WorldWideScience

Sample records for models observing events

  1. Event Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2001-01-01

    The purpose of this chapter is to discuss conceptual event modeling within a context of information modeling. Traditionally, information modeling has been concerned with the modeling of a universe of discourse in terms of information structures. However, most interesting universes of discourse...... are dynamic and we present a modeling approach that can be used to model such dynamics. We characterize events as both information objects and change agents (Bækgaard 1997). When viewed as information objects events are phenomena that can be observed and described. For example, borrow events in a library can...... be characterized by their occurrence times and the participating books and borrowers. When we characterize events as information objects we focus on concepts like information structures. When viewed as change agents events are phenomena that trigger change. For example, when borrow event occurs books are moved...

  2. An observational and modeling study of the August 2017 Florida climate extreme event.

    Science.gov (United States)

    Konduru, R.; Singh, V.; Routray, A.

    2017-12-01

    A special report on the climate extremes by the Intergovernmental Panel on Climate Change (IPCC) elucidates that the sole cause of disasters is due to the exposure and vulnerability of the human and natural system to the climate extremes. The cause of such a climate extreme could be anthropogenic or non-anthropogenic. Therefore, it is challenging to discern the critical factor of influence for a particular climate extreme. Such kind of perceptive study with reasonable confidence on climate extreme events is possible only if there exist any past case studies. A similar rarest climate extreme problem encountered in the case of Houston floods and extreme rainfall over Florida in August 2017. A continuum of hurricanes like Harvey and Irma targeted the Florida region and caused catastrophe. Due to the rarity of August 2017 Florida climate extreme event, it requires the in-depth study on this case. To understand the multi-faceted nature of the event, a study on the development of the Harvey hurricane and its progression and dynamics is significant. Current article focus on the observational and modeling study on the Harvey hurricane. A global model named as NCUM (The global UK Met office Unified Model (UM) operational at National Center for Medium Range Weather Forecasting, India, was utilized to simulate the Harvey hurricane. The simulated rainfall and wind fields were compared with the observational datasets like Tropical Rainfall Measuring Mission rainfall datasets and Era-Interim wind fields. The National Centre for Environmental Prediction (NCEP) automated tracking system was utilized to track the Harvey hurricane, and the tracks were analyzed statistically for different forecasts concerning the Harvey hurricane track of Joint Typhon Warning Centre. Further, the current study will be continued to investigate the atmospheric processes involved in the August 2017 Florida climate extreme event.

  3. Forecast, observation and modelling of a deep stratospheric intrusion event over Europe

    Directory of Open Access Journals (Sweden)

    P. Zanis

    2003-01-01

    Full Text Available A wide range of measurements was carried out in central and southeastern Europe within the framework of the EU project STACCATO (Influence of Stratosphere-Troposphere Exchange in a Changing Climate on Atmospheric Transport and Oxidation Capacity with the principle goal to create a comprehensive data set on stratospheric air intrusions into the troposphere along a rather frequently observed pathway over central Europe from the North Sea to the Mediterranean Sea. The measurements were based on predictions by suitable quasi-operational trajectory calculations using ECMWF forecast data. A predicted deep Stratosphere to Troposphere Transport (STT event, encountered during the STACCATO period on 20-21 June 2001, was followed by the measurements network almost from its inception. Observations provide evidence that the intrusion affected large parts of central and southeastern Europe. Especially, the ozone lidar observations on 20-21 June 2001 at Garmisch-Partenkirchen, Germany captured the evolution of two marked tongues of high ozone with the first one descending to nearly 2 km, thus providing an excellent data set for model intercomparisons and validation. In addition, for the first time to our knowledge concurrent surface measurements of the cosmogenic radionuclides 10Be and 7Be and their ratio 10Be/7Be are presented together as stratospheric tracers in a case study of a stratospheric intrusion. The ozone tracer columns calculated with the FLEXPART model were found to be in good agreement with water vapour satellite images, capturing the evolution of the observed dry streamers of stratospheric origin. Furthermore, the time-height cross section of ozone tracer simulated with FLEXPART over Garmisch-Partenkirchen captures many details of the evolution of the two observed high-ozone filaments measured with the IFU lidar, thus demonstrating the considerable progress in model simulations. Finally, the modelled ozone (operationally available since October

  4. Underwater glider observations and modeling of an abrupt mixing event in the upper ocean

    Science.gov (United States)

    Ruiz, S.; Renault, L.; Garau, B.; Tintoré, J.

    2012-04-01

    An abrupt mixing event in the upper ocean is investigated in the Northwestern Mediterranean Sea using gliders, a new ocean monitoring technology, combined with regional atmospheric model outputs and mooring data. Intense winds (up to 20 m s-1) and buoyancy forcing during December 2009 induced strong vertical mixing of the upper ocean layer in the Balearic Sea. High-resolution data from a coastal glider reveal a surface cooling of near 2 ° C and the deepening of the Mixed Layer Depth (MLD) by more than 40 meters in the center of the basin. Comparisons between glider and ship-emulated sections of hydrographic profiles show that the glider data make visible the small-scale spatial variability of the MLD. The heat content released to the atmosphere by the upper ocean during this mixing event exceeds 1000 W m-2. A simulation from the Weather Research and Forecasting model reports values consistent with these observations. Additionally the atmospheric numerical simulation shows the development and evolution of a cyclone located south of the Balearic Islands. This cyclone is likely to be responsible for the wind intensification and the consequent air-sea energy exchanges that occurred in the study area during this period.

  5. Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling

    Directory of Open Access Journals (Sweden)

    H. Kalesse

    2016-03-01

    Full Text Available Radar Doppler spectra measurements are exploited to study a riming event when precipitating ice from a seeder cloud sediment through a supercooled liquid water (SLW layer. The focus is on the "golden sample" case study for this type of analysis based on observations collected during the deployment of the Atmospheric Radiation Measurement Program's (ARM mobile facility AMF2 at Hyytiälä, Finland, during the Biogenic Aerosols – Effects on Clouds and Climate (BAECC field campaign. The presented analysis of the height evolution of the radar Doppler spectra is a state-of-the-art retrieval with profiling cloud radars in SLW layers beyond the traditional use of spectral moments. Dynamical effects are considered by following the particle population evolution along slanted tracks that are caused by horizontal advection of the cloud under wind shear conditions. In the SLW layer, the identified liquid peak is used as an air motion tracer to correct the Doppler spectra for vertical air motion and the ice peak is used to study the radar profiles of rimed particles. A 1-D steady-state bin microphysical model is constrained using the SLW and air motion profiles and cloud top radar observations. The observed radar moment profiles of the rimed snow can be simulated reasonably well by the model, but not without making several assumptions about the ice particle concentration and the relative role of deposition and aggregation. This suggests that in situ observations of key ice properties are needed to complement the profiling radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations.

  6. Evaluation of a conceptual rainfall forecasting model from observed and simulated rain events

    Directory of Open Access Journals (Sweden)

    L. Dolciné

    1998-01-01

    Full Text Available Very short-term rainfall forecasting models designed for runoff analysis of catchments, particularly those subject to flash-floods, typically include one or more variables deduced from weather radars. Useful variables for defining the state and evolution of a rain system include rainfall rate, vertically integrated rainwater content and advection velocity. The forecast model proposed in this work complements recent dynamical formulations by focusing on a formulation incorporating these variables using volumetric radar data to define the model state variables, determining the rainfall source term directly from multi-scan radar data, explicitly accounting for orographic enhancement, and explicitly incorporating the dynamical model components in an advection-diffusion scheme. An evaluation of this model is presented for four rain events collected in the South of France and in the North-East of Italy. Model forecasts are compared with two simple methods: persistence and extrapolation. An additional analysis is performed using an existing mono-dimensional microphysical meteorological model to produce simulated rain events and provide initialization data. Forecasted rainfall produced by the proposed model and the extrapolation method are compared to the simulated events. The results show that the forecast model performance is influenced by rainfall temporal variability and performance is better for less variable rain events. The comparison with the extrapolation method shows that the proposed model performs better than extrapolation in the initial period of the forecast lead-time. It is shown that the performance of the proposed model over the extrapolation method depends essentially on the additional vertical information available from voluminal radar.

  7. Modeling Pluto-Charon Mutual Events. 2; CCD Observations with the 60 in. Telescope at Palomar Mountain

    Science.gov (United States)

    Buratti, B. J.; Dunbar, R. S.; Tedesco, E. F.; Gibson, J.; Marcialis, R. L.; Wong, F.; Bennett, S.; Dobrovolskis, A.

    1995-01-01

    We present observations of 15 Pluto-Charon mutual events which were obtained with the 60 in. telescope at Palomar Mountain Observatory. A CCD camera and Johnson V filter were used for the observations, except for one event that was observed with a Johnson B filter, and another event that was observed with a Gunn R filter. We observed two events in their entirety, and three pairs of complementary mutual occultation-transit events.

  8. Calculation of Fission Observables Through Event-by-Event Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, J; Vogt, R

    2009-06-04

    The increased interest in more exclusive fission observables has demanded more detailed models. We present here a new computational model, FREYA, that aims to met this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including arbitrary correlations. The various model assumptions are described and the potential utility of the model is illustrated by means of several novel correlation observables.

  9. The FU Orionis outburst as a thermal accretion event: Observational constraints for protostellar disk models

    Science.gov (United States)

    Bell, K. R.; Lin, D. N. C.; Hartmann, L. W.; Kenyon, S. J.

    1995-01-01

    The results of the time-dependent disk models developed in Bell & Lin are compared with observed properties of FU Orionis variables. Specific models are fit to the light curves of Fu Ori, V1515 Cyg, and V1057 Cyg. The slow risetime of V1515 Cyg can be matched by a self-regulated outburst model. The rapid risetimes of FU Ori and V1057 Cyg can be fitted with the application of modest perturbations to the disk surface density. Model disks display spectral features characteristic of observed objects. The color evolution of V1057 Cyg is naturally explained if mass flux drops in the inner disk (r less than 1/4 AU) while remaining steady in the outer disk. The decrease in optical line width (rotational velocity) observed during the decay of V1057 Cyg may be accounted for by an outward-propagating ionization front. We predict that before final decay to the quiescent phase, short-wavelength line widths (lambda less than 1.5 microns) will again increase. It is suggested that FU Orionis outbursts primarily occur to systems during the embedded phase with ages less than several times 10(exp 5) yr.

  10. Occurrence of blowing snow events at an alpine site over a 10-year period: Observations and modelling

    Science.gov (United States)

    Vionnet, V.; Guyomarc'h, G.; Naaim Bouvet, F.; Martin, E.; Durand, Y.; Bellot, H.; Bel, C.; Puglièse, P.

    2013-05-01

    Blowing snow events control the evolution of the snow pack in mountainous areas and cause inhomogeneous snow distribution. The goal of this study is to identify the main features of blowing snow events at an alpine site and assess the ability of the detailed snowpack model Crocus to reproduce the occurrence of these events in a 1D configuration. We created a database of blowing snow events observed over 10 years at our experimental site. Occurrences of blowing snow events were divided into cases with and without concurrent falling snow. Overall, snow transport is observed during 10.5% of the time in winter and occurs with concurrent falling snow 37.3% of the time. Wind speed and snow age control the frequency of occurrence. Model results illustrate the necessity of taking the wind-dependence of falling snow grain characteristics into account to simulate periods of snow transport and mass fluxes satisfactorily during those periods. The high rate of false alarms produced by the model is investigated in detail for winter 2010/2011 using measurements from snow particle counters.

  11. Analysis of a severe weather event over Mecca, Kingdom of Saudi Arabia, using observations and high-resolution modelling

    KAUST Repository

    Dasari, Hari Prasad

    2017-08-10

    The dynamic and thermodynamic characteristics of a severe weather event that caused heavy wind and rainfall over Mecca, Kingdom of Saudi Arabia, on 11 September 2015 were investigated using available observations and the Weather Research and Forecasting model configured at 1 km resolution. Analysis of surface, upper air observations and model outputs reveals that the event was initiated by synoptic scale conditions that intensified by interaction with the local topography, triggering strong winds and high convective rainfall. The model predicted the observed characteristics of both rainfall and winds well, accurately predicting the maximum wind speed of 20–25 m s−1 that was sustained for about 2 h. A time series analysis of various atmospheric variables suggests a sudden fall in pressure, temperature and outgoing long wave radiation before the development of the storm, followed by a significant increase in wind speed, latent and moisture fluxes and change in wind direction during the mature stage of the storm. The model outputs suggest that the heavy rainfall was induced by a low-level moisture supply from the Red Sea combined with orographic lifting. Latent heat release from microphysical processes increased the vertical velocities in the mid-troposphere, further increasing the low-level convergence that strengthened the event.

  12. SAR observation and model tracking of an oil spill event in coastal waters

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Li, Xiaofeng; Xu, Qing

    2011-01-01

    the European ENVISAT ASAR (Advanced Synthetic Aperture Radar) and the Japanese ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array L-band Synthetic Aperture Radar) images. Based on experience with past marine oil spills, about 63.0% of the oil will float and 18.5% of the oil will evaporate...

  13. Body and Surface Wave Modeling of Observed Seismic Events Part 1.

    Science.gov (United States)

    1987-05-11

    1977), Nakanishi et al. (1977), and Mantovani (1978) considered S., Stephens and Isacks (1977) considered the transverse component of S., and Cansi and...parallel to the strike of the Andes. They also observed conversion of Oceanic S, to L. in areas of crustal thickening. Isacks and Stephens (1975) also...Center for Seismic Studies P.O. box 51 1300 North 17th Street N-2007 Kjeller, NORWAY Suite 1450 Arlington, VA 22209-2308 Dr. Carl Newton Los Alamos

  14. Episodes, events, and models.

    Science.gov (United States)

    Khemlani, Sangeet S; Harrison, Anthony M; Trafton, J Gregory

    2015-01-01

    We describe a novel computational theory of how individuals segment perceptual information into representations of events. The theory is inspired by recent findings in the cognitive science and cognitive neuroscience of event segmentation. In line with recent theories, it holds that online event segmentation is automatic, and that event segmentation yields mental simulations of events. But it posits two novel principles as well: first, discrete episodic markers track perceptual and conceptual changes, and can be retrieved to construct event models. Second, the process of retrieving and reconstructing those episodic markers is constrained and prioritized. We describe a computational implementation of the theory, as well as a robotic extension of the theory that demonstrates the processes of online event segmentation and event model construction. The theory is the first unified computational account of event segmentation and temporal inference. We conclude by demonstrating now neuroimaging data can constrain and inspire the construction of process-level theories of human reasoning.

  15. Episodes, events, and models

    Directory of Open Access Journals (Sweden)

    Sangeet eKhemlani

    2015-10-01

    Full Text Available We describe a novel computational theory of how individuals segment perceptual information into representations of events. The theory is inspired by recent findings in the cognitive science and cognitive neuroscience of event segmentation. In line with recent theories, it holds that online event segmentation is automatic, and that event segmentation yields mental simulations of events. But it posits two novel principles as well: first, discrete episodic markers track perceptual and conceptual changes, and can be retrieved to construct event models. Second, the process of retrieving and reconstructing those episodic markers is constrained and prioritized. We describe a computational implementation of the theory, as well as a robotic extension of the theory that demonstrates the processes of online event segmentation and event model construction. The theory is the first unified computational account of event segmentation and temporal inference. We conclude by demonstrating now neuroimaging data can constrain and inspire the construction of process-level theories of human reasoning.

  16. Coupling an aerosol box model with one-dimensional flow: a tool for understanding observations of new particle formation events

    Directory of Open Access Journals (Sweden)

    Niku Kivekäs

    2016-04-01

    Full Text Available Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a fixed measurement location may not represent the true evolution if there are spatial variations in the formation and growth rates. Here we present a zero-dimensional aerosol box model coupled with one-dimensional atmospheric flow to describe the impact of advection on the evolution of simulated new particle formation events. Wind speed, particle formation rates and growth rates are input parameters that can vary as a function of time and location, using wind speed to connect location to time. The output simulates measurements at a fixed location; formation and growth rates of the particle mode can then be calculated from the simulated observations at a stationary point for different scenarios and be compared with the ‘true’ input parameters. Hence, we can investigate how spatial variations in the formation and growth rates of new particles would appear in observations of particle number size distributions at a fixed measurement site. We show that the particle size distribution and growth rate at a fixed location is dependent on the formation and growth parameters upwind, even if local conditions do not vary. We also show that different input parameters used may result in very similar simulated measurements. Erroneous interpretation of observations in terms of particle formation and growth rates, and the time span and areal extent of new particle formation, is possible if the spatial effects are not accounted for.

  17. Estimation of energy budget of ionosphere-thermosphere system during two CIR-HSS events: observations and modeling

    Directory of Open Access Journals (Sweden)

    Verkhoglyadova Olga

    2016-01-01

    Full Text Available We analyze the energy budget of the ionosphere-thermosphere (IT system during two High-Speed Streams (HSSs on 22–31 January, 2007 (in the descending phase of solar cycle 23 and 25 April–2 May, 2011 (in the ascending phase of solar cycle 24 to understand typical features, similarities, and differences in magnetosphere-ionosphere-thermosphere (IT coupling during HSS geomagnetic activity. We focus on the solar wind energy input into the magnetosphere (by using coupling functions and energy partitioning within the IT system during these intervals. The Joule heating is estimated empirically. Hemispheric power is estimated based on satellite measurements. We utilize observations from TIMED/SABER (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry to estimate nitric oxide (NO and carbon dioxide (CO2 cooling emission fluxes. We perform a detailed modeling study of these two similar HSS events with the Global Ionosphere-Thermosphere Model (GITM and different external driving inputs to understand the IT response and to address how well the model reproduces the energy transport. GITM is run in a mode with forecastable inputs. It is shown that the model captures the main features of the energy coupling, but underestimates NO cooling and auroral heating in high latitudes. Lower thermospheric forcing at 100 km altitude is important for correct energy balance of the IT system. We discuss challenges for a physics-based general forecasting approach in modeling the energy budget of moderate IT storms caused by HSSs.

  18. Determination of snowmaking efficiency on a ski slope from observations and modelling of snowmaking events and seasonal snow accumulation

    Science.gov (United States)

    Spandre, Pierre; François, Hugues; Thibert, Emmanuel; Morin, Samuel; George-Marcelpoil, Emmanuelle

    2017-04-01

    The production of Machine Made (MM) snow is now generalized in ski resorts and represents the most common method of adaptation for mitigating the impact of a lack of snow on skiing. Most investigations of correlations between snow conditions and the ski industry's economy focus on the production of MM snow though not one of these has taken into account the efficiency of the snowmaking process. The present study consists of observations of snow conditions (depth and mass) using a Differential GPS method and snow density coring, following snowmaking events and seasonal snow accumulation in Les Deux Alpes ski resort (French Alps). A detailed physically based snowpack model accounting for grooming and snowmaking was used to compute the seasonal evolution of the snowpack and compared to the observations. Our results show that approximately 30 % of the water mass can be recovered as MM snow within 10 m from the center of a MM snow pile after production and 50 % within 20 m. Observations and simulations on the ski slope were relatively consistent with 60 % (±10 %) of the water mass used for snowmaking within the limits of the ski slope. Losses due to thermodynamic effects were estimated in the current case example to be less than 10 % of the total water mass. These results suggest that even in ideal conditions for production a significant fraction of the water used for snowmaking can not be found as MM snow within the limits of the ski slope with most of the missing fraction of water. This is due to site dependent characteristics (e.g. meteorological conditions, topography).

  19. INSAR observations of the DPRK event series

    Science.gov (United States)

    Mellors, R. J.; Ford, S. R.; Walter, W. R.

    2017-12-01

    Interferometric synthetic aperture radar (INSAR) data have revealed signals associated with the recent DPRK events in 2016 and 2017. These signals include decorrelation and indications of subsidence. Both standard phase differences and amplitude offsets are calculated. We show results of INSAR analysis as conducted using C and L band data and investigate the causes of the decorrelation (e.g. subsidence, landslide, or spall) and compare the observed signal with numerical models of deformation and seismic observations. A time series approach is applied to constrain post-event deformation at the weeks to months' timescale. We compare the INSAR observations of the DPRK tests with previous observations of events at other source regions using ERS archive data, which revealed a variety of post-seismic signatures. The signatures are evaluated with respect to the known geology and causes, including long-term surface relaxation and possible groundwater/thermal effects. Particular focus is on the sites on Pahute and Rainier Mesa, which displayed long-term subsidence signals that extended for several years after the explosions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

  20. Modeling Documents with Event Model

    Directory of Open Access Journals (Sweden)

    Longhui Wang

    2015-08-01

    Full Text Available Currently deep learning has made great breakthroughs in visual and speech processing, mainly because it draws lessons from the hierarchical mode that brain deals with images and speech. In the field of NLP, a topic model is one of the important ways for modeling documents. Topic models are built on a generative model that clearly does not match the way humans write. In this paper, we propose Event Model, which is unsupervised and based on the language processing mechanism of neurolinguistics, to model documents. In Event Model, documents are descriptions of concrete or abstract events seen, heard, or sensed by people and words are objects in the events. Event Model has two stages: word learning and dimensionality reduction. Word learning is to learn semantics of words based on deep learning. Dimensionality reduction is the process that representing a document as a low dimensional vector by a linear mode that is completely different from topic models. Event Model achieves state-of-the-art results on document retrieval tasks.

  1. Brain urea increase is an early Huntington's disease pathogenic event observed in a prodromal transgenic sheep model and HD cases.

    Science.gov (United States)

    Handley, Renee R; Reid, Suzanne J; Brauning, Rudiger; Maclean, Paul; Mears, Emily R; Fourie, Imche; Patassini, Stefano; Cooper, Garth J S; Rudiger, Skye R; McLaughlan, Clive J; Verma, Paul J; Gusella, James F; MacDonald, Marcy E; Waldvogel, Henry J; Bawden, C Simon; Faull, Richard L M; Snell, Russell G

    2017-12-26

    The neurodegenerative disorder Huntington's disease (HD) is typically characterized by extensive loss of striatal neurons and the midlife onset of debilitating and progressive chorea, dementia, and psychological disturbance. HD is caused by a CAG repeat expansion in the Huntingtin ( HTT ) gene, translating to an elongated glutamine tract in the huntingtin protein. The pathogenic mechanism resulting in cell dysfunction and death beyond the causative mutation is not well defined. To further delineate the early molecular events in HD, we performed RNA-sequencing (RNA-seq) on striatal tissue from a cohort of 5-y-old OVT73 -line sheep expressing a human CAG-expansion HTT cDNA transgene. Our HD OVT73 sheep are a prodromal model and exhibit minimal pathology and no detectable neuronal loss. We identified significantly increased levels of the urea transporter SLC14A1 in the OVT73 striatum, along with other important osmotic regulators. Further investigation revealed elevated levels of the metabolite urea in the OVT73 striatum and cerebellum, consistent with our recently published observation of increased urea in postmortem human brain from HD cases. Extending that finding, we demonstrate that postmortem human brain urea levels are elevated in a larger cohort of HD cases, including those with low-level neuropathology (Vonsattel grade 0/1). This elevation indicates increased protein catabolism, possibly as an alternate energy source given the generalized metabolic defect in HD. Increased urea and ammonia levels due to dysregulation of the urea cycle are known to cause neurologic impairment. Taken together, our findings indicate that aberrant urea metabolism could be the primary biochemical disruption initiating neuropathogenesis in HD.

  2. Validation in the Absence of Observed Events.

    Science.gov (United States)

    Lathrop, John; Ezell, Barry

    2016-04-01

    This article addresses the problem of validating models in the absence of observed events, in the area of weapons of mass destruction terrorism risk assessment. We address that problem with a broadened definition of "validation," based on stepping "up" a level to considering the reason why decisionmakers seek validation, and from that basis redefine validation as testing how well the model can advise decisionmakers in terrorism risk management decisions. We develop that into two conditions: validation must be based on cues available in the observable world; and it must focus on what can be done to affect that observable world, i.e., risk management. That leads to two foci: (1) the real-world risk generating process, and (2) best use of available data. Based on our experience with nine WMD terrorism risk assessment models, we then describe three best use of available data pitfalls: SME confidence bias, lack of SME cross-referencing, and problematic initiation rates. Those two foci and three pitfalls provide a basis from which we define validation in this context in terms of four tests--Does the model: … capture initiation? … capture the sequence of events by which attack scenarios unfold? … consider unanticipated scenarios? … consider alternative causal chains? Finally, we corroborate our approach against three validation tests from the DOD literature: Is the model a correct representation of the process to be simulated? To what degree are the model results comparable to the real world? Over what range of inputs are the model results useful? © 2015 Society for Risk Analysis.

  3. Observing and modeling the spectrum of a slow slip event: Constraints on the scaling of slow slip and tremor

    Science.gov (United States)

    Hawthorne, J. C.; Bartlow, N. M.; Ghosh, A.

    2017-12-01

    We estimate the normalized moment rate spectrum of a slow slip event in Cascadia and then attempt to reproduce it. Our goal is to further assess whether a single physical mechanism could govern slow slip and tremor events, with durations that span 6 orders of magnitude, so we construct the spectrum by parameterizing a large slow slip event as the sum of a number of subevents with various durations. The spectrum estimate uses data from three sources: the GPS-based slip inversion of Bartlow et al (2011), PBO borehole strain measurements, and beamforming-based tremor moment estimates of Ghosh et al (2009). We find that at periods shorter than 1 day, the moment rate power spectrum decays as frequencyn, where n is between 0.7 and 1.4 when measured from strain and between 1.2 and 1.4 when inferred from tremor. The spectrum appears roughly flat at periods of 1 to 10 days, as both the 1-day-period strain and tremor data and the 6-day-period slip inversion data imply a moment rate power of 0.02 times the the total moment squared. We demonstrate one way to reproduce this spectrum: by constructing the large-scale slow slip event as the sum of a series of subevents. The shortest of these subevents could be interpreted as VLFEs or even LFEs, while longer subevents might represent the aseismic slip that drives rapid tremor reverals, streaks, or rapid tremor migrations. We pick the subevent magnitudes from a Gutenberg-Richter distribution and place the events randomly throughout a 30-day interval. Then we assign each subevent a duration that scales with its moment to a specified power. Finally, we create a moment rate function for each subevent and sum all of the moment rates. We compute the summed slow slip moment rate spectra with two approaches: a time-domain numerical computation and a frequency-domain analytical summation. Several sets of subevent parameters can allow the constructed slow slip event to match the observed spectrum. One allowable set of parameters is of

  4. Physics and observations of tidal disruption events

    Science.gov (United States)

    Mangalam, Arun; Mageshwaran, Tamilan

    2018-04-01

    We describe a model of tidal disruption events (TDEs) with input physical parameters that include the black hole (BH) mass M•, the specific orbital energy E, the angular momentum J, the star mass M⊙ and radius R⊙. We calculate the rise time of the TDEs, the peak bolometric luminosity in terms of these physical parameters and a typical light curve of TDEs for various All Sky Survey (ASS) and Deep Sky Survey (DSS) missions. We then derive the expected detection rates and discuss the follow up of TDEs through observations in various spectral bands from X-rays to radio wavelengths.

  5. Evaluation of W Phase CMT Based PTWC Real-Time Tsunami Forecast Model Using DART Observations: Events of the Last Decade

    Science.gov (United States)

    Wang, D.; Becker, N. C.; Weinstein, S.; Duputel, Z.; Rivera, L. A.; Hayes, G. P.; Hirshorn, B. F.; Bouchard, R. H.; Mungov, G.

    2017-12-01

    The Pacific Tsunami Warning Center (PTWC) began forecasting tsunamis in real-time using source parameters derived from real-time Centroid Moment Tensor (CMT) solutions in 2009. Both the USGS and PTWC typically obtain W-Phase CMT solutions for large earthquakes less than 30 minutes after earthquake origin time. Within seconds, and often before waves reach the nearest deep ocean bottom pressure sensor (DARTs), PTWC then generates a regional tsunami propagation forecast using its linear shallow water model. The model is initialized by the sea surface deformation that mimics the seafloor deformation based on Okada's (1985) dislocation model of a rectangular fault with a uniform slip. The fault length and width are empirical functions of the seismic moment. How well did this simple model perform? The DART records provide a very valuable dataset for model validation. We examine tsunami events of the last decade with earthquake magnitudes ranging from 6.5 to 9.0 including some deep events for which tsunamis were not expected. Most of the forecast results were obtained during the events. We also include events from before the implementation of the WCMT method at USGS and PTWC, 2006-2009. For these events, WCMTs were computed retrospectively (Duputel et al. 2012). We also re-ran the model with a larger domain for some events to include far-field DARTs that recorded a tsunami with identical source parameters used during the events. We conclude that our model results, in terms of maximum wave amplitude, are mostly within a factor of two of the observed at DART stations, with an average error of less than 40% for most events, including the 2010 Maule and the 2011 Tohoku tsunamis. However, the simple fault model with a uniform slip is too simplistic for the Tohoku tsunami. We note model results are sensitive to centroid location and depth, especially if the earthquake is close to land or inland. For the 2016 M7.8 New Zealand earthquake the initial forecast underestimated the

  6. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    The paper demonstrates that a wide variety of event-based modeling approaches are based on special cases of the same general event concept, and that the general event concept can be used to unify the otherwise unrelated fields of information modeling and process modeling. A set of event-based mod......The paper demonstrates that a wide variety of event-based modeling approaches are based on special cases of the same general event concept, and that the general event concept can be used to unify the otherwise unrelated fields of information modeling and process modeling. A set of event......-based modeling approaches are analyzed and the results are used to formulate a general event concept that can be used for unifying the seemingly unrelated event concepts. Events are characterized as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms...

  7. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2009-01-01

    The purpose of the paper is to obtain insight into and provide practical advice for event-based conceptual modeling. We analyze a set of event concepts and use the results to formulate a conceptual event model that is used to identify guidelines for creation of dynamic process models and static...... information models. We characterize events as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms of information structures. The conceptual event model is used to characterize a variety of event concepts and it is used to illustrate how events can...... be used to integrate dynamic modeling of processes and static modeling of information structures. The results are unique in the sense that no other general event concept has been used to unify a similar broad variety of seemingly incompatible event concepts. The general event concept can be used...

  8. Classification of Event-Related Potentials Associated with Response Errors in Actors and Observers Based on Autoregressive Modeling

    NARCIS (Netherlands)

    Vasios, C.E.; Ventouras, E.M.; Matsopoulos, G.K.; Karanasiou, I.; Asvestas, P.; Uzunoglu, N.K.; Schie, H.T. van; Bruijn, E.R.A. de

    2009-01-01

    Event-Related Potentials (ERPs) provide non-invasive measurements of the electrical activity on the scalp related to the processing of stimuli and preparation of responses by the brain. In this paper an ERP-signal classification method is proposed for discriminating between ERPs of correct and

  9. Event Modelling in CMS

    CERN Document Server

    Gunnellini, Paolo

    2017-01-01

    Latest tests of double parton scattering, underlying event tunes, minimum bias, and diffraction made by comparing CMS Run I and Run II data to the state-of-the-art theoretical predictions interfaced with up-to-date parton shower codes are presented. Studies to derive and to test the new CMS event tune obtained through jet kinematics in top quark pair events and global event variables are described.

  10. Observed and modelled effects of auroral precipitation on the thermal ionospheric plasma: comparing the MICA and Cascades2 sounding rocket events

    Science.gov (United States)

    Lynch, K. A.; Gayetsky, L.; Fernandes, P. A.; Zettergren, M. D.; Lessard, M.; Cohen, I. J.; Hampton, D. L.; Ahrns, J.; Hysell, D. L.; Powell, S.; Miceli, R. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    Auroral precipitation can modify the ionospheric thermal plasma through a variety of processes. We examine and compare the events seen by two recent auroral sounding rockets carrying in situ thermal plasma instrumentation. The Cascades2 sounding rocket (March 2009, Poker Flat Research Range) traversed a pre-midnight poleward boundary intensification (PBI) event distinguished by a stationary Alfvenic curtain of field-aligned precipitation. The MICA sounding rocket (February 2012, Poker Flat Research Range) traveled through irregular precipitation following the passage of a strong westward-travelling surge. Previous modelling of the ionospheric effects of auroral precipitation used a one-dimensional model, TRANSCAR, which had a simplified treatment of electric fields and did not have the benefit of in situ thermal plasma data. This new study uses a new two-dimensional model which self-consistently calculates electric fields to explore both spatial and temporal effects, and compares to thermal plasma observations. A rigorous understanding of the ambient thermal plasma parameters and their effects on the local spacecraft sheath and charging, is required for quantitative interpretation of in situ thermal plasma observations. To complement this TRANSCAR analysis we therefore require a reliable means of interpreting in situ thermal plasma observation. This interpretation depends upon a rigorous plasma sheath model since the ambient ion energy is on the order of the spacecraft's sheath energy. A self-consistent PIC model is used to model the spacecraft sheath, and a test-particle approach then predicts the detector response for a given plasma environment. The model parameters are then modified until agreement is found with the in situ data. We find that for some situations, the thermal plasma parameters are strongly driven by the precipitation at the observation time. For other situations, the previous history of the precipitation at that position can have a stronger

  11. Variability of Extreme Events in East Asia and their Dynamical Control: A Comparison Between Observation and Two High-Resolution Global Climate Models.

    Science.gov (United States)

    Freychet, N.; Duchez, A.; Wu, C. H.; Chen, C. A.; Hsu, H. H.; Hirschi, J.; New, A.

