Superstring inspired models and phenomenology
International Nuclear Information System (INIS)
Ross, G.G.
1987-01-01
An investigation of the effective low-energy theory resulting from the superstring is given. The possible light gauge and chiral super-multiplet structure is considered and a specific model leading to a SU(3)xSU(2)xU(1) gauge group is presented. Phenomenological implications for such models are briefly discussed
Phenomenological three center model
Poenaru, D N; Gherghescu, R A; Nagame, Y; Hamilton, J H; Ramayya, A V
2001-01-01
Experimental results on ternary fission of sup 2 sup 5 sup 2 Cf suggest the existence of a short-lived quasi-molecular state. We present a three-center phenomenological model able to explain such a state by producing a new minimum in the deformation energy at a separation distance very close to the touching point. The shape parametrization chosen by us allows to describe the essential geometry of the systems in terms of one independent coordinate, namely, the distance between the heavy fragment centers. The shell correction (also treated phenomenologically) only produces quantitative effects; qualitatively it is not essential for the new minimum. Half-lives of some quasi-molecular states which could be formed in sup 1 sup 0 B accompanied fission of sup 2 sup 3 sup 6 U, sup 2 sup 3 sup 6 Pu, sup 2 sup 4 sup 6 Cm, sup 2 sup 5 sup 2 Cf, sup 2 sup 5 sup 2 sup , sup 2 sup 5 sup 6 Fm, sup 2 sup 5 sup 6 sup , sup 2 sup 6 sup 0 No, and sup 2 sup 6 sup 2 Rf are roughly estimated. (authors)
Phenomenologies of Higgs messenger models
Energy Technology Data Exchange (ETDEWEB)
Zheng Sibo; Yu Yao; Wu Xinggang [Department of Physics, Chongqing University, Chongqing 401331 (China)
2011-08-11
In this Letter, we investigate the phenomenologies of models where the Higgs sector plays the role of messengers in gauge mediation. The minimal Higgs sector and its extension are considered respectively. We find that there exist viable models when an appropriate parity is imposed. Phenomenological features in these kind of models include three sum rules for scalar masses, light gluino as well as one-loop {mu} and two-loop B{mu} terms.
Phenomenological implications of the flipped SU(5) x U(1) superstring model
Energy Technology Data Exchange (ETDEWEB)
Tamvakis, K. (Physics Dept., Univ. of Ioannina (Greece))
1991-07-01
We study in detail gauge symmetry breaking in the SU(5)xU(1)'xU(1){sup 4}xSO(10)xSO(6) superstring model, solving the D and F-flatness conditions and taking into account quartic and quintic superpotential terms. We find that, to this order, the model describes two massive generations of quarks and leptons as well as a massless generation expected to receive naturally suppressed masses from higher order non-renormalizable terms. D and F-flatness restricts the number of massless isodoublets to four. We solve the coupled renormalization group equations for the gauge and Yukawa couplings in the two-loop approximation and obtain the top-quark mass as a function of two parameters of the model which could be chosen to be ratios of singlet v.e.v's associated with the surplus (U(1)){sup 4} breaking. We obtain a heavy top-quark with 150GeV {<=} m{sub 1} < 200GeV, for most part of the parameter space, while lower values are possible only in a very small extermal region. We also compute the allowed range of unification parameters (M{sub x}, sin{sup 2} {theta}{sub w}, {alpha}{sub 3}(M{sub w})) in the presence of a heavy top quark. (orig.).
Phenomenology beyond the standard model
Energy Technology Data Exchange (ETDEWEB)
Lykken, Joseph D.; /Fermilab
2005-03-01
An elementary review of models and phenomenology for physics beyond the Standard Model (excluding supersymmetry). The emphasis is on LHC physics. Based upon a talk given at the ''Physics at LHC'' conference, Vienna, 13-17 July 2004.
[Social actors and phenomenologic modelling].
Laflamme, Simon
2012-05-01
The phenomenological approach has a quasi-monopoly in the individual and subjectivity analyses in social sciences. However, the conceptual apparatus associated with this approach is very restrictive. The human being has to be understood as rational, conscious, intentional, interested, and autonomous. Because of this, a large dimension of human activity cannot be taken into consideration: all that does not fit into the analytical categories (nonrational, nonconscious, etc.). Moreover, this approach cannot really move toward a relational analysis unless it is between individuals predefined by its conceptual apparatus. This lack of complexity makes difficult the establishment of links between phenomenology and systemic analysis in which relation (and its derivatives such as recursiveness, dialectic, correlation) plays an essential role. This article intends to propose a way for systemic analysis to apprehend the individual with respect to his complexity.
Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking
Feng, Jonathan L.; Moroi, Takeo
2000-05-01
We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: Maux, m0, tan β, and sgn(μ). The renormalization group equations exhibit a novel ``focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b-->sγ, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron.
Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking
International Nuclear Information System (INIS)
Feng, Jonathan L.; Moroi, Takeo
2000-01-01
We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: M aux , m 0 , tan β, and sgn(μ). The renormalization group equations exhibit a novel ''focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b→sγ, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron. (c) 2000 The American Physical Society
Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Feng, Jonathan L. [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States); Moroi, Takeo [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States)
2000-05-01
We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: M{sub aux}, m{sub 0}, tan {beta}, and sgn({mu}). The renormalization group equations exhibit a novel ''focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b{yields}s{gamma}, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron. (c) 2000 The American Physical Society.
Phenomenological aspects of heterotic orbifold models at one loop
International Nuclear Information System (INIS)
Birkedal-Hansen, A.; Binetruy, P.; Mambrini, Y.; Nelson, B.
2003-01-01
We provide a detailed study of the phenomenology of orbifold compactifications of the heterotic string within the context of supergravity effective theories. Our investigation focuses on those models where the soft Lagrangian is dominated by loop contributions to the various soft supersymmetry breaking parameters. Such models typically predict non-universal soft masses and are thus significantly different from minimal supergravity and other universal models. We consider the pattern of masses that are governed by these soft terms and investigate the implications of certain indirect constraints on supersymmetric models, such as flavor-changing neutral currents, the anomalous magnetic moment of the muon and the density of thermal relic neutralinos. These string-motivated models show novel behavior that interpolates between the phenomenology of unified supergravity models and models dominated by the superconformal anomaly
Phenomenological model of nanocluster in polymer matrix
International Nuclear Information System (INIS)
Oksengendler, B.L.; Turaeva, N.N.; Azimov, J.; Rashidova, S.Sh.
2010-01-01
The phenomenological model of matrix nanoclusters is presented based on the Wood-Saxon potential used in nuclear physics. In frame of this model the following problems have been considered: calculation of width of diffusive layer between nanocluster and matrix, definition of Tamm surface electronic state taking into account the diffusive layer width, receiving the expression for specific magnetic moment of nanoclusters taking into account the interface width. (authors)
Supersymmetric models and their phenomenology
International Nuclear Information System (INIS)
Ross, G.G.
1995-01-01
The prospects for unification of the Standard Model are considered and the need for supersymmetry discussed. The prediction of the gauge couplings, the electroweak breaking scale, the fermion masses and the dark matter abundance are all consistent with simple unification if there is a stage of supersymmetric unification below the TeV scale. The prospects for discovery of the new SUSY states is considered, both in the minimal supersymmetric standard model and in non-minimal extensions. (author)
Phenomenological Model of Vortex Generators
DEFF Research Database (Denmark)
Hansen, Martin Otto Laver; Westergaard, C.
1995-01-01
For some time attempts have been made to improve the power curve of stall regulated wind turbines by using devices like vortex generators VG and Gurney flaps. The vortex produces an additional mixing of the boundary layer and the free stream and thereby increasing the momentum close to the wall......, which again delays separation in adverse pressure gradient regions. A model is needed to include the effect of vortex generators in numerical computations of the viscous flow past rotors. In this paper a simple model is proposed....
Phenomenological modelling of steam explosions
International Nuclear Information System (INIS)
Corradini, M.L.; Drumheller, D.S.
1980-01-01
During a hypothetical core meltdown accident, an important safety issue to be addressed is the potential for steam explosions. This paper presents analysis and modelling of experimental results. There are four observations that can be drawn from the analysis: (1) vapor explosions are suppressed by noncondensible gases generated by fuel oxidation, by high ambient pressure, and by high water temperatures; (2) these effects appear to be trigger-related in that an explosion can again be induced in some cases by increasing the trigger magnitude; (3) direct fuel liquid-coolant liquid contact can explain small scale fuel fragmentation; (4) heat transfer during the expansion phase of the explosion can reduce the work potential
A phenomenological model for nuclear multifragmentation
International Nuclear Information System (INIS)
Souza, S.R.; Leray, S.; Paula, L. de; Nemeth, J.; Ngo, C.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette; Ngo, H.
1992-01-01
A phenomenological model for nuclear multifragmentation is presented. It is made up of two complementary parts: molecular dynamics and restructured aggregation. It is applied to study the multifragmentation of 16 O+ 80 Br system at several bombarding energies. The results turn out to be in good agreement with available emulsion data. The production of charged particles and IMF as a function of the bombarding energy is also studied. The results seem to agree quite well with experimental observations and with previous results of other model calculations. (author) 19 refs.; 5 figs.; 1 tab
Automated adaptive inference of phenomenological dynamical models
Daniels, Bryan
Understanding the dynamics of biochemical systems can seem impossibly complicated at the microscopic level: detailed properties of every molecular species, including those that have not yet been discovered, could be important for producing macroscopic behavior. The profusion of data in this area has raised the hope that microscopic dynamics might be recovered in an automated search over possible models, yet the combinatorial growth of this space has limited these techniques to systems that contain only a few interacting species. We take a different approach inspired by coarse-grained, phenomenological models in physics. Akin to a Taylor series producing Hooke's Law, forgoing microscopic accuracy allows us to constrain the search over dynamical models to a single dimension. This makes it feasible to infer dynamics with very limited data, including cases in which important dynamical variables are unobserved. We name our method Sir Isaac after its ability to infer the dynamical structure of the law of gravitation given simulated planetary motion data. Applying the method to output from a microscopically complicated but macroscopically simple biological signaling model, it is able to adapt the level of detail to the amount of available data. Finally, using nematode behavioral time series data, the method discovers an effective switch between behavioral attractors after the application of a painful stimulus.
Phenomenological modeling of abradable wear in turbomachines
Berthoul, Bérenger; Batailly, Alain; Stainier, Laurent; Legrand, Mathias; Cartraud, Patrice
2018-01-01
Abradable materials are widely used as coatings within compressor and turbine stages of modern aircraft engines in order to reduce operating blade-tip/casing clearances and thus maximize energy efficiency. However, rubbing occurrences between blade tips and coating liners may lead to high blade vibratory levels and endanger their structural integrity through fatigue mechanisms. Accordingly, there is a need for a better comprehension of the physical phenomena at play and for an accurate modeling of the interaction, in order to predict potentially unsafe events. To this end, this work introduces a phenomenological model of the abradable coating removal based on phenomena reported in the literature and accounting for key frictional and wear mechanisms including plasticity at junctions, ploughing, micro-rupture and machining. It is implemented within an in-house software solution dedicated to the prediction of full three-dimensional blade/abradable coating interactions within an aircraft engine low pressure compressor. Two case studies are considered. The first one compares the results of an experimental abradable test rig and its simulation. The second one deals with the simulation of interactions in a complete low-pressure compressor. The consistency of the model with experimental observations is underlined, and the impact of material parameter variations on the interaction and wear behavior of the blade is discussed. It is found that even though wear patterns are remarkably robust, results are significantly influenced by abradable coating material properties.
A general phenomenological model for work function
Brodie, I.; Chou, S. H.; Yuan, H.
2014-07-01
A general phenomenological model is presented for obtaining the zero Kelvin work function of any crystal facet of metals and semiconductors, both clean and covered with a monolayer of electropositive atoms. It utilizes the known physical structure of the crystal and the Fermi energy of the two-dimensional electron gas assumed to form on the surface. A key parameter is the number of electrons donated to the surface electron gas per surface lattice site or adsorbed atom, which is taken to be an integer. Initially this is found by trial and later justified by examining the state of the valence electrons of the relevant atoms. In the case of adsorbed monolayers of electropositive atoms a satisfactory justification could not always be found, particularly for cesium, but a trial value always predicted work functions close to the experimental values. The model can also predict the variation of work function with temperature for clean crystal facets. The model is applied to various crystal faces of tungsten, aluminium, silver, and select metal oxides, and most demonstrate good fits compared to available experimental values.
Phenomenological viability of orbifold models with three Higgs families
International Nuclear Information System (INIS)
Escudero, Nicolas; Munoz, Carlos; Teixeira, Ana M.
2006-01-01
We discuss the phenomenological viability of string multi-Higgs doublet models, namely a scenario of heterotic Z 3 orbifolds with two Wilson lines, which naturally predicts three supersymmetric families of matter and Higgs fields. We study the orbifold parameter space, and discuss the compatibility of the predicted Yukawa couplings with current experimental data. We address the implications of tree-level flavour changing neutral processes in constraining the Higgs sector of the model, finding that viable scenarios can be obtained for a reasonably light Higgs spectrum. We also take into account the tree-level contributions to indirect CP violation, showing that the experimental value of ε K can be accommodated in the present framework
Interpretive and Critical Phenomenological Crime Studies: A Model Design
Miner-Romanoff, Karen
2012-01-01
The critical and interpretive phenomenological approach is underutilized in the study of crime. This commentary describes this approach, guided by the question, "Why are interpretive phenomenological methods appropriate for qualitative research in criminology?" Therefore, the purpose of this paper is to describe a model of the interpretive…
Phenomenological model for H-mode
International Nuclear Information System (INIS)
Ohyabu, N.
1985-08-01
A phenomenological model has been developed to clarify the role of the boundary configuration in the heat transport of the H-mode regime. We assume that the dominant mechanism of heat loss at the edge of the plasma is convection and that the diffusion coefficient (D/sub edge/) at the edge of the plasma increases rapidly with plasma pressure, but drops to a low value when the temperature exceeds a certain threshold value. When particle refueling takes place without time delay, as in the case of a limiter discharge, the unfavorable temperature dependence of the D/sub edge/ prohibits even a modest rise of the edge temperature. In a divertor discharge, the particles lost from the closed surface are kept away from the edge region for a time comparable to or longer than the energy transport time in the edge region. Thus, rapid increase in the heat flux allows an excursion of the edge temperature to a higher value thereby reaching the threshold value of the H-transition
Phenomenological model of an electron flow with a virtual cathode
International Nuclear Information System (INIS)
Koronovskij, A.A.; Khramov, A.E.; Anfinogenov, V.G.
1999-01-01
A phenomenological model of electron flow with a virtual cathode in diode space, which is a modification of cellular automation, is suggested. The type of models, called cellular conveyer, permits making allowance for distribution and delay in a beam with a virtual cathode. A good agreement between results of numerical study of electron flow dynamics and results obtained using the phenomenological model described has been achieved [ru
Model building and phenomenology in supersymmetry
International Nuclear Information System (INIS)
Kim, Jong Soo
2008-09-01
Supersymmetry (SUSY) stabilizes the hierarchy between the electroweak scale and the scale of grand unified theories (GUT) or the Planck scale. The simplest supersymmetric extension of the SM, the minimal supersymmetric SM (MSSM) solves several phenomenological problems, e. g. the gauge couplings unify and the lightest supersymmetric particle (LSP) is a dark matter candidate. In this thesis, Jarlskog invariants, squark pair production at the LHC and massive neutrinos are discussed in the framework of the MSSM and its extensions. (orig.)
Model building and phenomenology in supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Kim Jong Soo
2008-09-15
Supersymmetry (SUSY) stabilizes the hierarchy between the electroweak scale and the scale of grand unified theories (GUT) or the Planck scale. The simplest supersymmetric extension of the SM, the minimal supersymmetric SM (MSSM) solves several phenomenological problems, e. g. the gauge couplings unify and the lightest supersymmetric particle (LSP) is a dark matter candidate. In this thesis, Jarlskog invariants, squark pair production at the LHC and massive neutrinos are discussed in the framework of the MSSM and its extensions. (orig.)
Phenomenology of non-universal gaugino masses and implications ...
Indian Academy of Sciences (India)
universal gaugino masses for the phenomenology of Higgs bosons in the context of large hadron collider. Keywords. Supersymmetry; non-universal gaugino masses; Higgs bosons. PACS Nos 12.60.Jv; 11.30.Er; 14.80.Ly. 1. Introduction.
Phenomenological study of in the minimal model at LHC
Indian Academy of Sciences (India)
K M Balasubramaniam
2017-10-05
Oct 5, 2017 ... Phenomenological study of Z in the minimal B − L model at LHC ... The phenomenological study of neutral heavy gauge boson (Z. B−L) of the ...... JHEP10(2015)076, arXiv:1506.06767 [hep-ph] ... [15] ATLAS Collaboration: G Aad et al, Phys. Rev. D 90(5) ... [19] C W Chiang, N D Christensen, G J Ding and T.
How to develop a phenomenological model of disability
DEFF Research Database (Denmark)
Martiny, Kristian Møller Moltke
2015-01-01
During recent decades various researchers from health and social sciences have been debating what it means for a person to be disabled. A rather overlooked approach has developed alongside this debate, primarily inspired by the philosophical tradition called phenomenology. This paper develops...... a phenomenological model of disability by arguing for a different methodological and conceptual framework from that used by the existing phenomenological approach. The existing approach is developed from the phenomenology of illness, but the paper illustrates how the case of congenital disabilities, looking...... at the congenital disorder called cerebral palsy (CP), presents a fundamental problem for the approach. In order to understand such congenital cases as CP, the experience of disability is described as being gradually different from, rather than a disruption of, the experience of being abled, and it is argued...
Phenomenological BRDF modeling for engineering applications
Jafolla, James C.; Stokes, Jeffrey A.; Sullivan, Robert J.
1997-09-01
The application of analytical light scattering techniques for virtual prototyping the optical performance of paint coatings provides an effective tool for optimizing paint design for specific optical requirements. This paper describes the phenomenological basis for the scattering coatings computer aided design (ScatCad) code. The ScatCad code predicts the bidirectional reflectance distribution function (BRDF) and the hemispherical directional reflectance (HDR) of pigmented paint coatings for the purpose of coating design optimization. The code uses techniques for computing the pigment single scattering phase function, multiple scattering radiative transfer, and rough surface scattering to calculate the BRDF and HDR based on the fundamental optical properties of the pigment(s) and binder, pigment number density and size distribution, and surface roughness of the binder-interface and substrate. This is a significant enhancement to the two- flux, Kubelka-Munk analysis that has traditionally been used in the coatings industry. Example calculations and comparison with measurements are also presented.
Phenomenological study of extended seesaw model for light sterile neutrino
International Nuclear Information System (INIS)
Nath, Newton; Ghosh, Monojit; Goswami, Srubabati; Gupta, Shivani
2017-01-01
We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ∼ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m ν , depends on the Dirac neutrino mass matrix (M D ), Majorana neutrino mass matrix (M R ) and the mass matrix (M S ) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M D and observe that maximum five zeros in M D can lead to viable zero textures in m ν . For this study we consider four different forms for M R (one diagonal and three off diagonal) and two different forms of (M S ) containing one zero. Remarkably we obtain only two allowed forms of m ν (m eτ =0 and m ττ =0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m ν in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m ν . We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z 8 ×Z 2 .
Model-independent approach for dark matter phenomenology
Indian Academy of Sciences (India)
We have studied the phenomenology of dark matter at the ILC and cosmic positron experiments based on model-independent approach. We have found a strong correlation between dark matter signatures at the ILC and those in the indirect detection experiments of dark matter. Once the dark matter is discovered in the ...
Model-independent approach for dark matter phenomenology ...
Indian Academy of Sciences (India)
Abstract. We have studied the phenomenology of dark matter at the ILC and cosmic positron experiments based on model-independent approach. We have found a strong correlation between dark matter signatures at the ILC and those in the indirect detec- tion experiments of dark matter. Once the dark matter is discovered ...
The theory and phenomenology of coloured quark models
Close, F E
1975-01-01
A general introduction to coloured quark models is given and their phenomenology is described with particular reference to the new particles. It is shown that there are essentially three types of colour models with colour excitation when the colour group is SU(3)- Han-Nambu, Greenberg and a model which has the same charges as that of Tati and which can be thought of as the Gell-Mann colour scheme with excitation of the colour degrees of freedom. Particular attention is paid to the four problems of colour models for psi phenomenology-the radiative decays, the G parity conservation, the lack of deep inelastic threshold phenomena and the apparent discovery of dileptons at SPEAR. (40 refs).
The theory and phenomenology of coloured quark models
International Nuclear Information System (INIS)
Close, F.E.
1975-01-01
A general introduction to coloured quark models is given and their phenomenology is described with particular reference to the new particles. It is shown that there are essentially three types of colour models with colour excitation when the colour group is SU(3) - Han-Nambu, Greenberg and a model which has the same charges as that of Tati and which can be thought of as the Gell-Mann colour scheme with excitation of the colour degrees of freedom. Particular attention is paid to the four problems of colour models for PSI phenomenology - the radiative decays, the G parity conservation, the lack of deep inelastic threshold phenomena and the apparent discovery of dileptons at SPEAR. (author)
Bridging Mechanistic and Phenomenological Models of Complex Biological Systems.
Transtrum, Mark K; Qiu, Peng
2016-05-01
The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM) as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior.
Phenomenological network models: Lessons for epilepsy surgery.
Hebbink, Jurgen; Meijer, Hil; Huiskamp, Geertjan; van Gils, Stephan; Leijten, Frans
2017-10-01
The current opinion in epilepsy surgery is that successful surgery is about removing pathological cortex in the anatomic sense. This contrasts with recent developments in epilepsy research, where epilepsy is seen as a network disease. Computational models offer a framework to investigate the influence of networks, as well as local tissue properties, and to explore alternative resection strategies. Here we study, using such a model, the influence of connections on seizures and how this might change our traditional views of epilepsy surgery. We use a simple network model consisting of four interconnected neuronal populations. One of these populations can be made hyperexcitable, modeling a pathological region of cortex. Using model simulations, the effect of surgery on the seizure rate is studied. We find that removal of the hyperexcitable population is, in most cases, not the best approach to reduce the seizure rate. Removal of normal populations located at a crucial spot in the network, the "driver," is typically more effective in reducing seizure rate. This work strengthens the idea that network structure and connections may be more important than localizing the pathological node. This can explain why lesionectomy may not always be sufficient. © 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
Phenomenological aspects of nonrelativistic potential models
International Nuclear Information System (INIS)
Lucha, W.; Schoeberl, F.F.
1989-01-01
This review reports on the description of hardrons as bound states of quarks by nonrelativistic potential models. It contains a brief sketch of the way in which information on the form of the inter-quark potential may be gained from quantum chromodynamics, proofs of some general theorems related to the potential-model approach, a discussion of the significance of the treatment of bound states consisting of relativistically-moving constituents by the nonrelativistic Schroedinger formalism, as well as a brief survey of the motivations for the various proposed potential models. Finally, it illustrates the application of the developed theoretical framework at a few selected examples. 60 refs., 8 figs., 17 tabs. (Authors)
Phenomenological study of extended seesaw model for light sterile neutrino
Energy Technology Data Exchange (ETDEWEB)
Nath, Newton [Physical Research Laboratory,Navarangpura, Ahmedabad 380 009 (India); Indian Institute of Technology,Gandhinagar, Ahmedabad-382424 (India); Ghosh, Monojit [Department of Physics, Tokyo Metropolitan University,Hachioji, Tokyo 192-0397 (Japan); Goswami, Srubabati [Physical Research Laboratory,Navarangpura, Ahmedabad 380 009 (India); Gupta, Shivani [Center of Excellence for Particle Physics (CoEPP), University of Adelaide,Adelaide SA 5005 (Australia)
2017-03-14
We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ∼ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m{sub ν}, depends on the Dirac neutrino mass matrix (M{sub D}), Majorana neutrino mass matrix (M{sub R}) and the mass matrix (M{sub S}) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M{sub D} and observe that maximum five zeros in M{sub D} can lead to viable zero textures in m{sub ν}. For this study we consider four different forms for M{sub R} (one diagonal and three off diagonal) and two different forms of (M{sub S}) containing one zero. Remarkably we obtain only two allowed forms of m{sub ν} (m{sub eτ}=0 and m{sub ττ}=0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m{sub ν} in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m{sub ν}. We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z{sub 8}×Z{sub 2}.
Mental Imagery in Depression: Phenomenology, Potential Mechanisms, and Treatment Implications.
Holmes, Emily A; Blackwell, Simon E; Burnett Heyes, Stephanie; Renner, Fritz; Raes, Filip
2016-01-01
Mental imagery is an experience like perception in the absence of a percept. It is a ubiquitous feature of human cognition, yet it has been relatively neglected in the etiology, maintenance, and treatment of depression. Imagery abnormalities in depression include an excess of intrusive negative mental imagery; impoverished positive imagery; bias for observer perspective imagery; and overgeneral memory, in which specific imagery is lacking. We consider the contribution of imagery dysfunctions to depressive psychopathology and implications for cognitive behavioral interventions. Treatment advances capitalizing on the representational format of imagery (as opposed to its content) are reviewed, including imagery rescripting, positive imagery generation, and memory specificity training. Consideration of mental imagery can contribute to clinical assessment and imagery-focused psychological therapeutic techniques and promote investigation of underlying mechanisms for treatment innovation. Research into mental imagery in depression is at an early stage. Work that bridges clinical psychology and neuroscience in the investigation of imagery-related mechanisms is recommended.
Phenomenological Hints from a Class of String Motivated Model Constructions
Directory of Open Access Journals (Sweden)
Hans Peter Nilles
2015-01-01
Full Text Available We use string theory constructions towards the generalisation of the supersymmetric standard model of strong and electroweak interactions. Properties of the models depend crucially on the location of fields in extradimensional compact space. This allows us to extract some generic lessons for the phenomenological properties of the low energy effective action. Within this scheme we present a compelling model based on local grand unification and mirage mediation of supersymmetry breakdown. We analyse the properties of the specific model towards its possible tests at the LHC and the complementarity to direct dark matter searches.
Approximate deconvolution models of turbulence analysis, phenomenology and numerical analysis
Layton, William J
2012-01-01
This volume presents a mathematical development of a recent approach to the modeling and simulation of turbulent flows based on methods for the approximate solution of inverse problems. The resulting Approximate Deconvolution Models or ADMs have some advantages over more commonly used turbulence models – as well as some disadvantages. Our goal in this book is to provide a clear and complete mathematical development of ADMs, while pointing out the difficulties that remain. In order to do so, we present the analytical theory of ADMs, along with its connections, motivations and complements in the phenomenology of and algorithms for ADMs.
Multiscale modeling of complex materials phenomenological, theoretical and computational aspects
Trovalusci, Patrizia
2014-01-01
The papers in this volume deal with materials science, theoretical mechanics and experimental and computational techniques at multiple scales, providing a sound base and a framework for many applications which are hitherto treated in a phenomenological sense. The basic principles are formulated of multiscale modeling strategies towards modern complex multiphase materials subjected to various types of mechanical, thermal loadings and environmental effects. The focus is on problems where mechanics is highly coupled with other concurrent physical phenomena. Attention is also focused on the historical origins of multiscale modeling and foundations of continuum mechanics currently adopted to model non-classical continua with substructure, for which internal length scales play a crucial role.
Light dark matter in NMSSM and implication on Higgs phenomenology
International Nuclear Information System (INIS)
Cao Junjie; Hikasa, Ken-ichi; Wang Wenyu; Yang Jinmin
2011-01-01
For the experimental search of neutralino dark matter, it is important to know its allowed mass and scattering cross section with the nucleon. In order to figure out how light a neutralino dark matter can be predicted in low energy supersymmetry, we scan over the parameter space of the NMSSM (next-to-minimal supersymmetric model), assuming all the relevant soft mass parameters to be below TeV scale. We find that in the parameter space allowed by current experiments the neutralino dark matter can be as light as a few GeV and its scattering rate off the nucleon can reach the sensitivity of XENON100 and CoGeNT. As a result, a sizable parameter space is excluded by the current XENON100 and CoGeNT data (the plausible CoGeNT dark matter signal can also be explained). The future 6000 kg-days exposure of XENON100 will further explore (but cannot completely cover) the remained parameter space. Moreover, we find that in such a light dark matter scenario a light CP-even or CP-odd Higgs boson must be present to satisfy the measured dark matter relic density. Consequently, the SM-like Higgs boson h SM may decay predominantly into a pair of light Higgs bosons or a pair of neutralinos so that the conventional decays like h SM →γγ is much suppressed.
Phenomenological modeling of long range noncontact friction in micro- and nanoresonators
International Nuclear Information System (INIS)
Gusso, Andre
2011-01-01
Motivated by the results of an experiment using atomic force microscopy performed by Gotsmann and Fuchs [Phys. Rev. Lett. 86, 2597 (2001)], where a strong energy loss due to the tip-sample interaction was measured, we investigate the potential implications of this energy loss channel to the quality factor of suspended micro- and nanoresonators. Because the observed tip-sample dissipation remains without a satisfactory theoretical explanation, two phenomenological models are proposed to generalize the experimental observations. In the minimal phenomenological model the range of validity of the power law found experimentally for the damping coefficient is assumed to be valid for larger separations. A more elaborate phenomenological model assumes that the noncontact friction is a consequence of the Casimir force acting between the closely spaced surfaces. Both models provide quantitative results for the noncontact friction between any two objects which are then used to estimate the energy loss for suspended bar micro- and nanoresonators. It is concluded that the energy loss due to the unknown mechanism has the potential to seriously restrict the quality factor of both micro- and nanoresonators.
Identification and communication of uncertainties of phenomenological models in PSA
International Nuclear Information System (INIS)
Pulkkinen, U.; Simola, K.
2001-11-01
This report aims at presenting a view upon uncertainty analysis of phenomenological models with an emphasis on the identification and documentation of various types of uncertainties and assumptions in the modelling of the phenomena. In an uncertainty analysis, it is essential to include and document all unclear issues, in order to obtain a maximal coverage of unresolved issues. This holds independently on their nature or type of the issues. The classification of uncertainties is needed in the decomposition of the problem and it helps in the identification of means for uncertainty reduction. Further, an enhanced documentation serves to evaluate the applicability of the results to various risk-informed applications. (au)
SCADOP: Phenomenological modeling of dryout in nuclear fuel rod bundles
Energy Technology Data Exchange (ETDEWEB)
Dasgupta, Arnab, E-mail: arnie@barc.gov.in; Chandraker, D.K., E-mail: dineshkc@barc.gov.in; Vijayan, P.K., E-mail: vijayanp@barc.gov.in
2015-11-15
Highlights: • Phenomenological model for annular flow dryout is presented. • The model evaluates initial entrained fraction using a new methodology. • The history effect in annular flow is predicted and validated. • Rod bundle dryout is predicted using subchannel methodology. • Model is validated against experimental dryout data in tubes and rod bundles. - Abstract: Analysis and prediction of dryout is of important consequence to safety of nuclear fuel clusters of boiling water type of reactors. Traditionally, experimental correlations are used for dryout predictions. Since these correlations are based on operating parameters and do not aim to model the underlying phenomena, there has been a proliferation of the correlations, each catering to some specific bundle geometry under a specific set of operating conditions. Moreover, such experiments are extremely costly. In general, changes in tested bundle geometry for improvement in thermal-hydraulic performance would require re-experimentation. Understanding and modeling the basic processes leading to dryout in flow boiling thus has great incentive. Such a model has the ability to predict dryout in any rod bundle geometry, unlike the operating parameter based correlation approach. Thus more informed experiments can be carried out. A good model can, reduce the number of experiments required during the iterations in bundle design. In this paper, a phenomenological model as indicated above is presented. The model incorporates a new methodology to estimate the Initial Entrained Fraction (IEF), i.e., entrained fraction at the onset of annular flow. The incorporation of this new methodology is important since IEF is often assumed ad-hoc and sometimes also used as a parameter to tune the model predictions to experimental data. It is highlighted that IEF may be low under certain conditions against the general perception of a high IEF due to influence of churn flow. It is shown that the same phenomenological model is
Quark-flavour phenomenology of models with extended gauge symmetries
International Nuclear Information System (INIS)
Carlucci, Maria Valentina
2013-01-01
Gauge invariance is one of the fundamental principles of the Standard Model of particles and interactions, and it is reasonable to believe that it also regulates the physics beyond it. In this thesis we have studied the theory and phenomenology of two New Physics models based on gauge symmetries that are extensions of the Standard Model group. Both of them are particularly interesting because they provide some answers to the question of the origin of flavour, which is still unexplained. Moreover, the flavour sector represents a promising field for the research of indirect signatures of New Physics, since after the first run of LHC we do not have any direct hint of it yet. The first model assumes that flavour is a gauge symmetry of nature, SU(3) 3 f , spontaneously broken by the vacuum expectation values of new scalar fields; the second model is based on the gauge group SU(3) c x SU(3) L x U(1) X , the simplest non-abelian extension of the Standard Model group. We have traced the complete theoretical building of the models, from the gauge group, passing through the nonanomalous fermion contents and the appropriate symmetry breakings, up to the spectra and the Feynman rules, with a particular attention to the treatment of the flavour structure, of tree-level Flavour Changing Neutral Currents and of new CP-violating phases. In fact, these models present an interesting flavour phenomenology, and for both of them we have analytically calculated the contributions to the ΔF=2 and ΔF=1 down-type transitions, arising from new tree-level and box diagrams. Subsequently, we have performed a comprehensive numerical analysis of the phenomenology of the two models. In both cases we have found very effective the strategy of first to identify the quantities able to provide the strongest constraints to the parameter space, then to systematically scan the allowed regions of the latter in order to obtain indications about the key flavour observables, namely the mixing parameters of
LHC phenomenology of composite 2-Higgs doublet models
Energy Technology Data Exchange (ETDEWEB)
De Curtis, Stefania [University of Florence, Department of Physics and Astronomy, Sesto Fiorentino (Italy); INFN, Sezione di Firenze (Italy); Moretti, Stefano; Yagyu, Kei; Yildirim, Emine [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom)
2017-08-15
We investigate the phenomenology of Composite 2-Higgs doublet models (C2HDMs) of various Yukawa types based on the global symmetry breaking SO(6) → SO(4) x SO(2). The kinetic part and the Yukawa Lagrangian are constructed in terms of the pseudo Nambu-Goldstone Boson (pNGB) matrix and a 6-plet of fermions under SO(6). The scalar potential is assumed to be the same as that of the Elementary 2-Higgs doublet model (E2HDM) with a softly broken discrete Z{sub 2} symmetry. We then discuss the phenomenological differences between the E2HDM and C2HDM by focusing on the deviations from standard model (SM) couplings of the discovered Higgs state (h) as well as on the production cross sections and branching ratios (BRs) at the large Hadron collider (LHC) of extra Higgs bosons. We find that, even if the same deviation in the hVV (V = W,Z) coupling is assumed in the two scenarios, there appear significant differences between the E2HDM and C2HDM from the structure of the Yukawa couplings, so that production and decay features of extra Higgs bosons can be used to distinguish between the two scenarios. (orig.)
Stochastic E2F activation and reconciliation of phenomenological cell-cycle models.
Lee, Tae J; Yao, Guang; Bennett, Dorothy C; Nevins, Joseph R; You, Lingchong
2010-09-21
The transition of the mammalian cell from quiescence to proliferation is a highly variable process. Over the last four decades, two lines of apparently contradictory, phenomenological models have been proposed to account for such temporal variability. These include various forms of the transition probability (TP) model and the growth control (GC) model, which lack mechanistic details. The GC model was further proposed as an alternative explanation for the concept of the restriction point, which we recently demonstrated as being controlled by a bistable Rb-E2F switch. Here, through a combination of modeling and experiments, we show that these different lines of models in essence reflect different aspects of stochastic dynamics in cell cycle entry. In particular, we show that the variable activation of E2F can be described by stochastic activation of the bistable Rb-E2F switch, which in turn may account for the temporal variability in cell cycle entry. Moreover, we show that temporal dynamics of E2F activation can be recast into the frameworks of both the TP model and the GC model via parameter mapping. This mapping suggests that the two lines of phenomenological models can be reconciled through the stochastic dynamics of the Rb-E2F switch. It also suggests a potential utility of the TP or GC models in defining concise, quantitative phenotypes of cell physiology. This may have implications in classifying cell types or states.
Phenomenological model for coupled multi-axial piezoelectricity
Wei, Yuchen; Pellegrino, Sergio
2018-03-01
A quantitative calibration of an existing phenomenological model for polycrystalline ferroelectric ceramics is presented. The model relies on remnant strain and polarization as independent variables. Innovative experimental and numerical model identification procedures are developed for the characterization of the coupled electro-mechanical, multi-axial nonlinear constitutive law. Experiments were conducted on thin PZT-5A4E plates subjected to cross-thickness electric field. Unimorph structures with different thickness ratios between PZT-5A4E plate and substrate were tested, to subject the piezo plates to coupled electro-mechanical fields. Material state histories in electric field-strain-polarization space and stress-strain-polarization space were recorded. An optimization procedure is employed for the determination of the model parameters, and the calibrated constitutive law predicts both the uncoupled and coupled experimental observations accurately.
A phenomenological retention tank model using settling velocity distributions.
Maruejouls, T; Vanrolleghem, P A; Pelletier, G; Lessard, P
2012-12-15
Many authors have observed the influence of the settling velocity distribution on the sedimentation process in retention tanks. However, the pollutants' behaviour in such tanks is not well characterized, especially with respect to their settling velocity distribution. This paper presents a phenomenological modelling study dealing with the way by which the settling velocity distribution of particles in combined sewage changes between entering and leaving an off-line retention tank. The work starts from a previously published model (Lessard and Beck, 1991) which is first implemented in a wastewater management modelling software, to be then tested with full-scale field data for the first time. Next, its performance is improved by integrating the particle settling velocity distribution and adding a description of the resuspension due to pumping for emptying the tank. Finally, the potential of the improved model is demonstrated by comparing the results for one more rain event. Copyright © 2011 Elsevier Ltd. All rights reserved.
Phenomenological modeling of turbulence in Z-pinch implosions
International Nuclear Information System (INIS)
Thornhill, J.W.; Whitney, K.G.; Deeney, C.; LePell, P.D.
1994-01-01
A phenomenological investigation into the effects of magnetohydrodynamic (MHD) turbulence on the initial stagnation dynamics of aluminum wire array and argon gas puff Z-pinch implosions is performed. The increases that turbulence produces in the plasma viscosity, heat conductivity, and electrical resistivity are modeled by using multipliers for these quantities in one-dimensional (1-D) MHD calculations. The major effect of these increases is to soften the 1-D implosions by decreasing the densities that are achieved on axis at stagnation. As a consequence, a set of multipliers can be found that reasonably duplicates the average electron temperatures, ion densities, and mass of the K-shell emission region that were measured at stagnation for a variety of Physics International aluminum wire array and argon gas puff experiments. It is determined that the dependence of these measured quantities on the multipliers is weak once a level of enhancement is reached, where agreement between calculations and experiments is attained. The scaling of K-shell yield with load mass for a fixed implosion velocity is then reexamined, and the minimum load mass needed to efficiently produce K-shell emission by thermalization of kinetic energy is calculated for aluminum and argon using this phenomenological soft implosion modeling. The results show an upward shift in the minimum mass by a factor of 6 when compared to the original nonturbulent hard implosion calculations
Higgs-radion phenomenology in stabilized RS models
Directory of Open Access Journals (Sweden)
Boos Eduard
2016-01-01
Full Text Available An important general prediction of stabilized brane world models is the existence of a bulk scalar radion field, whose lowest Kaluza-Klein (KK mode is the scalar particle called the radion. This field comes from the fluctuations of the metric in the extra dimension and the radion mass can be smaller than that of all the massive KK modes of the other particles propagating in the multidimensional bulk. Due to its origin, the radion and its KK tower couple to the trace of the energy-momentum tensor of the Standard Model. These fields have the same quantum numbers as the neutral Higgs field and can mix with the latter, if they are coupled. We present a short review of some aspects of Higgs-radion phenomenology in stabilized brane-world models. In particular, we discuss the possibility of explaining the 750 GeV excess by the production of a radion-dominated state.
Phenomenology of non-minimal supersymmetric models at linear colliders
International Nuclear Information System (INIS)
Porto, Stefano
2015-06-01
The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics
Phenomenological models of elastic nucleon scattering and predictions for LHC
Kundrat, V; Lokajicek, M; Prochazka, J
2011-01-01
The hitherto analyses of elastic collisions of charged nucleons involving common influence of Coulomb and hadronic scattering have been based practically on West and Yennie formula. However, this approach has been shown recently to be inadequate from experimental as well as theoretical points of view. The eikonal model enabling to determine physical characteristics in impact parameter space seems to be more pertinent. The contemporary phenomenological models admit, of course, different distributions of collision processes in the impact parameter space and cannot give any definite answer. Nevertheless, some predictions for the planned LHC energy that have been given on their basis may be useful, as well as the possibility of determining the luminosity from elastic scattering. (C) 2010 Elsevier B.V. All rights reserved.
Identity of the SU(3) model phenomenological hamiltonian and the hamiltonian of nonaxial rotator
International Nuclear Information System (INIS)
Filippov, G.F.; Avramenko, V.I.; Sokolov, A.M.
1984-01-01
Interpretation of nonspheric atomic nuclei spectra on the basis of phenomenological hamiltonians of SU(3) model showed satisfactory agreement of simulation calculations with experimental data. Meanwhile physical sense of phenomenological hamiltonians was not yet discussed. It is shown that phenomenological hamiltonians of SU(3) model are reduced to hamiltonian of nonaxial rotator but with additional items of the third and fourth powers angular momentum operator of rotator
A phenomenological memristor model for synaptic memory and learning behaviors
Institute of Scientific and Technical Information of China (English)
Nan Shao; Sheng-Bing Zhang; Shu-Yuan Shao
2017-01-01
Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials.These properties include the forgetting effect,the transition from short-term memory (STM) to long-term memory (LTM),learning-experience behavior,etc.The mathematical model of this kind of memristor would be very important for its theoretical analysis and application design.In our analysis of the existing memristor model with these properties,we find that some behaviors of the model are inconsistent with the reported experimental observations.A phenomenological memristor model is proposed for this kind of memristor.The model design is based on the forgetting effect and STM-to-LTM transition since these behaviors are two typical properties of these memristors.Further analyses of this model show that this model can also be used directly or modified to describe other experimentally observed behaviors.Simulations show that the proposed model can give a better description of the reported memory and learning behaviors of this kind of memristor than the existing model.
Deep inelastic processes. Phenomenology. Quark-parton model
International Nuclear Information System (INIS)
Ioffe, B.L.; Lipatov, L.N.; Khoze, V.A.
1983-01-01
Main theoretical approaches and experimental results related to deep inelastic processes are systematically outlined: electroproduction, neutrino scattering on nucleon, electron-positron pairs annihilation into hadron γγ collisions, production of lepton pairs in hadron collisions with a large effective mass or hadrons with large transverse momenta. Kinematics and phenomenology, space-time description of deep inelastic processes, sum rules, parton and quark-parton models are considered. The experiment is briefly discussed in the book. It is performed from the stand point of comparing it with the theory, experimental data are given as of June, 1982. Since the time of accomplishing the study on the manuscript a number of new experimental results not changing however the statements made in the book appeared. Principal consists in experiments with colliding proton-antiproton beams in CERN, which resulted in discovery of intermediate W-bozon
Phenomenological modeling of argon Z-pinch implosions
International Nuclear Information System (INIS)
Whitney, K.G.; Thornhill, J.W.; Deeney, C.; LePell, P.D.; Coulter, M.C.
1992-01-01
The authors investigate some of the effects of plasma turbulence on the K-shell emission dynamics of argon gas puff Z-pinch implosions. The increases that turbulence produces in the plasma viscosity, heat conductivity, and electrical resistivity are modeled phenomenologically using multipliers for these quantities in the MHD calculations. The choice of multipliers was made by benchmarking a 1-D MHD simulation of a Physics International Inc. argon gas puff experiment against the inferred densities and temperatures achieved in the experiment. These multipliers were then used to study the parametric dependence of the K-shell emission on the energy input to the argon plasma for a fixed mass loading. Comparisons between turbulent and non-turbulent argon implosions are made
Baryon and meson phenomenology in the extended Linear Sigma Model
Energy Technology Data Exchange (ETDEWEB)
Giacosa, Francesco; Habersetzer, Anja; Teilab, Khaled; Eshraim, Walaa; Divotgey, Florian; Olbrich, Lisa; Gallas, Susanna; Wolkanowski, Thomas; Janowski, Stanislaus; Heinz, Achim; Deinet, Werner; Rischke, Dirk H. [Institute for Theoretical Physics, J. W. Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Kovacs, Peter; Wolf, Gyuri [Institute for Particle and Nuclear Physics, Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525 Budapest (Hungary); Parganlija, Denis [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)
2014-07-01
The vacuum phenomenology obtained within the so-called extended Linear Sigma Model (eLSM) is presented. The eLSM Lagrangian is constructed by including from the very beginning vector and axial-vector d.o.f., and by requiring dilatation invariance and chiral symmetry. After a general introduction of the approach, particular attention is devoted to the latest results. In the mesonic sector the strong decays of the scalar and the pseudoscalar glueballs, the weak decays of the tau lepton into vector and axial-vector mesons, and the description of masses and decays of charmed mesons are shown. In the baryonic sector the omega production in proton-proton scattering and the inclusion of baryons with strangeness are described.
Allanach, Benjamin C; Dedes, A; Djouadi, Abdelhak; Grosse-Knetter, J; Hetherington, J; Heinemeyer, S; Holt, J; Hutchcroft, D E; Kalinowski, Jan; Kane, G; Kartvelishvili, V G; King, S F; Lola, S; McNulty, R; Parker, M A; Patel, G D; Ross, Graham G; Spira, Michael; Teixeira-Dias, P; Weiglein, Georg; Wilson, G; Womersley, J; Walker, P; Webber, Bryan R; Wyatt, T R
2000-01-01
The Beyond the Standard Model Working Group discussed a variety of topics relating to exotic searches at current and future colliders, and the phenomenology of current models beyond the Standard Model. For example, various supersymmetric (SUSY) and extra dimensions search possibilities and constraints are presented. Fine-tuning implications of SUSY searches are derived. The implications of Higgs (non)-discovery are discussed, as well as the program HDECAY. The individual contributions are included seperately. Much of the enclosed work is original, although some is reviewed.
Phenomenological optical potentials and optical model computer codes
International Nuclear Information System (INIS)
Prince, A.
1980-01-01
An introduction to the Optical Model is presented. Starting with the purpose and nature of the physical problems to be analyzed, a general formulation and the various phenomenological methods of solution are discussed. This includes the calculation of observables based on assumed potentials such as local and non-local and their forms, e.g. Woods-Saxon, folded model etc. Also discussed are the various calculational methods and model codes employed to describe nuclear reactions in the spherical and deformed regions (e.g. coupled-channel analysis). An examination of the numerical solutions and minimization techniques associated with the various codes, is briefly touched upon. Several computer programs are described for carrying out the calculations. The preparation of input, (formats and options), determination of model parameters and analysis of output are described. The class is given a series of problems to carry out using the available computer. Interpretation and evaluation of the samples includes the effect of varying parameters, and comparison of calculations with the experimental data. Also included is an intercomparison of the results from the various model codes, along with their advantages and limitations. (author)
Characterisation of a phenomenological model for commercial pneumatic muscle actuators.
Serres, J L; Reynolds, D B; Phillips, C A; Gerschutz, M J; Repperger, D W
2009-08-01
This study focuses on the parameter characterisation of a three-element phenomenological model for commercially available pneumatic muscle actuators (PMAs). This model consists of a spring, damping and contractile element arranged in parallel. Data collected from static loading, contraction and relaxation experiments were fitted to theoretical solutions of the governing equation for the three-element model resulting in prediction profiles for the spring, damping and contractile force coefficient. For the spring coefficient, K N/mm, the following relationships were found: K = 32.7 - 0.0321P for 150 < or = P < or = 314 kPa and K = 17 + 0.0179P for 314 < or = P < or = 550 kPa. For the damping coefficient, B Ns/mm, the following relationship was found during contraction: B = 2.90 for 150 < or = P < or = 550 kPa. During relaxation, B = 1.57 for 150 < or = P < or = 372 kPa and B = 0.311 + 0.00338P for 372 < or = P < or = 550. The following relationship for the contractile force coefficient, F(ce) N, was also determined: F(ce) = 2.91P+44.6 for 150 < or = P < or = 550 kPa. The model was then validated by reasonably predicting the response of the PMA to a triangular wave input in pressure under a constant load on a dynamic test station.
Phenomenological aspects of no-scale inflation models
Energy Technology Data Exchange (ETDEWEB)
Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics,King’s College London,WC2R 2LS London (United Kingdom); Theory Division, CERN,CH-1211 Geneva 23 (Switzerland); Garcia, Marcos A.G. [William I. Fine Theoretical Physics Institute, School of Physics and Astronomy,University of Minnesota,116 Church Street SE, Minneapolis, MN 55455 (United States); Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics andAstronomy, Texas A& M University,College Station, 77843 Texas (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, 77381 Texas (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, 10679 Athens (Greece); Olive, Keith A. [William I. Fine Theoretical Physics Institute, School of Physics and Astronomy,University of Minnesota,116 Church Street SE, Minneapolis, MN 55455 (United States)
2015-10-01
We discuss phenomenological aspects of inflationary models wiith a no-scale supergravity Kähler potential motivated by compactified string models, in which the inflaton may be identified either as a Kähler modulus or an untwisted matter field, focusing on models that make predictions for the scalar spectral index n{sub s} and the tensor-to-scalar ratio r that are similar to the Starobinsky model. We discuss possible patterns of soft supersymmetry breaking, exhibiting examples of the pure no-scale type m{sub 0}=B{sub 0}=A{sub 0}=0, of the CMSSM type with universal A{sub 0} and m{sub 0}≠0 at a high scale, and of the mSUGRA type with A{sub 0}=B{sub 0}+m{sub 0} boundary conditions at the high input scale. These may be combined with a non-trivial gauge kinetic function that generates gaugino masses m{sub 1/2}≠0, or one may have a pure gravity mediation scenario where trilinear terms and gaugino masses are generated through anomalies. We also discuss inflaton decays and reheating, showing possible decay channels for the inflaton when it is either an untwisted matter field or a Kähler modulus. Reheating is very efficient if a matter field inflaton is directly coupled to MSSM fields, and both candidates lead to sufficient reheating in the presence of a non-trivial gauge kinetic function.
Diffusion and reaction within porous packing media: a phenomenological model.
Jones, W L; Dockery, J D; Vogel, C R; Sturman, P J
1993-04-25
A phenomenological model has been developed to describe biomass distribution and substrate depletion in porous diatomaceous earth (DE) pellets colonized by Pseudomonas aeruginosa. The essential features of the model are diffusion, attachment and detachment to/from pore walls of the biomass, diffusion of substrate within the pellet, and external mass transfer of both substrate and biomass in the bulk fluid of a packed bed containing the pellets. A bench-scale reactor filled with DE pellets was inoculated with P. aeruginosa and operated in plug flow without recycle using a feed containing glucose as the limiting nutrient. Steady-state effluent glucose concentrations were measured at various residence times, and biomass distribution within the pellet was measured at the lowest residence time. In the model, microorganism/substrate kinetics and mass transfer characteristics were predicted from the literature. Only the attachment and detachment parameters were treated as unknowns, and were determined by fitting biomass distribution data within the pellets to the mathematical model. The rate-limiting step in substrate conversion was determined to be internal mass transfer resistance; external mass transfer resistance and microbial kinetic limitations were found to be nearly negligible. Only the outer 5% of the pellets contributed to substrate conversion.
International Nuclear Information System (INIS)
Kwiecinski, J.
1994-05-01
The basic QCD expectations concerning the deep inelastic scattering at low x where x is the Bjorken scaling variable are reviewed. This includes discussion of the BFKL equation which sums the leading powers of ln (1/x) and the shadowing effects. Phenomenological implications of the theoretical expectations for the deep inelastic lepton-hadron scattering in the small x region which has become accessible at the HERA ep collider are described. We give predictions for structure functions F 2 which are based on the BFKL equation and the high energy k T factorization theorem. These predictions are compared with the results of structure function analysis based on Altarelli-Parisi evolution equations and confronted with the recent data from HERA. We discuss jet production and transverse energy flow in deep inelastic lepton scattering as the measurements which may be particularly suitable for revealing the QCD dynamics at small x. (author). 37 refs, 4 figs
Phenomenological comparison of models with extended Higgs sectors
International Nuclear Information System (INIS)
Muehlleitner, Margarete
2017-01-01
Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their capability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (C x SM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.
Phenomenological comparison of models with extended Higgs sectors
Energy Technology Data Exchange (ETDEWEB)
Muehlleitner, Margarete [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Theoretical Physics; Sampaio, Marco O.P. [Aveiro Univ. e CIDMA (Portugal). Dept. de Fisica; Santos, Rui [Instituto Politecnico de Lisboa (Portugal). ISEL - Instituto Superior de Engenharia de Lisboa; Lisboa Univ. (Portugal). Centro de Fisica Teorica e Computacional; Univ. do Minho, Braga (Portugal). LIP, Dept. de Fisica; Wittbrodt, Jonas [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2017-03-22
Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their capability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (C x SM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.
Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces.
