dependent oscillators, which in the dissociation (classical) limit reduce to the functions describing growth (regression) of the systems evolving over time. The PU formalism can be applied also to construct the coherent states of space-dependent oscillators, which in the dissociation limit produce cumulative distribution functions widely used in probability theory and statistics. A combination of the PU and supersymmetry provides a convenient tool for generating analytical solutions of the Fokker-Planck equation with the drift term related to the different forms of potential energy function. The results obtained reveal existence of a new class of macroscopic quantum (or quasi-quantum) phenomena, which may play a vital role in coherent formation of the specific growth patterns in complex systems.
Astroparticle physics theory and phenomenology
Sigl, Günter
2017-01-01
This books aims at giving an overview over theoretical and phenomenological aspects of particle astrophysics and particle cosmology. To be of interest for both students and researchers in neighboring fields of physics, it keeps a balance between well established foundations that will not significantly change in the future and a more in-depth treatment of selected subfields in which significant new developments have been taking place recently. These include high energy particle astrophysics, such as cosmic high energy neutrinos, the interplay between detection techniques of dark matter in the laboratory and in high energy cosmic radiation, axion-like particles, and relics of the early Universe such as primordial magnetic fields and gravitational waves. It also contains exercises and thus will be suitable for both introductory and advanced courses in astroparticle physics.
Monakes, Sarah; Garza, Yvonne; Wiesner, Van, III; Watts, Richard E.
2011-01-01
The purpose of this phenomenological study was to understand the perceptions of adult male substance offenders who experienced sand tray therapy as an adjunct to their cognitive behavioral rehabilitative treatment. Results indicate a positive experience for participants. Implications for counselors are discussed. (Contains 1 table.)
Monakes, Sarah; Garza, Yvonne; Wiesner, Van, III; Watts, Richard E.
2011-01-01
The purpose of this phenomenological study was to understand the perceptions of adult male substance offenders who experienced sand tray therapy as an adjunct to their cognitive behavioral rehabilitative treatment. Results indicate a positive experience for participants. Implications for counselors are discussed. (Contains 1 table.)
Disformal scalars as dark matter candidates — Branon phenomenology
Cembranos, Jose A. R.; Maroto, Antonio L.
2016-05-01
Scalar particles coupled to the Standard Model fields through a disformal coupling arise in different theories, such as massive gravity or braneworld models. We will review the main phenomenology associated with such particles. Distinctive disformal signatures could be measured at colliders and with astrophysical observations. The phenomenological relevance of the disformal coupling demands the introduction of a set of symmetries, which may ensure the stability of these new degrees of freedom. In such a case, they constitute natural dark matter candidates since they are generally massive and weakly coupled. We will illustrate these ideas by paying particular attention to the branon case, since these questions arise naturally in braneworld models with low tension, where they were first discussed.
Disformal scalars as dark matter candidates: Branon phenomenology
Cembranos, Jose A R
2016-01-01
Scalar particles coupled to the Standard Model fields through a disformal coupling arise in different theories, such as massive gravity or brane-world models. We will review the main phenomenology associated with such particles. Distinctive disformal signatures could be measured at colliders and with astrophysical observations. The phenomenological relevance of the disformal coupling demands the introduction of a set of symmetries, which may ensure the stability of these new degrees of freedom. In such a case, they constitute natural dark matter candidates since they are generally massive and weakly coupled. We will illustrate these ideas by paying particular attention to the branon case, since these questions arise naturally in brane-world models with low tension, where they were first discussed.
Phenomenology of Quantum Gravity and its Possible Role in Neutrino Anomalies
Acero, Mario A
2012-01-01
New phenomenological models of Quantum Gravity have suggested that a Lorentz-Invariant discrete spacetime structure may become manifest through a nonstandard coupling of matter fields and spacetime curvature. On the other hand, there is strong experimental evidence suggesting that neutrino oscillations cannot be described by simply considering neutrinos as massive particles. In this manuscript we motivate and construct one particular phenomenological model of Quantum Gravity that could account for the so-called neutrino anomalies.