    2015-12-01

    East Asia is submitted to a strong seasonal monsoon system, with dry winters and wet summers. Each season can be submitted to extreme weather events such as long drought spells or extreme daily rainfall. Because this region is densely populated, the understanding and predictability of such events is a major subject of concern in the framework of global warming scenario. In this study we investigate the occurrence of the two (above mentioned) extreme events. We focus on their variability and the large-scale atmospheric (+ STT) patterns associated with these events. We use APHRODITE and PERSIANN observation, along with outputs from 2 high resolution (0.5 degree) global climate model (GCM): HadGEM3-GC2 (MetOffice, UK; fully coupled with ORCA025) and HiRAM-C192 (GFDL, USA; forced by prescribed SST). We use different approaches (composites and correlation fields) to highlight the main patterns and mechanisms that control the variability of extremes. We focus on the 1975-2005 historical period. Despite some biases, models can reproduce the signal of extreme events and their dynamical control. Results show a strong control of the land-sea heat contrast along with a significant impact of the monsoon winds system. The SST (which translate the moisture source) does not have a significant impact when considering short terms (monthly) variability but has stronger impact in terms of internannual variability. This work is then extend to end of century projection with the two GCM to investigate the major changes in the large scale dynamics and how it can impact extreme weather events.

  12. Exploring the influence of citizen involvement on the assimilation of crowdsourced observations: a modelling study based on the 2013 flood event in the Bacchiglione catchment (Italy

    Directory of Open Access Journals (Sweden)

    M. Mazzoleni

    2018-01-01

    Full Text Available To improve hydrological predictions, real-time measurements derived from traditional physical sensors are integrated within mathematic models. Recently, traditional sensors are being complemented with crowdsourced data (social sensors. Although measurements from social sensors can be low cost and more spatially distributed, other factors like spatial variability of citizen involvement, decreasing involvement over time, variable observations accuracy and feasibility for model assimilation play an important role in accurate flood predictions. Only a few studies have investigated the benefit of assimilating uncertain crowdsourced data in hydrological and hydraulic models. In this study, we investigate the usefulness of assimilating crowdsourced observations from a heterogeneous network of static physical, static social and dynamic social sensors. We assess improvements in the model prediction performance for different spatial–temporal scenarios of citizen involvement levels. To that end, we simulate an extreme flood event that occurred in the Bacchiglione catchment  (Italy in May 2013 using a semi-distributed hydrological model with the station at Ponte degli Angeli (Vicenza as the prediction–validation point. A conceptual hydrological model is implemented by the Alto Adriatico Water Authority and it is used to estimate runoff from the different sub-catchments, while a hydraulic model is implemented to propagate the flow along the river reach. In both models, a Kalman filter is implemented to assimilate the crowdsourced observations. Synthetic crowdsourced observations are generated for either static social or dynamic social sensors because these measures were not available at the time of the study. We consider two sets of experiments: (i assuming random probability of receiving crowdsourced observations and (ii using theoretical scenarios of citizen motivations, and consequent involvement levels, based on population distribution. The

  13. Exploring the influence of citizen involvement on the assimilation of crowdsourced observations: a modelling study based on the 2013 flood event in the Bacchiglione catchment (Italy)

    Science.gov (United States)

    Mazzoleni, Maurizio; Cortes Arevalo, Vivian Juliette; Wehn, Uta; Alfonso, Leonardo; Norbiato, Daniele; Monego, Martina; Ferri, Michele; Solomatine, Dimitri P.

    2018-01-01

    To improve hydrological predictions, real-time measurements derived from traditional physical sensors are integrated within mathematic models. Recently, traditional sensors are being complemented with crowdsourced data (social sensors). Although measurements from social sensors can be low cost and more spatially distributed, other factors like spatial variability of citizen involvement, decreasing involvement over time, variable observations accuracy and feasibility for model assimilation play an important role in accurate flood predictions. Only a few studies have investigated the benefit of assimilating uncertain crowdsourced data in hydrological and hydraulic models. In this study, we investigate the usefulness of assimilating crowdsourced observations from a heterogeneous network of static physical, static social and dynamic social sensors. We assess improvements in the model prediction performance for different spatial-temporal scenarios of citizen involvement levels. To that end, we simulate an extreme flood event that occurred in the Bacchiglione catchment (Italy) in May 2013 using a semi-distributed hydrological model with the station at Ponte degli Angeli (Vicenza) as the prediction-validation point. A conceptual hydrological model is implemented by the Alto Adriatico Water Authority and it is used to estimate runoff from the different sub-catchments, while a hydraulic model is implemented to propagate the flow along the river reach. In both models, a Kalman filter is implemented to assimilate the crowdsourced observations. Synthetic crowdsourced observations are generated for either static social or dynamic social sensors because these measures were not available at the time of the study. We consider two sets of experiments: (i) assuming random probability of receiving crowdsourced observations and (ii) using theoretical scenarios of citizen motivations, and consequent involvement levels, based on population distribution. The results demonstrate the

  14. Coupling an aerosol box model with one-dimensional flow: a tool for understanding observations of new particle formation events

    OpenAIRE

    Kivekäs, N.; Carpman, J.; Roldin, P.; Leppä, J.; O'Connor, E. J.; Kristensson, A.; Asmi, E.

    2016-01-01

    Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a...

  15. How to model rare events?

    Science.gov (United States)

    Grieser, J.; Jewson, S.

    2009-04-01

    The risk of extreme meteorological events is often estimated using extreme value theory (EVT). However, EVT can't be expected to work well in all cases. Two examples are (a) very rare events which are not adequately captured in short observational records and (b) nonstationary situations where observations alone cannot provide risk estimates for the future. For these reasons Risk Management Solutions (RMS) develops models of extreme weather risks that are based on a combination of both, physics and statistics, rather than just statistics. One example is the RMS TC-Rain model. In addition to wind and storm surge, tropical cyclones (TCs) can lead to torrential rain that may cause widespread flooding and landslides. The most prominent recent historical example is tropical storm Alison (2001) which inundated Houston and caused roughly US 5bn of damage. Since Alison was only tropical storm, rather than a hurricane, no damage due to wind and storm surge was expected and no serious warnings were issued. RMS now has developed a TC-Rain Model which is based on a combination of observations, experience and physical parameterizations. It is an example on how the use of physical principles helps to estimate the risk of rare and devastating events. Based on an event set of TC tracks it allows the calculation of several hundred thousand TC rain footprints which can then be used for the estimation of flood levels and their return periods via a complex dynamical hydrological model. The TC-Rain Model takes a number of physical mechanisms into account, including (a) the effect of surface roughness change at land fall, (b) orographic rain enhancement, (c) drift of rain due to strong horizontal winds, (d) asymmetry, (e) outer rain bands and (f) the dependence on sea surface temperature. It is calibrated using 35 US-landfalling tropical cyclones from 1998 to the 2008, and verified against all US-landfalling TCs since 1948. The model is not designed as a forecasting tool, but rather a

  16. The Solar Energetic Particle Event of 2010 August 14: Connectivity with the Solar Source Inferred from Multiple Spacecraft Observations and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Kwon, R.-Y.; Raouafi, N. E. [The Johns Hopkins University, Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Richardson, I. G.; Thompson, B. J.; Rosenvinge, T. T. von; Mays, M. L.; Mäkelä, P. A.; Xie, H.; Thakur, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bain, H. M. [Space Sciences Laboratory, UC Berkeley, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Zhang, M.; Zhao, L. [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL (United States); Cane, H. V. [Department of Mathematics and Physics, University of Tasmania, Hobart (Australia); Papaioannou, A. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15 236 Penteli (Greece); Riley, P., E-mail: david.lario@jhuapl.edu [Predictive Science, 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States)

    2017-03-20

    We analyze one of the first solar energetic particle (SEP) events of solar cycle 24 observed at widely separated spacecraft in order to assess the reliability of models currently used to determine the connectivity between the sources of SEPs at the Sun and spacecraft in the inner heliosphere. This SEP event was observed on 2010 August 14 by near-Earth spacecraft, STEREO-A (∼80° west of Earth) and STEREO-B (∼72° east of Earth). In contrast to near-Earth spacecraft, the footpoints of the nominal magnetic field lines connecting STEREO-A and STEREO-B with the Sun were separated from the region where the parent fast halo coronal mass ejection (CME) originated by ∼88° and ∼47° in longitude, respectively. We discuss the properties of the phenomena associated with this solar eruption. Extreme ultraviolet and white-light images are used to specify the extent of the associated CME-driven coronal shock. We then assess whether the SEPs observed at the three heliospheric locations were accelerated by this shock or whether transport mechanisms in the corona and/or interplanetary space provide an alternative explanation for the arrival of particles at the poorly connected spacecraft. A possible scenario consistent with the observations indicates that the observation of SEPs at STEREO-B and near Earth resulted from particle injection by the CME shock onto the field lines connecting to these spacecraft, whereas SEPs reached STEREO-A mostly via cross-field diffusive transport processes. The successes, limitations, and uncertainties of the methods used to resolve the connection between the acceleration sites of SEPs and the spacecraft are evaluated.

  17. Event-Based Activity Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2004-01-01

    We present and discuss a modeling approach that supports event-based modeling of information and activity in information systems. Interacting human actors and IT-actors may carry out such activity. We use events to create meaningful relations between information structures and the related...

  18. Delta method and bootstrap in linear mixed models to estimate a proportion when no event is observed: application to intralesional resection in bone tumor surgery.

    Science.gov (United States)

    Francq, Bernard G; Cartiaux, Olivier

    2016-09-10

    Resecting bone tumors requires good cutting accuracy to reduce the occurrence of local recurrence. This issue is considerably reduced with a navigated technology. The estimation of extreme proportions is challenging especially with small or moderate sample sizes. When no success is observed, the commonly used binomial proportion confidence interval is not suitable while the rule of three provides a simple solution. Unfortunately, these approaches are unable to differentiate between different unobserved events. Different delta methods and bootstrap procedures are compared in univariate and linear mixed models with simulations and real data by assuming the normality. The delta method on the z-score and parametric bootstrap provide similar results but the delta method requires the estimation of the covariance matrix of the estimates. In mixed models, the observed Fisher information matrix with unbounded variance components should be preferred. The parametric bootstrap, easier to apply, outperforms the delta method for larger sample sizes but it may be time costly. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Observation of monojet events and tentative interpretation

    Science.gov (United States)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztazabal, F.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Mattison, T.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Teubert, F.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Zhang, J.; Zhang, L.; Zhao, W.; Donvicini, G.; Boudreau, J.; Comas, P.; Coyle, P.; Drevermann, H.; Engelhardt, A.; Foà, L.; Forty, R. W.; Ganis, G.; Gay, C.; Girone, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Martin, E. B.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Palazzi, P.; Pater, J. R.; Perrodo, P.; Pusztaszeri, J.-F.; Ranjard, F.; Rolandi, L.; Rothberg, J.; Saich, M.; Schlatter, D.; Schmelling, M.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Venturi, A.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Johnson, S. D.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Levinthal, D.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Salomone, S.; Colrain, P.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Hassard, J. F.; Konstantinidis, N.; Moneta, L.; Moutoussi, A.; Nash, J.; Payne, D. G.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Nicod, D.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Abt, I.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Kroha, H.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; St. Denis, R.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Bagliwsi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; Johnson, D. L.; March, P. V.; Medcalf, T.; Mir, Ll. M.; Quazi, I. S.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Beddall, A.; Booth, C. N.; Cartwright, S.; Combley, F.; Dawson, I.; Koksal, A.; Rankin, C.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Pitis, L.; Ragusa, F.; Bellantoni, L.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; San Lan Wu; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1994-08-01

    A data sample corresponding to almost two million hadronic Z decays collected by the ALEPH detector at LEP has been searched for monojet events. Three events were found, in agreement with the expectation from the process ee→γ*vvbar, with γ*→ffbar. Two events are hadronic, the third one being an e+e- pair. All monojet masses are in excess of 3 GeV/c2, and two of the event have large transverse momenta: 18.5 and 20.3 GeV/c. These kinematic characteristics are quite unlikely in the process ee→γ*vvbar. The probability of their occurence increases substantially when processes involving further Z or W exchanges are taken into account, but still remains at the 5% level.

  20. Construction and Updating of Event Models in Auditory Event Processing

    Science.gov (United States)

    Huff, Markus; Maurer, Annika E.; Brich, Irina; Pagenkopf, Anne; Wickelmaier, Florian; Papenmeier, Frank

    2018-01-01

    Humans segment the continuous stream of sensory information into distinct events at points of change. Between 2 events, humans perceive an event boundary. Present theories propose changes in the sensory information to trigger updating processes of the present event model. Increased encoding effort finally leads to a memory benefit at event…

  1. Multiple inflation events at Akutan volcano, Alaska, from GPS observations

    Science.gov (United States)

    Hyeun Ji, Kang; Rim, Hyoung-Rae

    2017-04-01

    Detecting anomalous volcanic activities helps constrain characteristics of eruption cycles. We have developed a signal detection tool, called Targeted Projection Operator (TPO), to monitor surface deformation with Global Positioning System (GPS) data. We assume that deformation events of a volcano have similar spatial patterns but with different amplitudes. This assumption is reasonable because a deformation source (e.g., a magma chamber) is relatively stationary in space but its strength varies in time. TPO projects GPS position time series onto a pre-determined spatial pattern (or "target") and calculates the amplitude of the projection at each epoch. Large amplitudes imply that an event occurs with a spatial pattern similar to the target. We have applied the TPO technique to monitor surface deformation of Akutan volcano, Alaska, using GPS data from the Plate Boundary Observatory (PBO) stations collected during 2005-2016. The 2008 inflationary event was used as a target. We detected three inflationary events occurred in 2011, 2014 and 2016. The last event is larger than the first two but smaller than the 2008 event that has maximum horizontal displacement of about 9 mm. The three events are significant in TPO detection because changes in the amplitude of projection are larger than the root-mean-square (RMS) error from relatively quiet periods. A simple Mogi model, as well as the pattern similarity, indicates that the deformation source of Akutan volcano has remained stationary in space during the 11-year period of observation. However, the source has activated episodically as inflationary events, which suggests that magma has accumulated in the magma chamber continually and magma accumulation could eventually cause the next eruption.

  2. Transient Events in Archival VLA Observations of the Galactic Center

    Science.gov (United States)

    Chiti, Anirudh; Chatterjee, S.; Wharton, R.; Cordes, J. M.; Lazio, J.; Kaplan, D. L.; Bower, G. C.; Croft, S.

    2014-01-01

    A number of different classes of stars, sub-stellar objects, and stellar remnants exhibit variability at radio wavelengths on time scales ranging from sub-seconds to hours. The direction toward the Galactic center not only has the highest stellar densities in the Galaxy, but also appears to have a range of interstellar scattering properties that may aid in the detection of new, radio-selected transient events. We have examined all archival VLA observations of the Galactic center field from 1985 to 2005 at 5 GHz and 8.4 GHz for a total of 214 hours of integration time, spanning 99 observations at 5 GHz with a typical area of 4.41E-4 square degrees and 116 observations at 8.4 GHz with a typical area of 8E-4 square degrees. We used a pipeline to search for transient events down to the shortest time scales allowed by the data (typically 10 seconds) by generating model-subtracted visibility data for each observation and then imaging the residual visibilities over short time intervals to search for outlier events. We present one radio transient event and at least 7 other promising candidates with significances ranging from 5.6 to 10.2 sigma that have passed all our tests, and discuss the possible source classes for these candidates and the event rate implications. We acknowledge support from the National Science Foundation for this work. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  3. Calculation of 239Pu fission observables in an event-by-event simulation

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R; Randrup, J; Pruet, J; Younes, W

    2010-03-31

    The increased interest in more exclusive fission observables has demanded more detailed models. We describe a new computational model, FREYA, that aims to meet this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including any interesting correlations. The various model assumptions are described and the potential utility of the model is illustrated. As a concrete example, we use formal statistical methods, experimental data on neutron production in neutron-induced fission of {sup 239}Pu, along with FREYA, to develop quantitative insights into the relation between reaction observables and detailed microscopic aspects of fission. Current measurements of the mean number of prompt neutrons emitted in fission taken together with less accurate current measurements for the prompt post-fission neutron energy spectrum, up to the threshold for multi-chance fission, place remarkably fine constraints on microscopic theories.

  4. ISOMER: Informative Segment Observations for Multimedia Event Recounting

    NARCIS (Netherlands)

    Sun, C.; Burns, B.; Nevatia, R.; Snoek, C.; Bolles, B.; Myers, G.; Wang, W.; Yeh, E.

    2014-01-01

    This paper describes a system for multimedia event detection and recounting. The goal is to detect a high level event class in unconstrained web videos and generate event oriented summarization for display to users. For this purpose, we detect informative segments and collect observations for them,

  5. Assessment of IRI-2012, NeQuick-2 and IRI-Plas 2015 models with observed equatorial ionization anomaly in Africa during 2009 sudden stratospheric warming event

    Science.gov (United States)

    Bolaji, O. S.; Oyeyemi, E. O.; Adewale, A. O.; Wu, Q.; Okoh, D.; Doherty, P. H.; Kaka, R. O.; Abbas, M.; Owolabi, C.; Jidele, P. A.

    2017-11-01

    In Africa, we assessed the performance of all the three options of International Reference Ionosphere 2012, IRI-2012 (i.e. IRI-2001, IRI-2001COR and IRI-NeQuick), NeQuick-2 and IRI-Plas 2015 models prior to and during 2009 sudden stratospheric warming (SSW) event to predict equatorial ionization anomaly (EIA) crest locations and their magnitudes using total electron content (TEC) from experimental records of Global Positioning System (GPS). We confirmed that the IRI-Plas 2015 that appeared as the best compared to all of the models as regard prediction of the EIA crest locations in the northern hemisphere of Africa is due to discontinuities in the GPS data between ∼8° N and 22° N. As regard the predictions of EIA crest magnitudes and the location of EIA crests in the southern hemisphere of Africa, they are not present in all the models. The NeQuick-2 model does not have the capability to predict either the EIA crest location in the northern or southern hemisphere. The SSW effect on the low latitude was able to modify a single EIA crest to pre-noon and post noon EIA crests in the northern hemisphere during the SSW peak phase and significantly reduced the GPS TEC magnitudes over the hemispheres as well. These SSW effects and delays of plasma transportation to higher latitudes in GPS TEC were absent in all the models. For future improvements of IRI-2012, NeQuick-2 and IRI-Plas 2015 models, SSW conditions should be included in order to characterize the effect of lower atmosphere on the ionosphere. The EIA trough modeling is only present in IRI-2001COR and IRI-2001NeQuick options. In the middle latitude, all the model could not predict the location of highest TEC magnitudes found at RBAY (Richardsbay, South Africa).

  6. Assessing total water storage and identifying flood events over Tonlé Sap basin in Cambodia using GRACE and MODIS satellite observations combined with hydrological models

    NARCIS (Netherlands)

    Tangdamrongsub, N.; Ditmar, P.G.; Steele-Dunne, S.C.; Gunter, B.C.; Sutanudjaja, E.H.

    Abstract In this study, satellite observations including gravity (GRACE), terrestrial reflectance (MODIS), and global precipitation (TRMM) data, along with the output from the PCR-GLOBWB hydrological model, are used to generate monthly and sub-monthly terrestrial water storage (TWS) estimates and

  7. Construction and updating of event models in auditory event processing.

    Science.gov (United States)

    Huff, Markus; Maurer, Annika E; Brich, Irina; Pagenkopf, Anne; Wickelmaier, Florian; Papenmeier, Frank

    2018-02-01

    Humans segment the continuous stream of sensory information into distinct events at points of change. Between 2 events, humans perceive an event boundary. Present theories propose changes in the sensory information to trigger updating processes of the present event model. Increased encoding effort finally leads to a memory benefit at event boundaries. Evidence from reading time studies (increased reading times with increasing amount of change) suggest that updating of event models is incremental. We present results from 5 experiments that studied event processing (including memory formation processes and reading times) using an audio drama as well as a transcript thereof as stimulus material. Experiments 1a and 1b replicated the event boundary advantage effect for memory. In contrast to recent evidence from studies using visual stimulus material, Experiments 2a and 2b found no support for incremental updating with normally sighted and blind participants for recognition memory. In Experiment 3, we replicated Experiment 2a using a written transcript of the audio drama as stimulus material, allowing us to disentangle encoding and retrieval processes. Our results indicate incremental updating processes at encoding (as measured with reading times). At the same time, we again found recognition performance to be unaffected by the amount of change. We discuss these findings in light of current event cognition theories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. Geomagnetic Observations and Models

    CERN Document Server

    Mandea, Mioara

    2011-01-01

    This volume provides comprehensive and authoritative coverage of all the main areas linked to geomagnetic field observation, from instrumentation to methodology, on ground or near-Earth. Efforts are also focused on a 21st century e-Science approach to open access to all geomagnetic data, but also to the data preservation, data discovery, data rescue, and capacity building. Finally, modeling magnetic fields with different internal origins, with their variation in space and time, is an attempt to draw together into one place the traditional work in producing models as IGRF or describing the magn

  9. Structured Event-B Models and Proofs

    DEFF Research Database (Denmark)

    Hallerstede, Stefan

    2010-01-01

    Event-B does not provide specific support for the modelling of problems that require some structuring, such as, local variables or sequential ordering of events. All variables need to be declared globally and sequential ordering of events can only be achieved by abstract program counters. This ha...

  10. Ultraviolet and optical observations of tidal disruption events

    Directory of Open Access Journals (Sweden)

    Gezari S.

    2012-12-01

    Full Text Available Tidal disruption events are expected to produce a luminous flare of radiation from fallback accretion of tidally disrupted stellar debris onto the central supermassive black hole. The first convincing candidates for tidal disruption events were discovered in the soft X-rays: large-amplitude, luminous, extremely-soft X-ray flares from inactive galaxies in the ROSAT All-Sky survey. However, the sparsely sampled light curves and lack of multiwavelength observations for these candidates make it difficult to directly constrain the parameters of their events (e.g., Eddington ratio, mass of the black hole, type of star disrupted. Here I present a review of the recent progress made in studying tidal disruption events in detail from taking advantage of wide-field, multi-epoch observations of UV and optical surveys (GALEX, SDSS, PTF, Pan-STARRS1 to measure well-sampled light curves, trigger prompt multiwavelength follow-up observations, and measure rates. I conclude with the promising potential of the next generation of optical synoptic surveys, such as LSST, to probe black hole demographics with samples of thousands of tidal disruption events.

  11. Large-scale coordinated observations of Pc5 pulsation events

    Directory of Open Access Journals (Sweden)

    Z. Mtumela

    2016-09-01

    Full Text Available HF (high-frequency radars belonging to SuperDARN (Super Dual Auroral Radar Network receive backscatter over substantial fields of view which, when combined, allow for simultaneous returns over extensive regions of the polar caps and midlatitudes. This makes them ideal instruments for the observation of pulsations in the Pc5 (1–5 mHz frequency band. Relatively few pulsation events observed by multiple radars have been reported in the literature. Here we describe observations of three such events which extend over more than 120° of magnetic longitude in the Northern Hemisphere and one of which is also detected in the Southern Hemisphere. All three events show characteristics of field line resonances. In one case the pulsation has also been observed by magnetometers under or near the radar fields of view. The extensive longitudinal coverage allows accurate determination of azimuthal wave numbers. These are at the upper end of the lower values associated with external sources such as those in the solar wind. Such sources imply antisunward flow. However, the azimuthal wave number is negative, implying westward propagation at magnetic local times on both sides of noon, as would be expected from drift–bounce resonance with positive particles. Quiet conditions and a very low ring current during the events argue against this. The identification of the source of pulsations from a number of different mechanisms remains a problem of interest.

  12. Constructing Dynamic Event Trees from Markov Models

    International Nuclear Information System (INIS)

    Paolo Bucci; Jason Kirschenbaum; Tunc Aldemir; Curtis Smith; Ted Wood

    2006-01-01

    In the probabilistic risk assessment (PRA) of process plants, Markov models can be used to model accurately the complex dynamic interactions between plant physical process variables (e.g., temperature, pressure, etc.) and the instrumentation and control system that monitors and manages the process. One limitation of this approach that has prevented its use in nuclear power plant PRAs is the difficulty of integrating the results of a Markov analysis into an existing PRA. In this paper, we explore a new approach to the generation of failure scenarios and their compilation into dynamic event trees from a Markov model of the system. These event trees can be integrated into an existing PRA using software tools such as SAPHIRE. To implement our approach, we first construct a discrete-time Markov chain modeling the system of interest by: (a) partitioning the process variable state space into magnitude intervals (cells), (b) using analytical equations or a system simulator to determine the transition probabilities between the cells through the cell-to-cell mapping technique, and, (c) using given failure/repair data for all the components of interest. The Markov transition matrix thus generated can be thought of as a process model describing the stochastic dynamic behavior of the finite-state system. We can therefore search the state space starting from a set of initial states to explore all possible paths to failure (scenarios) with associated probabilities. We can also construct event trees of arbitrary depth by tracing paths from a chosen initiating event and recording the following events while keeping track of the probabilities associated with each branch in the tree. As an example of our approach, we use the simple level control system often used as benchmark in the literature with one process variable (liquid level in a tank), and three control units: a drain unit and two supply units. Each unit includes a separate level sensor to observe the liquid level in the tank

  13. Using Dawn to Observe SEP Events Past 2 AU

    Science.gov (United States)

    Villarreal, Michaela; Russell, Christopher T.; Prettyman, Thomas H.

    2017-10-01

    The launch of the STEREO spacecraft provided much insight into the longitudinal and radial distribution of solar energetic particles (SEPs) relative to their origin site. However, almost all of the observations of SEP events have been made exclusively near 1 AU. The Dawn mission, which orbited around Vesta before arriving at Ceres, provides an opportunity to analyze these events at much further distances. Although Dawn's Gamma Ray and Neutron Detector (GRaND) is not optimized for SEP characterization, it is sensitive to protons greater than 4 MeV, making it capable of detecting a solar energetic particle event in its vicinity. Solar energetic particles in this area of the solar system are important as they are believed to cause sputtering at bodies such as Ceres and comets (Villarreal et al., 2017; Wurz et al., 2015). In this study, we use Dawn’s GRaND data from 2011-2015 when Dawn was at distances between 2-3 AU. We compare the SEP events seen by Dawn with particle measurements at 1 AU using STEREO, Wind, and ACE to understand how the SEP events evolved past 1 AU.References: Villarreal, M. N., et al. (2017), The dependence of the Cerean exosphere on solar energetic particle events, Astrophys. J. Lett., 838, L8.Wurz, P. et al. (2015), Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko, A&A, 583, A22.

  14. AGILE OBSERVATIONS OF THE GRAVITATIONAL-WAVE EVENT GW150914

    Energy Technology Data Exchange (ETDEWEB)

    Tavani, M.; Donnarumma, I.; Argan, A.; Monte, E. Del; Evangelista, Y.; Piano, G.; Munar-Adrover, P. [INAF-IAPS, via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Pittori, C.; Verrecchia, F.; Lucarelli, F.; Antonelli, L. A. [ASI Science Data Center (ASDC), Via del Politecnico, I-00133 Roma (Italy); Bulgarelli, A.; Marisaldi, M.; Fioretti, V.; Zoli, A. [INAF-IASF-Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Giuliani, A.; Caraveo, P. [INAF-IASF Milano, via E.Bassini 15, I-20133 Milano (Italy); Trois, A. [INAF, Osservatorio Astronomico di Cagliari, Poggio dei Pini, strada 54, I-09012 Capoterra (Italy); Barbiellini, G. [Dip. di Fisica, Universita’ di Trieste and INFN, Via Valerio 2, I-34127 Trieste (Italy); Cattaneo, P. W., E-mail: victor@roma2.infn.it.it [INFN-Pavia, Via Bassi 6, I-27100 Pavia (Italy); and others

    2016-07-01

    We report the results of an extensive search through the AGILE data for a gamma-ray counterpart to the LIGO gravitational-wave (GW) event GW150914. Currently in spinning mode, AGILE has the potential of cover 80% of the sky with its gamma-ray instrument, more than 100 times a day. It turns out that AGILE came within a minute of the event time of observing the accessible GW150914 localization region. Interestingly, the gamma-ray detector exposed ∼65% of this region during the 100 s time intervals centered at −100 and +300 s from the event time. We determine a 2 σ flux upper limit in the band 50 MeV–10 GeV, UL = 1.9 × 10{sup −8} erg cm{sup −2} s{sup −1}, obtained ∼300 s after the event. The timing of this measurement is the fastest ever obtained for GW150914, and significantly constrains the electromagnetic emission of a possible high-energy counterpart. We also carried out a search for a gamma-ray precursor and delayed emission over five timescales ranging from minutes to days: in particular, we obtained an optimal exposure during the interval −150/−30 s. In all these observations, we do not detect a significant signal associated with GW150914. We do not reveal the weak transient source reported by Fermi -GBM 0.4 s after the event time. However, even though a gamma-ray counterpart of the GW150914 event was not detected, the prospects for future AGILE observations of GW sources are decidedly promising.

  15. The role of VHE muons in an explanation of unusual events observed in cosmic rays

    NARCIS (Netherlands)

    Bogdanov, AG; Petrukhin, AA; Shalabaeva, AV

    2005-01-01

    Unusual events observed in cosmic-ray experiments that cannot be explained in the context of modern theories and models are considered. The peculiarities of VHE (>= 100 TeV) muon interactions and their possible contribution to the production of various unusual events in cosmic rays are analyzed.

  16. Events per variable for risk differences and relative risks using pseudo-observations

    DEFF Research Database (Denmark)

    Hansen, Stefan Nygaard; Andersen, Per Kragh; Parner, Erik Thorlund

    2014-01-01

    A method based on pseudo-observations has been proposed for direct regression modeling of functionals of interest with right-censored data, including the survival function, the restricted mean and the cumulative incidence function in competing risks. The models, once the pseudo-observations have...... been computed, can be fitted using standard generalized estimating equation software. Regression models can however yield problematic results if the number of covariates is large in relation to the number of events observed. Guidelines of events per variable are often used in practice. These rules...... of thumb for the number of events per variable have primarily been established based on simulation studies for the logistic regression model and Cox regression model. In this paper we conduct a simulation study to examine the small sample behavior of the pseudo-observation method to estimate risk...

  17. The partly Aalen's model for recurrent event data with a dependent terminal event.

    Science.gov (United States)

    Chen, Chyong-Mei; Shen, Pao-Sheng; Chuang, Ya-Wen

    2016-01-30

    Recurrent event data are commonly observed in biomedical longitudinal studies. In many instances, there exists a terminal event, which precludes the occurrence of additional repeated events, and usually there is also a nonignorable correlation between the terminal event and recurrent events. In this article, we propose a partly Aalen's additive model with a multiplicative frailty for the rate function of recurrent event process and assume a Cox frailty model for terminal event time. A shared gamma frailty is used to describe the correlation between the two types of events. Consequently, this joint model can provide the information of temporal influence of absolute covariate effects on the rate of recurrent event process, which is usually helpful in the decision-making process for physicians. An estimating equation approach is developed to estimate marginal and association parameters in the joint model. The consistency of the proposed estimator is established. Simulation studies demonstrate that the proposed approach is appropriate for practical use. We apply the proposed method to a peritonitis cohort data set for illustration. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Event models and the fan effect.

    Science.gov (United States)

    Radvansky, G A; O'Rear, Andrea E; Fisher, Jerry S

    2017-08-01

    The current study explored the persistence of event model organizations and how this influences the experience of interference during retrieval. People in this study memorized lists of sentences about objects in locations, such as "The potted palm is in the hotel." Previous work has shown that such information can either be stored in separate event models, thereby producing retrieval interference, or integrated into common event models, thereby eliminating retrieval interference. Unlike prior studies, the current work explored the impact of forgetting up to 2 weeks later on this pattern of performance. We explored three possible outcomes across the various retention intervals. First, consistent with research showing that longer delays reduce proactive and retroactive interference, any retrieval interference effects of competing event models could be reduced over time. Second, the binding of information into events models may weaken over time, causing interference effects to emerge when they had previously been absent. Third, and finally, the organization of information into event models could remain stable over long periods of time. The results reported here are most consistent with the last outcome. While there were some minor variations across the various retention intervals, the basic pattern of event model organization remained preserved over the two-week retention period.

  19. Modeling for operational event risk assessment

    International Nuclear Information System (INIS)

    Sattison, M.B.

    1997-01-01

    The U.S. Nuclear Regulatory Commission has been using risk models to evaluate the risk significance of operational events in U.S. commercial nuclear power plants for more seventeen years. During that time, the models have evolved in response to the advances in risk assessment technology and insights gained with experience. Evaluation techniques fall into two categories, initiating event assessments and condition assessments. The models used for these analyses have become uniquely specialized for just this purpose

  20. Sulfate Formation Enhanced by a Cocktail of High NOx, SO2, Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities in China: An Observation-Based Modeling Investigation.

    Science.gov (United States)

    Xue, Jian; Yuan, Zibing; Griffith, Stephen M; Yu, Xin; Lau, Alexis K H; Yu, Jian Zhen

    2016-07-19

    In recent years in a few Chinese megacities, fog events lasting one to a few days have been frequently associated with high levels of aerosol loading characterized by high sulfate (as high as 30 μg m(-3)), therefore termed as haze-fog events. The concomitant pollution characteristics include high gas-phase mixing ratios of SO2 (up to 71 ppbv) and NO2 (up to 69 ppbv), high aqueous phase pH (5-6), and smaller fog droplets (as low as 2 μm), resulting from intense emissions from fossil fuel combustion and construction activities supplying abundant Ca(2+). In this work, we use an observation-based model for secondary inorganic aerosols (OBM-SIA) to simulate sulfate formation pathways under conditions of haze-fog events encountered in Chinese megacities. The OBM analysis has identified, at a typical haze-fogwater pH of 5.6, the most important pathway to be oxidation of S(IV) by dissolved NO2, followed by the heterogeneous reaction of SO2 on the aerosol surface. The aqueous phase oxidation of S(IV) by H2O2 is a very minor formation pathway as a result of the high NOx conditions suppressing H2O2 formation. The model results indicate that the unique cocktail of high fogwater pH, high concentrations of NO2, SO2, and PM, and small fog droplets are capable of greatly enhancing sulfate formation. Such haze-fog conditions could lead to rapid sulfate production at night and subsequently high PM2.5 in the morning when the fog evaporates. Sulfate formation is simulated to be highly sensitive to fogwater pH, PM, and precursor gases NO2 and SO2. Such insights on major contributing factors imply that reduction of road dust and NOx emissions could lessen PM2.5 loadings in Chinese megacities during fog events.