Ye, Weimin; Li, Xin; Liu, Juan; Zhang, Shuang
2016-10-31
Benefiting from efficient local phase and amplitude control at the subwavelength scale, metasurfaces offer a new platform for computer generated holography with high spatial resolution. Three-dimensional and high efficient holograms have been realized by metasurfaces constituted by subwavelength meta-atoms with spatially varying geometries or orientations. Metasurfaces have been recently extended to the nonlinear optical regime to generate holographic images in harmonic generation waves. Thus far, there has been no vector field simulation of nonlinear metasurface holograms because of the tremendous computational challenge in numerically calculating the collective nonlinear responses of the large number of different subwavelength meta-atoms in a hologram. Here, we propose a general phenomenological method to model nonlinear metasurface holograms based on the assumption that every meta-atom could be described by a localized nonlinear polarizability tensor. Applied to geometric nonlinear metasurfaces, we numerically model the holographic images formed by the second-harmonic waves of different spins. We show that, in contrast to the metasurface holograms operating in the linear optical regime, the wavelength of incident fundamental light should be slightly detuned from the fundamental resonant wavelength to optimize the efficiency and quality of nonlinear holographic images. The proposed modeling provides a general method to simulate nonlinear optical devices based on metallic metasurfaces.
Collider phenomenology of technihadrons in the technicolor straw man model
International Nuclear Information System (INIS)
Lane, Kenneth; Mrenna, Stephen
2003-01-01
We discuss the phenomenology of the lightest SU(3) C singlet and nonsinglet technihadrons in the straw man model of low-scale technicolor (TCSM). The technihadrons are assumed to be those arising in top-color-assisted technicolor models in which top-color is broken by technifermion condensates. We improve upon the description of the color-singlet sector presented in our earlier paper introducing the TCSM [K. Lane, Phys. Rev. D 60, 075007 (1999)]. These improvements are most important for subprocess energies well below the masses of the ρ T and ω T vector technihadrons and, therefore, apply especially to e + e - colliders such as CERN LEP and a low-energy linear collider. In the color-octet sector, we consider mixing of the gluon, the coloron V 8 from top-color breaking, and four isosinglet color-octet technirho mesons ρ T8 . We assume, as expected in walking technicolor, that these ρ T8 decay into q-barq, gg, and gπ T final states, but not into π T π T , where π T is a technipion. All the TCSM production and decay processes discussed here are included in the event generator PYTHIA. We present several simulations appropriate for the Fermilab Tevatron collider, and suggest benchmark model lines for further experimental investigation
Studies on phenomenological hadron models with chiral symmetry
International Nuclear Information System (INIS)
Rathske, E.
1991-12-01
In this report we consider, in the context of phenomenological models for hadrons, several aspects of Skyrme-type and hybrid bag models. In the first of the two central parts we discuss two qualitatively different generalizations of the minimal SU(2) Skyrme model. One of these consists in adding to the Lagrangian density a symmetric term of fourth order in the field derivatives. Its consequences are determined for solutions and observables by analytical and numerical investigations. In the other we propose a contribution for explicit isospin symmetry breaking in the mesonic as well as the baryonic sector. Together with the standard nonlinear σ-model term it allows for exact time-dependent classical soliton solutions. Their quantization leads to a quantitative connection between the hadronic isospin mass differenced of pions and nucleons. The second main part of this report is devoted to the generalization of SU(2) bag models under the aspect of chiral symmetry. We first show that the construction of appropriate surface terms in the Lagrangian density necessitates the introduction of dynamical bosonic degrees of freedom. This allows for a variety of bag scenarios (including the 'endopionic' bag). We then consider explicit isospin symmetry breaking for hybrid bag models with a nonlinear mesonic sector. An intimate relationship is revealed between the effects of a quark mass difference and the time-dependent bosonic solutions found for the purely mesonic case. It is reflected in a nontrivial interdependence between quark and meson masses, bag radius and chiral angle. We provide an especially extensive list of references for the topics discussed in this report. (orig.) [de
Phenomenological aspects of no-scale inflation models
Energy Technology Data Exchange (ETDEWEB)
Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics, King' s College London, WC2R 2LS London (United Kingdom); Garcia, Marcos A.G.; Olive, Keith A. [William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Nanopoulos, Dimitri V., E-mail: john.ellis@cern.ch, E-mail: garciagarcia@physics.umn.edu, E-mail: dimitri@physics.tamu.edu, E-mail: olive@physics.umn.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, 77843 Texas (United States)
2015-10-01
We discuss phenomenological aspects of inflationary models wiith a no-scale supergravity Kähler potential motivated by compactified string models, in which the inflaton may be identified either as a Kähler modulus or an untwisted matter field, focusing on models that make predictions for the scalar spectral index n{sub s} and the tensor-to-scalar ratio r that are similar to the Starobinsky model. We discuss possible patterns of soft supersymmetry breaking, exhibiting examples of the pure no-scale type m{sub 0} = B{sub 0} = A{sub 0} = 0, of the CMSSM type with universal A{sub 0} and m{sub 0} ≠ 0 at a high scale, and of the mSUGRA type with A{sub 0} = B{sub 0} + m{sub 0} boundary conditions at the high input scale. These may be combined with a non-trivial gauge kinetic function that generates gaugino masses m{sub 1/2} ≠ 0, or one may have a pure gravity mediation scenario where trilinear terms and gaugino masses are generated through anomalies. We also discuss inflaton decays and reheating, showing possible decay channels for the inflaton when it is either an untwisted matter field or a Kähler modulus. Reheating is very efficient if a matter field inflaton is directly coupled to MSSM fields, and both candidates lead to sufficient reheating in the presence of a non-trivial gauge kinetic function.
Selected topics in phenomenology of the standard model
International Nuclear Information System (INIS)
Roberts, R.G.
1991-01-01
These lectures cover some aspects of phenomenology of topics in high energy physics which advertise the success of the standard model in dealing with a wide variety of experimental data. First we begin with a look at deep inelastic scattering. This tells us about the structure of the nucleon, which is understood in terms of the SU(3) gauge theory of QCD, which then allows the information on quark and gluon distributions to be carried over to other 'hard' processes such as hadronic production of jets. Recent data on electroweak processes can estimate the value of Sin 2 θw to a precision where the inclusion of radiative corrections allow bounds to be made on the mass of the top quark. Electroweak effects arise in e + e - collisions, but we first present a review of the recent history of this topic within the context of QCD. We bring the subject up to date with a look at the physics at (or near) the Z pole where the measurement of asymmetries can give more information. We look at the conventional description of quark mixing by the CKM matrix and see how the mixing parameters are systematically being extracted from a variety of reactions and decays. In turn, the values can be used to set bounds on the top quark mass. The matter of CP violation in weak interactions is addressed within the context of the standard model, recent data on ε'/ε being the source of current excitement. Finally, we at the theoretical description and experimental efforts to search for the top quark. (author)
Phenomenological modelling of second cancer incidence for radiation treatment planning
International Nuclear Information System (INIS)
Pfaffenberger, Asja; Oelfke, Uwe; Schneider, Uwe; Poppe, Bjoern
2009-01-01
It is still an unanswered question whether a relatively low dose of radiation to a large volume or a higher dose to a small volume produces the higher cancer incidence. This is of interest in view of modalities like IMRT or rotation therapy where high conformity to the target volume is achieved at the cost of a large volume of normal tissue exposed to radiation. Knowledge of the shape of the dose response for radiation-induced cancer is essential to answer the question of what risk of second cancer incidence is implied by which treatment modality. This study therefore models the dose response for radiation-induced second cancer after radiation therapy of which the exact mechanisms are still unknown. A second cancer risk estimation tool for treatment planning is presented which has the potential to be used for comparison of different treatment modalities, and risk is estimated on a voxel basis for different organs in two case studies. The presented phenomenological model summarises the impact of microscopic biological processes into effective parameters of mutation and cell sterilisation. In contrast to other models, the effective radiosensitivities of mutated and non-mutated cells are allowed to differ. Based on the number of mutated cells present after irradiation, the model is then linked to macroscopic incidence by summarising model parameters and modifying factors into natural cancer incidence and the dose response in the lower-dose region. It was found that all principal dose-response functions discussed in the literature can be derived from the model. However, from the investigation and due to scarcity of adequate data, rather vague statements about likelihood of dose-response functions can be made than a definite decision for one response. Based on the predicted model parameters, the linear response can probably be rejected using the dynamics described, but both a flattening response and a decrease appear likely, depending strongly on the effective cell
International Nuclear Information System (INIS)
Gaillard, M.K.
1979-01-01
Selected topics in QCD phenomenology are reviewed: the development of an effective jet perturbation series with applications to factorization, energy flow analysis and photon physics; implications of non-perturbative phenomena for hard scattering processes and the pseudoscalar mass spectrum; resonance properties as extracted from the combined technologies of perturbative and non-perturbative QCD. (orig.)
LHC phenomenology of the three-site Higgsless model
Energy Technology Data Exchange (ETDEWEB)
Speckner, Christian
2009-07-01
In the last years, extra dimensional models have been proposed which can evade these constraints by delocalizing the Standard Model fermions within the extra dimension, thus allowing to tune the couplings to the new resonances in order to avoid these constraints. This way, such models are a viable method of breaking the electroweak symmetry and retaining perturbative TeV scale unitarity without introducing a fundamental Higgs field. However, extra dimensional models (excluding trivial cases) are intrinsically nonrenormalizable and valid only below a cutoff scale, with most of the new resonances lying in fact above the cutoff. Conceptionally, a honest extension of the Standard Model should only contain the structure below this cutoff, incorporating the extra dimensional mechanism of breaking the symmetry and delaying unitarity violation without making assumptions on the high energy physics above the cutoff scale. The Three-Site Higgsless Model is a minimal implementation of this idea. While it can be motivated by extra dimensional Higgsless models of electroweak symmetry breaking, it in fact contains only one set of extra resonances which lies below the cutoff, delaying unitarity violation to {approx}2-3 TeV. The non-Standard Model part of the spectrum consists of a set of heavy partners for all Standard Model particles with the exception of photon and gluon. The analysis of the experimental constraints reveals that, while the model is consistent with the precision observables, the couplings between the new heavy gauge bosons and the Standard Model fermions have to be exceedingly small ({approx}1% of the isospin gauge coupling) while the new fermions are constrained to be rather heavy with masses above 1.8 TeV. In this thesis, we explored the LHC phenomenology of this scenario. To this end, we calculated the couplings and widths of all the new particles and implemented the model into the Monte-Carlo event generator and WHIZARD / O'Mega. With this implementation
LHC phenomenology of the three-site Higgsless model
International Nuclear Information System (INIS)
Speckner, Christian
2009-01-01
In the last years, extra dimensional models have been proposed which can evade these constraints by delocalizing the Standard Model fermions within the extra dimension, thus allowing to tune the couplings to the new resonances in order to avoid these constraints. This way, such models are a viable method of breaking the electroweak symmetry and retaining perturbative TeV scale unitarity without introducing a fundamental Higgs field. However, extra dimensional models (excluding trivial cases) are intrinsically nonrenormalizable and valid only below a cutoff scale, with most of the new resonances lying in fact above the cutoff. Conceptionally, a honest extension of the Standard Model should only contain the structure below this cutoff, incorporating the extra dimensional mechanism of breaking the symmetry and delaying unitarity violation without making assumptions on the high energy physics above the cutoff scale. The Three-Site Higgsless Model is a minimal implementation of this idea. While it can be motivated by extra dimensional Higgsless models of electroweak symmetry breaking, it in fact contains only one set of extra resonances which lies below the cutoff, delaying unitarity violation to ∼2-3 TeV. The non-Standard Model part of the spectrum consists of a set of heavy partners for all Standard Model particles with the exception of photon and gluon. The analysis of the experimental constraints reveals that, while the model is consistent with the precision observables, the couplings between the new heavy gauge bosons and the Standard Model fermions have to be exceedingly small (∼1% of the isospin gauge coupling) while the new fermions are constrained to be rather heavy with masses above 1.8 TeV. In this thesis, we explored the LHC phenomenology of this scenario. To this end, we calculated the couplings and widths of all the new particles and implemented the model into the Monte-Carlo event generator and WHIZARD / O'Mega. With this implementation, we simulated
Toward a Phenomenological-Longitudinal Model of Media Gratification Processes.
Kielwasser, Alfred P.; And Others
While not dismissing the "uses and gratifications" approach to research, this paper attempts to increase the theoretical and practical utility of gratifications measures by approaching them through a more phenomenological and longitudinal tack. The paper suggests that any "gratification unit" is given a unique meaning by the…
Gomberg, Joan
2010-01-01
This paper introduces the special section on the "phenomenology, underlying processes, and hazard implications of aseismic slip and nonvolcanic tremor" by highlighting key results of the studies published in it. Many of the results indicate that seismic and aseismic manifestations of slow slip reflect transient shear displacements on the plate interface, with the outstanding exception of northern Cascadia where tremor sources have been located on and above the plate interface (differing models of the plate interface there also need to be reconciled). Slow slip phenomena appear to result from propagating deformation that may develop with persistent gaps and segment boundaries. Results add to evidence that when tectonic deformation is relaxed via slow slip, most relaxation occurs aseismically but with seismic signals providing higher-resolution proxies for the aseismic slip. Instead of two distinct slip modes as suggested previously, lines between "fast" and "slow" slip more appropriately may be described as blurry zones. Results reported also show that slow slip sources do not coincide with a specific temperature or metamorphic reaction. Their associations with zones of high conductivity and low shear to compressional wave velocity ratios corroborate source models involving pore fluid pressure buildup and release. These models and spatial anticorrelations between earthquake and tremor activity also corroborate a linkage between slow slip and frictional properties transitional between steady state and stick-slip. Finally, this special section highlights the benefits of global and multidisciplinary studies, which demonstrate that slow phenomena are not confined to beneath the locked zone but exist in many settings.
Phenomenological modeling of critical heat flux: The GRAMP code and its validation
International Nuclear Information System (INIS)
Ahmad, M.; Chandraker, D.K.; Hewitt, G.F.; Vijayan, P.K.; Walker, S.P.
2013-01-01
Highlights: ► Assessment of CHF limits is vital for LWR optimization and safety analysis. ► Phenomenological modeling is a valuable adjunct to pure empiricism. ► It is based on empirical representations of the (several, competing) phenomena. ► Phenomenological modeling codes making ‘aggregate’ predictions need careful assessment against experiments. ► The physical and mathematical basis of a phenomenological modeling code GRAMP is presented. ► The GRAMP code is assessed against measurements from BARC (India) and Harwell (UK), and the Look Up Tables. - Abstract: Reliable knowledge of the critical heat flux is vital for the design of light water reactors, for both safety and optimization. The use of wholly empirical correlations, or equivalently “Look Up Tables”, can be very effective, but is generally less so in more complex cases, and in particular cases where the heat flux is axially non-uniform. Phenomenological models are in principle more able to take into account of a wider range of conditions, with a less comprehensive coverage of experimental measurements. These models themselves are in part based upon empirical correlations, albeit of the more fundamental individual phenomena occurring, rather than the aggregate behaviour, and as such they too require experimental validation. In this paper we present the basis of a general-purpose phenomenological code, GRAMP, and then use two independent ‘direct’ sets of measurement, from BARC in India and from Harwell in the United Kingdom, and the large dataset embodied in the Look Up Tables, to perform a validation exercise on it. Very good agreement between predictions and experimental measurements is observed, adding to the confidence with which the phenomenological model can be used. Remaining important uncertainties in the phenomenological modeling of CHF, namely the importance of the initial entrained fraction on entry to annular flow, and the influence of the heat flux on entrainment rate
Phenomenology of the hierarchical lepton mass spectrum in the flipped SU(5)xU(1) string model
Energy Technology Data Exchange (ETDEWEB)
Leontaris, G.K.; Nanopoulos, D.V.
1988-09-29
A detailed phenomenological analysis of the lepton mass matrices and their implications in the low energy theory are discussed, within the recently proposed SU(5)xU(1) string model. The unification scale is highly constrained while the Yukawa couplings lie in a natural region. The flavour changing decays ..mu.. -> e..gamma.., ..mu.. -> 3e, ..mu.. -> e are highly suppressed while the depletion in the flux of muon neutrinos reported by the Kamiokande is explained through ..nu../sub ..mu../ reversible ..nu../sub tau/ oscillations.
Gauged R-symmetry and its anomalies in 4D N=1 supergravity and phenomenological implications
Antoniadis, I.; Knoops, R.
2015-01-01
We consider a class of models with gauged U(1)_R symmetry in 4D N=1 supergravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and K\\"ors and apply their results to the special case of a U(1)_R symmetry, in the presence of the Fayet-Iliopoulos term ($\\xi$) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the "naive" field theory approach in global SUSY, in which case U(1)_R cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditi...
A comparative study of two phenomenological models of dephasing in series and parallel resistors
International Nuclear Information System (INIS)
Bandopadhyay, Swarnali; Chaudhuri, Debasish; Jayannavar, Arun M.
2010-01-01
We compare two recent phenomenological models of dephasing using a double barrier and a quantum ring geometry. While the stochastic absorption model generates controlled dephasing leading to Ohm's law for large dephasing strengths, a Gaussian random phase based statistical model shows many inconsistencies.
Phenomenological consequences of supersymmetry
International Nuclear Information System (INIS)
Hinchliffe, I.; Littenberg, L.
1982-01-01
This paper deals with the phenomenological consequences of supersymmetric theories, and with the implications of such theories for future high energy machines. The paper represents the work of a subgroup at the meeting. The authors are concerned only with high energy predictions of supersymmetry; low energy consequences (for example in the K/sub o/K-bar/sub o/ system) are discussed in the context of future experiments by another group, and will be mentioned briefly only in the context of constraining existing models. However a brief section is included on the implication for proton decay, although detailed experimental questions are not discussed
Gauged R-symmetry and its anomalies in 4D N=1 supergravity and phenomenological implications
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, I. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern, 5 Sidlestrasse, CH-3012 Bern (Switzerland); LPTHE, Universite Pierre et Marie Curie, F-75252 Paris (France); Ecole Polytechnique, F-91128 Palaiseau (France); Ghilencea, D.M. [Theoretical Physics Department,National Institute of Physics and Nuclear Engineering (IFIN-HH),Bucharest, MG-6 077125 (Romania); CERN Theory Division,CH-1211 Geneva 23 (Switzerland); Knoops, R. [CERN Theory Division,CH-1211 Geneva 23 (Switzerland); Instituut voor Theoretische Fysica, KU Leuven,Clestijnenlaan 200D, B-3001 Leuven (Belgium)
2015-02-25
We consider a class of models with gauged U(1){sub R} symmetry in 4D N=1 supergravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and Körs and apply their results to the special case of a U(1){sub R} symmetry, in the presence of the Fayet-Iliopoulos term (ξ) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the “naive” field theory approach in global SUSY, in which case U(1){sub R} cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditions for the MSSM gauge couplings. In an anomaly-free model, a tunable, TeV-scale gravitino mass may remain possible provided that the U(1){sub R} charges of additional hidden sector fermions (constrained by the cubic anomaly alone) do not conflict with the related values of U(1){sub R} charges of their scalar superpartners, constrained by existence of a stable ground state. This issue may be bypassed by tuning instead the coefficients of the Kahler connection anomalies (b{sub K},b{sub CK}).
Phenomenology of a left-right-symmetric model inspired by the trinification model
Energy Technology Data Exchange (ETDEWEB)
Hetzel, Jamil
2015-02-04
The trinification model is an interesting extension of the Standard Model based on the gauge group SU(3){sub C} x SU(3){sub L} x SU(3){sub R}. It naturally explains parity violation as a result of spontaneous symmetry breaking, and the observed fermion masses and mixings can be reproduced using only a few parameters. We study the low-energy phenomenology of the trinification model in order to compare its predictions to experiment. To this end, we construct a low-energy effective field theory, thereby reducing the number of particles and free parameters that need to be studied. We constrain the model parameters using limits from new-particle searches as well as precision measurements. The scalar sector of the model allows for various phenomenological scenarios, such as the presence of a light fermiophobic scalar in addition to a Standard-Model-like Higgs, or a degenerate (twin) Higgs state at 126 GeV. We show how a measurement of the Higgs couplings can be used to distinguish such scenarios from the Standard Model. We find that the trinification model predicts that several new scalar particles have masses in the O(100 GeV) range. Moreover, large regions of the parameter space lead to measurable deviations from Standard-Model predictions of the Higgs couplings. Hence the trinification model awaits crucial tests at the Large Hadron Collider in the coming years.
Ibáñez, Luis E
2015-01-01
This chapter reviews a number of topics in the field of string phenomenology, focusing on orientifold/F-theory models yielding semirealistic low-energy physics. The emphasis is on the extraction of the low-energy effective action and possible tests of specific models at the LHC.
Phenomenological aspects of D-branes
International Nuclear Information System (INIS)
Quevedo, F.
2003-01-01
A general overview is presented on string phenomenology, emphasizing the role played by D-branes. A general discussion of the main challenges for string phenomenology is followed by recent progress made in constructing realistic models from D-branes and anti-branes at singularities and also from intersecting D-branes. Some possible cosmological implications of these classes of string models are also mentioned. (author)
Phenomenological aspects of D-branes
Energy Technology Data Exchange (ETDEWEB)
Quevedo, F [Centre for Mathematical Sciences, DAMTP, University of Cambridge, Cambridge (United Kingdom)
2003-08-15
A general overview is presented on string phenomenology, emphasizing the role played by D-branes. A general discussion of the main challenges for string phenomenology is followed by recent progress made in constructing realistic models from D-branes and anti-branes at singularities and also from intersecting D-branes. Some possible cosmological implications of these classes of string models are also mentioned. (author)
International Nuclear Information System (INIS)
Slowinski, B.
1987-01-01
A description of a simple phenomenological model of electromagnetic cascade process (ECP) initiated by high-energy gamma quanta in heavy absorbents is given. Within this model spatial structure and fluctuations of ionization losses of shower electrons and positrons are described. Concrete formulae have been obtained as a result of statistical analysis of experimental data from the xenon bubble chamber of ITEP (Moscow)
Luther, Rachel A.
2015-01-01
Phenomenological experiences based on an openness to the synesthesia of natural environments are a powerful pathway to the development of erotic relationships with and within a place. These relationships are beneficial for beginning scholars and those taking new jobs who find themselves adapting to a new place and career. First, I describe the…
Williams, Dana E.
2012-01-01
The purpose of this qualitative phenomenological study was to explore factors for selecting a business model for scaling online enrollment by institutions of higher education. The goal was to explore the lived experiences of academic industry experts involved in the selection process. The research question for this study was: What were the lived…
Rezaei, R.; Dinkelacker, F.; Tilch, B.; Delebinski, T.; Brauer, M.
2016-01-01
Enhancing the predictive quality of engine models, while maintaining an affordable computational cost, is of great importance. In this study, a phenomenological combustion and a tabulated NOx model, focusing on efficient modeling and improvement of computational effort, is presented. The proposed approach employs physical and chemical sub-models for local processes such as injection, spray formation, ignition, combustion, and NOx formation, being based on detailed tabulated chemistry methods....
A phenomenological model for pre-stressed piezoelectric ceramic stack actuators
International Nuclear Information System (INIS)
Wang, D H; Zhu, W
2011-01-01
In order to characterize the hysteretic characteristics between the output displacement and applied voltage of pre-stressed piezoelectric ceramic stack actuators (PCSAs), this paper considers that a linear force and a hysteretic force will be generated by a linear extension and a hysteretic extension, respectively, due to the applied voltage to a pre-stressed PCSA and the total force will result in the forced vibration of the single-degree-of-freedom (DOF) system composed of the mass of the pre-stressed PCSA and the equivalent spring and damper of the pre-stressed mechanism, which lets the PCSA be pre-stressed to endure enough tension. On this basis, the phenomenological model to characterize the hysteretic behavior of the pre-stressed PCSA is put forward by using the Bouc–Wen hysteresis operator to model the hysteretic extension. The parameter identification method in a least-squares sense is established by identifying the parameters for the linear and hysteretic components separately with the step and periodic responses of the pre-stressed PCSA, respectively. The performance of the proposed phenomenological model with the corresponding parameter identification method is experimentally verified by the established experimental set-up. The research results show that the phenomenological model for the pre-stressed PCSA with the corresponding parameter identification method can accurately portray the hysteretic characteristics of the pre-stressed PCSA. In addition, the phenomenological model for PCSAs can be deduced from the phenomenological model for pre-stressed PCSAs by removing the terms related to the pre-stressed mechanisms
Viscoelasticity in Polymers: Phenomenological to Molecular Mathematical Modelling
National Research Council Canada - National Science Library
Banks, H. T; Luke, N. S
2006-01-01
We report on two recent advances in the modelling of viscoelastic polymers: (i) a new constitutive model which combines the virtual stick-slip continuum "molecular-based" ideas of Johnson and Stacer with the Rouse bead chain ideas; (ii...
Four-dimensional strings: Phenomenology and model building
International Nuclear Information System (INIS)
Quiros, M.
1989-01-01
In these lectures we will review some of the last developments in string theories leading to the construction of realistic four-dimensional string models. Special attention will be paid to world-sheet and space-time supersymmetry, modular invariance and model building for supersymmetric and (tachyon-free) nonsupersymmetric ten and four-dimensional models. (orig.)
A phenomenological constitutive model for low density polyurethane foams
International Nuclear Information System (INIS)
Neilsen, M.K.; Morgan, H.S.; Krieg, R.D.
1987-04-01
Results from a series of hydrostatic and triaxial compression tests which were performed on polyurethane foams are presented in this report. These tests indicate that the volumetric and deviatoric parts of the foam behavior are strongly coupled. This coupling behavior could not be captured with any of several commonly used plasticity models. Thus, a new constitutive model was developed. This new model was based on a decomposition of the foam response into two parts: (1) response of the polymer skeleton, and (2) response of the air inside the cells. The air contribution was completely volumetric. The new constitutive model was implemented in two finite element codes, SANCHO and PRONTO. Results from a series of analyses completed with these codes indicated that the new constitutive model captured all of the foam behaviors that had been observed in the experiments. Finally, a typical dynamic problem was analyzed using the new constitutive model and other constitutive models to demonstrate differences between the models. Results from this series of analyses indicated that the new constitutive model generated displacement and acceleration predictions that were between predictions obtained using the other models. This result was expected. 9 refs., 45 figs., 4 tabs
DEFF Research Database (Denmark)
Gernaey, Krist; Flores Alsina, Xavier; Rosen, Christian
2011-01-01
: the larger the simulated sewer network, the smoother the simulated diurnal flow rate and concentration variations. In the discussion, it is pointed out how the proposed phenomenological models can be expanded to other applications, for example to represent heavy metal or organic micro-pollutant loads......Activated Sludge Models are widely used for simulation-based evaluation of wastewater treatment plant (WWTP) performance. However, due to the high workload and cost of a measuring campaign on a full-scale WWTP, many simulation studies suffer from lack of sufficiently long influent flow rate...... and concentration time series representing realistic wastewater influent dynamics. In this paper, a simple phenomenological modelling approach is proposed as an alternative to generate dynamic influent pollutant disturbance scenarios. The presented set of models is constructed following the principles of parsimony...
Low-energy phenomenology of a realistic composite model
International Nuclear Information System (INIS)
Korpa, C.; Ryzak, Z.
1986-01-01
The low-energy limit of the strongly coupled standard model (Abbott-Farhi composite model) is analyzed. The effects of the excited W isotriplet and isoscalar bosons are investigated and compared with experimental data. As a result, constraints on parameters (masses, coupling constants, etc.) of these vector bosons are obtained. They are not severe enough (certain cancellations are possible) to exclude the model on experimental basis
Development of a phenomenological constitutive model for polyurethane foams
International Nuclear Information System (INIS)
Neilsen, M.K.; Morgan, H.S.; Krieg, R.D.; Yoshimura, H.R.
1989-01-01
Rigid, closed-cell, polyurethane foam is used in impact limiters in nuclear waste transport containers. During a hypothetical nuclear waste transport accident, the foam is expected to absorb a significant amount of impact energy by undergoing large inelastic volume reductions. Consequently, the crushing of polyurethane foams must be well characterized and accurately modeled to properly analyze a transport container accident. At the request of Sandia National Laboratories, a series of uniaxial, hydrostatic and triaxial compression tests on polyurethane foams were performed by the New Mexico Engineering Research Institute (NMERI). The combination of hydrostatic and triaxial tests was chosen to provide sufficient data to characterize both the volumetric and deviatoric behaviors of the foams and the coupling between the two responses. Typical results from the NMERI tests are included in this paper. A complete description of these tests can be found in Neilsen et al., 1987. Constitutive models that have been used in the past to model foam did not capture some important foam behaviors observed in the NMERI tests. Therefore, a new constitutive model for rigid, closed-cell, polyurethane foams was developed and implemented in two finite element codes. Development of the new model is discussed in this paper. Also, results from analyses with the new model and other constitutive models are presented to demonstrate differences between the various models. 4 refs., 6 figs., 1 tab
Neutrinos: Theory and Phenomenology
Energy Technology Data Exchange (ETDEWEB)
Parke, Stephen
2013-10-22
The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.
Luther, Rachel A.
2015-03-01
Phenomenological experiences based on an openness to the synesthesia of natural environments are a powerful pathway to the development of erotic relationships with and within a place. These relationships are beneficial for beginning scholars and those taking new jobs who find themselves adapting to a new place and career. First, I describe the value and formation of erotic relationships and how they can be constructed through synesthesia and the phenomenological experience through my understanding of the ocean Other. Second, I describe how I have used mindfulness and lived experiences in the natural world to mediate the demands of being a new faculty, and how these provide a pathway to develop and foster relationships that are mutually beneficial and conserving. Among other sustaining qualities, mindfully experiencing natural phenomena reduce stress and increase mental function and emotional well-being. These experiences also connect us with the larger community, where we gain a sense of belonging, more readily establish roots and reasons for care of the Other that sustains us.
Modeling theoretical uncertainties in phenomenological analyses for particle physics
Energy Technology Data Exchange (ETDEWEB)
Charles, Jerome [CNRS, Aix-Marseille Univ, Universite de Toulon, CPT UMR 7332, Marseille Cedex 9 (France); Descotes-Genon, Sebastien [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay Cedex (France); Niess, Valentin [CNRS/IN2P3, UMR 6533, Laboratoire de Physique Corpusculaire, Aubiere Cedex (France); Silva, Luiz Vale [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay Cedex (France); Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Groupe de Physique Theorique, Institut de Physique Nucleaire, Orsay Cedex (France); J. Stefan Institute, Jamova 39, P. O. Box 3000, Ljubljana (Slovenia)
2017-04-15
The determination of the fundamental parameters of the Standard Model (and its extensions) is often limited by the presence of statistical and theoretical uncertainties. We present several models for the latter uncertainties (random, nuisance, external) in the frequentist framework, and we derive the corresponding p values. In the case of the nuisance approach where theoretical uncertainties are modeled as biases, we highlight the important, but arbitrary, issue of the range of variation chosen for the bias parameters. We introduce the concept of adaptive p value, which is obtained by adjusting the range of variation for the bias according to the significance considered, and which allows us to tackle metrology and exclusion tests with a single and well-defined unified tool, which exhibits interesting frequentist properties. We discuss how the determination of fundamental parameters is impacted by the model chosen for theoretical uncertainties, illustrating several issues with examples from quark flavor physics. (orig.)
Dynamics and phenomenology of higher order gravity cosmological models
Moldenhauer, Jacob Andrew
2010-10-01
I present here some new results about a systematic approach to higher-order gravity (HOG) cosmological models. The HOG models are derived from curvature invariants that are more general than the Einstein-Hilbert action. Some of the models exhibit late-time cosmic acceleration without the need for dark energy and fit some current observations. The open question is that there are an infinite number of invariants that one could select, and many of the published papers have stressed the need to find a systematic approach that will allow one to study methodically the various possibilities. We explore a new connection that we made between theorems from the theory of invariants in general relativity and these cosmological models. In summary, the theorems demonstrate that curvature invariants are not all independent from each other and that for a given Ricci Segre type and Petrov type (symmetry classification) of the space-time, there exists a complete minimal set of independent invariants (a basis) in terms of which all the other invariants can be expressed. As an immediate consequence of the proposed approach, the number of invariants to consider is dramatically reduced from infinity to four invariants in the worst case and to only two invariants in the cases of interest, including all Friedmann-Lemaitre-Robertson-Walker metrics. We derive models that pass stability and physical acceptability conditions. We derive dynamical equations and phase portrait analyses that show the promise of the systematic approach. We consider observational constraints from magnitude-redshift Supernovae Type Ia data, distance to the last scattering surface of the Cosmic Microwave Background radiation, and Baryon Acoustic Oscillations. We put observational constraints on general HOG models. We constrain different forms of the Gauss-Bonnet, f(G), modified gravity models with these observations. We show some of these models pass solar system tests. We seek to find models that pass physical and
Dannon, Pinhas N; Lowengrub, Katherine; Gonopolski, Yehudit; Musin, Ernest; Kotler, Moshe
2006-01-01
Pathological gambling (PG) is a prevalent and highly disabling impulse-control disorder. Two dominant phenomenological models for PG have been presented in the literature. According to one model, PG is included as an obsessive-compulsive spectrum disorder, while according to the second model, PG represents a form of nonpharmacologic addiction. In this article, we present an expanded conceptualization of the phenomenology of PG. On the basis of our clinical research experience and a review of data in the field, we propose 3 subtypes of pathological gamblers: the "impulsive" subtype, the "obsessive-compulsive" subtype, and the "addictive" subtype. We also review the current pharmacologic and nonpharmacologic treatment strategies for PG. A further aim of this article is to encourage awareness of the importance of improved screening procedures for the early detection of PG.
Phenomenological approach to the statistics and dynamics of model systems
International Nuclear Information System (INIS)
Choi, M.Y.
1985-01-01
This thesis investigates the equilibrium and nonequilibrium properties of some model systems, and consists of two parts. Part 1 deals with phase transitions in frustrated xy models, which can serve as a model for the coupled Josephson junction arrays. The Hubbard-Stratanovich transform is developed to construct the Landau-Ginzburg-Wilson Hamiltonians for uniformly frustrated xy models both on a square lattice and on a triangular lattice, which reflect the formation of various superlattices according to the frustration f. Near the critical point, the system with f equal to 1/4 on a triangular lattice is shown to belong to the same universality class as the fully frustrated system on a square lattice. By decomposing two mode systems into two coupled xy models and by applying the Migdal-Kadanoff approximation, the possibilities of Ising-like or three-state Potts-like transition are shown in addition to the Kosterlitz-Thouless-like ones. Part 2 considers the time evaluation of model systems with retarded interactions. For such systems, a master equation is derived with non-Markovian character. It is shown that in higher dimensions, the interplay between interaction strength and delay can lead to complicated behavior
Phenomenological aspects of possible vacua of a neutrino flavor model
Morozumi, Takuya; Okane, Hideaki; Sakamoto, Hiroki; Shimizu, Yusuke; Takagi, Kenta; Umeeda, Hiroyuki
2018-01-01
We discuss a supersymmetric model with discrete flavor symmetry {A}4× {Z}3. The additional scalar fields which contribute masses of leptons in the Yukawa terms are introduced in this model. We analyze their scalar potential and find that they have various vacuum structures. We show the relations among 24 different vacua and classify them into two types. We derive expressions of the lepton mixing angles, Dirac CP violating phase and Majorana phases for the two types. The model parameters which are allowed by the experimental data of the lepton mixing angles are different for each type. We also study the constraints on the model parameters which are related to Majorana phases. The different allowed regions of the model parameters for the two types are shown numerically for a given region of two combinations of the CP violating phases. Supported by JSPS KAKENHI Grant Number JP17K05418 (T.M.). This work is also supported in part by Grants-in-Aid for Scientific Research [No. 16J05332 (Y.S.), Nos. 24540272, 26247038, 15H01037, 16H00871, and 16H02189 (H.U.)] from the Ministry of Education, Culture, Sports, Science and Technology in Japan. H.O. is also supported by Hiroshima Univ. Alumni Association
Reproducing Phenomenology of Peroxidation Kinetics via Model Optimization
Ruslanov, Anatole D.; Bashylau, Anton V.
2010-06-01
We studied mathematical modeling of lipid peroxidation using a biochemical model system of iron (II)-ascorbate-dependent lipid peroxidation of rat hepatocyte mitochondrial fractions. We found that antioxidants extracted from plants demonstrate a high intensity of peroxidation inhibition. We simplified the system of differential equations that describes the kinetics of the mathematical model to a first order equation, which can be solved analytically. Moreover, we endeavor to algorithmically and heuristically recreate the processes and construct an environment that closely resembles the corresponding natural system. Our results demonstrate that it is possible to theoretically predict both the kinetics of oxidation and the intensity of inhibition without resorting to analytical and biochemical research, which is important for cost-effective discovery and development of medical agents with antioxidant action from the medicinal plants.
Semi-phenomenological model of the nucleon-nucleon interaction
International Nuclear Information System (INIS)
Houriet, A.; Bagnoud, Y.
1977-01-01
A nucleon with isobars is used to elaborate a model of the nucleon-nucleon interaction at low energy (Esub(CM) 2 sub(r), the pion-nucleon renormalized coupling constant. The model establishes a very good coordination for deuteron and p-p scattering-polarization measurements ( 1 K 0 , 1 D 2 , 1 G 4 phase shifts), and permits the determination of f 2 sub(r) for every independent experimental value. For 21 such values, the mean value 2 sub(r)>=0.0785 with Δf 2 sub(r)=0.0024(3%) is obtained. (Auth.)
Fractional calculus phenomenology in two-dimensional plasma models
Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill
2006-10-01
Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).
Seniority mappings for probing phenomenological nuclear boson models
International Nuclear Information System (INIS)
De Kock, E.A.
1988-12-01
The interacting boson model (IBM) and interacting boson-fermion model (IBFM) are discussed. The main ideas of boson mapping of fermion systems are introduced using Holstein-Primakoff and Dyson-Maleev mappings of angular momentum operators. Generalized Dyson-Maleev (GDM) and Holstein-Primakoff (GHP) mappings are included. In fermoin problems, the degrees of freedom of collective motion are described by a collective subalgebra of the complete bifermion subalgebra. GDM mapping of Sp(6) generators, the transformation to collect bosons and truncation to these bosons led to collective sd-boson realization of Sp(6) algebra. This resulted in an IBM-like description of the collective subspace. Non-hermitian and existing hermitian forms are indicated in the assumed structure of an IBM Hamiltonian Boson mapping based on seniority considerations and involving single-j shell approximations of the shell model are examined. One method utilized truncation of a shell model space to a space spanned by monopole (S) and quadrupole (D) pairs. The association between states in truncated fermion and sd-boson spaces constructs boson images of fermion operators by equating boson and fermion matrix elements. To obtain boson images with IBM-like structures, a zero-order approximation was adopted. This approximation retains only N-body terms in the images of N-body fermion operators. A similarity transformation re-expressing GDM images of single-j shell fermion operators in seniority bosons was applied to the GDM image of a general shell model Hamiltonian. Numerical results for the surface-delta interaction show that truncation to s- and d-bosons in the seniority image of a two-body operator is not allowed if N≥2. This transformation was extended to odd fermion systems and applied to the image of the quadrupole pairing interaction. 79 refs., 3 figs., 4 tabs
Phenomenology of CP violation from the Kobayashi-Maskawa model
International Nuclear Information System (INIS)
Wang, L.L.C.
1980-01-01
The CP violation consequences of the K-M model, which Kobayashi, Maskawa introduced in 1977 for the purpose of incorporating CP violation via the complexity in the mixing matrix of the quarks are discussed. Much of the talk is a review of current work on the subject. Some new results on the CP violation effects in exclusive and inclusive decays of bottom, charm and strange particles are also given
Developments in standard model: electroweak theory/phenomenology
International Nuclear Information System (INIS)
Deshpande, N.G.
1986-01-01
The authors review new developments in four topics. Higgs detection D in the intermediate mass range (100 GeV 2M/sub W/) is discussed in detail. It is found that the backgrounds are a serious problem in hadronic colliders except for purely leptonic signals, which unfortunately have low event rates. Recent work on topological solutions to standard model, with new states in TeV range are discussed. Large rate of BB vector production at SSC may allow determination of rare modes of B decay. The fourth topic concerns the feasibility of detecting Horizontal gauge bosons at SSC. 17 references, 9 figures
A phenomenological model for iodine stress corrosion cracking of zircaloy
International Nuclear Information System (INIS)
Miller, A.K.; Tasooji, A.
1981-01-01
To predict the response of Zircaloy tubing in iodine environments under conditions where either crack initiation or crack propagation predominates, a unified model of the SCC process has been developed based on the local conditions (the local stress, local strain, and local iodine concentration) within a small volume of material at the cladding inner surface or the crack tip. The methodology used permits computation of these values from simple equations. A nonuniform distribution of local stress and strain results once a crack has initiated. The local stress can be increased due to plastic constraint and triaxiality at the crack tip. Iodine penetration is assumed to be a surface diffusion-controlled process. Experimental data are used to derive criteria for intergranular failure, transgranular failure, and ductile rupture in terms of the local conditions. The same failure criteria are used for both crack initiation and crack propagation. Irradiation effects are included in the model by changing the value of constants in the equation governing iodine penetration and by changing the values used to represent the mechanical properties of the Zircaloy. (orig./HP)
CP violation outside the standard model phenomenology for pedestrians
International Nuclear Information System (INIS)
Lipkin, H.J.
1993-01-01
So far the only experimental evidence for CP violation is the 1964 discovery of K L →2π where the two mass eigenstates produced by neutral meson mixing both decay into the same CP eigenstate. This result is described by two parameters ε and ε'. Today ε ∼ its 1964 value, ε' data are still inconclusive and there is no new evidence for CP violation. One might expect to observe similar phenomena in other systems and also direct CP violation as charge asymmetries between decays of charge conjugate hadrons H ± → f ± . Why is it so hard to find CP violation? How can B Physics help? Does CP lead beyond the standard model? The author presents a pedestrian symmetry approach which exhibits the difficulties and future possibilities of these two types of CP-violation experiments, neutral meson mixing and direct charge asymmetry: what may work, what doesn't work and why
Models of light singlet fermion and neutrino phenomenology
International Nuclear Information System (INIS)
Chun, E.J.; Joshipura, A.S.; Smirnov, A.Yu.
1995-05-01
We suggest that a single fermion S exists beyond the standard see-saw structure. It mixes with light neutrinos via interactions with the right-handed neutrino components, so that ν e → S conversion solves the solar neutrino problem. Supersymmetry endowed with R-symmetry is shown to give a natural framework for existence, mass scale (∼ 3 · 10 -3 eV) and mixing (sin 2 2θ es ∼ (0.1 - 1.5) · 10 -2 ) of such a fermion. Models with an approximate horizontal symmetry are constructed, which embed the fermion S and explain simultaneously solar, atmospheric, hot dark matter problems as well as may predict the oscillation ν-bar μ → ν-bar e in the region of sensitivity of KARMEN and LSND experiments. (author). 24 refs
Psychosocial implications of tubal ligation in a rural health district: A phenomenological study
Directory of Open Access Journals (Sweden)
Lutala Prosper M
2011-12-01
Full Text Available Abstract Background Tubal ligation is the most popular family planning method worldwide. While its benefits, such as effectiveness in protecting against pregnancies, minimal need for long-term follow-up and low side-effects profile are well documented, it has many reported complications. However, to date, these complications have not been described by residents in Congo. Therefore, the study aimed at exploring the experience of women who had undergone tubal ligation, focusing on perceptions of physical, psychological and contextual experiences of participants. Methods This qualitative study used a semi-structured questionnaire in a phenomenological paradigm to collect data. Fifteen participants were purposefully selected among sterilized women who had a ligation procedure performed, were aged between 30 and 40 years, and were living within the catchment area of the district hospital. Data were collected by two registered nurses, tape-recorded, and transcribed verbatim. Reading and re-reading cut and paste techniques, and integration were used to establish codes, categories, themes, and description. Results Diverse and sometimes opposite changes in somatic symptoms, psychological symptoms, productivity, ecological relationships, doctor-client relationships, ethical issues, and change of life style were the major problem domains. Conclusions Clients reported conflicting experiences in several areas of their lives after tubal sterilization. Management, including awareness of the particular features of the client, is needed to decrease the likelihood of psychosocial morbidity and/or to select clients in need of sterilization.
A phenomenological model of deep-inelastic collisions between complex nuclei
International Nuclear Information System (INIS)
Siwek-Wilczynska, K.; Wilczynski, J.
1976-01-01
A simple model of heavy-ion collisions is proposed. Classical equations of motion with inclusion of a phenomenological two-body friction force are integrated numerically along trajectories. The nucleus-nucleus interaction potential which is used in the calculations includes deformation degrees of freedom in the exit channel. Both entrance and exit-channel potentials are based on the boundary conditions following the liquid-drop model. The existing data on fusion cross sections, and also the energy-angle distributions of deep-inelastic reactions are very well reproduced by the model. (author)
International Nuclear Information System (INIS)
Andrei, Petru; Oniciuc, Liviu; Stancu, Alexandru; Stoleriu, Laurentiu
2007-01-01
An identification technique for the parameters of phenomenological models of hysteresis is presented. The basic idea of our technique is to set up a system of equations for the parameters of the model as a function of known quantities on the major or minor hysteresis loops (e.g. coercive force, susceptibilities at various points, remanence), or other magnetization curves. This system of equations can be either over or underspecified and is solved by using the conjugate gradient method. Numerical results related to the identification of parameters in the Energetic, Jiles-Atherton, and Preisach models are presented
Directory of Open Access Journals (Sweden)
Toman Rastislav
2017-12-01
Full Text Available The current study evaluates the predictive capabilities of a new phenomenological combustion model, available as a part of the GT-Suite software package. It is comprised of two main sub-models: 0D model of in-cylinder flow and turbulence, and turbulent SI combustion model. The 0D in-cylinder flow model (EngCylFlow uses a combined K-k-ε kinetic energy cascade approach to predict the evolution of the in-cylinder charge motion and turbulence, where K and k are the mean and turbulent kinetic energies, and ε is the turbulent dissipation rate. The subsequent turbulent combustion model (EngCylCombSITurb gives the in-cylinder burn rate; based on the calculation of flame speeds and flame kernel development. This phenomenological approach reduces significantly the overall computational effort compared to the 3D-CFD, thus allowing the computation of full engine operating map and the vehicle driving cycles. Model was calibrated using a full map measurement from a turbocharged natural gas SI engine, with swirl intake ports. Sensitivity studies on different calibration methods, and laminar flame speed sub-models were conducted. Validation process for both the calibration and sensitivity studies was concerning the in-cylinder pressure traces and burn rates for several engine operation points achieving good overall results.
Phenomenology of OCD: lessons from a large multicenter study and implications for ICD-11.
Shavitt, Roseli G; de Mathis, Maria Alice; Oki, Fábio; Ferrao, Ygor A; Fontenelle, Leonardo F; Torres, Albina R; Diniz, Juliana B; Costa, Daniel L C; do Rosário, Maria Conceição; Hoexter, Marcelo Q; Miguel, Euripedes C; Simpson, H Blair
2014-10-01
This study aimed to investigate the phenomenology of obsessive-compulsive disorder (OCD), addressing specific questions about the nature of obsessions and compulsions, and to contribute to the World Health Organization's (WHO) revision of OCD diagnostic guidelines. Data from 1001 patients from the Brazilian Research Consortium on Obsessive-Compulsive Spectrum Disorders were used. Patients were evaluated by trained clinicians using validated instruments, including the Dimensional Yale-Brown Obsessive-Compulsive Scale, the University of Sao Paulo Sensory Phenomena Scale, and the Brown Assessment of Beliefs Scale. The aims were to compare the types of sensory phenomena (SP, subjective experiences that precede or accompany compulsions) in OCD patients with and without tic disorders and to determine the frequency of mental compulsions, the co-occurrence of obsessions and compulsions, and the range of insight. SP were common in the whole sample, but patients with tic disorders were more likely to have physical sensations and urges only. Mental compulsions occurred in the majority of OCD patients. It was extremely rare for OCD patients to have obsessions without compulsions. A wide range of insight into OCD beliefs was observed, with a small subset presenting no insight. The data generated from this large sample will help practicing clinicians appreciate the full range of OCD symptoms and confirm prior studies in smaller samples the degree to which insight varies. These findings also support specific revisions to the WHO's diagnostic guidelines for OCD, such as describing sensory phenomena, mental compulsions and level of insight, so that the world-wide recognition of this disabling disorder is increased. Copyright © 2014 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Chowell, Gerardo; Hincapie-Palacio, Doracelly; Ospina, Juan
2016-01-01
BACKGROUND: The World Health Organization declared the ongoing Zika virus (ZIKV) epidemic in the Americas a Public Health Emergency of International Concern on February 1, 2016. ZIKV disease in humans is characterized by a "dengue-like" syndrome including febrile illness and rash. However, ZIKV...... impact. METHODS: We obtained daily counts of suspected Zika cases by date of symptoms onset from the Secretary of Health of Antioquia, Colombia during January-April 2016. We calibrated the generalized Richards model, a phenomenological model that accommodates a variety of early exponential and sub...
Mcelroy, Paul M.; Lawson, Daniel D.
1990-01-01
Adhesion and interfacial stress between metal films and structural composite material substrates is discussed. A theoretical and conceptual basis for selecting coating materials for composite mirror substrates is described. A phenomenological model that interrelates cohesive tensile strength of thin film coatings and interfacial peeling stresses is presented. The model serves as a basis in determining gradiated materials response and compatibility of composite substrate and coating combinations. Parametric evaluation of material properties and geometrical factors such as coating thickness are used to determine the threshold stress levels for maintaining adhesion at the different interfaces.
International Nuclear Information System (INIS)
Tassini, N.; Patsias, S.; Lambrinou, K.
2006-01-01
Recent research has shown that both stiffness and damping of ceramic coatings exhibit different non-linearities. These properties strongly depend on the microstructure, which is characterized by heterogeneous sets of elastic elements with mesoscopic sizes and shapes, as in non-linear mesoscopic elastic materials. To predict the damping properties of this class of materials, we have implemented a phenomenological model that characterizes their elastic properties. The model is capable of reproducing the basic features of the observed damping behavior for zirconia coatings prepared by air plasma spraying and electron-beam physical-vapor-deposition
LENUS (Irish Health Repository)
Flood, Anne
2012-01-31
Phenomenology is a philosophic attitude and research approach. Its primary position is that the most basic human truths are accessible only through inner subjectivity, and that the person is integral to the environment. This paper discusses the theoretical perspectives related to phenomenology, and includes a discussion of the methods adopted in phenomenological research.
Potential constitutive models for salt: Survey of phenomenology, micromechanisms, and equations
International Nuclear Information System (INIS)
Senseny, P.E.; Hansen, F.D.
1987-12-01
Results are given of a literature survey performed to document the thermomechanical phenomena and micromechanical processes observed for salt over the ranges of stress and temperature of interest for a high-level nuclear repository. The elastic and thermal expansion behavior of salt can be readily modeled by the generalized Duhamel Neumann form of Hooke's law with temperature-dependent elastic constants and coefficient of thermal expansion. Inelastic deformation is primarily viscoplastic, but also has a brittle component. The observed phenomenological behavior of salt occurs because of micromechanical processes. To the extent that these processes have been studied, a summary of deformation mechanisms in natural salt is included in this report. Eight constitutive models that appear to be capable of modeling the viscoplastic deformation have been selected from the literature. Two models have been selected to model brittle deformation. Insufficient data are available to develop a model for failure. 92 refs., 39 figs., 6 tabs
Yong-jun, Zhang; Hui, Zhang; Jing-tao, Han
2017-05-01
The chemical composition, morphology, and microstructure of peeling defects formed on the surface of sheets from steel 2205 under hot rolling are studied. The microstructure of the surface is analyzed using scanning electron and light microscopy. The zones affected are shown to contain nonmetallic inclusions of types Al2O3 and CaO - SiO2 - Al2O3 - MgO in the form of streak precipitates and to have an unfavorable content of austenite, which causes decrease in the ductility of the area. The results obtained are used to derive a five-stage phenomenological model of formation of such defects.
Directory of Open Access Journals (Sweden)
Colin eHorne
2016-02-01
Full Text Available We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs. The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter, and firing probability under both monophasic and cathodic-anodic biphasic stimulation, without changing the model’s parameters. The response statistics of the model depend on stimulus level and duration of the stimulating pulse, reproducing trends observed in the ANF. In the case of biphasic stimulation, the model reproduces the effects of pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to ANF data using a procedure that uniquely determines each model parameter. It is thus possible to rapidly parameterize a large population of neurons to reproduce a given set of response statistic distributions.Our work extends the stochastic leaky integrate and fire (SLIF neuron, a well-studied phenomenological model of the electrically stimulated neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by delaying the moment of spiking. During this delay, spiking may be abolished by anodic current. By this means, the probability of the model neuron responding to a stimulus is reduced when a trailing phase of opposite polarity is introduced. By introducing a minimum wait period that must elapse before a spike may be emitted, the model is able to reproduce the differences in the threshold level observed in the ANF for monophasic and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are reproduced correctly by this model.