The phenomenology of maverick dark matter
Krusberg, Zosia Anna Celina
Astrophysical observations from galactic to cosmological scales point to a substantial non-baryonic component to the universe's total matter density. Although very little is presently known about the physical properties of dark matter, its existence offers some of the most compelling evidence for physics beyond the standard model (BSM). In the weakly interacting massive particle (WIMP) scenario, the dark matter consists of particles that possess weak-scale interactions with the particles of the standard model, offering a compelling theoretical framework that allows us to understand the relic abundance of dark matter as a natural consequence of the thermal history of the early universe. From the perspective of particle physics phenomenology, the WIMP scenario is appealing for two additional reasons. First, many theories of BSM physics contain attractive WIMP candidates. Second, the weak-scale interactions between WIMPs and standard model particles imply the possibility of detecting scatterings between relic WIMPs and detector nuclei in direct detection experiments, products of WIMP annihilations at locations throughout the galaxy in indirect detection programs, and WIMP production signals at high-energy particle colliders. In this work, we use an effective field theory approach to study model-independent dark matter phenomenology in direct detection and collider experiments. The maverick dark matter scenario is defined by an effective field theory in which the WIMP is the only new particle within the energy range accessible to the Large Hadron Collider (LHC). Although certain assumptions are necessary to keep the problem tractable, we describe our WIMP candidate generically by specifying only its spin and dominant interaction form with standard model particles. Constraints are placed on the masses and coupling constants of the maverick WIMPs using the Wilkinson Microwave Anisotropy Probe (WMAP) relic density measurement and direct detection exclusion data from both
The Phenomenology of Flipped SU(5)
Abel, S. A.
1990-01-01
Available from UMI in association with The British Library. In this thesis, I examine the phenomenology of the supersymmetric flipped SU(5) model. Such a model has been derived as a low energy approximation to heterotic string theory, probably with a 'no-scale' supersymmetry breaking mechanism. It is found that a large region of the flipped SU(5) parameter space predicts a satisfactory breaking down to the standard model on renormalization down to low energies. In particular it contains a number of phenomenological advantages over other GUT schemes, such as a natural Higg's doublet-triplet mass splitting, and a neutrino see-saw mechanism. Analysis of the neutrino sector shows that this model may allow rapid decays of the heavy neutrinos into lighter electron-neutrinos. This is due to new flavour changing couplings in the superpotential, which are included in the neutrino mass matrix. Such fast decays may be able to evade certain cosmological bounds, based on the standard inflationary scenarios and the observation of the 3K background radiation. Thus it is possible that neutrinos could form a substantial proportion of the dark matter in the Universe. Rare processes may be significantly enhanced in the flipped SU(5) scenario, due to new couplings whose off diagonal Kobayashi-Maskawa matrix elements need not be small. In particular, the gaugino-fermion-sfermion coupling may give important new flavour changing diagrams, since, after supersymmetry is broken, the fermions and sfermions are no longer simultaneously diagonalizable. This leads to the possibility of decays such as Z to bs and muto egamma being detected in the near future. In addition to this there are significant new contributions to the electric dipole moment of the neutron which may be as high as the present day limit of | d_ n| < 10^{-25}ecm. Support for this model may come from neutralino contributions to the number of 'neutrino species' measured in Z decays. Finally, the anomalous magnetic moment of the
Alpha Theta Meditation: Phenomenological, neurophysiologic ...
African Journals Online (AJOL)
African Journal for Physical Activity and Health Sciences ... neurophysiologic, mindfulness, mood, health and sport implications ... Integrated findings are in line with other studies which support the psychological value of alpha theta training.
Directory of Open Access Journals (Sweden)
Ángela A Ruiz
2011-01-01
Full Text Available En este trabajo se presenta un método para el escalamiento de procesos químicos y bioquímicos basada en un modelo de base fenomenológica del proceso. Se definen los conceptos de punto de operación y régimen de operación de un proceso para proponer una herramienta basada en la teoría de control en el escalamiento de procesos, la matriz de Hankel. La metodología se aplicó a un fermentador para la producción de etanol a partir de un jarabe glucosado. Los valores para los parámetros de diseño dan errores inferiores al 10% al compararlos con los valores de la literatura, tanto para el escalamiento en el laboratorio como para un caso a escala industrial.In this work a method for the scaling of chemical and biochemical processes based on a phenomenological model is presented. Concepts such as operating point and operating regime of a process are defined to propose a tool based on control theory to process scaling, the Hankel matrix. This methodology was applied to a fermenter for producing ethanol from glucose syrup. The values of the design parameters gave errors below 10% when they are compared with values reported in the literature, for both laboratory scaling and for an industrial scale.