  1. Semiparametric time-to-event modeling in the presence of a latent progression event.

    Science.gov (United States)

    Rice, John D; Tsodikov, Alex

    2017-06-01

    In cancer research, interest frequently centers on factors influencing a latent event that must precede a terminal event. In practice it is often impossible to observe the latent event precisely, making inference about this process difficult. To address this problem, we propose a joint model for the unobserved time to the latent and terminal events, with the two events linked by the baseline hazard. Covariates enter the model parametrically as linear combinations that multiply, respectively, the hazard for the latent event and the hazard for the terminal event conditional on the latent one. We derive the partial likelihood estimators for this problem assuming the latent event is observed, and propose a profile likelihood-based method for estimation when the latent event is unobserved. The baseline hazard in this case is estimated nonparametrically using the EM algorithm, which allows for closed-form Breslow-type estimators at each iteration, bringing improved computational efficiency and stability compared with maximizing the marginal likelihood directly. We present simulation studies to illustrate the finite-sample properties of the method; its use in practice is demonstrated in the analysis of a prostate cancer data set. © 2016, The International Biometric Society.

  2. Fermi Observations of the LIGO Event GW170104

    Science.gov (United States)

    Goldstein, A.; Veres, P.; Burns, E.; Blackburn, L.; Briggs, M. S.; Christensen, N.; Cleveland, W. H.; Connaughton, V.; Dal Canton, T.; Hamburg, R.; Hui, C. M.; Jenke, P. A.; Kocevski, D.; Preece, R. D.; Siellez, K.; Veitch, J.; Wilson-Hodge, C. A.; Bhat, N.; Bissaldi, E.; Gibby, M. H.; Giles, M. M.; von Kienlin, A.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.; Roberts, O. J.; Stanbro, M.; (Fermi-LAT Collaboration; Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cominsky, L. R.; Costantin, D.; Cutini, S.; D'Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giomi, M.; Giordano, F.; Giroletti, M.; Glanzman, T.; Green, D.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Harding, A. K.; Hays, E.; Horan, D.; Jóhannesson, G.; Kamae, T.; Kensei, S.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Palatiello, M.; Paliya, V. S.; Paneque, D.; Perkins, J. S.; Persic, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Porter, T. A.; Principe, G.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Saz Parkinson, P. M.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Thayer, J. G.; Thayer, J. B.; Torres, D. F.; Troja, E.; Vianello, G.; Wood, K.; Wood, M.

    2017-09-01

    We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger (BBH) event GW170104. No candidate electromagnetic counterpart was detected by either GBM or LAT. A detailed analysis of the GBM and LAT data over timescales from seconds to days covering the Laser Interferometer Gravitational-wave Observatory (LIGO) localization region is presented. The resulting flux upper bound from the GBM is (5.2-9.4) × 10-7 erg cm-2 s-1 in the 10-1000 keV range and from the LAT is (0.2-90) × 10-9 erg cm-2 s-1 in the 0.1-1 GeV range. We also describe the improvements to our automated pipelines and analysis techniques for searching for and characterizing the potential electromagnetic counterparts for future gravitational-wave events from Advanced LIGO/Virgo.

  3. Fast radio burst event rate counts - I. Interpreting the observations

    Science.gov (United States)

    Macquart, J.-P.; Ekers, R. D.

    2018-02-01

    The fluence distribution of the fast radio burst (FRB) population (the `source count' distribution, N (>F) ∝Fα), is a crucial diagnostic of its distance distribution, and hence the progenitor evolutionary history. We critically reanalyse current estimates of the FRB source count distribution. We demonstrate that the Lorimer burst (FRB 010724) is subject to discovery bias, and should be excluded from all statistical studies of the population. We re-examine the evidence for flat, α > -1, source count estimates based on the ratio of single-beam to multiple-beam detections with the Parkes multibeam receiver, and show that current data imply only a very weak constraint of α ≲ -1.3. A maximum-likelihood analysis applied to the portion of the Parkes FRB population detected above the observational completeness fluence of 2 Jy ms yields α = -2.6_{-1.3}^{+0.7 }. Uncertainties in the location of each FRB within the Parkes beam render estimates of the Parkes event rate uncertain in both normalizing survey area and the estimated post-beam-corrected completeness fluence; this uncertainty needs to be accounted for when comparing the event rate against event rates measured at other telescopes.

  4. Heinrich events modeled in transient glacial simulations

    Science.gov (United States)

    Ziemen, Florian; Kapsch, Marie; Mikolajewicz, Uwe

    2017-04-01

    Heinrich events are among the most prominent events of climate variability recorded in proxies across the northern hemisphere. They are the archetype of ice sheet — climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under debate, and their climatic consequences are far from being fully understood. We address open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability. The framework consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global AOVGCM ECHAM5/MPIOM/LPJ. The simulations were performed fully coupled and with transient orbital and greenhouse gas forcing. They span from several millennia before the last glacial maximum into the deglaciation. To make these long simulations feasible, the atmosphere is accelerated by a factor of 10 relative to the other model components using a periodical-synchronous coupling technique. To disentangle effects of the Heinrich events and the deglaciation, we focus on the events occurring before the deglaciation. The modeled Heinrich events show a peak ice discharge of about 0.05 Sv and raise the sea level by 2.3 m on average. The resulting surface water freshening reduces the Atlantic meridional overturning circulation and ocean heat release. The reduction in ocean heat release causes a sub-surface warming and decreases the air temperature and precipitation regionally and downstream into Eurasia. The surface elevation decrease of the ice sheet enhances moisture transport onto the ice sheet and thus increases precipitation over the Hudson Bay area, thereby accelerating the recovery after an event.

  5. Observations of ozone depletion events in a Finnish boreal forest

    Directory of Open Access Journals (Sweden)

    X. Chen

    2018-01-01

    Full Text Available We investigated the concentrations and vertical profiles of ozone over a 20-year period (1996–2016 at the SMEAR II station in southern Finland. Our results showed that the typical daily median ozone concentrations were in the range of 20–50 ppb with clear diurnal and annual patterns. In general, the profile of ozone concentrations illustrated an increase as a function of heights. The main aim of our study was to address the frequency and strength of ozone depletion events at this boreal forest site. We observed more than a thousand of 10 min periods at 4.2 m, with ozone concentrations below 10 ppb, and a few tens of cases with ozone concentrations below 2 ppb. Among these observations, a number of ozone depletion events that lasted for more than 3 h were identified, and they occurred mainly in autumn and winter months. The low ozone concentrations were likely related to the formation of a low mixing layer under the conditions of low temperatures, low wind speeds, high relative humidities and limited intensity of solar radiation.

  6. Observations of ozone depletion events in a Finnish boreal forest

    Science.gov (United States)

    Chen, Xuemeng; Quéléver, Lauriane L. J.; Fung, Pak L.; Kesti, Jutta; Rissanen, Matti P.; Bäck, Jaana; Keronen, Petri; Junninen, Heikki; Petäjä, Tuukka; Kerminen, Veli-Matti; Kulmala, Markku

    2018-01-01

    We investigated the concentrations and vertical profiles of ozone over a 20-year period (1996-2016) at the SMEAR II station in southern Finland. Our results showed that the typical daily median ozone concentrations were in the range of 20-50 ppb with clear diurnal and annual patterns. In general, the profile of ozone concentrations illustrated an increase as a function of heights. The main aim of our study was to address the frequency and strength of ozone depletion events at this boreal forest site. We observed more than a thousand of 10 min periods at 4.2 m, with ozone concentrations below 10 ppb, and a few tens of cases with ozone concentrations below 2 ppb. Among these observations, a number of ozone depletion events that lasted for more than 3 h were identified, and they occurred mainly in autumn and winter months. The low ozone concentrations were likely related to the formation of a low mixing layer under the conditions of low temperatures, low wind speeds, high relative humidities and limited intensity of solar radiation.

  7. An Event Model of Student Departure.

    Science.gov (United States)

    DesJardins, S. L.; Ahlburg, D. A.; McCall, B. P.

    1999-01-01

    Employs event-history modeling to examine temporal dimensions of student departure from a large research university. Asian students are less likely to depart in year 1 than Whites. African-Americans are more likely to leave during junior and senior years. Dynamic models may presage sound dropout-intervention strategies. (54 references) (MLH)

  8. Modeling Concept Dependencies for Event Detection

    Science.gov (United States)

    2014-04-04

    Modeling Concept Dependencies for Event Detection Ethem F. Can Center for Intelligent Information Retrieval (CIIR) School of Computer Science UMass...Amherst, MA, 01002 efcan@cs.umass.edu R. Manmatha Center for Intelligent Information Retrieval (CIIR) School of Computer Science UMass Amherst, MA...necessarily involve any actions while other events such as “ Parkour ” may involve multiple atomic ac- tions. Further, videos may vary widely in length and

  9. Modeling of ESD events from polymeric surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Kent Bryant

    2014-03-01

    Transient electrostatic discharge (ESD) events are studied to assemble a predictive model of discharge from polymer surfaces. An analog circuit simulation is produced and its response is compared to various literature sources to explore its capabilities and limitations. Results suggest that polymer ESD events can be predicted to within an order of magnitude. These results compare well to empirical findings from other sources having similar reproducibility.

  10. Computer modeling of the Cabriolet Event

    International Nuclear Information System (INIS)

    Kamegai, M.

    1979-01-01

    Computer modeling techniques are described for calculating the results of underground nuclear explosions at depths shallow enough to produce cratering. The techniques are applied to the Cabriolet Event, a well-documented nuclear excavation experiment, and the calculations give good agreement with the experimental results. It is concluded that, given data obtainable by outside observers, these modeling techniques are capable of verifying the yield and depth of underground nuclear cratering explosions, and that they could thus be useful in monitoring another country's compliance with treaty agreements on nuclear testing limitations. Several important facts emerge from the study: (1) seismic energy is produced by only a fraction of the nuclear yield, a fraction depending strongly on the depth of shot and the mechanical properties of the surrounding rock; (2) temperature of the vented gas can be predicted accurately only if good equations of state are available for the rock in the detonation zone; and (3) temperature of the vented gas is strongly dependent on the cooling effect, before venting, of mixing with melted rock in the expanding cavity and, to a lesser extent, on the cooling effect of water in the rock

  11. Fermi Observations of the LIGO Event GW170104

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, A.; Cleveland, W. H.; Connaughton, V. [Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805 (United States); Veres, P.; Briggs, M. S.; Hamburg, R.; Jenke, P. A.; Bhat, N. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Burns, E.; Canton, T. Dal [NASA Postdoctoral Program Fellow, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Blackburn, L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Christensen, N. [Physics and Astronomy, Carleton College, MN, 55057 (United States); Hui, C. M.; Kocevski, D.; Wilson-Hodge, C. A. [Astrophysics Office, ST12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Preece, R. D. [Department of Space Science, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Siellez, K. [Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Veitch, J. [University of Birmingham, Birmingham B15 2TT (United Kingdom); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Gibby, M. H., E-mail: kocevski@slac.stanford.edu, E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: giacomov@slac.stanford.edu [Jacobs Technology, Inc., Huntsville, AL (United States); Collaboration: (Fermi-LAT Collaboration); and others

    2017-09-01

    We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger (BBH) event GW170104. No candidate electromagnetic counterpart was detected by either GBM or LAT. A detailed analysis of the GBM and LAT data over timescales from seconds to days covering the Laser Interferometer Gravitational-wave Observatory (LIGO) localization region is presented. The resulting flux upper bound from the GBM is (5.2–9.4) × 10{sup −7} erg cm{sup −2} s{sup −1} in the 10–1000 keV range and from the LAT is (0.2–90) × 10{sup −9} erg cm{sup −2} s{sup −1} in the 0.1–1 GeV range. We also describe the improvements to our automated pipelines and analysis techniques for searching for and characterizing the potential electromagnetic counterparts for future gravitational-wave events from Advanced LIGO/Virgo.

  12. Fermi-LAT Observations of the LIGO Event GW150914

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Anderson, B.; Arimoto, M.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; hide

    2016-01-01

    The Fermi Large Area Telescope (LAT) has an instantaneous field of view (FoV) covering 1 5 of the sky and it completes a survey of the entire sky in high-energy gamma-rays every 3 hr. It enables searches for transient phenomena over timescales from milliseconds to years. Among these phenomena could be electromagnetic counterparts to gravitational wave (GW) sources. In this paper, we present a detailed study of the LAT observations relevant to Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914, which is the first direct detection of gravitational waves and has been interpreted as being due to the coalescence of two stellar-mass black holes. The localization region for GW150914 was outside the LAT FoV at the time of the GW signal. However, as part of routine survey observations, the LAT observed the entire LIGO localization region within approx. 70 minutes of the trigger and thus enabled a comprehensive search for a gamma-ray counterpart to GW150914.The study of the LAT data presented here did not find any potential counterparts to GW150914, but it did provide limits on the presence of a transient counterpart above 100 MeV on timescales of hours to days over the entire GW150914 localization region.

  13. Event Modeling in UML. Unified Modeling Language and Unified Process

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2002-01-01

    We show how events can be modeled in terms of UML. We view events as change agents that have consequences and as information objects that represent information. We show how to create object-oriented structures that represent events in terms of attributes, associations, operations, state charts, a...

  14. Modeling and simulation of discrete event systems

    CERN Document Server

    Choi, Byoung Kyu

    2013-01-01

    Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on

  15. Recent Changes of Some Observed Climate Extreme Events in Kano

    Directory of Open Access Journals (Sweden)

    Imole Ezekiel Gbode

    2015-01-01

    Full Text Available Observed rainfall and temperature data for the period 1960–2007 were used to examine recent changes of extreme climate over Kano, located in the Sahelian region of Nigeria. The RClimDex software package was employed to generate nine important climate indices as defined by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI. For the entire period, the results show a warming trend, an increased number of cool nights, more warm days, and a strong increase in the number of warm spells. The rainfall indices show a slight increase in annual total rainfall, a decrease in the maximum number of consecutive wet days, and a significant increase in the number of extremely wet days. Such changes in climate may result in an increasing demand for domestic energy for cooling and a higher evaporation rate from water bodies and irrigated crop. These findings may give some guidance to politicians and planners in how to best cope with these extreme weather and climate events.

  16. Understanding the Ballistic Event: Methodology and Initial Observations

    OpenAIRE

    Healey, Adam; Cotton, J; Maclachlan, S; Smith, Paul; Yeomans, Julie

    2016-01-01

    The purpose of the study is to accelerate the development of ceramic materials for armour applications, by substantially increasing the information obtained from a high-energy projectile impact event. This has been achieved by modifying an existing test configuration to incorporate a block of ballistic gel, attached to the strike face of a ceramic armour system, to capture fragments generated during the ballistic event such that their final positions are maintained. Three different materials,...

  17. Component-based event composition modeling for CPS

    Science.gov (United States)

    Yin, Zhonghai; Chu, Yanan

    2017-06-01

    In order to combine event-drive model with component-based architecture design, this paper proposes a component-based event composition model to realize CPS’s event processing. Firstly, the formal representations of component and attribute-oriented event are defined. Every component is consisted of subcomponents and the corresponding event sets. The attribute “type” is added to attribute-oriented event definition so as to describe the responsiveness to the component. Secondly, component-based event composition model is constructed. Concept lattice-based event algebra system is built to describe the relations between events, and the rules for drawing Hasse diagram are discussed. Thirdly, as there are redundancies among composite events, two simplification methods are proposed. Finally, the communication-based train control system is simulated to verify the event composition model. Results show that the event composition model we have constructed can be applied to express composite events correctly and effectively.

  18. Observations involving broadband impedance modelling

    International Nuclear Information System (INIS)

    Berg, J.S.

    1995-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impendance. This paper discusses three aspects of broadband impendance modeling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f cavity. The last is a discussion of requirements for the mathematical form of an impendance which follow from the general properties of impendances

  19. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  20. Dimuon events produced in high energy antineutrino interactions observed in BEBC

    Science.gov (United States)

    Armenise, N.; Calicchio, M.; Erriquez, O.; Fogli-Muciaccia, M. T.; Natali, S.; Nuzzo, S.; Romano, F.; Belusevic, R.; Colley, D. C.; Jones, G. T.; Lowe, L.; O'Neale, S.; Sewell, S. J.; Votruba, M. F.; Bertrand, D.; Sacton, J.; Vander Velde-Wilquet, C.; Van Doninck, W.; Wilquet, G.; Brisson, V.; Francois, T.; Kluberg, L.; Petiau, P.; Cooper, A. M.; Guy, J. G.; Michette, A. G.; Tyndel, M.; Venus, W.; Gerbier, G.; Alitti, J.; Baton, J. P.; Iori, M.; Kochowski, C.; Neveu, M.; Baker, N. J.; Bartley, J. H.; BEBC “TST” Neutrino Collaboration

    1980-08-01

    A study is presented of dimuon events from an exposure of BEBC to a wide band overlineν beam from the CERN SPS. These data double the available statistics on overlineν induced dilepton events observed in bubble chambers. The relative production rate and V 0 yield have been measured and found to agree with previous experiments. The analysis of several kinematical variables shows that the gros features of the data agree with the predictions of the GIM model. Some indication exists that part of the signal could be due to quasi elastic production of the “beautiful baryon”, but the statistical significance is too weak to draw definitive conclusions.

  1. Consequences of models for monojet events from Z boson decay

    International Nuclear Information System (INIS)

    Baer, H.; Komamiya, S.; Hagiwara, K.

    1985-02-01

    Three models for monojet events with large missing transverse momentum observed at the CERN panti p collider are studied: i) Z decay into a neutral lepton pair where one of the pair decays within the detecter while the other escapes, ii) Z decay into two distinct neutral scalars where the lighter one is long lived, and iii) Z decay into two distinct higgsinos where the lighter one is long lived. The first model necessarily gives observable decay in flight signals. Consequences of the latter two models are investigated in both panti p collisions at CERN and e + e - annihilation at PETRA/PEP energies. (orig.)

  2. Joint Meteorological Statistics of Observing Sites for the Event Horizon Telescope

    Science.gov (United States)

    Lope Córdova Rosado, Rodrigo Eduardo; Doeleman, Sheperd; Paine, Scott; Johnson, Michael; Event Horizon Telescope (EHT)

    2018-01-01

    The Event Horizon Telescope (EHT) aims to resolve the general relativistic shadow of Sgr A*, the supermassive black hole at the center of our galaxy, via Very Long Baseline Interferometry (VLBI) measurements with a multinational array of radio observatories. In order to optimize the scheduling of future observations, we have developed tools to model the atmospheric opacity at each EHT site using the past 10 years of Global Forecast System (GFS) data describing the atmospheric state. These tools allow us to determine the ideal observing windows for EHT observations and to assess the suitability and impact of new EHT sites. We describe our modeling framework, compare our models to in-situ measurements at EHT sites, and discuss the implications of weather limitations for planned extensions of the EHT to higher frequencies, as well as additional sites and observation windows.

  3. Characteristics of extreme dust events observed over two urban ...

    Indian Academy of Sciences (India)

    Determination of dust loading in the atmosphere is important not only from the public health point of view, but also for regional climate changes. The present study focuses on the characteristics of two major dust events for two urban areas in Iran, Kermanshah and Tehran, over the period of 4 years from 2006 to 2009.

  4. Observational modeling of topological spaces

    International Nuclear Information System (INIS)

    Molaei, M.R.

    2009-01-01

    In this paper a model for a multi-dimensional observer by using of the fuzzy theory is presented. Relative form of Tychonoff theorem is proved. The notion of topological entropy is extended. The persistence of relative topological entropy under relative conjugate relation is proved.

  5. Observation and Analysis of Jovian and Saturnian Satellite Mutual Events

    Science.gov (United States)

    Tholen, David J.

    2001-01-01

    The main goal of this research was to acquire high time resolution photometry of satellite-satellite mutual events during the equatorial plane crossing for Saturn in 1995 and Jupiter in 1997. The data would be used to improve the orbits of the Saturnian satellites to support Cassini mission requirements, and also to monitor the secular acceleration of Io's orbit to compare with heat flow measurements.

  6. Event-based internet biosurveillance: relation to epidemiological observation.

    Science.gov (United States)

    Nelson, Noele P; Yang, Li; Reilly, Aimee R; Hardin, Jessica E; Hartley, David M

    2012-06-18

    The World Health Organization (WHO) collects and publishes surveillance data and statistics for select diseases, but traditional methods of gathering such data are time and labor intensive. Event-based biosurveillance, which utilizes a variety of Internet sources, complements traditional surveillance. In this study we assess the reliability of Internet biosurveillance and evaluate disease-specific alert criteria against epidemiological data. We reviewed and compared WHO epidemiological data and Argus biosurveillance system data for pandemic (H1N1) 2009 (April 2009 - January 2010) from 8 regions and 122 countries to: identify reliable alert criteria among 15 Argus-defined categories; determine the degree of data correlation for disease progression; and assess timeliness of Internet information. Argus generated a total of 1,580 unique alerts; 5 alert categories generated statistically significant (p Internet information. Disease-specific alert criteria provide situational awareness and may serve as proxy indicators to event progression and escalation in lieu of traditional surveillance data; alerts may identify early-warning indicators to another pandemic, preparing the public health community for disease events.

  7. Event-based internet biosurveillance: relation to epidemiological observation

    Directory of Open Access Journals (Sweden)

    Nelson Noele P

    2012-06-01

    Full Text Available Abstract Background The World Health Organization (WHO collects and publishes surveillance data and statistics for select diseases, but traditional methods of gathering such data are time and labor intensive. Event-based biosurveillance, which utilizes a variety of Internet sources, complements traditional surveillance. In this study we assess the reliability of Internet biosurveillance and evaluate disease-specific alert criteria against epidemiological data. Methods We reviewed and compared WHO epidemiological data and Argus biosurveillance system data for pandemic (H1N1 2009 (April 2009 – January 2010 from 8 regions and 122 countries to: identify reliable alert criteria among 15 Argus-defined categories; determine the degree of data correlation for disease progression; and assess timeliness of Internet information. Results Argus generated a total of 1,580 unique alerts; 5 alert categories generated statistically significant (p  Conclusion Confirmed pandemic (H1N1 2009 cases collected by Argus and WHO methods returned consistent results and confirmed the reliability and timeliness of Internet information. Disease-specific alert criteria provide situational awareness and may serve as proxy indicators to event progression and escalation in lieu of traditional surveillance data; alerts may identify early-warning indicators to another pandemic, preparing the public health community for disease events.

  8. Results of Lunar Impact Observations During Geminid Meteor Shower Events

    Science.gov (United States)

    Suggs, R. J.; Suggs, R. M.

    2015-01-01

    the lunar environment associated with larger lunar impactors, but also provides statistical data for verification and improving meteoroid prediction models. Current meteoroid models indicate that the Moon is struck by a sporadic meteoroid with a mass greater than 1 kg over 260 times per year. This number is very uncertain since observations for objects in this mass range are few. Factors of several times, higher or lower, are easily possible. Meteor showers are also present to varying degrees at certain times of the year. The Earth experiences meteor showers when encountering the debris left behind by comets, which is also the case with 2 the Moon. During such times, the rate of shower meteoroids can greatly exceed that of the sporadic background rate for larger meteoroids. Looking for meteor shower impacts on the Moon at about the same time as they occur on Earth will yield important data that can be fed into meteor shower forecasting models, which can then be used to predict times of greater meteoroid hazard on the Moon. The Geminids are one such meteor shower of interest. The Geminids are a major meteor shower that occur in December with a peak intensity occurring usually during the 13th and 14th of the month and appearing to come from a radiant in the constellation Gemini. The Geminids are interesting in that the parent body of the debris stream is an asteroid, which along with the Quadrantids, are the only major meteor showers not originating from a comet. The Geminids parent body, 3200 Phaethon, is about 5 km in diameter and has an orbit that has a 22deg inclination which intersects the main asteroid belt and has a perihelion less than half of Mercury's perihelion distance. Thus, its orbit crosses those of Mars, Earth, Venus, and Mercury. The Geminid debris stream is by far the most massive as compared to the others. When the Earth passes through the stream in mid-December, a peak intensity of approx. equal 120 meteors per hour can be seen. Because of the

  9. An observation on a cosmic-ray induced event

    International Nuclear Information System (INIS)

    Sawayanagi, K.

    1990-01-01

    The authors observed a big A-jet family in the chamber No. 21. In this paper summary of the family is given though some of the results are preliminary. Emulsion chamber technique has been giving a way of observing ultrahigh energy atmospheric interactions made by cosmic-ray radiations with fine spacial resolution and good stability for a long duration of exposure. The two-story structure of emulsion chamber adopted by Brasil-Japan Collaboration on Emulsion Chamber Experiments at Mt. Chacaltaya makes it possible to observe local interactions within the chamber in addition to atmospheric interactions at the same time. For this purpose an inner target layer of plastic/petroleum pitch is located between the upper and the lower parts of the chamber. The observation of these local interactions, called C-jets, is used to make auto-calibration of energies of observed cascade showers

  10. Observations on an irruption event of the moth Achaea catocaloides ...

    African Journals Online (AJOL)

    The moth Achaea catocaloides Guenee (Lepidoptera: Erebidae, formerly Noctuidae) experiences periodic population irruptions in tropical Africa. Large numbers of adult moths were observed in the Kakamega Forest, Western Kenya in March 2012. Estimated densities of adult moths flying in surveyed forest areas were 6.8 ...

  11. Observations and Impact Assessments of Extreme Space Weather Events

    Science.gov (United States)

    Baker, D. N.

    2007-05-01

    "Space weather" refers to conditions on the Sun, in the solar wind, and in Earth`s magnetosphere, ionosphere, and thermosphere. Activity on the Sun such as solar flares and coronal mass ejections can lead to high levels of radiation in space and can cause major magnetic storms at the Earth. Space radiation can come as energetic particles or as electromagnetic emissions. Adverse conditions in the near-Earth space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids. This can lead to a variety of socioeconomic losses. Astronauts and airline passengers exposed to high levels of radiation are also at risk. Society`s vulnerability to space weather effects is an issue of increasing concern. We are dependent on technological systems that are becoming more susceptible to space weather disturbances. We also have a permanent human presence in space with the International Space Station and the President and NASA have expressed a desire to expand our human space activities with missions to the moon and Mars. This will make space weather of even greater concern in the future. In this talk I will describe many space weather effects and will describe some of the societal and economic impacts that extreme events have had.

  12. Observational signature of high spin at the Event Horizon Telescope

    Science.gov (United States)

    Gralla, Samuel E.; Lupsasca, Alexandru; Strominger, Andrew

    2018-04-01

    We analytically compute the observational appearance of an isotropically emitting point source on a circular, equatorial orbit near the horizon of a rapidly spinning black hole. The primary image moves on a vertical line segment, in contrast to the primarily horizontal motion of the spinless case. Secondary images, also on the vertical line, display a rich caustic structure. If detected, this unique signature could serve as a `smoking gun' for a high spin black hole in nature.

  13. Event horizons in the Polarizable Vacuum Model

    CERN Document Server

    Desiato, J T

    2003-01-01

    The Polarizable Vacuum (PV) Model representation of General Relativity (GR) is used to show that an in-falling particle of matter will reach the central mass object in a finite amount of proper time, as measured along the world line of the particle, when using the PV Metric. It is shown that the in-falling particle passes through an event horizon, analogous to that found in the Schwarzschild solution of GR. Once it passes through this horizon, any light signal emitted outward by the in-falling particle will be moving slower than the in-falling particle, due to the reduced speed of light in this region. Therefore the signal can never escape this horizon. However, the light emitted by a stationary object below the horizon is exponentially red-shifted and can escape along the null geodesics, as was originally predicted by the PV Model. A static, non-rotating charge distribution is added to the central mass and the PV equivalent to the Reissner-Nordstrom metric is derived. It is illustrated that the dipole moment...

  14. Stochastic modeling of central apnea events in preterm infants

    Science.gov (United States)

    Clark, Matthew T.; Delos, John B.; Lake, Douglas E.; Lee, Hoshik; Fairchild, Karen D.; Kattwinkel, John; Moorman, J. Randall

    2016-01-01

    Summary A near-ubiquitous pathology in very low birth weight infants is neonatal apnea, breathing pauses with slowing of the heart and falling blood oxygen. Events of substantial duration occasionally occur after an infant is discharged from the NICU. It is not known whether apneas result from a predictable process or from a stochastic process, but the observation that they occur in seemingly random clusters justifies the use of stochastic models. We use a hidden-Markov model to analyze the distribution of durations of apneas and the distribution of times between apneas. The model suggests the presence of four breathing states, ranging from very stable (with an average lifetime of 12 hours) to very unstable (with an average lifetime of 10 seconds). Although the states themselves are not visible, the mathematical analysis gives estimates of the transition rates among these states. We have obtained these transition rates, and shown how they change with post-menstrual age; as expected, the residence time in the more stable breathing states increases with age. We also extrapolated the model to predict the frequency of very prolonged apnea during the first year of life. This paradigm – stochastic modeling of cardiorespiratory control in neonatal infants to estimate risk for severe clinical events – may be a first step toward personalized risk assessment for life threatening apnea events after NICU discharge. PMID:26963049

  15. Stochastic modeling of central apnea events in preterm infants.

    Science.gov (United States)

    Clark, Matthew T; Delos, John B; Lake, Douglas E; Lee, Hoshik; Fairchild, Karen D; Kattwinkel, John; Moorman, J Randall

    2016-04-01

    A near-ubiquitous pathology in very low birth weight infants is neonatal apnea, breathing pauses with slowing of the heart and falling blood oxygen. Events of substantial duration occasionally occur after an infant is discharged from the neonatal intensive care unit (NICU). It is not known whether apneas result from a predictable process or from a stochastic process, but the observation that they occur in seemingly random clusters justifies the use of stochastic models. We use a hidden-Markov model to analyze the distribution of durations of apneas and the distribution of times between apneas. The model suggests the presence of four breathing states, ranging from very stable (with an average lifetime of 12 h) to very unstable (with an average lifetime of 10 s). Although the states themselves are not visible, the mathematical analysis gives estimates of the transition rates among these states. We have obtained these transition rates, and shown how they change with post-menstrual age; as expected, the residence time in the more stable breathing states increases with age. We also extrapolated the model to predict the frequency of very prolonged apnea during the first year of life. This paradigm-stochastic modeling of cardiorespiratory control in neonatal infants to estimate risk for severe clinical events-may be a first step toward personalized risk assessment for life threatening apnea events after NICU discharge.

  16. Top quark event modelling and generators

    CERN Document Server

    Rahmat, Rahmat

    2016-01-01

    State-of-the-art theoretical predictions accurate to next-to-leading order QCD interfaced with Pythia8 and Herwig++ event generators are tested by comparing the unfolded ttbar differential data collected with the CMS detector at 8 TeV. These predictions are also compared with the underlying event activity distributions in ttbar events using CMS proton-proton data collected in 2015 at a center of mass energy of 13 TeV.

  17. BAYESIAN TECHNIQUES FOR COMPARING TIME-DEPENDENT GRMHD SIMULATIONS TO VARIABLE EVENT HORIZON TELESCOPE OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junhan; Marrone, Daniel P.; Chan, Chi-Kwan; Medeiros, Lia; Özel, Feryal; Psaltis, Dimitrios, E-mail: junhankim@email.arizona.edu [Department of Astronomy and Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2016-12-01

    The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore the robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. Moreover, neglecting the variability in the data and the models often leads to erroneous model selections. We finally apply our method to the early EHT data on Sgr A*.

  18. Design and Use of the Simple Event Model (SEM)

    NARCIS (Netherlands)

    van Hage, W.R.; Malaisé, V.; Segers, R.H.; Hollink, L.

    2011-01-01

    Events have become central elements in the representation of data from domains such as history, cultural heritage, multimedia and geography. The Simple Event Model (SEM) is created to model events in these various domains, without making assumptions about the domain-specific vocabularies used. SEM

  19. Resovled Images of LMC Microlensing Events Observed by a Telescope at 2 AU from Earth

    Science.gov (United States)

    Bennett, David

    2005-07-01

    The identity of the lens objects for most of the LMC microlensing events seen by the MACHO Project is unknown. The most popular explanations include a previously unknown population of old, cool white dwarfs in the Galactic halo or in a very thick disk, or a variation standard LMC models that would allow most events to be caused by faint LMC stars. This uncertainty exists because it is usually impossible to determine the lens distance from the observable features of a microlensing event. Distance estimates can be obtained by measuring the microlensing parallax effect with simultaneous observations of the events from Earth and from a small { 30cm} telescope located 1-2 AU from the Earth. Such a telescope has just been launched: the High Resolution Instrument on the flyby spacecraft of the Deep Impact {DI} Mission. This telescope has been placed in an ideal orbit for LMC microlensing parallax measurements, and the telescope will be at a distance of >1 AU from Earth when the DI prime mission ends this August. Our group plans to take advantage of this fortuitous circumstance and propose a "new science" extended mission for the DI flyby spacecraft to resolve the LMC microlensing puzzle with microlensing parallax observaions. This project is compatible with the DI Science Teams extended mission plans to visit a 2nd comet, and our extended mission proposal to NASA will be written in collaboration with the Deep Impact Science team. A crucial feature of these proposed microlensing parallax measurements is the determination of the absolute brightness of the source stars, which can only be resolved with HST images. The source star brightness must be measured over the entire sensitivity range of the Deep Impact High Resolution Instrument clear filter: 300-1000nm. We therefore request UBVriz HST images to resolve the blending of the microlensed LMC source stars observed by the Deep Impact 30cm telescope.