Simplified models for Higgs physics: singlet scalar and vector-like quark phenomenology
Energy Technology Data Exchange (ETDEWEB)
Dolan, Matthew J. [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, University of Melbourne,Melbourne 3010 (Australia); Hewett, J.L. [SLAC National Accelerator Laboratory,Menlo Park 94025, CA (United States); Krämer, M. [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University,D-52056 Aachen (Germany); Rizzo, T.G. [SLAC National Accelerator Laboratory,Menlo Park 94025, CA (United States)
2016-07-08
Simplified models provide a useful tool to conduct the search and exploration of physics beyond the Standard Model in a model-independent fashion. In this work we consider the complementarity of indirect searches for new physics in Higgs couplings and distributions with direct searches for new particles, using a simplified model which includes a new singlet scalar resonance and vector-like fermions that can mix with the SM top-quark. We fit this model to the combined ATLAS and CMS 125 GeV Higgs production and coupling measurements and other precision electroweak constraints, and explore in detail the effects of the new matter content upon Higgs production and kinematics. We highlight some novel features and decay modes of the top partner phenomenology, and discuss prospects for Run II.
Correspondence between phenomenological and IBM-1 models of even isotopes of Yb
A. Okhunov, A.; I. Sharrad, F.; Anwer, A. Al-Sammarraie; U. Khandaker, M.
2015-08-01
Energy levels and the reduced probability of E2- transitions for ytterbium isotopes with proton number Z = 70 and neutron numbers between 100 and 106 have been calculated through phenomenological (PhM) and interacting boson (IBM-1) models. The predicted low-lying levels (energies, spins and parities) and the reduced probability for E2- transitions results are reasonably consistent with the available experimental data. The predicted low-lying levels (gr-, β1- and γ1- band) produced in the PhM are in good agreement with the experimental data compared with those by IBM-1 for all nuclei of interest. In addition, the phenomenological model was successful in predicting the β2-, β3-, β4-, γ2- and 1+ - band while it was a failure with IBM-1. Also, the 3+- band is predicted by the IBM-1 model for 172Yb and 174Yb nuclei. All calculations are compared with the available experimental data. Supported by Fundamental Research Grant Scheme (FRGS) of Ministry of Higher Education of Malaysia (FRGS13-074-0315), Islamic Development Bank (IDB) (36/11201905/35/IRQ/D31, 37/IRQ/P30)
New phenomenological and differential model for hot working of metallic polycrystalline materials
International Nuclear Information System (INIS)
Castellanos, J.; Munoz, J.; Gutierrez, V.; Rieiro, I.; Ruano, O. A.; Carsi, M.
2012-01-01
This paper presents a new phenomenological and differential model (that use differential equations) to predict the flow stress of a metallic polycrystalline material under hot working. The model, called MCC, depends on six parameters and uses two internal variables to consider the strain hardening, dynamic recovery and dynamic recrystallization processes that occur under hot working. The experimental validation of the MCC model has been carried out by means of stress-strain curves from torsion tests at high temperature (900 degree centigrade a 1200 degree centigrade) and moderate high strain rate (0.005 s-1 to 5 s-1) in a high nitrogen steel. The results reveal the very good agreement between experimental and predicted stresses. Furthermore, the Garofalo a-parameter and the strain to reach 50 % of recrystallized volume fraction have been employed as a control check being a first step to the physical interpretation of variables and parameters of the MCC model. (Author) 26 refs.
Phenomenological model for non-equilibrium deuteron emission in nucleon induced reactions
International Nuclear Information System (INIS)
Broeders, C.H.M.; Konobeyev, A.Yu.
2005-01-01
A new approach is proposed for the calculation of non-equilibrium deuteron energy distributions in nuclear reactions induced by nucleons of intermediate energies. It combines the model of the nucleon pick-up, the coalescence and the deuteron knock-out. Emission and absorption rates for excited particles are described by the pre-equilibrium hybrid model. The model of Sato, Iwamoto, Harada is used to describe the nucleon pick-up and the coalescence of nucleons from the exciton configurations starting from (2p, 1h). The model of deuteron knock-out is formulated taking into account the Pauli principle for the nucleon-deuteron interaction inside a nucleus. The contribution of the direct nucleon pick-up is described phenomenologically. The multiple pre-equilibrium emission of particles is taken into account. The calculated deuteron energy distributions are compared with experimental data from 12 C to 209 Bi. (orig.)
DEFF Research Database (Denmark)
Cherry, John F.; Frandsen, Mads T.; Shoemaker, Ian M.
2015-01-01
We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... to nuclei, the limit from annihilation to relativistic particles in the Sun can be stronger than that of conventional non-relativistic direct detection by more than three orders of magnitude for masses in a 2-7 GeV window.......We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... experiments is controlled by relativistic kinematics. This results in a distinctive recoil spectrum, a non-standard and or even absent annual modulation, and the ability to probe DM masses as low as a $\\sim$10 MeV. We use current LUX data to show that experimental sensitivity to thermal relic annihilation...
Empirical Phenomenology: A Qualitative Research Approach (The ...
African Journals Online (AJOL)
Empirical Phenomenology: A Qualitative Research Approach (The Cologne Seminars) ... and practical application of empirical phenomenology in social research. ... and considers its implications for qualitative methods such as interviewing ...
Higgs phenomenology in the minimal S U (3 )L×U (1 )X model
Okada, Hiroshi; Okada, Nobuchika; Orikasa, Yuta; Yagyu, Kei
2016-07-01
We investigate the phenomenology of a model based on the S U (3 )c×S U (3 )L×U (1 )X gauge theory, the so-called 331 model. In particular, we focus on the Higgs sector of the model which is composed of three S U (3 )L triplet Higgs fields and is the minimal form for realizing a phenomenologically acceptable scenario. After the spontaneous symmetry breaking S U (3 )L×U (1 )X→S U (2 )L×U (1 )Y , our Higgs sector effectively becomes that with two S U (2 )L doublet scalar fields, in which the first- and the second-generation quarks couple to a different Higgs doublet from that which couples to the third-generation quarks. This structure causes the flavor-changing neutral current mediated by Higgs bosons at the tree level. By taking an alignment limit of the mass matrix for the C P -even Higgs bosons, which is naturally realized in the case with the breaking scale of S U (3 )L×U (1 )X much larger than that of S U (2 )L×U (1 )Y, we can avoid current constraints from flavor experiments such as the B0-B¯ 0 mixing even for the Higgs bosons masses that are O (100 ) GeV . In this allowed parameter space, we clarify that a characteristic deviation in quark Yukawa couplings of the Standard Model-like Higgs boson is predicted, which has a different pattern from that seen in two Higgs doublet models with a softly broken Z2 symmetry. We also find that the flavor-violating decay modes of the extra Higgs boson, e.g., H /A →t c and H±→t s , can be dominant, and they yield the important signature to distinguish our model from the two Higgs doublet models.
International Nuclear Information System (INIS)
Bui, V.A.
1998-01-01
The objective of this work is to address the modeling of the thermal hydrodynamic phenomena and interactions occurring during the progression of reactor severe accidents. Integrated phenomenological models are developed to describe the accident scenarios, which consist of many processes, while mechanistic modeling, including direct numerical simulation, is carried out to describe separate effects and selected physical phenomena of particular importance
Energy Technology Data Exchange (ETDEWEB)
Lai Wei, E-mail: laiwei@msu.ed [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Ciucci, Francesco [Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, University of Heidelberg, INF 368 D - 69120 Heidelberg (Germany)
2010-12-15
Thermodynamics and kinetics of phase transformation in intercalation battery electrodes are investigated by phenomenological models which include a mean-field lattice-gas thermodynamic model and a generalized Poisson-Nernst-Planck equation set based on linear irreversible thermodynamics. The application of modeling to a porous intercalation electrode leads to a hierarchical equivalent circuit with elements of explicit physical meanings. The equivalent circuit corresponding to the intercalation particle of planar, cylindrical and spherical symmetry is reduced to a diffusion equation with concentration dependent diffusivity. The numerical analysis of the diffusion equation suggests the front propagation behavior during phase transformation. The present treatment is also compared with the conventional moving boundary and phase field approaches.
Study of creep-fatigue behavior in a 1000 MW rotor using a phenomenological lifetime model
Energy Technology Data Exchange (ETDEWEB)
Zhao, Nailong; Wang, Weizhe; Jiang, Jishen; Liu, Yingzheng [School of Mechanical Engineering, Shanghai (China)
2017-02-15
In this study, the phenomenological lifetime model was applied to part of an ultra-supercritical steam turbine rotor model to predict its lifetime as a post processing of the finite element method. To validate the accuracy and adaptation of the post processing program, stress strain hysteresis loops of a cylinderal model under service-like load cycle conditions in cycle N = 1 and 300 were constructed, and the comparison of the results with experimental data on the same cylinderal specimen showed them to be satisfactory. The temperature and von Mises stress distributions of the rotor during a startup-running-shutdown-natural cool process were numerically studied using ABAQUS and the damage caused by the interaction of creep and fatigue was subsequently computed and discussed. It was found that the maximum damage appeared at the inlet notch zone, with the blade groove areas and the front notch areas also suffering a large damage amplitude.
Energy Technology Data Exchange (ETDEWEB)
Marzola, Luca; Racioppi, Antonio; Vaskonen, Ville [National Institute of Chemical Physics and Biophysics, Tallinn (Estonia)
2017-07-15
Thermal corrections in classically conformal models typically induce a strong first-order electroweak phase transition, thereby resulting in a stochastic gravitational background that could be detectable at gravitational wave observatories. After reviewing the basics of classically conformal scenarios, in this paper we investigate the phase transition dynamics in a thermal environment and the related gravitational wave phenomenology within the framework of scalar conformal extensions of the Standard Model. We find that minimal extensions involving only one additional scalar field struggle to reproduce the correct phase transition dynamics once thermal corrections are accounted for. Next-to-minimal models, instead, yield the desired electroweak symmetry breaking and typically result in a very strong gravitational wave signal. (orig.)
USING A PHENOMENOLOGICAL MODEL TO TEST THE COINCIDENCE PROBLEM OF DARK ENERGY
International Nuclear Information System (INIS)
Chen Yun; Zhu Zonghong; Alcaniz, J. S.; Gong Yungui
2010-01-01
By assuming a phenomenological form for the ratio of the dark energy and matter densities ρ X ∝ ρ m a ξ , we discuss the cosmic coincidence problem in light of current observational data. Here, ξ is a key parameter to denote the severity of the coincidence problem. In this scenario, ξ = 3 and ξ = 0 correspond to ΛCDM and the self-similar solution without the coincidence problem, respectively. Hence, any solution with a scaling parameter 0 X = 0, where ω X is the equation of state of the dark energy component, whereas the inequality ξ + 3ω X ≠ 0 represents non-standard cosmology. We place observational constraints on the parameters (Ω X,0 , ω X , ξ) of this model, where Ω X,0 is the present value of density parameter of dark energy Ω X , by using the Constitution Set (397 supernovae of type Ia data, hereafter SNeIa), the cosmic microwave background shift parameter from the five-year Wilkinson Microwave Anisotropy Probe and the Sloan Digital Sky Survey baryon acoustic peak. Combining the three samples, we get Ω X,0 = 0.72 ± 0.02, ω X = -0.98 ± 0.07, and ξ = 3.06 ± 0.35 at 68.3% confidence level. The result shows that the ΛCDM model still remains a good fit to the recent observational data, and the coincidence problem indeed exists and is quite severe, in the framework of this simple phenomenological model. We further constrain the model with the transition redshift (deceleration/acceleration). It shows that if the transition from deceleration to acceleration happens at the redshift z > 0.73, within the framework of this model, we can conclude that the interaction between dark energy and dark matter is necessary.
A phenomenological model for improving understanding of the ammonium nitrate agglomeration process
Directory of Open Access Journals (Sweden)
Videla Leiva Alvaro
2016-01-01
Full Text Available Ammonium nitrate is intensively used as explosive in the mining industry as the main component of ANFO. The ammonium nitrate is known to be a strong hygroscopic crystal matter which generates problems due to the creation of water bridges between crystals leading later to nucleation and crystallization forming an agglomerated solid cake. The agglomeration process damages the ammonium nitrate performance and is undesirable. Usually either organic or inorganic coatings are used to control agglomeration. In the present work a characterization method of humidity adsorption of the ammonium nitrate crystal was performed under laboratory conditions. Several samples were exposed into a defined humidity in a controlled chamber during 5 hours after which the samples were tested to measure agglomeration as the resistance force to compression. A clear relation was found between coating protection level, humidity and agglomeration. Agglomeration can be then predicted by a phenomenological model based of combination of the mono-layer BET adsorption and CNT nucleation models.
International Nuclear Information System (INIS)
Fuks, Benjamin; Herrmann, Bjoern; Klasen, Michael
2009-01-01
We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large 'collider-friendly' regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied
Phenomenological implications of the intrinsic charm in the Z boson production at the LHC
Energy Technology Data Exchange (ETDEWEB)
Bailas, G. [Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, Aubiere Cedex (France); Universidade Federal de Pelotas, High and Medium Energy Group, Instituto de Fisica e Matematica, Pelotas, RS (Brazil); Goncalves, V.P. [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden); Universidade Federal de Pelotas, High and Medium Energy Group, Instituto de Fisica e Matematica, Pelotas, RS (Brazil)
2016-03-15
In this paper we study the Z, Z+jet, Z+c, and Z+c+jet production in pp collisions at the LHC considering different models for the intrinsic charm content of the proton. We analyze the impact of the intrinsic charm in the rapidity and transversemomentum distributions for these different processes. Our results indicated that differently from the other processes, the Z+c cross section is strongly affected by the presence of the intrinsic charm. Moreover, we propose the analysis of the ratios R(Z +c/Z) ≡ σ(Z+c)/σ(Z) and R(Z+c/Z+jet) ≡ σ(Z+c)/σ(Z+jet) and we demonstrate that these observables can be used as a probe of the intrinsic charm. (orig.)
A phenomenological memristor model for short-term/long-term memory
International Nuclear Information System (INIS)
Chen, Ling; Li, Chuandong; Huang, Tingwen; Ahmad, Hafiz Gulfam; Chen, Yiran
2014-01-01
Memristor is considered to be a natural electrical synapse because of its distinct memory property and nanoscale. In recent years, more and more similar behaviors are observed between memristors and biological synapse, e.g., short-term memory (STM) and long-term memory (LTM). The traditional mathematical models are unable to capture the new emerging behaviors. In this article, an updated phenomenological model based on the model of the Hewlett–Packard (HP) Labs has been proposed to capture such new behaviors. The new dynamical memristor model with an improved ion diffusion term can emulate the synapse behavior with forgetting effect, and exhibit the transformation between the STM and the LTM. Further, this model can be used in building new type of neural networks with forgetting ability like biological systems, and it is verified by our experiment with Hopfield neural network. - Highlights: • We take the Fick diffusion and the Soret diffusion into account in the ion drift theory. • We develop a new model based on the old HP model. • The new model can describe the forgetting effect and the spike-rate-dependent property of memristor. • The new model can solve the boundary effect of all window functions discussed in [13]. • A new Hopfield neural network with the forgetting ability is built by the new memristor model
DEFF Research Database (Denmark)
Aggerholm, Kenneth; Moltke Martiny, Kristian
Phenomenological research is in traditional terms a matter of going 'back to the things themselves', as Husserl famously stated. But if phenomenology is to renew itself in creative ways and reveal new aspects of human experience it is of value to look for a certain kind of phenomena: exceptions. ...
Sampson, Enrique, Jr.
Many aerospace workers believe transferring work projects abroad has an erosive effect on the U.S. aerospace industry (Pritchard, 2002). This qualitative phenomenological study examines factors for outsourcing decisions and the perceived effects of outsourcing on U.S. aerospace workers. The research sample consists of aerospace industry leaders and nonleaders from the East Coast, Midwest, and West Coast of the United States. Moustakas' modified van Kaam methods of analysis (1994) and Decision Explorer analysis software were applied to the interview transcripts. Resultant data identified five core themes: communication, best value, opportunities, cost, and offset consideration. The themes provided the framework for a model designed to assist leaders in making effective decisions and communicating the benefits of those decisions when considering outsourcing of work projects.
Phenomenology of the standard model under conditions of spontaneously broken mirror symmetry
Energy Technology Data Exchange (ETDEWEB)
Dyatlov, I. T., E-mail: dyatlov@thd.pnpi.spb.ru [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation)
2017-03-15
Spontaneously broken mirror symmetry is able to reproduce observed qualitative properties of weak mixing for quark and leptons. Under conditions of broken mirror symmetry, the phenomenology of leptons—that is, small neutrino masses and a mixing character other than that in the case of quarks—requires the Dirac character of the neutrinos and the existence of processes violating the total lepton number. Such processes involve heavy mirror neutrinos; that is, they proceed at very high energies. Here, CP violation implies that a P-even mirror-symmetric Lagrangian must simultaneously be T-odd and, according to the CPT theorem, C-odd. All these properties create preconditions for the occurrence of leptogenesis, which is a mechanism of the emergence of the baryon–lepton asymmetry of the universe in models featuring broken mirror symmetry.
Oh, Ki-Yong; Epureanu, Bogdan I.
2017-10-01
A 1-D phenomenological force model of a Li-ion battery pack is proposed to enhance the control performance of Li-ion battery cells in pack conditions for efficient performance and health management. The force model accounts for multiple swelling sources under the operational environment of electric vehicles to predict swelling-induced forces in pack conditions, i.e. mechanically constrained. The proposed force model not only incorporates structural nonlinearities due to Li-ion intercalation swelling, but also separates the overall range of states of charge into three ranges to account for phase transitions. Moreover, an approach to study cell-to-cell variations in pack conditions is proposed with serial and parallel combinations of linear and nonlinear stiffness, which account for battery cells and other components in the battery pack. The model is shown not only to accurately estimate the reaction force caused by swelling as a function of the state of charge, battery temperature and environmental temperature, but also to account for cell-to-cell variations due to temperature variations, SOC differences, and local degradation in a wide range of operational conditions of electric vehicles. Considering that the force model of Li-ion battery packs can account for many possible situations in actual operation, the proposed approach and model offer potential utility for the enhancement of current battery management systems and power management strategies.
International Nuclear Information System (INIS)
Mosquera, A.S.; Landinez Tellez, D.A.; Roa-Rojas, J.
2007-01-01
We report the application of a phenomenological model for the microwave surface impedance in high temperature superconducting films. This model is based on the modified two-fluid model, in which the real and imaginary parts of the surface impedance use the modelling parameter γ. This is responsible for the superconducting and normal charge carrier density and is used for the description of the temperature dependence of the London penetration depth λ L (T) including λ L (0). The relaxation time model also uses the γ parameter in combination with the residual resistance parameter α. The parameter δ 1 1 , γ, α, and δ 2 . The parameter δ 2 n (T) is a result of the competition between the increase of the relaxation time and the decrease of the normal charge-carrier density. We applied this model to analyze experimental results of MgB 2 , YBa 2 Cu 3 O 7-δ and GdBa 2 Cu 3 O 7-δ superconducting material. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
International Nuclear Information System (INIS)
Bodaghi, M.; Damanpack, A.R.; Aghdam, M.M.; Shakeri, M.
2013-01-01
In this paper, a simple and robust phenomenological model for shape memory alloys (SMAs) is proposed to simulate main features of SMAs under uniaxial as well as biaxial combined axial–torsional proportional/non-proportional loadings. The constitutive model for polycrystalline SMAs is developed within the framework of continuum thermodynamics of irreversible processes. The model nominates the volume fractions of self-accommodated and oriented martensite as scalar internal variables and the preferred direction of oriented martensitic variants as directional internal variable. An algorithm is introduced to develop explicit relationships for the thermo-mechanical behavior of SMAs under uniaxial and biaxial combined axial–torsional proportional/non-proportional loading conditions and also thermal loading. It is shown that the model is able to simulate main aspects of SMAs including self-accommodation, martensitic transformation, orientation and reorientation of martensite, shape memory effect, ferro-elasticity and pseudo-elasticity. A description of the time-discrete counterpart of the proposed SMA model is presented. Experimental results of uniaxial tension and biaxial combined tension–torsion non-proportional tests are simulated and a good qualitative correlation between numerical and experimental responses is achieved. Due to simplicity and accuracy, the model is expected to be used in the future studies dealing with the analysis of SMA devices in which two stress components including one normal and one shear stress are dominant
3D phenomenological constitutive modeling of shape memory alloys based on microplane theory
International Nuclear Information System (INIS)
Mehrabi, R; Kadkhodaei, M
2013-01-01
This paper concerns 3D phenomenological modeling of shape memory alloys using microplane theory. In the proposed approach, transformation is assumed to be the only source of inelastic strain in 1D constitutive laws considered for any generic plane passing through a material point. 3D constitutive equations are derived by generalizing the 1D equations using a homogenization technique. In the developed model, inelastic strain is explicitly stated in terms of the martensite volume fraction. To compare this approach with incremental constitutive models, such an available model is applied in its 1D integral form to the microplane formulation, and it is shown that both the approaches produce similar results for different uniaxial loadings. A nonproportional loading is then studied, and the results are compared with those obtained from an available model in which the inelastic strain is divided into two separate portions for transformation and reorientation. A good agreement is seen between the results of the two approaches, indicating the capability of the proposed microplane formulation in predicting reorientation phenomena in shape memory alloys. The results of the model are compared with available experimental results for a nonproportional loading path, and a good agreement is seen between the findings. (paper)
Phenomenological consequences of supersymmetry
International Nuclear Information System (INIS)
Hinchliffe, I.; Littenberg, L.
1982-01-01
This report deals with the phenomenological consequences of supersymmetric theories, and with the implications of such theories for future high energy machines. It is concerned only with high energy predictions of supersymmetry; low energy consequences (for example in the K/sub o/anti K/sub o/ system) are discussed in the context of future experiments by another group, and will be mentioned briefly only in the context of constraining existing models. However a brief section is included on the implication for proton decay, although detailed experimental questions are not discussed. The report is organized as follows. Section I consists of a brief review of supersymmetry and the salient features of existing supersymmetric models; this section can be ignored by those familiar with such models since it contains nothing new. Section 2 deals with the consequences for nucleon decay of SUSY. The remaining sections then discuss the physics possibilities of various machines; e anti e in Section 3, ep in Section 4, pp (or anti pp) colliders in Section 5 and fixed target hadron machines in Section 6
A phenomenological model of muscle fatigue and the power-endurance relationship.
James, A; Green, S
2012-11-01
The relationship between power output and the time that it can be sustained during exercise (i.e., endurance) at high intensities is curvilinear. Although fatigue is implicit in this relationship, there is little evidence pertaining to it. To address this, we developed a phenomenological model that predicts the temporal response of muscle power during submaximal and maximal exercise and which was based on the type, contractile properties (e.g., fatiguability), and recruitment of motor units (MUs) during exercise. The model was first used to predict power outputs during all-out exercise when fatigue is clearly manifest and for several distributions of MU type. The model was then used to predict times that different submaximal power outputs could be sustained for several MU distributions, from which several power-endurance curves were obtained. The model was simultaneously fitted to two sets of human data pertaining to all-out exercise (power-time profile) and submaximal exercise (power-endurance relationship), yielding a high goodness of fit (R(2) = 0.96-0.97). This suggested that this simple model provides an accurate description of human power output during submaximal and maximal exercise and that fatigue-related processes inherent in it account for the curvilinearity of the power-endurance relationship.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Haibin, E-mail: hb-zhang@xjtu.edu.cn [School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Department of Chemical Engineering, Imperial College, London SW7 2BY (United Kingdom); Hewitt, G.F., E-mail: g.hewitt@imperial.ac.uk [Department of Chemical Engineering, Imperial College, London SW7 2BY (United Kingdom)
2016-08-15
Highlights: • A phenomenological model to predict the CHF for flows in annuli is described. • New correlations of droplet entrainment and deposition are used. • The present model has good predictive capability in predicting CHF in annuli. - Abstract: In this paper, we present a phenomenological model to predict the CHF (critical heat flux) for upward annular flow in heated vertical annuli. In present model, a new set of correlations of droplet deposition and entrainment in annuli was used which were verified by comparison with the data of Moeck (1970) for developing liquid films in adiabatic annuli. In the results presented here, these new correlations have been used to predict 2249 independent data on critical heat flux (CHF) obtained both regarding internal heating of the rod as well as simultaneous heating of the rod and the outer tube in six heated vertical annuli under various mass flow rate, pressure and inlet quality and where the conditions were such that (as is most common) the CHF condition occurred in the annular flow regime. The comparisons between the calculated and measured CHFs showed that the present model has good predictive capability in predicting CHF.
International Nuclear Information System (INIS)
Weinberg, S.
1979-01-01
The author presents an argument that phenomenological Lagrangians can be used not only to reproduce the soft pion results of current algebra, but also to justify these results, without any use of operator algebra, and shows how phenomenological Lagrangians can be used to calculate corrections to the leading soft pion results to any desired order in external momenta. The renormalization group is used to elucidate the structure of these corrections. Corrections due to the finite mass of the pion are treated and speculations are made about another possible application of phenomenological Lagrangians. (Auth.)
Modeling of twisted and coiled polymer (TCP) muscle based on phenomenological approach
Karami, Farzad; Tadesse, Yonas
2017-12-01
Twisted and coiled polymers (TCP) muscles are linear actuators that respond to change in temperature. Exploiting high negative coefficient of thermal expansion (CTE) and helical geometry give them a significant ability to change length in a limited temperature range. Several applications and experimental data of these materials have been demonstrated in the last few years. To use these actuators in robotics and control system applications, a mathematical model for predicting their behavior is essential. In this work, a practical and accurate phenomenological model for estimating the displacement of TCP muscles, as a function of the load as well as input electrical current, is proposed. The problem is broken down into two parts, i.e. modeling of the electro-thermal and then the thermo-elastic behavior of the muscles. For the first part, a differential equation, with changing electrical resistance term, is derived. Next, by using a temperature-dependent modulus of elasticity and CTE as well as taking the geometry of the muscles into account, an expression for displacement is derived. Experimental data for different loads and actuation current levels are used for verifying the model and investigating its accuracy. The result shows a good agreement between the simulation and experimental results for all loads.
Learning from Twentieth Century Hermeneutic Phenomenology for ...
African Journals Online (AJOL)
The implications of commonalities in the contributions of five key thinkers in twentieth century phenomenology are discussed in relation to both original aims and contemporary projects. It is argued that, contrary to the claims of Husserl, phenomenology can only operate as hermeneutic phenomenology. Hermeneutics arose ...
Bullies and Victims: A Phenomenological Study
Omizo, Michael M.; Omizo, Sharon A.; Baxa, Gari-Vic C. O.; Miyose, Ross J.
2006-01-01
This study presents the results of a phenomenological study with sixteen elementary school children identified as bullies or victims. Implications for school counselors and educators are also discussed.
Energy Technology Data Exchange (ETDEWEB)
Bui, V.A
1998-10-01
The objective of this work is to address the modeling of the thermal hydrodynamic phenomena and interactions occurring during the progression of reactor severe accidents. Integrated phenomenological models are developed to describe the accident scenarios, which consist of many processes, while mechanistic modeling, including direct numerical simulation, is carried out to describe separate effects and selected physical phenomena of particular importance 88 refs, 54 figs, 7 tabs
Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models
International Nuclear Information System (INIS)
Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi
2005-01-01
In some string compactifications, for instance the recently proposed KKLT set-up, light moduli are stabilized by nonperturbative effects at supersymmetric AdS vacuum which is lifted to a dS vacuum by supersymmetry breaking uplifting potential. In such models, soft supersymmetry breaking terms are determined by a specific mixed modulus-anomaly mediation in which the two mediations typically give comparable contributions to soft parameters. Similar pattern of soft terms can arise also in brane models to stabilize the radion by nonperturbative effects. We examine some phenomenological consequences of this mixed modulus-anomaly mediation, including the pattern of low energy sparticle spectrum and the possibility of electroweak symmetry breaking. It is noted that adding the anomaly-mediated contributions at M GUT amounts to replacing the messenger scale of the modulus mediation by a mirage messenger scale (m 3/2 /M Pl ) α/2 M GUT where α = m 3/2 /[M 0 ln (M Pl /m 3/2 )] for M 0 denoting the modulus-mediated contribution to the gaugino mass at M GUT . The minimal KKLT set-up predicts α = 1. As a consequence, for α = O(1), the model can lead to a highly distinctive pattern of sparticle masses at TeV scale, particularly when α = 2
Phenomenology of MaVaN’s Models in Reactor Neutrino Data
Directory of Open Access Journals (Sweden)
M. F. Carneiro
2013-01-01
Full Text Available Mass Varying Neutrinos (MaVaN’s mechanisms were proposed to link the neutrino mass scale with the dark energy density, addressing the coincidence problem. In some scenarios, this mass can present a dependence on the baryonic density felt by neutrinos, creating an effective neutrino mass that depends both on the neutrino and baryonic densities. In this work, we study the phenomenological consequence of MaVaN’s scenarios in which the matter density dependence is induced by Yukawa interactions of a light neutral scalar particle which couples to neutrinos and matter. Under the assumption of one mass scale dominance, we perform an analysis of KamLAND neutrino data which depends on 4 parameters: the two standard oscillation parameters, Δm0,212 and tan2θ12, and two new coefficients which parameterize the environment dependence of neutrino mass. We introduce an Earth’s crust model to compute precisely the density in each point along the neutrino trajectory. We show that this new description of density does not affect the analysis with the standard model case. With the MaVaN model, we observe a first order effect in lower density, which leads to an improvement on the data description.
A new magnetorheological fluid–elastomer mount: phenomenological modeling and experimental study
International Nuclear Information System (INIS)
Wang, Xiaojie; Gordaninejad, Faramarz
2009-01-01
A new magnetorheological (MR) mount consisting of an MR fluid encapsulated in a polymeric solid is presented. The mechanical properties of the proposed mount are controllable through an externally applied magnetic field. The dynamic behavior of this system under various magnetic fields has been investigated by means of oscillatory compression cycles over a frequency range of 0.1–10 Hz for various deformations (less than 1 mm). The energy dissipation in the material is analyzed as related to strain amplitude, strain frequency and magnetic field strength. The field induced damping mechanism is discussed in terms of the damping exponent. A phenomenological model is presented to account for the dynamic behavior of the MR fluid–elastomer mount's vibration isolators under oscillatory compressive deformations. This model is a two-element system comprised of a variable friction damper and a nonlinear spring. The parameters of the model have been identified by a series of harmonic loading tests. The theoretical and experimental results are in excellent agreement. Both experimental and theoretical results have demonstrated that the proposed MR fluid–elastomer mounts show promise in applications where tuning vibration characteristics of a system are desired, such as altering natural frequencies, mode shapes, and damping properties
A model of spontaneous CP violation and neutrino phenomenology with approximate LμLτ symmetry
International Nuclear Information System (INIS)
Adhikary, Biswajit
2013-01-01
We introduce a model where CP and Z 2 symmetry violate spontaneously. CP and Z 2 violate spontaneously through a singlet complex scalar S which obtains vacuum expectation value with phase S = Ve iα /2 and this is the only source of CP violation in this model. Low energy CP violation in the leptonic sector is connected to the large scale phase by three generations of left and right handed singlet fermions in the inverse see-saw like structure of model. We have considered approximate LμL τ symmetry to study neutrino phenomenology. Considering two mass square differences and three mixing angles including non zero θ 13 to their experimental 3σ limit, we have restricted the Lagrangian parameters for reasonably small value of L μ L τ symmetry breaking parameters. We have predicted the three masses, Dirac phase and two Majorana phases. We also evaluate CP violating parameter J CP , sum-mass and effective mass parameter involved in neutrino less double beta decay. (author)
Directory of Open Access Journals (Sweden)
S. I. Bartsev
2015-06-01
Full Text Available A possible method for experimental determination of parameters of the previously proposed continual mathematical model of soil organic matter transformation is theoretically considered in this paper. The previously proposed by the authors continual model of soil organic matter transformation, based on using the rate of matter transformation as a continual scale of its recalcitrance, describes the transformation process phenomenologically without going into detail of microbiological mechanisms of transformation. Thereby simplicity of the model is achieved. The model is represented in form of one differential equation in firstorder partial derivatives, which has an analytical solution in elementary functions. The model equation contains a small number of empirical parameters which generally characterize environmental conditions where the matter transformation process occurs and initial properties of the plant litter. Given the values of these parameters, it is possible to calculate dynamics of soil organic matter stocks and its distribution over transformation rate. In the present study, possible approaches for determination of the model parameters are considered and a simple method of their experimental measurement is proposed. An experiment of an incubation of chemically homogeneous samples in soil and multiple sequential measurement of the sample mass loss with time is proposed. An equation of time dynamics of mass loss of incubated homogeneous sample is derived from the basic assumption of the presented soil organic matter transformation model. Thus, fitting by the least squares method the parameters of sample mass loss curve calculated according the proposed mass loss dynamics equation allows to determine the parameters of the general equation of soil organic transformation model.
Phenomenological supersymmetry
International Nuclear Information System (INIS)
Zwirner, F.
1992-01-01
The motivations for low-energy supersymmetry and the main features of the minimal supersymmetric extension of the Standard Model are reviewed. Possible non-minimal models and the issue of gauge coupling unification are also discussed. Theoretical results relevant for supersymmetric particle searches at present and future accelerators are presented. In particular, recent results on radiative corrections to supersymmetric Higgs boson masses and couplings are summarized, and their implications for experimental searches are discussed in some detail. (author). 87 refs, 9 figs
Energy Technology Data Exchange (ETDEWEB)
Liebler, Stefan Rainer
2011-09-15
The standard model of particle physics lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. Using lepton number violating terms in the context of bilinear R-parity violation and the {mu}{nu}SSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. This thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and
International Nuclear Information System (INIS)
Liebler, Stefan Rainer
2011-09-01
The standard model of particle physics lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. Using lepton number violating terms in the context of bilinear R-parity violation and the μνSSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. This thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and leptons in
The noncommutative standard model. Construction beyond leading order in θ and collider phenomenology
International Nuclear Information System (INIS)
Alboteanu, A.M.
2007-01-01
Within this work we study the phenomenological consequences of a possible realization of QFT on noncommutative space-time. In the first part we performed a phenomenological analysis of the hadronic process pp → Z γ → l + l - γ at the LHC and of electron-positron pair annihilation into a Z boson and a photon at the International Linear Collider (ILC). The noncommutative extension of the SM considered within this work relies on two building blocks: the Moyal-Weyl *-product of functions on ordinary space-time and the Seiberg-Witten maps. A consequence of the noncommutativity of space-time is the violation of rotational invariance with respect to the beam axis. This effect shows up in the azimuthal dependence of cross sections, which is absent in the SM as well as in other models beyond the SM. We have found this dependence to be best suited for deriving the sensitivity bounds on the noncommutative scale NC. By studying pp→Z γ →l + l - γ to first order in the noncommutative parameter θ, we show in the first part of this work that measurements at the LHC are sensitive to noncommutative effects only in certain cases, giving bounds on the noncommutative scale of Λ NC >or similar 1.2 TeV. By means of e + e - → Z γ → l + l - γ to O(θ) we have shown that ILC measurements are complementary to LHC measurements of the noncommutative parameters. In addition, the bounds on Λ NC derived from the ILC are significantly higher and reach Λ NC >or similar 6 TeV. In the second part of this work we expand the neutral current sector of the noncommutative SM to second order in θ. We found that, against the general expectation, the theory must be enlarged by additional parameters. The new parameters enter the theory as ambiguities of the Seiberg-Witten maps. The latter are not uniquely determined and differ by homogeneous solutions of the gauge equivalence equations. The expectation was that the ambiguities correspond to field redefinitions and therefore should
Energy Technology Data Exchange (ETDEWEB)
Alboteanu, A.M.
2007-07-01
Within this work we study the phenomenological consequences of a possible realization of QFT on noncommutative space-time. In the first part we performed a phenomenological analysis of the hadronic process pp {yields} Z{sub {gamma}} {yields} l{sup +}l{sup -}{gamma} at the LHC and of electron-positron pair annihilation into a Z boson and a photon at the International Linear Collider (ILC). The noncommutative extension of the SM considered within this work relies on two building blocks: the Moyal-Weyl *-product of functions on ordinary space-time and the Seiberg-Witten maps. A consequence of the noncommutativity of space-time is the violation of rotational invariance with respect to the beam axis. This effect shows up in the azimuthal dependence of cross sections, which is absent in the SM as well as in other models beyond the SM. We have found this dependence to be best suited for deriving the sensitivity bounds on the noncommutative scale NC. By studying pp{yields}Z{sub {gamma}} {yields}l{sup +}l{sup -}{gamma} to first order in the noncommutative parameter {theta}, we show in the first part of this work that measurements at the LHC are sensitive to noncommutative effects only in certain cases, giving bounds on the noncommutative scale of {lambda}{sub NC} >or similar 1.2 TeV. By means of e{sup +}e{sup -} {yields} Z{sub {gamma}} {yields} l{sup +}l{sup -}{gamma} to O({theta}) we have shown that ILC measurements are complementary to LHC measurements of the noncommutative parameters. In addition, the bounds on {lambda}{sub NC} derived from the ILC are significantly higher and reach {lambda}{sub NC} >or similar 6 TeV. In the second part of this work we expand the neutral current sector of the noncommutative SM to second order in {theta}. We found that, against the general expectation, the theory must be enlarged by additional parameters. The new parameters enter the theory as ambiguities of the Seiberg-Witten maps. The latter are not uniquely determined and differ by
Gyrofluid modeling and phenomenology of low-βe Alfvén wave turbulence
Passot, T.; Sulem, P. L.; Tassi, E.
2018-04-01
A two-field reduced gyrofluid model including electron inertia, ion finite Larmor radius corrections, and parallel magnetic field fluctuations is derived from the model of Brizard [Brizard, Phys. Fluids B 4, 1213 (1992)]. It assumes low βe, where βe indicates the ratio between the equilibrium electron pressure and the magnetic pressure exerted by a strong uniform magnetic guide field, but permits an arbitrary ion-to-electron equilibrium temperature ratio. It is shown to have a noncanonical Hamiltonian structure and provides a convenient framework for studying kinetic Alfvén wave turbulence, from magnetohydrodynamics to sub-de scales (where de holds for the electron skin depth). Magnetic energy spectra are phenomenologically determined within energy and generalized cross-helicity cascades in the perpendicular spectral plane. Arguments based on absolute statistical equilibria are used to predict the direction of the transfers, pointing out that, within the sub-ion range, the generalized cross-helicity could display an inverse cascade if injected at small scales, for example by reconnection processes.
Ramasesha, Krupa; De Marco, Luigi; Horning, Andrew D; Mandal, Aritra; Tokmakoff, Andrei
2012-04-07
We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.
Gao, Siwen; Wollgramm, Philip; Eggeler, Gunther; Ma, Anxin; Schreuer, Jürgen; Hartmaier, Alexander
2018-07-01
For the purpose of good reproduction and prediction of creep deformation of nickel-base single crystal superalloys at intermediate temperatures, a phenomenological creep model is developed, which accounts for the typical γ/γ‧ microstructure and the individual thermally activated elementary deformation processes in different phases. The internal stresses from γ/γ‧ lattice mismatch and deformation heterogeneity are introduced through an efficient method. The strain hardening, the Orowan stress, the softening effect due to dislocation climb along γ/γ‧ interfaces and the formation of dislocation ribbons, and the Kear–Wilsdorf-lock effect as key factors in the main flow rules are formulated properly. By taking the cube slip in \\{100\\} slip systems and \\{111\\} twinning mechanisms into account, the creep behavior for [110] and [111] loading directions are well captured. Without specific interaction and evolution of dislocations, the simulations of this model achieve a good agreement with experimental creep results and reproduce temperature, stress and crystallographic orientation dependences. It can also be used as the constitutive relation at material points in finite element calculations with complex boundary conditions in various components of superalloys to predict creep behavior and local stress distributions.
LHC Phenomenology and Cosmology of String-Inspired Intersecting D-Brane Models
Anchordoqui, Luis A.; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R.; Vlcek, Brian
2012-01-01
We discuss the phenomenology and cosmology of a Standard-like Model inspired by string theory, in which the gauge fields are localized on D-branes wrapping certain compact cycles on an underlying geometry, whose intersection can give rise to chiral fermions. The energy scale associated with string physics is assumed to be near the Planck mass. To develop our program in the simplest way, we work within the construct of a minimal model with gauge-extended sector U (3)_B \\times Sp (1)_L \\times U (1)_{I_R} \\times U (1)_L. The resulting U (1) content gauges the baryon number B, the lepton number L, and a third additional abelian charge I_R which acts as the third isospin component of an SU(2)_R. All mixing angles and gauge couplings are fixed by rotation of the U(1) gauge fields to a basis diagonal in hypercharge Y and in an anomaly free linear combination of I_R and B-L. The anomalous $Z'$ gauge boson obtains a string scale St\\"uckelberg mass via a 4D version of the Green-Schwarz mechanism. To keep the realizatio...
Testing a phenomenologically extended DGP model with upcoming weak lensing surveys
Energy Technology Data Exchange (ETDEWEB)
Camera, Stefano; Diaferio, Antonaldo [Dipartimento di Fisica Generale ' ' A. Avogadro' ' , Università di Torino, via P. Giuria 1, 10125 Torino (Italy); Cardone, Vincenzo F., E-mail: camera@ph.unito.it, E-mail: diaferio@ph.unito.it, E-mail: winnyenodrac@gmail.com [Dipartimento di Scienze e Tecnologie per l' Ambiente e il Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche (Italy)
2011-01-01
A phenomenological extension of the well-known brane-world cosmology of Dvali, Gabadadze and Porrati (eDGP) has recently been proposed. In this model, a cosmological-constant-like term is explicitly present as a non-vanishing tension σ on the brane, and an extra parameter α tunes the cross-over scale r{sub c}, the scale at which higher dimensional gravity effects become non negligible. Since the Hubble parameter in this cosmology reproduces the same ΛCDM expansion history, we study how upcoming weak lensing surveys, such as Euclid and DES (Dark Energy Survey), can confirm or rule out this class of models. We perform Monte Carlo Markov Chain simulations to determine the parameters of the model, using Type Ia Supernovæ, H(z) data, Gamma Ray Bursts and Baryon Acoustic Oscillations. We also fit the power spectrum of the temperature anisotropies of the Cosmic Microwave Background to obtain the correct normalisation for the density perturbation power spectrum. Then, we compute the matter and the cosmic shear power spectra, both in the linear and non-linear régimes. The latter is calculated with the two different approaches of Hu and Sawicki (2007) (HS) and Khoury and Wyman (2009) (KW). With the eDGP parameters coming from the Markov Chains, KW reproduces the ΛCDM matter power spectrum at both linear and non-linear scales and the ΛCDM and eDGP shear signals are degenerate. This result does not hold with the HS prescription. Indeed, Euclid can distinguish the eDGP model from ΛCDM because their expected power spectra roughly differ by the 3σ uncertainty in the angular scale range 700∼
Testing a phenomenologically extended DGP model with upcoming weak lensing surveys
International Nuclear Information System (INIS)
Camera, Stefano; Diaferio, Antonaldo; Cardone, Vincenzo F.
2011-01-01
A phenomenological extension of the well-known brane-world cosmology of Dvali, Gabadadze and Porrati (eDGP) has recently been proposed. In this model, a cosmological-constant-like term is explicitly present as a non-vanishing tension σ on the brane, and an extra parameter α tunes the cross-over scale r c , the scale at which higher dimensional gravity effects become non negligible. Since the Hubble parameter in this cosmology reproduces the same ΛCDM expansion history, we study how upcoming weak lensing surveys, such as Euclid and DES (Dark Energy Survey), can confirm or rule out this class of models. We perform Monte Carlo Markov Chain simulations to determine the parameters of the model, using Type Ia Supernovæ, H(z) data, Gamma Ray Bursts and Baryon Acoustic Oscillations. We also fit the power spectrum of the temperature anisotropies of the Cosmic Microwave Background to obtain the correct normalisation for the density perturbation power spectrum. Then, we compute the matter and the cosmic shear power spectra, both in the linear and non-linear régimes. The latter is calculated with the two different approaches of Hu and Sawicki (2007) (HS) and Khoury and Wyman (2009) (KW). With the eDGP parameters coming from the Markov Chains, KW reproduces the ΛCDM matter power spectrum at both linear and non-linear scales and the ΛCDM and eDGP shear signals are degenerate. This result does not hold with the HS prescription. Indeed, Euclid can distinguish the eDGP model from ΛCDM because their expected power spectra roughly differ by the 3σ uncertainty in the angular scale range 700∼< l∼<3000; on the contrary, the two models differ at most by the 1σ uncertainty over the range 500∼< l∼<3000 in the DES experiment and they are virtually indistinguishable
Kenkmann, Thomas; Hergarten, Stefan; Kuhn, Thomas; Wilk, Jakob
2016-08-01
Several models of shatter cone formation require a heterogeneity at the cone apex of high impedance mismatch to the surrounding bulk rock. This heterogeneity is the source of spherically expanding waves that interact with the planar shock front or the following release wave. While these models are capable of explaining the overall conical shape of shatter cones, they are not capable of explaining the subcone structure and the diverging and branching striations that characterize the surface of shatter cones and lead to the so-called horse-tailing effect. Here, we use the hierarchical arrangement of subcone ridges of shatter cone surfaces as key for understanding their formation. Tracing a single subcone ridge from its apex downward reveals that each ridge branches after some distance into two symmetrically equivalent subcone ridges. This pattern is repeated to form new branches. We propose that subcone ridges represent convex-curved fracture surfaces and their intersection corresponds to the bifurcation axis. The characteristic diverging striations are interpreted as the intersection lineations delimiting each subcone. Multiple symmetric crack branching is the result of rapid fracture propagation that may approach the Raleigh wave speed. We present a phenomenological model that fully constructs the shatter cone geometry to any order. The overall cone geometry including apex angle of the enveloping cone and the degree of concavity (horse-tailing) is largely governed by the convexity of the subcone ridges. Straight cones of various apical angles, constant slope, and constant bifurcation angles form if the subcone convexity is low (30°). Increasing subcone convexity leads to a stronger horse-tailing effect and the bifurcation angles increase with increasing distance from the enveloping cone apex. The model predicts possible triples of enveloping cone angle, bifurcation angle, and subcone angle. Measurements of these quantities on four shatter cones from different
A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.
Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S
2017-06-01
The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were
Directory of Open Access Journals (Sweden)
Felipe Quintão de Almeida
2013-12-01
Full Text Available This paper discusses the uses of phenomenology in Physical Education in Brazil. In methodological terms, it describes five studies that belong to this theoretical framework in the field, represented by authors such as Silvino Santin, Manuel Sérgio, Wagner Wey Moreira, Elenor Kunz and Terezinha Petrúcia da Nóbrega. It problematizes some aspects of this reception, by highlighting not only its boundaries, but also the challenges for research and reflection within this tradition in physical education
Fluctuational phenomenological model for the magnetodissipation in high-Tc superconductors
International Nuclear Information System (INIS)
Sarti, S.; Fastampa, R.; Giura, M.; Silva, E.; Marcon, R.
1995-01-01
We develop a phenomenological model for the magnetoresistivity in high-T c superconductors that includes the contribution of the fluctuation excess conductivity and the effects of the phase slip due to thermal motion of vortices above the irreversibility line over local depressions of the order parameter. The fluctuation conductivity in the proximity of the mean-field transition is inserted into the final expression for the resistivity through a scaling function, obtained theoretically by Ullah and Dorsey. The behavior of the system of vortices is taken into account assuming that below the irreversibility line the solid phase is a glass phase. Crossing the irreversibility line, the vortex system becomes a viscous fluid and, finally, a liquid. It is possible to fully describe the resistivity by recalling some of the main concepts of the conventional glass transitions. We obtain a compact expression for the resistivity that we compare to previously reported experimental data in twinned and untwinned Y-Ba-Cu-O single crystals. With very few parameters we can fit extremely well the resistive transitions in the full temperature and field range. Also, the transitions in very pure, untwinned crystals can be entirely fitted, including the ''kink' at the so-called melting transition. Moreover, the resistivity is shown to be heavily influenced by fluctuations
Directory of Open Access Journals (Sweden)
Claude Valery Ngayihi Abbe
2016-01-01
Full Text Available To meet more stringent norms and standards concerning engine performances and emissions, engine manufacturers need to develop new technologies enhancing the nonpolluting properties of the fuels. In that sense, the testing and development of alternative fuels such as biodiesel are of great importance. Fuel testing is nowadays a matter of experimental and numerical work. Researches on diesel engine’s fuel involve the use of surrogates, for which the combustion mechanisms are well known and relatively similar to the investigated fuel. Biodiesel, due to its complex molecular configuration, is still the subject of numerous investigations in that area. This study presents the comparison of four biodiesel surrogates, methyl-butanoate, ethyl-butyrate, methyl-decanoate, and methyl-9-decenoate, in a 0D phenomenological combustion model. They were investigated for in-cylinder pressure, thermal efficiency, and NOx emissions. Experiments were performed on a six-cylinder turbocharged DI diesel engine fuelled by methyl ester (MEB and ethyl ester (EEB biodiesel from wasted frying oil. Results showed that, among the four surrogates, methyl butanoate presented better results for all the studied parameters. In-cylinder pressure and thermal efficiency were predicted with good accuracy by the four surrogates. NOx emissions were well predicted for methyl butanoate but for the other three gave approximation errors over 50%.
Energetics of glucose metabolism: a phenomenological approach to metabolic network modeling.
Diederichs, Frank
2010-08-12
A new formalism to describe metabolic fluxes as well as membrane transport processes was developed. The new flux equations are comparable to other phenomenological laws. Michaelis-Menten like expressions, as well as flux equations of nonequilibrium thermodynamics, can be regarded as special cases of these new equations. For metabolic network modeling, variable conductances and driving forces are required to enable pathway control and to allow a rapid response to perturbations. When applied to oxidative phosphorylation, results of simulations show that whole oxidative phosphorylation cannot be described as a two-flux-system according to nonequilibrium thermodynamics, although all coupled reactions per se fulfill the equations of this theory. Simulations show that activation of ATP-coupled load reactions plus glucose oxidation is brought about by an increase of only two different conductances: a [Ca(2+)] dependent increase of cytosolic load conductances, and an increase of phosphofructokinase conductance by [AMP], which in turn becomes increased through [ADP] generation by those load reactions. In ventricular myocytes, this feedback mechanism is sufficient to increase cellular power output and O(2) consumption several fold, without any appreciable impairment of energetic parameters. Glucose oxidation proceeds near maximal power output, since transformed input and output conductances are nearly equal, yielding an efficiency of about 0.5. This conductance matching is fulfilled also by glucose oxidation of β-cells. But, as a price for the metabolic mechanism of glucose recognition, β-cells have only a limited capability to increase their power output.
Edmiston, John Kearney
This work explores the field of continuum plasticity from two fronts. On the theory side, we establish a complete specification of a phenomenological theory of plasticity for single crystals. The model serves as an alternative to the popular crystal plasticity formulation. Such a model has been previously proposed in the literature; the new contribution made here is the constitutive framework and resulting simulations. We calibrate the model to available data and use a simple numerical method to explore resulting predictions in plane strain boundary value problems. Results show promise for further investigation of the plasticity model. Conveniently, this theory comes with a corresponding experimental tool in X-ray diffraction. Recent advances in hardware technology at synchrotron sources have led to an increased use of the technique for studies of plasticity in the bulk of materials. The method has been successful in qualitative observations of material behavior, but its use in quantitative studies seeking to extract material properties is open for investigation. Therefore in the second component of the thesis several contributions are made to synchrotron X-ray diffraction experiments, in terms of method development as well as the quantitative reporting of constitutive parameters. In the area of method development, analytical tools are developed to determine the available precision of this type of experiment—a crucial aspect to determine if the method is to be used for quantitative studies. We also extract kinematic information relating to intragranular inhomogeneity which is not accessible with traditional methods of data analysis. In the area of constitutive parameter identification, we use the method to extract parameters corresponding to the proposed formulation of plasticity for a titanium alloy (HCP) which is continuously sampled by X-ray diffraction during uniaxial extension. These results and the lessons learned from the efforts constitute early reporting
International Nuclear Information System (INIS)
Grishin, V.G.; Kladnitskaya, E.N.