  20. Long-duration high-energy proton events observed by GOES in October 1989

    Directory of Open Access Journals (Sweden)

    A. Anttila

    1998-08-01

    Full Text Available We consider the prolonged injection of the high-energy (>10 MeV protons during the three successive events observed by GOES in October 1989. We apply a solar-rotation-stereoscopy approach to study the injection of the accelerated particles from the CME-driven interplanetary shock waves in order to find out how the effectiveness of the particle acceleration and/or escape depends on the angular distance from the shock axis. We use an empirical model for the proton injection at the shock and a standard model of the interplanetary transport. The model can reproduce rather well the observed intensity–time profiles of the October 1989 events. The deduced proton injection rate is highest at the nose of the shock; the injection spectrum is always harder near the Sun. The results seem to be consistent with the scheme that the CME-driven interplanetary shock waves accelerate a seed particle population of coronal origin.Key words. Interplanetary physics · Energetic particles · Solar physics · astrophysics and astronomy · Flares and mass ejections

  1. Observations of IMF coherent structures and their relationship to SEP dropout events

    Directory of Open Access Journals (Sweden)

    L. Trenchi

    2013-08-01

    Full Text Available The solar energetic particle (SEP events from impulsive solar flares are often characterized by short-timescale modulations affecting, at the same time, particles with different energies. Several models and simulations suggest that these modulations are observed when SEPs propagate through magnetic structures with a different connection with the flare site. However, in situ observations rarely showed clear magnetic signatures associated with these modulations. In this paper we used the Grad–Shafranov reconstruction to perform a detailed analysis of the local magnetic field topology during the SEP event of 9–10 January 1999, characterized by several SEP dropouts. An optimization procedure is used to identify, during this SEP event, the magnetic structures which better satisfy the Grad–Shafranov assumptions and to evaluate the direction of their invariant axis. We found that these two-dimensional structures, which are flux ropes or current sheets with a more complex field topology, are generally associated with the maxima in the SEP counts. This association suggests that the SEPs propagate within these structures and, since their gyration radii is much smaller than the transverse dimension of these structure, cannot escape from them.

  2. An observational and numerical study of a flash-flood event over south-eastern Italy

    Directory of Open Access Journals (Sweden)

    M. M. Miglietta

    2008-12-01

    Full Text Available A flash-flood episode affecting a small area in Apulia (south-eastern Italy on 22 October 2005 is documented. A rainfall amount of 160 mm was recorded in a 6 h interval in the central part of the region, producing severe damage and causing six fatalities. Synoptic maps, observations from surface stations and remote-sensing data are used here to describe the evolution of the rainfall system. The vertical profiles show features similar to those observed in other orographic heavy-rain events, such as a low-level jet, a conditionally unstable environment, and a nearly saturated warm low-level air mass. The low hills in the centre of the region play an important role in the release of the instability and the localisation of the rainfall, providing the uplift necessary to the air parcels to reach the level of free convection. Numerical simulations are performed in order to understand the mechanisms responsible for the heavy rain event. The Weather Research and Forecasting model (WRF is setup in a 2-way nesting configuration including two domains. The model is able to realistically simulate the evolution of the precipitation system and to capture fairly well the localisation, the amount and the timing of the rainfall. The simulations suggest the important synergy of low and upper-tropospheric features which act as the triggering mechanism for the development of convection. A sensitivity experiment confirms the importance of the orography for the development of convective cells.

  3. Foundations for Streaming Model Transformations by Complex Event Processing.

    Science.gov (United States)

    Dávid, István; Ráth, István; Varró, Dániel

    2018-01-01

    Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.

  4. Stochastic modeling of central apnea events in preterm infants

    International Nuclear Information System (INIS)

    Clark, Matthew T; Lake, Douglas E; Randall Moorman, J; Delos, John B; Lee, Hoshik; Fairchild, Karen D; Kattwinkel, John

    2016-01-01

    A near-ubiquitous pathology in very low birth weight infants is neonatal apnea, breathing pauses with slowing of the heart and falling blood oxygen. Events of substantial duration occasionally occur after an infant is discharged from the neonatal intensive care unit (NICU). It is not known whether apneas result from a predictable process or from a stochastic process, but the observation that they occur in seemingly random clusters justifies the use of stochastic models. We use a hidden-Markov model to analyze the distribution of durations of apneas and the distribution of times between apneas. The model suggests the presence of four breathing states, ranging from very stable (with an average lifetime of 12 h) to very unstable (with an average lifetime of 10 s). Although the states themselves are not visible, the mathematical analysis gives estimates of the transition rates among these states. We have obtained these transition rates, and shown how they change with post-menstrual age; as expected, the residence time in the more stable breathing states increases with age. We also extrapolated the model to predict the frequency of very prolonged apnea during the first year of life. This paradigm—stochastic modeling of cardiorespiratory control in neonatal infants to estimate risk for severe clinical events—may be a first step toward personalized risk assessment for life threatening apnea events after NICU discharge. (paper)

  5. A study of different colour reconnection settings for Pythia8 generator using underlying event observables

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    A study of the performance of various colour reconnection models included in the Pythia8 Monte Carlo event generator is performed using leading charged-particle underlying event data in three centre-of-mass energies from Run 1 and Run 2, measured in ATLAS. Each model can be tuned to describe the data reasonably well.

  6. Observation of events with an energetic forward neutron in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1996-05-01

    In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q 2 in the range 3.10 -4 BJ -3 and 10 2 2 . (orig.)

  7. Observation of μ-e+K/sub s/0 events produced by a neutrino beam

    International Nuclear Information System (INIS)

    von Krogh, J.; Fry, W.; Camerini, U.; Cline, D.; Loveless, R.J.; Mapp, J.; March, R.H.; Reeder, D.D.; Barbaro-Galtieri, A.; Bosetti, P.; Lynch, G.; Marriner, J.; Solmitz, F.; Stevenson, M.L.; Haidt, D.; Harigel, G.; Wachsmuth, H.; Cence, R.; Harris, F.; Parker, S.I.; Peters, M.; Peterson, V.; Stenger, V.

    1976-01-01

    Four events have been observed with an e + and a K/sub s/ 0 decay in the final state induced by a neutrino beam incident on the Fermilab 15-ft neon bubble chamber. Conventional backgrounds are unable to account for these events. Two of the events have in addition a μ - in the final state clearly identified by the external muon identifier. The other two have μ - candidates

  8. The bursts of high energy events observed by the telescope array surface detector

    Science.gov (United States)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Sekino, K.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-08-01

    The Telescope Array (TA) experiment is designed to detect air showers induced by ultra high energy cosmic rays. The TA ground Surface particle Detector (TASD) observed several short-time bursts of air shower like events. These bursts are not likely due to chance coincidence between single shower events. The expectation of chance coincidence is less than 10-4 for five-year's observation. We checked the correlation between these bursts of events and lightning data, and found evidence for correlations in timing and position. Some features of the burst events are similar to those of a normal cosmic ray air shower, and some are not. On this paper, we report the observed bursts of air shower like events and their correlation with lightning.

  9. Conceptual Modeling of Events as Information Objects and Change Agents

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    Traditionally, semantic data models have not supported the modeling of behavior. We present an event modeling approach that can be used to extend semantic data models like the entity-relationship model and the functional data model. We model an event as a two-sided phenomenon that is seen as a to...... it is comparable to an executable transaction schema. Finally, we briefly compare our approach to object-oriented approaches based on encapsulated objects.......Traditionally, semantic data models have not supported the modeling of behavior. We present an event modeling approach that can be used to extend semantic data models like the entity-relationship model and the functional data model. We model an event as a two-sided phenomenon that is seen...... as a totality of an information object and a change agent. When an event is modeled as an information object it is comparable to an entity that exists only at a specific point in time. It has attributes and can be used for querying and specification of constraints. When an event is modeled as a change agent...

  10. Modelling substorm chorus events in terms of dispersive azimuthal drift

    Directory of Open Access Journals (Sweden)

    A. B. Collier

    2004-12-01

    Full Text Available The Substorm Chorus Event (SCE is a radio phenomenon observed on the ground after the onset of the substorm expansion phase. It consists of a band of VLF chorus with rising upper and lower cutoff frequencies. These emissions are thought to result from Doppler-shifted cyclotron resonance between whistler mode waves and energetic electrons which drift into a ground station's field of view from an injection site around midnight. The increasing frequency of the emission envelope has been attributed to the combined effects of energy dispersion due to gradient and curvature drifts, and the modification of resonance conditions and variation of the half-gyrofrequency cutoff resulting from the radial component of the ExB drift.

    A model is presented which accounts for the observed features of the SCE in terms of the growth rate of whistler mode waves due to anisotropy in the electron distribution. This model provides an explanation for the increasing frequency of the SCE lower cutoff, as well as reproducing the general frequency-time signature of the event. In addition, the results place some restrictions on the injected particle source distribution which might lead to a SCE.

    Key words. Space plasma physics (Wave-particle interaction – Magnetospheric physics (Plasma waves and instabilities; Storms and substorms

  11. Modelling substorm chorus events in terms of dispersive azimuthal drift

    Directory of Open Access Journals (Sweden)

    A. B. Collier

    2004-12-01

    Full Text Available The Substorm Chorus Event (SCE is a radio phenomenon observed on the ground after the onset of the substorm expansion phase. It consists of a band of VLF chorus with rising upper and lower cutoff frequencies. These emissions are thought to result from Doppler-shifted cyclotron resonance between whistler mode waves and energetic electrons which drift into a ground station's field of view from an injection site around midnight. The increasing frequency of the emission envelope has been attributed to the combined effects of energy dispersion due to gradient and curvature drifts, and the modification of resonance conditions and variation of the half-gyrofrequency cutoff resulting from the radial component of the ExB drift. A model is presented which accounts for the observed features of the SCE in terms of the growth rate of whistler mode waves due to anisotropy in the electron distribution. This model provides an explanation for the increasing frequency of the SCE lower cutoff, as well as reproducing the general frequency-time signature of the event. In addition, the results place some restrictions on the injected particle source distribution which might lead to a SCE. Key words. Space plasma physics (Wave-particle interaction – Magnetospheric physics (Plasma waves and instabilities; Storms and substorms

  12. Event-based Simulation Model for Quantum Optics Experiments

    NARCIS (Netherlands)

    De Raedt, H.; Michielsen, K.; Jaeger, G; Khrennikov, A; Schlosshauer, M; Weihs, G

    2011-01-01

    We present a corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one. The event-based corpuscular model gives a unified

  13. Event-Based Corpuscular Model for Quantum Optics Experiments

    NARCIS (Netherlands)

    Michielsen, K.; Jin, F.; Raedt, H. De

    A corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one is presented. The event-based corpuscular model is shown to give a

  14. Sequential combination of multi-source satellite observations for separation of surface deformation associated with serial seismic events

    Science.gov (United States)

    Chen, Qiang; Xu, Qian; Zhang, Yijun; Yang, Yinghui; Yong, Qi; Liu, Guoxiang; Liu, Xianwen

    2018-03-01

    Single satellite geodetic technique has weakness for mapping sequence of ground deformation associated with serial seismic events, like InSAR with long revisiting period readily leading to mixed complex deformation signals from multiple events. It challenges the observation capability of single satellite geodetic technique for accurate recognition of individual surface deformation and earthquake model. The rapidly increasing availability of various satellite observations provides good solution for overcoming the issue. In this study, we explore a sequential combination of multiple overlapping datasets from ALOS/PALSAR, ENVISAT/ASAR and GPS observations to separate surface deformation associated with the 2011 Mw 9.0 Tohoku-Oki major quake and two strong aftershocks including the Mw 6.6 Iwaki and Mw 5.8 Ibaraki events. We first estimate the fault slip model of major shock with ASAR interferometry and GPS displacements as constraints. Due to the used PALSAR interferogram spanning the period of all the events, we then remove the surface deformation of major shock through forward calculated prediction thus obtaining PALSAR InSAR deformation associated with the two strong aftershocks. The inversion for source parameters of Iwaki aftershock is conducted using the refined PALSAR deformation considering that the higher magnitude Iwaki quake has dominant deformation contribution than the Ibaraki event. After removal of deformation component of Iwaki event, we determine the fault slip distribution of Ibaraki shock using the remained PALSAR InSAR deformation. Finally, the complete source models for the serial seismic events are clearly identified from the sequential combination of multi-source satellite observations, which suggest that the major quake is a predominant mega-thrust rupture, whereas the two aftershocks are normal faulting motion. The estimated seismic moment magnitude for the Tohoku-Oki, Iwaki and Ibaraki evens are Mw 9.0, Mw 6.85 and Mw 6.11, respectively.

  15. Initiating Events Modeling for On-Line Risk Monitoring Application

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.

    1998-01-01

    In order to make on-line risk monitoring application of Probabilistic Risk Assessment more complete and realistic, a special attention need to be dedicated to initiating events modeling. Two different issues are of special importance: one is how to model initiating events frequency according to current plant configuration (equipment alignment and out of service status) and operating condition (weather and various activities), and the second is how to preserve dependencies between initiating events model and rest of PRA model. First, the paper will discuss how initiating events can be treated in on-line risk monitoring application. Second, practical example of initiating events modeling in EPRI's Equipment Out of Service on-line monitoring tool will be presented. Gains from application and possible improvements will be discussed in conclusion. (author)

  16. TRANSITION REGION AND CHROMOSPHERIC SIGNATURES OF IMPULSIVE HEATING EVENTS. I. OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Reep, Jeffrey W. [National Research Council Postdoctoral Fellow, Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Crump, Nicholas A. [Naval Center for Space Technology, Naval Research Laboratory, Washington, DC 20375 (United States); Simões, Paulo J. A. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2016-09-20

    We exploit the high spatial resolution and high cadence of the Interface Region Imaging Spectrograph ( IRIS ) to investigate the response of the transition region and chromosphere to energy deposition during a small flare. Simultaneous observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager provide constraints on the energetic electrons precipitating into the flare footpoints, while observations of the X-Ray Telescope , Atmospheric Imaging Assembly, and Extreme Ultraviolet Imaging Spectrometer (EIS) allow us to measure the temperatures and emission measures from the resulting flare loops. We find clear evidence for heating over an extended period on the spatial scale of a single IRIS pixel. During the impulsive phase of this event, the intensities in each pixel for the Si iv 1402.770 Å, C ii 1334.535 Å, Mg ii 2796.354 Å, and O i 1355.598 Å emission lines are characterized by numerous small-scale bursts typically lasting 60 s or less. Redshifts are observed in Si iv, C ii, and Mg ii during the impulsive phase. Mg ii shows redshifts during the bursts and stationary emission at other times. The Si iv and C ii profiles, in contrast, are observed to be redshifted at all times during the impulsive phase. These persistent redshifts are a challenge for one-dimensional hydrodynamic models, which predict only short-duration downflows in response to impulsive heating. We conjecture that energy is being released on many small-scale filaments with a power-law distribution of heating rates.

  17. Modeling Uncertain Context Information via Event Probabilities

    NARCIS (Netherlands)

    van Bunningen, A.H.; Feng, L.; Apers, Peter M.G.; de Keijzer, Ander; de Keijzer, A.; van Keulen, M.; van Keulen, Maurice

    2006-01-01

    To be able to support context-awareness in an Ambient Intelligent (AmI) environment, one needs a way to model context. Previous research shows that a good way to model context is using Description Logics (DL). Since context data is often coming from sensors and therefore exhibits uncertain

  18. Predicting extreme rainfall events over Jeddah, Saudi Arabia: Impact of data assimilation with conventional and satellite observations

    KAUST Repository

    Viswanadhapalli, Yesubabu

    2015-08-20

    The impact of variational data assimilation for predicting two heavy rainfall events that caused devastating floods in Jeddah, Saudi Arabia is studied using the Weather Research and Forecasting (WRF) model. On 25 November 2009 and 26 January 2011, the city was deluged with more than double the annual rainfall amount caused by convective storms. We used a high resolution, two-way nested domain WRF model to simulate the two rainfall episodes. Simulations include control runs initialized with National Center for Environmental Prediction (NCEP) Global Forecasting System (GFS) data and 3-Dimensional Variational (3DVAR) data assimilation experiments conducted by assimilating NCEP prepbufr and radiance observations. Observations from Automated Weather Stations (AWS), synoptic charts, radar reflectivity and satellite pictures from the Presidency of Meteorology and Environment (PME), Jeddah, Saudi Arabia are used to assess the forecasting results. To evaluate the impact of the different assimilated observational datasets on the simulation of the major flooding event of 2009, we conducted 3DVAR experiments assimilating individual sources and a combination of all data sets. Results suggest that while the control run had a tendency to predict the storm earlier than observed, the assimilation of profile observations greatly improved the model\\'s thermodynamic structure and lead to better representation of simulated rainfall both in timing and amount. The experiment with assimilation of all available observations compared best with observed rainfall in terms of timing of the storm and rainfall distribution, demonstrating the importance of assimilating different types of observations. Retrospective experiments with and without data assimilation, for three different model lead times (48, 72 and 96-h), were performed to examine the skill of WRF model to predict the heavy rainfall events. Quantitative rainfall analysis of these simulations suggests that 48-h lead time runs with

  19. Event-Entity-Relationship Modeling in Data Warehouse Environments

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    We use the event-entity-relationship model (EVER) to illustrate the use of entity-based modeling languages for conceptual schema design in data warehouse environments. EVER is a general-purpose information modeling language that supports the specification of both general schema structures and multi......-dimensional schemes that are customized to serve specific information needs. EVER is based on an event concept that is very well suited for multi-dimensional modeling because measurement data often represent events in multi-dimensional databases...

  20. Mercury fluxes over an Australian alpine grassland and observation of nocturnal atmospheric mercury depletion events

    Directory of Open Access Journals (Sweden)

    D. Howard

    2018-01-01

    Full Text Available Aerodynamic gradient measurements of the air–surface exchange of gaseous elemental mercury (GEM were undertaken over a 40 ha alpine grassland in Australia's Snowy Mountains region across a 3-week period during the late austral summer. Bi-directional GEM fluxes were observed throughout the study, with overall mean value of 0.2 ± 14.5 ng m−2 h−1 and mean nocturnal fluxes of −1.5 ± 7.8 ng m−2 h−1 compared to diurnal fluxes of 1.8 ± 18.6 ng m−2 h−1. Deposition velocities ranged from −2.2 to 2.9 cm s−1, whilst ambient GEM concentrations throughout the study were 0.59 ± 0.10 ng m−3. Cumulative GEM fluxes correlated well with 24 h running mean soil temperatures, and one precipitation event was shown to have a positive impact on diurnal emission fluxes. The underlying vegetation had largely senesced and showed little stomatal control on fluxes. Nocturnal atmospheric mercury depletion events (NAMDEs were observed concomitant with O3 depletion and dew formation under shallow, stable nocturnal boundary layers. A mass balance box model was able to reproduce ambient GEM concentration patterns during NAMDE and non-NAMDE nights without invoking chemical oxidation of GEM throughout the column, indicating a significant role of surface processes controlling deposition in these events. Surface deposition was enhanced under NAMDE nights, though uptake to dew likely represents less than one-fifth of this enhanced deposition. Instead, enhancement of the surface GEM gradient as a result of oxidation at the surface in the presence of dew is hypothesised to be responsible for a large portion of GEM depletion during these particular events. GEM emission pulses following nights with significant deposition provide evidence for the prompt recycling of 17 % of deposited mercury, with the remaining portion retained in surface sinks. The long-term impacts of any sinks are however likely to be minimal, as

  1. Mercury fluxes over an Australian alpine grassland and observation of nocturnal atmospheric mercury depletion events

    Science.gov (United States)

    Howard, Dean; Edwards, Grant C.

    2018-01-01

    Aerodynamic gradient measurements of the air-surface exchange of gaseous elemental mercury (GEM) were undertaken over a 40 ha alpine grassland in Australia's Snowy Mountains region across a 3-week period during the late austral summer. Bi-directional GEM fluxes were observed throughout the study, with overall mean value of 0.2 ± 14.5 ng m-2 h-1 and mean nocturnal fluxes of -1.5 ± 7.8 ng m-2 h-1 compared to diurnal fluxes of 1.8 ± 18.6 ng m-2 h-1. Deposition velocities ranged from -2.2 to 2.9 cm s-1, whilst ambient GEM concentrations throughout the study were 0.59 ± 0.10 ng m-3. Cumulative GEM fluxes correlated well with 24 h running mean soil temperatures, and one precipitation event was shown to have a positive impact on diurnal emission fluxes. The underlying vegetation had largely senesced and showed little stomatal control on fluxes. Nocturnal atmospheric mercury depletion events (NAMDEs) were observed concomitant with O3 depletion and dew formation under shallow, stable nocturnal boundary layers. A mass balance box model was able to reproduce ambient GEM concentration patterns during NAMDE and non-NAMDE nights without invoking chemical oxidation of GEM throughout the column, indicating a significant role of surface processes controlling deposition in these events. Surface deposition was enhanced under NAMDE nights, though uptake to dew likely represents less than one-fifth of this enhanced deposition. Instead, enhancement of the surface GEM gradient as a result of oxidation at the surface in the presence of dew is hypothesised to be responsible for a large portion of GEM depletion during these particular events. GEM emission pulses following nights with significant deposition provide evidence for the prompt recycling of 17 % of deposited mercury, with the remaining portion retained in surface sinks. The long-term impacts of any sinks are however likely to be minimal, as cumulative GEM flux across the study period was close to zero.

  2. Catastrophic event modeling. [lithium thionyl chloride batteries

    Science.gov (United States)

    Frank, H. A.

    1981-01-01

    A mathematical model for the catastrophic failures (venting or explosion of the cell) in lithium thionyl chloride batteries is presented. The phenomenology of the various processes leading to cell failure is reviewed.

  3. Continuous ground-based aerosol Lidar observation during seasonal pollution events at Wuxi, China

    Science.gov (United States)

    Wong, Man Sing; Qin, Kai; Lian, Hong; Campbell, James R.; Lee, Kwon Ho; Sheng, Shijie

    2017-04-01

    Haze pollution has long been a significant research topic and challenge in China, with adverse effects on air quality, agricultural production, as well as human health. In coupling with ground-based Lidar measurements, air quality observation, meteorological data, and backward trajectories model, two typical haze events at Wuxi, China are analyzed respectively, depicting summer and winter scenarios. Results indicate that the winter haze pollution is a compound pollution process mainly affected by calm winds that induce pollution accumulation near the surface. In the summer case, with the exception of influence from PM2.5 concentrations, ozone is the main pollutant and regional transport is also a significant influencing factor. Both events are marked by enhanced PM2.5 concentrations, driven by anthropogenic emissions of pollutants such as vehicle exhaust and factory fumes. Meteorological factors such as wind speed/direction and relative humidity are also contributed. These results indicate how the vertical profile offered by routine regional Lidar monitoring helps aid in understanding local variability and trends, which may be adapted for developing abatement strategies that improve air quality.

  4. Underlying event sensitive observables in Drell-Yan production using GENEVA

    CERN Document Server

    Alioli, Simone; Guns, Sam; Tackmann, Frank J.

    2016-11-09

    We present an extension of the GENEVA Monte Carlo framework to include multiple parton interactions (MPI) provided by PYTHIA8. This allows us to obtain predictions for underlying-event sensitive measurements in Drell-Yan production, in conjunction with GENEVA's fully-differential NNLO calculation, NNLL' resummation for the 0-jet resolution variable (beam thrust), and NLL resummation for the 1-jet resolution variable. We describe the interface with the parton shower algorithm and MPI model of PYTHIA8, which preserves both the precision of partonic N-jet cross sections in GENEVA as well as the shower accuracy and good description of soft hadronic physics of PYTHIA8. We present results for several underlying-event sensitive observables and compare to data from ATLAS and CMS as well as to standalone PYTHIA8 predictions. This includes a comparison with the recent ATLAS measurement of the beam thrust spectrum, which provides a potential avenue to fully disentangle the physical effects from the primary hard interact...

  5. Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Hung-Yi [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Wu, Kinwah [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Younsi, Ziri; Mizuno, Yosuke [Institut für Theoretische Physik, Max-von-Laue-Straße 1, D-60438 Frankfurt am Main (Germany); Asada, Keiichi; Nakamura, Masanori, E-mail: hpu@perimeterinstitute.ca, E-mail: asada@asiaa.sinica.edu.tw, E-mail: nakamura@asiaa.sinica.edu.tw, E-mail: kinwah.wu@ucl.ac.uk, E-mail: younsi@th.physik.uni-frankfurt.de, E-mail: mizuno@th.physik.uni-frankfurt.de [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU No. 1, Taipei 10617, Taiwan (China)

    2017-08-20

    The general-relativistic magnetohydrodynamical (GRMHD) formulation for black hole-powered jets naturally gives rise to a stagnation surface, where inflows and outflows along magnetic field lines that thread the black hole event horizon originate. We derive a conservative formulation for the transport of energetic electrons, which are initially injected at the stagnation surface and subsequently transported along flow streamlines. With this formulation the energy spectra evolution of the electrons along the flow in the presence of radiative and adiabatic cooling is determined. For flows regulated by synchrotron radiative losses and adiabatic cooling, the effective radio emission region is found to be finite, and geometrically it is more extended along the jet central axis. Moreover, the emission from regions adjacent to the stagnation surface is expected to be the most luminous as this is where the freshly injected energetic electrons are concentrated. An observable stagnation surface is thus a strong prediction of the GRMHD jet model with the prescribed non-thermal electron injection. Future millimeter/submillimeter (mm/sub-mm) very-long-baseline interferometric observations of supermassive black hole candidates, such as the one at the center of M87, can verify this GRMHD jet model and its associated non-thermal electron injection mechanism.

  6. First observations of transient luminous events in Indian sub-continent

    DEFF Research Database (Denmark)

    Singh, Rajesh; Maurya, Ajeet K.; Veenadhari, B.

    2014-01-01

    The article offers information on the initial observations of flashes of lightning discharge observed above thunderstorms. It mentions that the transient luminous events (TLE) are classified on the basis of their geometrical shape and luminosity into Sprites, Halos and Blue Starters. It also focu...

  7. An Observational Analysis of Coaching Behaviors for Career Development Event Teams: A Mixed Methods Study

    Science.gov (United States)

    Ball, Anna L.; Bowling, Amanda M.; Sharpless, Justin D.

    2016-01-01

    School Based Agricultural Education (SBAE) teachers can use coaching behaviors, along with their agricultural content knowledge to help their Career Development Event (CDE) teams succeed. This mixed methods, collective case study observed three SBAE teachers preparing multiple CDEs throughout the CDE season. The teachers observed had a previous…

  8. Incremental System Modelling in Event-B

    DEFF Research Database (Denmark)

    Hallerstede, Stefan

    2009-01-01

    demonstrate how this can be applied to cope with the complexity of specifications. On the one hand we benefit from the reduced number of detail to consider at different times. On the other hand we are encouraged to reason about the formal model since the beginning and to rethink it occasionally to capture...

  9. New observations of displacement steps associated with volcano seismic long-period events, constrained by step table experiments

    Science.gov (United States)

    Thun, Johannes; Lokmer, Ivan; Bean, Christopher J.

    2015-05-01

    Long-period (LP) volcano seismic events often precede volcanic eruptions and are viewed with considerable interest in hazard assessment. They are usually thought to be associated with resonating fluid-filled conduits although alternative models involving material failure have recently been proposed. Through recent field experiments, we uncovered a step-like displacement component associated with some LP events, outside the spectral range of the typically narrow-band analysis for this kind of event. Bespoke laboratory experiments with step tables show that steps of the order of a few micrometers can be extracted from seismograms, where long-period noise is estimated and removed with moving median filters. Using these constraints, we observe step-like ground deformation in LP recordings near the summits of Turrialba and Etna Volcanoes. This represents a previously unobserved static component in the source time history of LP events, with implications for the underlying source process.

  10. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Shih, A. Y.; von Rosenvinge, T. T.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Cummings, A. C.

    2009-01-01

    We report the first observations of energetic neutral atoms (ENAs) from a solar flare/coronal mass ejection event. The observations were made during the December 5, 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on the STEREO A and B spacecraft. Within 1-2 hours of the flare onset, both LETs observed a sudden burst of 1.6 to 15 MeV protons arriving hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within +-10 degrees of the Sun. The derived emission profile at the Sun lasted for more than an hour and had a profile remarkably similar to the GOES soft X-ray profile. The observed arrival directions and energy spectrum argue strongly that the particle events atoms that were stripped of their electrons upon entering the LET sensor. To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. We discuss possible origins for the production of ENAs in solar events, including charge-transfer reactions involving both flare and shock-accelerated protons. Assuming isotropic emission, we find that 2 x 10E28 ENAs escaped from the Sun in the upper hemisphere. Based on the 2.2 MeV gamma-ray emission observed by RHESSI in this event, and using measured and theoretical cross sections, we estimate that 3 x 10E31 ENAs with 1.8 - 5 MeV could be produced by protons accelerated in the flare. CME-driven shock acceleration is also a possible ENA source, but unfortunately there were no CME observations available from this event. Taking into account ENA losses, we conclude that the observed ENAs were most likely produced in the high corona at heliocentric distances 1.6 solar radii.

  11. Video and photometric observations of a sprite in coincidence with a meteor-triggered jet event

    International Nuclear Information System (INIS)

    Suszcynsky, D. M.; Strabley, R.; Roussel-Dupre, R.; Symbalisty, E. M. D.; Armstrong, R. A.; Lyons, W. A.; Taylor, M.

    1999-01-01

    Video and photometric observations of a meteor-triggered ''jet'' event in association with the occurrence of a sprite were collected during the SPRITES '98 campaign. The event raises interest in the question of possible meteoric triggering of upper atmospheric transients as originally suggested by Muller [1995]. The event consisted of three stages: (1) the observation of a moderately bright meteor, (2) the development of a sprite in the immediate vicinity of the meteor as the meteor reached no lower than ∼70 km altitude, and (3) a slower-forming jet of luminosity that appeared during the late stages of the sprite and propagated back up the ionization trail of the meteor. The event is analyzed in terms of its geometry, its relevance to the meteor, and the implications to existing theories for sprite formation. (c) 1999 American Geophysical Union

  12. Regional and local new particle formation events observed in the Yangtze River Delta region, China

    Science.gov (United States)

    Dai, Liang; Wang, Honglei; Zhou, Luyu; An, Junlin; Tang, Lili; Lu, Chunsong; Yan, Wenlian; Liu, Ruiyang; Kong, Shaofei; Chen, Mindong; Lee, Shanhu; Yu, Huan

    2017-02-01

    To study the spatial inhomogeneity of new particle formation (NPF) in the polluted atmosphere of China, we conducted simultaneous measurements at an urban site near a petrochemical industrial area and a regional background site in the Yangtze River Delta region from September to November 2015. At the urban site we observed a type of local NPF event (number of events: n = 5), in which nucleation was limited to a small area but persisted for 6.8 h on average during the daytime. Formation rates of 5 nm particles (J5) were found to be correlated positively with the H2SO4 proxy (log J5 versus log[H2SO4] slope near 1) in both local and regional events. Furthermore, J5 was enhanced by the anthropogenic volatile organic carbon (VOC) plumes from nearby industrial area in the local events compared to the regional events. Size-dependent aerosol dynamics calculation showed that in comparison with the observed regional events, the local events were featured with high nucleation rate (J1.3 > 1000 cm-3 s-1), high growth rate of sub-3 nm particles (GRsub-3 > 20 nm h-1), and high number concentration of nucleation mode particles (mean peak N5-20: 6 × 104 cm-3). Considering these features, the local NPF events of anthropogenic origin may also be an important contributor to cloud condensation nuclei concentrations in urban and regional scales. In addition, the comparison of simultaneous regional NPF events between the two sites (number of events: n = 7) suggested that regional NPF intensity may be underestimated by the single-point measurement at an urban site, due to the heterogeneity of air masses.

  13. Uncertainty analysis in statistical modeling of extreme hydrological events

    NARCIS (Netherlands)

    Xu, YuePing; Booij, Martijn J.; Tong, Yang-Bin

    2010-01-01

    With the increase of both magnitude and frequency of hydrological extreme events such as drought and flooding, the significance of adequately modeling hydrological extreme events is fully recognized. Estimation of extreme rainfall/flood for various return periods is of prime importance for

  14. Latent Stochastic Actor Oriented Models for Relational Event Data

    Science.gov (United States)

    2012-03-15

    L-SAOMs for Relational Events Latent Stochastic Actor Oriented Models for Relational Event Data J.A. Lospinoso12 J.H. Koskinen2 T.A.B. Snijders2......PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US

  15. Modeling discrete time-to-event data

    CERN Document Server

    Tutz, Gerhard

    2016-01-01

    This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are expla...

  16. Intense Particulate Pollution Events Observed with Lidar over the Paris Megalopolis

    Directory of Open Access Journals (Sweden)

    Chazette Patrick

    2016-01-01

    Full Text Available The great particulate pollution event that affected the Paris Megalopolis in March 2014 was due to long-range transport from the northern-northeastern Europe. Although this phenomenon has appeared as exceptional in the media, this is not an exception and similar events have already been observed by lidar measurements. Here we will briefly describe and illustrate the origin of this intense pollution obviously harmful to health.

  17. A Semi-Automatic, Remote-Controlled Video Observation System for Transient Luminous Events

    DEFF Research Database (Denmark)

    Allin, Thomas Højgaard; Neubert, Torsten; Laursen, Steen

    2003-01-01

    In support for global ELF/VLF observations, HF measurements in France, and conjugate photometry/VLF observations in South Africa, we developed and operated a semi-automatic, remotely controlled video system for the observation of middle-atmospheric transient luminous events (TLEs). Installed...... serial links from a local computer, and the video outputs were distributed to a pair of PCI frame grabbers in the computer. This setup allowed remote users to log in and operate the system over the internet. Event detection software provided means of recording and time-stamping single TLE video fields...... sprites - distributed over 9 active evenings. We have thus demonstrated the feasibility of remote agents for TLE observations, which are likely to find use in future ground-based TLE observation campaigns, or to be installed at remote sites in support for space-borne or other global TLE observation...

  18. Experience with the CMS Event Data Model

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, P.; /Princeton U.; Hegner, B.; /CERN; Sexton-Kennedy, L.; /Fermilab

    2009-06-01

    The re-engineered CMS EDM was presented at CHEP in 2006. Since that time we have gained a lot of operational experience with the chosen model. We will present some of our findings, and attempt to evaluate how well it is meeting its goals. We will discuss some of the new features that have been added since 2006 as well as some of the problems that have been addressed. Also discussed is the level of adoption throughout CMS, which spans the trigger farm up to the final physics analysis. Future plans, in particular dealing with schema evolution and scaling, will be discussed briefly.

  19. BEACHES: an observational system for assessing children's eating and physical activity behaviors and associated events.

    OpenAIRE

    McKenzie, T L; Sallis, J F; Nader, P R; Patterson, T L; Elder, J P; Berry, C C; Rupp, J W; Atkins, C J; Buono, M J; Nelson, J A

    1991-01-01

    An integrated system for coding direct observations of children's dietary and physical activity behaviors was developed. Associated environmental events were also coded, including physical location, antecedents, and consequences. To assess the instrument's reliability and validity, 42 children, aged 4 to 8 years, were observed for 8 consecutive weeks at home and at school. Results indicated that four 60-min observations at home produced relatively stable estimates for most of the 10 dimension...

  20. Studies of event shape observables with the OPAL detector at LEP

    CERN Document Server

    Ford, Matthew

    2004-01-01

    In quark-antiquark pair production at LEP, many features of the hadronic final state can be predicted by QCD. Using data collected by the OPAL experiment, we present the statistical distributions of fourteen "event shape observables," which describe the inclusive kinematic properties of events producing three or more jets. For six of these observables, we compare the measured distributions with those calculated in perturbative QCD. By optimising the agreement between theory and data, we measure the strong coupling $\\alpha_s$ at a range of energy scales. We also test the predictions of three Monte Carlo event generators, for all fourteen observables. Over the years since the LEP experiments began operating, many similar analyses have been published, and have contributed to the world average measurements of $\\alpha_s$. However, several improvements have now been made, both in the theoretical calculations and in the experimental analysis techniques. We therefore present a complete reanalysis of the OPAL data, ov...

  1. Approaching solar maximum 24 with STEREO--Multipoint observations of solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Dresing, N.; Heber, B.; Klassen, A., E-mail: dresing@physik.uni-kiel.de [IEAP, University of Kiel, Kiel (Germany); Cohen, C.M.S.; Leske, R.A.; Mewaldt, R.A. [California Institute of Technology, Pasadena, CA (United States); Gomez-Herrero, R. [Space Research Group, University of Alcal´a, Alcal´a (Spain); Mason, G.M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD (United States); Von Rosenvinge, T.T. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2014-07-01

    Since the beginning of the Solar Terrestrial Relations Observatory (STEREO) mission at the end of 2006, the two spacecraft have now separated by more than 130◦ degrees from the Earth. A 360-degree view of the Sun has been possible since February 2011, providing multipoint in situ and remote sensing observations of unprecedented quality. Combining STEREO observations with near-Earth measurements allows the study of solar energetic particle (SEP) events over a wide longitudinal range with minimal radial gradient effects. This contribution provides an overview of recent results obtained by the STEREO/IMPACT team in combination with observations by the ACE and SOHO spacecraft. We focus especially on multi-spacecraft investigations of SEP events. The large longitudinal spread of electron and 3He-rich events as well as unusual anisotropies will be presented and discussed. (author)

  2. Probing ice mélange rheology with observations of fast motion during iceberg calving events

    Science.gov (United States)

    Amundson, J. M.; Peters, I.; Cassotto, R.; Darnell, K.; Fahnestock, M. A.; Zhang, W. W.

    2013-12-01

    Recent studies have suggested that ice mélange, a dense pack of icebergs and brash ice found in many fjords, can inhibit iceberg calving by transmitting stresses from fjord walls to glacier termini. However, the rheology of ice mélange is completely unknown, severely limiting our ability to estimate resistive forces from ice mélange and their impact on glacier stability. To improve our understanding of ice mélange rheology, we operated a terrestrial radar and high-rate time-lapse camera at Jakobshavn Isbrae, Greenland, in August 2012. Our observations indicate that during calving events (1) the kinetic energy of the mélange motion is about an order of magnitude smaller than the total energy released by the calving iceberg(s), thus supporting previous studies that suggested that most of the energy released during calving is rapidly dissipated into the water, (2) there is a compaction front that propagates down fjord and through the mélange at a rate that is an order of magnitude faster than the icebergs in the fjord, (3) the mélange typically experiences a fractional decrease in area of a few percentage, and (4) once activity at the terminus ceases, motion of the mélange decays exponentially before finally coming to an abrupt halt. These observations can be partially explained with a model adapted from previous work on granular mechanics.

  3. Observation of hard processes in rapidity gap events in {gamma}p interactions at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Ban, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H.P.; Behrend, H.J.; Belousov, A.; Berger, C.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besancon, M.; Beyer, R.; Biddulph, P.; Bizot, J.C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Buengener, L.; Buerger, J.; Buesser, F.W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A.J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A.B.; Clerbaux, B.; Colombo, M.; Contreras, J.G.; Coughlan, J.A.; Courau, A.; Coutures, C.; Cozzika, G.; Criegee, L.; Cussans, D.G.; Cvach, J.; Dagoret, S.; Dainton, J.B.; Danilov, M.; Dau, W.D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E.A.; Di Nezza, P.; Dollfus, C.; Dowell, J.D.; Dreis, H.B.; Droutskoi, V.; Duboc, J.; Duellmann, D.; Duenger, O.; Duhm, H.; Ebert, J.; Ebert, T.R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R.J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Fluegge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formanek, J.; Foster, J.M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Goodall, A.M.; Gorelov, I.; Goritchev, P.; Grab, C.; Graessler, H.; Graessler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E.M.; Hapke, M.; Haynes, W.J.; Heatherington, J.; Heinzelmann, G.; Henderson, R.C.W.; H1 Collaboration

    1995-02-06

    Events with no hadronic energy flow in a large interval of pseudo-rapidity in the proton direction are observed in photon-proton interactions at an average centre of mass energy left angle {radical}(s{sub {gamma}p}) right angle of 200 GeV. These events are interpreted as photon diffractive dissociation. Evidence for hard scattering in photon diffractive dissociation is demonstrated using inclusive single particle spectra, thrust as a function of transverse energy, and the observation of jet production. The data can be described by a Monte Carlo calculation including hard photon-pomeron scattering. ((orig.))

  4. Observations and Interpretations of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Barghouty, A. f.; Cohen, C. M. S.; Cummings, A. c.; Labrador, A. W.; vonRosenvinge, T. T.

    2009-01-01

    We discuss recently reported observations of energetic neutral hydrogen atoms (ENAs) from an X9 solar flare/coronal mass ejection event on 5 December 2006, located at E79. The observations were made by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV energetic neutral hydrogen atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. Taking into account ENA losses, we find that the observed ENAs must have been produced in the high corona at heliocentric distances > or equal to 2 solar radii. Although there are no CME images from this event, it is shown that CME-shock-accelerated protons can, in principle, produce a time-history consistent with the observations.

  5. Learning to make things happen: Infants' observational learning of social and physical causal events.

    Science.gov (United States)

    Waismeyer, Anna; Meltzoff, Andrew N

    2017-10-01

    Infants learn about cause and effect through hands-on experience; however, they also can learn about causality simply from observation. Such observational causal learning is a central mechanism by which infants learn from and about other people. Across three experiments, we tested infants' observational causal learning of both social and physical causal events. Experiment 1 assessed infants' learning of a physical event in the absence of visible spatial contact between the causes and effects. Experiment 2 developed a novel paradigm to assess whether infants could learn about a social causal event from third-party observation of a social interaction between two people. Experiment 3 compared learning of physical and social events when the outcomes occurred probabilistically (happening some, but not all, of the time). Infants demonstrated significant learning in all three experiments, although learning about probabilistic cause-effect relations was most difficult. These findings about infant observational causal learning have implications for children's rapid nonverbal learning about people, things, and their causal relations. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1994-11-01

    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton. (orig.)

  7. BEACHES: An Observational System for Assessing Children's Eating and Physical Activity Behaviors and Associated Events.

    Science.gov (United States)

    McKenzie, Thomas L.; And Others

    1991-01-01

    The Behaviors of Eating and Activity for Children's Health Evaluation System (BEACHES) codes direct observations of children's dietary and physical activity behaviors and associated environmental events, including physical location, antecedents, and consequences. The system's reliability and validity was assessed in a study of 42 children (ages…

  8. Acceleration of a Static Observer Near the Event Horizon of a Static Isolated Black Hole.

    Science.gov (United States)

    Doughty, Noel A.

    1981-01-01

    Compares the magnitude of the proper acceleration of a static observer in a static, isolated, spherically symmetric space-time region with the Newtonian result including the situation in the interior of a perfect-fluid star. This provides a simple physical interpretation of surface gravity and illustrates the global nature of the event horizon.…

  9. Statistics of convective collapse events in the photosphere and chromosphere observed with the HINODE SOT

    NARCIS (Netherlands)

    Fischer, C.E.; de Wijn, A.G.; Centeno, R.; Lites, B.W.; Keller, C.U.

    2010-01-01

    Convective collapse, a theoretically predicted process that intensifies existing weak magnetic fields in the solar atmosphere, was first directly observed in a single event by Nagata et al. (2008) using the high resolution Solar Optical Telescope (SOT) of the Hinode satellite. Using the same space

  10. Statistics of convective collapse events in the photosphere and chromosphere observed with the Hinode SOT

    NARCIS (Netherlands)

    Fischer, C.E.; de Wijn, A.G.; Centeno, R.; Lites, B.W.; Keller, C.U.

    2009-01-01

    Convective collapse, a theoretically predicted process that intensifies existing weak magnetic fields in the solar atmosphere, was first directly observed in a single event by Nagata et al. (2008, ApJ, 677, L145) using the high resolution Solar Optical Telescope (SOT) of the Hinode satellite. Using

  11. Gaseous elemental mercury depletion events observed at Cape Point during 2007–2008

    Directory of Open Access Journals (Sweden)

    E.-G. Brunke

    2010-02-01

    Full Text Available Gaseous mercury in the marine boundary layer has been measured with a 15 min temporal resolution at the Global Atmosphere Watch station Cape Point since March 2007. The most prominent features of the data until July 2008 are the frequent occurrences of pollution (PEs and depletion events (DEs. Both types of events originate mostly within a short transport distance (up to about 100 km, which are embedded in air masses ranging from marine background to continental. The Hg/CO emission ratios observed during the PEs are within the range reported for biomass burning and industrial/urban emissions. The depletion of gaseous mercury during the DEs is in many cases almost complete and suggests an atmospheric residence time of elemental mercury as short as a few dozens of hours, which is in contrast to the commonly used estimate of approximately 1 year. The DEs observed at Cape Point are not accompanied by simultaneous depletion of ozone which distinguishes them from the halogen driven atmospheric mercury depletion events (AMDEs observed in Polar Regions. Nonetheless, DEs similar to those observed at Cape Point have also been observed at other places in the marine boundary layer. Additional measurements of mercury speciation and of possible mercury oxidants are hence called for to reveal the chemical mechanism of the newly observed DEs and to assess its importance on larger scales.

  12. Analyses of Observed and Anticipated Changes in Extreme Climate Events in the Northwest Himalaya

    Directory of Open Access Journals (Sweden)

    Dharmaveer Singh

    2016-02-01

    Full Text Available In this study, past (1970-2005 as well as future long term (2011-2099 trends in various extreme events of temperature and precipitation have been investigated over selected hydro-meteorological stations in the Sutlej river basin. The ensembles of two Coupled Model Intercomparison Project (CMIP3 models: third generation Canadian Coupled Global Climate Model and Hadley Centre Coupled Model have been used for simulation of future daily time series of temperature (maximum and minimum and precipitation under A2 emission scenario. Large scale atmospheric variables of both models and National Centre for Environmental Prediction/National Centre for Atmospheric Research reanalysis data sets have been downscaled using statistical downscaling technique at individual stations. A total number of 25 extreme indices of temperature (14 and precipitation (11 as specified by the Expert Team of the World Meteorological Organization and Climate Variability and Predictability are derived for the past and future periods. Trends in extreme indices are detected over time using the modified Mann-Kendall test method. The stations which have shown either decrease or no change in hot extreme events (i.e., maximum TMax, warm days, warm nights, maximum TMin, tropical nights, summer days and warm spell duration indicators for 1970–2005 and increase in cold extreme events (cool days, cool nights, frost days and cold spell duration indicators are predicted to increase and decrease respectively in the future. In addition, an increase in frequency and intensity of extreme precipitation events is also predicted.

  13. Models Constraints from Observations of Active Galaxies

    Science.gov (United States)

    Riffel, R.; Pastoriza, M. G.; Rodríguez-Ardila, A.; Dametto, N. Z.; Ruschel-Dutra, D.; Riffel, R. A.; Storchi-Bergmann, T.; Martins, L. P.; Mason, R.; Ho, L. C.; Palomar XD Team

    2015-08-01

    Studying the unresolved stellar content of galaxies generally involves disentangling the various components contributing to the spectral energy distribution (SED), and fitting a combination of simple stellar populations (SSPs) to derive information about age, metallicity, and star formation history. In the near-infrared (NIR, 0.85-2.5 μm), the thermally pulsing asymptotic giant branch (TP-AGB) phase - the last stage of the evolution of intermediate-mass (M ≲ 6 M⊙) stars - is a particularly important component of the SSP models. These stars can dominate the emission of stellar populations with ages ˜ 0.2-2 Gyr, being responsible for roughly half of the luminosity in the K band. In addition, when trying to describe the continuum observed in active galactic nuclei, the signatures of the central engine and from the dusty torus cannot be ignored. Over the past several years we have developed a method to disentangle these three components. Our synthesis shows significant differences between Seyfert 1 (Sy 1) and Seyfert 2 (Sy 2) galaxies. The central few hundred parsecs of our galaxy sample contain a substantial fraction of intermediate-age populations with a mean metallicity near solar. Two-dimensional mapping of the near-infrared stellar population of the nuclear region of active galaxies suggests that there is a spatial correlation between the intermediate-age stellar population and a partial ring of low stellar velocity dispersion (σ*). Such an age is consistent with a scenario in which the origin of the low-σ* rings is a past event which triggered an inflow of gas and formed stars which still keep the colder kinematics of the gas from which they have formed. We also discuss the fingerprints of features attributed to TP-AGB stars in the spectra of the nuclear regions of nearby galaxies.

  14. International Observe the Moon Night: Using Public Outreach Events to Tell Your Story to the Public

    Science.gov (United States)

    Hsu, B. C.; International Observe the Moon Night Coordinating Committee

    2011-12-01

    From various interpretations of the lunar "face," early pictograms of the Moon's phases, or to the use of the lunar cycle for festivals or harvests, the Moon has an undeniable influence on human civilization. International Observe the Moon Night (InOMN) capitalizes on the human connection to the Moon by engaging the public in annual lunar observation campaigns that share the excitement of lunar science and exploration. In 2010 (InOMN's inaugural year), over 500,000 people attended events in 53 countries around the world. About 68% of InOMN hosts - astronomy clubs, museums, schools, or other groups - used the resources on the InOMN website (http://observethemoonnight.org). The InOMN website provided supporting materials for InOMN event hosts in the form of downloadable advertising materials, Moon maps, suggestions for hands-on educational activities, and links to lunar science content. InOMN event participants shared their experiences with the world using the Web and social media, event hosts shared their experiences with evaluation data, and amateur astronomers and photographers shared their images of the Moon through the lunar photography contest. The overwhelming response from InOMN in 2010 represents an untapped potential for infusing cutting edge lunar science and exploration into a large-scale public outreach event.

  15. STEREO/SEPT observations of upstream particle events: almost monoenergetic ion beams

    Directory of Open Access Journals (Sweden)

    A. Klassen

    2009-05-01

    Full Text Available We present observations of Almost Monoenergetic Ion (AMI events in the energy range of 100–1200 keV detected with the Solar Electron and Proton Telescope (SEPT onboard both STEREO spacecraft. The energy spectrum of AMI events contain 1, 2, or 3 narrow peaks with the relative width at half maximum of 0.1–0.7 and their energy maxima varies for different events from 120 to 1200 keV. These events were detected close to the bow-shock (STEREO-A&B and to the magnetopause at STEREO-B as well as unexpectedly far upstream of the bow-shock and far away from the magnetotail at distances up to 1100 RE (STEREO-B and 1900 RE (STEREO-A. We discuss the origin of AMI events, the connection to the Earth's bow-shock and to the magnetosphere, and the conditions of the interplanetary medium and magnetosphere under which these AMI bursts occur. Evidence that the detected spectral peaks were caused by quasi-monoenergetic beams of protons, helium, and heavier ions are given. Furthermore, we present the spatial distribution of all AMI events from December 2006 until August 2007.

  16. Planning Single-Event Nutrition Education: A New Model

    Science.gov (United States)

    Brown, Lora Beth

    2011-01-01

    A theoretical model for planning single-event nutrition education contrasts a Practical, Foods, and Positive (PFP) emphasis to an Abstract, Nutrient, and Negative (ANN) focus on nutrition topics. Use of this model makes messages more appealing to consumers and may increase the likelihood that people will apply the nutrition information in their…

  17. Powering stochastic reliability models by discrete event simulation

    DEFF Research Database (Denmark)

    Kozine, Igor; Wang, Xiaoyun

    2012-01-01

    it difficult to find a solution to the problem. The power of modern computers and recent developments in discrete-event simulation (DES) software enable to diminish some of the drawbacks of stochastic models. In this paper we describe the insights we have gained based on using both Markov and DES models...

  18. Characterizing Drought Events from a Hydrological Model Ensemble

    Science.gov (United States)

    Smith, Katie; Parry, Simon; Prudhomme, Christel; Hannaford, Jamie; Tanguy, Maliko; Barker, Lucy; Svensson, Cecilia

    2017-04-01

    Hydrological droughts are a slow onset natural hazard that can affect large areas. Within the United Kingdom there have been eight major drought events over the last 50 years, with several events acting at the continental scale, and covering the entire nation. Many of these events have lasted several years and had significant impacts on agriculture, the environment and the economy. Generally in the UK, due to a northwest-southeast gradient in rainfall and relief, as well as varying underlying geology, droughts tend to be most severe in the southeast, which can threaten water supplies to the capital in London. With the impacts of climate change likely to increase the severity and duration of drought events worldwide, it is crucial that we gain an understanding of the characteristics of some of the longer and more extreme droughts of the 19th and 20th centuries, so we may utilize this information in planning for the future. Hydrological models are essential both for reconstructing such events that predate streamflow records, and for use in drought forecasting. However, whilst the uncertainties involved in modelling hydrological extremes on the flooding end of the flow regime have been studied in depth over the past few decades, the uncertainties in simulating droughts and low flow events have not yet received such rigorous academic attention. The "Cascade of Uncertainty" approach has been applied to explore uncertainty and coherence across simulations of notable drought events from the past 50 years using the airGR family of daily lumped catchment models. Parameter uncertainty has been addressed using a Latin Hypercube sampled experiment of 500,000 parameter sets per model (GR4J, GR5J and GR6J), over more than 200 catchments across the UK. The best performing model parameterisations, determined using a multi-objective function approach, have then been taken forward for use in the assessment of the impact of model parameters and model structure on drought event

  19. Analysis of mutual events of Galilean satellites observed from VBO during 2014-2015

    Science.gov (United States)

    Vasundhara, R.; Selvakumar, G.; Anbazhagan, P.

    2017-06-01

    Results of analysis of 23 events of the 2014-2015 mutual event series from the Vainu Bappu Observatory are presented. Our intensity distribution model for the eclipsed/occulted satellite is based on the criterion that it simulates a rotational light curve that matches the ground-based light curve. Dichotomy in the scattering characteristics of the leading and trailing sides explains the basic shape of the rotational light curves of Europa, Ganymede and Callisto. In the case of Io, the albedo map (courtesy United States Geological Survey) along with global values of scattering parameters works well. Mean values of residuals in (O - C) along and perpendicular to the track are found to be -3.3 and -3.4 mas, respectively, compared to 'L2' theory for the seven 2E1/2O1 events. The corresponding rms values are 8.7 and 7.8 mas, respectively. For the five 1E3/1O3 events, the along and perpendicular to the track mean residuals are 5.6 and 3.2 mas, respectively. The corresponding rms residuals are 6.8 and 10.5 mas, respectively. We compare the results using the chosen model (Model 1) with a uniform but limb-darkened disc (Model 2). The residuals with Model 2 of the 2E1/2O1 and 1E3/1O3 events indicate a bias along the satellite track. The extent and direction of bias are consistent with the shift of the light centre from the geometric centre. Results using Model 1, which intrinsically takes into account the intensity distribution, show no such bias.

  20. The comparison of SRs' variation affected by solar events observed in America and in China

    Science.gov (United States)

    Yu, H.; Williams, E.

    2017-12-01

    Schumann Resonances(SRs) are the electromagnetic resonance wave propagating in the earth-ionosphere cavity. Its characteristic of propagation are modified by the variation of ionosphere. So SRs can be the tools of monitoring the ionosphere which is often perturbed by solar events, x-ray emission and some other space-weather events (Roldugin et.al., 2004, De et al., 2010; Satori et.al., 2015). In present work, the amplitude and intrinsic frequencies of SRs observed at RID station in America and YSH station in China are compared. The variation of SRs during the solar flare on Feb. 15, 2011 are analyzed. Two-Dimensional Telegraph Equation(TDTE) method is used to simulate the perturbation of ionosphere by solar proton events. From the simulation and observation, the asymmetric construction of ionoshphere which is perturbed by the solar event will affect the amplitudes and frequencies of SRs. Due to the interfere influence of forward and backward propagation of electromagnetic field, the SR amplitude on different station will present different variation. The distance among the lightning source, observer and perturbed area will produce the different variation of amplitude and frequency for different station' SR.

  1. A polar cap absorption event observed using the Southern Hemisphere SuperDARN radar network.

    Science.gov (United States)

    Breed, A.; Morris, R.; Parkinson, M.; Duldig, M.; Dyson, P.

    A large X5 class solar flare and coronal mass ejection were observed emanating from the sun on July 14, 2000. Approximately 10 minutes later a large cosmic ray ground level enhancement was observed using neutron monitors located at Mawson station (70.5°S CGM), Antarctica; Large increases in proton flux were also observed using satellites during this time. This marked the start of a large polar cap absorption event with cosmic noise absorption peaking at 30 dB, as measured by a 30 MHz riometer located at Casey station (80.4°S CGM), Antarctica. The spatial evolution of this event and its subsequent recovery were studied using the Southern Hemisphere SuperDARN radar network, including the relatively low latitude observation provided by the Tasman International Geospace Environment Radar (TIGER) located on Bruny Island (54.6°S GGM), Tasmania. When the bulk of the CME arrived at the Earth two days later it triggered an intense geomagnetic storm. This paper presents observations of the dramatic sequence of events.

  2. THE DETECTION OF A SN IIn IN OPTICAL FOLLOW-UP OBSERVATIONS OF ICECUBE NEUTRINO EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom); Collaboration: IceCube Collaboration; for the PTF Collaboration; for the Swift Collaboration; for the Pan-STARRS1 Science Consortium; and others

    2015-09-20

    The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.°2 away from the neutrino alert direction, with an error radius of 0.°54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2σ within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.

  3. Testing the no-hair theorem with event horizon telescope observations of Sagittarius A*

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E.; Johannsen, Tim [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Loeb, Abraham [Institute for Theory and Computation, Harvard University, Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Psaltis, Dimitrios [Astronomy and Physics Departments, University of Arizona, 933 North Cherry Street, Tucson, AZ 85721 (United States)

    2014-03-20

    The advent of the Event Horizon Telescope (EHT), a millimeter-wave very long baseline interferometric array, has enabled spatially resolved studies of the subhorizon-scale structure for a handful of supermassive black holes. Among these, the supermassive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*), presents the largest angular cross section. Thus far, these studies have focused on measurements of the black hole spin and the validation of low-luminosity accretion models. However, a critical input in the analysis of EHT data is the structure of the black hole spacetime, and thus these observations provide the novel opportunity to test the applicability of the Kerr metric to astrophysical black holes. Here we present the first simulated images of a radiatively inefficient accretion flow (RIAF) around Sgr A* employing a quasi-Kerr metric that contains an independent quadrupole moment in addition to the mass and spin that fully characterize a black hole in general relativity. We show that these images can be significantly different from the images of an RIAF around a Kerr black hole with the same spin and demonstrate the feasibility of testing the no-hair theorem by constraining the quadrupolar deviation from the Kerr metric with existing EHT data. Equally important, we find that the disk inclination and spin orientation angles are robust to the inclusion of additional parameters, providing confidence in previous estimations assuming the Kerr metric based on EHT observations. However, at present, the limits on potential modifications of the Kerr metric remain weak.

  4. Planet observations of microlensing event OGLE-1999-BUL-23 : Limb-darkening measurement of the source star

    NARCIS (Netherlands)

    Albrow, MD; An, J; Beaulieu, JP; Caldwell, JAR; DePoy, DL; Dominik, M; Gaudi, BS; Gould, A; Greenhill, J; Hill, K; Kane, S; Martin, R; Menzies, J; Pogge, RW; Pollard, KR; Sackett, PD; Sahu, KC; Vermaak, P; Watson, R; Williams, A

    2001-01-01

    We present PLANET observations of OGLE-1999-BUL-23, a binary-lens microlensing event toward the Galactic bulge. PLANET observations in the I and V bands cover the event from just before the first caustic crossing until the end of the event. In particular, a densely sampled second caustic crossing

  5. Derivation of Event-B Models from OWL Ontologies

    Directory of Open Access Journals (Sweden)

    Alkhammash Eman H.

    2016-01-01

    Full Text Available The derivation of formal specifications from large and complex requirements is a key challenge in systems engineering. In this paper we present an approach that aims to address this challenge by building formal models from OWL ontologies. An ontology is used in the field of knowledge representation to capture a clear view of the domain and to produce a concise and unambiguous set of domain requirements. We harness the power of ontologies to handle inconsistency of domain requirements and produce clear, concise and unambiguous set of domain requirements for Event-B modelling. The proposed approach works by generating Attempto Controlled English (ACE from the OWL ontology and then maps the ACE requirements to develop Event-B models. ACE is a subset of English that can be unambiguously translated into first-order logic. There is an injective mapping between OWL ontology and a subset of ACE. ACE is a suitable interlingua for producing the mapping between OWL and Event-B models for many reasons. Firstly, ACE is easy to learn and understand, it hides the math of OWL and would be natural to use by everybody. Secondly ACE has a parser that converts ACE texts into Discourse Representation Structures (DRS. Finally, ACE can be extended to target a richer syntactic subset of Event-B which ultimately would facilitate the translation of ACE requirements to Event-B.

  6. Observation of an event of pair photoproduction of charmed anti D0D0-mesons

    International Nuclear Information System (INIS)

    Adamovich, M.I.; Aleksandrov, Yu.A.; Bolta, J.M.; Bravo, L.; Cartacci, A.M.; Chernyavskii, M.M.; Conforto, B.; Conti, A.; Crosetti, G.; Dagliana, M.G.

    1981-12-01

    An event will be described which has been observed in an experiment on charmed particle production by labelled photons from the supersynchrotron of CERN. This event has been recorded simultaneously in nuclear photoemulsion and by the magnetic spectrometer Omega-prim. It has been interpreted as the first event of pair photoproduction of charmed neutral D 0 D 0 -mesons. For anti D 0 → K + π - π - π + , an intrinsic decay time of tau (anti D 0 ) = (0.14 +- 0.01) x 10 -13 sec has been obtained and for D 0 → anti K 0 tau - e + ν, two solutions have been obtained: tau 1 (D 0 ) = (3.4 +- 0.3) x 10 -13 sec and tau 2 (D 0 ) = (7.5 +- 0.3) x 10 -13 sec. (orig.)

  7. MMS Observations of the Evolution of Ion-Scale Flux Transfer Events

    Science.gov (United States)

    Zhao, C.; Russell, C. T.; Strangeway, R. J.; Paterson, W.; Petrinec, S.; Zhou, M.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Chutter, M.; Fischer, D.; Gershman, D. J.; Giles, B. L.; Le, G.; Nakamura, R.; Plaschke, F.; Slavin, J. A.; Torbert, R. B.

    2017-12-01

    Flux transfer events are key processes in the solar wind-magnetosphere interaction. Previously, the observed flux transfer events have had scale sizes of 10,000 km radius in the cross-section and connect about 2 MWb magnetic flux from solar wind to the terrestrial magnetosphere. Recently, from the high-temporal resolution MMS magnetic field data, many ion-scale FTEs have been found. These FTEs contains only about 2 kWb magnetic flux and are believed to be in an early stage of FTE evolution. With the help of the well-calibrated MMS data, we are also able to determine the velocity profile and forces within the FTE events. We find that some ion-scale FTEs are expanding as we expect, but there are also contracting FTEs. We examine the differences between the two classes of FTEs and their differences with the larger previously studied class of FTE.

  8. Observations and Modeling of Atmospheric Radiance Structure

    National Research Council Canada - National Science Library

    Wintersteiner, Peter

    2001-01-01

    The overall purpose of the work that we have undertaken is to provide new capabilities for observing and modeling structured radiance in the atmosphere, particularly the non-LTE regions of the atmosphere...

  9. Model for behavior observation training programs

    International Nuclear Information System (INIS)

    Berghausen, P.E. Jr.

    1987-01-01

    Continued behavior observation is mandated by ANSI/ANS 3.3. This paper presents a model for behavior observation training that is in accordance with this standard and the recommendations contained in US NRC publications. The model includes seventeen major topics or activities. Ten of these are discussed: Pretesting of supervisor's knowledge of behavior observation requirements, explanation of the goals of behavior observation programs, why behavior observation training programs are needed (legal and psychological issues), early indicators of emotional instability, use of videotaped interviews to demonstrate significant psychopathology, practice recording behaviors, what to do when unusual behaviors are observed, supervisor rationalizations for noncompliance, when to be especially vigilant, and prevention of emotional instability

  10. Erectile dysfunction and cardiovascular events in diabetic men: a meta-analysis of observational studies.

    Directory of Open Access Journals (Sweden)

    Tomohide Yamada

    Full Text Available BACKGROUND: Several studies have shown that erectile dysfunction (ED influences the risk of cardiovascular events (CV events. However, a meta-analysis of the overall risk of CV events associated with ED in patients with diabetes has not been performed. METHODOLOGY/PRINCIPAL FINDINGS: We searched MEDLINE and the Cochrane Library for pertinent articles (including references published between 1951 and April 22, 2012. English language reports of original observational cohort studies and cross-sectional studies were included. Pooled effect estimates were obtained by random effects meta-analysis. A total of 3,791 CV events were reported in 3 cohort studies and 9 cross-sectional studies (covering 22,586 subjects. Across the cohort studies, the overall odds ratio (OR of diabetic men with ED versus those without ED was 1.74 (95% confidence interval [CI]: 1.34-2.27; P0.05. Moreover, meta-regression analysis found no relationship between the method used to assess ED (questionnaire or interview, mean age, mean hemoglobin A(1c, mean body mass index, or mean duration of diabetes and the risk of CV events or CHD. In the cross-sectional studies, the OR of diabetic men with ED versus those without ED was 3.39 (95% CI: 2.58-4.44; P<0.001 for CV events (N = 9, 3.43 (95% CI: 2.46-4.77; P<0.001 for CHD (N = 7, and 2.63 (95% CI: 1.41-4.91; P = 0.002 for peripheral vascular disease (N = 5. CONCLUSION/SIGNIFICANCE: ED was associated with an increased risk of CV events in diabetic patients. Prevention and early detection of cardiovascular disease are important in the management of diabetes, especially in view of the rapid increase in its prevalence.

  11. Multiple flux rope events at the magnetopause observations by TC-1 on 18 March 2004

    Directory of Open Access Journals (Sweden)

    C. J. Xiao

    2005-11-01

    Full Text Available From 23:10 to 23:50 UT on 18 March 2004, the Double Star TC-1 spacecraft detected eight flux ropes at the outbound crossing of the southern dawnside magnetopause. A notable guide field existed inside all ropes. In the mean time the Cluster spacecraft were staying in the magnetosheath and found that the events occurred under the condition of southward IMF Bz and dominant negative IMF By. There are six ropes that appeared quasi-periodically, with a repeated period being approximately 1-4 min. The last flux rope lasts for a longer time interval with a larger peak in the BN variations; it can thus be referred to as a typical FTE. The 18 March 2004 event is quite similar to the multiple flux rope event observed by Cluster on 26 January 2001 at the northern duskside high-latitude magnetopause. A detailed comparison of these two events is made in the paper. Preliminary studies imply that both of these multiple flux ropes events seem to be produced by component reconnection at the dayside low-latitude magnetopause.