1985-01-01
A phenomenological model for inelastic nucleus-nucleus interactions at momenta below 5 GeV/c per nucleon is described. Particle interactions inside the interacting nuclei are described by phenomenological models of hadron-nucleus and hadron-nucleon interactions. The Monte-Carlo model provides the kinematic variables for a set of events under study. The comparison of the model inclusive distri-- butions for different particles and nucleus-nucleus interactions agrees well with the experimental data
International Nuclear Information System (INIS)
Lu, Haibao; Huang, Wei Min
2013-01-01
We present a phenomenological approach to study the viscoelastic transition and working mechanism of the chemo-responsive shape memory effect (SME) in amorphous shape memory polymers (SMPs). Both the copolymerization viscosity model and Doolittle equation are initially applied to quantitatively identify the influential factors behind the chemo-responsive SME in the SMPs exposure to a right solvent. After this, the Williams–Landel–Ferry (WLF) equation is employed to couple the viscosity (η), time–temperature shift factor (α τ ) and glass transition temperature (T g ) in amorphous polymers. By means of combining the WLF and Arrhenius equations together, the inductively decreased transition temperature is confirmed as the driving force for the chemo-responsive SME. Finally, a phenomenological viscoelastic model is proposed and then verified by the available experimental data reported in the literature and then compared with the simulation results of a semi-empirical model. This phenomenological model is expected to provide a powerful simulation tool for theoretical prediction and experimental substantiation of the chemo-responsive SME in amorphous SMPs by viscoelastic transition. (paper)
Felstead, Ian S; Springett, Kate
2016-02-01
Patients' expectations of being cared for by a nurse who is caring, competent, and professional are particularly pertinent in current health and social care practice. The current drive for NHS values-based recruitment serves to strengthen this. How nursing students' development of professionalism is shaped is not fully known, though it is acknowledged that their practice experience strongly shapes behaviour. This study (in 2013-14) explored twelve adult nursing students' lived experiences of role modelling through an interpretive phenomenological analysis approach, aiming to understand the impact on their development as professional practitioners. Clinical nurses influenced student development consistently. Some students reported that their experiences allowed them to learn how not to behave in practice; a productive learning experience despite content. Students also felt senior staff influence on their development to be strong, citing 'leading by example.' The impact of patients on student professional development was also a key finding. Through analysing information gained, identifying and educating practice-based mentors who are ready, willing, and able to role model professional attributes appear crucial to developing professionalism in nursing students. Those involved in nurse education, whether service providers or universities, may wish to acknowledge the influence of clinical nurse behaviour observed by students both independent of and in direct relation to care delivery and the impact on student nurse professional development. A corollary relates to how students should be guided and briefed/debriefed to work with a staff to ensure their exposure to a variety of practice behaviours. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phenomenology of the spontaneous C P violation in SU(3)L x U(1)Y electroweak models
International Nuclear Information System (INIS)
Epele, Luis N.; Gomez Dumm, Daniel A.
1994-01-01
This work studies the phenomenological consequence of the spontaneous C P violation in a SU(3) L x U(1) Y model with three Higgs triplets and one sextuplet, which has been recently proposed. Since this C P-violating effects are due to the presence of complex vacuum expectation values in the Higgs sector, our analysis requires a detailed study of the enlarged potential
Superstring inspired phenomenology
International Nuclear Information System (INIS)
Binetruy, P.
1988-01-01
Recent progress in superstring model building is reviewed with an emphasis on the general features of the models obtained. The problems associated with supersymmetry breaking and intermediate gauge symmetry breaking (M W I GUT ) are described. Finally, the phenomenology of these models is summarized, with a discussion of the role that new experimental results could play to help clearing up the above difficulties
Phenomenological modeling and study of a catalytic membrane reactor for water detritiation
International Nuclear Information System (INIS)
Mascarade, Jeremy
2015-01-01
particle bed but reaches a maximum with the variation of heavy water content in the feed stream. According to these observations, a phenomenological 2D model, describing momentum and mass transfers, was developed. Simulations results are in good agreement with the general behavior observed experimentally. Results show that modeling of the permeation of heteronuclear species should account for crossed-interactions of the hydrogen isotopologues on the mass transfer of one specie. Nevertheless, thanks to the modeling approach used and the similitude rules existing between isotopologues' physical and chemical properties (Graham's law), this model can be easily extrapolated to the processing of tritium containing mixtures. (author)
International Nuclear Information System (INIS)
Clark, T.E.; Love, S.T.; Nitta, Muneto; Veldhuis, T. ter; Xiong, C.
2009-01-01
Local oscillations of the brane world are manifested as massive vector fields. Their coupling to the Standard Model can be obtained using the method of nonlinear realizations of the spontaneously broken higher-dimensional space-time symmetries, and to an extent, are model independent. Phenomenological limits on these vector field parameters are obtained using LEP collider data and dark matter constraints
DEFF Research Database (Denmark)
Gahrn-Andersen, Rasmus; Cowley, Stephen
2017-01-01
Although cognitive science has recently asked how human sociality is constituted, there is no clear and consistent account of the emergence of human style social agency. Previously, we have critiqued views based on 'participatory sense-making' by arguing that agency requires a distinctive kind...... of phenomenology that enables a diachronic social experience. In advancing the positive argument, we link developmental psychology to phenomenological insights by focusing on child-caregiver dynamics around the middle of the second year. Having developed very basic social skills, an infant comes to feel normative....... Developmental events thus transform the child's experience and drive the emergence of social agency. Once the child has successfully dealt with the environment’s normative perturbations she is able to develop the skills of a fully-fledged human social agent....
Phenomenology of the Higgs at the hadron colliders: from the standard model to supersymmetry
International Nuclear Information System (INIS)
Baglio, J.
2011-10-01
This thesis has been conducted in the context of one of the utmost important searches at current hadron colliders, that is the search for the Higgs boson, the remnant of the electroweak symmetry breaking. We wish to study the phenomenology of the Higgs boson in both the Standard Model (SM) framework and its minimal Supersymmetric extension (MSSM). After a review of the Standard Model in a first part and of the key reasons and ingredients for the supersymmetry in general and the MSSM in particular in a third part, we will present the calculation of the inclusive production cross sections of the Higgs boson in the main channels at the two current hadron colliders that are the Fermilab Tevatron collider and the CERN Large Hadron Collider (LHC), starting by the SM case in the second part and presenting the MSSM results, where we have 5 Higgs bosons and focusing on the two main production channels that are the gluon gluon fusion and the bottom quarks fusion, in the fourth part. The main output of this calculation is the extensive study of the various theoretical uncertainties that affect the predictions: the scale uncertainties which probe our ignorance of the higher-order terms in a fixed order perturbative calculation, the parton distribution functions (PDF) uncertainties and its related uncertainties from the value of the strong coupling constant, and the uncertainties coming from the use of an effective field theory to simplify the hard calculation. We then move on to the study of the Higgs decay branching ratios which are also affected by diverse uncertainties. We will present the combination of the production cross sections and decay branching fractions in some specific cases which will show interesting consequences on the total theoretical uncertainties. We move on to present the results confronted to experiments and show that the theoretical uncertainties have a significant impact on the inferred limits either in the SM search for the Higgs boson or on the MSSM
International Nuclear Information System (INIS)
D'Onofrio, Alberto
2009-01-01
In this paper we study and extend the mechanistic mean field theory of growth of cellular populations proposed by Mombach et al. [Mombach JCM, Lemke N, Bodmann BEJ, Idiart MAP. A mean-field theory of cellular growth. Europhys Lett 2002;59:923-928] (MLBI model), and we demonstrate that the original model and our generalizations lead to inferences of biological interest. In the first part of this paper, we show that the model in study is widely general since it admits, as particular cases, the main phenomenological models of cellular growth. In the second part of this work, we generalize the MLBI model to a wider family of models by allowing the cells to have a generic unspecified biologically plausible interaction. Then, we derive a relationship between this generic microscopic interaction function and the growth rate of the corresponding macroscopic model. Finally, we propose to use this relationship in order to help the investigation of the biological plausibility of phenomenological models of cancer growth.
Study of theory and phenomenology of some classes of family symmetry and unification models
International Nuclear Information System (INIS)
Kane, Gordon L.; King, Steve F.; Peddie, Iain N.R.; Velasco-Sevilla, Liliana
2005-01-01
We review and compare theoretically and phenomenologically a number of possible family symmetries, which when combined with unification, could be important in explaining quark, lepton and neutrino masses and mixings, providing new results in several cases. Theoretical possibilities include abelian or non-abelian, symmetric or non symmetric Yukawa matrices, Grand Unification or not. Our main focus is on anomaly-free U(1) family symmetry combined with SU(5) unification, although we also discuss other possibilities. We provide a detailed phenomenological fit of the fermion masses and mixings for several examples, and discuss the supersymmetric flavour issues in such theories, including a detailed analysis of lepton flavour violation. We show that it is not possible to quantitatively and decisively discriminate between these different theoretical possibilities at the present time
International Nuclear Information System (INIS)
Cokelaer, T
2007-01-01
Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from ground-based interferometers. One of the key aspects of the detection process is the deployment of a set of templates, also called a template bank, to cover the astrophysically interesting region of the parameter space. In a companion paper, we described the template bank algorithm used in the analysis of Laser Interferometer Gravitational-Wave Observatory (LIGO) data to search for signals from non-spinning binaries made of neutron star and/or stellar-mass black holes; this template bank is based upon physical template families. In this paper, we describe the phenomenological template bank that was used to search for gravitational waves from non-spinning black hole binaries (from stellar mass formation) in the second, third and fourth LIGO science runs. We briefly explain the design of the bank, whose templates are based on a phenomenological detection template family. We show that this template bank gives matches greater than 95% with the physical template families that are expected to be captured by the phenomenological templates
Directory of Open Access Journals (Sweden)
Ivan L. Andronov
2015-06-01
Full Text Available We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 = VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally distorted components, and an asymmetry of the maxima (the O’Connell effect. The periodogram analysis confirms the cycle numbering of Andronov et al. (2012 and for the initial approximation, the ephemeris is used as follows: Min I. BJD = 2456074.4904+0.3348837E . For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method “NAV” (“New Algol Variable” using local specific shapes for the eclipse. Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are presented. As results of our phenomenological model, we obtained for the inclination i=90°, M1=0.745M◉, M2=0.854M◉, M=M1+M2=1.599M◉, the orbital separation a=1.65·109m=2.37R◉ and relative radii r1=R1/a=0.314 and r2=R2/a=0.360. These estimates may be used as preliminary starting values for further modeling using extended physical models based on the Wilson & Devinney (1971 code and it's extensions
Andronov, Ivan L.; Kim, Yonggi; Kim, Young-Hee; Yoon, Joh-Na; Chinarova, Lidia L.; Tkachenko, Mariia G.
2015-06-01
We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 = VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally distorted components, and an asymmetry of the maxima (the O'Connell effect). The periodogram analysis confirms the cycle numbering of Andronov et al. (2012) and for the initial approximation, the ephemeris is used as follows: Min I. BJD = 2456074.4904+0.3348837E . For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method "NAV" ("New Algol Variable") using local specific shapes for the eclipse. Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are presented. As results of our phenomenological model, we obtained for the inclination i=90°, M1=0.745M⊙, M2=0.854M⊙, M=M1+M2=1.599M⊙, the orbital separation a=1.65°109m=2.37R⊙ and relative radii r1=R1/a=0.314 and r2=R2/a=0.360. These estimates may be used as preliminary starting values for further modeling using extended physical models based on the Wilson & Devinney (1971) code and it's extensions
Supersymmetry and Superstring Phenomenology
Energy Technology Data Exchange (ETDEWEB)
Gaillard, Mary K; Gaillard, Mary K.; Zumino, Bruno
2008-05-05
We briefly cover the early history of supersymmetry, describe the relation of SUSY quantum field theories to superstring theories and explain why they are considered a likely tool to describe the phenomenology of high energy particle theory beyond the Standard Model.
Pellenq, Roland J-M; Coasne, Benoit; Denoyel, Renaud O; Coussy, O
2009-02-03
A simple phenomenological model that describes capillary condensation and evaporation of pure fluids confined in cylindrical mesopores is presented. Following the work of Celestini (Celestini, F. Phys. Lett. A 1997, 228, 84), the free energy density of the system is derived using interfacial tensions and a corrective term that accounts for the interaction coupling between the vapor/adsorbed liquid and the adsorbed liquid/adsorbent interfaces. This corrective term is shown to be consistent with the Gibbs adsorption isotherm and assessed by standard adsorption tests. This model reveals that capillary condensation and evaporation are metastable and equilibrium processes, respectively, hence exhibiting the existence of a hysteresis loop inadsorption/desorption isotherm that is well-known in experiment. We extend the phenomenological model of Celestini to give a quantitative description of adsorption on the pore wall and hysteresis width evolution with temperature and confinement. Direct quantitative comparison is made with experimental data for confined argon. Used as a characterizing tool, this integrated model allows in a single fit of an experimental adsorption/desorption isotherm assessing essential characterization data such as the specific surface area, pore volume, and mean pore size.
Energy Technology Data Exchange (ETDEWEB)
Pawloski, G.A.
1999-09-21
Although it is well accepted that underground nuclear explosions modify the in situ geologic media around the explosion point, the details of these changes are neither well understood nor well documented. As part of the engineering and containment process before a nuclear test, the physical environment is characterized to some extent to predict how the explosion will interact with the in situ media. However, a more detailed characterization of the physical environment surrounding an expended site is needed to successfully model radionuclide transport in the groundwater away from the detonation point. It is important to understand how the media have been altered and where the radionuclides are deposited. Once understood, this information on modified geologic media can be incorporated into a phenomenological model that is suitable for input to computer simulations of groundwater flow and radionuclide transport. The primary goals of this study are to (1) identify the modification of the media at a pertinent scale, and (2) provide this information to researchers modeling radionuclide transport in groundwater for the US Department of Energy (DOE) Nevada Operations Office Underground Test Area (UGTA) Project. Results from this study are most applicable at near-field scale (a model domain of about 500 m) and intermediate-field scale (a model domain of about 5 km) for which detailed information can be maximized as it is incorporated in the modeling grids. UGTA collected data on radionuclides in groundwater during recent drilling at the ER-20-5 site, which is near BENHAM and TYBO on Pahute Mesa at the Nevada Test Site (NTS). Computer simulations are being performed to better understand radionuclide transport. The objectives of this modeling effort include: evaluating site-specific information from the BENHAM and TYBO tests on Pahute Mesa; augmenting the above data set with generalized containment data; and developing a phenomenological model suitable for input to
International Nuclear Information System (INIS)
Morrissey, David E.; Pierce, Aaron
2008-01-01
In the next-to-minimal supersymmetric standard model (NMSSM), the presence of light pseudoscalars can have a dramatic effect on the decays of the standard model-like Higgs boson. These pseudoscalars are naturally light if supersymmetry breaking preserves an approximate U(1) R symmetry, spontaneously broken when the Higgs bosons take on their expectation values. We investigate two classes of theories that possess such an approximate U(1) R at the mediation scale: modifications of gauge and gaugino mediation. In the models we consider, we find two disjoint classes of phenomenologically allowed parameter regions. One of these regions corresponds to a limit where the singlet of the NMSSM largely decouples. The other can give rise to a standard model-like Higgs boson with dominant branching into light pseudoscalars.
International Nuclear Information System (INIS)
Mukhamedshin, Rauf
2009-01-01
Simulations show that a phenomenon of coplanarity of most energetic subcores of γ-ray-hadron families found in mountain-based and stratospheric X-ray-emulsion chamber experiments requires to introduce a coplanar particle generation with large transverse momenta in hadron interactions at superhigh energies. Some physical mechanisms are considered. A phenomenological model, which makes it possible to simulate the coplanar particle generation, is presented. Different versions of this model are considered, their features are described and compared with those of models applied by the CORSIKA package. Cosmic-ray experimental data and simulated results are compared. Conclusion on features of hadron interactions at superhigh energies and some predictions with respect to LHC experiments are made. (orig.) 3
International Nuclear Information System (INIS)
Han Yinlu; Liang Haiying; Guo Hairui; Shen Qingbiao; Xu Yongli
2010-01-01
A set of new global phenomenological optical model potential parameters for the actinide region with incident nucleon energies from 1 keV up to 300 MeV is obtained. They are based on a smooth, unique functional form for the energy dependence of the potential depths and on physically constrained geometry parameters. The available experimental data including the neutron total cross sections, nonelastic cross sections, elastic scattering cross sections, elastic scattering angular distributions, and proton reaction cross sections and elastic scattering angular distributions of 232 Th and 238 U are used. The new nucleon global optical model potential parameters obtained are analyzed and used to analyze the experimental data of nucleon-actinide reactions. It is found that the present form of the global optical model potential could reproduce both the neutron and the proton experimental data.
Energy Technology Data Exchange (ETDEWEB)
Gongalsky, Maxim B., E-mail: mgongalsky@gmail.com; Timoshenko, Victor Yu. [Faculty of Physics, Moscow State M.V. Lomonosov University, 119991 Moscow (Russian Federation)
2014-12-28
We propose a phenomenological model to explain photoluminescence degradation of silicon nanocrystals under singlet oxygen generation in gaseous and liquid systems. The model considers coupled rate equations, which take into account the exciton radiative recombination in silicon nanocrystals, photosensitization of singlet oxygen generation, defect formation on the surface of silicon nanocrystals as well as quenching processes for both excitons and singlet oxygen molecules. The model describes well the experimentally observed power law dependences of the photoluminescence intensity, singlet oxygen concentration, and lifetime versus photoexcitation time. The defect concentration in silicon nanocrystals increases by power law with a fractional exponent, which depends on the singlet oxygen concentration and ambient conditions. The obtained results are discussed in a view of optimization of the photosensitized singlet oxygen generation for biomedical applications.
International Nuclear Information System (INIS)
Raquet, O.
1994-01-01
A purely phenomenological study of stress corrosion cracking was performed using the couple Z2CN 18.10 (304L) austenitic stainless steel/boiling MgCl 2 aqueous solution. The exploitation of the morphological information (shape of the cracks and size distribution) available after constant elongation rate tests led to the proposal of an analytical expression of the crack initiation and growth rates. This representation allowed to quantitatively characterize the influence of the applied strain rate as well as the effect of corrosion inhibitors on the crack initiation and propagation phases. It can be used in the search for the stress corrosion cracking mechanisms as a 'riddle' for the determination of the rate controlling steps. As a matter of fact, no mechanistic hypothesis has been used for its development. (author)
International Nuclear Information System (INIS)
Ngayihi Abbe, Claude Valery; Nzengwa, Robert; Danwe, Raidandi; Ayissi, Zacharie Merlin; Obonou, Marcel
2015-01-01
Highlights: • We elaborate a 0D model for prediction of diesel engine operating parameters. • We implement the model for Neem methyl ester biodiesel combustion. • We show methyl butanoate and butyrate can be used as surrogates for biodiesel. • The model predicts fuel spray, in cylinder gaseous state and NOx emissions. • We show the model can be effective both in accuracy and computational speed. - Abstract: The design and monitoring of modern diesel engines running on alternative fuels require reliable models that can validly substitute experimental tests and predict their operating characteristics under different load conditions. Although there exists a multitude of models for diesel engines, 0D phenomenological models present the advantages of giving fast and accurate computed results. These models are useful for predicting fuel spray characteristics and instantaneous gas state. However, there are few reported studies on the application of 0D phenomenological models on biodiesel fuel combustion in diesel engines. This work reports the elaboration, validation and application on Neem methyl ester biodiesel (NMEB) combustion of a 0D phenomenological model for diesel engine simulation. The model addresses some specific aspects of diesel engine modeling found in previous studies such as the compromise between computers cost, accurateness and model simplicity, the reduction of the number of empirical fitting constant, the prediction of combustion kinetics with reduction of the need of experimental curve fitting, the ability to simultaneously predict under various loads engine thermodynamic and spray parameters as well as emission characteristics and finally the ability to simulate diesel engine parameters when fueled by alternative fuels. The proposed model predicts fuel spray behavior, in cylinder combustion and nitric oxides (NOx) emissions. The model is implemented through a Matlab code. The model is mainly based on Razlejtsev’s spray evaporation model
Style as a Symptom: A Phenomenological Perspective.
Gregorc, Anthony F.
1984-01-01
Findings from early and current phenomenological studies indicate that stylistic characteristics are indicators of psychological forces that guide interactions with the world. Implications of how this theory relates to learning and teaching styles are discussed. (DF)
Phenomenology of the SU(3)cxSU(3)LxU(1)X model with exotic charged leptons
International Nuclear Information System (INIS)
Salazar, Juan C.; Ponce, William A.; Gutierrez, Diego A.
2007-01-01
A phenomenological analysis of the three-family model based on the local gauge group SU(3) c xSU(3) L xU(1) X with exotic charged leptons, is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produce quark and charged lepton mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions to achieve a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model
Phenomenology of the SU(3)c x SU(3)L x U(1)X model with right-handed neutrinos
International Nuclear Information System (INIS)
Gutierrez, D.A.; Ponce, W.A.; Sanchez, L.A.
2006-01-01
A phenomenological analysis of the three-family model based on the local gauge group SU(3) c x SU(3) L x U(1) X with right-handed neutrinos is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produces a quark mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions for achieving a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model. (orig.)
Four Generations in Phenomenology
Energy Technology Data Exchange (ETDEWEB)
Kribs, Graham D. [Department of Physics, University of Oregon, Eugene, OR 97403 (United States); Plehn, Tilman [SUPA, School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (HCP speaker) (United Kingdom); Spannowsky, Michael [ASC, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 80333 Muenchen (Germany); Tait, Tim M.P. [HEP Division, Argonne National Laboratory, 9700 Cass Ave., Argonne, IL 60439 (United States)
2008-03-15
In four-generation models Higgs masses of 115-315 GeV are perfectly allowed by electroweak precision data. In this mass range we find dramatic effects on Higgs phenomenology at hadron colliders: production rates are enhanced, weak-boson-fusion channels are suppressed, angular distributions are modified, Higgs pairs can be observed, and Higgs decays to Majorana neutrinos can lead to exotic signals.
Energy Technology Data Exchange (ETDEWEB)
Kurlov, S. S. [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev-03028 (Ukraine); Flores, Y. V.; Elagin, M.; Semtsiv, M. P.; Masselink, W. T. [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Schrottke, L.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin (Germany); Tarasov, G. G. [Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev-03028 (Ukraine)
2016-04-07
A phenomenological scattering-rate model introduced for terahertz quantum cascade lasers (QCLs) [Schrottke et al., Semicond. Sci. Technol. 25, 045025 (2010)] is extended to mid-infrared (MIR) QCLs by including the energy dependence of the intersubband scattering rates for energies higher than the longitudinal optical phonon energy. This energy dependence is obtained from a phenomenological fit of the intersubband scattering rates based on published lifetimes of a number of MIR QCLs. In our approach, the total intersubband scattering rate is written as the product of the exchange integral for the squared moduli of the envelope functions and a phenomenological factor that depends only on the transition energy. Using the model to calculate scattering rates and imposing periodical boundary conditions on the current density, we find a good agreement with low-temperature data for current-voltage, power-current, and energy-photon flux characteristics for a QCL emitting at 5.2 μm.
Directory of Open Access Journals (Sweden)
Samurović S.
2007-01-01
Full Text Available In this paper the problem of the phenomenological modelling of elliptical galaxies using various available observational data is presented. Recently, Tortora, Cardona and Piedipalumbo (2007 suggested a double power law expression for the global cumulative mass-to-light ratio of elliptical galaxies. We tested their expression on a sample of ellipticals for which we have the estimates of the mass-to-light ratio beyond ~ 3 effective radii, a region where dark matter is expected to play an important dynamical role. We found that, for all the galaxies in our sample, we have α + β > 0, but that this does not necessarily mean a high dark matter content. The galaxies with higher mass (and higher dark matter content also have higher value of α+β. It was also shown that there is an indication that the galaxies with higher value of the effective radius also have higher dark matter content. .
Kachkouch, F; Franklin, H; Tinel, A
2018-07-01
The characteristics of the reflection and transmission by a fluid-loaded double porosity layer are studied. The medium obeys the two-pressure field poroelastic phenomenological model of Berryman and Wang. The open pore hydraulic conditions applied at the interfaces yield factorized expressions for the coefficients exhibiting on the one hand a separation allowing to distinguish between symmetrical and antisymmetrical motions and on the other hand the way each of the three dilatational waves associate with the shear wave. The numerical study done for a layer of Berea sandstone saturated by water shows clearly the role of each of the dilatational waves. There are peculiarities such as the absence of the fundamental antisymmetrical mode (zero order) and a singular behaviour of the symmetrical fundamental mode. The low frequency approximation for this latter is derived from the proposed formulas and compared with the numerical results. Copyright © 2018 Elsevier B.V. All rights reserved.
Courbin, L.; Benayad, A.; Panizza, P.
2006-01-01
By means of several rheophysics techniques, we report on an extensive study of the couplings between flow and microstructures in a two-phase fluid made of lamellar (Lα) and sponge (L3) phases. Depending on the nature of the imposed dynamical parameter (stress or shear rate) and on the experimental conditions (brine salinity or temperature), we observe several different structural steady states consisting of either multilamellar droplets (with or without a long range order) or elongated (L3) phase domains. Two different astonishing phenomena, shear-induced phase inversion and relaxation oscillations, are observed. We show that (i) phase inversion is related to a shear-induced topological change between monodisperse multilamellar droplets and elongated structures and (ii) droplet size relaxation oscillations result from a shear-induced change of the surface tension between both coexisting (Lα) and (L3) phases. To explain these relaxation oscillations, we present a phenomenological model and compare its numerical predictions to our experimental results.
Dual topological unitarization -- phenomenological aspect
International Nuclear Information System (INIS)
Tan, C.I.
1978-01-01
An assessment is provided on the viability of dual topological unitarization as a practical scheme for organizing and interpreting hadronic phenomena at current machine energies. Previous detailed reviews are complemented, with emphasis on phenomenological aspects and more recent developments. Diffraction scattering, a test of P--f identity hypothesis, the flavor model, the P--f identity versus the Veneziano two-jet picture, and an illustration of the new phenomenology are included. 24 references
Resonant diphoton phenomenology simplified
International Nuclear Information System (INIS)
Panico, Giuliano; Vecchi, Luca; Wulzer, Andrea
2016-01-01
A framework is proposed to describe resonant diphoton phenomenology at hadron colliders in full generality. It can be employed for a comprehensive model-independent interpretation of the experimental data. Within the general framework, few benchmark scenarios are defined as representative of the various phenomenological options and/or of motivated new physics scenarios. Their usage is illustrated by performing a characterization of the 750 GeV excess, based on a recast of available experimental results. We also perform an assessment of which properties of the resonance could be inferred, after discovery, by a careful experimental study of the diphoton distributions. These include the spin J of the new particle and its dominant production mode. Partial information on its CP-parity can also be obtained, but only for J≥2. The complete determination of the resonance CP properties requires studying the pattern of the initial state radiation that accompanies the resonant diphoton production.
Zhong, Fang; Mitchell, Karl L.; Hays, Charles C.; Choukroun, Mathieu; Barmatz, Martin; Kargel, Jeffrey S.
2009-08-01
The Cassini spacecraft has revealed landforms on the surface of Titan suggested to be viscous cryovolcanic flows and possibly eruptive domes. In order to relate those surface features to the processes and chemistries that produced them, it is necessary to construct flow models, which rely on characterization of the rheological properties of the eruptants. This paper describes our initial exploratory attempts to understand the rheological characteristics of cryogenic slurries, using a 40% methanol-water mixture, as a precursor to more detailed experiments. We have devised a new automated cryogenic rotational viscometer system to more fully characterize cryovolcanic slurry rheologies. A series of measurements were performed, varying first temperature, and then strain rate, which revealed development of yield stress-like behaviors, shear-rate dependence, and thixotropic behavior, even at relatively low crystal fractions, not previously reported. At fixed shear rate our data are fit well by the Andrade equation, with the activation energy modified by a solid volume fraction. At fixed temperature, depending on shearing history, a Cross model could describe our data over a wide shear rate range. A Bingham plastic model appears to be a good constitutive model for the data measured at high shear rates when the shear was global. The yield stress like behavior implies that levee formation on cryolava flows is more likely than would be inferred from the previous studies, and may provide a partial explanation for features interpreted as steep-sided volcanic constructs on Titan.
International Nuclear Information System (INIS)
Lipkin, Harry J.
2007-01-01
The basic theoretical milestones were the Sakata SU(3) symmetry, the Goldberg-Ne'eman composite model with SU(3) triplets having baryon number (1/3) and the Nambu color gauge Lagrangian. The transition was led in right and wrong directions by experiments interpreted by phenomenology. A 'good' experiment on p-bar p annihilation at rest showed that the Sakata model predictions disagreed with experiment. A 'bad' experiment prevented the use of the Goldberg-Ne'eman triplet model to predict the existence and masses of the Ξ * and Ω - . More 'good' experiments revealed the existence and mass of the Ξ * and the Ω - and the absence of positive strangeness baryon resonances, thus confirming the 'tenfold way'. Further 'good experiments' revealed the existence of the vector meson nonet, SU(3) breaking with singlet-octet mixing and the suppression of the φ → ρπ decay. These led to the quark triplet model. The paradox of peculiar statistics then arose as the Δ ++ and Ω - contained three identical spin-1/2 fermions coupled symmetrically to spin (3/2). This led to color and the Nambu QCD. The book 'Lie Groups for Pedestrians' used the Sakata model with the name 'sakaton' for the pnΛ triplet to teach the algebra of SU(3) to particle physicists in the U.S. and Europe who knew no group theory. The Sakata model had a renaissance in hypernuclear physics in the 1970's. (author)
Hofmann, Fabian
2016-01-01
Social phenomenological analysis is presented as a research method for museum and art education. After explaining its methodological background, it is shown how this method has been applied in a study of gallery talks or guided tours in art museums: Analyzing the situation by description and interpretation, a model for understanding gallery talks…
Schmid, C
1972-01-01
The following topics are discussed: theoretical tools; models; Pade approximants; theoretical predictions of pi pi S-waves; pi pi phase shifts from K/sub e4/; Chew Low extrapolation in pi p to pi /sup -/ pi /sup +/n; the KK cusp in pi pi to pi pi ; K pi phase shifts. (25 refs) . For pt. I see ibid., 265. The following topics are discussed: patterns of resonance couplings from exchange degeneracy; Reggeon couplings; clash of t and s channel structure in pole model; B/sub 4/ phenomenology; Odorico zeros; Barrelet zeros and phase shift ambiguities. (29 refs).
A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses
Wang, Shi-Qing; Cheng, Shiwang; Lin, Panpan; Li, Xiaoxiao
2014-09-01
This work formulates, at a molecular level, a phenomenological theoretical description of the brittle-ductile transition (BDT) in tensile extension, exhibited by all polymeric glasses of high molecular weight (MW). The starting point is our perception of a polymer glass (under large deformation) as a structural hybrid, consisting of a primary structure due to the van der Waals bonding and a chain network whose junctions are made of pairs of hairpins and function like chemical crosslinks due to the intermolecular uncrossability. During extension, load-bearing strands (LBSs) emerge between the junctions in the affinely strained chain network. Above the BDT, i.e., at "warmer" temperatures where the glass is less vitreous, the influence of the chain network reaches out everywhere by activating all segments populated transversely between LBSs, starting from those adjacent to LBSs. It is the chain network that drives the primary structure to undergo yielding and plastic flow. Below the BDT, the glassy state is too vitreous to yield before the chain network suffers a structural breakdown. Thus, brittle failure becomes inevitable. For any given polymer glass of high MW, there is one temperature TBD or a very narrow range of temperature where the yielding of the glass barely takes place as the chain network also reaches the point of a structural failure. This is the point of the BDT. A theoretical analysis of the available experimental data reveals that (a) chain pullout occurs at the BDT when the chain tension builds up to reach a critical value fcp during tensile extension; (b) the limiting value of fcp, extrapolated to far below the glass transition temperature Tg, is of a universal magnitude around 0.2-0.3 nN, for all eight polymers examined in this work; (c) pressurization, which is known [K. Matsushige, S. V. Radcliffe, and E. Baer, J. Appl. Polym. Sci. 20, 1853 (1976)] to make brittle polystyrene (PS) and poly(methyl methacrylate) (PMMA) ductile at room temperature
A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses.
Wang, Shi-Qing; Cheng, Shiwang; Lin, Panpan; Li, Xiaoxiao
2014-09-07
This work formulates, at a molecular level, a phenomenological theoretical description of the brittle-ductile transition (BDT) in tensile extension, exhibited by all polymeric glasses of high molecular weight (MW). The starting point is our perception of a polymer glass (under large deformation) as a structural hybrid, consisting of a primary structure due to the van der Waals bonding and a chain network whose junctions are made of pairs of hairpins and function like chemical crosslinks due to the intermolecular uncrossability. During extension, load-bearing strands (LBSs) emerge between the junctions in the affinely strained chain network. Above the BDT, i.e., at "warmer" temperatures where the glass is less vitreous, the influence of the chain network reaches out everywhere by activating all segments populated transversely between LBSs, starting from those adjacent to LBSs. It is the chain network that drives the primary structure to undergo yielding and plastic flow. Below the BDT, the glassy state is too vitreous to yield before the chain network suffers a structural breakdown. Thus, brittle failure becomes inevitable. For any given polymer glass of high MW, there is one temperature TBD or a very narrow range of temperature where the yielding of the glass barely takes place as the chain network also reaches the point of a structural failure. This is the point of the BDT. A theoretical analysis of the available experimental data reveals that (a) chain pullout occurs at the BDT when the chain tension builds up to reach a critical value f(cp) during tensile extension; (b) the limiting value of f(cp), extrapolated to far below the glass transition temperature T(g), is of a universal magnitude around 0.2-0.3 nN, for all eight polymers examined in this work; (c) pressurization, which is known [K. Matsushige, S. V. Radcliffe, and E. Baer, J. Appl. Polym. Sci. 20, 1853 (1976)] to make brittle polystyrene (PS) and poly(methyl methacrylate) (PMMA) ductile at room
Phenomenological analysis of supersymmetric σ-models on coset spaces SO(10)/U(5) and E6/[SO(10)xU(1)
International Nuclear Information System (INIS)
Nyawelo, T.S.
2004-12-01
We discuss some phenomenological aspects of gauged supersymmetric σ-models on homogeneous coset-spaces E 6 /[SO(10)xU(1)] and SO(10)/U(5) which are some of the most interesting for phenomenology. We investigate in detail the vacuum configurations of these models, and study the resulting consequences for supersymmetry breaking and breaking of the internal symmetry. Some supersymmetric minima for both models with gauged full isometry groups E 6 and SO(10) are physically problematic as the Kaehler metric becomes singular ad hence the kinetic terms of the Goldstone boson multiplets vanish. This leads us to introduce recently proposed soft supersymmetry-breaking mass terms which displace the minimum away from the singulax point. A non-singular Kaehler metric breaks the linear subgroup SO(10)xU(1) of the E 6 model spontaneously. The particle spectrum of all these different models is computed. (author)
International Nuclear Information System (INIS)
Nelson, R.A.; Unal, C.
1991-01-01
In this paper, a phenomenological model of the thermal hydraulics of convective boiling in the post-critical-heat-flux (post-CHF) regime is developed and discussed. The model was implemented in the TRAC-PF1/MOD2 computer code (an advanced best-estimate computer program written for the analysis of pressurized water reactor systems). The model was built around the determination of flow regimes downstream of the quench front. The regimes were determined from the flow-regime map suggested by Ishii and his coworkers. Heat transfer in the transition boiling region was formulated as a position-dependent model. The propagation of the CHF point was strongly dependent on the length of the transition boiling region. Wall-to-fluid film boiling heat transfer was considered to consist of two components: first, a wall-to-vapor convective heat-transfer portion and, second, a wall-to-liquid heat transfer representing near-wall effects. Each contribution was considered separately in each of the inverted annular flow (IAF) regimes. The interfacial heat transfer was also formulated as flow-regime dependent. The interfacial drag coefficient model upstream of the CHF point was considered to be similar to flow through a roughened pipe. A free-stream contribution was calculated using Ishii's bubbly flow model for either fully developed subcooled or saturated nucleate boiling. For the drag in the smooth IAF region, a simple smooth-tube correlation for the interfacial friction factor was used. The drag coefficient for the rough-wavy IAF was formulated in the same way as for the smooth IAF model except that the roughness parameter was assumed to be proportional to liquid droplet diameter entrained from the wavy interface. The drag coefficient in the highly dispersed flow regime considered the combined effects of the liquid droplets within the channel and a liquid film on wet unheated walls. 431 refs., 6 figs., 4 tabs
Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song; Schramm, Jesper
2015-05-01
In this work, a two-dimensional computational fluid dynamics study is reported of an n-heptane combustion event and the associated soot formation process in a constant volume combustion chamber. The key interest here is to evaluate the sensitivity of the chemical kinetics and submodels of a semi-empirical soot model in predicting the associated events. Numerical computation is performed using an open-source code and a chemistry coordinate mapping approach is used to expedite the calculation. A library consisting of various phenomenological multi-step soot models is constructed and integrated with the spray combustion solver. Prior to the soot modelling, combustion simulations are carried out. Numerical results show that the ignition delay times and lift-off lengths exhibit good agreement with the experimental measurements across a wide range of operating conditions, apart from those in the cases with ambient temperature lower than 850 K. The variation of the soot precursor production with respect to the change of ambient oxygen levels qualitatively agrees with that of the conceptual models when the skeletal n-heptane mechanism is integrated with a reduced pyrene chemistry. Subsequently, a comprehensive sensitivity analysis is carried out to appraise the existing soot formation and oxidation submodels. It is revealed that the soot formation is captured when the surface growth rate is calculated using a square root function of the soot specific surface area and when a pressure-dependent model constant is considered. An optimised soot model is then proposed based on the knowledge gained through this exercise. With the implementation of optimised model, the simulated soot onset and transport phenomena before reaching quasi-steady state agree reasonably well with the experimental observation. Also, variation of spatial soot distribution and soot mass produced at oxygen molar fractions ranging from 10.0 to 21.0% for both low and high density conditions are reproduced.
2015-08-01
ER D C TR -1 5- 5 Remote Assessment of Critical Infrastructure Persistent Monitoring of Urban Infrasound Phenomenology Report 1...ERDC TR-15-5 August 2015 Persistent Monitoring of Urban Infrasound Phenomenology Report 1: Modeling an Urban Environment for Acoustical Analyses...Figure 5.1. Main spreadsheet containing problem setup. ..................................................................... 74 Figure 5.2. Definition
A phenomenological calculus of Wiener description space.
Richardson, I W; Louie, A H
2007-10-01
The phenomenological calculus is a categorical example of Robert Rosen's modeling relation. This paper is an alligation of the phenomenological calculus and generalized harmonic analysis, another categorical example. Our epistemological exploration continues into the realm of Wiener description space, in which constitutive parameters are extended from vectors to vector-valued functions of a real variable. Inherent in the phenomenology are fundamental representations of time and nearness to equilibrium.
International Nuclear Information System (INIS)
Alarco, J.A.; Talbot, P.C.
2012-01-01
A simple phenomenological model for the relationship between structure and composition of the high Tc cuprates is presented. The model is based on two simple crystal chemistry principles: unit cell doping and charge balance within unit cells. These principles are inspired by key experimental observations of how the materials accommodate large deviations from stoichiometry. Consistent explanations for significant HTSC properties can be explained without any additional assumptions while retaining valuable insight for geometric interpretation. Combining these two chemical principles with a review of Crystal Field Theory (CFT) or Ligand Field Theory (LFT), it becomes clear that the two oxidation states in the conduction planes (typically d 8 and d 9 ) belong to the most strongly divergent d-levels as a function of deformation from regular octahedral coordination. This observation offers a link to a range of coupling effects relating vibrations and spin waves through application of Hund’s rules. An indication of this model’s capacity to predict physical properties for HTSC is provided and will be elaborated in subsequent publications. Simple criteria for the relationship between structure and composition in HTSC systems may guide chemical syntheses within new material systems.
International Nuclear Information System (INIS)
Yu Qingjuan; Lu Youjun; Mohayaee, Roya; Colin, Jacques
2011-01-01
Dual active galactic nuclei (AGNs) are natural byproducts of hierarchical mergers of galaxies in the ΛCDM cosmogony. Recent observations have shown that only a small fraction (∼0.1%-2.5%) of AGNs at redshift z ∼< 0.3 are dual with kpc-scale separations, which is rather low compared to the high merger rate of galaxies. Here we construct a phenomenological model to estimate the number density of dual AGNs and its evolution according to the observationally estimated major merger rates of galaxies and various scaling relations on the properties of galaxies and their central massive black holes. We show that our model reproduces the observed frequency and separation distribution of dual AGNs provided that significant nuclear activities are triggered only in gas-rich progenitor galaxies with central massive black holes and only when the nuclei of these galaxies are roughly within the half-light radii of their companion galaxies. Under these constraints, the observed low dual AGN frequency is consistent with the relatively high merger rate of galaxies and supports the hypothesis that major mergers lead to AGN/QSO activities. We also predict that the number of kpc-scale dual AGNs decreases with increasing redshift and only about 0.02%-0.06% of AGNs are dual AGNs with double-peaked narrow line features at redshifts of z ∼ 0.5-1.2. Future observations of high-redshift dual AGNs would provide a solid test for this prediction.
Siddiq, A.
2013-09-01
We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary affected zone (GBAZ). A crystal plasticity model that accounts for the transition from partial dislocation to full dislocation mediated plasticity is used for the grain interior. Isotropic porous plasticity model with further extension to account for failure due to the void coalescence was used for the GBAZ. The extended model contains all the deformation phases, i.e. elastic deformation, plastic deformation including deviatoric and volumetric plasticity (void growth) followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. Lastly we show the model\\'s ability to predict the damage and fracture of a dog-bone shaped specimen as observed experimentally. © 2013 Elsevier B.V.
The custodially protected Randall-Sundrum model. Theoretical aspects and flavour phenomenology
International Nuclear Information System (INIS)
Blanke, Monika
2009-01-01
Models with a warped extra dimension, so-called Randall-Sundrum models, provide an appealing solution to the gauge and flavour hierarchy problems of the Standard Model. After introducing the theoretical basics of such models, we concentrate on a specific model whose symmetry structure is extended to protect the T parameter and the Zb L anti b L coupling from large corrections. We introduce the basic action and discuss in detail effects of electroweak symmetry breaking and the flavour structure of the model. Then we analyse meson-antimeson mixing and rare decays that are affected by new tree level contributions from the Kaluza-Klein modes of the gauge bosons and from the Z boson in an important manner. After deriving analytic expressions for the most important K and B physics observables, we perform a global numerical analysis of the new effects in the model in question. We confirm the recent findings that a stringent constraint on the model is placed by CP-violation in K 0 - anti K 0 mixing. However, even for Kaluza-Klein particles in the reach of the LHC an agreement with all available data can be obtained without significant fine-tuning. We find possible large effects in either CP-violating effects in the B s - anti B s system or in the rare K decays, but not simultaneously. In any case the deviations from the Standard Model predictions in the rare B decays are small and difficult to measure. The specific pattern of new flavour effects allows to distinguish this model from other New Physics frameworks, which we demonstrate explicitly for the case of models with Minimal Flavour Violation and for the Littlest Higgs model with T-parity. (orig.)
The custodially protected Randall-Sundrum model. Theoretical aspects and flavour phenomenology
Energy Technology Data Exchange (ETDEWEB)
Blanke, Monika
2009-07-24
Models with a warped extra dimension, so-called Randall-Sundrum models, provide an appealing solution to the gauge and flavour hierarchy problems of the Standard Model. After introducing the theoretical basics of such models, we concentrate on a specific model whose symmetry structure is extended to protect the T parameter and the Zb{sub L} anti b{sub L} coupling from large corrections. We introduce the basic action and discuss in detail effects of electroweak symmetry breaking and the flavour structure of the model. Then we analyse meson-antimeson mixing and rare decays that are affected by new tree level contributions from the Kaluza-Klein modes of the gauge bosons and from the Z boson in an important manner. After deriving analytic expressions for the most important K and B physics observables, we perform a global numerical analysis of the new effects in the model in question. We confirm the recent findings that a stringent constraint on the model is placed by CP-violation in K{sup 0} - anti K{sup 0} mixing. However, even for Kaluza-Klein particles in the reach of the LHC an agreement with all available data can be obtained without significant fine-tuning. We find possible large effects in either CP-violating effects in the B{sub s} - anti B{sub s} system or in the rare K decays, but not simultaneously. In any case the deviations from the Standard Model predictions in the rare B decays are small and difficult to measure. The specific pattern of new flavour effects allows to distinguish this model from other New Physics frameworks, which we demonstrate explicitly for the case of models with Minimal Flavour Violation and for the Littlest Higgs model with T-parity. (orig.)
Highlights on SUSY phenomenology
International Nuclear Information System (INIS)
Masiero, Antonio
2004-01-01
In spite of the extraordinary success of the Standard Model (SM) supplemented with massive neutrinos in accounting for the whole huge bulk of phenomenology which has been accumulating in the last three decades, there exist strong theoretical reasons in particle physics and significant 'observational' hints in astroparticle physics for new physics beyond it. My lecture is devoted to a critical assessment of our belief in such new physics at the electroweak scale, in particular identifying it with low-energy supersymmetric extensions of the SM. I'll explain why we have concrete hopes that this decade will shed definite light on what stands behind the phenomenon of electroweak symmetry breaking
Scanning the phenomenological MSSM
Wuerzinger, Jonas
2017-01-01
A framework to perform scans in the 19-dimensional phenomenological MSSM is developed and used to re-evaluate the ATLAS experiments' sensitivity to R-parity-conserving supersymmetry with LHC Run 2 data ($\\sqrt{s}=13$ TeV), using results from 14 separate ATLAS searches. We perform a $\\tilde{t}_1$ dedicated scan, only considering models with $m_{\\tilde{t}_1}<1$ TeV, while allowing both a neutralino ($\\tilde{\\chi}_1^0$) and a sneutrino ($\\tilde{\
Mudcake growth: Model and implications
Liu, Q.; Santamarina, Carlos
2017-01-01
cementing, and to prevent partial differential sticking. We developed a robust mud cake growth model for water-based mud based on wide stress-range constitutive equations within a Lagrangian reference system to avoid non-natural moving boundary solutions
A phenomenological two-phase constitutive model for porous shape memory alloys
El Sayed, Tamer S.
2012-07-01
We present a two-phase constitutive model for pseudoelastoplastic behavior of porous shape memory alloys (SMAs). The model consists of a dense SMA phase and a porous plasticity phase. The overall response of the porous SMA is obtained by a weighted average of responses of individual phases. Based on the chosen constitutive model parameters, the model incorporates the pseudoelastic and pseudoplastic behavior simultaneously (commonly reported for porous SMAs) as well as sequentially (i.e. dense SMAs; pseudoelastic deformation followed by the pseudoplastic deformation until failure). The presented model also incorporates failure due to the deviatoric (shear band formation) and volumetric (void growth and coalescence) plastic deformation. The model is calibrated by representative volume elements (RVEs) with different sizes of spherical voids that are solved by unit cell finite element calculations. The overall response of the model is tested against experimental results from literature. Finally, application of the presented constitutive model has been presented by performing finite element simulations of the deformation and failure in unaixial dog-bone shaped specimen and compact tension (CT) test specimen. Results show a good agreement with the experimental data reported in the literature. © 2012 Elsevier B.V. All rights reserved.
Lectures on perturbative QCD, jets and the standard model: collider phenomenology
International Nuclear Information System (INIS)
Ellis, S.D.
1988-01-01
Applications of the Standard Model to the description of physics at hadron colliders are discussed. Particular attention is paid to the use of jets to characterize this physics. The issue of identifying physics beyond the Standard Model is also discussed. 59 refs., 6 figs., 4 tabs
Phenomenology of a nonstandard Higgs boson in WLWL scattering
International Nuclear Information System (INIS)
Koulovassilopoulos, V.; Chivukula, R.S.
1994-01-01
In this paper we consider the phenomenology of a nonstandard Higgs boson in longitudinal gauge boson scattering. First, we present a composite Higgs model [based on an SU(4)/Sp(4) chiral-symmetry breaking pattern] in which there is a nonstandard Higgs boson. Then we explore, in a model-independent way, the phenomenology of such a nonstandard Higgs boson by calculating the leading one-loop logarithmic corrections to longitudinal gauge boson scattering. This calculation is done using the equivalence theorem and the Higgs boson is treated as a scalar-isoscalar resonance coupled to the Goldstone bosons of the SU(2) L xSu(2) R /SU(2) V chiral symmetry breaking. We show that the most important deviation from the one-Higgs-doublet standard model is parametrized by one unknown coefficient which is related to the Higgs-boson width. The implications for future hadron colliders are discussed
A phenomenological model of two-phase (air/fuel droplet developing and breakup
Directory of Open Access Journals (Sweden)
Pavlović Radomir R.
2013-01-01
Full Text Available Effervescent atomization namely the air-filled liquid atomization comprehends certain complex two-phase phenomenon that are difficult to be modeled. Just a few researchers have found the mathematical expressions for description of the complex atomization model of the two-phase mixture air/diesel fuel. In the following review, developing model of twophase (air/fuel droplet of Cummins spray pump-injector is shown. The assumption of the same diameters of the droplet and the opening of the atomizer is made, while the air/fuel mass ratio inside the droplet varies.
Siddiq, A.; El Sayed, Tamer S.
2013-01-01
We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline
A phenomenological model on the kink mode threshold varying with the inclination of sheath boundary
International Nuclear Information System (INIS)
Sun, X.; Intrator, T. P.; Sears, J.; Weber, T.; Liu, M.
2013-01-01
In nature and many laboratory plasmas, a magnetic flux tube threaded by current or a flux rope has a footpoint at a boundary. The current driven kink mode is one of the fundamental ideal magnetohydrodynamic instabilities in plasmas. It has an instability threshold that has been found to strongly depend on boundary conditions (BCs). We provide a theoretical model to explain the transition of this threshold dependence between nonline tied and line tied boundary conditions. We evaluate model parameters using experimentally measured plasma data, explicitly verify several kink eigenfunctions, and validate the model predictions for boundary conditions BCs that span the range between NLT and LT BCs. Based on this model, one could estimate the kink threshold given knowledge of the displacement of a flux rope end, or conversely estimate flux rope end motion based on knowledge of it kink stability threshold
Khan, Kamran; El Sayed, Tamer S.
2012-01-01
We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer
A phenomenological two-phase constitutive model for porous shape memory alloys
El Sayed, Tamer S.; Gurses, Ercan; Siddiq, Amir Mohammed
2012-01-01
, application of the presented constitutive model has been presented by performing finite element simulations of the deformation and failure in unaixial dog-bone shaped specimen and compact tension (CT) test specimen. Results show a good agreement
Mechanical Properties of Nanoporous Au: From Empirical Evidence to Phenomenological Modeling
Directory of Open Access Journals (Sweden)
Giorgio Pia
2015-09-01
Full Text Available The present work focuses on the development of a theoretical model aimed at relating the mechanical properties of nanoporous metals to the bending response of thick ligaments. The model describes the structure of nanoporous metal foams in terms of an idealized regular lattice of massive cubic nodes and thick ligaments with square cross-sections. Following a general introduction to the subject, model predictions are compared with Young’s modulus and the yield strength of nanoporous Au foams determined experimentally and available in literature. It is shown that the model provides a quantitative description of the elastic and plastic deformation behavior of nanoporous metals, reproducing to a satisfactory extent the experimental Young’s modulus and yield strength values of nanoporous Au.
Kundrát, Vojtech; Kaspar, Jan; Procházka, Jirí
2010-01-01
The standard description of common influence of both the Coulomb and hadronic elastic scattering in the proton - proton elastic collisions at high energies with the help of West and Yennie complete amplitude is shown to be theoretically inconsistent. The approach being based on the eikonal model amplitude removes these troubles. The preference of its applica- tion to the analysis of experimental data and in obtaining the predictions of contemporary models for proton - proton high energy elastic hadronic scattering are discussed.
Tratalos, Jamie A.; Cheke, Robert A.; Healey, Richard G.; Stenseth, Nils Chr.
2010-01-01
Using autocorrelation analysis and autoregressive integrated moving average (ARIMA)modelling, we analysed a time series of the monthly number of 1° grid squares infested with desert locust Schistocerca gregaria swarms throughout the geographical range of the species from 1930–1987. Statistically significant first- and higher-order autocorrelations were found in the series. Although endogenous components captured much of the variance, adding rainfall data improved endogenous ARIMA models and r...
2011-04-28
quasiparticle poisoning which include a completely novel physical origin of these noises. We also proposed a model for excess low frequency flux noise which...and quasiparticle poisoning which include a completely novel physical origin of these noises. We also proposed a model for excess low frequency flux...metallic nanomechanical resonators, Phys. Rev. B 81, 184112 (2010). 3) L. Faoro, A. Kitaev and L. B. Ioffe, Quasiparticle poisoning and Josephson current
A phenomenological model for cross-field plasma transport in non-ambipolar scrape-off layers
International Nuclear Information System (INIS)
LaBombard, B.; Grossman, A.A.; Conn, R.W.
1990-01-01
A simplified two-fluid transport model which includes phenomenological coefficients of particle diffusion, mobility, and thermal diffusivity is used to investigate the effects of nonambipolar particle transport on scrape-off layer (SOL) plasma profiles. A computer code (BSOLRAD3) has been written to iteratively solve for 2-D cross-field density, potential, and electron temperature profiles for arbitrary boundary conditions, including segments of 'limiters' that are electrically conducting or non-conducting. Numerical results are presented for two test cases: (1) a 1-D slab geometry showing the interdependency of the density, potential, and temperature gradient scale lengths on particle diffusion, mobility, and thermal diffusivity coefficients and limiter bias conditions, and (2) a 2-D geometry illustrating ExB plasma flow effects. It is shown that the SOL profiles can be quite sensitive to non-ambipolarity conditions imposed by the limiter and, in particular, whether the limiter surfaces are biased. Such effects, if overlooked in SOL transport analysis, can lead to erroreous conclusions about the magnitude of the local ambipolar diffusion coefficient. (orig.)
Mudcake growth: Model and implications
Liu, Q.