  12. Economics of extreme weather events: Terminology and regional impact models

    Directory of Open Access Journals (Sweden)

    Malte Jahn

    2015-12-01

    Full Text Available Impacts of extreme weather events are relevant for regional (in the sense of subnational economies and in particular cities in many aspects. Cities are the cores of economic activity and the amount of people and assets endangered by extreme weather events is large, even under the current climate. A changing climate with changing extreme weather patterns and the process of urbanization will make the whole issue even more relevant in the future. In this paper, definitions and terminology in the field of extreme weather events are discussed. Possible regional impacts of extreme weather events are collected, focusing on European cities. The human contributions to those impacts are emphasized. Furthermore, methodological aspects of economic impact assessment are discussed along a temporal and a sectoral dimension. Finally, common economic impact models are compared, analyzing their strengths and weaknesses.

  13. Fγ: A new observable for photon-hadron discrimination in hybrid air shower events

    Science.gov (United States)

    Niechciol, M.; Risse, M.; Ruehl, P.; Settimo, M.; Younk, P. W.; Yushkov, A.

    2018-01-01

    To search for ultra-high-energy photons in primary cosmic rays, air shower observables are needed that allow a good separation between primary photons and primary hadrons. We present a new observable, Fγ, which can be extracted from ground-array data in hybrid events, where simultaneous measurements of the longitudinal and the lateral shower profile are performed. The observable is based on a template fit to the lateral distribution measured by the ground array with the template taking into account the complementary information from the measurement of the longitudinal profile, i.e. the primary energy and the geometry of the shower. Fγ shows a very good photon-hadron separation, which is even superior to the separation given by the well-known Xmax observable (the atmospheric depth of the shower maximum). At energies around 1 EeV (10 EeV), Fγ provides a background rejection better than 97.8 % (99.9 %) at a signal efficiency of 50 %. Advantages of the observable Fγ are its technical stability with respect to irregularities in the ground array (i.e. missing or temporarily non-operating stations) and that it can be applied over the full energy range accessible to the air shower detector, down to its threshold energy. Furthermore, Fγ complements nicely to Xmax such that both observables can well be combined to achieve an even better discrimination power, exploiting the rich information available in hybrid events.

  14. Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms.

    Science.gov (United States)

    Rison, William; Krehbiel, Paul R; Stock, Michael G; Edens, Harald E; Shao, Xuan-Min; Thomas, Ronald J; Stanley, Mark A; Zhang, Yang

    2016-02-15

    A long-standing but fundamental question in lightning studies concerns how lightning is initiated inside storms, given the absence of physical conductors. The issue has revolved around the question of whether the discharges are initiated solely by conventional dielectric breakdown or involve relativistic runaway electron processes. Here we report observations of a relatively unknown type of discharge, called fast positive breakdown, that is the cause of high-power discharges known as narrow bipolar events. The breakdown is found to have a wide range of strengths and is the initiating event of numerous lightning discharges. It appears to be purely dielectric in nature and to consist of a system of positive streamers in a locally intense electric field region. It initiates negative breakdown at the starting location of the streamers, which leads to the ensuing flash. The observations show that many or possibly all lightning flashes are initiated by fast positive breakdown.

  15. Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms

    Science.gov (United States)

    Rison, William; Krehbiel, Paul R.; Stock, Michael G.; Edens, Harald E.; Shao, Xuan-Min; Thomas, Ronald J.; Stanley, Mark A.; Zhang, Yang

    2016-01-01

    A long-standing but fundamental question in lightning studies concerns how lightning is initiated inside storms, given the absence of physical conductors. The issue has revolved around the question of whether the discharges are initiated solely by conventional dielectric breakdown or involve relativistic runaway electron processes. Here we report observations of a relatively unknown type of discharge, called fast positive breakdown, that is the cause of high-power discharges known as narrow bipolar events. The breakdown is found to have a wide range of strengths and is the initiating event of numerous lightning discharges. It appears to be purely dielectric in nature and to consist of a system of positive streamers in a locally intense electric field region. It initiates negative breakdown at the starting location of the streamers, which leads to the ensuing flash. The observations show that many or possibly all lightning flashes are initiated by fast positive breakdown. PMID:26876654

  16. Multipoint observations of coronal mass ejection and solar energetic particle events on Mars and Earth during November 2001

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vennerstrøm, Susanne; Brain, D. A.

    2011-01-01

    and Geostationary Operational Environmental Satellite (GOES) data to study ICMEs and SEPs at Earth, we present a detailed study of three CMEs and flares in late November 2001. In this period, Mars trailed Earth by 56 degrees solar longitude so that the two planets occupied interplanetary magnetic field lines......Multipoint spacecraft observations provide unique opportunities to constrain the propagation and evolution of interplanetary coronal mass ejections (ICMEs) throughout the heliosphere. Using Mars Global Surveyor (MGS) data to study both ICME and solar energetic particle (SEP) events at Mars and OMNI...... separated by only similar to 25 degrees. We model the interplanetary propagation of CME events using the ENLIL version 2.6 3-D MHD code coupled with the Wang-Sheeley-Arge version 1.6 potential source surface model, using Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph...

  17. On the feasibility of using satellite gravity observations for detecting large-scale solid mass transfer events

    Science.gov (United States)

    Peidou, Athina C.; Fotopoulos, Georgia; Pagiatakis, Spiros

    2017-10-01

    The main focus of this paper is to assess the feasibility of utilizing dedicated satellite gravity missions in order to detect large-scale solid mass transfer events (e.g. landslides). Specifically, a sensitivity analysis of Gravity Recovery and Climate Experiment (GRACE) gravity field solutions in conjunction with simulated case studies is employed to predict gravity changes due to past subaerial and submarine mass transfer events, namely the Agulhas slump in southeastern Africa and the Heart Mountain Landslide in northwestern Wyoming. The detectability of these events is evaluated by taking into account the expected noise level in the GRACE gravity field solutions and simulating their impact on the gravity field through forward modelling of the mass transfer. The spectral content of the estimated gravity changes induced by a simulated large-scale landslide event is estimated for the known spatial resolution of the GRACE observations using wavelet multiresolution analysis. The results indicate that both the Agulhas slump and the Heart Mountain Landslide could have been detected by GRACE, resulting in {\\vert }0.4{\\vert } and {\\vert }0.18{\\vert } mGal change on GRACE solutions, respectively. The suggested methodology is further extended to the case studies of the submarine landslide in Tohoku, Japan, and the Grand Banks landslide in Newfoundland, Canada. The detectability of these events using GRACE solutions is assessed through their impact on the gravity field.

  18. Modelling extreme climatic events in Guadalquivir Estuary ( Spain)

    Science.gov (United States)

    Delgado, Juan; Moreno-Navas, Juan; Pulido, Antoine; García-Lafuente, Juan; Calero Quesada, Maria C.; García, Rodrigo

    2017-04-01

    Extreme climatic events, such as heat waves and severe storms are predicted to increase in frequency and magnitude as a consequence of global warming but their socio-ecological effects are poorly understood, particularly in estuarine ecosystems. The Guadalquivir Estuary has been anthropologically modified several times, the original salt marshes have been transformed to grow rice and cotton and approximately one-fourth of the total surface of the estuary is now part of two protected areas, one of them is a UNESCO, MAB Biosphere Reserve. The climatic events are most likely to affect Europe in forthcoming decades and a further understanding how these climatic disturbances drive abrupt changes in the Guadalquivir estuary is needed. A barotropic model has been developed to study how severe storm events affects the estuary by conducting paired control and climate-events simulations. The changes in the local wind and atmospheric pressure conditions in the estuary have been studied in detail and several scenarios are obtained by running the model under control and real storm conditions. The model output has been validated with in situ water elevation and good agreement between modelled and real measurements have been obtained. Our preliminary results show that the model demonstrated the capability describe of the tide-surge levels in the estuary, opening the possibility to study the interaction between climatic events and the port operations and food production activities. The barotropic hydrodynamic model provide spatially explicit information on the key variables governing the tide dynamics of estuarine areas under severe climatic scenarios . The numerical model will be a powerful tool in future climate change mitigation and adaptation programs in a complex socio-ecological system.

  19. Characteristics of extreme dust events observed over two urban areas in Iran

    Science.gov (United States)

    Bidokhti, Abbas-Ali A.; Gharaylou, Maryam; Pegahfar, Nafiseh; Sabetghadam, Samaneh; Rezazadeh, Maryam

    2016-03-01

    Determination of dust loading in the atmosphere is important not only from the public health point of view, but also for regional climate changes. The present study focuses on the characteristics of two major dust events for two urban areas in Iran, Kermanshah and Tehran, over the period of 4 years from 2006 to 2009. To detect extreme dust outbreaks, various datasets including synoptic data, dust concentration, reanalysis data and numerical results of WRF and HYSPLIT models were used. The weather maps demonstrate that for these events dusts are mainly generated when wind velocity is high and humidity is low in the lower troposphere and the region is under the influence of a thermal low. The event lasts until the atmospheric stability prevails and the surface wind speed weakens. The thermal low nature of the synoptic conditions of these major events is also responsible for deep boundary layer development with its thermals affecting the vertical dust flux over the region. Trajectory studies show that the dust events originated from deserts in Iraq and Syria and transported towards Iran. The main distinction between the two types of mobilizations seems to affect the dust concentrations in the Tehran urban area.

  20. Development of a GCR Event-based Risk Model

    Science.gov (United States)

    Cucinotta, Francis A.; Ponomarev, Artem L.; Plante, Ianik; Carra, Claudio; Kim, Myung-Hee

    2009-01-01

    A goal at NASA is to develop event-based systems biology models of space radiation risks that will replace the current dose-based empirical models. Complex and varied biochemical signaling processes transmit the initial DNA and oxidative damage from space radiation into cellular and tissue responses. Mis-repaired damage or aberrant signals can lead to genomic instability, persistent oxidative stress or inflammation, which are causative of cancer and CNS risks. Protective signaling through adaptive responses or cell repopulation is also possible. We are developing a computational simulation approach to galactic cosmic ray (GCR) effects that is based on biological events rather than average quantities such as dose, fluence, or dose equivalent. The goal of the GCR Event-based Risk Model (GERMcode) is to provide a simulation tool to describe and integrate physical and biological events into stochastic models of space radiation risks. We used the quantum multiple scattering model of heavy ion fragmentation (QMSFRG) and well known energy loss processes to develop a stochastic Monte-Carlo based model of GCR transport in spacecraft shielding and tissue. We validated the accuracy of the model by comparing to physical data from the NASA Space Radiation Laboratory (NSRL). Our simulation approach allows us to time-tag each GCR proton or heavy ion interaction in tissue including correlated secondary ions often of high multiplicity. Conventional space radiation risk assessment employs average quantities, and assumes linearity and additivity of responses over the complete range of GCR charge and energies. To investigate possible deviations from these assumptions, we studied several biological response pathway models of varying induction and relaxation times including the ATM, TGF -Smad, and WNT signaling pathways. We then considered small volumes of interacting cells and the time-dependent biophysical events that the GCR would produce within these tissue volumes to estimate how

  1. Developing an Empirical Model for Predicting Solar Energetic Particle Events

    Science.gov (United States)

    Quinn, R. A.; Winter, L. M.; Ledbetter, K.; Ashley, S. F.

    2014-12-01

    Solar energetic particle (SEP) events are powerful enhancements in the particle flux received at Earth. These events, often related to coronal mass ejections, can be disruptive to ionospheric communications, destructive to satellites, and pose a health risk to astronauts. To develop a useful forecast for the onset time and peak flux of SEP events, we are examining the radio burst, proton, and electron properties associated with the SEPs of the current solar cycle. Using the Wind/WAVES radio observations from 2010-2013, we analyzed the 123 decametric-hectometric type II solar radio burst properties, the associated type III burst properties, and their correlation with SEP properties determined from analysis of the Geostationary Operational Environmental Satellite (GOES) observations. Through a principal component and logistic regression analyses, we find that the radio properties alone can be used to predict the occurrence of an SEP event with a false alarm rate of 17%, a probability of detection of 65%, and with 88% of the classifications correct. We also explore the use of the > 2 MeV electron flux to forecast proton peak flux and event onset time, with preliminary results suggesting a correlation between the peak electron and proton flux.

  2. Transient luminous event coordinated observations using FORMOSAT-2 satellite and Taiwan sprites campaign

    Directory of Open Access Journals (Sweden)

    Kang-Ming Peng

    2017-01-01

    Full Text Available The Imager of Sprites and Upper Atmospheric Lightning (ISUAL, on board the FORMOSAT-2 satellite launched in 2004, is the first instrument primarily dedicated to transient luminous event (TLE surveys from space. The ISUAL TLE geolocation accuracy and detection efficiency are validated in this paper through two coordinated observation events using ISUAL and the Taiwan TLE ground campaign, the first coordinated space and ground observations. Due to the long distances between TLEs and the observation stations, triangulation required taking the Earth’s curvature into account using spherical trigonometry. After a series of systematic triangulation procedures, the results indicate that the coordinated ISUAL and ground station geolation accuracy is less than 7 km. Moreover, three columniform sprites were recorded at multiple sites during the ground campaign. The triangulation of individual elements shows that the map projection of columniform sprites is nearly circular, parallel and fan shaped. The aforementioned events demonstrate that the columniform sprite distribution patterns are diverse. The average base altitude of the columns is 72.4 ± 2.4 km, and the average terminal altitude is 82.3 ± 1.8 km. The sprite column width is estimated to be < 0.5 km.

  3. VERITAS follow-up observations of IceCube neutrino event 170922A

    Science.gov (United States)

    Mukherjee, Reshmi

    2017-10-01

    The VERITAS gamma-ray telescope array was used to perform follow-up observations of the high-energy neutrino event detected by the IceCube collaboration on September 22nd, 2017 20:54:30 UTC (GCN Circular #21916). & nbsp; & nbsp; VERITAS observed the location around the initial position reported by IceCube in the GCN/AMON Notice dated Fri 22 Sep 17 20:55:13 UTC (RA = 77.29 deg, Dec = 5.75 deg in J2000 coordinates) under partial cloud coverage for one hour.

  4. LEP Events, TLE's, and Q-bursts observed from the Antarctic

    Science.gov (United States)

    Moore, R. C.; Kim, D.; Flint, Q. A.

    2017-12-01

    ELF/VLF measurements at Palmer Station, McMurdo Station, and South Pole Station, Antarctica are used to detect lightning-generated ELF/VLF radio atmospherics from around the globe and to remote sense ionospheric disturbances in the Southern hemisphere. The Antarctic ELF/VLF receivers complement a Northern hemisphere ELF/VLF monitoring array. In this paper, we present our latest observational results, including a full statistical analysis of conjugate observations of lightning-induced electron precipitation and radio atmospherics associated specifically with the transient luminous events known as gigantic jets and sprites.

  5. Fermi GBM Observations of LIGO Gravitational-Wave Event Gw150914

    Science.gov (United States)

    Connaughton, V.; Burns, E.; Goldstein, A.; Blackburn, L.; Briggs, M. S.; Zhang, B.-B.; Camp, J.; Christensen, N.; Hui, C. M.; Jenke, P.; hide

    2016-01-01

    With an instantaneous view of 70% of the sky, the Fermi Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational-wave (GW) events. GBM observations at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914 reveal the presence of a weak transient above 50 keV, 0.4 s after the GW event, with a false-alarm probability of 0.0022 (2.9(sigma)). This weak transient lasting 1 s was not detected by any other instrument and does not appear to be connected with other previously known astrophysical, solar, terrestrial, or magnetospheric activity. Its localization is ill-constrained but consistent with the direction of GW150914. The duration and spectrum of the transient event are consistent with a weak short gamma-ray burst (GRB) arriving at a large angle to the direction in which Fermi was pointing where the GBM detector response is not optimal. If the GBM transient is associated with GW150914, then this electromagnetic signal from a stellar mass black hole binary merger is unexpected. We calculate a luminosity in hard X-ray emission between 1 keV and 10 MeV of 1.8(sup +1.5, sub -1.0) x 10(exp 49) erg/s. Future joint observations of GW events by LIGO/Virgo and Fermi GBM could reveal whether the weak transient reported here is a plausible counterpart to GW150914 or a chance coincidence, and will further probe the connection between compact binary mergers and short GRBs.

  6. Utility of High Temporal Resolution Observations for Heat Health Event Characterization

    Science.gov (United States)

    Palecki, M. A.

    2017-12-01

    Many heat health watch systems produce a binary on/off warning when conditions are predicted to exceed a given threshold during a day. Days with warnings and their mortality/morbidity statistics are analyzed relative to days not warned to determine the impacts of the event on human health, the effectiveness of warnings, and other statistics. The climate analyses of the heat waves or extreme temperature events are often performed with hourly or daily observations of air temperature, humidity, and other measured or derived variables, especially the maxima and minima of these data. However, since the beginning of the century, 5-minute observations are readily available for many weather and climate stations in the United States. NOAA National Centers for Environmental Information (NCEI) has been collecting 5-minute observations from the NOAA Automated Surface Observing System (ASOS) stations since 2000, and from the U.S. Climate Reference Network (USCRN) stations since 2005. This presentation will demonstrate the efficacy of utilizing 5-minute environmental observations to characterize heat waves by counting the length of time conditions exceed extreme thresholds based on individual and multiple variables and on derived variables such as the heat index. The length and depth of recovery periods between daytime heating periods will also be examined. The length of time under extreme conditions will influence health outcomes for those directly exposed. Longer periods of dangerous conditions also could increase the chances for poor health outcomes for those only exposed intermittently through cumulative impacts.

  7. Mechanisms and Observations of Coronal Dimming for the 2010 August 7 Event

    Science.gov (United States)

    Mason, James P.; Woods, Thomas N.; Caspi, Amir; Thompson, Barbara J.; Hock, Rachel A.

    2014-01-01

    Coronal dimming of extreme ultraviolet (EUV) emission has the potential to be a useful forecaster of coronal mass ejections (CMEs). As emitting material leaves the corona, a temporary void is left behind which can be observed in spectral images and irradiance measurements. The velocity and mass of the CMEs should impact the character of those observations. However, other physical processes can confuse the observations. We describe these processes and the expected observational signature, with special emphasis placed on the differences. We then apply this understanding to a coronal dimming event with an associated CME that occurred on 2010 August 7. Data from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) and EUV Variability Experiment (EVE) are used for observations of the dimming, while the Solar and Heliospheric Observatory's (SoHO) Large Angle and Spectrometric Coronagraph (LASCO) and the Solar Terrestrial Relations Observatory's (STEREO) COR1 and COR2 are used to obtain velocity and mass estimates for the associated CME. We develop a technique for mitigating temperature effects in coronal dimming from full-disk irradiance measurements taken by EVE. We find that for this event, nearly 100% of the dimming is due to mass loss in the corona.

  8. A survey of flux transfer events observed in the dayside magnetopause

    Science.gov (United States)

    Silveira, M. D.; Sibeck, D. G.; Lee, S. H.; Gonzalez, W.; Koga, D.

    2017-12-01

    Flux transfer events (FTE) have been interpreted to be results from transient magnetic reconnection and can be observed in the vicinity of the Earth's magnetopause, as well in other planets. FTE acts as a flux tube connecting the magnetosheath to the magnetosphere allowing the transference of particles, energy and momentum in both sides magnetopause. Their main signatures in satellite data are bipolar variation in the magnetic field component normal to the magnetopause, centered in an enhanced magnetic field strength. Other signatures such as pressure imbalance, bulk flow jets, and particle anisotropy distribution can be observed inside the those structures. We surveyed FTEs observed by MMS on the vicinity of the magnetopause (from x = 0 to 13Re and y = -12 to 12Re). Taking advantage of the MMS tetrahedron configuration we will employed timing analysis to determine the FTEs direction of motion and scale lengths. We will present information about occurrence related with IMF clock angle and other parameters, amplitude of the perturbations induced by the FTEs in the environment magnetic field and plasma; characteristic time and structure scale size. Using data from ACE, Wind and Artemis we can evaluate which is the best solar wind monitor for each FTE observed and then employ the appropriated lag time corresponding to FTE location and magnetic field orientation. The objective is to investigate the mechanisms of generation of FTEs comparing characteristics of the events observed on the dayside region and on the magnetopause flanks determining the motion and speed of FTEs.

  9. A model for measuring the environmental sustainability of events.

    Science.gov (United States)

    Boggia, Antonio; Massei, Gianluca; Paolotti, Luisa; Rocchi, Lucia; Schiavi, Federico

    2018-01-15

    Like all human activities, events can generate significant pressures on environmental resources, unless they are well-managed and monitored. Therefore, it is becoming more and more important to develop models that can measure their environmental sustainability. Although increasing attention is being paid to this sector, there is currently no standard protocol or method to assess the eco-sustainability of events. This article presents an innovative assessment procedure to measure the environmental sustainability of events. It is based on several indicators, combined by means of a multi-criteria approach and aggregated into a final index, which we called METER (Measuring Events Through Environmental Research). The METER index uses nine major operational categories, divided in sub-categories and detailed items, which cover all the main aspects concerning environmental sustainability of an event and are evaluated for all its phases, i.e. planning, organisation, implementation, post event. The index is fairly analytical, and is thus able to represent the numerous aspects to be taken into consideration in the environmental assessment of an event. At the same time, it is simple to apply and user-friendly, thanks to its graphics and effective communication of the web platform within it is implemented. Moreover, METER is based on a participatory approach using the bottom-up model and on the principle of subsidiarity. All official international documents regarding sustainable development now require subsidiarity. However, it is not being currently applied as part of any certification or with any evaluation tool. Therefore, although the index is still a prototype, it represents an innovation in the field of environmental management. A simple exemplary case is presented, about a European Spring School held at University of Perugia (Italy) in 2014, in which the application of METER showed a sustainability assessment score of 638 points out of 1000, with an excellent management

  10. A mathematical model for the occurrence of historical events

    Science.gov (United States)

    Ohnishi, Teruaki

    2017-12-01

    A mathematical model was proposed for the frequency distribution of historical inter-event time τ. A basic ingredient was constructed by assuming the significance of a newly occurring historical event depending on the magnitude of a preceding event, the decrease of its significance by oblivion during the successive events, and an independent Poisson process for the occurrence of the event. The frequency distribution of τ was derived by integrating the basic ingredient with respect to all social fields and to all stake holders. The function of such a distribution was revealed as the forms of an exponential type, a power law type or an exponential-with-a-tail type depending on the values of constants appearing in the ingredient. The validity of this model was studied by applying it to the two cases of Modern China and Northern Ireland Troubles, where the τ-distribution varies depending on the different countries interacting with China and on the different stage of history of the Troubles, respectively. This indicates that history is consisted from many components with such different types of τ-distribution, which are the similar situation to the cases of other general human activities.

  11. Observing a Severe Dust Storm Event over China using Multiple Satellite Data

    Science.gov (United States)

    Xu, Hui; Xue, Yong; Guang, Jie; Mei, Linlu

    2013-04-01

    make use of all useful satellite data to observe one severe dust procedure, multi-sensor and multi-algorithm AOD data were combined. In this paper, the satellite instruments considered are MISR, MODIS, POLDER and CALIPSO. In addition, air pollution index (API) data were used to validate the satellite AOD data. We chose the study region with a longitude range from 76°N to 136°N and a latitude range from 15°E to 60°E. Index Terms—aerosol optical depth, dust, satellite REFERENCES Adhikary, B., Kulkarni, S., Dallura A., Tang, Y., Chai, T., Leung, L. R., Qian, Y., Chung, C. E., Ramanathan,V. and Carmichael, G. R., 2008, A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique, Atmospheric Environment, 42(37), 8600-8615. Carboni, E., Thomas, G. E., Sayer, A. M., Siddans, R., Poulsen, C. A., Grainger, R. G., Ahn, C., Antoine, D., Bevan, S., Braak, R., Brindley, H., DeSouza-Machado, S., Deuz'e, J. L., Diner, D., Ducos, F., Grey, W., Hsu, C., Kalashnikova, O. V., Kahn, R., North, P. R. J., Salustro, C., Smith, A., Tanr'e, D., Torres, O., and Veihelmann, B., 2012, Intercomparison of desert dust optical depth from satellite measurements, Atmospheric Measurement Techniques, 5, 1973-2002. Deuze', J. L., Bre'on, F. M., Devaux, C., Goloub, Herman, M., Lafrance, B., Maignan, F., Marchand, A.,Nadal, F., Perry, G., and Tanre', D., 2001, Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements, Journal of Geophysical Research, 106(D5), 4913-4926. Ehlers, M., 1991, Multisensor image fusion techniques in remote sensing, ISPRS Journal of Photogrammetry and Remote Sensing, 46, 19-30. Han, X., Ge. C., Tao, J. H., Zhang, M. G., Zhang, R. J., 2012, Air Quality Modeling for a Strong Dust Event in East Asia in March 2010, Aerosol and Air Quality Research, 12: 615-628. Hsu, N. C., Tsay, S. C., King, M. D. and Herman, J. R., 2004, Aerosol Properties over Bright

  12. Observations of Lake-Breeze Events During the Toronto 2015 Pan-American Games

    Science.gov (United States)

    Mariani, Zen; Dehghan, Armin; Joe, Paul; Sills, David

    2018-01-01

    Enhanced meteorological observations were made during the 2015 Pan and Parapan American Games in Toronto in order to measure the vertical and horizontal structure of lake-breeze events. Two scanning Doppler lidars (one fixed and one mobile), a C-band radar, and a network including 53 surface meteorological stations (mesonet) provided pressure, temperature, humidity, and wind speed and direction measurements over Lake Ontario and urban areas. These observations captured the full evolution (prior, during, and after) of 27 lake-breeze events (73% of observation days) in order to characterize the convective and dynamic processes driving lake breezes at the local scale and mesoscale. The dominant signal of a passing lake-breeze front (LBF) was an increase in dew-point temperature of 2.3 ± 0.3°C, coinciding with a 180° shift in wind direction and a decrease in air temperature of 2.1 ± 0.2°C. Doppler lidar observations over the lake detected lake breezes 1 hour (on average) before detection by radar and mesonet. On days with the synoptic flow in the offshore direction, the lidars observed wedge-shaped LBFs with shallow depths, which inhibited the radar's ability to detect the lake breeze. The LBF's ground speed and inland penetration distance were found to be well-correlated (r = 0.78), with larger inland penetration distances occurring on days with non-opposing (non-offshore) synoptic flow. The observed enhanced vertical motion ({>} 1 m s^{-1}) at the LBF, observed by the lidar on 54% of lake-breeze days, was greater (at times {>} 2.5 m s^{-1}) than that observed in previous studies and longer-lasting over the lake than over land. The weaker and less pronounced lake-breeze structure over land is illustrated in two case studies highlighting the lifetime of the lake-breeze circulation and the impact of propagation distance on lake-breeze intensity.

  13. The Event Coordination Notation: Behaviour Modelling Beyond Mickey Mouse

    DEFF Research Database (Denmark)

    Jepsen, Jesper; Kindler, Ekkart

    2015-01-01

    The Event Coordination Notation (ECNO) allows modelling the desired behaviour of a software system on top of any object-oriented software. Together with existing technologies from Model-based Software Engineering (MBSE) for automatically generating the software for the structural parts, ECNO allows...... management system. This way, we demonstrate that ECNO can be used for modelling software beyond the typical Mickey Mouse examples. This example demonstrates that the essence of workflow management – including its behaviour – can be captured in ECNO: in a sense, it is a domain model of workflow management...

  14. Observations of new particle formation events in the south-eastern Baltic Sea

    Directory of Open Access Journals (Sweden)

    Kristina Plauškaitė

    2010-03-01

    Full Text Available New particle formation and growth were observed at a coastal site (Preila station, Lithuania during 1997 and 2000-2002. The total amountof data analysed covers 291 one-day periods, 45 (15% of which were long-term, new particle formation days. Short-term nucleationevents (from a few minutes to one hour and long-term events (from one to eight hours were identified. The mean particlegrowth rate, condensation sink and condensable vapour source rate during nucleation events were 3.9 nm h-1, 1.45 × 10-3 cm-3 s-1 and 7.5 × 104 cm-3 s-1 respectively.The average formation rate J10 was 0.4 cm-3 s-1. The nucleation events were accompaniedmainly by air masses transported from the north (43% and north-west (19%. Meteorological parameters and trace gas (O3, SO2,NO2 concentrations were also analysed. It was found that nucleation events are related to high levels of solar radiation.

  15. Events

    Directory of Open Access Journals (Sweden)

    Igor V. Karyakin

    2016-02-01

    Full Text Available The 9th ARRCN Symposium 2015 was held during 21st–25th October 2015 at the Novotel Hotel, Chumphon, Thailand, one of the most favored travel destinations in Asia. The 10th ARRCN Symposium 2017 will be held during October 2017 in the Davao, Philippines. International Symposium on the Montagu's Harrier (Circus pygargus «The Montagu's Harrier in Europe. Status. Threats. Protection», organized by the environmental organization «Landesbund für Vogelschutz in Bayern e.V.» (LBV was held on November 20-22, 2015 in Germany. The location of this event was the city of Wurzburg in Bavaria.

  16. Statistical modelling for recurrent events: an application to sports injuries.

    Science.gov (United States)

    Ullah, Shahid; Gabbett, Tim J; Finch, Caroline F

    2014-09-01

    Injuries are often recurrent, with subsequent injuries influenced by previous occurrences and hence correlation between events needs to be taken into account when analysing such data. This paper compares five different survival models (Cox proportional hazards (CoxPH) model and the following generalisations to recurrent event data: Andersen-Gill (A-G), frailty, Wei-Lin-Weissfeld total time (WLW-TT) marginal, Prentice-Williams-Peterson gap time (PWP-GT) conditional models) for the analysis of recurrent injury data. Empirical evaluation and comparison of different models were performed using model selection criteria and goodness-of-fit statistics. Simulation studies assessed the size and power of each model fit. The modelling approach is demonstrated through direct application to Australian National Rugby League recurrent injury data collected over the 2008 playing season. Of the 35 players analysed, 14 (40%) players had more than 1 injury and 47 contact injuries were sustained over 29 matches. The CoxPH model provided the poorest fit to the recurrent sports injury data. The fit was improved with the A-G and frailty models, compared to WLW-TT and PWP-GT models. Despite little difference in model fit between the A-G and frailty models, in the interest of fewer statistical assumptions it is recommended that, where relevant, future studies involving modelling of recurrent sports injury data use the frailty model in preference to the CoxPH model or its other generalisations. The paper provides a rationale for future statistical modelling approaches for recurrent sports injury. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. A Community Data Model for Hydrologic Observations

    Science.gov (United States)

    Tarboton, D. G.; Horsburgh, J. S.; Zaslavsky, I.; Maidment, D. R.; Valentine, D.; Jennings, B.

    2006-12-01

    The CUAHSI Hydrologic Information System project is developing information technology infrastructure to support hydrologic science. Hydrologic information science involves the description of hydrologic environments in a consistent way, using data models for information integration. This includes a hydrologic observations data model for the storage and retrieval of hydrologic observations in a relational database designed to facilitate data retrieval for integrated analysis of information collected by multiple investigators. It is intended to provide a standard format to facilitate the effective sharing of information between investigators and to facilitate analysis of information within a single study area or hydrologic observatory, or across hydrologic observatories and regions. The observations data model is designed to store hydrologic observations and sufficient ancillary information (metadata) about the observations to allow them to be unambiguously interpreted and used and provide traceable heritage from raw measurements to usable information. The design is based on the premise that a relational database at the single observation level is most effective for providing querying capability and cross dimension data retrieval and analysis. This premise is being tested through the implementation of a prototype hydrologic observations database, and the development of web services for the retrieval of data from and ingestion of data into the database. These web services hosted by the San Diego Supercomputer center make data in the database accessible both through a Hydrologic Data Access System portal and directly from applications software such as Excel, Matlab and ArcGIS that have Standard Object Access Protocol (SOAP) capability. This paper will (1) describe the data model; (2) demonstrate the capability for representing diverse data in the same database; (3) demonstrate the use of the database from applications software for the performance of hydrologic analysis

  18. Space Weather at Mars: MAVEN and MSL/RAD Observations of CME and SEP Events

    Science.gov (United States)

    Lee, C. O.; Ehresmann, B.; Lillis, R. J.; Dunn, P.; Rahmati, A.; Larson, D. E.; Guo, J.; Zeitlin, C.; Luhmann, J. G.; Halekas, J. S.; Espley, J. R.; Thiemann, E.; Hassler, D.

    2017-12-01

    While MAVEN have been observing the space weather conditions driven by ICMEs and SEPs in orbit around Mars, MSL/RAD have been measuring the surface radiation environment due to E > 150 MeV/nuc SEPs and the higher-energy galactic cosmic rays. The suite of MAVEN instruments measuring the particles (SEP), plasma (SWIA) and fields (MAG) information provides detailed local space weather information regarding the solar activity-related fluctuations in the measured surface dose rates. At the same time, the related enhancements in the RAD surface dose rates indicate the degree to which the SEPs affect the lower atmosphere and surface. We will present an overview of the MAVEN observations together with the MSL/RAD measurements and focus our discussion on a number of space weather events driven by CMEs and SEPs. During the March 2015 solar storm period, a succession of CMEs produced intense SEP proton fluxes that were detected by MAVEN/SEP in the 20 keV to 6 MeV detected energy channels. At higher energies, MAVEN/SEP record `FTO' SEP events that were triggered by > 13 MeV energetic protons passing through all three silicon detector layers (Front, Thick, and Open). Using the detector response matrix for an FTO event (incident energy vs detected energy), the minimum incident energy of the SEP protons observed in March 2015 was inferred to be > 40 MeV. The lack of any notable enhancements in the surface dose rate by MSL/RAD suggests that the highest incident energies of the SEP protons were energy channels. However, MAVEN/SEP did record an FTO event that coincided with the RAD dose rate enhancement, all of which suggest that > 150 MeV SEP protons impacted the Martian atmosphere and surface. The source of the October 2015 SEP event was probably the CME that erupted near the solar west limb with respect to the Sun-Mars line. As part of the discussion, we will also show solar-heliospheric observations from near-Earth assets together with WSA-Enlil-cone results for some global

  19. XMM-NEWTON SLEW SURVEY OBSERVATIONS OF THE GRAVITATIONAL WAVE EVENT GW150914

    Energy Technology Data Exchange (ETDEWEB)

    Troja, E. [NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States); Read, A. M. [Department of Physics and Astronomy, Leicester University, Leicester LE1 7RH (United Kingdom); Tiengo, A. [Istituto Universitario di Studi Superiori, piazza della Vittoria 15, I-27100 Pavia (Italy); Salvaterra, R. [Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, INAF, via E. Bassini 15, I-20133 Milano (Italy)

    2016-05-01

    The detection of the first gravitational wave (GW) transient GW150914 prompted an extensive campaign of follow-up observations at all wavelengths. Although no dedicated XMM-Newton observations have been performed, the satellite passed through the GW150914 error region during normal operations. Here we report the analysis of the data taken during these satellite slews performed two hours and two weeks after the GW event. Our data cover 1.1 and 4.8 deg{sup 2} of the final GW localization region. No X-ray counterpart to GW150914 is found down to a sensitivity of 6 × 10{sup −13} erg cm{sup −2} s{sup −1} in the 0.2–2 keV band. Nevertheless, these observations show the great potential of XMM-Newton slew observations for searching for the electromagnetic counterparts of GW events. A series of adjacent slews performed in response to a GW trigger would take ≲1.5 days to cover most of the typical GW credible region. We discuss this scenario and its prospects for detecting the X-ray counterpart of future GW detections.