2017-12-15
Oil and gas account for 60% of the world\\'s energy consumption. Drilling muds that are used to advance oil and gas wells must be engineered to avoid wellbore integrity problems associated with mud cake formation, to favor cake erosion during cementing, and to prevent partial differential sticking. We developed a robust mud cake growth model for water-based mud based on wide stress-range constitutive equations within a Lagrangian reference system to avoid non-natural moving boundary solutions. The comprehensive mud cake growth model readily accommodates environmental factors (e.g., temperature, pH, and ionic concentration) and defines the yield stress distribution for displacement-erosion analyses. Results show that the mud cake thickness is more sensitive to time than to filtration pressure, therefore, time controls the non-uniform distribution of mudcake thickness during drilling. Long filtration time, high permeability, high salinity, high in-situ temperature and low viscosity exacerbate fluid loss and give rise to thick filter cakes. The analysis of residual cake thickness during cement displacement must take into account the effective stress dependent mudcake formation and the time-dependent mud thixotropy. Thixotropy dominates the mud yield stress at high void ratios, e.g. e > 20. The offsetting force that causes differential pressure sticking increases sub-linearly as a power function of the still-time.
A Critique of a Phenomenological Fiber Breakage Model for Stress Rupture of Composite Materials
Reeder, James R.
2010-01-01
Stress rupture is not a critical failure mode for most composite structures, but there are a few applications where it can be critical. One application where stress rupture can be a critical design issue is in Composite Overwrapped Pressure Vessels (COPV's), where the composite material is highly and uniformly loaded for long periods of time and where very high reliability is required. COPV's are normally required to be proof loaded before being put into service to insure strength, but it is feared that the proof load may cause damage that reduces the stress rupture reliability. Recently, a fiber breakage model was proposed specifically to estimate a reduced reliability due to proof loading. The fiber breakage model attempts to model physics believed to occur at the microscopic scale, but validation of the model has not occurred. In this paper, the fiber breakage model is re-derived while highlighting assumptions that were made during the derivation. Some of the assumptions are examined to assess their effect on the final predicted reliability.
Phenomenology of minimal Z’ models: from the LHC to the GUT scale
Directory of Open Access Journals (Sweden)
Accomando Elena
2016-01-01
Full Text Available We consider a class of minimal abelian extensions of the Standard Model with an extra neutral gauge boson Z′ at the TeV scale. In these scenarios an extended scalar sector and heavy right-handed neutrinos are naturally envisaged. We present some of their striking signatures at the Large Hadron Collider, the most interesting arising from a Z′ decaying to heavy neutrino pairs as well as a heavy scalar decaying to two Standard Model Higgses. Using renormalisation group methods, we characterise the high energy behaviours of these extensions and exploit the constraints imposed by the embedding into a wider GUT scenario.
Quantifying defects in N-layer graphene via a phenomenological model of Raman spectroscopy
International Nuclear Information System (INIS)
Giro, Ronaldo; Archanjo, Braulio S.; Martins Ferreira, Erlon H.; Capaz, Rodrigo B.; Jorio, Ado; Achete, Carlos A.
2014-01-01
We construct a model to obtain the density of point defects in N-layer graphene by combining Raman spectroscopy and the TRIM (Transport Range of Ions in Matter) simulation package. The model relates the intensity (or area) ratio of graphene’s D and G bands to the defect density on each layer due to Ar + bombardment. Our method is effective for ion fluences ranging from 10 11 to ∼10 14 Ar + /cm −2 and it should be in principle extendable to any kind of ion and energy
Quantifying defects in N-layer graphene via a phenomenological model of Raman spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Giro, Ronaldo, E-mail: rgiro@br.ibm.com [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ 25250-020 (Brazil); Archanjo, Braulio S.; Martins Ferreira, Erlon H. [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ 25250-020 (Brazil); Capaz, Rodrigo B. [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ 25250-020 (Brazil); Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Jorio, Ado [Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123-970 (Brazil); Achete, Carlos A. [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro, Caixa Postal 68505, Rio de Janeiro, RJ 21945-970 (Brazil)
2014-01-15
We construct a model to obtain the density of point defects in N-layer graphene by combining Raman spectroscopy and the TRIM (Transport Range of Ions in Matter) simulation package. The model relates the intensity (or area) ratio of graphene’s D and G bands to the defect density on each layer due to Ar{sup +} bombardment. Our method is effective for ion fluences ranging from 10{sup 11} to ∼10{sup 14} Ar{sup +}/cm{sup −2} and it should be in principle extendable to any kind of ion and energy.
A unified phenomenological model for non-elastic deformation of Type 316 stainless steel
International Nuclear Information System (INIS)
Schmidt, C.G.; Miller, A.K.
1981-01-01
A complete model is provided for the non-elastic deformation of unaged type 316 stainless steel. The fitting flexibility, breadth of application, and predictive capabilities of the model are demonstrated for a wide variety of data. Satisfactory descriptions are given of the steady-state and transient creep behaviour as well as the monotonic stress-strain behaviour from the yield stress to steady-state flow. These descriptions apply over a broad range of temperatures and strain rates for both solution annealed and 20% cold worked material. Furthermore, cyclic stress-strain curves, cyclic hysteresis loops, and stress relaxation data are shown to be well described for solution annealed material. (author)
Korchin, AY; Scholten, O
2003-01-01
Corrections to the Born approximation in photoinduced strangeness production off a proton are calculated in a semirealistic microscopic model. The vertex corrections and internal contributions to the amplitude of the gammap-->K+Lambda reaction are included on the one-loop level. Different
Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking
Directory of Open Access Journals (Sweden)
Katsuya Hashino
2016-01-01
Full Text Available Classical scale invariance (CSI may be one of the solutions for the hierarchy problem. Realistic models for electroweak symmetry breaking based on CSI require extended scalar sectors without mass terms, and the electroweak symmetry is broken dynamically at the quantum level by the Coleman–Weinberg mechanism. We discuss discriminative features of these models. First, using the experimental value of the mass of the discovered Higgs boson h(125, we obtain an upper bound on the mass of the lightest additional scalar boson (≃543 GeV, which does not depend on its isospin and hypercharge. Second, a discriminative prediction on the Higgs-photon–photon coupling is given as a function of the number of charged scalar bosons, by which we can narrow down possible models using current and future data for the di-photon decay of h(125. Finally, for the triple Higgs boson coupling a large deviation (∼+70% from the SM prediction is universally predicted, which is independent of masses, quantum numbers and even the number of additional scalars. These models based on CSI can be well tested at LHC Run II and at future lepton colliders.
International Nuclear Information System (INIS)
Salvi, B.L.; Subramanian, K.A.
2015-01-01
Highlights: • Experimental measurement of the flame kernel growth rate (FKGR) in SI engine. • FKGR is the highest at MBT timing as compared with retarded and advanced timings. • FKGR decreases with increase in engine speed. • FKGR is correlated with equivalence ratio, charge density, in-cylinder pressure and engine speed. - Abstract: As flame kernel growth plays a major role in combustion of premixed-charge in spark ignition engines for higher energy efficiency and less emission, the experimental study was carried out on a single cylinder spark ignition research engine for measurement of flame kernel growth rate (FKGR) using spark plug fibre optics probe (VisioFlame sensor). The FKGR was measured on the engine at different power output with varied spark ignition timings and different engine speeds. The experimental results indicate that the FKGR was the highest with the maximum brake torque (MBT) spark timing and it decreases with increase in the engine speed. The FKGR at engine speed of 1000 RPM was the highest of 1.81 m/s with MBT timing (20° bTDC) as compared to 1.6 m/s (15° bTDC), 1.67 m/s (25° bTDC), and 1.61 m/s (30° bTDC) with retarded and advanced timing. In addition to this, a phenomenological model was developed for calculation of FKGR. It was observed from the model that FKGR is function of equivalence ratio, engine speed, in-cylinder pressure and charge density. The experimental results and methodology emerged from this study would be useful for optimization of engine parameters using the FKGR and also further development of model for alternative fuels
Retracing the phenomenology of the flipped SU(5)xU(1) superstring model
Energy Technology Data Exchange (ETDEWEB)
Rizos, J.; Tamvakis, K. (Ioannina Univ. (Greece). Dept. of Physics)
1990-11-22
We study in detail gauge symmetry breaking in the SU(5)xU(1)'xU(1){sup 4}xSO(10)xSO(6) superstring model, solving the D- and F-flatness conditions and taking into account quartic and quintic superpotential terms. We find that, to this order, the model describes two massive generations of quarks and leptons as well as a massless generation expected to receive naturally suppressed masses from higher order non-renormalizable terms. We show that D-flatness restricts the number of massless isodoublets to four. We also extract an inequality relating the top quark mass to M{sub W}. (orig.).
Reconstructing ATLAS SU3 in the CMSSM and relaxed phenomenological supersymmetry models
Fowlie, Andrew
2011-01-01
Assuming that the LHC makes a positive end-point measurement indicative of low-energy supersymmetry, we examine the prospects of reconstructing the parameter values of a typical low-mass point in the framework of the Constrained MSSM and in several other supersymmetry models that have more free parameters and fewer assumptions than the CMSSM. As a case study, we consider the ATLAS SU3 benchmark point with a Bayesian approach and with a Gaussian approximation to the likelihood for the measured masses and mass differences. First we investigate the impact of the hypothetical ATLAS measurement alone and show that it significantly narrows the confidence intervals of relevant, otherwise fairly unrestricted, model parameters. Next we add information about the relic density of neutralino dark matter to the likelihood and show that this further narrows the confidence intervals. We confirm that the CMSSM has the best prospects for parameter reconstruction; its results had little dependence on our choice of prior, in co...
Phenomenological model to fit complex permittivity data of water from radio to optical frequencies.
Shubitidze, Fridon; Osterberg, Ulf
2007-04-01
A general factorized form of the dielectric function together with a fractional model-based parameter estimation method is used to provide an accurate analytical formula for the complex refractive index in water for the frequency range 10(8)-10(16)Hz . The analytical formula is derived using a combination of a microscopic frequency-dependent rational function for adjusting zeros and poles of the dielectric dispersion together with the macroscopic statistical Fermi-Dirac distribution to provide a description of both the real and imaginary parts of the complex permittivity for water. The Fermi-Dirac distribution allows us to model the dramatic reduction in the imaginary part of the permittivity in the visible window of the water spectrum.
Phenomenological Hamiltonian of Sp(2,R) model for heavy deformed nuclei
International Nuclear Information System (INIS)
Avramenko, V.I.; Asherova, R.M.; Filippov, G.F.; Smirnov, Yu.F.; Zajtsev, S.A.
1985-01-01
In the frame of the symplectic collective model, operating with the microscopical basic functions of irraducible representation of SU(3) groups the energy spectrum of collective excitation in 164 Kr nucleus is calculated. Also the aOsolute and relative values of probabilities E2-transitions between collective states are obtained. The indexes of SU(3) symmetry are chosen in correspondence with rules of Nillsson orbital occupation
New class of two-loop neutrino mass models with distinguishable phenomenology
Cao, Qing-Hong; Chen, Shao-Long; Ma, Ernest; Yan, Bin; Zhang, Dong-Ming
2018-04-01
We discuss a new class of neutrino mass models generated in two loops, and explore specifically three new physics scenarios: (A) doubly charged scalar, (B) dark matter, and (C) leptoquark and diquark, which are verifiable at the 14 TeV LHC Run-II. We point out how the different Higgs insertions will distinguish our two-loop topology with others if the new particles in the loop are in the simplest representations of the SM gauge group.
Khan, Kamran
2012-11-09
We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.
International Nuclear Information System (INIS)
Bechtold, D.B.
1983-01-01
The levels and composition of filterable corrosion products in the Hanford N Reactor Primary Loop are measurable by filtration. The suspended crud level has ranged from 0.0005 ppM to 6.482 ppM with a median 0.050 ppM. The composition approximates magnetite. The particle size distribution has been found in 31 cases to be uniformly a log normal distribution with a count median ranging from 1.10 to 2.31 microns with a median of 1.81 microns, and the geometric standard deviation ranging from 1.60 to 2.34 with a median of 1.84. An auto-correcting inline turbidimeter was found to respond to linearly to suspended crud levels over a range 0.05 to at least 6.5 ppM by direct comparison with filter sample weights. Cause of crud bursts in the primary loop were found to be power decreases. The crud transients associated with a reactor power drop, several reactor shutdowns, and several reactor startups could be modeled consistently with each other using a simple stirred-tank, first order exchange model of particulate between makeup, coolant, letdown, and loosely adherent crud on pipe walls. Over 3/10 of the average steady running particulate crud level could be accounted for by magnetically filterable particulate in the makeup feed. A simulation model of particulate transport has been coded in FORTRAN
McGowan, C.P.; Neptune, R.R.; Herzog, W.
2009-01-01
History dependent effects on muscle force development following active changes in length have been measured in a number of experimental studies. However, few muscle models have included these properties or examined their impact on force and power output in dynamic cyclic movements. The goal of this study was to develop and validate a modified Hill-type muscle model that includes shortening induced force depression and assess its influence on locomotor performance. The magnitude of force depression was defined by empirical relationships based on muscle mechanical work. To validate the model, simulations incorporating force depression were developed to emulate single muscle in situ and whole muscle group leg extension experiments. There was excellent agreement between simulation and experimental values, with in situ force patterns closely matching the experimental data (average RMS error pedaling with and without force depression were generated. Force depression decreased maximum crank power by 20% – 40%, depending on the relationship between force depression and muscle work used. These results indicate that force depression has the potential to substantially influence muscle power output in dynamic cyclic movements. However, to fully understand the impact of this phenomenon on human movement, more research is needed to characterize the relationship between force depression and mechanical work in large muscles with different morphologies. PMID:19879585
Black, R. X.
2017-12-01
We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.
Phenomenological study of the minimal R-symmetric supersymmetric standard model
International Nuclear Information System (INIS)
Diessner, Philip
2016-01-01
The Standard Model (SM) of particle physics gives a comprehensive description of numerous phenomena concerning the fundamental components of nature. Still, open questions and a clouded understanding of the underlying structure remain. Supersymmetry is a well motivated extension that may account for the observed density of dark matter in the universe and solve the hierarchy problem of the SM. The minimal supersymmetric extension of the SM (MSSM) provides solutions to these challenges. Furthermore, it predicts new particles in reach of current experiments. However, the model has its own theoretical challenges and is under fire from measurements provided by the Large Hadron Collider (LHC). Nevertheless, the concept of supersymmetry has an elegance which not only shines in the MSSM. Hence, it is also of interest to examine non-minimal supersymmetric models. They have benefits similar to the MSSM and may solve its shortcomings. R-symmetry is the only global symmetry allowed that does not commutate with supersymmetry and Lorentz symmetry. Thus, extending a supersymmetric model with R-symmetry is a theoretically well motivated endeavor to achieve the complete symmetry content of a field theory. Such a model provides a natural explanation for non-discovery in the early runs of the LHC and leads to further predictions distinct from those of the MSSM. The work described in this thesis contributes to the effort by studying the minimal R-symmetric supersymmetric extension of the SM (MRSSM). Important aspects of its physics and the dependence of observables on the parameter space of the MRSSM are investigated. The discovery of a scalar particle compatible with the Higgs boson of the SM at the LHC was announced in 2012. It is the first and crucial task of this thesis to understand the underlying mechanisms leading to the correct Higgs boson mass prediction in the MRSSM. Then, the relevant regions of parameter space are investigated and it is shown that they are also in agreement
Phenomenological study of the minimal R-symmetric supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Diessner, Philip
2016-10-20
The Standard Model (SM) of particle physics gives a comprehensive description of numerous phenomena concerning the fundamental components of nature. Still, open questions and a clouded understanding of the underlying structure remain. Supersymmetry is a well motivated extension that may account for the observed density of dark matter in the universe and solve the hierarchy problem of the SM. The minimal supersymmetric extension of the SM (MSSM) provides solutions to these challenges. Furthermore, it predicts new particles in reach of current experiments. However, the model has its own theoretical challenges and is under fire from measurements provided by the Large Hadron Collider (LHC). Nevertheless, the concept of supersymmetry has an elegance which not only shines in the MSSM. Hence, it is also of interest to examine non-minimal supersymmetric models. They have benefits similar to the MSSM and may solve its shortcomings. R-symmetry is the only global symmetry allowed that does not commutate with supersymmetry and Lorentz symmetry. Thus, extending a supersymmetric model with R-symmetry is a theoretically well motivated endeavor to achieve the complete symmetry content of a field theory. Such a model provides a natural explanation for non-discovery in the early runs of the LHC and leads to further predictions distinct from those of the MSSM. The work described in this thesis contributes to the effort by studying the minimal R-symmetric supersymmetric extension of the SM (MRSSM). Important aspects of its physics and the dependence of observables on the parameter space of the MRSSM are investigated. The discovery of a scalar particle compatible with the Higgs boson of the SM at the LHC was announced in 2012. It is the first and crucial task of this thesis to understand the underlying mechanisms leading to the correct Higgs boson mass prediction in the MRSSM. Then, the relevant regions of parameter space are investigated and it is shown that they are also in agreement
Phenomenological neutron star equations of state. 3-window modeling of QCD matter
Energy Technology Data Exchange (ETDEWEB)
Kojo, Toru [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, Illinois (United States)
2016-03-15
We discuss the 3-window modeling of cold, dense QCD matter equations of state at density relevant to neutron star properties. At low baryon density, n{sub B}
International Nuclear Information System (INIS)
Dymski, T.C.
1976-01-01
For high energy scattering of pseudoscalar particles on spin 1 / 2 particles, the transition amplitude (for a given signature) is constructed as an infinite sum over spin of boson exchange graphs of the Feynman type, each of which has impact parameters up to some value R completely removed. This amplitude is advanced as a field theoretic realization of the nondiffractive component of Harari's dual absorption model. Comparing with π/sup +-/p→π/sup +-/p and π - p→π 0 n data shows that the imaginary parts of both helicity amplitudes are excellent, for either signature
Annealing of radiation-induced defects in silicon in a simplified phenomenological model
International Nuclear Information System (INIS)
Lazanu, S.; Lazanu, I.
2001-01-01
The concentration of primary radiation-induced defects has been previously estimated considering both the explicit mechanisms of the primary interaction between the incoming particle and the nuclei of the semiconductor lattice, and the recoil energy partition between ionisation and displacements, in the frame of the Lindhard theory. The primary displacement defects are vacancies and interstitials that are essentially unstable in silicon. They interact via migration, recombination, annihilation or produce other defects. In the present work, the time evolution of the concentration of defects induced by pions in medium and high resistivity silicon for detectors is modelled, after irradiation. In some approximations, the differential equations representing the time evolution processes could be decoupled. The theoretical equations so obtained are solved analytically in some particular cases, with one free parameter, for a wide range of particle fluences and/or for a wide energy range of incident particles, for different temperatures; the corresponding stationary solutions are also presented
International Nuclear Information System (INIS)
Elboussiri, Khalid
1991-01-01
The main part of this thesis is devoted to an experimental study by transmission electron microscopy of the different phases of the superconducting bismuth cuprates Bi_2Sr_2Ca_n_-_1Cu_nO_2_n_+_4. In high resolution electron microscopy, the two types of incommensurate modulation realized in these compounds have been observed. A model of structure has been proposed from which the simulated images obtained are consistent with observations. The medium resolution images correlated with the electron diffraction data have revealed existence of a multi-soliton regime with latent lock in phases of commensurate periods between 4b and 10b. At last, a description of different phases of these compounds as a result of superstructures from a disordered perovskite type structure is proposed (author) [fr
Phenomenological study and modeling of tritium trapping in tritiated waste drums
International Nuclear Information System (INIS)
Le-Floch, Anais
2016-01-01
ITER (International Tokamak Experimental Reactor) is a fusion machine which should demonstrate scientific and technological feasibility of fusion energy by means of D-T fusion reaction. Therefore, most of the solid radioactive waste produced during operation and dismantling phase (around 34000 tons) will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. One of the main issues in tritiated waste management is the confinement of tritium which presents a good ability to diffusion. One of the solutions is to trap the tritium directly in waste drums. In containers tritium is under gaseous form (HT and T_2), tritiated water vapor (HTO and T_2O) and organic bounded tritium species (OBT). as an hydrogen isotope, HT and T_2 trapping and conversion is possible thanks to a reaction with a mix of metal oxides MnO_2 and Ag_2O, which can be used for hydrogen hazards mitigation. an experimental study was conducted at the CEA on the study of tritium trapping by a mixture of 90% of manganese oxide and 10% of silver oxide. The tests showed that the addition of Pt and Pd catalysts did not improve the trapping capacity of the powder mixture, such as impregnation of the powder mixture when preparing the mixture, with solutions of KOH or NaOH. Crystal-chemical analysis revealed the formation of a mixed oxide in the preparation of powders, questioning the mechanisms previously established. Two new mechanisms have been proposed and a model on the trapping kinetics was presented. The results of modeling the competition between the trapping phenomenon and the diffusion of tritium through the wall of the waste package showed that the trapper decreased the value of the quantity of tritiated hydrogen degassed from the package. (author) [fr
EASEE: an open architecture approach for modeling battlespace signal and sensor phenomenology
Waldrop, Lauren E.; Wilson, D. Keith; Ekegren, Michael T.; Borden, Christian T.
2017-04-01
Open architecture in the context of defense applications encourages collaboration across government agencies and academia. This paper describes a success story in the implementation of an open architecture framework that fosters transparency and modularity in the context of Environmental Awareness for Sensor and Emitter Employment (EASEE), a complex physics-based software package for modeling the effects of terrain and atmospheric conditions on signal propagation and sensor performance. Among the highlighted features in this paper are: (1) a code refactorization to separate sensitive parts of EASEE, thus allowing collaborators the opportunity to view and interact with non-sensitive parts of the EASEE framework with the end goal of supporting collaborative innovation, (2) a data exchange and validation effort to enable the dynamic addition of signatures within EASEE thus supporting a modular notion that components can be easily added or removed to the software without requiring recompilation by developers, and (3) a flexible and extensible XML interface, which aids in decoupling graphical user interfaces from EASEE's calculation engine, and thus encourages adaptability to many different defense applications. In addition to the outlined points above, this paper also addresses EASEE's ability to interface with both proprietary systems such as ArcGIS. A specific use case regarding the implementation of an ArcGIS toolbar that leverages EASEE's XML interface and enables users to set up an EASEE-compliant configuration for probability of detection or optimal sensor placement calculations in various modalities is discussed as well.
PH- and salt-dependent molecular combing of DNA: experiments and phenomenological model
International Nuclear Information System (INIS)
Benke, Annegret; Pompe, Wolfgang; Mertig, Michael
2011-01-01
λ-DNA as well as plasmids can be successfully deposited by molecular combing on hydrophobic surfaces, for pH values ranging from 4 to 10. On polydimethylsiloxane (PDMS) substrates, the deposited DNA molecules are overstretched by about 60-100%. There is a significant influence of sodium ions (NaCl) on the surface density of the deposited DNA, with a maximum near to 100 mM NaCl for a DNA solution (28 ng μl -1 ) at pH 8. The combing process can be described by a micromechanical model including: (i) the adsorption of free moving coiled DNA at the substrate; (ii) the stretching of the coiled DNA by the preceding meniscus; (iii) the relaxation of the deposited DNA to the final length. The sticky ends of λ-DNA cause an adhesion force in the range of about 400 pN which allows a stable overstretching of the DNA by the preceding meniscus. The exposing of hidden hydrophobic bonds of the overstretched DNA leads to a stable deposition on the hydrophobic substrate. The pH-dependent density of deposited DNA as well as the observed influence of sodium ions can be explained by their screening of the negatively charged DNA backbone and sticky ends, respectively. The final DNA length can be derived from a balance of the stored elastic energy of the overstretched molecules and the energy of adhesion.
Alonso, Rodrigo; Manohar, Aneesh V; Trott, Michael
2014-01-01
We calculate the gauge terms of the one-loop anomalous dimension matrix for the dimension-six operators of the Standard Model effective field theory (SM EFT). Combining these results with our previous results for the $\\lambda$ and Yukawa coupling terms completes the calculation of the one-loop anomalous dimension matrix for the dimension-six operators. There are 1350 $CP$-even and $1149$ $CP$-odd parameters in the dimension-six Lagrangian for 3 generations, and our results give the entire $2499 \\times 2499$ anomalous dimension matrix. We discuss how the renormalization of the dimension-six operators, and the additional renormalization of the dimension $d \\le 4$ terms of the SM Lagrangian due to dimension-six operators, lays the groundwork for future precision studies of the SM EFT aimed at constraining the effects of new physics through precision measurements at the electroweak scale. As some sample applications, we discuss some aspects of the full RGE improved result for essential processes such as $gg \\to h...
International Nuclear Information System (INIS)
Khodjaev, L.Sh.
2004-01-01
Full text: We review the conceptual foundation of Yang-Mills gauge field theories. On these gauge theories the Standard Model (SM) are constructed. The fundamental postulates and their immediate consequence of the SM are formulated. The SM is a Yang-Mills type gauge field theory basically dictated by the Generalized Gauge Principle (GGP). According to this principle all fundamental forces of nature such as strong, electroweak, gravitational are mediated by an exchange of the Yang-Mills gauge fields corresponding gauge group. The SM is constructed by extension of the global non-Abelian SU(3)xSU(2)xU(1) symmetry to the local SU(3)xSU(2)xU(1) symmetry under which the Lagrangian of the SM invariant. This full symmetry has to be broken by Higgs mechanism down to the Electroweak gauge symmetry. The concept of fundamental particles does not exist. To Look for not Fundamental Particles but Fundamental symmetries. By searching of more general theory it is natural to search first of all Global symmetries and then to learn consequences connected with the localization of the global symmetries like wise of SM. The SM is renormalizable and therefor potentially consist at all energy scales. The SM in principle can describe the properties of the Universe beginning at 10 -43 sec. after BIG BANG. A SM of the BIG BANG Particle physics provides one of the few windows of the high energy world beyond SM which is consistent with SM and Cosmology. All the fundamental particles of the SM such as quarks, leptons and weak intermediate vector-gauge Bosons except one Higgs boson H 0 have been discovered and there masses and spins have been determined. The SM is stunning. Until now, no cracks have been found. There is no experiment that contradicts the SM. Moreover there is nothing observed beyond the SM. The SM works better and better. We proposed to construct colour singular nuclear forces theory based on Quantum Chromodynamics (QCD). As well Theological aspects of the BIG BANG
Ballinas, Mónica; Barradas, Víctor L
2016-01-01
The urban heat island (UHI) is mainly a nocturnal phenomenon, but it also appears during the day in Mexico City. The UHI may affect human thermal comfort, which can influence human productivity and morbidity in the spring/summer period. A simple phenomenological model based on the energy balance was developed to generate theoretical support of UHI mitigation in Mexico City focused on the latent heat flux change by increasing tree coverage to reduce sensible heat flux and air temperature. Half-hourly data of the urban energy balance components were generated in a typical residential/commercial neighborhood of Mexico City and then parameterized using easily measured variables (air temperature, humidity, pressure, and visibility). Canopy conductance was estimated every hour in four tree species, and transpiration was estimated using sap flow technique and parameterized by the envelope function method. Averaged values of net radiation, energy storage, and sensible and latent heat flux were around 449, 224, 153, and 72 W m, respectively. Daily tree transpiration ranged from 3.64 to 4.35 Ld. To reduce air temperature by 1°C in the studied area, 63 large would be required per hectare, whereas to reduce the air temperature by 2°C only 24 large trees would be required. This study suggests increasing tree canopy cover in the city cannot mitigate UHI adequately but requires choosing the most appropriate tree species to solve this problem. It is imperative to include these types of studies in tree selection and urban development planning to adequately mitigate UHI. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
R-parity breaking phenomenology
International Nuclear Information System (INIS)
Vissani, F.
1996-02-01
We review various features of the R-parity breaking phenomenology, with particular attention to the low energy observables, and to the patterns of the R-parity breaking interactions that arise in Grand Unified models. (author). 22 refs, 1 fig., 3 tabs
Interpretive Hermeneutic Phenomenology: Clarifying Understanding ...
African Journals Online (AJOL)
The philosophical orientation of Gadamerian hermeneutic phenomenology is explored in this paper. Gadamer offers a hermeneutics of the humanities that differs significantly from models of the human sciences historically rooted in scientific methodologies. In particular, Gadamer proposes that understanding is first a mode ...
Prendergast, Claire Nicole
2016-06-01
This paper demonstrates that Kohut's definitional system of the "bipolar self" within psychoanalytic self psychology can be modeled as a biological autopoietic system, both in terms of its structure and dynamics, in a way that accounts for the phenomenological aspects of experiential living. Based on this finding, the author argues that a nonreductionist definitional system of this type is an integral component of any pragmatic methodology, such as Kohut's "empathic-introspective" method of treatment, which aims to enable the analyst, as observer, to gain access to the phenomenological world of the analysand within the analytic setting. The dialectic approach undertaken in this preliminary exploration of the "bipolar self" as an autopoietic system has proven fruitful in excavating some of the theoretical features of psychoanalytic self psychology, the weighted importance of which can now be reevaluated in contemporary practice.
Fitting the Phenomenological MSSM
AbdusSalam, S S; Quevedo, F; Feroz, F; Hobson, M
2010-01-01
We perform a global Bayesian fit of the phenomenological minimal supersymmetric standard model (pMSSM) to current indirect collider and dark matter data. The pMSSM contains the most relevant 25 weak-scale MSSM parameters, which are simultaneously fit using `nested sampling' Monte Carlo techniques in more than 15 years of CPU time. We calculate the Bayesian evidence for the pMSSM and constrain its parameters and observables in the context of two widely different, but reasonable, priors to determine which inferences are robust. We make inferences about sparticle masses, the sign of the $\\mu$ parameter, the amount of fine tuning, dark matter properties and the prospects for direct dark matter detection without assuming a restrictive high-scale supersymmetry breaking model. We find the inferred lightest CP-even Higgs boson mass as an example of an approximately prior independent observable. This analysis constitutes the first statistically convergent pMSSM global fit to all current data.
Hofmann, Fabian
2016-01-01
Social phenomenological analysis is presented as a research method to study gallery talks or guided tours in art museums. The research method is based on the philosophical considerations of Edmund Husserl and sociological/social science concepts put forward by Max Weber and Alfred Schuetz. Its starting point is the everyday lifeworld; the…
Whitmarsh, Tom
2013-07-01
There is a great overlap between the way of seeing the world in clinical homeopathy and in the technical philosophical system known as phenomenology. A knowledge of phenomenologic principles reveals Hahnemann to have been an unwitting phenomenologist. The ideas of phenomenology as applied to medicine show that homeopathy is the ideal medical system to fulfill the goals of coming ever closer to true patient concerns and experience of illness. Copyright © 2013 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Ecker, Jill
2016-01-01
In this doctoral thesis, various aspects of string model building and phenomenology are investigated within the framework of Type IIA string theory on the T"6/(Z_2 x Z_6 x ΩR) orbifold with discrete torsion. The aim is the reproduction of supersymmetric versions of well-known particle physics models using intersecting rigid D6-branes wrapped on fractional three-cycles. The models analyzed include the minimal supersymmetric Standard Model as well as supersymmetric Pati-Salam models, left-right symmetric models and SU(5) models. Systematic computer scans test numerous combinations of intersecting D6-branes in order to detect those that give rise to the correct chiral particle content of the considered models. For each type of the afore mentioned models, concrete examples will be found which satisfy the constraints on the particle spectrum and fulfill all consistency conditions. Finally, the thesis focuses on phenomenological aspects of the particle physics models found, including the detection of massless U(1) combinations, discrete Z_n-symmetries and cubic couplings such as the Yukawa couplings.
Directory of Open Access Journals (Sweden)
Qinghui Zhou
2011-06-01
Full Text Available A new phenomenological model, the TP (Temperature Phase model, is presented to carry out optimization calculations for turbulent diffusion combustion in a high-pressure common rail diesel engine. Temperature is the most important parameter in the TP model, which includes two parts: an auto-ignition and a soot model. In the auto-ignition phase, different reaction mechanisms are built for different zones. For the soot model, different methods are used for different temperatures. The TP model is then implemented in KIVA code instead of original model to carry out optimization. The results of cylinder pressures, the corresponding heat release rates, and soot with variation of injection time, variation of rail pressure and variation of speed among TP model, KIVA standard model and experimental data are analyzed. The results indicate that the TP model can carry out optimization and CFD (computational fluid dynamics and can be a useful tool to study turbulent diffusion combustion.
Physics on smallest scales. An introduction to minimal length phenomenology
International Nuclear Information System (INIS)
Sprenger, Martin; Goethe Univ., Frankfurt am Main; Nicolini, Piero; Bleicher, Marcus
2012-02-01
Many modern theories which try to unite gravity with the Standard Model of particle physics, as e.g. string theory, propose two key modifications to the commonly known physical theories: - the existence of additional space dimensions - the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide coverage in publications over the last ten years (especially due to the prediction of micro black hole production at the LHC), the phenomenology of models with a minimal length is still less investigated. In a summer study project for bachelor students in 2010 we have explored some phenomenological implications of the potential existence of a minimal length. In this paper we review the idea and formalism of a quantum gravity induced minimal length in the generalised uncertainty principle framework as well as in the coherent state approach to non- commutative geometry. These approaches are effective models which can make model-independent predictions for experiments and are ideally suited for phenomenological studies. Pedagogical examples are provided to grasp the effects of a quantum gravity induced minimal length. (orig.)
Architecture and Phenomenology: Introduction
Directory of Open Access Journals (Sweden)
Brendan O’ Byrne
2014-07-01
Full Text Available The implications of philosophical aesthetics in the consideration of architecture have been relatively slight. Part of the reason is the neglect of architecture in the work of Baumgarten, Burke and Kant. Within the discourse of architecture the questions raised for philosophical consideration arising out of practice restricted the area of reflection and investigation. The dominant positions were to become either a version of neo-Kantianism, or a direct re-working of Hegel’s Lectures on Aesthetics. The significance of Kant’s distinction between ‘free’ and ‘dependent beauty’ is analysed, and in consequence the need to philosophically question again the relation of architecture to buiding, to dwelling and space. For this the question of accessibility as raised in the phenomenological enquiry, in the work of Brentano, Sartre, Bachelard, Merleau-Ponty, and especially Heidegger points to a different route for the appraisal of philosophical and architectural relations which are exhibited in the contributions of the 10 authors to this issue of Footprint.
Architecture and Phenomenology: Introduction
Directory of Open Access Journals (Sweden)
Brendan O’ Byrne
2008-10-01
Full Text Available The implications of philosophical aesthetics in the consideration of architecture have been relatively slight. Part of the reason is the neglect of architecture in the work of Baumgarten, Burke and Kant. Within the discourse of architecture the questions raised for philosophical consideration arising out of practice restricted the area of reflection and investigation. The dominant positions were to become either a version of neo-Kantianism, or a direct re-working of Hegel’s Lectures on Aesthetics. The significance of Kant’s distinction between ‘free’ and ‘dependent beauty’ is analysed, and in consequence the need to philosophically question again the relation of architecture to building, to dwelling and space. For this the question of accessibility as raised in the phenomenological enquiry, in the work of Brentano, Sartre, Bachelard, Merleau-Ponty, and especially Heidegger points to a different route for the appraisal of philosophical and architectural relations which are exhibited in the contributions of the 10 authors to this issue of Footprint.
Phenomenology and Meaning Attribution
African Journals Online (AJOL)
John Paley. (2017). Phenomenology as Qualitative Research: A Critical Analysis of Meaning Attribution. ... basic philosophical nature of phenomenological meaning and inquiry, and that he not ... In keeping with the title of my book, Researching. Lived Experience ...... a quantitative social science that can make generalizing.
Hanich, Julian; Ferencz-Flatz, Christian
2016-01-01
In this article Christian Ferencz-Flatz and I try to give an answer to the question what film phenomenology actually is. We proceed in three steps. First, we provide a survey of five different research practices within current film phenomenological writing: We call them excavation, explanation,
Cleaver, G.; Espinosa, J.R.; Everett, L.L.; Langacker, P.; Wang, J.
1999-01-01
We continue the investigation of the physics implications of a class of flat directions for a prototype quasi-realistic free fermionic string model (CHL5), building upon the results of the previous paper in which the complete mass spectrum and effective trilinear couplings of the observable sector were calculated to all orders in the superpotential. We introduce soft supersymmetry breaking mass parameters into the model, and investigate the gauge symmetry breaking patterns and the renormalization group analysis for two representative flat directions, which leave an additional $U(1)'$ as well as the SM gauge group unbroken at the string scale. We study symmetry breaking patterns that lead to a phenomenologically acceptable $Z-Z'$ hierarchy, $M_{Z^{'}} \\sim {\\cal O}(1~{\\rm TeV})$ and $ 10^{12}~{\\rm GeV}$ for electroweak and intermediate scale $U(1)^{'}$ symmetry breaking, respectively, and the associated mass spectra after electroweak symmetry breaking. The fermion mass spectrum exhibits unrealistic features, i...
Low-energy phenomenological chiral Lagrangians
International Nuclear Information System (INIS)
Cavopol, A.V.
1987-01-01
We develop a phenomenological Lagrangian that satisfies the requirements of the so called alternative schemes designed to model low energy meson phenomenology. Linear and nonlinear σ type Lagrangians and symmetry breaking schemes are used to describe pions that exhibit masses proportional to the square of the symmetry breaking term's coefficient, ε. (m π 2 ∼ 0(ε 2 )). The invariance of the theory under coordinate dependent transformations is achieved by introducing gauge fields for both linear and nonlinear Lagrangians. Finally, analogies between the minimal symmetry breaking terms in Quantum Electrodynamics and in our phenomenological lagrangians are used to generate a discussion of the quark-pion mass dependence indicated by the model
Phenomenology of stochastic exponential growth
Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya
2017-06-01
Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.
Phenomenology of unified gauge theories
International Nuclear Information System (INIS)
Ellis, J.
1983-01-01
Part I of these lectures treats the standard Glashow-Weinberg-Salam model of weak and electromagnetic interactions, discussing in turn its basic structure and weak neutral currents, charged currents, mixing angles and CP violation, and the phenomenology of weak vector and Higgs bosons. Part II of the lectures discusses the structure of theories of dynamical symmetry breaking such as technicolour, phenomenological consequences, frustrations and alternatives. The third part of these lectures offers the standard menu of grand unified theories (GUTs) of the strong, weak and electromagnetic interactions, including an hors d'oeuvre of constraints on the parameters of the standard model, a main course of baryon number violating processes, and desserts which violate lepton number and CP. The fourth and final part goes through different attempts to remedy the inadequacies of previous theories by invoking supersymmetry and reaching out towards gravitation. (orig./HSI)
Phenomenology of Baryon Resonances
Energy Technology Data Exchange (ETDEWEB)
Doring, Michael [George Washington Univ., Washington, DC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Landay, Justin [George Washington Univ., Washington, DC (United States); Mai, Maxim [George Washington Univ., Washington, DC (United States); Molina, Raquel [Univ. of Sao Paulo (Brazil); Ronchen, Deborah [Univ. of Bonn (Germany)
2018-04-01
Results for light baryon spectroscopy by different collaborations and the state of the art in the subfield is reviewed. Highlights contain common efforts of different phenomenology groups and the impact of recent high-precision data from ELSA, JLab, MAMI, and other facilities. Questions will be addressed, on one side, of how to proceed to reach conclusive answers in baryon spectroscopy, and, on the other side, how phenomenology can be connected to theory in a meaningful way.
Perspectives on string phenomenology
Kane, Gordon; Kumar, Piyush
2015-01-01
The remarkable recent discovery of the Higgs boson at the CERN Large Hadron Collider completed the Standard Model of particle physics and has paved the way for understanding the physics which may lie beyond it. String/M theory has emerged as a broad framework for describing a plethora of diverse physical systems, which includes condensed matter systems, gravitational systems as well as elementary particle physics interactions. If string/M theory is to be considered as a candidate theory of Nature, it must contain an effectively four-dimensional universe among its solutions that is indistinguishable from our own. In these solutions, the extra dimensions of string/M Theory are “compactified” on tiny scales which are often comparable to the Planck length. String phenomenology is the branch of string/M theory that studies such solutions, relates their properties to data, and aims to answer many of the outstanding questions of particle physics beyond the Standard Model. This book contains perspectives on stri...
Phenomenological aspects of mirage mediation
Energy Technology Data Exchange (ETDEWEB)
Loewen, Valeri
2009-07-15
We consider the possibility that string theory vacua with spontaneously broken supersymmetry and a small positive cosmological constant arise due to hidden sector matter interactions, known as F-uplifting/F-downlifting. We analyze this procedure in a model-independent way in the context of type IIB and heterotic string theory. Our investigation shows that the uplifting/downlifting sector has very important consequences for the resulting phenomenology. Not only does it adjust the vacuum energy, but it can also participate in the process of moduli stabilization. In addition, we find that this sector is the dominant source of supersymmetry breaking. It leads to a hybrid mediation scheme and its signature is a relaxed mirage pattern of the soft supersymmetry breaking terms. The low energy spectra exhibit distinct phenomenological properties and di er from conventional schemes considered so far. (orig.)
Phenomenological aspects of mirage mediation
International Nuclear Information System (INIS)
Loewen, Valeri
2009-07-01
We consider the possibility that string theory vacua with spontaneously broken supersymmetry and a small positive cosmological constant arise due to hidden sector matter interactions, known as F-uplifting/F-downlifting. We analyze this procedure in a model-independent way in the context of type IIB and heterotic string theory. Our investigation shows that the uplifting/downlifting sector has very important consequences for the resulting phenomenology. Not only does it adjust the vacuum energy, but it can also participate in the process of moduli stabilization. In addition, we find that this sector is the dominant source of supersymmetry breaking. It leads to a hybrid mediation scheme and its signature is a relaxed mirage pattern of the soft supersymmetry breaking terms. The low energy spectra exhibit distinct phenomenological properties and di er from conventional schemes considered so far. (orig.)
Pringuey, Dominique
2011-10-01
A phenomenology of dreams searches for meaning, with the aim not only of explaining but also of understanding the experience. What and who is it for? And what about the nearly forgotten dream among the moderns, the banal returning to the nightmare, sleepiness, or dreamlike reverie. Nostalgia for the dream, where we saw a very early state of light, not a ordinaire qu duel. Regret for the dreamlike splendor exceeded by the modeling power of modern aesthetics--film and the explosion of virtual imaging technologies. Disappointment at the discovery of a cognitive permanence throughout sleep and a unique fit with the real upon awaking? An excess of methodological rigor where we validate the logic of the dream, correlating the clinical improvement in psychotherapy and the ability to interpret one's own dreams. The dangerous psychological access when the dream primarily is mine, viewed as a veiled expression of an unspoken desire, or when the dream reveals to me, in an existential conception of man, through time and space, my daily life, my freedom beyond my needs. Might its ultimate sense also mean its abolition? From the story of a famous forgotten dream, based on unexpected scientific data emerges the question: do we dream to forget? The main thing would not be consciousness but confidence, when " the sleeping man, his regard extinguished, dead to himself seizes the light in the night " (Heraclitus).
Phenomenology of neutral current interactions
International Nuclear Information System (INIS)
Sakurai, J.J.
1978-01-01
Neutral-current interactions are discussed within a rather general phenomenological framework without commitment to any particular theoretical model. Three points are kept in mind: what various experiments really measure; the performing of complete experiments to determine the neutral-current couplings; and the testing of models in an objective, emotionally uninvolved manner. The following topics are considered: neutrino-electron scattering, hadronic currents and models, neutrino-induced inclusive hadronic reactions, neutrino-induced exclusive hadronic reactions, and neutral-current phenomena without neutrinos. In conclusion, what has actually been learned about neutral-current interactions is summarized. 9 figures, 2 tables
Furniss, F; Biswas, A B
2012-05-01
Behavioural interventions conceptualise self-injurious behaviour (SIB) as developing from early repetitive behaviours through acquisition of homeostatic functions in regulating stimulation and subsequent shaping into SIB through socially mediated or automatic operant reinforcement. Despite high success rates, such interventions rarely completely eliminate SIB, and overall effectiveness has not increased since the 1960s. Research (excluding studies of single genetic syndromes) on the early development, functional properties and phenomenology of SIB in persons with intellectual disabilities (IDs) published from 1999 to 2010 inclusive is reviewed. Despite evidence to support the operant shaping hypothesis, in some cases tissue-damaging SIB, especially head-banging, emerges at a similar or younger age than stereotyped behaviours or 'proto-SIB', often associated with tantrums following frustrative non-reward and/or abrupt situational transitions. Many young children show undifferentiated patterns of responding in functional analyses of SIB, and SIB is associated with aggression and impulsivity as well as with repetitive behaviour. One dynamic in the development of SIB may be Pavlovian conditioning of aggression, originally elicited by aversive events or frustrative non-reward, to stimuli associated with such situations. Integration into operant technology of interventions based on Pavlovian principles such as graduated exposure (with or without counterconditioning) to aversive stimuli may enhance the effectiveness of behavioural interventions. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 Blackwell Publishing Ltd.
Phenomenology dependent timescales
International Nuclear Information System (INIS)
Ouzounian, G.
2002-01-01
As required by the French act, Dec. 1991, construction projects for disposing of radioactive wastes have to be submitted to the Parliament by 2006. One of the most important points to allow for a decision at this time will be to gain confidence. The major difficulty in such a technical and societal project is to be able to carry out a demonstration of the safety ver timescales which are out of the scope of any experiment. Among the arguments involved for the safety case are a series of simulations which objective is to assess the level of safety which can be reached, and its robustness to various internal defects (construction of the drifts, welding of canisters...) or external events (intrusion with deep boreholes, climate change, faulting...). Confidence in the simulations can be achieved if they are transparent, based on well understood processes. However, the complexity of the disposal system is such that temptation was great by the past to simplify the models, with a poor level of reporting on justifications, thus leading to what has been described as black-box models. In the frame of the demonstration to be brought out for 2006, ANDRA has developed an approach consisting first to describe and analyse all the processes occurring over time and space in the repository. Once this type of information has been gathered in a structured way, then further analyses leading to abstractions, simplifications can be performed in order to facilitate simulations as required for the safety demonstration. The first stage of the approach has been called the phenomenological analysis of the repository situations PARS). This work gives rise to a reference book in which our knowledge has been reported before being used for the safety demonstration. If also represent a reference for all technical and scientific knowledge based applications, such as digital modeling which is the basis for simulations, the repository design, the reversibility study, including the definition of a
Creativity in phenomenological methodology
DEFF Research Database (Denmark)
Dreyer, Pia; Martinsen, Bente; Norlyk, Annelise
2014-01-01
on the methodologies of van Manen, Dahlberg, Lindseth & Norberg, the aim of this paper is to argue that the increased focus on creativity and arts in research methodology is valuable to gain a deeper insight into lived experiences. We illustrate this point through examples from empirical nursing studies, and discuss......Nursing research is often concerned with lived experiences in human life using phenomenological and hermeneutic approaches. These empirical studies may use different creative expressions and art-forms to describe and enhance an embodied and personalised understanding of lived experiences. Drawing...... may support a respectful renewal of phenomenological research traditions in nursing research....
Quantum groups in hadron phenomenology
International Nuclear Information System (INIS)
Gavrilik, A.M.
1997-01-01
We show that application of quantum unitary groups, in place of ordinary flavor SU(n f ), to such static aspects of hadron phenomenology as hadron masses and mass formulas is indeed fruitful. So-called q-deformed mass formulas are given for octet baryons 1/2 + and decuplet baryons 3/2 + , as well as for the case of vector mesons 1 - involving heavy flavors. For deformation parameter q, rigid fixation of values is used. New mass sum rules of remarkable accuracy are presented. As shown in decuplet case, the approach accounts for effects highly nonlinear in SU(3)-breaking. Topological implication (possible connection with knots) for singlet vector mesons and the relation q ↔ Θ c (Cabibbo angle) in case of baryons are considered
Supersymmetry and supergravity: Phenomenology and grand unification
International Nuclear Information System (INIS)
Arnowitt, R.; Nath, P.
1993-01-01
A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of SU(2) x U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified models. While the number of detailed derivations are necessarily limited, a sufficient number of results are given so that a reader can get a working knowledge of this field
Amelino-Camelia, Giovanni
2003-01-01
Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"
The Phenomenology of Democracy
Shaw, Robert
2009-01-01
Human beings originate votes, and democracy constitutes decisions. This is the essence of democracy. A phenomenological analysis of the vote and of the decision reveals for us the inherent strength of democracy and its deficiencies. Alexis de Tocqueville pioneered this form of enquiry into democracy and produced positive results from it.…
Transversity: Theory and phenomenology
Energy Technology Data Exchange (ETDEWEB)
D' Alesio, Umberto [Dipartimento di Fisica, Universita di Cagliari, Cittadella Universitaria, and Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C. P. 170, I-09042 Monserrato (Italy)
2013-04-15
The distribution of transversely polarized quarks inside a transversely polarized nucleon, known as transversity, encodes a basic piece of information on the nucleon structure, sharing the same status with the more familiar unpolarized and helicity distributions. I will review its properties and discuss different ways to access it, with highlights and limitations. Recent phenomenological extractions and perspectives are also presented.
Transversity: Theory and phenomenology
International Nuclear Information System (INIS)
D'Alesio, Umberto
2013-01-01
The distribution of transversely polarized quarks inside a transversely polarized nucleon, known as transversity, encodes a basic piece of information on the nucleon structure, sharing the same status with the more familiar unpolarized and helicity distributions. I will review its properties and discuss different ways to access it, with highlights and limitations. Recent phenomenological extractions and perspectives are also presented.
Energy Technology Data Exchange (ETDEWEB)
Prasanth, P S; Kakkassery, Jose K; Vijayakumar, R, E-mail: y3df07@nitc.ac.in, E-mail: josekkakkassery@nitc.ac.in, E-mail: vijay@nitc.ac.in [Department of Mechanical Engineering, National Institute of Technology Calicut, Kozhikode - 673 601, Kerala (India)
2012-04-01
A modified phenomenological model is constructed for the simulation of rarefied flows of polyatomic non-polar gas molecules by the direct simulation Monte Carlo (DSMC) method. This variable hard sphere-based model employs a constant rotational collision number, but all its collisions are inelastic in nature and at the same time the correct macroscopic relaxation rate is maintained. In equilibrium conditions, there is equi-partition of energy between the rotational and translational modes and it satisfies the principle of reciprocity or detailed balancing. The present model is applicable for moderate temperatures at which the molecules are in their vibrational ground state. For verification, the model is applied to the DSMC simulations of the translational and rotational energy distributions in nitrogen gas at equilibrium and the results are compared with their corresponding Maxwellian distributions. Next, the Couette flow, the temperature jump and the Rayleigh flow are simulated; the viscosity and thermal conductivity coefficients of nitrogen are numerically estimated and compared with experimentally measured values. The model is further applied to the simulation of the rotational relaxation of nitrogen through low- and high-Mach-number normal shock waves in a novel way. In all cases, the results are found to be in good agreement with theoretically expected and experimentally observed values. It is concluded that the inelastic collision of polyatomic molecules can be predicted well by employing the constructed variable hard sphere (VHS)-based collision model.
International Nuclear Information System (INIS)
Nelson, R.A. Jr.; Pimentel, D.A.; Jolly-Woodruff, S.; Spore, J.
1998-04-01
In this report, a phenomenological model of simultaneous bottom-up and top-down quenching is developed and discussed. The model was implemented in the TRAC-PF1/MOD2 computer code. Two sets of closure relationships were compared within the study, the Absolute set and the Conditional set. The Absolute set of correlations is frequently viewed as the pure set because the correlations is frequently viewed as the pure set because the correlations utilize their original coefficients as suggested by the developer. The Conditional set is a modified set of correlations with changes to the correlation coefficient only. Results for these two sets indicate quite similar results. This report also summarizes initial results of an effort to investigate nonlinear optimization techniques applied to the closure model development. Results suggest that such techniques can provide advantages for future model development work, but that extensive expertise is required to utilize such techniques (i.e., the model developer must fully understand both the physics of the process being represented and the computational techniques being employed). The computer may then be used to improve the correlation of computational results with experiments
Singlet Higgs phenomenology and the electroweak phase transition
International Nuclear Information System (INIS)
Profumo, Stefano; Ramsey-Musolf, Michael J.; Shaughnessy, Gabe
2007-01-01
We study the phenomenology of gauge singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. We determine the conditions on the scalar potential parameters that lead to a strong first order phase transition as needed to produce the observed baryon asymmetry of the universe. We analyze the constraints on the potential parameters derived from Higgs boson searches at LEP and electroweak precision observables. For models that satisfy these constraints and that produce a strong first order phase transition, we discuss the prospective signatures in future Higgs studies at the Large Hadron Collider and a Linear Collider. We argue that such studies will provide powerful probes of phase transition dynamics in models with an extended scalar sector
Phenomenological realism, superconductivity and quantum mechanics
International Nuclear Information System (INIS)
Shomar, T.L.E.