  20. Methods and Model Dependency of Extreme Event Attribution: The 2015 European Drought

    Science.gov (United States)

    Hauser, Mathias; Gudmundsson, Lukas; Orth, René; Jézéquel, Aglaé; Haustein, Karsten; Vautard, Robert; van Oldenborgh, Geert J.; Wilcox, Laura; Seneviratne, Sonia I.

    2017-10-01

    Science on the role of anthropogenic influence on extreme weather events, such as heatwaves or droughts, has evolved rapidly in the past years. The approach of "event attribution" compares the occurrence-probability of an event in the present, factual climate with its probability in a hypothetical, counterfactual climate without human-induced climate change. Several methods can be used for event attribution, based on climate model simulations and observations, and usually researchers only assess a subset of methods and data sources. Here, we explore the role of methodological choices for the attribution of the 2015 meteorological summer drought in Europe. We present contradicting conclusions on the relevance of human influence as a function of the chosen data source and event attribution methodology. Assessments using the maximum number of models and counterfactual climates with pre-industrial greenhouse gas concentrations point to an enhanced drought risk in Europe. However, other evaluations show contradictory evidence. These results highlight the need for a multi-model and multi-method framework in event attribution research, especially for events with a low signal-to-noise ratio and high model dependency such as regional droughts.

  1. Multivariate Statistical Modelling of Drought and Heat Wave Events

    Science.gov (United States)

    Manning, Colin; Widmann, Martin; Vrac, Mathieu; Maraun, Douglas; Bevaqua, Emanuele

    2016-04-01

    Multivariate Statistical Modelling of Drought and Heat Wave Events C. Manning1,2, M. Widmann1, M. Vrac2, D. Maraun3, E. Bevaqua2,3 1. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK 2. Laboratoire des Sciences du Climat et de l'Environnement, (LSCE-IPSL), Centre d'Etudes de Saclay, Gif-sur-Yvette, France 3. Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz, Austria Compound extreme events are a combination of two or more contributing events which in themselves may not be extreme but through their joint occurrence produce an extreme impact. Compound events are noted in the latest IPCC report as an important type of extreme event that have been given little attention so far. As part of the CE:LLO project (Compound Events: muLtivariate statisticaL mOdelling) we are developing a multivariate statistical model to gain an understanding of the dependence structure of certain compound events. One focus of this project is on the interaction between drought and heat wave events. Soil moisture has both a local and non-local effect on the occurrence of heat waves where it strongly controls the latent heat flux affecting the transfer of sensible heat to the atmosphere. These processes can create a feedback whereby a heat wave maybe amplified or suppressed by the soil moisture preconditioning, and vice versa, the heat wave may in turn have an effect on soil conditions. An aim of this project is to capture this dependence in order to correctly describe the joint probabilities of these conditions and the resulting probability of their compound impact. We will show an application of Pair Copula Constructions (PCCs) to study the aforementioned compound event. PCCs allow in theory for the formulation of multivariate dependence structures in any dimension where the PCC is a decomposition of a multivariate distribution into a product of bivariate components modelled using copulas. A

  2. Interpretation of seismic section by acoustic modeling. Study of large amplitude events; Hadoba modeling ni yoru jishin tansa danmen no kaishaku. Kyoshinhaba event ni taisuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tamagawa, T.; Matsuoka, T.; Sato, T. [Japan Petroleum Exploration Corp., Tokyo (Japan); Minegishi, M.; Tsuru, T. [Japan National Oil Corp., Tokyo (Japan)

    1996-05-01

    A large amplitude event difficult to interpret was discovered in the overlap section in offset data beyond 10km targeting at deep structures, and the event was examined. A wave field modeling was carried out by use of a simplified synclinal structure model because it had been estimated that the large amplitude event had something to do with a synclinal structure. A pseudospectral program was used for modeling the wave field on the assumption that the synclinal structure model would be an acoustic body and that the surface would contain free boundaries and multiple reflection. It was found as the result that a discontinuous large amplitude event is mapped out in the synclinal part of the overlap section when a far trace is applied beyond the structure during a CMP overlap process. This can be attributed to the concentration of energy produced by multiple reflection in the synclinal part and by the reflection waves beyond the critical angle. Accordingly, it is possible that phenomena similar to those encountered in the modeling process are emerging during actual observation. 2 refs., 8 figs.

  3. Resuspension events in a micro-tidal shallow bay using coupled wave-current model

    Science.gov (United States)

    Grifoll, Manel; Cerralbo, Pablo; Solà, Laura; Espino, Manuel

    2017-04-01

    In this contribution we investigate the observed resuspension events in Alfacs Bay (semi-enclosed bay in The Ebro Delta, NW Mediterranean Sea) using a wave-current coupled model. This bay is characterized by a micro-tidal environment and a relevant seiche activity which may lead velocities more than 50 cm·s-1. A set of ADCP and OBS moored at sea bottom were used to acquire hydrodynamic and optical information. The time-series observations showed an evident relation between seiche activity and the sediment resuspension events. The implementation of a wave-current coupled model shows a strong spatial variability in terms of combined bottom stress. Significant wave hight of 0.4 m are modeled during energetic wind events. A significant correlation between the resuspension events and the combined bottom stress are observed. The numerical results reveal two different mechanism to explain the resuspension events observed: during the Seiche episodes the combined bottom stresses are controlled by the current-induced bottom stress. Otherwise during strong winds the combined bottom stress are controlled by the wave-induced bottom stress.

  4. Thin current sheets observation by MMS during a near-Earth's magnetotail reconnection event

    Science.gov (United States)

    Nakamura, R.; Varsani, A.; Nakamura, T.; Genestreti, K.; Plaschke, F.; Baumjohann, W.; Nagai, T.; Burch, J.; Cohen, I. J.; Ergun, R.; Fuselier, S. A.; Giles, B. L.; Le Contel, O.; Lindqvist, P. A.; Magnes, W.; Schwartz, S. J.; Strangeway, R. J.; Torbert, R. B.

    2017-12-01

    During summer 2017, the four spacecraft of the Magnetospheric Multiscale (MMS) mission traversed the nightside magnetotail current sheet at an apogee of 25 RE. They detected a number of flow reversal events suggestive of the passage of the reconnection current sheet. Due to the mission's unprecedented high-time resolution and spatial separation well below the ion scales, structure of thin current sheets is well resolved both with plasma and field measurements. In this study we examine the detailed structure of thin current sheets during a flow reversal event from tailward flow to Earthward flow, when MMS crossed the center of the current sheet . We investigate the changes in the structure of the thin current sheet relative to the X-point based on multi-point analysis. We determine the motion and strength of the current sheet from curlometer calculations comparing these with currents obtained from the particle data. The observed structures of these current sheets are also compared with simulations.

  5. Nuclear facility safeguards systems modeling using discrete event simulation

    International Nuclear Information System (INIS)

    Engi, D.

    1977-01-01

    The threat of theft or dispersal of special nuclear material at a nuclear facility is treated by studying the temporal relationships between adversaries having authorized access to the facility (insiders) and safeguards system events by using a GASP IV discrete event simulation. The safeguards system events--detection, assessment, delay, communications, and neutralization--are modeled for the general insider adversary strategy which includes degradation of the safeguards system elements followed by an attempt to steal or disperse special nuclear material. The performance measure used in the analysis is the estimated probability of safeguards system success in countering the adversary based upon a predetermined set of adversary actions. An exemplary problem which includes generated results is presented for a hypothetical nuclear facility. The results illustrate representative information that could be utilized by safeguards decision-makers

  6. Evaluation of WRF PBL parameterization schemes against direct observations during a dry event over the Ganges valley

    Science.gov (United States)

    Sathyanadh, Anusha; Prabha, Thara V.; Balaji, B.; Resmi, E. A.; Karipot, Anandakumar

    2017-09-01

    Accurate representations of the planetary boundary layer (PBL) are important in all weather forecast systems, especially in simulations of turbulence, wind and air quality in the lower atmosphere. In the present study, detailed observations from the Cloud Aerosol Interaction and Precipitation Enhancement Experiment - Integrated Ground based Observational Campaign (CAIPEEX-IGOC) 2014 comprising of the complete surface energy budget and detailed boundary layer observations are used to validate Advanced Research Weather Research and Forecasting (WRF) model simulations over a diverse terrain over the Ganges valley region, Uttar Pradesh, India. A drying event in June 2014 associated with a heat wave is selected for validation.Six local and nonlocal PBL schemes from WRF at 1 km resolution are compared with hourly observations during the diurnal cycle. Near-surface observations of weather parameters, radiation components and eddy covariance fluxes from micrometeorological tower, and profiles of variables from microwave radiometer, and radiosonde observations are used for model evaluations. Models produce a warmer, drier surface layer with higher wind speed, sensible heat flux and temperature than observations. Layered boundary layer dynamics, including the residual layer structure as illustrated in the observations over the Ganges valley are missed in the model, which lead to deeper mixed layers and excessive drying.Although it is difficult to identify any single scheme as the best, the qualitative and quantitative analyses for the entire study period and overall reproducibility of the observations indicate that the MYNN2 simulations describe lower errors and more realistic simulation of spatio-temporal variations in the boundary layer height.

  7. Plasma Observations During the Mars Atmospheric Plume Event of March-April 2012

    Science.gov (United States)

    Andrews, D. J.; Barabash, S.; Edberg, N. J. T.; Gurnett, D. A.; Hall, B. E. S.; Holmstrom, M.; Lester, M.; Morgan, D. D.; Opgenoorth, H. J.; Ramstad, R.; hide

    2016-01-01

    We present initial analysis and conclusions from plasma observations made during the reported Mars Dust plume event of March - April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude plume over the Martian dawn terminator [Sanchez-Lavega7 et al., Nature, 2015, doi:10.1038nature14162], the origin of which remains to be explained. We report on in-situ measurements of ionospheric plasma density and solar wind parameters throughout this interval made by Mars Express, obtained over the surface region, but at the opposing terminator. We tentatively conclude that the formation and/or transport of this plume to the altitudes where it was observed could be due in part the result of a large interplanetary coronal mass ejection (ICME) encountering the Martian system. Interestingly, we note that a similar plume detection in May 1997 may also have been associated with a large ICME impact at Mars.

  8. Neutron-induced single event upsets in static RAMs observed at 10 KM flight altitude

    Science.gov (United States)

    Olsen, J.; Becher, P. E.; Fynbo, P. B.; Raaby, P.; Schultz, J.

    1993-04-01

    Neutron induced single event upsets (SEUs) in static memory devices (SRAMs) have so far been seen only in laboratory environments. We report observations of 14 neutron induced SEUs at commercial aircraft flight altitudes. The observed SEU rate at 10 km flight altitude based on exposure of 160 standard 256 Kbit CMOS SRAMs is 4.8 x 10 exp -8 upsets/bit/day. In the laboratory 117 SRAMs of two different brands were irradiated with fast neutrons from a Pu-Be source. A total of 176 SEUs have been observed, among these are two SEU pairs. The upset rates from the laboratory tests are compared to those found in the airborne SRAMs.

  9. A simple model to predict soil moisture: Bridging Event and Continuous Hydrological (BEACH) modelling

    NARCIS (Netherlands)

    Sheikh, V.; Visser, S.M.; Stroosnijder, L.

    2009-01-01

    This paper introduces a simple two-layer soil water balance model developed to Bridge Event And Continuous Hydrological (BEACH) modelling. BEACH is a spatially distributed daily basis hydrological model formulated to predict the initial condition of soil moisture for event-based soil erosion and

  10. Efficient Parallel Execution of Event-Driven Electromagnetic Hybrid Models

    Energy Technology Data Exchange (ETDEWEB)

    Perumalla, Kalyan S [ORNL; Karimabadi, Dr. Homa [SciberQuest Inc.; Fujimoto, Richard [ORNL

    2007-01-01

    New discrete-event formulations of physics simulation models are emerging that can outperform traditional time-stepped models, especially in simulations containing multiple timescales. Detailed simulation of the Earth's magnetosphere, for example, requires execution of sub-models that operate at timescales that differ by orders of magnitude. In contrast to time-stepped simulation which requires tightly coupled updates to almost the entire system state at regular time intervals, the new discrete event simulation (DES) approaches help evolve the states of sub-models on relatively independent timescales. However, in contrast to relative ease of parallelization of time-stepped codes, the parallelization of DES-based models raises challenges with respect to their scalability and performance. One of the key challenges is to improve the computation granularity to offset synchronization and communication overheads within and across processors. Our previous work on parallelization was limited in scalability and runtime performance due to such challenges. Here we report on optimizations we performed on DES-based plasma simulation models to improve parallel execution performance. The mapping of the model to simulation processes is optimized via aggregation techniques, and the parallel runtime engine is optimized for communication and memory efficiency. The net result is the capability to simulate hybrid particle-in-cell (PIC) models with over 2 billion ion particles using 512 processors on supercomputing platforms.

  11. Modelling the interaction between flooding events and economic growth

    Directory of Open Access Journals (Sweden)

    J. Grames

    2015-06-01

    Full Text Available Socio-hydrology describes the interaction between the socio-economy and water. Recent models analyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre et al., 2013; Viglione et al., 2014. These models descriptively explain the feedbacks between socio-economic development and natural disasters like floods. Contrary to these descriptive models, our approach develops an optimization model, where the intertemporal decision of an economic agent interacts with the hydrological system. In order to build this first economic growth model describing the interaction between the consumption and investment decisions of an economic agent and the occurrence of flooding events, we transform an existing descriptive stochastic model into an optimal deterministic model. The intermediate step is to formulate and simulate a descriptive deterministic model. We develop a periodic water function to approximate the former discrete stochastic time series of rainfall events. Due to the non-autonomous exogenous periodic rainfall function the long-term path of consumption and investment will be periodic.

  12. Stratospheric dryness: model simulations and satellite observations

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2007-01-01

    Full Text Available The mechanisms responsible for the extreme dryness of the stratosphere have been debated for decades. A key difficulty has been the lack of comprehensive models which are able to reproduce the observations. Here we examine results from the coupled lower-middle atmosphere chemistry general circulation model ECHAM5/MESSy1 together with satellite observations. Our model results match observed temperatures in the tropical lower stratosphere and realistically represent the seasonal and inter-annual variability of water vapor. The model reproduces the very low water vapor mixing ratios (below 2 ppmv periodically observed at the tropical tropopause near 100 hPa, as well as the characteristic tape recorder signal up to about 10 hPa, providing evidence that the dehydration mechanism is well-captured. Our results confirm that the entry of tropospheric air into the tropical stratosphere is forced by large-scale wave dynamics, whereas radiative cooling regionally decelerates upwelling and can even cause downwelling. Thin cirrus forms in the cold air above cumulonimbus clouds, and the associated sedimentation of ice particles between 100 and 200 hPa reduces water mass fluxes by nearly two orders of magnitude compared to air mass fluxes. Transport into the stratosphere is supported by regional net radiative heating, to a large extent in the outer tropics. During summer very deep monsoon convection over Southeast Asia, centered over Tibet, moistens the stratosphere.

  13. Modeling a Single SEP Event from Multiple Vantage Points Using the iPATH Model

    Science.gov (United States)

    Hu, Junxiang; Li, Gang; Fu, Shuai; Zank, Gary; Ao, Xianzhi

    2018-02-01

    Using the recently extended 2D improved Particle Acceleration and Transport in the Heliosphere (iPATH) model, we model an example gradual solar energetic particle event as observed at multiple locations. Protons and ions that are energized via the diffusive shock acceleration mechanism are followed at a 2D coronal mass ejection-driven shock where the shock geometry varies across the shock front. The subsequent transport of energetic particles, including cross-field diffusion, is modeled by a Monte Carlo code that is based on a stochastic differential equation method. Time intensity profiles and particle spectra at multiple locations and different radial distances, separated in longitudes, are presented. The results shown here are relevant to the upcoming Parker Solar Probe mission.

  14. Weighted likelihood copula modeling of extreme rainfall events in Connecticut

    Science.gov (United States)

    Wang, Xiaojing; Gebremichael, Mekonnen; Yan, Jun

    2010-08-01

    SummaryCopulas have recently emerged as a practical method for multivariate modeling. To date, only limited amount of work has been done to apply copula-based modeling in the context of extreme rainfall analysis, and no work exists on modeling multiple characteristics of rainfall events from data at resolutions finer than hourly. In this study, trivariate copula-based modeling is applied to annual extreme rainfall events constructed from 15-min time series precipitation data at 12 stations within the state of Connecticut. Three characteristics (volume, duration, and peak intensity) are modeled by a multivariate distribution specified by three marginal distributions and a dependence structure via copula. A major issue in this application is that, because the 15-min precipitation data are only available fairly recently, the sample size at most stations is small, ranging from 10 to 33 years. For each station, we estimate the model parameters by maximizing a weighted likelihood, which assigns weight to data at stations nearby, borrowing strengths from them. The weights are assigned by a kernel function whose bandwidth is chosen by cross-validation in terms of predictive loglikelihood. The fitted model and sampling algorithms provide new knowledge on design storms and risk assessment in Connecticut.

  15. Event-based total suspended sediment particle size distribution model

    Science.gov (United States)

    Thompson, Jennifer; Sattar, Ahmed M. A.; Gharabaghi, Bahram; Warner, Richard C.

    2016-05-01

    One of the most challenging modelling tasks in hydrology is prediction of the total suspended sediment particle size distribution (TSS-PSD) in stormwater runoff generated from exposed soil surfaces at active construction sites and surface mining operations. The main objective of this study is to employ gene expression programming (GEP) and artificial neural networks (ANN) to develop a new model with the ability to more accurately predict the TSS-PSD by taking advantage of both event-specific and site-specific factors in the model. To compile the data for this study, laboratory scale experiments using rainfall simulators were conducted on fourteen different soils to obtain TSS-PSD. This data is supplemented with field data from three construction sites in Ontario over a period of two years to capture the effect of transport and deposition within the site. The combined data sets provide a wide range of key overlooked site-specific and storm event-specific factors. Both parent soil and TSS-PSD in runoff are quantified by fitting each to a lognormal distribution. Compared to existing regression models, the developed model more accurately predicted the TSS-PSD using a more comprehensive list of key model input parameters. Employment of the new model will increase the efficiency of deployment of required best management practices, designed based on TSS-PSD, to minimize potential adverse effects of construction site runoff on aquatic life in the receiving watercourses.

  16. Reporting of unintended events in an intensive care unit: comparison between staff and observer

    Directory of Open Access Journals (Sweden)

    Verri Marco

    2005-05-01

    Full Text Available Abstract Background In order to identify relevant targets for change, it is essential to know the reliability of incident staff reporting. The aim of this study is to compare the incidence and type of unintended events (UE reported by facilitated Intensive Care Unit (ICU staff with those recorded concurrently by an observer. Methods The study is a prospective data collection performed in two 4-bed multidisciplinary ICUs of a teaching hospital. The format of the UE reporting system was voluntary, facilitated and not necessarily anonymous, and used a structured form with a predetermined list of items. UEs were reported by ICU staff over a period of 4 weeks. The reporting incidence during the first fourteen days was compared with that during the second fourteen. During morning shifts in the second fourteen days, one observer in each ICU recorded any UE seen. The staff was not aware of the observers' study. The incidence of UEs reported by staff was compared with that recorded by the observers. Results The staff reported 36 UEs in the first fourteen days and 31 in the second.. The incidence of UE detection during morning shifts was significantly higher than during afternoon or night shifts (p Conclusion UE incidence is strongly underreported by staff in comparison with observers. Also the types of UEs reported are different. Invaluable information about incidents in ICU can be obtained in a few days by observer monitoring.

  17. Measurement and modeling of mass-infiltration events into macropores

    Science.gov (United States)

    Franz, T. E.; Nolan, J. T.; Caylor, K. K.; Slater, L. D.

    2009-12-01

    The spatial and temporal distribution of soil moisture is a key state variable in ecohydrology. Because lateral redistribution of water in the subsurface occurs on a different timescale than rainfall dynamics the effect of subsurface processes on dryland plant communities is largely unknown. However, prior soil moisture measurements taken in central Kenya indicate that macropores may be responsible for generating substantial subsurface flow in hillslopes. Therefore inclusion of macropore (and other subsurface) dynamics in ecohydrological models is likely necessary to describe vegetation response to the slower dynamics of the lateral redistribution of water on hillslopes. Despite their importance, there are currently no general approaches for describing macropore effects on hillslope ecohydrological dynamics. One difficulty is the lack of methods for observing the temporal and spatial signatures of preferential flow caused by macropores. To address this issue, we used multi-point direct-current resistivity to measure the spatial and temporal changes in soil moisture in an experimental laboratory tank following a mass-infiltration event into an open cavity representative of a large macropore. We compare the resulting high-resolution data to a full numerical simulation of the tank system derived from the PC-PROGRESS HYDRUS (2D/3D) software. Using the empirical data, we estimate the effective hydraulic soil parameters for the tank with the software’s inverse solution option. We also compare our experimental data with a known analytical solution to the system (Barenblatt, 1996). We find that the analytical solution provides good agreement with the empirical data and numerical approximation. These results indicate that analytical approaches may be able to characterize field-scale macropore dynamics.

  18. Imaging-Duration Embedded Dynamic Scheduling of Earth Observation Satellites for Emergent Events

    Directory of Open Access Journals (Sweden)

    Xiaonan Niu

    2015-01-01

    Full Text Available We present novel two-stage dynamic scheduling of earth observation satellites to provide emergency response by making full use of the duration of the imaging task execution. In the first stage, the multiobjective genetic algorithm NSGA-II is used to produce an optimal satellite imaging schedule schema, which is robust to dynamic adjustment as possible emergent events occur in the future. In the second stage, when certain emergent events do occur, a dynamic adjusting heuristic algorithm (CTM-DAHA is applied to arrange new tasks into the robust imaging schedule. Different from the existing dynamic scheduling methods, the imaging duration is embedded in the two stages to make full use of current satellite resources. In the stage of robust satellite scheduling, total task execution time is used as a robust indicator to obtain a satellite schedule with less imaging time. In other words, more imaging time is preserved for future emergent events. In the stage of dynamic adjustment, a compact task merging strategy is applied to combine both of existing tasks and emergency tasks into a composite task with least imaging time. Simulated experiments indicate that the proposed method can produce a more robust and effective satellite imaging schedule.

  19. Motion of flux transfer events: a test of the Cooling model

    Directory of Open Access Journals (Sweden)

    R. C. Fear

    2007-07-01

    Full Text Available The simple model of reconnected field line motion developed by Cooling et al. (2001 has been used in several recent case studies to explain the motion of flux transfer events across the magnetopause. We examine 213 FTEs observed by all four Cluster spacecraft under a variety of IMF conditions between November 2002 and June 2003, when the spacecraft tetrahedron separation was ~5000 km. Observed velocities were calculated from multi-spacecraft timing analysis, and compared with the velocities predicted by the Cooling model in order to check the validity of the model. After excluding three categories of FTEs (events with poorly defined velocities, a significant velocity component out of the magnetopause surface, or a scale size of less than 5000 km, we were left with a sample of 118 events. 78% of these events were consistent in both direction of motion and speed with one of the two model de Hoffmann-Teller (dHT velocities calculated from the Cooling model (to within 30° and a factor of two in the speed. We also examined the plasma signatures of several magnetosheath FTEs; the electron signatures confirm the hemisphere of connection indicated by the model in most cases. This indicates that although the model is a simple one, it is a useful tool for identifying the source regions of FTEs.

  20. Comparison of Cox Model Methods in A Low-dimensional Setting with Few Events

    Directory of Open Access Journals (Sweden)

    Francisco M. Ojeda

    2016-08-01

    Full Text Available Prognostic models based on survival data frequently make use of the Cox proportional hazards model. Developing reliable Cox models with few events relative to the number of predictors can be challenging, even in low-dimensional datasets, with a much larger number of observations than variables. In such a setting we examined the performance of methods used to estimate a Cox model, including (i full model using all available predictors and estimated by standard techniques, (ii backward elimination (BE, (iii ridge regression, (iv least absolute shrinkage and selection operator (lasso, and (v elastic net. Based on a prospective cohort of patients with manifest coronary artery disease (CAD, we performed a simulation study to compare the predictive accuracy, calibration, and discrimination of these approaches. Candidate predictors for incident cardiovascular events we used included clinical variables, biomarkers, and a selection of genetic variants associated with CAD. The penalized methods, i.e., ridge, lasso, and elastic net, showed a comparable performance, in terms of predictive accuracy, calibration, and discrimination, and outperformed BE and the full model. Excessive shrinkage was observed in some cases for the penalized methods, mostly on the simulation scenarios having the lowest ratio of a number of events to the number of variables. We conclude that in similar settings, these three penalized methods can be used interchangeably. The full model and backward elimination are not recommended in rare event scenarios.

  1. Effects of amines on particle growth observed in new particle formation events

    Science.gov (United States)

    Tao, Ye; Ye, Xingnan; Jiang, Shuqing; Yang, Xin; Chen, Jianmin; Xie, Yuanyuan; Wang, Ruyu

    2016-01-01

    Particle size distributions in the range of 0.01-10 µm were measured in urban Shanghai in the summer of 2013 using a Wide-range Particle Spectrometer (WPS). Size-segregated aerosol samples were collected concurrently using a Micro-Orifice Uniform Deposit Impactor (MOUDI), which aided our in-depth understanding of the new particle formation (NPF) mechanism in the polluted Yangtze River Delta area. During the observations, 16 NPF events occurred at high temperatures (~34.7°C) on clear and sunny days. In the ammonium-poor PM1.0 (particulate matter less than 1.0 µm), sulfate and ammonium accounted for 92% of the total water-soluble inorganic species. Six aminiums were detected in these MOUDI samples, among which the group of diethylaminium and trimethylaminium (DEAH+ + TMAH+) was the most abundant. The very high level of aminiums (average concentration up to 86.4 ng m-3 in PM1.8), together with highly acidic aerosols, provided insight into the frequent NPF events. The high mass ratio of total aminiums to NH4+ (>0.2 for PM0.056) further highlighted the important role of amines in promoting NPF. The concentration of DEAH+ + TMAH+ in new particles below 180 nm was strongly correlated with aerosol phase acidity, indicating that acid-base reactions dominated the aminium formation in NPF events. The unexpected enhancement of DEAH+ + TMAH+ on a nonevent day was attributed to the transportation of an SO2 plume. Our results reveal that the heterogeneous uptake of amines is dominated by the acid-base reaction mechanism, which can effectively contribute to particle growth in NPF events.

  2. Concurrency Models with Causality and Events as Psi-calculi

    Directory of Open Access Journals (Sweden)

    Håkon Normann

    2014-10-01

    Full Text Available Psi-calculi are a parametric framework for nominal calculi, where standard calculi are found as instances, like the pi-calculus, or the cryptographic spi-calculus and applied-pi. Psi-calculi have an interleaving operational semantics, with a strong foundation on the theory of nominal sets and process algebras. Much of the expressive power of psi-calculi comes from their logical part, i.e., assertions, conditions, and entailment, which are left quite open thus accommodating a wide range of logics. We are interested in how this expressiveness can deal with event-based models of concurrency. We thus take the popular prime event structures model and give an encoding into an instance of psi-calculi. We also take the recent and expressive model of Dynamic Condition Response Graphs (in which event structures are strictly included and give an encoding into another corresponding instance of psi-calculi. The encodings that we achieve look rather natural and intuitive. Additional results about these encodings give us more confidence in their correctness.

  3. A model of spreading of sudden events on social networks

    Science.gov (United States)

    Wu, Jiao; Zheng, Muhua; Zhang, Zi-Ke; Wang, Wei; Gu, Changgui; Liu, Zonghua

    2018-03-01

    Information spreading has been studied for decades, but its underlying mechanism is still under debate, especially for those ones spreading extremely fast through the Internet. By focusing on the information spreading data of six typical events on Sina Weibo, we surprisingly find that the spreading of modern information shows some new features, i.e., either extremely fast or slow, depending on the individual events. To understand its mechanism, we present a susceptible-accepted-recovered model with both information sensitivity and social reinforcement. Numerical simulations show that the model can reproduce the main spreading patterns of the six typical events. By this model, we further reveal that the spreading can be speeded up by increasing either the strength of information sensitivity or social reinforcement. Depending on the transmission probability and information sensitivity, the final accepted size can change from continuous to discontinuous transition when the strength of the social reinforcement is large. Moreover, an edge-based compartmental theory is presented to explain the numerical results. These findings may be of significance on the control of information spreading in modern society.

  4. Sensitivity of a Simulated Derecho Event to Model Initial Conditions

    Science.gov (United States)

    Wang, Wei

    2014-05-01

    Since 2003, the MMM division at NCAR has been experimenting cloud-permitting scale weather forecasting using Weather Research and Forecasting (WRF) model. Over the years, we've tested different model physics, and tried different initial and boundary conditions. Not surprisingly, we found that the model's forecasts are more sensitive to the initial conditions than model physics. In 2012 real-time experiment, WRF-DART (Data Assimilation Research Testbed) at 15 km was employed to produce initial conditions for twice-a-day forecast at 3 km. On June 29, this forecast system captured one of the most destructive derecho event on record. In this presentation, we will examine forecast sensitivity to different model initial conditions, and try to understand the important features that may contribute to the success of the forecast.

  5. 3D Evolution of a Filament Disappearance Event Observed by STEREO

    Science.gov (United States)

    Gosain, S.; Schmieder, B.; Venkatakrishnan, P.; Chandra, R.; Artzner, G.

    2009-10-01

    A filament disappearance event was observed on 22 May 2008 during our recent campaign JOP 178. The filament, situated in the Southern Hemisphere, showed sinistral chirality consistent with the hemispheric rule. The event was well observed by several observatories, in particular by THEMIS. One day, before the disappearance, Hα observations showed up- and down-flows in adjacent locations along the filament, which suggest plasma motions along twisted flux rope. THEMIS and GONG observations show shearing photospheric motions leading to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation angle 52.4°, showed quite different views of this untwisting flux rope in He ii 304 Å images. Here, we reconstruct the three-dimensional geometry of the filament during its eruption phase using STEREO EUV He ii 304 Å images and find that the filament was highly inclined to the solar normal. The He ii 304 Å movies show individual threads, which oscillate and rise to an altitude of about 120 Mm with apparent velocities of about 100 km s-1 during the rapid evolution phase. Finally, as the flux rope expands into the corona, the filament disappears by becoming optically thin to undetectable levels. No CME was detected by STEREO, only a faint CME was recorded by LASCO at the beginning of the disappearance phase at 02:00 UT, which could be due to partial filament eruption. Further, STEREO Fe xii 195 Å images showed bright loops beneath the filament prior to the disappearance phase, suggesting magnetic reconnection below the flux rope.

  6. Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations

    Science.gov (United States)

    Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.

    2013-12-01

    There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.

  7. Short time step continuous rainfall modeling and simulation of extreme events

    Science.gov (United States)

    Callau Poduje, A. C.; Haberlandt, U.

    2017-09-01

    The design, planning, operation and overall assessment of urban drainage systems require long and continuous rain series in a high temporal resolution. Unfortunately, the availability of this data is usually short. Nevertheless a precipitation model could be used to tackle this shortcoming; therefore it is in the aim of this study to present a stochastic point precipitation model to reproduce average rainfall event properties along with extreme values. For this purpose a model is proposed to generate long synthetic series of rainfall for a temporal resolution of 5 min. It is based on an alternating renewal framework and events are characterized by variables describing durations, amounts and peaks. A group of 24 stations located in the north of Germany is used to set up and test the model. The adequate modeling of joint behaviour of rainfall amount and duration is found to be essential for reproducing the observed properties, especially for the extreme events. Copulas are advantageous tools for modeling these variables jointly; however caution must be taken in the selection of the proper copula. The inclusion of seasonality and small events is as well tested and found to be useful. The model is directly validated by generating long synthetic time series and comparing them with observed ones. An indirect validation is as well performed based on a fictional urban hydrological system. The proposed model is capable of reproducing seasonal behaviour and main characteristics of the rainfall events including extremes along with urban flooding and overflow behaviour. Overall the performance of the model is acceptable compared to the design practice. The proposed model is simple to interpret, fast to implement and to transfer to other regions, whilst showing acceptable results.

  8. Confronting Cepheids Models with Interferometric Observations

    Science.gov (United States)

    Nardetto, N.