1998-01-01
The central aim of this thesis is to present a new kind of realism that is driven not from the traditional realism/anti-realism debate but from the practice of physicists. The usual debate focuses on discussions about the truth of theories and their fit with nature, while the real practices of the scientists are forgotten. The position I shall defend is called 'phenomenological realism': theories are merely tools to construct other theories and models, including phenomenological models; phenomenological models are the vehicles of representation. The realist doctrine was recently undermined by the argument from the pessimistic meta-induction, also known as the argument from scientific revolutions. I argue that phenomenological realism is a new kind of scientific realism which can overcome the problem generated by the argument from scientific revolutions, and which depend on the scientific practice. The realist tried to overcome this problem by suggesting various types of theory dichotomy. I claim that different types of dichotomy presented by realists did not overcome the problem, these dichotomies cut through theory vertically. I argue for a different kind of dichotomy between high level theoretical abstractions and low-level theoretical representations. I claim that theoretical work in physics have two distinct types depending on the way they are built these are: theoretical models which built depending on a top-down approach and phenomenological models which are built depending on a bottom-up approach, this dichotomy cuts the division along a horizontal line between low and high level theory. I present two case studies. One from superconductivity where I contrast the BCS theory of superconductivity with the phenomenological model of Landau and Ginzburg. I show how in that field of physics the historical developments favoured phenomenological models over high-level theoretical abstraction. I show how the BCS theory of superconductivity was constructed, and why it
Energy Technology Data Exchange (ETDEWEB)
Vaeliviita, Jussi [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo (Norway); Savelainen, Matti; Talvitie, Marianne; Kurki-Suonio, Hannu; Rusak, Stanislav, E-mail: jussi.valiviita@astro.uio.no [Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FIN-00014 University of Helsinki (Finland)
2012-07-10
We constrain cosmological models where the primordial perturbations have an adiabatic and a (possibly correlated) cold dark matter (CDM) or baryon isocurvature component. We use both a phenomenological approach, where the power spectra of primordial perturbations are parameterized with amplitudes and spectral indices, and a slow-roll two-field inflation approach where slow-roll parameters are used as primary parameters, determining the spectral indices and the tensor-to-scalar ratio. In the phenomenological case, with CMB data, the upper limit to the CDM isocurvature fraction is {alpha} < 6.4% at k = 0.002 Mpc{sup -1} and 15.4% at k = 0.01 Mpc{sup -1}. The non-adiabatic contribution to the CMB temperature variance is -0.030 < {alpha}{sub T} < 0.049 at the 95% confidence level. Including the supernova (SN) (or large-scale structure) data, these limits become {alpha} < 7.0%, 13.7%, and -0.048 < {alpha}{sub T} < 0.042 (or {alpha} < 10.2%, 16.0%, and -0.071 < {alpha}{sub T} < 0.024). The CMB constraint on the tensor-to-scalar ratio, r < 0.26 at k = 0.01 Mpc{sup -1}, is not affected by the non-adiabatic modes. In the slow-roll two-field inflation approach, the spectral indices are constrained close to 1. This leads to tighter limits on the isocurvature fraction; with the CMB data {alpha} < 2.6% at k = 0.01 Mpc{sup -1}, but the constraint on {alpha}{sub T} is not much affected, -0.058 < {alpha}{sub T} < 0.045. Including SN (or LSS) data, these limits become {alpha} < 3.2% and -0.056 < {alpha}{sub T} < 0.030 (or {alpha} < 3.4% and -0.063 < {alpha}{sub T} < -0.008). In addition to the generally correlated models, we study also special cases where the adiabatic and isocurvature modes are uncorrelated or fully (anti)correlated. We calculate Bayesian evidences (model probabilities) in 21 different non-adiabatic cases and compare them to the corresponding adiabatic models, and find that in all cases the data support the pure adiabatic model.
Scott Barss, Karen
2012-04-30
Educating nurses to provide evidence-based, non-intrusive spiritual care in today's pluralistic context is both daunting and essential. Qualitative research is needed to investigate what helps nurse educators feel more prepared to meet this challenge. This paper presents findings from an interpretive phenomenological analysis of the experience of nurse educators who used the T.R.U.S.T. Model for Inclusive Spiritual Care in their clinical teaching. The T.R.U.S.T. Model is an evidence-based, non-linear resource developed by the author and piloted in the undergraduate nursing program in which she teaches. Three themes are presented: "The T.R.U.S.T. Model as a bridge to spiritual exploration"; "blockades to the bridge"; and "unblocking the bridge". T.R.U.S.T. was found to have a positive influence on nurse educators' comfort and confidence in the teaching of spiritual care. Recommendations for maximizing the model's positive impact are provided, along with "embodied" resources to support holistic teaching and learning about spiritual care.
Energy Technology Data Exchange (ETDEWEB)
Schuerg, F.; Arndt, S. [Robert Bosch GmbH, Stuttgart (Germany); Weigand, B. [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik der Luft- und Raumfahrt
2007-07-01
Spray-guided combustion processes for gasoline direct injection offer a great fuel saving potential. The quality of mixture formation has direct impact on combustion and emissions and ultimately on the technical feasibility of the consumption advantage. Therefore, it is very important to select the optimal mixture formation strategy. A systematic optimization of the mixture formation process based on experiments or three-dimensional computational fluid dynamics requires tremendous effort. An efficient alternative is the application-oriented, zero-dimensional numerical simulation of mixture formation. With a systemic model formulation in terms of global thermodynamic and fluid mechanical balance equations, the presented simulation model considers all relevant aspects of the mixture formation process. A comparison with measurements in a pressure/temperature chamber using laser-induced exciplex fluorescence tomography revealed a very satisfactory agreement between simulation and experiment. The newly developed, analytic-phenomenological spray propagation model precisely captures the injector-specific mixture formation characteristics of an annular-orifice injector in terms of penetration and volume. Vaporization rate and mean air/fuel ratio as the key quantities of mixture formation are correctly reproduced. Thus, the simulation model is suited to numerically assess the quality and to optimize the strategy of mixture formation. (orig.)
Strong moduli stabilization and phenomenology
Dudas, Emilian; Mambrini, Yann; Mustafayev, Azar; Olive, Keith A
2013-01-01
We describe the resulting phenomenology of string theory/supergravity models with strong moduli stabilization. The KL model with F-term uplifting, is one such example. Models of this type predict universal scalar masses equal to the gravitino mass. In contrast, A-terms receive highly suppressed gravity mediated contributions. Under certain conditions, the same conclusion is valid for gaugino masses, which like A-terms, are then determined by anomalies. In such models, we are forced to relatively large gravitino masses (30-1000 TeV). We compute the low energy spectrum as a function of m_{3/2}. We see that the Higgs masses naturally takes values between 125-130 GeV. The lower limit is obtained from the requirement of chargino masses greater than 104 GeV, while the upper limit is determined by the relic density of dark matter (wino-like).
Phenomenological studies of hadronic collisions
International Nuclear Information System (INIS)
van Zijl, M.
1987-04-01
Several aspects of hadronic collisions are studied in a phenomenological framework. A Monte Carlo model for initial state parton showers, using a backwards evolution scheme, is presented. Comparisons with experimental data and analytical calculations are made. The consequence of using different fragmentation model on the determination of α s is also investigated. It is found that the different fragmentation models lead to the reconstruction of significantly α s values. Finally the possibility of having several independent parton-parton interactions in a hadron-hadron collision is studied. A model is developed, which takes into account the effects of variable impact parameters. This is implemented in a Monte Carlo computer program and extensive comparisons with experimental data are carried out. There is clear evidence in favour of multiple interactions with variable impact parameters. (author)
Phenomenology in Its Original Sense.
van Manen, Max
2017-05-01
In this article, I try to think through the question, "What distinguishes phenomenology in its original sense?" My intent is to focus on the project and methodology of phenomenology in a manner that is not overly technical and that may help others to further elaborate on or question the singular features that make phenomenology into a unique qualitative form of inquiry. I pay special attention to the notion of "lived" in the phenomenological term "lived experience" to demonstrate its critical role and significance for understanding phenomenological reflection, meaning, analysis, and insights. I also attend to the kind of experiential material that is needed to focus on a genuine phenomenological question that should guide any specific research project. Heidegger, van den Berg, and Marion provide some poignant exemplars of the use of narrative "examples" in phenomenological explorations of the phenomena of "boredom," "conversation," and "the meaningful look in eye-contact." Only what is given or what gives itself in lived experience (or conscious awareness) are proper phenomenological "data" or "givens," but these givens are not to be confused with data material that can be coded, sorted, abstracted, and accordingly analyzed in some "systematic" manner. The latter approach to experiential research may be appropriate and worthwhile for various types of qualitative inquiry but not for phenomenology in its original sense. Finally, I use the mythical figure of Kairos to show that the famous phenomenological couplet of the epoché-reduction aims for phenomenological insights that require experiential analysis and attentive (but serendipitous) methodical inquiry practices.
‘Firewall’ phenomenology with astrophysical neutrinos
Afshordi, Niayesh; Yazdi, Yasaman K.
2016-12-01
One of the most fundamental features of a black hole in general relativity is its event horizon: a boundary from which nothing can escape. There has been a recent surge of interest in the nature of these event horizons and their local neighbourhoods. In an attempt to resolve black hole information paradox(es), and more generally, to better understand the path towards quantum gravity, ‘firewalls’ have been proposed as an alternative to black hole event horizons. In this paper, we explore the phenomenological implications of black holes possessing a surface or ‘firewall’, and predict a potentially detectable signature of these firewalls in the form of a high energy astrophysical neutrino flux. We compute the spectrum of this neutrino flux in different models and show that it is a possible candidate for the source of the PeV neutrinos recently detected by IceCube. This opens up a new area of research, bridging the non-perturbative physics of quantum gravity with the observational black hole and high energy astrophysics.
‘Firewall’ phenomenology with astrophysical neutrinos
International Nuclear Information System (INIS)
Afshordi, Niayesh; Yazdi, Yasaman K
2016-01-01
One of the most fundamental features of a black hole in general relativity is its event horizon: a boundary from which nothing can escape. There has been a recent surge of interest in the nature of these event horizons and their local neighbourhoods. In an attempt to resolve black hole information paradox(es), and more generally, to better understand the path towards quantum gravity, ‘firewalls’ have been proposed as an alternative to black hole event horizons. In this paper, we explore the phenomenological implications of black holes possessing a surface or ‘firewall’, and predict a potentially detectable signature of these firewalls in the form of a high energy astrophysical neutrino flux. We compute the spectrum of this neutrino flux in different models and show that it is a possible candidate for the source of the PeV neutrinos recently detected by IceCube. This opens up a new area of research, bridging the non-perturbative physics of quantum gravity with the observational black hole and high energy astrophysics. (paper)
Phenomenological aspects of unified theories
International Nuclear Information System (INIS)
Peccei, R.D.
1987-01-01
The author briefly discusses two new phenomena of recent interest, the 5/sup th/ force and variant axions. The former, for its elucidation, will require further gravitational experiments, but the author concludes that variant axions are now definitely rules out experimentally. Various aspects of superstring phenomenology are then addressed, including some of the generic predictions of superstrings and some of its generic problems. In particular, he discusses some of the phenomenological consequences of having an extra Z 0 boson and the circumstances under which this excitation is a genuine prediction of superstrings. Since it is likely that a more reliable relic of superstrings will be provided by the presence of superpartners at low energy (≤ TeV), he discusses some of the bounds for squarks and gluinos obtained at the SppS collider and the expectations for their production at the Tevatron. As a final topic, he touches upon some of the consequences that result from having the Fermi scale arise from an underlying theory. Some aspects of the composite Higgs model and of the strongly coupled standard model are briefly reviewed
Phenomenological aspects of the cognitive rumination construct
Directory of Open Access Journals (Sweden)
Leonardo Fernandez Meyer
2015-03-01
Full Text Available Objective: To evaluate the importance of phenomenological aspects of the cognitive rumination (CR construct in current empirical psychiatric research.Method: We searched SciELO, Scopus, ScienceDirect, MEDLINE, OneFile (GALE, SpringerLink, Cambridge Journals and Web of Science between February and March of 2014 for studies whose title and topic included the following keywords: cognitive rumination; rumination response scale; and self-reflection. The inclusion criteria were: empirical clinical study; CR as the main object of investigation; and study that included a conceptual definition of CR. The studies selected were published in English in biomedical journals in the last 10 years. Our phenomenological analysis was based on Karl Jaspers' General Psychopathology.Results: Most current empirical studies adopt phenomenological cognitive elements in conceptual definitions. However, these elements do not seem to be carefully examined and are indistinctly understood as objective empirical factors that may be measured, which may contribute to misunderstandings about CR, erroneous interpretations of results and problematic theoretical models.Conclusion: Empirical studies fail when evaluating phenomenological aspects of the cognitive elements of the CR construct. Psychopathology and phenomenology may help define the characteristics of CR elements and may contribute to their understanding and hierarchical organization as a construct. A review of the psychopathology principles established by Jasper may clarify some of these issues.
Phenomenological aspects of the cognitive rumination construct.
Meyer, Leonardo Fernandez; Taborda, José Geraldo Vernet; da Costa, Fábio Antônio; Soares, Ana Luiza Alfaya Galego; Mecler, Kátia; Valença, Alexandre Martins
2015-01-01
To evaluate the importance of phenomenological aspects of the cognitive rumination (CR) construct in current empirical psychiatric research. We searched SciELO, Scopus, ScienceDirect, MEDLINE, OneFile (GALE), SpringerLink, Cambridge Journals and Web of Science between February and March of 2014 for studies whose title and topic included the following keywords: cognitive rumination; rumination response scale; and self-reflection. The inclusion criteria were: empirical clinical study; CR as the main object of investigation; and study that included a conceptual definition of CR. The studies selected were published in English in biomedical journals in the last 10 years. Our phenomenological analysis was based on Karl Jaspers' General Psychopathology. Most current empirical studies adopt phenomenological cognitive elements in conceptual definitions. However, these elements do not seem to be carefully examined and are indistinctly understood as objective empirical factors that may be measured, which may contribute to misunderstandings about CR, erroneous interpretations of results and problematic theoretical models. Empirical studies fail when evaluating phenomenological aspects of the cognitive elements of the CR construct. Psychopathology and phenomenology may help define the characteristics of CR elements and may contribute to their understanding and hierarchical organization as a construct. A review of the psychopathology principles established by Jasper may clarify some of these issues.
Critical appraisal of rigour in interpretive phenomenological nursing research.
de Witt, Lorna; Ploeg, Jenny
2006-07-01
This paper reports a critical review of published nursing research for expressions of rigour in interpretive phenomenology, and a new framework of rigour specific to this methodology is proposed. The rigour of interpretive phenomenology is an important nursing research methods issue that has direct implications for the legitimacy of nursing science. The use of a generic set of qualitative criteria of rigour for interpretive phenomenological studies is problematic because it is philosophically inconsistent with the methodology and creates obstacles to full expression of rigour in such studies. A critical review was conducted of the published theoretical interpretive phenomenological nursing literature from 1994 to 2004 and the expressions of rigour in this literature identified. We used three sources to inform the derivation of a proposed framework of expressions of rigour for interpretive phenomenology: the phenomenological scholar van Manen, the theoretical interpretive phenomenological nursing literature, and Madison's criteria of rigour for hermeneutic phenomenology. The nursing literature reveals a broad range of criteria for judging the rigour of interpretive phenomenological research. The proposed framework for evaluating rigour in this kind of research contains the following five expressions: balanced integration, openness, concreteness, resonance, and actualization. Balanced integration refers to the intertwining of philosophical concepts in the study methods and findings and a balance between the voices of study participants and the philosophical explanation. Openness is related to a systematic, explicit process of accounting for the multiple decisions made throughout the study process. Concreteness relates to usefulness for practice of study findings. Resonance encompasses the experiential or felt effect of reading study findings upon the reader. Finally, actualization refers to the future realization of the resonance of study findings. Adoption of this
Neutron relativistic phenomenological and microscopic optical potential
International Nuclear Information System (INIS)
Shen Qing-biao; Feng Da-chun; Zhuo Yi-zhong
1991-01-01
In this paper, both the phenomenological and microscopic neutron relativistic optical potentials are presented. The global neutron relativistic phenomenological optical potential (RPOP) based on the available experimental data for various nuclei ranging from C to U with incident energies E n =20--1000 MeV has been obtained through an automatic search of the best parameters by computer. Then the nucleon relativistic microscopic optical potential (RMOP) is studied by utilizing the effective Lagrangian based on the popular Walecka model. Through comparison between the theoretical results and experimental data we shed some insight into both the RMOP and RPOP. Further improvement concerning how to combine the phenomenological potential with the microscopic one in order to reduce the number of free parameters appearing in the RPOP is suggested
Light Higgs bosons in phenomenological NMSSM
Energy Technology Data Exchange (ETDEWEB)
Mahmoudi, F. [CERN, Geneva (Switzerland); Clermont Univ., CNRS/IN2P3, LPC, Clermont-Ferrand (France); Rathsman, J. [Uppsala Univ. (Sweden). High-Energy Physics; Lund Univ. (Sweden). Theoretical High Energy Physics; Staal, O. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zeune, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Goettingen Univ. (Germany). II. Physikalisches Inst.
2010-12-15
We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavour physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed. (orig.)
Light Higgs bosons in phenomenological NMSSM
International Nuclear Information System (INIS)
Mahmoudi, F.; Rathsman, J.; Zeune, L.; Goettingen Univ.
2010-12-01
We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavour physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed. (orig.)
International Nuclear Information System (INIS)
Seiwert, M.
1985-01-01
In the present thesis different potential models were extended up to deformed nuclei. The influence of the deformations, orientations, and the nuclear atmosphere on the nuclear potential were analyzed. The double-folding integral was also solved for adiabatic nuclear shapes. The unrealistic binding-energy contributions occurring in the double-folding model were replaced by realistic binding energies by a renormalization procedure. The extended proximity potential, the renormalized double-folding model, and the Yukawa-plus-exponential model were applied to the calculation of the potential of supercritical systems. The resulting potentials of the different models are nonuniform. (orig./HSI) [de
Energy Technology Data Exchange (ETDEWEB)
Rodgers, A; Matzel, E; Pasyanos, M; Petersson, A; Sjogreen, B; Bono, C; Vorobiev, O; Antoun, T; Walter, W; Myers, S; Lomov, I
2008-07-07
The development of accurate numerical methods to simulate wave propagation in three-dimensional (3D) earth models and advances in computational power offer exciting possibilities for modeling the motions excited by underground nuclear explosions. This presentation will describe recent work to use new numerical techniques and parallel computing to model earthquakes and underground explosions to improve understanding of the wave excitation at the source and path-propagation effects. Firstly, we are using the spectral element method (SEM, SPECFEM3D code of Komatitsch and Tromp, 2002) to model earthquakes and explosions at regional distances using available 3D models. SPECFEM3D simulates anelastic wave propagation in fully 3D earth models in spherical geometry with the ability to account for free surface topography, anisotropy, ellipticity, rotation and gravity. Results show in many cases that 3D models are able to reproduce features of the observed seismograms that arise from path-propagation effects (e.g. enhanced surface wave dispersion, refraction, amplitude variations from focusing and defocusing, tangential component energy from isotropic sources). We are currently investigating the ability of different 3D models to predict path-specific seismograms as a function of frequency. A number of models developed using a variety of methodologies are available for testing. These include the WENA/Unified model of Eurasia (e.g. Pasyanos et al 2004), the global CUB 2.0 model (Shapiro and Ritzwoller, 2002), the partitioned waveform model for the Mediterranean (van der Lee et al., 2007) and stochastic models of the Yellow Sea Korean Peninsula region (Pasyanos et al., 2006). Secondly, we are extending our Cartesian anelastic finite difference code (WPP of Nilsson et al., 2007) to model the effects of free-surface topography. WPP models anelastic wave propagation in fully 3D earth models using mesh refinement to increase computational speed and improve memory efficiency. Thirdly
Finite size scaling and phenomenological renormalization
International Nuclear Information System (INIS)
Derrida, B.; Seze, L. de; Vannimenus, J.
1981-05-01
The basic equations of the phenomenological renormalization method are recalled. A simple derivation using finite-size scaling is presented. The convergence of the method is studied analytically for the Ising model. Using this method we give predictions for the 2d bond percolation. Finally we discuss how the method can be applied to random systems
'Living' sacrifice and shame: Phenomenological insights into ...
African Journals Online (AJOL)
This article is contextualised within the field of post-graduate, continuing teacher education in South Africa, through an essentially 'distanced', that is, part-time, mixedmode teaching and learning model. It draws on a broader phenomenological research study into the experiences of students taking a one semester module, ...
International Nuclear Information System (INIS)
Cleaver, G.; Cvetic, M.; Everett, L.; Langacker, P.; Wang, J.; Espinosa, J.R.; Everett, L.
1999-01-01
We continue the investigation of the physics implications of a class of flat directions for a prototype quasi-realistic free fermionic string model (CHL5), building upon the results of a previous paper in which the complete mass spectrum and effective trilinear couplings of the observable sector were calculated to all orders in the superpotential. We introduce soft supersymmetry breaking mass parameters into the model, and investigate the gauge symmetry breaking patterns and the renormalization group analysis for two representative flat directions, which leave an additional U(1) ' as well as the SM gauge group unbroken at the string scale. We study symmetry breaking patterns that lead to a phenomenologically acceptable Z-Z ' hierarchy, M Z ' ∼O(1 TeV) and 10 12 GeV for electroweak and intermediate scale U(1) ' symmetry breaking, respectively, and the associated mass spectra after electroweak symmetry breaking. The fermion mass spectrum exhibits unrealistic features, including massless exotic fermions, but has an interesting d-quark hierarchy and associated CKM matrix in one case. There are (some) non-canonical effective μ terms, which lead to a non-minimal Higgs sector with more than two Higgs doublets involved in the symmetry breaking, and a rich structure of Higgs particles, charginos, and neutralinos, some of which, however, are massless or ultralight. In the electroweak scale cases the scale of supersymmetry breaking is set by the Z ' mass, with the sparticle masses in the several TeV range. copyright 1999 The American Physical Society
International Nuclear Information System (INIS)
Alsmiller, F.S.; Alsmiller, R.G. Jr.; Gabriel, T.A.; Lillie, R.A.; Barish, J.
1981-03-01
A fission channel has been added to the intranuclear-cascade-evaporation model of nuclear reactions so that this model may be used to obtain the differential particle production data that are needed to study the transport of medium-energy nucleons and pions through fissionable material. The earlier work of Hahn and Bertini on the incorporation of fission-evaporation competition into the intranuclear-cascade-evaporation model has been retained, and the statistical model of fission has been utilized to predict particle production from the fission process. Approximate empirically derived kinetic energies and deformation energies are used in the statistical model. The calculated number of emitted neutrons and residual nuclei distributions are in reasonable agreement with experimental data, but the number of emitted neutrons at the higher incident nucleon energies (approx. > 500 MeV) are sensitive to the level density parameter used. 9 figures, 2 tables
International Nuclear Information System (INIS)
Unal, C.; Nelson, R.
1991-01-01
After completion of the thermal-hydraulic model developed in a companion paper, the authors performed developmental assessment calculation of the model using steady-state and transient post-critical heat flux (CHF) data. This paper discusses the results of those calculations. The overall interfacial drag model predicted reasonable drag coefficients for both the nucleate boiling and the inverted annular flow (IAF) regimes. The predicted pressure drops agreed reasonably well with the measured data of two transient experiments, CCTF Run 14 and a Lehigh reflood test. The thermal-hydraulic model for post-CHF convective heat transfer predicted the rewetting velocities reasonably well for both experiments. The predicted average slope of the wall temperature traces for these tests showed reasonable agreement with the measured data, indicating that the transient-calculated precursory cooling rates agreed with measured data. The hot-patch model, in conjunction with the other thermal-hydraulic models, was capable of modeling the Winfrith post-CHF hot-patch experiments. The hot-patch model kept the wall temperatures at the specified levels in the hot-patch regions and did not allow any quench-front propagation from either the bottom or the top of the test section. The interfacial heat-transfer model tended to slightly underpredict the vapor temperatures. The maximum difference between calculated and measured vapor temperatures was 20%, with a 10% difference for the remainder of the runs considered. The wall-to-fluid heat transfer was predicted reasonably well, and the predicted wall temperatures were in reasonable agreement with measured data with a maximum relative error of less than 13%
International Nuclear Information System (INIS)
Mohitpour, Maryam; Jahanfarnia, Gholamreza; Shams, Mehrzad
2014-01-01
Highlights: • A numerical framework was developed to mechanistically predict DNB in PWR bundles. • The DNB evaluation module was incorporated into the two-phase flow solver module. • Three-dimensional two-fluid model was the basis of two-phase flow solver module. • Liquid sublayer dryout model was adapted as CHF-triggering mechanism in DNB module. • Ability of DNB modeling approach was studied based on PSBT DNB tests in rod bundle. - Abstract: In this study, a numerical framework, comprising of a two-phase flow subchannel solver module and a Departure from Nucleate Boiling (DNB) evaluation module, was developed to mechanistically predict DNB in rod bundles of Pressurized Water Reactor (PWR). In this regard, the liquid sublayer dryout model was adapted as the Critical Heat Flux (CHF) triggering mechanism to reduce the dependency of the model on empirical correlations in the DNB evaluation module. To predict local flow boiling processes, a three-dimensional two-fluid formalism coupled with heat conduction was selected as the basic tool for the development of the two-phase flow subchannel analysis solver. Evaluation of the DNB modeling approach was performed against OECD/NRC NUPEC PWR Bundle tests (PSBT Benchmark) which supplied an extensive database for the development of truly mechanistic and consistent models for boiling transition and CHF. The results of the analyses demonstrated the need for additional assessment of the subcooled boiling model and the bulk condensation model implemented in the two-phase flow solver module. The proposed model slightly under-predicts the DNB power in comparison with the ones obtained from steady-state benchmark measurements. However, this prediction is acceptable compared with other codes. Another point about the DNB prediction model is that it has a conservative behavior. Examination of the axial and radial position of the first detected DNB using code-to-code comparisons on the basis of PSBT data indicated that the our
Hartimo, Mirja
2010-01-01
During Edmund Husserl,s lifetime, modern logic and mathematics rapidly developed toward their current outlook and Husserl,s writings can be fruitfully compared and contrasted with both 19th century figures (Boole, Schroder, Weierstrass) as well as the 20th century characters (Heyting, Zermelo, Godel). Besides the more historical studies, the internal ones on Husserl alone and the external ones attempting to clarify his role in the more general context of the developing mathematics and logic, Husserl,s phenomenology offers also a systematically rich but little researched area of investigation.
Phenomenology of chromostatics
International Nuclear Information System (INIS)
Pervushin, V.N.; Kallies, W.; Sarikov, N.A.
1988-01-01
For the description of hadrons as bound states the physical perturbation theory (PPT) on the spatial components of the gluon field over the exact solution, defined by the temporal one, is proposed. A quntization method is used, which in each order of the PPT is relativistic-covariant, and an elimination of the infrared divergences with the help of the phenomenological redefinition of the Coulomb potential. The main elements of the PPT: the Green functions of quarks and gluons, the effective coupling constant are found; and the functional, unifying the meson spectroscopy, dual amplitudes and chiral Lagrangians, is constructed
International Nuclear Information System (INIS)
Wakamatsu, M.
2003-01-01
Theoretical predictions are given for the light-flavor sea-quark distributions in the nucleon including the strange quark ones on the basis of the flavor SU(3) version of the chiral quark soliton model. Careful account is taken of the SU(3) symmetry breaking effects due to the mass difference Δm s between the strange and nonstrange quarks, which is the only one parameter necessary for the flavor SU(3) generalization of the model. A particular emphasis of study is put on the light-flavor sea-quark asymmetry as exemplified by the observables d-bar(x)-u-bar(x),d-bar(x)/u-bar(x),Δu-bar(x)-Δd-bar(x) as well as on the particle-antiparticle asymmetry of the strange quark distributions represented by s(x)-s-bar(x),s(x)/s-bar(x),Δs(x)-Δs-bar(x) etc. As for the unpolarized sea-quark distributions, the predictions of the model seem qualitatively consistent with the available phenomenological information provided by the NMC data for d-bar(x)-u-bar(x), the E866 data for d-bar(x)/u-bar(x), the CCFR data and the fit of Barone et al. for s(x)/s-bar(x), etc. The model is shown to give several unique predictions also for the spin-dependent sea-quark distribution, such that Δs(x)<<Δs-bar(x) < or approx. 0 and Δd-bar(x)<0<Δu-bar(x), although the verification of these predictions must await more elaborate experimental investigations in the near future
Inner Speech: Development, Cognitive Functions, Phenomenology, and Neurobiology
2015-01-01
Inner speech—also known as covert speech or verbal thinking—has been implicated in theories of cognitive development, speech monitoring, executive function, and psychopathology. Despite a growing body of knowledge on its phenomenology, development, and function, approaches to the scientific study of inner speech have remained diffuse and largely unintegrated. This review examines prominent theoretical approaches to inner speech and methodological challenges in its study, before reviewing current evidence on inner speech in children and adults from both typical and atypical populations. We conclude by considering prospects for an integrated cognitive science of inner speech, and present a multicomponent model of the phenomenon informed by developmental, cognitive, and psycholinguistic considerations. Despite its variability among individuals and across the life span, inner speech appears to perform significant functions in human cognition, which in some cases reflect its developmental origins and its sharing of resources with other cognitive processes. PMID:26011789
Serpentinization reaction pathways: implications for modeling approach
Energy Technology Data Exchange (ETDEWEB)
Janecky, D.R.
1986-01-01
Experimental seawater-peridotite reaction pathways to form serpentinites at 300/sup 0/C, 500 bars, can be accurately modeled using the EQ3/6 codes in conjunction with thermodynamic and kinetic data from the literature and unpublished compilations. These models provide both confirmation of experimental interpretations and more detailed insight into hydrothermal reaction processes within the oceanic crust. The accuracy of these models depends on careful evaluation of the aqueous speciation model, use of mineral compositions that closely reproduce compositions in the experiments, and definition of realistic reactive components in terms of composition, thermodynamic data, and reaction rates.
Phenomenology and Neuroaesthetics
Directory of Open Access Journals (Sweden)
Elio Franzini
2015-05-01
Full Text Available Phenomenology is not the simple description of a fact, but rather the description of an intentional immanent moment, and it presents itself as a science of essences, and not of matter of facts. The Leib, the lived body of the phenomenological tradition, is not a generic corporeal reality, but rather an intentional subject, a transcendental reference point, on the base of which the connections between physical body and psychic body should be grasped. So, the reduction of empathy to mirror neurons amounts to an “objectivisation”, with the consequent absolutisation of a process that is a function of the Leib as intentional subject, not as a physical reality. The main task of the philosophical research, bracketed by the new “neuro” researches, thus emphasizing their theoretical limits as soon as they depart from experimental enquiries, is then to understand the conditions of possibility of cognitive procedures, that is to say, in other words, the genesis of consciousness, that in aesthetics becomes “the genesis of aesthetic consciousness”. Interdisciplinarity is already an ancient and out of fashion word, now it is the time of “dialogue”, being aware however that the “logoi” not always require synthesis, and that the unity of the corporeal reality implies, as Husserl emphasizes, very different descriptive behaviours.
Alternative models of DSM-5 PTSD: Examining diagnostic implications.
Murphy, Siobhan; Hansen, Maj; Elklit, Ask; Yong Chen, Yoke; Raudzah Ghazali, Siti; Shevlin, Mark
2018-04-01
The factor structure of DSM-5 posttraumatic stress disorder (PTSD) has been extensively debated with evidence supporting the recently proposed seven-factor Hybrid model. However, despite myriad studies examining PTSD symptom structure few have assessed the diagnostic implications of these proposed models. This study aimed to generate PTSD prevalence estimates derived from the 7 alternative factor models and assess whether pre-established risk factors associated with PTSD (e.g., transportation accidents and sexual victimisation) produce consistent risk estimates. Seven alternative models were estimated within a confirmatory factor analytic framework using the PTSD Checklist for DSM-5 (PCL-5). Data were analysed from a Malaysian adolescent community sample (n = 481) of which 61.7% were female, with a mean age of 17.03 years. The results indicated that all models provided satisfactory model fit with statistical superiority for the Externalising Behaviours and seven-factor Hybrid models. The PTSD prevalence estimates varied substantially ranging from 21.8% for the DSM-5 model to 10.0% for the Hybrid model. Estimates of risk associated with PTSD were inconsistent across the alternative models, with substantial variation emerging for sexual victimisation. These findings have important implications for research and practice and highlight that more research attention is needed to examine the diagnostic implications emerging from the alternative models of PTSD. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Leontaris, G.K.; Rizos, J.; Tamvakis, K. (Ioannina Univ. (Greece). Theoretical Physics Div.)
1990-06-28
We calculate the trilinear superpotential of the hidden sector of the three generation flipped SU(5)xU(1)xU(1){sup 4}xSO(10)xSU(4) superstring model. We perform a renormalization group analysis of the model taking into account the hidden sector. We find that, in all relevant cases, fractionally charged tetraplets of the hidden SO(6) gauge group are confined at a high scale. Nevertheless, their contribution to the observable U(1) gauge coupling evolution results in a drastic reduction of the available freedom in the values of a{sub 3}(m{sub w}), sin{sup 2}{theta}{sub w} and M{sub x} that allow superunification. (orig.).
DEFF Research Database (Denmark)
Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song
2015-01-01
with the spray combustion solver. Prior to the soot modelling, combustion simulations are carried out. Numerical results show that the ignition delay times and lift-off lengths exhibit good agreement with the experimental measurements across a wide range of operating conditions, apart from those in the cases......, variation of spatial soot distribution and soot mass produced at oxygen molar fractions ranging from 10.0 to 21.0% for both low and high density conditions are reproduced....
Phenomenology of U(1){sub F} extension of inert-doublet model with exotic scalars and leptons
Energy Technology Data Exchange (ETDEWEB)
Dhargyal, Lobsang [Harish-Chandra Research Institute, HBNI, Allahabad (India)
2018-02-15
In this work we will extend the inert-doublet model (IDM) by adding a new U(1){sub F} gauge symmetry to it, under which, a Z{sub 2} even scalar (φ{sub 2}) and Z{sub 2} odd right handed component of two exotic charged leptons (F{sub eR}, F{sub μR}), are charged. We also add one Z{sub 2} even real scalar (φ{sub 1}) and one complex scalar (φ), three neutral Majorana right handed fermions (N{sub 1}, N{sub 2}, N{sub 3}), two left handed components of the exotic charged leptons (F{sub eL}, F{sub μL}) as well as F{sub τ} are all odd under the Z{sub 2}, all of which are not charged under the U(1){sub F}. With these new particles added to the IDM, we have a model which can give two scalar DM candidates, together they can explain the present DM relic density as well as the muon (g-2) anomaly simultaneously. Also in this model the neutrino masses are generated at one loop level. One of the most peculiar feature of this model is that non-trivial solution to the axial gauge anomaly free conditions lead to the prediction of a stable very heavy partner to the electron (F{sub e}), whose present collider limit (13 TeV LHC) on its mass should be around m{sub F{sub e}} ≥ few TeV. (orig.)
Matsuoka, Tomohiro; Gomi, Sohei; Shingai, Ryuzo
2008-01-21
The nematode Caenorhabditis elegans has been reported to exhibit thermotaxis, a sophisticated behavioral response to temperature. However, there appears to be some inconsistency among previous reports. The results of population-level thermotaxis investigations suggest that C. elegans can navigate to the region of its cultivation temperature from nearby regions of higher or lower temperature. However, individual C. elegans nematodes appear to show only cryophilic tendencies above their cultivation temperature. A Monte-Carlo style simulation using a simple individual model of C. elegans provides insight into clarifying apparent inconsistencies among previous findings. The simulation using the thermotaxis model that includes the cryophilic tendencies, isothermal tracking and thermal adaptation was conducted. As a result of the random walk property of locomotion of C. elegans, only cryophilic tendencies above the cultivation temperature result in population-level thermophilic tendencies. Isothermal tracking, a period of active pursuit of an isotherm around regions of temperature near prior cultivation temperature, can strengthen the tendencies of these worms to gather around near-cultivation-temperature regions. A statistical index, the thermotaxis (TTX) L-skewness, was introduced and was useful in analyzing the population-level thermotaxis of model worms.
Physics on the smallest scales: an introduction to minimal length phenomenology
International Nuclear Information System (INIS)
Sprenger, Martin; Nicolini, Piero; Bleicher, Marcus
2012-01-01
Many modern theories which try to unify gravity with the Standard Model of particle physics, such as e.g. string theory, propose two key modifications to the commonly known physical theories: the existence of additional space dimensions; the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide coverage in publications over the last ten years (especially due to the prediction of micro black hole production at the Large Hadron Collider), the phenomenology of models with a minimal length is still less investigated. In a summer study project for bachelor students in 2010, we have explored some phenomenological implications of the potential existence of a minimal length. In this paper, we review the idea and formalism of a quantum gravity-induced minimal length in the generalized uncertainty principle framework as well as in the coherent state approach to non-commutative geometry. These approaches are effective models which can make model-independent predictions for experiments and are ideally suited for phenomenological studies. Pedagogical examples are provided to grasp the effects of a quantum gravity-induced minimal length. This paper is intended for graduate students and non-specialists interested in quantum gravity. (paper)
Planetary Interior Modeling and Tectonic Implications
Phillips, R. J.
1985-01-01
A technique is described for estimating spectral admittance functions using Pioneer Venus gravity and topography data. These admittance functions provide a convenient means to carry out systematic geophysical studies over much of the surface of Venus with a variety of interior density models. The admittance functions are calculated in the observation space of line-of-sight (LOS) gravity. Both closed and open system petrological models are considered for the Tharsis region of Mars. An analytic theory for isostatic compensation on one-plate planet is applied, including membrane stresses in the lithosphere, self gravitation, and rotational ellipticity. Crucial to this stress modeling and also to the petrological modeling is the observation that the earliest fracturing seen in the Tharsis region is associated with isostatic stresses. The radial fractures that extend far from Tharsis are associated with an additional and/or a completely different mechanism.
SLED phenomenology: curvature vs. volume
International Nuclear Information System (INIS)
Niedermann, Florian; Schneider, Robert
2016-01-01
We assess the question whether the SLED (Supersymmetric Large Extra Dimensions) model admits phenomenologically viable solutions with 4D maximal symmetry. We take into account a finite brane width and a scale invariance (SI) breaking dilaton-brane coupling, both of which should be included in a realistic setup. Provided that the brane tension and the microscopic size of the brane take generic values set by the fundamental bulk Planck scale, we find that either the 4D curvature or the size of the extra dimensions is unacceptably large. Since this result is independent of the dilaton-brane couplings, it provides the biggest challenge to the SLED program. In addition, to quantify its potential with respect to the cosmological constant problem, we infer the amount of tuning on model parameters required to obtain a sufficiently small 4D curvature. A first answer was recently given in http://dx.doi.org/10.1007/JHEP02(2016)025, showing that 4D flat solutions are only ensured in the SI case by imposing a tuning relation, even if a brane-localized flux is included. In this companion paper, we find that the tuning can in fact be avoided for certain SI breaking brane-dilaton couplings, but only at the price of worsening the phenomenological problem. Our results are obtained by solving the full coupled Einstein-dilaton system in a completely consistent way. The brane width is implemented using a well-known ring regularization. In passing, we note that for the couplings considered here the results of http://dx.doi.org/10.1007/JHEP02(2016)025 (which only treated infinitely thin branes) are all consistently recovered in the thin brane limit, and how this can be reconciled with the concerns about their correctness, recently brought up in http://dx.doi.org/10.1007/JHEP01(2016)017.
The infinitesimal model: Definition, derivation, and implications.
Barton, N H; Etheridge, A M; Véber, A
2017-12-01
Our focus here is on the infinitesimal model. In this model, one or several quantitative traits are described as the sum of a genetic and a non-genetic component, the first being distributed within families as a normal random variable centred at the average of the parental genetic components, and with a variance independent of the parental traits. Thus, the variance that segregates within families is not perturbed by selection, and can be predicted from the variance components. This does not necessarily imply that the trait distribution across the whole population should be Gaussian, and indeed selection or population structure may have a substantial effect on the overall trait distribution. One of our main aims is to identify some general conditions on the allelic effects for the infinitesimal model to be accurate. We first review the long history of the infinitesimal model in quantitative genetics. Then we formulate the model at the phenotypic level in terms of individual trait values and relationships between individuals, but including different evolutionary processes: genetic drift, recombination, selection, mutation, population structure, …. We give a range of examples of its application to evolutionary questions related to stabilising selection, assortative mating, effective population size and response to selection, habitat preference and speciation. We provide a mathematical justification of the model as the limit as the number M of underlying loci tends to infinity of a model with Mendelian inheritance, mutation and environmental noise, when the genetic component of the trait is purely additive. We also show how the model generalises to include epistatic effects. We prove in particular that, within each family, the genetic components of the individual trait values in the current generation are indeed normally distributed with a variance independent of ancestral traits, up to an error of order 1∕M. Simulations suggest that in some cases the convergence
A phenomenological study on the production of Higgs bosons in the cSMCS model at the LHC
Directory of Open Access Journals (Sweden)
N. Darvishi
2017-10-01
Full Text Available In the present work, we intend to predict the production rates of the Higgs bosons in the simplest extension of the Standard Model (SM by a neutral complex singlet (cSMCS. This model has an additional source of CP violation and provides strong enough first-order electroweak phase transition to generate the baryon asymmetry of universe (BAU. The scalar spectrum of the cSMCS includes three neutral Higgs particles with the lightest one considered to be the 125 GeV Higgs boson found at LHC. The SM-like Higgs boson comes mostly from the SM-like SU(2 doublet, with a small correction from the singlet. To predict the production rates of the Higgs bosons, we use a conventional effective LO QCD framework and the unintegrated parton distribution functions (UPDF of Kimber–Martin–Ryskin (KMR. We first compute the SM Higgs production cross-section and compare the results to the existing theoretical calculations from different frameworks as well as the experimental data from the CMS and ATLAS collaborations. It is shown that our framework is capable of producing sound predictions for these high-energy QCD events in the SM. Afterwards we present our predictions for the Higgs boson production in the cSMCS.
Postmodernism, phenomenology and afriphenomenology | Francis ...
African Journals Online (AJOL)
In this paper, I aimed to study the relationship between postmodernism and phenomenology. In the study, I established that postmodernism and phenomenology bear similar ontological marking, which base their concepts and methodologies on an individualistic framework. On the basis of such ontological framework, ...
Phenomenology of chiral damping in noncentrosymmetric magnets
Akosa, Collins Ashu; Miron, Ioan Mihai; Gaudin, Gilles; Manchon, Aurelien
2016-01-01
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.
Phenomenology of chiral damping in noncentrosymmetric magnets
Akosa, Collins Ashu
2016-06-21
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.
Phenomenology of atmospheric neutrinos
Directory of Open Access Journals (Sweden)
Fedynitch Anatoli
2016-01-01
Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.
Emergency department surge: models and practical implications.
Nager, Alan L; Khanna, Kajal
2009-08-01
Emergency Department crowding has long been described. Despite the daily challenges of managing emergency department volume and acuity; a surge response during a disaster entails even greater challenges including collaboration, intervention, and resourcefulness to effectively carry out pediatric disaster management. Understanding surge and how to respond with appropriate planning will lead to success. To achieve this, we sought to analyze models of surge; review regional and national data outlining surge challenges and factors that impact surge; and to outline potential solutions. We conducted a systemic review and included articles and documents that best described the theoretical and practical basis of surge response. We organized the systematic review according to the following questions: What are the elements and models that are delineated by the concept of surge? What is the basis for surge response based on regional and national published sources? What are the broad global solutions? What are the major lessons observed that will impact effective surge capacity? Multiple models of surge are described including public health, facility-based and community-based; a 6-tiered response system; and intrinsic or extrinsic surge capacity. In addition, essential components (4 S's of surge response) are described along with regional and national data outlining surge challenges, impacting factors, global solutions, and lesions observed. There are numerous shortcomings regionally and nationally affecting our ability to provide an effective and coordinated surge response. Planning, education, and training will lead to an effective pediatric disaster management response.
International Nuclear Information System (INIS)
Popov, A.P.
2012-01-01
Simple phenomenological model of ferromagnetic film characterized by equal energies of surface anisotropies at two sides of a film (symmetric film) is considered. The model is used to describe a two-step spin reorientation transition (SRT) in Au/Co/Au sandwich with Co film thickness: the SRT from perpendicular to canted noncollinear (CNC) state at N ⊥ =6.3 atomic layers and the subsequent SRT from CNC to in-plane state at N ∥ =10.05 atomic layers. Analytic expressions for the stability criterion of collinear perpendicular and in-plane states of a film are derived with account of discrete location of atomic layers. The dependence of borders that separate regions corresponding to various magnetic states of a film in the (k B ,k S )-diagram on film thickness N is established. k S (k B ) is surface (bulk) reduced anisotropy constant. The comparison of theory with experiment related to Au/Co/Au sandwich shows that there is a whole region in the (k B ,k S )-diagram corresponding to experimentally determined values of threshold film thicknesses N ⊥ =6.3 and N ∥ =10.05. The comparison of this region with similar region determined earlier for a bare Co/Au film within the same model of asymmetric film and characterized by N ⊥ =3.5, N ∥ =5.5 shows that the intersection of these regions is not empty. Hence, both the SRT in Au/Co/Au sandwich and in bare Co/Au film with Co film thickness can be described within the same model using the same magnitudes of model parameters k S , k B . Based on this result we conclude that the energy of Neel surface anisotropy at free Co surface is negligible compared to the energy of Co–Au interface anisotropy. It is demonstrated that the destabilization of collinear states in symmetric film leads to occurrence of the ground CNC state and two novel metastable CNC states. These three CNC states exhibit different kinds of symmetry. In case of asymmetric film only ground CNC state occurs on destabilization of collinear states of a film
Some Instructional Implications from a Mathematical Model of Cognitive Development.
Mierkiewicz, Diane B.
Cognitive development and various educational implications are discussed in terms of Donald Saari's model of the interaction of a learner and the enviroment and the constraints imposed by the inefficiency of the learner's cognitive system. Saari proposed a hierarchical system of cognitive structures such that the relationships between structures…
Organizational Resilience: The Theoretical Model and Research Implication
Directory of Open Access Journals (Sweden)
Xiao Lei
2017-01-01
Full Text Available Organizations are all subject to a diverse and ever changing and uncertain environment. Under this situation organizations should develop a capability which can resist the emergency and recover from the disruption. Base on lot of literature, the paper provides the main concept of organizational resilience; construct the primary theoretical model and some implications for management.
Cosmological implications of a class of SO(10) models
International Nuclear Information System (INIS)
Mangano, G.; Rosa, L.
1996-01-01
The cosmological implications of a class of SO(10) models are discussed. In particular we show how a good prediction for neutrino masses is obtained in order to fit with the MSW mechanism to explain the solar neutrino flux deficit and with the predicted amount of the dark matter hot component. A possible scenario for baryogenesis is also considered. (orig.)
Skewness of the standard model possible implications
International Nuclear Information System (INIS)
Nielsen, H.B.; Brene, N.
1989-09-01
In this paper we consider combinations of gauge algebra and set of rules for quantization of gauge charges. We show that the combination of the algebra of the standard model and the rule satisfied by the electric charges of the quarks and leptons has an exceptional high degree of a kind of asymmetry which we call skewness. Assuming that skewness has physical significance and adding two other rather plausible assumptions, we may conclude that space time must have a non simply connected topology on very small distances. Such topology would allow a kind of symmetry breakdown leading to a more skew combination of gauge algebra and set of quantization rules. (orig.)
Modelling Ebola virus dynamics: Implications for therapy.
Martyushev, Alexey; Nakaoka, Shinji; Sato, Kei; Noda, Takeshi; Iwami, Shingo
2016-11-01
Ebola virus (EBOV) causes a severe, often fatal Ebola virus disease (EVD), for which no approved antivirals exist. Recently, some promising anti-EBOV drugs, which are experimentally potent in animal models, have been developed. However, because the quantitative dynamics of EBOV replication in humans is uncertain, it remains unclear how much antiviral suppression of viral replication affects EVD outcome in patients. Here, we developed a novel mathematical model to quantitatively analyse human viral load data obtained during the 2000/01 Uganda EBOV outbreak and evaluated the effects of different antivirals. We found that nucleoside analogue- and siRNA-based therapies are effective if a therapy with a >50% inhibition rate is initiated within a few days post-symptom-onset. In contrast, antibody-based therapy requires not only a higher inhibition rate but also an earlier administration, especially for otherwise fatal cases. Our results demonstrate that an appropriate choice of EBOV-specific drugs is required for effective EVD treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Cosmic antimatter: models and phenomenology
Dolgov, A. D.
2010-01-01
The possibility of creation of cosmologically significant antimatter are analyzed in different scenarios of baryogenesis. It is argued that there may exist plenty of antimatter even in our Galaxy. Possible forms of antimatter objects and their observational signatures are discussed.
Equivalence principle implications of modified gravity models
International Nuclear Information System (INIS)
Hui, Lam; Nicolis, Alberto; Stubbs, Christopher W.
2009-01-01
Theories that attempt to explain the observed cosmic acceleration by modifying general relativity all introduce a new scalar degree of freedom that is active on large scales, but is screened on small scales to match experiments. We demonstrate that if such screening occurs via the chameleon mechanism, such as in f(R) theory, it is possible to have order unity violation of the equivalence principle, despite the absence of explicit violation in the microscopic action. Namely, extended objects such as galaxies or constituents thereof do not all fall at the same rate. The chameleon mechanism can screen the scalar charge for large objects but not for small ones (large/small is defined by the depth of the gravitational potential and is controlled by the scalar coupling). This leads to order one fluctuations in the ratio of the inertial mass to gravitational mass. We provide derivations in both Einstein and Jordan frames. In Jordan frame, it is no longer true that all objects move on geodesics; only unscreened ones, such as test particles, do. In contrast, if the scalar screening occurs via strong coupling, such as in the Dvali-Gabadadze-Porrati braneworld model, equivalence principle violation occurs at a much reduced level. We propose several observational tests of the chameleon mechanism: 1. small galaxies should accelerate faster than large galaxies, even in environments where dynamical friction is negligible; 2. voids defined by small galaxies would appear larger compared to standard expectations; 3. stars and diffuse gas in small galaxies should have different velocities, even if they are on the same orbits; 4. lensing and dynamical mass estimates should agree for large galaxies but disagree for small ones. We discuss possible pitfalls in some of these tests. The cleanest is the third one where the mass estimate from HI rotational velocity could exceed that from stars by 30% or more. To avoid blanket screening of all objects, the most promising place to look is in
The Wider Implications of Business-model Research
DEFF Research Database (Denmark)
Ritter, Thomas; Lettl, Christopher
2018-01-01
Business-model research has struggled to develop a clear footprint in the strategic management field. This introduction to the special issue on the wider implications of business-model research argues that part of this struggle relates to the application of five different perspectives on the term...... “business model,” which creates ambiguity about the conceptual boundaries of business models, the applied terminology, and the potential contributions of business-model research to strategic management literature. By explicitly distinguishing among these five perspectives and by aligning them into one...... overarching, comprehensive framework, this paper offers a foundation for consolidating business-model research. Furthermore, we explore the connections between business-model research and prominent theories in strategic management. We conclude that business-model research is not necessarily a “theory on its...
Phenomenology of ELDER dark matter
Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai
2017-08-01
We explore the phenomenology of Elastically Decoupling Relic (ELDER) dark matter. ELDER is a thermal relic whose present density is determined primarily by the cross-section of its elastic scattering off Standard Model (SM) particles. Assuming that this scattering is mediated by a kinetically mixed dark photon, we argue that the ELDER scenario makes robust predictions for electron-recoil direct-detection experiments, as well as for dark photon searches. These predictions are independent of the details of interactions within the dark sector. Together with the closely related Strongly-Interacting Massive Particle (SIMP) scenario, the ELDER predictions provide a physically motivated, well-defined target region, which will be almost entirely accessible to the next generation of searches for sub-GeV dark matter and dark photons. We provide useful analytic approximations for various quantities of interest in the ELDER scenario, and discuss two simple renormalizable toy models which incorporate the required strong number-changing interactions among the ELDERs, as well as explicitly implement the coupling to electrons via the dark photon portal.
'Mathematical model of K Capture and its implications'
International Nuclear Information System (INIS)
Angus, Andrew C.
2000-01-01
The mechanism of K Capture, the nuclear absorption of electron in the K shell, as induced by electricity, is explained in this article. Furthermore, a mathematical model of K Capture is formulated. Then, K Capture is applied to explain the negative results obtained by Steven Jones and the positive results obtained by Pons-Fleischmann in Deuterium Oxide Electrolysis Experiments. The most important implication of K Capture is the possibility of obtaining nuclear energy by fusion at low temperature from heavy water
Generalized uncertainty principle and quantum gravity phenomenology
Bosso, Pasquale
The fundamental physical description of Nature is based on two mutually incompatible theories: Quantum Mechanics and General Relativity. Their unification in a theory of Quantum Gravity (QG) remains one of the main challenges of theoretical physics. Quantum Gravity Phenomenology (QGP) studies QG effects in low-energy systems. The basis of one such phenomenological model is the Generalized Uncertainty Principle (GUP), which is a modified Heisenberg uncertainty relation and predicts a deformed canonical commutator. In this thesis, we compute Planck-scale corrections to angular momentum eigenvalues, the hydrogen atom spectrum, the Stern-Gerlach experiment, and the Clebsch-Gordan coefficients. We then rigorously analyze the GUP-perturbed harmonic oscillator and study new coherent and squeezed states. Furthermore, we introduce a scheme for increasing the sensitivity of optomechanical experiments for testing QG effects. Finally, we suggest future projects that may potentially test QG effects in the laboratory.
Theory and phenomenology of the MSSM with heavy scalars
International Nuclear Information System (INIS)
Bernal Hernandez, N.
2008-09-01
This work is dedicated to the study of different phenomenological aspects of supersymmetry with on one hand the physics of the Minimal Supersymmetric Standard Model (MSSM) in the case of heavy scalar superparticles and its implications at the LHC and on the other hand the characteristics of black matter particles and their detection in colliders and in astro-particle experiments. The first chapter presents the Standard Model, the supersymmetry theory and how the supersymmetric extension of the Standard Model can solve some concerns of the Standard Model. In the second chapter we present the MSSM with heavy scalars. In this model all the scalar particles have masses beyond the TeV and consequently even next generations of colliders will not be able to detect them. We recall why heavy scalars are necessary. In the third chapter we present the construction of MSSM parameters with heavy scalars and we show that the future ILC (International Linear Collider) will be able to set the value of these parameters with a satisfactory accuracy. The last chapter deals with dark matter particles like WIMPS, their detection sensitivity in the XENON experiment and the reconstruction of their masses will be analyzed. We have also studied the direct detection of WIMPS via the observation of some products of their annihilation
The Role of Phenomenology of Merleau- ponty in Medicine
Directory of Open Access Journals (Sweden)
Somayeh Rafighi
2017-07-01
Full Text Available Today, phenomenology, with an emphasis on direct explanations with regard to the lived experience of people is interest of different areas. With emphasis on body, Merleau- Ponty's phenomenology is considered in medical science. In his phenomenology, Merleau- Ponty gives new definition of body and names it lived body. Lived body is against of mechanical body and is the central of subjectivity and being- in- the – world and included all of existential aspects of man. Such definition enable doctors to consider all of existential aspects of man besides his physiological and same understanding of the disease based on the patient lived experience. This paper attempts to examine the implications of this new concept of the body as it is described in the medical field.
Vantage perspective during encoding: The effects on phenomenological memory characteristics.
Mooren, Nora; Krans, Julie; Näring, Gérard W B; Moulds, Michelle L; van Minnen, Agnes
2016-05-01
The vantage perspective from which a memory is retrieved influences the memory's emotional impact, intrusiveness, and phenomenological characteristics. This study tested whether similar effects are observed when participants were instructed to imagine the events from a specific perspective. Fifty student participants listened to a verbal report of car-accidents and visualized the scenery from either a field or observer perspective. There were no between-condition differences in emotionality of memories and the number of intrusions, but imagery experienced from a relative observer perspective was rated as less self-relevant. In contrast to earlier studies on memory retrieval, vantage perspective influenced phenomenological memory characteristics of the memory representation such as sensory details, and ratings of vividness and distancing of the memory. However, vantage perspective is most likely not a stable phenomenological characteristic itself. Implications and suggestions for future research are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Particle Phenomenology of Compact Extra Dimensions
International Nuclear Information System (INIS)
Melbeus, Henrik
2012-01-01
This thesis is an investigation of the subject of extra dimensions in particle physics. In recent years, there has been a large interest in this subject. In particular, a number of models have been suggested that provide solutions to some of the problem with the current Standard Model of particle physics. These models typically give rise to experimental signatures around the TeV energy scale, which means that they could be tested in the next generation of high-energy experiments, such as the LHC. Among the most important of these models are the universal extra dimensions model, the large extra dimensions model by Arkani-Hamed, Dimopolous, and Dvali, and models where right-handed neutrinos propagate in the extra dimensions. In the thesis, we study phenomenological aspects of these models, or simple modifications of them. In particular, we focus on Kaluza-Klein dark matter in universal extra dimensions models, different aspects of neutrino physics in higher dimensions, and collider phenomenology of extra dimensions. In addition, we consider consequences of the enhanced renormalization group running of physical parameters in higher-dimensional models
Phenomenological analysis of D-brane Pati-Salam vacua
Anastasopoulos, P.; Vlachos, N.D.
2010-01-01
In the present work we perform a phenomenological analysis of the effective low energy models with Pati-Salam (PS) gauge symmetry derived in the context of D-branes. A main issue in these models arises from the fact that the right-handed fermions and the PS-symmetry breaking Higgs field transform identically under the PS symmetry, causing unnatural matter-Higgs mixing effects. We argue that this problem could be solved in particular D-brane setups where these fields arise in different intersections. We further observe that whenever a large Higgs mass term is generated in a particular class of mass spectra, a splitting mechanism -reminiscent of the doublet triplet splitting- may protect the neutral Higgs components from a heavy mass term. We analyze the implications of each individual representation which in principle is available in these models in order to specify the minimal spectrum required to build up a consistent PS model which reconciles the low energy data. A short discussion is devoted on the effects...
Thermal Models of the Niger Delta: Implications for Charge Modelling
International Nuclear Information System (INIS)
Ejedawe, J.
2002-01-01
There are generally three main sources of temperature data-BHT data from log headers, production temperature data, and continuo's temperature logs. Analysis of continuous temperature profiles of over 100 wells in the Niger Delta two main thermal models (single leg and dogleg) are defined with occasional occurrence of a modified dogleg model.The dogleg model is characterised by a shallow interval of low geothermal gradient ( 3.0.C/100m). This is characteristically developed onshore area is simple, requiring only consideration of heat transients, modelling in the onshore require modelling programmes with built in modules to handle convective heat flow dissipation in the shallow layer. Current work around methods would involve tweaking of thermal conductivity values to mimic the underlying heat flow process effects, or heat flow mapping above and below the depth of gradient change. These methods allow for more realistic thermal modelling, hydrocarbon type prediction, and also more accurate prediction of temperature prior to drilling and for reservoir rock properties. The regional distribution of the models also impact on regional hydrocarbon distribution pattern in the Niger Delta
Workshop on Model Uncertainty and its Statistical Implications
1988-01-01
In this book problems related to the choice of models in such diverse fields as regression, covariance structure, time series analysis and multinomial experiments are discussed. The emphasis is on the statistical implications for model assessment when the assessment is done with the same data that generated the model. This is a problem of long standing, notorious for its difficulty. Some contributors discuss this problem in an illuminating way. Others, and this is a truly novel feature, investigate systematically whether sample re-use methods like the bootstrap can be used to assess the quality of estimators or predictors in a reliable way given the initial model uncertainty. The book should prove to be valuable for advanced practitioners and statistical methodologists alike.
A Phenomenology of Expert Musicianship
DEFF Research Database (Denmark)
Høffding, Simon
This dissertation develops a phenomenology of expert musicianship through an interdisciplinary approach that integrates qualitative interviews with the Danish String Quartet with philosophical analyses drawing on ideas and theses found in phenomenology, philosophy of mind, cognitive science...... and psychology of music. The dissertation is structured through the asking, analyzing and answering of three primary questions, namely: 1) What is it like to be an expert? 2) What is the general phenomenology of expert musicianship? 3) What happens to the self in deep musical absorption? The first question...... targets a central debate in philosophy and psychology on whether reflection is conducive for, or detrimental to, skillful performance. My analyses show that the concepts assumed in the literature on this question are poorly defined and gloss over more important features of expertise. The second question...
2005 dossier: granite. Tome: phenomenological evolution of the geologic disposal
International Nuclear Information System (INIS)
2005-01-01
This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological aspects of the geologic disposal of high-level and long-lived radioactive wastes (HLLL) in granite formations. Content: 1 - introduction: ANDRA's research program on disposal in granitic formation; 2 - the granitic environment: geologic history, French granites; 3 - HLLL wastes and disposal design concepts; 4 - identification, characterization and modeling of a granitic site: approach, geologic modeling, hydrologic and hydro-geochemical modeling, geomechanical and thermal modeling, long-term geologic evolution of a site; 5 - phenomenological evolution of a disposal: main aspects of the evolution of a repository with time, disposal infrastructures, B-type wastes disposal area, C-type wastes disposal area; spent fuels disposal area, radionuclides transfer and retention in the granitic environment; 6 - conclusions: available knowledge, methods and tools for the understanding and modeling of the phenomenological evolution of a granitic disposal site. (J.S.)
Z(prime) Phenomenology and the LHC
International Nuclear Information System (INIS)
Rizzo, Thomas G.
2006-01-01
A brief pedagogical overview of the phenomenology of Z(prime) gauge bosons is ILC in determining Z(prime) properties is also discussed. and explore in detail how the LHC may discover and help elucidate the models, review the current constraints on the possible properties of a Z(prime) nature of these new particles. We provide an overview of the Z(prime) studies presented. Such particles can arise in various electroweak extensions of that have been performed by both ATLAS and CMS. The role of the the Standard Model (SM). We provide a quick survey of a number of Z(prime)
The use of phenomenology in mental health nursing research.
Picton, Caroline Jane; Moxham, Lorna; Patterson, Christopher
2017-12-18
Historically, mental health research has been strongly influenced by the underlying positivism of the quantitative paradigm. Quantitative research dominates scientific enquiry and contributes significantly to understanding our natural world. It has also greatly benefitted the medical model of healthcare. However, the more literary, silent, qualitative approach is gaining prominence in human sciences research, particularly mental healthcare research. To examine the qualitative methodological assumptions of phenomenology to illustrate the benefits to mental health research of studying the experiences of people with mental illness. Phenomenology is well positioned to ask how people with mental illness reflect on their experiences. Phenomenological research is congruent with the principles of contemporary mental healthcare, as person-centred care is favoured at all levels of mental healthcare, treatment, service and research. Phenomenology is a highly appropriate and suitable methodology for mental health research, given it includes people's experiences and enables silent voices to be heard. This overview of the development of phenomenology informs researchers new to phenomenological enquiry. ©2017 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.
Phenomenology of modern education quality
Directory of Open Access Journals (Sweden)
Natalya G. Kulikova
2017-01-01
Full Text Available The national priority question of education quality is considered in the article at the level of an in-depth – existential – function of the educational system, where the former arises. In that case, education appears not only as a social organism, but a fundamental form of understanding existence and self-realization of a person as a self-organized space and biosocial system in terms of an integral educational result. The mechanisms and effects of formal development logic become clear from such research perspective namely, that changes into philosophy of education in the shape of a single-dimensional methodological imperative and provides for an inconsistency of educational practice, achievement of some pedagogical aims at the expense and to the disadvantage of others. The limited nature of pedagogical thinking is not simply fixed in the paradoxes of human development as an individual and organism, but is considered as the main obstacle in the way of evolution of the Human-Nature-Society global system. The phenomenological comprehension of education problems supposes coming into the space of a spiritual idea, funding the process of searching for quality at different levels of human life and activities from within, which characterizes the topicality of the given article. The aim of the scientific research is to analyze factors limiting the process of modern human development, and to ground the necessity of the fundamental updating of the education model in the noospheric scientific paradigm. Theoretical methods of research are used in the paper: analysis of scientific literature, system analysis, analogy, systematization, and generalization. The research results are represented in the categories of education philosophy and focus the reader’s attention mainly on its critical-reflexive function. Elimination of the subject of education is considered as a logical result of phenomenological reduction of thinking that loses a higher level of
Improving statistical reasoning theoretical models and practical implications
Sedlmeier, Peter
1999-01-01
This book focuses on how statistical reasoning works and on training programs that can exploit people''s natural cognitive capabilities to improve their statistical reasoning. Training programs that take into account findings from evolutionary psychology and instructional theory are shown to have substantially larger effects that are more stable over time than previous training regimens. The theoretical implications are traced in a neural network model of human performance on statistical reasoning problems. This book apppeals to judgment and decision making researchers and other cognitive scientists, as well as to teachers of statistics and probabilistic reasoning.
Phenomenological evidence for two types of paranoia.
Chadwick, P D J; Trower, P; Juusti-Butler, T-M; Maguire, N
2005-01-01
Two types of paranoia have been identified, namely persecution (or 'Poor Me') paranoia, and punishment (or 'Bad Me') paranoia. This research tests predicted differences in phenomenology--specifically, in person evaluative beliefs, self-esteem, depression, anxiety, and anger. Fifty-three people with current paranoid beliefs were classified as Poor Me, Bad Me, or neither (classification was reliable). Key dependent variables were measured. All predictions were supported, except the one relating to anger, where the two groups did not differ. The Bad Me group had lower self-esteem, more negative self-evaluative thinking, lower negative evaluations about others, higher depression and anxiety. Importantly, the differences in self-esteem and self-evaluations were not fully accounted for by differences in depression. Data support the presence of two distinct topographies of paranoia. Future research is needed to explore the theory further and examine clinical implications. Copyright 2005 S. Karger AG, Basel
International Nuclear Information System (INIS)
Ecker, G.
1987-01-01
A short survey of the theoretical status of CP violation is presented. The Standart Model is confronted with the present experimental situation. Possible future tests of our notions of CP violation are discussed, concentrating on rare K decays. Other promising reactions such as B decays are briefly reviewed. Among alternative models of CP violation, multi-Higgs extensions of the Standart Model, left-right symmetric gauge theories and minimal SUSY models are discussed. Finally, the relevance of generalized CP invariance is emphasized. 64 refs., 7 figs. (Author)
Phenomenology Using Lattice QCD
Gupta, R.
2005-08-01
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
Phenomenology of induced electroweak symmetry breaking
International Nuclear Information System (INIS)
Chang, Spencer; Galloway, Jamison; Luty, Markus A.; Salvioni, Ennio; Tsai, Yuhsin
2015-01-01
We study the phenomenology of models of electroweak symmetry breaking where the Higgs potential is destabilized by a tadpole arising from the coupling to an “auxiliary” Higgs sector. The auxiliary Higgs sector can be either perturbative or strongly coupled, similar to technicolor models. Since electroweak symmetry breaking is driven by a tadpole, the cubic and quartic Higgs couplings can naturally be significantly smaller than their values in the standard model. The theoretical motivation for these models is that they can explain the 125 GeV Higgs mass in supersymmetry without fine-tuning. The auxiliary Higgs sector contains additional Higgs states that cannot decouple from standard model particles, so these models predict a rich phenomenology of Higgs physics beyond the standard model. In this paper we analyze a large number of direct and indirect constraints on these models. We present the current constraints after the 8 TeV run of the LHC, and give projections for the sensitivity of the upcoming 14 TeV run. We find that the strongest constraints come from the direct searches A 0 →Zh, A 0 →tt-bar, with weaker constraints from Higgs coupling fits. For strongly-coupled models, additional constraints come from ρ + →WZ where ρ + is a vector resonance. Our overall conclusion is that a significant parameter space for such models is currently open, allowing values of the Higgs cubic coupling down to 0.4 times the standard model value for weakly coupled models and vanishing cubic coupling for strongly coupled models. The upcoming 14 TeV run of the LHC will stringently test this scenario and we identify several new searches with discovery potential for this class of models.
Phenomenology of cosmic phase transitions
International Nuclear Information System (INIS)
Kaempfer, B.; Lukacs, B.; Paal, G.
1989-11-01
The evolution of the cosmic matter from Planck temperature to the atomic combination temperature is considered from a phenomenological point of view. Particular emphasis is devoted to the sequence of cosmic phase transitions. The inflationary era at the temperature of the order of the grand unification energy scale and the quantum chromodynamic confinement transition are dealt with in detail. (author) 131 refs.; 26 figs
Phenomenology and the Empirical Turn
Zwier, Jochem; Blok, Vincent; Lemmens, Pieter
2016-01-01
This paper provides a phenomenological analysis of postphenomenological philosophy of technology. While acknowledging that the results of its analyses are to be recognized as original, insightful, and valuable, we will argue that in its execution of the empirical turn, postphenomenology forfeits
New perspectives on phenomenological decoherence
International Nuclear Information System (INIS)
Melo, Fernando Vaz de; Guzzo, Marcelo Moraes; Peres, Orlando Luis Goulart
2001-01-01
Decoherence showed to be a powerful tool in helping to solve the atmospheric Neutrino problem. However a complete analysis was not yet done. In this work we present all the possibilities concerning phenomenological decoherence linked to Neutrino 'problem'. Its possibilities and differences are stressed out in a effort to clarify the whole phenomena. (author)
Phenomenology of colour exotic fermions
International Nuclear Information System (INIS)
Luest, D.
1986-01-01
The authors discuss the phenomenological consequences of a dynamical scenario according to which the electroweak symmetry breaking and generation of fermion masses is due to fermions that transform under high colour representations. Particular emphasis is given to the predictions for rare processes and to the spectrum of high colour boundstates. (Auth.)
Phenomenological Research Method, Design and Procedure: A ...
African Journals Online (AJOL)
Phenomenological Research Method, Design and Procedure: A Phenomenological Investigation of the Phenomenon of Being-in-Community as Experienced by Two Individuals Who Have Participated in a Community Building Workshop.
Autoxidation of jet fuels: Implications for modeling and thermal stability
Energy Technology Data Exchange (ETDEWEB)
Heneghan, S.P. [Univ. of Dayton Research Institute, OH (United States); Chin, L.P. [Systems Research Laboratories, Inc., Dayton, OH (United States)
1995-05-01
The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to model the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.
Energy Technology Data Exchange (ETDEWEB)
Mercer, R L [International Business Machines Corp., Yorktown Heights, N.Y. (USA); Arnold, L G; Clark, B C [Ohio State Univ., Columbus (USA). Dept. of Physics
1978-01-30
The results of a Dirac equation optical model analysis of p-/sup 4/He elastic scattering data are reported. The optical potential obtained at 1029 MeV reproduces the systematics of p-/sup 4/He data over the energy range from 560 to 1730 MeV.
Phenomenology of lepton production
International Nuclear Information System (INIS)
Renard, F.M.
1976-06-01
The problem of lepton production in hadronic collisions is reviewed. The following subjects are developed: the Drell-Yan model for continuous l + l - production, vector mesons and clusters, and other sources of direct leptons [fr
Indian Academy of Sciences (India)
Introduction. The hierarchy problem is a strong motivation for the beyond the standard model (BSM) physics. ... However, these new terms add arbitrariness to the theory. Recently new ..... may need to be supersymmetrized. On the other hand ...
Strong interaction phenomenology
International Nuclear Information System (INIS)
Giffon, M.
1989-01-01
A brief review of high energy hadronic data (Part I)is followed by an introduction to the standard (Weinberg Salam Glashow) model of electroweak interactions and its extension to the hadrons (Part II). Rudiments of QCD and of the parton model area given in Part III together with a quick review of the spectroscopy of heavy flavours whereas Part IV is devoted to the introduction to deep inelastic scattering and to the so-called EMC effects. (author)
Melanie Klein's metapsychology: phenomenological and mechanistic perspective.
Mackay, N
1981-01-01
Freud's metapsychology is the subject of an important debate. This is over whether psychoanalysis is best construed as a science of the natural science type or as a special human science. The same debate applies to Melanie Klein's work. In Klein's metapsychology are two different and incompatible models of explanation. One is taken over from Freud's structural theory and appears to be similarly mechanistic. The other is clinically based and phenomenological. These two are discussed with special reference to the concepts of "phantasy" and "internal object".
Energy Technology Data Exchange (ETDEWEB)
Anna, Sandulyak, E-mail: anna.sandulyak@mail.ru; Alexander, Sandulyak; Vera, Ershova; Maria, Polismakova; Darya, Sandulyak
2017-03-15
It is noted that in most cases, mechanical impurities of technological liquides are ferroimpurities, possessing ferromagnetic properties; therefore for their control (as well as for the decision taking on the possible use of magnetophoresis devices for their removal) the preference should be given to magnetic methods. In the development of the existing options of magnetic control, used in metrology of ferroimpurities control (including ferrography), the main provisions of the relatively new, tested on a number of process liquids (including fuels and lubricants) poly-operational experimental calculation method is set out. Unlike already practiced experimental methods, it allows the implementation of more objective control. Operational data of magnetic control of ferroimpurities in motor oils, gasoline, diesel fuel and others are given. Based on the phenomenological approach (using the method of functional legalization of mass-operational charachteristics in semi-logarithmic coordinates) the expressions for calculating the operating masses (including the forecasted ones outside of the experiment), and, most importantly, for the calculation of the total mass for unlimited and limited number of operations are obtained. Along that expressions (with the relevant data) for determination of the error control during the limitation of the number of operations and inverse expression for the required number of operations subject to the margin of error are receieved. Based on the physical approach (assuming concepts of absorption screen of exponential type) the design formulas correlated with the phenomenological ones for calculating operating mass and the total mass of ferroimpurities (including the residual) in the analyzed sample probe are obtained. The physical meaning of the number of parameters, which were previously considered exclusively empirical, is figured out. - Highlights: • The method of magnetic sedimentation of wear particle has been examined • The main
International Nuclear Information System (INIS)
Anna, Sandulyak; Alexander, Sandulyak; Vera, Ershova; Maria, Polismakova; Darya, Sandulyak
2017-01-01
It is noted that in most cases, mechanical impurities of technological liquides are ferroimpurities, possessing ferromagnetic properties; therefore for their control (as well as for the decision taking on the possible use of magnetophoresis devices for their removal) the preference should be given to magnetic methods. In the development of the existing options of magnetic control, used in metrology of ferroimpurities control (including ferrography), the main provisions of the relatively new, tested on a number of process liquids (including fuels and lubricants) poly-operational experimental calculation method is set out. Unlike already practiced experimental methods, it allows the implementation of more objective control. Operational data of magnetic control of ferroimpurities in motor oils, gasoline, diesel fuel and others are given. Based on the phenomenological approach (using the method of functional legalization of mass-operational charachteristics in semi-logarithmic coordinates) the expressions for calculating the operating masses (including the forecasted ones outside of the experiment), and, most importantly, for the calculation of the total mass for unlimited and limited number of operations are obtained. Along that expressions (with the relevant data) for determination of the error control during the limitation of the number of operations and inverse expression for the required number of operations subject to the margin of error are receieved. Based on the physical approach (assuming concepts of absorption screen of exponential type) the design formulas correlated with the phenomenological ones for calculating operating mass and the total mass of ferroimpurities (including the residual) in the analyzed sample probe are obtained. The physical meaning of the number of parameters, which were previously considered exclusively empirical, is figured out. - Highlights: • The method of magnetic sedimentation of wear particle has been examined • The main
Hilton, Edith L; Henderson, Lesley J
2003-01-01
Syringomyelia, considered a rare neurological disease, is relatively uninvestigated in the nursing literature. The aims of this qualitative phenomenological case study were to discover the nature, meanings, and dynamics of lived experiences of a 52-year-old Caucasian male with syringomyelia. Using van Manen's Method of Phenomenological inquiry (van Manen, 1990), data were collected, checked, and analyzed according to the philosophy, approach, and methodological procedures of phenomenology. Findings revealed an overarching theme of engulfment by disease. Essential themes included loss of abilities, struggles to adapt to changes, and life as a person who was disabled. Eleven sub-themes were also identified. Implications for nursing practice are discussed.
International Nuclear Information System (INIS)
Teng, L.C.
1980-01-01
In colliding beam storage rings the beam collision regions are generally so short that the beam-beam interaction can be considered as a series of evenly spaced non-linear kicks superimposed on otherwise stable linear oscillations. Most of the numerical studies on computers were carried out in just this manner. But for some reason this model has not been extensively employed in analytical studies. This is perhaps because all analytical work has so far been done by mathematicians pursuing general transcendental features of non-linear mechanics for whom this specific model of the specific system of colliding beams is too parochial and too repugnantly physical. Be that as it may, this model is of direct interest to accelerator physicists and is amenable to (1) further simplification, (2) physical approximation, and (3) solution by analogy to known phenomena
Models for integrated pest control and their biological implications.
Tang, Sanyi; Cheke, Robert A
2008-09-01
Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.
CERN. Geneva
2011-01-01
While the cosmological standard model has many notable successes, it assumes 95% of the mass-energy density of the universe is dark and of unknown nature, and there was an early stage of inflationary expansion driven by physics far beyond the range of the particle physics standard model. In the colloquium I will discuss potential particle-physics implications of the standard cosmological model.
Phenomenological applications of perturbative quantum chromodynamics
International Nuclear Information System (INIS)
Zahir, M.S.Z.
1981-01-01
In this thesis, three diffrent topics in high energy particle physics are investigated each of which is a case of theoretical and phenomenological application of perturbative Quantum Chromodynamics. The first topic is addressed to the structure of nucleons as probed in deep-inelastic lepton-nucleon scattering. Since, at present, meaningful calculations in Quantum Chromodynamics (QCD) can be done only for short distances or large momentum transfers, phenomenological applications of QCD to the full hadronic processes many a time require additional model dependent procedures. In this thesis, the structure functions of the nucleon in the framework of the valon model in which a nucleon is assumed to be a bound state of three valence quark clusters (valons) are analyzed. In the second topic the production of massive dimuons at large transverse momentum in Drell-Yan process is analyzed where it is believed that the dimuons acquire large transverse momentum through the emission or absorption of hard gluons. Following a model independent formalism, in this thesis, the lowest order QCD contributions to the structure functions in lepton-pair production are calculated and it is shown that there exist sum rules connecting the four sructure functions to be satisfied at zero rapidity and large transverse momentum of the muon-pair for similar interacting hadrons. In the third topic a discussion is given on how high energy photons can replace hadrons in new lepton-pair production process
The gluon distribution at small x - a phenomenological analysis
International Nuclear Information System (INIS)
Harriman, P.N.; Martin, A.D.; Stirling, W.J.; Roberts, R.G.
1990-03-01
The size of the gluon distribution at small χ has important implications for phenomenology at future high energy hadron-hadron and lepton-hadron colliders. We extend a recent global parton distribution fit to investigate the constraints on the gluon from deep inelastic and prompt photon data. In particular, we estimate a band of allowed gluon distributions with qualitatively small-χ behaviour and study the implications of these on a variety of cross sections at high energy pp and ep colliders. (author)
Modelling the Implications of Quality Management Elements on Strategic Flexibility
Directory of Open Access Journals (Sweden)
Ana Belén Escrig-Tena
2011-01-01
Full Text Available This paper presents a theoretical and empirical analysis of the implications of a quality management (QM initiative on strategic flexibility. Our study defines flexibility from a strategic approach and examines the extent to which, why, and how the triggering factors of strategic flexibility are related to QM elements. The hypotheses put forward are tested in an empirical study carried out on a sample of Spanish firms, using structural equation models. The results demonstrate the positive effect of adopting an integral QM initiative on enhancing strategic flexibility. QM enhances strategic flexibility more effectively when it is introduced comprehensively rather than in a piecemeal fashion. A series of practices linked to the application of a QM initiative are outlined, which managers can use to improve strategic flexibility. The approach used in the study can be applied to analyse other antecedents of flexibility and to propose possible studies that consider QM as an antecedent of other organisational variables.
Collapse of the wave function models, ontology, origin, and implications
2018-01-01
This is the first single volume about the collapse theories of quantum mechanics, which is becoming a very active field of research in both physics and philosophy. In standard quantum mechanics, it is postulated that when the wave function of a quantum system is measured, it no longer follows the Schrödinger equation, but instantaneously and randomly collapses to one of the wave functions that correspond to definite measurement results. However, why and how a definite measurement result appears is unknown. A promising solution to this problem are collapse theories in which the collapse of the wave function is spontaneous and dynamical. Chapters written by distinguished physicists and philosophers of physics discuss the origin and implications of wave-function collapse, the controversies around collapse models and their ontologies, and new arguments for the reality of wave function collapse. This is an invaluable resource for students and researchers interested in the philosophy of physics and foundations of ...
Phenomenology and hermeneutics - poles apart?
DEFF Research Database (Denmark)
Keller, Kurt Dauer; Feilberg, Casper
A key dispute within qualitative methodology is the choice between top-down (deductive) and bottom-up (inductive) research approaches. Abduction, on the other hand, has received little attention, even though it would often seem to be a more promising methodology. The phenomenological tradition is...... to qualitative methodology. Thus, like abductive approaches, Ricoeur argues for the necessity of an interplay between explanatory theory and description of the lived understanding of the informant in the development of interpretation....... is marked by a similar dichotomy, whereas hermeneutical phenomenologists argue for the necessity of preunderstanding and theorethical perspectives (van Manen), Husserlian phenomenologists insist on the importance of the epoché together with reduction. The existential phenomenology of Heidegger and Merleau...
Phenomenology of the Higgs boson
International Nuclear Information System (INIS)
Ali, A.
1981-09-01
The phenomenology of the standard Weinberg-Salam Higgs boson is reviewed with particular emphasis on production mechanisms in high energy e + e - and hadron-hadron collisions. The production processes relevant for the ISABELLE and TEVATRON energies are discussed and their backgrounds estimated. It is argued that the toponium production and radiative decay provides the most hopeful reaction to detect a Higgs in both the e + e - and the hadron-hadron machines. (orig.)
Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications
Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman
2014-01-01
Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."
Phenomenology and theory of confinement
International Nuclear Information System (INIS)
Pervushin, V.N.
1987-01-01
Phenomenological and theoretical arguments of the separation of the hadronization dynamics from confinement and the idea of the ''kinematic'' confinement are discussed. The recent theory contains results which point out that the Wilson criterion and the confinement potentials are not sufficient for explaining the phenomenological confinement in the sense of zero color amplitudes or Green functions. However, these potentials well explain the hadron spectrum and spontaneous breaking of chiral symmetry, i.e., the hadronization dynamics. The ''kinematic'' confinement can be explained by the topological degeneration of all color-particle physical states in QCD. This degeneration arises if the theory is quantized by explicitly solving the gauge and dynamic constraints: all color states are defined up to gauge(phase) factors describing the map of the three-dimensional space onto SU(3) c -group (π 3 (SU(3) c =Z). The total probability of the color particle generation is equal to zero due to the destructive interference of these phase factors. As a result, in QCD there remains only a hadron sector used in the phenomenology
International Nuclear Information System (INIS)
Chassery, Aurelien
2014-01-01
Within the framework of the decommissioning of fast reactors, several processes are under investigation regarding sodium disposal. One of them rests on the implementation of the sodium-water reaction (SWR), in a controlled and progressive way, to remove residual sodium containing impurities such as sodium hydrides, sodium oxides and tritiated sodium hydrides. Such a hydrolysis releases some amount of energy and produces a liquid effluent, composed of a solution of soda, and a gaseous effluent, composed of hydrogen, steam and an inert gas. The tritium, originally into the sodium as a soluble (T - ) or precipitate form (NaT), will be distributed between the liquid and gaseous effluent, and according to two chemical forms, the tritium hydride HT and the tritiated water HTO. HTO being 10,000 times more radio-toxic than HT, a precise knowledge of the mechanisms governing the distribution of tritium is necessary in order to estimate the exhaust gas releases and design the process needed to treat the off-gas before its release into the environment. An experimental study has been carried out in order to determine precisely the phenomena involved in the hydrolysis. The influence of the experimental conditions on the tritium distribution has been tested. The results of this study leaded to a phenomenological description of the tritiated sodium hydrolysis that will help to predict the composition of the effluents, regarding tritium. (author) [fr
The hidden dynamics of heavy ion evolution: Is it more interesting than our phenomenologies assume
International Nuclear Information System (INIS)
Griffin, J.J.; Bronlowski, W.
1985-01-01
Explicit calculations of the early time behaviour in a DOUBLE-WELL Schroedinger model of deep inelastic nucleon exchange contradict the ubiquitous assumption of statistical phenomenology that the total energy defines the driving force for the nucleonic drift. The disturbing question thereby arises whether these phenomenologies may sometimes yield agreement with experimental data even when their physical premises are fundamentally erroneous. For the quantal DOUBLE-WELL model, the expansive pressure of the nucleonic kinetic energy ('kinetic pressure') is found to be the primary determinant of the early time behaviour, implying that nucleonic kinetic energy is more effective in promoting nuclear flow than nucleonic potential energy. This implication is verified by explicit calculations for various kinetic and potential energy situations. It follows that the early-time transfer process may be dominated by a combination of neutron and proton flows which tend to move the system towards the equilibria of the neutron and proton kinetic pressures, respectively. Since in general the kinetic pressures of neutrons and protons are simultaneously equilibrized only for a symmetric dinucleus, these independent and irreconcilable tendencies imply a drift which differs from the total energy driven drift. In fact, we calculate that the resulting 'Equilibria Channeled N-Z Flow' should exhibit an (N,Z) drift which is opposite to that implied by the total energy surface, but which is qualitative agreement with the observed behavior of several heavy ion reactions. (orig.)
SAPS and SAID: Differences and implications on modeling
Anderson, P. C.; Landry, R. G.
2017-12-01
Large subauroral electric fields/ion drifts associated with geomagnetic activity and known as Polarization Jets [Galperin et al., 1973] or subauroral ion drifts (SAID) [Spiro et al., 1978] have been reported by a number of researchers over the years starting in the early 1970s. They are latitudinally narrow ( 1 - 3°), are primarily located between the late afternoon and early morning sectors, are extended several hours in magnetic local time, and have westward drifts that can exceed 5000 m/s. Foster et al., [2002] used Millstone Hill radar data to derive a statistical model of the subauroral ion drifts and coined the term SAPS (Subauroral Polarization Streams) to identify the sometimes broad region of subauroral drifts that the SAID are embedded within. While both are located in the subauroral region and closely associated with ionospheric conductivity and the region 2 field-aligned currents, they are in reality separate phenomena. We investigate this difference, their production mechanisms, and the implications for modeling them.
Philosophy of phenomenology: how understanding aids research.
Converse, Mary
2012-01-01
To assist the researcher in understanding the similarities and differences between the Husserlian and Heideggerian philosophies of phenomenology, and how that philosophy can inform nursing research as a useful methodology. Nurse researchers using phenomenology as a methodology need to understand the philosophy of phenomenology to produce a research design that is philosophically congruent. However, phenomenology has a long and complex history of development, and may be difficult to understand and apply. The author draws from Heidegger (1962), Gadamer (2004), and nurse scholars and methodologists. To give the reader a sense of the development of the philosophy of phenomenology, the author briefly recounts its historical origins and interpretations, specifically related to Husserl, Heidegger and Gadamer. The author outlines the ontological and epistemological assumptions of Husserlian and Heideggerian phenomenology and guidance for methodology inspired by these philosophers. Difficulties with engaging in phenomenological research are addressed, especially the processes of phenomenological reduction and bracketing, and the lack of clarity about the methods of interpretation. Despite its complexity, phenomenology can provide the nurse researcher with indepth insight into nursing practice. An understanding of phenomenology can guide nurse researchers to produce results that have meaning in nursing patient care.
Glueball phenomenology within a nonlocal approach
International Nuclear Information System (INIS)
Giacosa, F.
2005-01-01
In this thesis we describe the properties of glueball phenomenology within a nonlocal covariant constituent approach. The search for glueballs, their theoretical description and the mixing with quarkonia mesons is an active and unsolved issue of hadronic QCD. Different models and assignments have been proposed, but up to now no certain statement about their existence can be done. After introducing the theoretical framework in which we will work in, the attention will be focused on the problem of the scalar glueball, which lattice QCD predicts to be the lightest gluonic state with a mass between 1.4-1.8 GeV. In the same mass region one encounters many scalar resonances; mixing between the bare glueball and quarkonia states is therefore likely. In a covariant constituent approach one cannot define rigorously a mixing matrix connecting the bare to physical fields. However, we propose a definition which satisfies the correct requirements and which can be compared to other phenomenological studies. The two-photon decay of isoscalar-scalar states is believed to be crucial to pin down the flavor content of the resonances between 1 and 2 GeV. We discuss and calculate the two-photon decay rates of the mixed states glueball-quarkonia, getting results which are consistent with the current experimental upper limits
An integrated approach to determine phenomenological equations in metallic systems
Ghamarian, Iman
It is highly desirable to be able to make predictions of properties in metallic materials based upon the composition of the material and the microstructure. Unfortunately, the complexity of real, multi-component, multi-phase engineering alloys makes the provision of constituent-based (i.e., composition or microstructure) phenomenological equations extremely difficult. Due to these difficulties, qualitative predictions are frequently used to study the influence of microstructure or composition on the properties. Neural networks were used as a tool to get a quantitative model from a database. However, the developed model is not a phenomenological model. In this study, a new method based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and monte carlo was proposed. These three methods, when coupled in the manner described in this study, allows for the extraction of phenomenological equations with a concurrent analysis of uncertainty. This approach has been applied to a multi-component, multi-phase microstructure exhibiting phases with varying spatial and morphological distributions. Specifically, this approach has been applied to derive a phenomenological equation for the prediction of yield strength in alpha+beta processed Ti-6-4. The equation is consistent with not only the current dataset but also, where available, the limited information regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium.
Problems of phenomenological simulation of the Dst variation
International Nuclear Information System (INIS)
Gul'el'mi, A.V.
1988-01-01
Stochastic generalization of RBM model, describing the D st -variation is suggested. The corresponding Fokker-Planck equation contains a new phenomenological parameter enabling to obtain the interval estimation of D st forecast. The structure of sources and sinks forming the D st -variation is considered from the viewpoint of critical phenomenon theory
Implications of unitarity and gauge invariance for simplified dark matter models
International Nuclear Information System (INIS)
Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwetz, Thomas; Vogl, Stefan
2016-01-01
We show that simplified models used to describe the interactions of dark matter with Standard Model particles do not in general respect gauge invariance and that perturbative unitarity may be violated in large regions of the parameter space. The modifications necessary to cure these inconsistencies may imply a much richer phenomenology and lead to stringent constraints on the model. We illustrate these observations by considering the simplified model of a fermionic dark matter particle and a vector mediator. Imposing gauge invariance then leads to strong constraints from dilepton resonance searches and electroweak precision tests. Furthermore, the new states required to restore perturbative unitarity can mix with Standard Model states and mediate interactions between the dark and the visible sector, leading to new experimental signatures such as invisible Higgs decays. The resulting constraints are typically stronger than the ‘classic’ constraints on DM simplified models such as monojet searches and make it difficult to avoid thermal overproduction of dark matter.
Implications of unitarity and gauge invariance for simplified dark matter models
International Nuclear Information System (INIS)
Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwetz, Thomas; Vogl, Stefan; Stockholm Univ.
2015-10-01
We show that simplified models used to describe the interactions of dark matter with Standard Model particles do not in general respect gauge invariance and that perturbative unitarity may be violated in large regions of the parameter space. The modifications necessary to cure these inconsistencies may imply a much richer phenomenology and lead to stringent constraints on the model. We illustrate these observations by considering the simplified model of a fermionic dark matter particle and a vector mediator. Imposing gauge invariance then leads to strong constraints from dilepton resonance searches and electroweak precision tests. Furthermore, the new states required to restore perturbative unitarity can mix with Standard Model states and mediate interactions between the dark and the visible sector, leading to new experimental signatures such as invisible Higgs decays. The resulting constraints are typically stronger than the 'classic' constraints on DM simplified models such as monojet searches and make it difficult to avoid thermal overproduction of dark matter.
Δ(54) flavor phenomenology and strings
Energy Technology Data Exchange (ETDEWEB)
Carballo-Pérez, Brenda [Instituto de Física, Universidad Nacional Autónoma de México,Apartado Postal 20-364, Ciudad de México 01000 (Mexico); HEBA Ideas S.A. de C.V.,Calculistas 37, Cd. Mx. 09400 (Mexico); Peinado, Eduardo; Ramos-Sánchez, Saúl [Instituto de Física, Universidad Nacional Autónoma de México,Apartado Postal 20-364, Ciudad de México 01000 (Mexico)
2016-12-23
Δ(54) can serve as a flavor symmetry in particle physics, but remains almost unexplored. We show that in a classification of semi-realistic ℤ{sub 3}×ℤ{sub 3} heterotic string orbifolds, Δ(54) turns out to be the most natural flavor symmetry, providing additional motivation for its study. We revisit its phenomenological potential from a low-energy perspective and subject to the constraints of string models. We find a model with Δ(54) arising from heterotic orbifolds that leads to the Gatto-Sartori-Tonin relation for quarks and charged-leptons. Additionally, in the neutrino sector, it leads to a normal hierarchy for neutrino masses and a correlation between the reactor and the atmospheric mixing angles, the latter taking values in the second octant and being compatible at three sigmas with experimental data.
Phenomenological approaches of dissipative heavy ion collisions
International Nuclear Information System (INIS)
Ngo, C.
1983-09-01
These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr
Palatini actions and quantum gravity phenomenology
International Nuclear Information System (INIS)
Olmo, Gonzalo J.
2011-01-01
We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmologies of this model also avoid the big bang singularity by means of a big bounce
Palatini actions and quantum gravity phenomenology
Energy Technology Data Exchange (ETDEWEB)
Olmo, Gonzalo J., E-mail: gonzalo.olmo@csic.es [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia - CSIC, Facultad de Física, Universidad de Valencia, Burjassot-46100, Valencia (Spain)
2011-10-01
We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmologies of this model also avoid the big bang singularity by means of a big bounce.
The phenomenology in the environmental aesthetic education
International Nuclear Information System (INIS)
Noguera de Echeverri, Ana Patricia
2000-01-01
In this paper we present an abstract about our Philosophical Doctor Thesis make on Campinas University (Sao Paulo, Brazil) titled educacion estetico ambiental y fenomenologia: problemas de la educacion estetico ambiental en la modernidad. In this thesis we do a critical thinking about the epistemological model of relation subject -object on modern education, and on the other side, we work in the construction about a aesthetic - environmental education model. We propose here an aesthetization of the education, for conjoint body and world-of-life (lebenswelt) into scenarios and actors of the pedagogical process. Body and world-of-life, are two concepts of Husserl's phenomenology that open the door about the environment' s studies aesthetization and aesthetic' s studies environment, separated on modernity, between the metaphysical subject and physicality objects. Body and world-of-life -symbolic-biotic- are marginal alterities on modernity. This marginality has been a structural lead on the contemporary environmental problems
Embodiment and psychopathology: a phenomenological perspective.
Fuchs, Thomas; Schlimme, Jann E
2009-11-01
To survey recent developments in phenomenological psychopathology. We present the concept of embodiment as a key paradigm of recent interdisciplinary approaches from the areas of philosophy, psychology, psychiatry and neuroscience. This requires a short overview on the phenomenological concept of embodiment; in particular, on the distinction of subject and object body. A psychopathology of embodiment may be based on these and other distinctions, in particular on a polarity of disembodiment and hyperembodiment, which is illustrated by the examples of schizophrenia and depression. Recent contributions to phenomenological accounts of these disorders are presented. Finally, the study discusses the relationship of phenomenological and neuropsychiatric perspectives on embodiment. A phenomenology of embodiment may be combined with enactive approaches to cognitive neuroscience in order to overcome dualist concepts of the mind as an inner realm of representations that mirror the outside world. Phenomenological and ecological concepts of embodiment should also be conjoined to enable a new, advanced understanding of mental illness.
Recent Trends in Superstring Phenomenology
Bianchi, Massimo
2009-01-01
We review for non-experts possible phenomenological scenari in String Theory. In particular we focus on vacuum configurations with intersecting and/or magnetized unoriented D-branes. We will show how a TeV scale tension may be compatible with the existence of Large Extra Dimensions and how anomalous U(1)'s can give rise to interesting signatures at LHC or in cosmic rays. Finally, we discuss unoriented D-brane instantons as a source of non-perturbative effects that can contribute to moduli stabilization and susy braking in combination with fluxes. We conclude with an outlook and directions for future work.
A PHENOMENOLOGICAL RESEARCH ON MORAL PHILOSOPHY
CIPRIAN IULIAN ŞOPTICĂ
2011-01-01
The subject of this article concerns the what, the how and the whyof moral phenomenology. The first question we take into consideration is „What is moral phenomenology”? The second question which arises is „How to pursue moral phenomenology”? The third question is „Why pursue moral phenomenology”? We will analyze the study Moral phenomenology:foundation issues1, by which the American phenomenologist Uriah Kriegel aims three lines of research: the definition of moral phenomenology and the desc...
Phenomenology is not Phenomenalism. Is there such a thing as phenomenology of sport?
Directory of Open Access Journals (Sweden)
Jan Halák
2014-06-01
Full Text Available Background: The application of the philosophical mode of investigation called "phenomenology" in the context of sport. Objective: The goal is to show how and why the phenomenological method is very often misused in sport-related research. Methods: Interpretation of the key texts, explanation of their meaning. Results: The confrontation of concrete sport-related texts with the original meaning of the key phenomenological notions shows mainly three types of misuse - the confusion of phenomenology with immediacy, with an epistemologically subjectivist stance (phenomenalism, and with empirical research oriented towards objects in the world. Conclusions: Many of the discussed authors try to take over the epistemological validity of phenomenology for their research, which itself is not phenomenological, and it seems that this is because they are lacking such a methodological foundation. We believe that an authentically phenomenological analysis of sport is possible, but it must respect the basic distinctions that differentiate phenomenology from other styles of thinking.
Directory of Open Access Journals (Sweden)
CÉSAR AUGUSTO GÓMEZ
2008-12-01
Full Text Available Este trabajo presenta un método para la construcción de Modelos Semifisicos de Base Fenomenológica (MSBF. El método se basa en los fenómenos de transporte, tránsito, transmisión o transferencia, y en el principio de conservación. Se da una descripción detallada de los pasos del método propuesto. Luego se aplica el método en la construcción de un modelo que describe el comportamiento de cinco dinámicas (volumen, biomasa, sustrato, producto y temperatura en un proceso de fermentación en continuo. La simulación muestra que el modelo obtenido puede predecir de forma adecuada el comportamiento dinámico de dicho bioproceso.This work presents a method for building Phenomenological Based Semiphysical Models (PBSM. The method is based on transport, transfer, transmission or transit phenomena and conservation principle. A detailed description of proposed method steps is given. Next, the method is applied to attaining a model for describing the behavior of five dynamics (volume, biomass, substrate, product and temperature of a continuous fermentation process. Model simulation shows that obtained model can predict dynamic performance of real process adequately.
Phenomenology between Pathos and Response
Directory of Open Access Journals (Sweden)
Bernhard Waldenfels
2011-03-01
Full Text Available The author calls phenomenological intentionality, into question while taking it, nevertheless, as a starting point. From the analysis of the meaning of phenomena he goes back to a pathic dimension which precedes them. What happens to us or affects us and to what we respond in different ways cannot be reduced to previous horizons. Between pathos and response, there is an irreducible cleft which constitutes a special sort of time-lag. What happens to us comes is always too early; our responses always come too late. Our experience is never completely up to date. In order to explore this pre-semantic and pre-pragmatic depth of experience we need a sort of responsive reduction, which guides all meaning toward something we respond to. In conclusion, the author evokes some areas in which such a revision of phenomenology shows its effects, namely the genesis of life in bioethics, the historical elaboration of memory and the experience of the Other.
Supersymmetry, supergravity and superstring models
International Nuclear Information System (INIS)
Ross, G.G.
1987-01-01
The authors discuss the structure of models with a low-energy N=1 supersymmetry. This is extended to locally supersymmetric theories and to the models resulting if physics at the Planck scale is described by the superstring. The possible new light gauge and chiral supermultiplet structures are analysed and a specific model leading to the standard SU(3) x SU(2) x U(1) model is presented. Phenomenological implications of such models are discussed
The Phenomenology of Small-Scale Turbulence
Sreenivasan, K. R.; Antonia, R. A.
I have sometimes thought that what makes a man's work classic is often just this multiplicity [of interpretations], which invites and at the same time resists our craving for a clear understanding. Wright (1982, p. 34), on Wittgenstein's philosophy Small-scale turbulence has been an area of especially active research in the recent past, and several useful research directions have been pursued. Here, we selectively review this work. The emphasis is on scaling phenomenology and kinematics of small-scale structure. After providing a brief introduction to the classical notions of universality due to Kolmogorov and others, we survey the existing work on intermittency, refined similarity hypotheses, anomalous scaling exponents, derivative statistics, intermittency models, and the structure and kinematics of small-scale structure - the latter aspect coming largely from the direct numerical simulation of homogeneous turbulence in a periodic box.
International Nuclear Information System (INIS)
Martens, E.; Maes, N.; Bruggeman, C.; Van Gompel, M.
2010-01-01
of magnitude lower than for the first cell. This indicates that the species that is transported is not a conservative tracer as otherwise the outlet concentration should equal the inlet concentration. Recently, Bruggeman and Maes (2009) put forward a phenomenological model which describes the Tc retention and transport mechanisms in Boom Clay. They hypothesise that Tc is transported as a Tc-NOM colloidal species exhibiting slow dissociation kinetics. This phenomenological model was now tested to describe the NOM related transport of Cm, Pu, Np, Tc and Pa in these 'sequential' migration experiments. All these RNs are known to form strong complexes with NOM in batch experiments. To describe the RN elution profiles from the second clay core, we used the migration parameters (diffusion coefficient, porosity and retardation factor) of NOM derived from small-scale lab experiments and validated by large-scale (long-term) in-situ tests in combination with a first order kinetic dissociation reaction. The transport feature of the geochemical code PHREEQC-2 was used for the simulations. Based on the original NOM transport parameters, and a narrow range for the parameter in the kinetic dissociation equation (2.4-8.5 x 10 -8 s -1 ), a good match with the experimental data could be achieved for all RNs considered in this study. This supports our hypothesis that for a large array of RNs (Tc, Pa, Np, Pu and Cm in this study), the transport behaviour observed in the experiments is indeed linked to NOM, irrespective of their dominant valence state (tri-, tetra-, pentavalent). Their overall transport potential (at longer times and distances) remains limited due to dissociation and subsequent sorption on the Boom Clay. The results presented in this study form an important step forward for safety assessments analysis: (i) the model is easy to implement, (ii) there is a link with a phenomenological description, and (iii) elements with a similar NOM association behaviour can be
International Nuclear Information System (INIS)
Belov, Pavel
2013-06-01
A combination is presented of the inclusive neutral current e ± p scattering cross section data collected by the H1 and ZEUS collaborations during the last months of the HERA II operation period with proton beam energies E p of 460 and 575 GeV. The kinematic range of the cross section data covers low absolute four-momentum transfers squared, 1.5 GeV 2 ≤ Q 2 ≤ 110 GeV 2 , small values of Bjorken-x, 2.8.10 -5 ≤ x ≤ 1.5.10 -2 , and high inelasticity y ≤ 0.85. The combination algorithm is based on the method of least squares and takes into account correlations of the systematic uncertainties. The combined data are used in the QCD fits to extract the parton distribution functions. The phenomenological low-x dipole models are tested and parameters of the models are obtained. A good description of the data by the dipole model taking into account the evolution of the gluon distribution is observed. The longitudinal structure function F L is extracted from the combination of the currently used H1 and ZEUS reduced proton beam energy data with previously published H1 nominal proton beam energy data of 920 GeV. A precision of the obtained values of F L is improved at medium Q 2 compared to the published results of the H1 collaboration.
Energy Technology Data Exchange (ETDEWEB)
Belov, Pavel
2013-06-15
A combination is presented of the inclusive neutral current e{sup {+-}}p scattering cross section data collected by the H1 and ZEUS collaborations during the last months of the HERA II operation period with proton beam energies E{sub p} of 460 and 575 GeV. The kinematic range of the cross section data covers low absolute four-momentum transfers squared, 1.5 GeV{sup 2} {<=} Q{sup 2} {<=} 110 GeV{sup 2}, small values of Bjorken-x, 2.8.10{sup -5} {<=} x {<=} 1.5.10{sup -2}, and high inelasticity y {<=} 0.85. The combination algorithm is based on the method of least squares and takes into account correlations of the systematic uncertainties. The combined data are used in the QCD fits to extract the parton distribution functions. The phenomenological low-x dipole models are tested and parameters of the models are obtained. A good description of the data by the dipole model taking into account the evolution of the gluon distribution is observed. The longitudinal structure function F{sub L} is extracted from the combination of the currently used H1 and ZEUS reduced proton beam energy data with previously published H1 nominal proton beam energy data of 920 GeV. A precision of the obtained values of F{sub L} is improved at medium Q{sup 2} compared to the published results of the H1 collaboration.
Energy Technology Data Exchange (ETDEWEB)
Perez, S. [Universidad de Carabobo, Facultad de Ingenieria, Valencia (Venezuela); Therien, N.; Broadbent, A.D. [Sherbrooke Univ., Faculte de Genie, Quebec (Canada)
2001-07-01
A phenomenological model of the evolution of the humidity and temperature during the drying of a thin fiber cloth in contact with a metal surface heated by electric induction is presented. The model calculates also the temperature inside the cylinder with respect to its position. Differential mass and energy statuses are established and the concept of substantial derivative is used to bind the state variables with respect to the time and position. The conduction, convection, radiant heat transfer, thermal induction, and energy transfer due to water vaporization are explicitly considered. The model takes into consideration the disturbances due to the variations of the humidity of the cloth at the input of the process. It calculates the response of the process in front of these disturbances and in front of the rotation speed of the cylinder and the electric power supplied to the system. Multiple experiments performed on a bench test have permitted to characterize the response of the drying process (temperature of the cylinder, humidity and temperature of the cloth) under different combinations of conditions. (J.S.)
Energy Technology Data Exchange (ETDEWEB)
Perez, S. [Universidad de Carabobo, Facultad de Ingenieria, Valencia (Venezuela); Therien, N.; Broadbent, A.D. [Sherbrooke Univ., Faculte de Genie, Quebec (Canada)
2001-07-01
This work concerns the development of a phenomenological model describing the temperature dynamics of a metal cylinder heated by electric induction. The model used takes into consideration in an explicit way the different mechanisms of energy transfer from the cylinder towards the environment, in particular the convection and radiant heat transfers. The conduction process, which takes place inside the cylinder as a response to the temperature gradient at the periphery of the cylinder, has been characterized too. The process of energy induction inside the cylinder has been characterized in a precise way. The experiments show that the induction is localized in the part of the cylinder facing the inductors and that the induction presents a distributed feature in the induction section. The model proposed is based on the concept of substantial derivative. It calculates the response of the process with respect to these disturbances and with respect to the rotation speed of the cylinder and to the electric power supplied to the system. (J.S.)
DEFF Research Database (Denmark)
Dijkman, Teunis Johannes
with variations in the climates and soils present in Europe. Emissions of pesticides to surface water and groundwater calculated by PestLCI 2.0 were compared with models used for risk assessment. Compared to the MACRO module in SWASH 3.1 model, which calculates surface water emissions by runoff and drainage...... chromatographic flow of water through the soil), which was attributed to the omission of emissions via macropore flow in the latter model. The comparison was complicated by the fact that the scenarios used were not fully identical. In order to quantify the implications of using PestLCI 2.0, human toxicity......The work presented in this thesis deals with quantification of pesticide emissions in the Life Cycle Inventory (LCI) analysis phase of Life Cycle Assessment (LCA). The motivation to model pesticide emissions is that reliable LCA results not only depend on accurate impact assessment models, but also...
Visual Arts as a Tool for Phenomenology
Directory of Open Access Journals (Sweden)
Anna S. CohenMiller
2017-12-01
Full Text Available In this article I explain the process and benefits of using visual arts as a tool within a transcendental phenomenological study. I present and discuss drawings created and described by four participants over the course of twelve interviews. Findings suggest the utility of visual arts methods within the phenomenological toolset to encourage participant voice through easing communication and facilitating understanding.
Phenomenology as first philosophy | Allsobrook | South African ...
African Journals Online (AJOL)
The paper interprets phenomenology as a mode of inquiry that addresses fundamental questions of first philosophy, beyond the limitation of the practice by its leading theorists to the study of mere appearances. I draw on Adorno's critique of phenomenology to show that it has typically functioned as a mode of first ...
PHENOMENOLOGY AND MECHANISMS OF THE SOLUTION OF EXISTENTIAL INTRAPERSONAL CONFLICTS
Directory of Open Access Journals (Sweden)
Krasilnikov Igor Aleksandrovich
2013-05-01
Full Text Available In the article sights of founders of existential psychology at phenomenology and psychological mechanisms of intrapersonal conflicts are considered. It is underlined, that the basic internal conflict is connected with existential anxiety, human life-death. Experience of the existence in the modern social world often has tragical character for the person. The solution of existential intrapersonal conflicts is defined by how the person could realize in itself deep «Me» connected with feeling of finding of internal and external freedom, creative and spontaneity. It is emphasized, that freedom is the main quality of social human life, but the way to it demands from the person of the responsibility, courage and honesty. The authorship of own destiny, personal identity are a source of the solution of existential intrapersonal conflicts. Not each person is capable to keep authenticity in the life. Integrity «Me» cannot be restored, ignoring cultural mental-moral values. Purpose. To study phenomenology and psychological mechanisms of the solution of existential intrapersonal conflicts. Methodology. The qualitative theoretical analysis and synthesis of literary data. Results. In the article general concepts of leading scientists-psychologists of existential orientation to phenomenology and mechanisms of the solution of intrapersonal conflicts are presented. The significant attention is given R. Meya's to sights, as one of the main representatives of existential psychotherapy. Practical implications. Preparation of psychologists in the field of psychotherapeutic consultation.
Quantum-Gravity Phenomenology of soft ultraviolet/infrared mixing
International Nuclear Information System (INIS)
Amelino-Camelia, Giovanni; Loret, Niccolo; Mercati, Flavio
2010-01-01
We reexamine the motivation for ultraviolet/infrared mixing in quantum gravity and some of the quantum-spacetime formalizations where it has been found. We then focus on cases in which the infrared manifestations of the mixing are relatively soft, arguing that they can motivate a particularly appealing phenomenology. Among the possible implications for the large-distance behavior of gravity one intriguingly finds a correction with logarithmic dependence on distance. And one can explain in terms of soft ultraviolet/infrared mixing a four-standard-deviation discrepancy that was recently established in the context of studies of cold neutrons.
New results in light-front phenomenology
International Nuclear Information System (INIS)
Brodsky, S.J.
2005-01-01
The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitarity, and a trivial vacuum. In this talk I review the theoretical methods and constraints which can be used to determine these central elements of QCD phenomenology. The freedom to choose the light-like quantization four-vector provides an explicitly covariant formulation of light-front quantization and can be used to determine the analytic structure of light-front wave functions and define a kinematical definition of angular momentum. The AdS/CFT correspondence of large N c supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in four-dimensional space-time has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes. String/gauge duality also predicts the QCD power-law behavior of light-front Fock-state hadronic wavefunctions with arbitrary orbital angular momentum at high momentum transfer. The form of these near-conformal wavefunctions can be used as an initial ansatz for a variational treatment of the light-front QCD Hamiltonian. The light-front Fock-state wavefunctions encode the bound state properties of hadrons in terms of their quark and gluon degrees of freedom at the amplitude level. The nonperturbative Fock-state wavefunctions contain intrinsic gluons, and sea quarks at any scale Q with asymmetries such as s(x) ≠ s-bar(x), u-bar(x) ≠ d-bar(x). Intrinsic charm and bottom quarks appear at large x in the light-front wavefunctions since this minimizes the invariant mass and off-shellness of the higher Fock state. In the case of nuclei, the Fock state expansion contains 'hidden color' states which cannot be classified in terms of of nucleonic degrees of freedom. I also briefly review recent analyses which show that some
International Nuclear Information System (INIS)
Lebed, R.F.
1999-01-01
These lectures are designed to introduce the methods and results of large N c QCD in a presentation intended for nuclear and particle physicists alike. Beginning with definitions and motivations of the approach, we demonstrate that all quark and gluon Feynman diagrams are organized into classes based on powers of 1/N c . We then show that this result can be translated into definite statements about mesons and baryons containing arbitrary numbers of constituents. In the mesons, numerous well-known phenomenological properties follow as immediate consequences of simply counting powers of N c , while for the baryons, quantitative large N c analyses of masses and other properties are seen to agree with experiment, even when 'large' N c is set equal to its observed value of 3. Large N c reasoning is also used to explain some simple features of nuclear interactions. (author)
International Nuclear Information System (INIS)
Richard Lebed
1998-01-01
These lectures are designed to introduce the methods and results of large N c QCD in a presentation intended for nuclear and particle physicists alike. Beginning with definitions and motivations of the approach, they demonstrate that all quark and gluon Feynman diagrams are organized into classes based on powers of 1/N c . They then show that this result can be translated into definite statements about mesons and baryons containing arbitrary numbers of constituents. In the mesons, numerous well-known phenomenological properties follow as immediate consequences of simply counting powers of N c , while for the baryons, quantitative large N c analyses of masses and other properties are seen to agree with experiment, even when ''large'' N c is set equal to its observed value of 3. Large N c reasoning is also used to explain some simple features of nuclear interactions
Observation and phenomenology of glueballs
International Nuclear Information System (INIS)
Lindenbaum, S.J.
1985-01-01
The experimental evidence and the relevant phenomenology of glueballs are reviewed. The opinion is expressed that the glueball resonance explanation is the only viable one for the data on g/sub T/, g/sub T 1 /, and g/sub T 11 /. It is shown that alternative explanations are either incorrect, or do not fit the data, or both, leading to the conclusion that these states are probably produced by glueballs. The OZI rule is explained. Glueball masses and width are considered. Some conclusions are drawn regarding an OZI suppressed reaction π - p → phi phi n. Glueball candidates from the J/psi radiative decay are discussed. 44 refs., 16 figs
Astroparticle physics theory and phenomenology
Sigl, Günter
2017-01-01
This books aims at giving an overview over theoretical and phenomenological aspects of particle astrophysics and particle cosmology. To be of interest for both students and researchers in neighboring fields of physics, it keeps a balance between well established foundations that will not significantly change in the future and a more in-depth treatment of selected subfields in which significant new developments have been taking place recently. These include high energy particle astrophysics, such as cosmic high energy neutrinos, the interplay between detection techniques of dark matter in the laboratory and in high energy cosmic radiation, axion-like particles, and relics of the early Universe such as primordial magnetic fields and gravitational waves. It also contains exercises and thus will be suitable for both introductory and advanced courses in astroparticle physics.
Observation and phenomenology of glueballs
Energy Technology Data Exchange (ETDEWEB)
Lindenbaum, S.J.
1985-01-01
The experimental evidence and the relevant phenomenology of glueballs are reviewed. The opinion is expressed that the glueball resonance explanation is the only viable one for the data on g/sub T/, g/sub T/sup 1//, and g/sub T/sup 11//. It is shown that alternative explanations are either incorrect, or do not fit the data, or both, leading to the conclusion that these states are probably produced by glueballs. The OZI rule is explained. Glueball masses and width are considered. Some conclusions are drawn regarding an OZI suppressed reaction ..pi../sup -/p ..-->.. phi phi n. Glueball candidates from the J/psi radiative decay are discussed. 44 refs., 16 figs. (LEW)
A PHENOMENOLOGICAL RESEARCH ON MORAL PHILOSOPHY
Directory of Open Access Journals (Sweden)
CIPRIAN IULIAN ŞOPTICĂ
2011-05-01
Full Text Available The subject of this article concerns the what, the how and the whyof moral phenomenology. The first question we take into consideration is „What is moral phenomenology”? The second question which arises is „How to pursue moral phenomenology”? The third question is „Why pursue moral phenomenology”? We will analyze the study Moral phenomenology:foundation issues1, by which the American phenomenologist Uriah Kriegel aims three lines of research: the definition of moral phenomenology and the description of field research within the phenomenological tradition; the establishment of a method of moral phenomenology research; the emphasis of the purpose of such research and its importance for moral philosophy in general.
McCarthy-Jones, Simon; Krueger, Joel; Larøi, Frank; Broome, Matthew; Fernyhough, Charles
2013-01-01
One of the leading cognitive models of auditory verbal hallucinations (AVHs) proposes such experiences result from a disturbance in the process by which inner speech is attributed to the self. Research in this area has, however, proceeded in the absence of thorough cognitive and phenomenological investigations of the nature of inner speech, against which AVHs are implicitly or explicitly defined. In this paper we begin by introducing philosophical phenomenology and highlighting its relevance to AVHs, before briefly examining the evolving literature on the relation between inner experiences and AVHs. We then argue for the need for philosophical phenomenology (Phenomenology) and the traditional empirical methods of psychology for studying inner experience (phenomenology) to mutually inform each other to provide a richer and more nuanced picture of both inner experience and AVHs than either could on its own. A critical examination is undertaken of the leading model of AVHs derived from phenomenological philosophy, the ipseity disturbance model. From this we suggest issues that future work in this vein will need to consider, and examine how interdisciplinary methodologies may contribute to advances in our understanding of AVHs. Detailed suggestions are made for the direction and methodology of future work into AVHs, which we suggest should be undertaken in a context where phenomenology and physiology are both necessary, but neither sufficient. PMID:23576974
International Nuclear Information System (INIS)
Azzoug, D.
1990-05-01
In the scope of fuel recycling, in nuclear reactors with water cooling systems, a model concerning the plutonium equivalence and adapted to the thermal spectra is proposed. The physical phenomena involving the plutonium isotopes are studied. A method based on the sensitivity analysis allows the understanding of the plutonium isotope behavior. An equivalence model of plutonium for thermal spectre is established. The validity of the model for different cycle lengths and supports is proved [fr
Monakes, Sarah; Garza, Yvonne; Wiesner, Van, III; Watts, Richard E.
2011-01-01
The purpose of this phenomenological study was to understand the perceptions of adult male substance offenders who experienced sand tray therapy as an adjunct to their cognitive behavioral rehabilitative treatment. Results indicate a positive experience for participants. Implications for counselors are discussed. (Contains 1 table.)
Pomeron in perturbative QCD - its elementary theory and possible phenomenology at HERA
International Nuclear Information System (INIS)
Kwiecinski, J.
1992-04-01
Theoretical ideas concerning the Pomeron in perturbative QCD are reviewed. The Lipatov equation with asymptotic freedom effects taken into account is recalled and the corresponding spectrum of eigenvalues controlling the bare Pomeron intercept analysed. Possible phenomenological implications of the perturbative QCD Pomeron for deep inelastic scattering at the HERA ep collider are briefly discussed. 9 figs., 49 refs. (author)
Band-Winterstein, Tova
2015-01-01
This article suggests a heuristic framework for understanding elderly women's "lived experience" of lifelong intimate partner violence (IPV). This framework is based on the phenomenological qualitative studies of 31 women, aged 60-83, using a semistructured interview guide. From the results, a matrix emerged built on two axes. The first axis consists of three phenomenological dimensions: suffering, a "ticking clock," and life wisdom. The second axis consists of four themes that emerged from the content analysis: loneliness, regret, being in a state of waiting, and being a living monument to perpetual victimhood. The practical implications of these phenomenological findings are then discussed.
Simplified phenomenology for colored dark sectors
Energy Technology Data Exchange (ETDEWEB)
Hedri, Sonia El; Kaminska, Anna; Vries, Maikel de [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,55099 Mainz (Germany); Zurita, Jose [Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology,Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology,Engesserstraße 7, D-76128 Karlsruhe (Germany)
2017-04-20
We perform a general study of the relic density and LHC constraints on simplified models where the dark matter coannihilates with a strongly interacting particle X. In these models, the dark matter depletion is driven by the self-annihilation of X to pairs of quarks and gluons through the strong interaction. The phenomenology of these scenarios therefore only depends on the dark matter mass and the mass splitting between dark matter and X as well as the quantum numbers of X. In this paper, we consider simplified models where X can be either a scalar, a fermion or a vector, as well as a color triplet, sextet or octet. We compute the dark matter relic density constraints taking into account Sommerfeld corrections and bound state formation. Furthermore, we examine the restrictions from thermal equilibrium, the lifetime of X and the current and future LHC bounds on X pair production. All constraints are comprehensively presented in the mass splitting versus dark matter mass plane. While the relic density constraints can lead to upper bounds on the dark matter mass ranging from 2 TeV to more than 10 TeV across our models, the prospective LHC bounds range from 800 to 1500 GeV. A full coverage of the strongly coannihilating dark matter parameter space would therefore require hadron colliders with significantly higher center-of-mass energies.
Phenomenology of 2HDM with vectorlike quarks
Arhrib, A.; Benbrik, R.; King, S. J. D.; Manaut, B.; Moretti, S.; Un, C. S.
2018-05-01
In this paper, we examine the consistency of the Large Hadron Collider (LHC) data collected during Runs 1 and 2 by the ATLAS and CMS experiments with the predictions of a 2-Higgs doublet model embedding vectorlike quarks (VLQs) for p p →H , A production and H , A →γ γ decay mechanisms, respectively, of (nearly) degenerate C P -even (H ) and C P -odd (A ) Higgs bosons. We show that a scenario containing one single VLQ with electromagnetic charge 2 /3 can explain the above ATLAS and CMS data for masses in the region 350 GeV ≤mVLQ≤1.5 TeV or so, depending on tan β , and for several values of the mixing angle between the top quark (t ) and its VLQ counterpart (T ). We then perform a global fit onto the model by including all relevant experimental as well as theoretical constraints. The surviving samples of our analysis are discussed within 2 σ of the LHC measurements. Additionally, we also comment on the recent anomalous result reported by CMS using Run 2 data on the associated Standard Model Higgs boson production with top quark pairs p p →t t ¯ h with an observed significance of 3.3 σ . Other than these specific examples, we also present a phenomenological analysis of the main features of the model, including the most promising T decay channels.
Extraordinary phenomenology from warped flavor triviality
International Nuclear Information System (INIS)
Delaunay, Cedric; Gedalia, Oram; Lee, Seung J.; Perez, Gilad; Ponton, Eduardo
2011-01-01
Anarchic warped extra dimensional models provide a solution to the hierarchy problem. They can also account for the observed flavor hierarchies, but only at the expense of little hierarchy and CP problems, which naturally require a Kaluza-Klein (KK) scale beyond the LHC reach. We have recently shown that when flavor issues are decoupled, and assumed to be solved by UV physics, the framework's parameter space greatly opens. Given the possibility of a lower KK scale and composite light quarks, this class of flavor triviality models enjoys a rather exceptional phenomenology, which is the focus of this Letter. We also revisit the anarchic RS EDM problem, which requires m KK ≥12 TeV, and show that it is solved within flavor triviality models. Interestingly, our framework can induce a sizable differential tt-bar forward-backward asymmetry, and leads to an excess of massive boosted di-jet events, which may be linked to the recent findings of the CDF Collaboration. This feature may be observed by looking at the corresponding planar flow distribution, which is presented here. Finally we point out that the celebrated standard model preference towards a light Higgs is significantly reduced within our framework.
Nasri, M.; Dhahri, E.; Hlil, E. K.
2018-06-01
In this paper, magnetocaloric properties of La0.6Ca0.2Sr0.2MnO3/Sb2O3 oxides have been investigated. The composite samples were prepared using the conventional solid-state reaction method. The second-order phase transition can be testified with the positive slope in Arrott plots. An excellent agreement has been found between the -ΔSM values estimated by Landau theory and those obtained using the classical Maxwell relation. The field dependence of the magnetic entropy change analysis shows a power law dependence,|ΔSM|≈Hn , with n(TC) = 0.65. Moreover, the scaling analysis of magnetic entropy change exhibits that ΔSM(T) curves collapse into a single universal curve, indicating that the observed paramagnetic to ferromagnetic phase transition is an authentic second-order phase transition. The maximum value of magnetic entropy change of composites is found to decrease slightly with the further increasing of Sb2O3 concentration. A phenomenological model was used to predict magnetocaloric properties of La0.6Ca0.2Sr0.2MnO3/Sb2O3 composites. The theoretical calculations are compared with the available experimental data.
International Nuclear Information System (INIS)
Ray, R. L.
2011-01-01
A phenomenological analysis is presented of recent two-particle angular correlation data on relative pseudorapidity (η) and azimuth reported by the Compact Muon Solenoid (CMS) Collaboration for √(s)=7 TeV proton-proton collisions. The data are described with an empirical jetlike model developed for similar angular correlation measurements obtained from heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC). The sameside (small relative azimuth), η-extended correlation structure, referred to as the ridge, is compared with three phenomenological correlation structures suggested by theoretical analysis. These include additional angular correlations due to soft gluon radiation in 2→3 partonic processes, a one-dimensional sameside correlation ridge on azimuth motivated, for example, by color-glass condensate models, and an azimuth quadrupole similar to that required to describe heavy-ion angular correlations. The quadrupole model provides the best overall description of the CMS data, including the ridge, based on χ 2 minimization in agreement with previous studies. Implications of these results with respect to possible mechanisms for producing the CMS sameside correlation ridge are discussed.
Implications of model uncertainty for the practice of risk assessment
International Nuclear Information System (INIS)
Laskey, K.B.
1994-01-01
A model is a representation of a system that can be used to answer questions about the system's behavior. The term model uncertainty refers to problems in which there is no generally agreed upon, validated model that can be used as a surrogate for the system itself. Model uncertainty affects both the methodology appropriate for building models and how models should be used. This paper discusses representations of model uncertainty, methodologies for exercising and interpreting models in the presence of model uncertainty, and the appropriate use of fallible models for policy making
Phenomenology of an SU(2)×SU(2)×U(1) model with lepton-flavour non-universality
Energy Technology Data Exchange (ETDEWEB)
Boucenna, Sofiane M. [Laboratori Nazionali di Frascati, INFN,Via Enrico Fermi 40, 100044 Frascati (Italy); Celis, Alejandro [Arnold Sommerfeld Center for Theoretical Physics, Fakultät für Physik,Ludwig-Maximilians-Universität München,Theresienstrasse 37, 80333 München (Germany); Fuentes-Martín, Javier; Vicente, Avelino [Instituto de Física Corpuscular, Universitat de València - CSIC,E-46071 València (Spain); Virto, Javier [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,CH-3012 Bern (Switzerland)
2016-12-14
We investigate a gauge extension of the Standard Model in light of the observed hints of lepton universality violation in b→cℓν and b→sℓ{sup +}ℓ{sup −} decays at BaBar, Belle and LHCb. The model consists of an extended gauge group SU(2){sub 1}×SU(2){sub 2}×U(1){sub Y} which breaks spontaneously around the TeV scale to the electroweak gauge group. Fermion mixing effects with vector-like fermions give rise to potentially large new physics contributions in flavour transitions mediated by W{sup ′} and Z{sup ′} bosons. This model can ease tensions in B-physics data while satisfying stringent bounds from flavour physics, and electroweak precision data. Possible ways to test the proposed new physics scenario with upcoming experimental measurements are discussed. Among other predictions, the ratios R{sub M}=Γ(B→Mμ{sup +}μ{sup −})/Γ(B→Me{sup +}e{sup −}), with M=K{sup ∗},ϕ, are found to be reduced with respect to the Standard Model expectation R{sub M}≃1.
Spin-one top partner: phenomenology
Collins, Jack H.; Jain, Bithika; Perelstein, Maxim; Lorier, Nicolas Rey-Le
2014-08-01
Cai, Cheng, and Terning (CCT) suggested a model in which the left-handed top quark is identified with a gaugino of an extended gauge group, and its superpartner is a spin-1 particle. We perform a phenomenological analysis of this model, with a focus on the spin-1 top partner, which we dub the "swan". We find that precision electroweak fits, together with direct searches for Z ' bosons at the LHC, place a lower bound of at least about 4.5 TeV on the swan mass. An even stronger bound, 10 TeV or above, applies in most of the parameter space, mainly due to the fact that the swan is typically predicted to be significantly heavier than the Z '. We find that the 125 GeV Higgs can be easily accommodated in this model with non-decoupling D-terms. In spite of the strong lower bound on the swan mass, we find that corrections to Higgs couplings to photons and gluons induced by swan loops are potentially observable at future Higgs factories. We also briefly discuss the prospects for discovering a swan at the proposed 100 TeV pp collider.
Phenomenology of Compositeness at the LHC
Salvioni, Ennio; Zwirner, Fabio
The hierarchy problem of the weak scale calls for extensions of the Standard Model at the TeV, and thus within the reach of the CERN Large Hadron Collider (LHC). One of the best motivated proposals builds on the idea that the Higgs could be a composite pseudo-Nambu-Goldstone boson. In this thesis we discuss several topics in the phenomenology of composite Higgs models, concentrating mainly on LHC physics. In Chapter 1 we introduce the hierarchy problem and the essential features of viable theories of compositeness at the TeV scale. Chapter 2 is dedicated to a review of concrete constructions realizing the composite Higgs idea, focusing mostly on models with partial compositeness. In Chapter 3 we present the effective Lagrangians suited for describing the Higgs boson and the constraints placed by electroweak precision tests on their parameters. Motivated by hints in the experimental results, we also reconsider the possibility of custodial breaking in the couplings of the Higgs to the W and Z. Chapter 4 is devo...
Heavy quark and sparticle phenomenology
International Nuclear Information System (INIS)
Barger, V.
1985-01-01
Data from the CERN p anti p collider provide a new avenue for the study of heavy-quark production and possibly also provide the first indication for the sparticles of supersymmetry. This discussion of the associated phenomenology begins with charm and bottom quarks, proceeds to the strategies that lead to top quark identification, and concludes with possible supersymmetry scenarios to explain the events observed by the UA1 collaboration with large missing transverse momentum. The fusion predictions of single muon and dimuon rates are in the ballpark of UA1 observations. The discovery of isolated like-sign dimuons is at present an anomaly. The p anti p collider is a good place to do B physics, and answer the question of whether B 0 - anti B 0 mixing occurs. Also, it should soon be possible to identify a few dimuon events of W → t anti b and t anti t origins. Finally, enhanced charm in jets, if established, would have to be ascribed to non-perturbative QCD effects. In conclusion, if the UA1 monojets are of supersymmetry origin, then squark and gluino masses are already tightly constrained and dijet events with large missing transverse momentum should help distinguish between the two most promising scenarios. The top signal is not being faked by sparticles. (Nogami, K.)
Phenomenology of the CAH+ measure
International Nuclear Information System (INIS)
Salem, Michael P.; Vilenkin, Alexander
2011-01-01
The CAH+ measure regulates the infinite spacetime volume of the multiverse by constructing a surface of constant comoving apparent horizon (CAH) and then removing the future light cones of all points on that surface (the latter prescription is referred to by the + in the name of the measure). This measure was motivated by the conjectured duality between the bulk of the multiverse and its future infinity and by the causality condition, requiring that the cutoff surfaces of the measure should be spacelike or null. Here we investigate the phenomenology of the CAH+ measure and find that it does not suffer from any known pathologies. The distribution for the cosmological constant Λ derived from this measure is in a good agreement with the observed value, and the distribution for the number of inflationary e-foldings satisfies the observational constraint. The CAH+ measure does not exhibit any 'runaway' behaviors at zero or negative values of Lambda, which have been recently shown to afflict a number of other measures.
International Nuclear Information System (INIS)
Legros, F.
2008-01-01
In GEN IV studies on future fission nuclear reactors, two concepts using helium as a coolant have been selected: GFR and VHTR. Among radioactive impurities and dusts, helium can contain H 2 , CO, CH 4 , CO 2 , H 2 O, O 2 , as well as nitrogenous species. To optimize the reactor functioning and lifespan, it is necessary to control the coolant chemical composition using a dedicated purification system. A pilot designed at the CEA allows studying this purification system. Its design includes three unit operations: H 2 and CO oxidation on CuO, then two adsorption steps. This study aims at providing a detailed analysis of the first and second purification steps, which have both been widely studied experimentally at laboratory scale. A first modelling based on a macroscopic approach was developed to represent the behaviour of the reactor and has shown that the CuO fixed bed conversion is dependent on the chemistry (mass transfer is not an issue) and is complete. The results of the structural analysis of the solids allow considering the CuO as particles made of 200 nm diameter grains. Hence, a new model at grain scale is proposed. It is highlighted that the kinetic constants from these two models are related with a scale factor which depends on geometry. A competition between carbon monoxide and hydrogen oxidation has been shown. Activation energies are around 30 kJ.mol-1. Simulation of the simultaneous oxidations leads to consider CO preferential adsorption. A similar methodology has been applied for CO 2 and H 2 O adsorption. The experimental isotherms showed a Langmuir type adsorption. Using this model, experimental and theoretical results agree. (author) [fr
AUTHOR|(INSPIRE)INSPIRE-00334334
2017-08-02
Our current understanding of matter and its interactions is summarised in the Standard Model (SM) of particle physics. Many experiments have tested the predictions of the SM with great success, but others have brought our ignorance into focus by showing us there are new phenomena that we can not describe within the framework of the SM. These include the experimental observations of neutrino masses and dark matter, which confirms there must be new physics. What this new physics may look like at colliders motivates the original work in this thesis, which comprises three studies: the prospects of future electron-positron colliders in testing a model with an extended Higgs sector with a scalar triplet, doublet and singlet; the discovery potential at the Large Hadron Collider (LHC) of a non-minimal Supersymmetric model via conventional sparticle searches and via searches for displaced vertices; and the experimental search for long-lived massive particles via a displaced vertex signature using data of proton-proton...
Wang, Yun-Jiang; Wang, Chong-Yu
2009-10-01
A model system consisting of Ni[001](100)/Ni3Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni3Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni3Al multilayer can be well predicted by the Voigt-Reuss-Hill rule of mixtures.
Energy Technology Data Exchange (ETDEWEB)
Fabre, G
2005-06-15
The underground radioactive waste disposal far exceeds the period of exploitation of common civil engineering works. These specific projects require to predict the irreversible deformations over a large time scale (several centuries) in order to assess the extension and to forecast the evolution of the EDZ (Excavation Damage Zone) around the cavity. In this study, the viscosity of three sedimentary argillaceous rocks has been studied under different conditions of uniaxial compression: static or cyclic creep tests, monotonic and quasistatic tests, performed across various strata orientations. Argillaceous rocks are studied as a possible host layer for radioactive waste disposals. Indeed, they present some of the physical characteristics and mechanical properties, which are essential for being a natural barrier: low permeability, high creep potential and important holding capacity of radioactive elements. The purpose of the experimental study was to shed some light over the mechanisms governing the development of delayed deformations and damage of argillaceous rocks. It relates three rocks: an argillite from East of France, a Tournemire argillite and a marl from Jurassic Mountains. On atomic scale, viscoplastic deformations are due to irreversible displacements of crystalline defects, called dislocations. The experimental study was also supplemented with observations on thin sections extracted from the argillite and marl samples using a SEM. The aim was to identify the mechanisms responsible for the time-dependent behaviour on a microstructural scale. Analytical simulations of the mechanical behaviour of the three rocks gave parameters used in different viscoplastic models. The best modeling was obtained with the viscoplastic model which takes account of the development of volumetric strains and of the damage anisotropy. (author)
AAMQS: a non-linear phenomenological tool
International Nuclear Information System (INIS)
Milhano, Jose Guilherme; Albacete, Javier L.; Armesto, Nestor; Quiroga-Arias, Paloma; Salgado, Carlos A.
2011-01-01
We demonstrate the phenomenological potential of the Balitsky-Kovchegov equation with running coupling by showing its ability to accurately describe the combined H1/ZEUS data for DIS reduced cross section.
AAMQS: a non-linear phenomenological tool
Energy Technology Data Exchange (ETDEWEB)
Milhano, Jose Guilherme, E-mail: guilherme.milhano@ist.utl.p [CENTRA, Departamento de Fisica, Instituto Superior Tecnico (IST), Av. Rovisco Pais 1, P-1049-001 Lisboa (Portugal); Physics Department, Theory Unit, CERN, CH-1211 Geneve 23 (Switzerland); Albacete, Javier L. [Institut de Physique Theorique, CEA/Saclay, 91191 Gif-sur-Yvette cedex (France); URA 2306, unite de recherche associee au CNRS (France); Armesto, Nestor; Quiroga-Arias, Paloma; Salgado, Carlos A. [Departamento de Fisica de Particulas and IGFAE, Universidade de Santiago de Compostela 15706 Santiago de Compostela (Spain)
2011-04-01
We demonstrate the phenomenological potential of the Balitsky-Kovchegov equation with running coupling by showing its ability to accurately describe the combined H1/ZEUS data for DIS reduced cross section.
Light front quantum chromodynamics: Towards phenomenology
Indian Academy of Sciences (India)
Light front dynamics; quantum chromodynamics; deep inelastic scattering. PACS Nos 11.10. ... What makes light front dynamics appealing from high energy phenomenology point of view? .... given in terms of Poincarй generators by. MВ = W P ...
Phenomenological approaches in psychology and health sciences
DEFF Research Database (Denmark)
Davidsen, A.
2013-01-01
and Critical Narrative Analysis, methods which are theoretically founded in phenomenology. This methodological development and the inevitable contribution of interpretation are illustrated by a case from my own research about psychological interventions and the process of understanding in general practice....
Moral Education: Its Historical and Phenomenological Foundations.
Skorpen, Erling
1984-01-01
Presents a historically based outline of six stages of human normative development. Elucidates this outline phenomenologically and derives a hierarchical scheme of normative behavior from which to develop programs of moral education. (SK)
Uncertainties in environmental radiological assessment models and their implications
International Nuclear Information System (INIS)
Hoffman, F.O.; Miller, C.W.
1983-01-01
Environmental radiological assessments rely heavily on the use of mathematical models. The predictions of these models are inherently uncertain because these models are inexact representations of real systems. The major sources of this uncertainty are related to biases in model formulation and parameter estimation. The best approach for estimating the actual extent of over- or underprediction is model validation, a procedure that requires testing over the range of the intended realm of model application. Other approaches discussed are the use of screening procedures, sensitivity and stochastic analyses, and model comparison. The magnitude of uncertainty in model predictions is a function of the questions asked of the model and the specific radionuclides and exposure pathways of dominant importance. Estimates are made of the relative magnitude of uncertainty for situations requiring predictions of individual and collective risks for both chronic and acute releases of radionuclides. It is concluded that models developed as research tools should be distinguished from models developed for assessment applications. Furthermore, increased model complexity does not necessarily guarantee increased accuracy. To improve the realism of assessment modeling, stochastic procedures are recommended that translate uncertain parameter estimates into a distribution of predicted values. These procedures also permit the importance of model parameters to be ranked according to their relative contribution to the overall predicted uncertainty. Although confidence in model predictions can be improved through site-specific parameter estimation and increased model validation, risk factors and internal dosimetry models will probably remain important contributors to the amount of uncertainty that is irreducible
Troć, R.; Gajek, Z.; Pikul, A.; Misiorek, H.; Colineau, E.; Wastin, F.
2013-07-01
The transport properties described previously [Troć , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.85.224434 85, 224434 (2012)] as well as the magnetic and thermal properties presented in this paper, observed for single-crystalline UCu2Si2, are discussed by assuming a dual (localized-itinerant) scenario. The electronic states of the localized 5f electrons in UCu2Si2 are constructed using the effective Hamiltonian known for ionic systems, allowing us to treat the Coulomb, spin-orbital, and crystal-field interactions on equal footing. The space of parameters has been restricted in the initial steps with the aid of the angular overlap model approximation. The final crystal-field parameters, obtained from the refined steps of calculations, are relatively large (in absolute values), which we attribute to the hybridization characteristic of the metallic systems on the verge of localization. The proposed crystal-field model reproduces correctly with satisfactory accuracy the magnetic and thermal properties of UCu2Si2 in agreement also with the transport properties reported previously. Considerable crystal-field splitting of the ground multiplet of 2760 K is responsible for a large anisotropy in the magnetic behavior, observed in the whole temperature range explored.
Deuteron stripping reactions using dirac phenomenology
Hawk, E. A.; McNeil, J. A.
2001-04-01
In this work deuteron stripping reactions are studied using the distorted wave born approximation employing dirac phenomenological potentials. In 1982 Shepard and Rost performed zero-range dirac phenomenological stripping calculations and found a dramatic reduction in the predicted cross sections when compared with similar nonrelativistic calculations. We extend the earlier work by including full finite range effects as well as the deuteron's internal D-state. Results will be compared with traditional nonrelativistic approaches and experimental data at low energy.
Ethics in Husserl’s Phenomenology
Hasan FathZadeh
2013-01-01
Starting with the ego's consciousness and emphasizing on staying at this realm, Husserl is accused of ignoring the absolute alterity of the other and reducing it to the presence of consciousness. By reducing the other he misses ethics and so embeds the violence at the heart of phenomenological discourse. Here we discuss on this criticism and then we try to defend Husserl against it. By putting phenomenology in its eidetic realm, we will try to answer these criticisms.
The Phenomenological Pomeron. What is it?
International Nuclear Information System (INIS)
Donnachie, A.
1994-01-01
The standard phenomenology of the soft pomeron is recalled. The evidence for the soft pomeron having a well-defined Parton content is outlined. The role of the pomeron in deep inelastic scattering at small x is discussed, and it is suggested that the standard phenomenology is incompatible with the HERA data. It is shown how minijets can be included naturally as part of the soft pomeron, and that they do not contribute separately to total cross sections
Edmund Husserl's Phenomenology of Habituality and Habitus
Moran, Dermot
2011-01-01
Habit is a key concept in Husserl’s genetic phenomenology. In this paper, I want to flesh out Husserl’s conception of habit (for which he employs a wide variety of terms including: Habitus, Habitualität, Gewohnheit, das Habituelle, Habe, Besitz, Sitte, Tradition) to illustrate the complexity, range and depth of the phenomenological treatment of habit. I shall show that Husserl was by no means offering a limited Cartesian intellectualist explication of habitual action, rather he attempted to c...
Being Mindful as a Phenomenological Attitude.
Gustin, Lena Wiklund
2017-08-01
The purpose of this article is to reflect on being mindful as a phenomenological attitude rather than on describing mindfulness as a therapeutic intervention. I will also explore the possibilities that being mindful might open up in relation to nursing research and holistic nursing. I will describe and interpret mindfulness as a state of being by means of van Manen's phenomenological method, using the language of phenomenology rather than the language of reductionist science. Thus, this article can be considered a reflective narrative, describing both the process of orienting to the phenomenon, making preunderstandings-including own experiences of mindfulness-visible, and a thematic analysis of nine scientific articles describing the phenomenon. Being mindful as a phenomenological attitude can be described as a deliberate intentionality, where the person is present in the moment and open to what is going on, bridling personal values and accepting the unfamiliar, thus achieving a sense of being peacefully situated in the world, and able to apprehend one's being-in-the-world. Being mindful as a phenomenological attitude can contribute not only to phenomenological nursing research but also support nurses' presence and awareness.
Phenomenology and its application in medicine.
Carel, Havi
2011-02-01
Phenomenology is a useful methodology for describing and ordering experience. As such, phenomenology can be specifically applied to the first person experience of illness in order to illuminate this experience and enable health care providers to enhance their understanding of it. However, this approach has been underutilized in the philosophy of medicine as well as in medical training and practice. This paper demonstrates the usefulness of phenomenology to clinical medicine. In order to describe the experience of illness, we need a phenomenological approach that gives the body a central role and acknowledges the primacy of perception. I present such a phenomenological method and show how it could usefully illuminate the experience of illness through a set of concepts taken from Merleau-Ponty. His distinction between the biological body and the body as lived, analysis of the habitual body, and the notions of motor intentionality and intentional arc are used to capture the experience of illness. I then discuss the applications this approach could have in medicine. These include narrowing the gap between objective assessments of well-being in illness and subjective experiences which are varied and diverse; developing a more attuned dialogue between physicians and patients based on a thick understanding of illness; developing research methods that are informed by phenomenology and thus go beyond existing qualitative methods; and providing medical staff with a concrete understanding of the impact of illness on the life-world of patients.
Phenomenological perspectives of self-care in healthcare professionals' continuing education
Directory of Open Access Journals (Sweden)
Daniele Bruzzone
2014-12-01
Full Text Available Healthcare professionals, daily confronted with existential failty, feel themselves emotionally vulnerable too. For this reason, they need knowledge and tools in order to take care for themselves. Phenomenology provides an epistemological model that includes subjective and affective dimensions and legitimates lived experience as a source of cognition. In the undergraduate and continuing education of healthcare professionals, the phenomenological approach can represent a way of promoting self-care through personal narrative and reflection.
International Nuclear Information System (INIS)
L'hostis, V.
2010-12-01
Many of the facilities and structures involved in the nuclear industry call for reinforced concrete (RC) in their construction. The corrosion of rebars is the main ageing pathology that those RC structures will meet during their service life (leading to concrete cracking and structural bearing capacity decrease). Concrete carbonation and chloride ingress in concrete are both at the origin of the active corrosion state. Passive corrosion has also to be considered in a context of very long lifetime (waste management). It is of primary importance to dispose of accurate and validated tools in order to predict where and how damages will appear. In 2002, the Commissariat a l Energie atomique decided to develop an intensive research programme dedicated to predicting the long-term behaviour of RC structures affected by steel corrosion (CIMETAL Project). This document aims at synthesize the main outputs coming from the project and exposes the scientific strategy was drawn and applied in order to predict the long-term behaviour of RCs that were mainly exposed to carbonation conditions. That strategy includes experiments for the characterisation of 'short-term' and 'long-term' corrosion layouts and processes, as well as modelling stages, with a view not only to predicting the behaviour of RC, but also to pointing out phenomena that are further verified experimentally. (author)
Energy Technology Data Exchange (ETDEWEB)
Cavalcanti Malta, Pedro
2017-06-27
It is well known that the Standard Model is not complete and many of the theories that seek to extend it predict new phenomena that may be accessible in low-energy settings. This thesis deals with some of these, namely, novel spin-dependent interparticle potentials, axion-like particles and Lorentz-symmetry violation. In Part I we discuss the spin-dependent potentials that arise due to the exchange of a topologically massive mediator, and also pursue a comparative study between spin-1/2 and spin-1 sources. In Part II we treat massive axion-like particles that may be copiously produced in core-collapse supernovae, thus leading to a non-standard flux of gamma rays. Using SN 1987A and the fact that after its observation no extra gamma-ray signal was detected, we are able to set robust limits on the parameter space of axion-like particles with masses in the 10 keV - 100 MeV range. Finally, in Part III we investigate the effects of Lorentz-breaking backgrounds in QED. We discuss two scenarios: a modification in the Maxwell sector via the Carroll-Field-Jackiw term and a new non-minimal coupling between electrons and photons. We are able to set upper limits on the coefficients of the backgrounds by using laboratory-based measurements.
Dugas, Michelle; Kruglanski, Arie W
2014-01-01
Radicalization and its culmination in terrorism represent a grave threat to the security and stability of the world. A related challenge is effective management of extremists who are detained in prison facilities. The major aim of this article is to review the significance quest model of radicalization and its implications for management of terrorist detainees. First, we review the significance quest model, which elaborates on the roles of motivation, ideology, and social processes in radicalization. Secondly, we explore the implications of the model in relation to the risks of prison radicalization. Finally, we analyze the model's implications for deradicalization strategies and review preliminary evidence for the effectiveness of a rehabilitation program targeting components of the significance quest. Based on this evidence, we argue that the psychology of radicalization provides compelling reason for the inclusion of deradicalization efforts as an essential component of the management of terrorist detainees. Copyright © 2014 John Wiley & Sons, Ltd.
Implementation of the Interteaching Model: Implications for Staff
Chester, Andrea; Kienhuis, Mandy; Wilson, Peter
2015-01-01
This article describes the process of implementing a teaching innovation, the interteaching model, in a second-year psychology course. Interteaching is an evidence-based model that uses guided independent learning and reciprocal peer-tutoring to enhance student engagement and learning. The model shifts the focus from lectures to tutorials:…
MYSTICAL ASPECT OF EDITH STEIN'S ANTHROPOLOGY: FROM PHENOMENOLOGY TO THOMISM
Directory of Open Access Journals (Sweden)
J. A. Shabanova
2016-12-01
Full Text Available The aim of the study is to find mystical elements in Edith Stein's anthropology as a connecting principle between phenomenology and Thomism. Relying on methodological definition of philosophical mystic, as a matching of theological and philosophical doctrines, based upon reflection on experience of ecstatic unity with the Absolute, it was shown that phenomenology is implicitly directed towards research of real structure of immediate experience which in all its limits approaches to mystical experience. Not the mind and not the faith, but will (that directs knowledge to mystical unity of immanent subject and transcendental object in finding the truth is defining for the mystical character of Stein's creative method. Stein, being a bright representative of phenomenology, gradually disagrees with Husserl at some points: 1. Stein considers the world as an immediate contemplation on the entity that transcends the identity of being and thinking; 2. In her opinion, phenomenology neglects the ontological Absolute. As a result, there is misplace of the Absolute by structural-cognitive aims, that, in its turn, was a reason for amalgamation of onthology and epistemology, according to Stein's views. 3. Stein strives to overcome epistemological rationality and achieve a sphere of philosophical mystic where ontological object and epistemological subject are identical in the act of mystical contemplation. 4. Lack of metaphysical elements in phenomenology leads Stein to Thomism in which she potentially seeks a way out of metaphysical limits and the way which leads to the level of transpersonal states of mind. 5. Stein reproaches transcendentalism in loss of the world and she ignores the changes in Husserl's world outlook, his transcendental turn and genealogy of the trustworthy acquaintance with the world. An empathy, as a model of extrapolation of the principle (of to be get used to the experience of the Other onto mystical act of overcoming of subject
Errasti-Ibarrondo, Begoña; Jordán, José Antonio; Díez-Del-Corral, Mercedes P; Arantzamendi, María
2018-03-15
To offer a complete outlook in a readable easy way of van Manen's hermeneutic-phenomenological method to nurses interested in undertaking phenomenological research. Phenomenology, as research methodology, involves a certain degree of complexity. It is difficult to identify a single article or author which sets out the didactic guidelines that specifically guide research of this kind. In this context, the theoretical-practical view of Max van Manen's Phenomenology of Practice may be seen as a rigorous guide and directive on which researchers may find support to undertake phenomenological research. Discussion paper. This discussion paper is based on our own experiences and supported by literature and theory. Our central sources of data have been the books and writings of Max van Manen and his website "Phenomenologyonline". The principal methods of the hermeneutic-phenomenological method are addressed and explained providing an enriching overview of phenomenology of practice. A proposal is made for the way the suggestions made by van Manen might be organized for use with the methods involved in Phenomenology of Practice: Social sciences, philosophical and philological methods. Thereby, nurse researchers interested in conducting phenomenological research may find a global outlook and support to understand and conduct this type of inquiry which draws on the art. The approach in this article may help nurse scholars and researchers reach an overall, encompassing perspective of the main methods and activities involved in doing phenomenological research. Nurses interested in doing phenomenology of practice are expected to commit with reflection and writing. © 2018 John Wiley & Sons Ltd.
A Comprehensive Expectancy Motivation Model: Implications for Adult Education and Training.
Howard, Kenneth W.
1989-01-01
The Comprehensive Expectancy Motivation Model is based on valence-instrumentality-expectancy theory. It describes expectancy motivation as part of a larger process that includes past experience, motivation, effort, performance, reward, and need satisfaction. The model has significant implications for the design, marketing, and delivery of adult…
Topology of magnetic fields in particle physics, implications on the quark model
Energy Technology Data Exchange (ETDEWEB)
Jehle, H.
1977-01-01
The flux-loop model of quarks is considered covering electomagnetic gauge invariance, flux quantization, topological conditions for the magnetic field, the extended source model, the electric field, linkage of loop forms, topology and motion of flux loop forms, coalial loops of hadrons having weak interactions, magnetic moments of hadrons, strong interactions, some remarks about string models, and the implications of he topological quark model on the ground and excited states of mesons. 80 references. (JFP)
Constrained Sypersymmetric Flipped SU (5) GUT Phenomenology
Energy Technology Data Exchange (ETDEWEB)
Ellis, John; /CERN /King' s Coll. London; Mustafayev, Azar; /Minnesota U., Theor. Phys. Inst.; Olive, Keith A.; /Minnesota U., Theor. Phys. Inst. /Minnesota U. /Stanford U., Phys. Dept. /SLAC
2011-08-12
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, Min, above the GUT scale, M{sub GUT}. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino {chi} and the lighter stau {tilde {tau}}{sub 1} is sensitive to M{sub in}, as is the relationship between m{sub {chi}} and the masses of the heavier Higgs bosons A,H. For these reasons, prominent features in generic (m{sub 1/2}, m{sub 0}) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to Min, as we illustrate for several cases with tan {beta} = 10 and 55. However, these features do not necessarily disappear at large Min, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses.
Constrained supersymmetric flipped SU(5) GUT phenomenology
Energy Technology Data Exchange (ETDEWEB)
Ellis, John [CERN, TH Division, PH Department, Geneva 23 (Switzerland); King' s College London, Theoretical Physics and Cosmology Group, Department of Physics, London (United Kingdom); Mustafayev, Azar [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States); Olive, Keith A. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States); Stanford University, Department of Physics and SLAC, Palo Alto, CA (United States)
2011-07-15
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, M{sub in}, above the GUT scale, M{sub GUT}. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino {chi} and the lighter stau {tau}{sub 1} is sensitive to M{sub in}, as is the relationship between m{sub {chi}} and the masses of the heavier Higgs bosons A,H. For these reasons, prominent features in generic (m{sub 1/2},m{sub 0}) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to M{sub in}, as we illustrate for several cases with tan {beta}=10 and 55. However, these features do not necessarily disappear at large M{sub in}, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses. (orig.)
Constrained Supersymmetric Flipped SU(5) GUT Phenomenology
Ellis, John; Olive, Keith A
2011-01-01
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, $M_{in}$, above the GUT scale, $M_{GUT}$. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino and the lighter stau is sensitive to $M_{in}$, as is the relationship between the neutralino mass and the masses of the heavier Higgs bosons. For these reasons, prominent features in generic $(m_{1/2}, m_0)$ planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to $M_{in}$, as we illustrate for several cases with tan(beta)...
Constrained supersymmetric flipped SU(5) GUT phenomenology
International Nuclear Information System (INIS)
Ellis, John; Mustafayev, Azar; Olive, Keith A.
2011-01-01
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, M in , above the GUT scale, M GUT . We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino χ and the lighter stau τ 1 is sensitive to M in , as is the relationship between m χ and the masses of the heavier Higgs bosons A,H. For these reasons, prominent features in generic (m 1/2 ,m 0 ) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to M in , as we illustrate for several cases with tan β=10 and 55. However, these features do not necessarily disappear at large M in , unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses. (orig.)
Phenomenology of Flavon Fields at the LHC
International Nuclear Information System (INIS)
Tsumura, Koji; Velasco-Sevilla, Liliana
2009-11-01
We study low energy constraints from flavour violating processes, production and decay at the LHC of a scalar field φ (flavon) associated to the breaking of a non supersymmetric Abelian family symmetry at the TeV scale. This symmetry is constrained to reproduce fermion masses and mixing, up to O(1) coefficients. The non-supersymmetric gauged U(1) models considered are severely restricted by cancellation of anomalies and LEP bounds on contact interactions, consequently its phenomenology is out of the LHC reach. We therefore introduce an effective U(1) which is not gauged and it is broken explicitly by a CP odd term at the TeV scale. This help us to explore flavour violating processes, production and decay at the LHC for these kind of light scalars. In this context we first study the constraints on the flavon mass and its vacuum expectation value from low energy flavour changing processes such as μ→ eγ. We find that a flavon of about m φ φ >∼ m t , and τμ-bar for m t , which could be effectively useful to detect flavons. (author)
A phenomenological view of language shift.
Tsitsipis, Lukas D
2004-01-01
Sociolinguistic studies of language shift have in their majority framed their research object in a horizon of theoretically received variables such as class, ethnicity, locality, attitudes etc. In spite of a limited usefulness of such conceptual variables, and of a recently emerging focus on agency, negotiation, and praxis the best results we obtain have not questioned in a coherent and theoretically sound manner the continuing hegemony of mechanistic-metaphorical models (language death, language suicide). In this paper I propose to examine language shift as a multifaceted phenomenon, joining in this respect work by other linguistic anthropologists researching similar areas. I specifically argue that by replacing vertical concepts such as age and generation, and dichotomous logics such as center and periphery with phenomenologically inspired concepts such as typifications, consociateship, contemporariness, and stream of consciousness we are in a better position to generalize about language shift dynamics. Data for this work is derived primarily from the Albanian speech communities of modern Greece, but also from other communities for comparative purposes.
Nelson, Barnaby; Sass, Louis A
2008-01-01
While considerable research attention has been devoted to the causal relationship between substance use and psychosis, the phenomenology of the association between the two has largely been ignored. This is a significant shortcoming, because it blinds researchers to the possibility that there may be elements of the subjective experience of substance use and psychosis that contribute to their apparent relationship in empirical studies. The current paper examines the phenomenology of the onset of psychosis and the phenomenology of substance intoxication through consideration of two texts: Sass's account of the phenomenology of psychosis onset and Huxley's account of the experience of hallucinogenic intoxication. Sass's account of psychosis onset includes four components: Unreality, Fragmentation, Mere Being, and Apophany. The analysis reveals significant parallels - and also some differences - between this account and the phenomenology of substance intoxication. We discuss the implications of this for the causal relationship between psychosis and substance use and suggest several ways of understanding the overlapping phenomenologies. This includes the suggestion of a shared factor, perhaps best described as psychotic-like experience, which seems to involve a breakdown of the sign-referent relationship and relationship with the common-sense, practical world. However, in the onset of psychosis, this breakdown is primarily experienced as a sense of alienation from self and world, whereas in the hallucinogenic state a sense of mystical union and revelation seems predominant. Further research may extend this analysis by looking at experiences with other drugs, particularly cannabis, and by examining the phenomenology of psychotic disorder beyond the first episode. (c) 2008 S. Karger AG, Basel.
Clinical implications of alternative TCP models for nonuniform dose distributions
International Nuclear Information System (INIS)
Deasy, J. O.
1995-01-01
Several tumor control probability (TCP) models for nonuniform dose distributions were compared, including: (a) a logistic/inter-patient-heterogeneity model, (b) a probit/inter-patient-heterogeneity model, (c) a Poisson/radioresistant-strain/identical-patients model, (d) a Poisson/inter-patient-heterogeneity model and (e) a Poisson/intra-tumor- and inter-patient-heterogeneity model. The models were analyzed in terms of the probability of controlling a single tumor voxel (the voxel control probability, or VCP), as a function of voxel volume and dose. Alternatively, the VCP surface can be thought of as the effect of a small cold spot. The models based on the Poisson equation which include inter-patient heterogeneity ((d) and (e)) have VCP surfaces (VCP as a function of dose and volume) which have a threshold 'waterfall' shape: below the waterfall (in dose), VCP is nearly zero. The threshold dose decreases with decreasing voxel volume. However, models (a), (b), and (c) all show a high probability of controlling a voxel (VCP>50%) with very low dose (e.g., 1 Gy) if the voxel is small (smaller than about 10 -3 of the tumor volume). Model (c) does not have the waterfall shape at low volumes due to the assumption of patient uniformity and a neglect of the effect of the clonogens which are more radiosensitive (and more numerous). Models (a) and (b) deviate from the waterfall shape at low volumes due to numerical differences between the functions used and the Poisson function. Hence, the Possion models which include inter-patient heterogeneities ((d) and (e)) are more sensitive to the effects of small cold spots than the other models considered
International Nuclear Information System (INIS)
Belanger, G.; Kannike, K.; Pukhov, A.; Raidal, M.
2012-01-01
We study the impact of semi-annihilations χχ ↔ χX; where χ is dark matter and X is any standard model particle, on dark matter phenomenology. We formulate scalar dark matter models with minimal field content that predict non-trivial dark matter phenomenology for different discrete Abelian symmetries Z N , N > 2, and contain semi-annihilation processes. We implement such an example model in micrOMEGAs and show that semi-annihilations modify the phenomenology of this type of models. (authors)