    In the last years, some issues concerning Cepheids have been resolved, based on observations and modeling. However, as usual, new difficulties arise. The link between the dynamical structure of Cepheid atmosphere and the distance scale calibration in the universe is now clearly established. To support observations, we currently need fully consistent hydrodynamical models, including pulsating and evolutionary theories, convective energy transport, adaptive numerical meshes, and a refined calculation of the radiative transfer within the pulsating atmosphere, and also in the expected circumstellar envelope (hereafter CSE). Confronting such models with observations (spectral line profiles, spatial- and spectral- visibility curves), will permit to resolve and/or strengthen subtle questions concerning (1) the limb-darkening, (2) the dynamical structure of Cepheids' atmosphere, (3) the expected interaction between the atmosphere and the CSE, and (4) it will bring new insights in determining the fundamental parameters of Cepheids. All these physical quantities are supposed furthermore to be linked to the pulsation period of Cepheids. From these studies, it will be possible to paint a glowing picture of all Cepheids within the instability strip, allowing an unprecedent calibration of the period-luminosity relation (hereafter PL relation), leading to new insights in the fields of extragalactic distance scales and cosmology.

  9. Observation and modelling of urban dew

    Science.gov (United States)

    Richards, Katrina

    Despite its relevance to many aspects of urban climate and to several practical questions, urban dew has largely been ignored. Here, simple observations an out-of-doors scale model, and numerical simulation are used to investigate patterns of dewfall and surface moisture (dew + guttation) in urban environments. Observations and modelling were undertaken in Vancouver, B.C., primarily during the summers of 1993 and 1996. Surveys at several scales (0.02-25 km) show that the main controls on dew are weather, location and site configuration (geometry and surface materials). Weather effects are discussed using an empirical factor, FW . Maximum dew accumulation (up to ~ 0.2 mm per night) is seen on nights with moist air and high FW , i.e., cloudless conditions with light winds. Favoured sites are those with high Ysky and surfaces which cool rapidly after sunset, e.g., grass and well insulated roofs. A 1/8-scale model is designed, constructed, and run at an out-of-doors site to study dew patterns in an urban residential landscape which consists of house lots, a street and an open grassed park. The Internal Thermal Mass (ITM) approach is used to scale the thermal inertia of buildings. The model is validated using data from full-scale sites in Vancouver. Patterns in the model agree with those seen at the full-scale, i.e., dew distribution is governed by weather, site geometry and substrate conditions. Correlation is shown between Ysky and surface moisture accumulation. The feasibility of using a numerical model to simulate urban dew is investigated using a modified version of a rural dew model. Results for simple isolated surfaces-a deciduous tree leaf and an asphalt shingle roof-show promise, especially for built surfaces.

  10. Modeling Heliospheric Interface: Observational and Theoretical Challenges

    Science.gov (United States)

    Pogorelov, N.; Heerikhuisen, J.; Borovikov, S.; Zank, G.

    2008-12-01

    Observational data provided by Voyager 1 and Voyager 2 spacecraft ahead of the heliospheric termination shock (TS) and in the heliosheath require considerate reassessment of theoretical models of the solar wind (SW) interaction with the magnetized interstellar medium (LISM). Contemporary models, although sophisticated enough to take into account kinetic processes accompanying charge exchange between ions and atoms and address the coupling of the interstellar and interplanetary magnetic fields (ISMF and IMF) at the heliospheric interface, are still unable to analyze the effect of non-thermal pick-up ions (PUI's) in the heliosheath. The presence of PUI's undermines the assumption of a Maxwellian distribution of the SW ions. We discuss the ways to improve physical models in this respect. The TS asymmetry observed by Voyagers can be attributed to the combination of 3D, time- dependent behavior of the SW and by the action of the ISMF. It is clear, however, that the ISMF alone can account for the TS asymmetry of about 10 AU only if it is unexpectedly strong (greater than 4 microgauss). We analyze the consequences of such magnetic fields for the neutral hydrogen deflection in the inner heliosphere from its original direction in the unperturbed LISM. We also discuss the conditions for the 2-3 kHz radio emission, which is believed to be generated in the outer heliosheath beyond the heliopause, and analyze possible location of radio emission sources under the assumption of strong magnetic field. The quality of the physical model becomes crucial when we need to address modern observational and theoretical challenges. We compare the plasma, neutral particle, and magnetic field distributions obtained with our MHD-kinetic and 5-fluid models. The transport of neutral particles is treated kinetically in the former and by a multiple neutral-fluid approach in the latter. We also investigate the distribution of magnetic field in the inner heliosheath for large angles between the Sun

  11. Grid Frequency Extreme Event Analysis and Modeling: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Florita, Anthony R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clark, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Folgueras, Maria [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wenger, Erin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-01

    Sudden losses of generation or load can lead to instantaneous changes in electric grid frequency and voltage. Extreme frequency events pose a major threat to grid stability. As renewable energy sources supply power to grids in increasing proportions, it becomes increasingly important to examine when and why extreme events occur to prevent destabilization of the grid. To better understand frequency events, including extrema, historic data were analyzed to fit probability distribution functions to various frequency metrics. Results showed that a standard Cauchy distribution fit the difference between the frequency nadir and prefault frequency (f_(C-A)) metric well, a standard Cauchy distribution fit the settling frequency (f_B) metric well, and a standard normal distribution fit the difference between the settling frequency and frequency nadir (f_(B-C)) metric very well. Results were inconclusive for the frequency nadir (f_C) metric, meaning it likely has a more complex distribution than those tested. This probabilistic modeling should facilitate more realistic modeling of grid faults.

  12. Hurdles to Overcome to Model Carrington Class Events

    Science.gov (United States)

    Engel, M.; Henderson, M. G.; Jordanova, V. K.; Morley, S.

    2017-12-01

    Large geomagnetic storms pose a threat to both space and ground based infrastructure. In order to help mitigate that threat a better understanding of the specifics of these storms is required. Various computer models are being used around the world to analyze the magnetospheric environment, however they are largely inadequate for analyzing the large and extreme storm time environments. Here we report on the first steps towards expanding and robustifying the RAM-SCB inner magnetospheric model, used in conjunction with BATS-R-US and the Space Weather Modeling Framework, in order to simulate storms with Dst > -400. These results will then be used to help expand our modelling capabilities towards including Carrington-class events.

  13. Comprehensive Assessment of Models and Events based on Library tools (CAMEL)

    Science.gov (United States)

    Rastaetter, L.; Boblitt, J. M.; DeZeeuw, D.; Mays, M. L.; Kuznetsova, M. M.; Wiegand, C.

    2017-12-01

    At the Community Coordinated Modeling Center (CCMC), the assessment of modeling skill using a library of model-data comparison metrics is taken to the next level by fully integrating the ability to request a series of runs with the same model parameters for a list of events. The CAMEL framework initiates and runs a series of selected, pre-defined simulation settings for participating models (e.g., WSA-ENLIL, SWMF-SC+IH for the heliosphere, SWMF-GM, OpenGGCM, LFM, GUMICS for the magnetosphere) and performs post-processing using existing tools for a host of different output parameters. The framework compares the resulting time series data with respective observational data and computes a suite of metrics such as Prediction Efficiency, Root Mean Square Error, Probability of Detection, Probability of False Detection, Heidke Skill Score for each model-data pair. The system then plots scores by event and aggregated over all events for all participating models and run settings. We are building on past experiences with model-data comparisons of magnetosphere and ionosphere model outputs in GEM2008, GEM-CEDAR CETI2010 and Operational Space Weather Model challenges (2010-2013). We can apply the framework also to solar-heliosphere as well as radiation belt models. The CAMEL framework takes advantage of model simulations described with Space Physics Archive Search and Extract (SPASE) metadata and a database backend design developed for a next-generation Run-on-Request system at the CCMC.

  14. Modeling the Magnetopause Shadowing Loss during the October 2012 Dropout Event

    Science.gov (United States)

    Tu, Weichao; Cunningham, Gregory

    2017-04-01

    The relativistic electron flux in Earth's outer radiation belt are observed to drop by orders of magnitude on timescales of a few hours, which is called radiation belt dropouts. Where do the electrons go during the dropouts? This is one of the most important outstanding questions in radiation belt studies. Radiation belt electrons can be lost either by precipitation into the atmosphere or by transport across the magnetopause into interplanetary space. The latter mechanism is called magnetopause shadowing, usually combined with outward radial diffusion of electrons due to the sharp radial gradient it creates. In order to quantify the relative contribution of these two mechanisms to radiation belt dropout, we performed an event study on the October 2012 dropout event observed by Van Allen Probes. First, the precipitating MeV electrons observed by multiple NOAA POES satellites at low altitude did not show evidence of enhanced precipitation during the dropout, which suggested that precipitation was not the dominant loss mechanism for the event. Then, in order to simulate the magnetopause shadowing loss and outward radial diffusion during the dropout, we applied a radial diffusion model with electron lifetimes on the order of electron drift periods outside the last closed drift shell. In addition, realistic and event-specific inputs of radial diffusion coefficients (DLL) and last closed drift shell (LCDS) were implemented in the model. Specifically, we used the new DLL developed by Cunningham [JGR 2016] which were estimated in realistic TS04 [Tsyganenko and Sitnov, JGR 2005] storm time magnetic field model and included physical K (2nd adiabatic invariant) or pitch angle dependence. Event-specific LCDS traced in TS04 model with realistic K dependence was also implemented. Our simulation results showed that these event-specific inputs are critical to explain the electron dropout during the event. The new DLL greatly improved the model performance at low L* regions (L*<3

  15. ENERGETIC PARTICLE OBSERVATIONS AND PROPAGATION IN THE THREE-DIMENSIONAL HELIOSPHERE DURING THE 2006 DECEMBER EVENTS

    International Nuclear Information System (INIS)

    Malandraki, O. E.; Marsden, R. G.; Tranquille, C.; Lario, D.; Heber, B.; Mewaldt, R. A.; Cohen, C. M. S.; Lanzerotti, L. J.; Forsyth, R. J.; Elliott, H. A.; Vogiatzis, I. I.; Geranios, A.

    2009-01-01

    We report observations of solar energetic particles obtained by the HI-SCALE and COSPIN/LET instruments onboard Ulysses during the period of isolated but intense solar activity in 2006 December, in the declining phase of the solar activity cycle. We present measurements of particle intensities and also discuss observations of particle anisotropies and composition in selected energy ranges. Active Region 10930 produced a series of major solar flares with the strongest one (X9.0) recorded on December 5 after it rotated into view on the solar east limb. Located over the South Pole of the Sun, at >72 0 S heliographic latitude and 2.8 AU radial distance, Ulysses provided unique measurements for assessing the nature of particle propagation to high latitudes under near-minimum solar activity conditions, in a relatively undisturbed heliosphere. The observations seem to exclude the possibility that magnetic field lines originating at low latitudes reached Ulysses, suggesting either that the energetic particles observed as large solar energetic particle (SEP) events over the South Pole of the Sun in 2006 December were released when propagating coronal waves reached high-latitude field lines connected to Ulysses, or underwent perpendicular diffusion. We also discuss comparisons with energetic particle data acquired by the STEREO and Advanced Composition Explorer in the ecliptic plane near 1 AU during this period.

  16. Observation of the Higgs particle in gamma-gamma events and search for the Higgs particle in Z-gamma events at ATLAS

    International Nuclear Information System (INIS)

    Liu, K.

    2014-01-01

    This thesis focuses on the searches for the Higgs boson in events with photons in the final states, using the full proton-proton collision data collected by ATLAS at √(s)=7 and 8 TeV in 2011 and 2012. Higgs boson decays to photon pairs or to a photon and a Z boson decaying to di-electrons or di-muons are investigated. The event selection, the main backgrounds, the signal properties, and the statistical discrimination between the signal and background in data and the interpretation of the results in terms of a Standard Model Higgs boson are discussed. In the H → γγ channel a clear excess over the background is seen at a mass of m H =[126.8±0.2(stat)±0.7(syst)] GeV, with a local significance of 7.4 σ. In the rare decay channel H → Zγ no evidence of excess over the background is observed in the mass range 120-150 GeV, and, for a Higgs boson mass near the one obtained from the combined mass measurement in the γγ and 4-lepton final states, m H =125.5 GeV, an upper limit of 11 times the Standard Model prediction, at 95% confidence level, is set on the production cross section times the H → Zγ cross section. One of the most important ingredient for these measurements is the efficient reconstruction and identification of photons, and a precise knowledge of the trigger and identification performance. A significant part of the document is thus devoted to the photon performance optimisation and measurement activities that I carried on in the past three years. (author)

  17. Dark energy observational evidence and theoretical models

    CERN Document Server

    Novosyadlyj, B; Shtanov, Yu; Zhuk, A

    2013-01-01

    The book elucidates the current state of the dark energy problem and presents the results of the authors, who work in this area. It describes the observational evidence for the existence of dark energy, the methods and results of constraining of its parameters, modeling of dark energy by scalar fields, the space-times with extra spatial dimensions, especially Kaluza---Klein models, the braneworld models with a single extra dimension as well as the problems of positive definition of gravitational energy in General Relativity, energy conditions and consequences of their violation in the presence of dark energy. This monograph is intended for science professionals, educators and graduate students, specializing in general relativity, cosmology, field theory and particle physics.

  18. INTERVAL OBSERVER FOR A BIOLOGICAL REACTOR MODEL

    Directory of Open Access Journals (Sweden)

    T. A. Kharkovskaia

    2014-05-01

    Full Text Available The method of an interval observer design for nonlinear systems with parametric uncertainties is considered. The interval observer synthesis problem for systems with varying parameters consists in the following. If there is the uncertainty restraint for the state values of the system, limiting the initial conditions of the system and the set of admissible values for the vector of unknown parameters and inputs, the interval existence condition for the estimations of the system state variables, containing the actual state at a given time, needs to be held valid over the whole considered time segment as well. Conditions of the interval observers design for the considered class of systems are shown. They are: limitation of the input and state, the existence of a majorizing function defining the uncertainty vector for the system, Lipschitz continuity or finiteness of this function, the existence of an observer gain with the suitable Lyapunov matrix. The main condition for design of such a device is cooperativity of the interval estimation error dynamics. An individual observer gain matrix selection problem is considered. In order to ensure the property of cooperativity for interval estimation error dynamics, a static transformation of coordinates is proposed. The proposed algorithm is demonstrated by computer modeling of the biological reactor. Possible applications of these interval estimation systems are the spheres of robust control, where the presence of various types of uncertainties in the system dynamics is assumed, biotechnology and environmental systems and processes, mechatronics and robotics, etc.

  19. Joint Models of Longitudinal and Time-to-Event Data with More Than One Event Time Outcome: A Review.

    Science.gov (United States)

    Hickey, Graeme L; Philipson, Pete; Jorgensen, Andrea; Kolamunnage-Dona, Ruwanthi

    2018-01-31

    Methodological development and clinical application of joint models of longitudinal and time-to-event outcomes have grown substantially over the past two decades. However, much of this research has concentrated on a single longitudinal outcome and a single event time outcome. In clinical and public health research, patients who are followed up over time may often experience multiple, recurrent, or a succession of clinical events. Models that utilise such multivariate event time outcomes are quite valuable in clinical decision-making. We comprehensively review the literature for implementation of joint models involving more than a single event time per subject. We consider the distributional and modelling assumptions, including the association structure, estimation approaches, software implementations, and clinical applications. Research into this area is proving highly promising, but to-date remains in its infancy.

  20. High resolution modelling of extreme precipitation events in urban areas

    Science.gov (United States)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  1. Assessing distractors and teamwork during surgery: developing an event-based method for direct observation.

    Science.gov (United States)

    Seelandt, Julia C; Tschan, Franziska; Keller, Sandra; Beldi, Guido; Jenni, Nadja; Kurmann, Anita; Candinas, Daniel; Semmer, Norbert K

    2014-11-01

    To develop a behavioural observation method to simultaneously assess distractors and communication/teamwork during surgical procedures through direct, on-site observations; to establish the reliability of the method for long (>3 h) procedures. Observational categories for an event-based coding system were developed based on expert interviews, observations and a literature review. Using Cohen's κ and the intraclass correlation coefficient, interobserver agreement was assessed for 29 procedures. Agreement was calculated for the entire surgery, and for the 1st hour. In addition, interobserver agreement was assessed between two tired observers and between a tired and a non-tired observer after 3 h of surgery. The observational system has five codes for distractors (door openings, noise distractors, technical distractors, side conversations and interruptions), eight codes for communication/teamwork (case-relevant communication, teaching, leadership, problem solving, case-irrelevant communication, laughter, tension and communication with external visitors) and five contextual codes (incision, last stitch, personnel changes in the sterile team, location changes around the table and incidents). Based on 5-min intervals, Cohen's κ was good to excellent for distractors (0.74-0.98) and for communication/teamwork (0.70-1). Based on frequency counts, intraclass correlation coefficient was excellent for distractors (0.86-0.99) and good to excellent for communication/teamwork (0.45-0.99). After 3 h of surgery, Cohen's κ was 0.78-0.93 for distractors, and 0.79-1 for communication/teamwork. The observational method developed allows a single observer to simultaneously assess distractors and communication/teamwork. Even for long procedures, high interobserver agreement can be achieved. Data collected with this method allow for investigating separate or combined effects of distractions and communication/teamwork on surgical performance and patient outcomes. Published by the

  2. A systematic comparison of recurrent event models for application to composite endpoints.

    Science.gov (United States)

    Ozga, Ann-Kathrin; Kieser, Meinhard; Rauch, Geraldine

    2018-01-04

    Many clinical trials focus on the comparison of the treatment effect between two or more groups concerning a rarely occurring event. In this situation, showing a relevant effect with an acceptable power requires the observation of a large number of patients over a long period of time. For feasibility issues, it is therefore often considered to include several event types of interest, non-fatal or fatal, and to combine them within a composite endpoint. Commonly, a composite endpoint is analyzed with standard survival analysis techniques by assessing the time to the first occurring event. This approach neglects that an individual may experience more than one event which leads to a loss of information. As an alternative, composite endpoints could be analyzed by models for recurrent events. There exists a number of such models, e.g. regression models based on count data or Cox-based models such as the approaches of Andersen and Gill, Prentice, Williams and Peterson or, Wei, Lin and Weissfeld. Although some of the methods were already compared within the literature there exists no systematic investigation for the special requirements regarding composite endpoints. Within this work a simulation-based comparison of recurrent event models applied to composite endpoints is provided for different realistic clinical trial scenarios. We demonstrate that the Andersen-Gill model and the Prentice- Williams-Petersen models show similar results under various data scenarios whereas the Wei-Lin-Weissfeld model delivers effect estimators which can considerably deviate under commonly met data scenarios. Based on the conducted simulation study, this paper helps to understand the pros and cons of the investigated methods in the context of composite endpoints and provides therefore recommendations for an adequate statistical analysis strategy and a meaningful interpretation of results.

  3. Ionospheric Data Assimilation and Targeted Observation Strategies: Proof of Concept Analysis in a Geomagnetic Storm Event

    Science.gov (United States)

    Kostelich, Eric; Durazo, Juan; Mahalov, Alex

    2017-11-01

    The dynamics of the ionosphere involve complex interactions between the atmosphere, solar wind, cosmic radiation, and Earth's magnetic field. Geomagnetic storms arising from solar activity can perturb these dynamics sufficiently to disrupt radio and satellite communications. Efforts to predict ``space weather,'' including ionospheric dynamics, require the development of a data assimilation system that combines observing systems with appropriate forecast models. This talk will outline a proof-of-concept targeted observation strategy, consisting of the Local Ensemble Transform Kalman Filter, coupled with the Thermosphere Ionosphere Electrodynamics Global Circulation Model, to select optimal locations where additional observations can be made to improve short-term ionospheric forecasts. Initial results using data and forecasts from the geomagnetic storm of 26-27 September 2011 will be described. Work supported by the Air Force Office of Scientific Research (Grant Number FA9550-15-1-0096) and by the National Science Foundation (Grant Number DMS-0940314).

  4. ONSETS AND SPECTRA OF IMPULSIVE SOLAR ENERGETIC ELECTRON EVENTS OBSERVED NEAR THE EARTH

    International Nuclear Information System (INIS)

    Kontar, Eduard P.; Reid, Hamish A. S.

    2009-01-01

    Impulsive solar energetic electrons are often observed in the interplanetary space near the Earth and have an attractive diagnostic potential for poorly understood solar flare acceleration processes. We investigate the transport of solar flare energetic electrons in the heliospheric plasma to understand the role of transport to the observed onset and spectral properties of the impulsive solar electron events. The propagation of energetic electrons in solar wind plasma is simulated from the acceleration region at the Sun to the Earth, taking into account self-consistent generation and absorption of electrostatic electron plasma (Langmuir) waves, effects of nonuniform plasma, collisions, and Landau damping. The simulations suggest that the beam-driven plasma turbulence and the effects of solar wind density inhomogeneity play a crucial role and lead to the appearance of (1) a spectral break for a single power-law injected electron spectrum, with the spectrum flatter below the break, (2) apparent early onset of low-energy electron injection, and (3) the apparent late maximum of low-energy electron injection. We show that the observed onsets, spectral flattening at low energies, and formation of a break energy at tens of keV is the direct manifestation of wave-particle interactions in nonuniform plasma of a single accelerated electron population with an initial power-law spectrum.

  5. A twenty-first century California observing network for monitoring extreme weather events

    Science.gov (United States)

    White, A.B.; Anderson, M.L.; Dettinger, M.D.; Ralph, F.M.; Hinojosa, A.; Cayan, D.R.; Hartman, R.K.; Reynolds, D.W.; Johnson, L.E.; Schneider, T.L.; Cifelli, R.; Toth, Z.; Gutman, S.I.; King, C.W.; Gehrke, F.; Johnston, P.E.; Walls, C.; Mann, Dorte; Gottas, D.J.; Coleman, T.

    2013-01-01

    During Northern Hemisphere winters, the West Coast of North America is battered by extratropical storms. The impact of these storms is of paramount concern to California, where aging water supply and flood protection infrastructures are challenged by increased standards for urban flood protection, an unusually variable weather regime, and projections of climate change. Additionally, there are inherent conflicts between releasing water to provide flood protection and storing water to meet requirements for water supply, water quality, hydropower generation, water temperature and flow for at-risk species, and recreation. In order to improve reservoir management and meet the increasing demands on water, improved forecasts of precipitation, especially during extreme events, is required. Here we describe how California is addressing their most important and costliest environmental issue – water management – in part, by installing a state-of-the-art observing system to better track the area’s most severe wintertime storms.

  6. The Substructure of a Flux Transfer Event Observed by the MMS Spacecraft

    Science.gov (United States)

    Hwang, K.-J.; Sibeck, D. G.; Giles, B. L.; Pollock, C. J.; Gershman, D.; Avanov, L.; Paterson, W. R.; Dorelli, J. C.; Ergun, R. E.; Russel, C. T.; hide

    2016-01-01

    On 15 August 2015, MMS (Magnetospheric Multiscale mission), skimming the dusk magnetopause, detected an isolated region of an increased magnetic strength and bipolar Bn, indicating a flux transfer event (FTE). The four spacecraft in a tetrahedron allowed for investigations of the shape and motion of the FTE. In particular, high-resolution particle data facilitated our exploration of FTE substructures and their magnetic connectivity inside and surrounding the FTE. Combined field and plasma observations suggest that the core fields are open, magnetically connected to the northern magnetosphere from which high-energy particles leak; ion "D" distributions characterize the axis of flux ropes that carry old-opened field lines; counter streaming electrons superposed by parallel-heated components populate the periphery surrounding the FTE; and the interface between the core and draped regions contains a separatrix of newlyopened magnetic field lines that emanate from the X line above the FTE.

  7. Magnetospheric Multiscale (MMS) Observations of Energetic Ion Response to Magnetotail Dipolarization Events

    Science.gov (United States)

    Cohen, I. J.; Mauk, B.; Anderson, B. J.; Sitnov, M. I.; Motoba, T.; Ohtani, S.; Gkioulidou, M.; Fuselier, S. A.; Giles, B. L.; Strangeway, R. J.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    Observations from the Energetic Ion Spectrometer (EIS) instruments aboard MMS have shown angular (pitch, elevation, azimuthal) asymmetries of energetic (>10s of keV) ions corresponding to dipolarization events in the near-Earth and distant magnetotail. In particular, EIS distinguishes the species composition of these ions (protons, helium, oxygen) and reveals apparent species-based differences in their response. This study presents analysis of the dynamic injection and mass-dependent response of energetic ions that likely result from the kinetic response of the ions to the time-varying electric and magnetic fields associated with injection process. Analysis is focused on discriminating between truly kinetic responses to the dynamics and the features that arise from large gyro-radii particles in the vicinity of strong spatial gradients. The study will focus on EIS measurements and include supplementary data from the FIELDS, FPI, and HPCA instruments.

  8. SDSS-IV MaNGA: A SERENDIPITOUS OBSERVATION OF A POTENTIAL GAS ACCRETION EVENT

    International Nuclear Information System (INIS)

    Cheung, Edmond; Stark, David V.; Huang, Song; Rubin, Kate H. R.; Lin, Lihwai; Tremonti, Christy; Zhang, Kai; Yan, Renbin; Bizyaev, Dmitry; Malanushenko, Olena; Boquien, Médéric; Brownstein, Joel R.; Drory, Niv; Gelfand, Joseph D.; Knapen, Johan H.; Maiolino, Roberto; Masters, Karen L.

    2016-01-01

    The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric H α complex with no optical counterpart that extends ≈8″ (≈6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This H α extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios and discuss whether this H α extension could be diffuse ionized gas, a gas accretion event, or something else. We find that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.

  9. SDSS-IV MaNGA: A Serendipitous Observation of a Potential Gas Accretion Event

    Science.gov (United States)

    Cheung, Edmond; Stark, David V.; Huang, Song; Rubin, Kate H. R.; Lin, Lihwai; Tremonti, Christy; Zhang, Kai; Yan, Renbin; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Drory, Niv; Gelfand, Joseph D.; Knapen, Johan H.; Maiolino, Roberto; Malanushenko, Olena; Masters, Karen L.; Merrifield, Michael R.; Pace, Zach; Pan, Kaike; Riffel, Rogemar A.; Roman-Lopes, Alexandre; Rujopakarn, Wiphu; Schneider, Donald P.; Stott, John P.; Thomas, Daniel; Weijmans, Anne-Marie

    2016-12-01

    The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric Hα complex with no optical counterpart that extends ≈8″ (≈6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This Hα extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios and discuss whether this Hα extension could be diffuse ionized gas, a gas accretion event, or something else. We find that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.

  10. SDSS-IV MaNGA: A SERENDIPITOUS OBSERVATION OF A POTENTIAL GAS ACCRETION EVENT

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Edmond; Stark, David V.; Huang, Song [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Rubin, Kate H. R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lin, Lihwai [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Tremonti, Christy [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Zhang, Kai; Yan, Renbin [Department of Physics and Astronomy, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055 (United States); Bizyaev, Dmitry; Malanushenko, Olena [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Boquien, Médéric [Unidad de Astronomía, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta 1270300 (Chile); Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, 115 S. 1400 E., Salt Lake City, UT 84112 (United States); Drory, Niv [McDonald Observatory, Department of Astronomy, University of Texas at Austin, 1 University Station, Austin, TX 78712-0259 (United States); Gelfand, Joseph D. [NYU Abu Dhabi, P.O. Box 129188, Abu Dhabi (United Arab Emirates); Knapen, Johan H. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Maiolino, Roberto [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Masters, Karen L., E-mail: ec2250@gmail.com [Institute for Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); and others

    2016-12-01

    The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric H α complex with no optical counterpart that extends ≈8″ (≈6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This H α extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios and discuss whether this H α extension could be diffuse ionized gas, a gas accretion event, or something else. We find that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.

  11. A Dynamic Approach to Modeling Dependence Between Human Failure Events

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory

    2015-09-01

    In practice, most HRA methods use direct dependence from THERP—the notion that error be- gets error, and one human failure event (HFE) may increase the likelihood of subsequent HFEs. In this paper, we approach dependence from a simulation perspective in which the effects of human errors are dynamically modeled. There are three key concepts that play into this modeling: (1) Errors are driven by performance shaping factors (PSFs). In this context, the error propagation is not a result of the presence of an HFE yielding overall increases in subsequent HFEs. Rather, it is shared PSFs that cause dependence. (2) PSFs have qualities of lag and latency. These two qualities are not currently considered in HRA methods that use PSFs. Yet, to model the effects of PSFs, it is not simply a matter of identifying the discrete effects of a particular PSF on performance. The effects of PSFs must be considered temporally, as the PSFs will have a range of effects across the event sequence. (3) Finally, there is the concept of error spilling. When PSFs are activated, they not only have temporal effects but also lateral effects on other PSFs, leading to emergent errors. This paper presents the framework for tying together these dynamic dependence concepts.

  12. Control of discrete event systems modeled as hierarchical state machines

    Science.gov (United States)

    Brave, Y.; Heymann, M.

    1991-01-01

    The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.

  13. Detecting Seismic Events Using a Supervised Hidden Markov Model

    Science.gov (United States)

    Burks, L.; Forrest, R.; Ray, J.; Young, C.

    2017-12-01

    We explore the use of supervised hidden Markov models (HMMs) to detect seismic events in streaming seismogram data. Current methods for seismic event detection include simple triggering algorithms, such as STA/LTA and the Z-statistic, which can lead to large numbers of false positives that must be investigated by an analyst. The hypothesis of this study is that more advanced detection methods, such as HMMs, may decreases false positives while maintaining accuracy similar to current methods. We train a binary HMM classifier using 2 weeks of 3-component waveform data from the International Monitoring System (IMS) that was carefully reviewed by an expert analyst to pick all seismic events. Using an ensemble of simple and discrete features, such as the triggering of STA/LTA, the HMM predicts the time at which transition occurs from noise to signal. Compared to the STA/LTA detection algorithm, the HMM detects more true events, but the false positive rate remains unacceptably high. Future work to potentially decrease the false positive rate may include using continuous features, a Gaussian HMM, and multi-class HMMs to distinguish between types of seismic waves (e.g., P-waves and S-waves). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.SAND No: SAND2017-8154 A

  14. Application of a Coupled WRF-Hydro Model for Extreme Flood Events in the Mediterranean Basins

    Science.gov (United States)

    Fredj, Erick; Givati, Amir

    2015-04-01

    More accurate simulation of precipitation and streamflow is a challenge that can be addressed by using the Weather Research and Forecasting Model (WRF) in conjunction with the hydrological model coupling extension package (WRF-Hydro).This is demonstrated for the country of Israel and surrounding regions. Simulations from the coupled WRF/WRF-Hydro system were verified against measurements from rain gauges and hydrometric stations in the domain for the 2012-2013 and 2013-2014 winters (wet seasons). These periods were characterized by many punctuated hydrometeorological and hydroclimatic events, including both severe drought and extreme floods events. The WRF model simulations were initialized with 0.5 degree NOAA/NCEP GFS model data. The model domain was set up with 3 domains, up to 3km grid spacing resolution. The model configuration used here constitutes a fully distributed, 3-dimensional, variably-saturated surface and subsurface flow model. Application of terrain routing and, subsequently, channel and reservoir routing functions, to the uni-dimensional NOAA land surface model was motivated by the need to account for increased complexity in land surface states and fluxes and to provide a more physically-realistic conceptualization of terrestrial hydrologic processes. The simulation results indicated a good agreement with actual peak discharges for extreme flood events and for full hydrographs. Specifically the coupled WRF/WRF-Hydro model as configured in this study shows improvement in simulated precipitation over one way WRF precipitation simulations. The correlation between the observed and the simulated precipitation using the fully coupled WRF/WRF-Hydro system was higher than the standalone WRF model, especially for convective precipitation events that affect arid regions in the domain. The results suggest that the coupled WRF/WRF-Hydro system has potential for flood forecasting and flood warning purposes at 0-72 hour lead times for large cool season storm

  15. A Method to Quantify Plant Availability and Initiating Event Frequency Using a Large Event Tree, Small Fault Tree Model

    International Nuclear Information System (INIS)

    Kee, Ernest J.; Sun, Alice; Rodgers, Shawn; Popova, ElmiraV; Nelson, Paul; Moiseytseva, Vera; Wang, Eric

    2006-01-01

    South Texas Project uses a large fault tree to produce scenarios (minimal cut sets) used in quantification of plant availability and event frequency predictions. On the other hand, the South Texas Project probabilistic risk assessment model uses a large event tree, small fault tree for quantifying core damage and radioactive release frequency predictions. The South Texas Project is converting its availability and event frequency model to use a large event tree, small fault in an effort to streamline application support and to provide additional detail in results. The availability and event frequency model as well as the applications it supports (maintenance and operational risk management, system engineering health assessment, preventive maintenance optimization, and RIAM) are briefly described. A methodology to perform availability modeling in a large event tree, small fault tree framework is described in detail. How the methodology can be used to support South Texas Project maintenance and operations risk management is described in detail. Differences with other fault tree methods and other recently proposed methods are discussed in detail. While the methods described are novel to the South Texas Project Risk Management program and to large event tree, small fault tree models, concepts in the area of application support and availability modeling have wider applicability to the industry. (authors)

  16. Lagrangian Observations and Modeling of Marine Larvae

    Science.gov (United States)

    Paris, Claire B.; Irisson, Jean-Olivier

    2017-04-01

    Just within the past two decades, studies on the early-life history stages of marine organisms have led to new paradigms in population dynamics. Unlike passive plant seeds that are transported by the wind or by animals, marine larvae have motor and sensory capabilities. As a result, marine larvae have a tremendous capacity to actively influence their dispersal. This is continuously revealed as we develop new techniques to observe larvae in their natural environment and begin to understand their ability to detect cues throughout ontogeny, process the information, and use it to ride ocean currents and navigate their way back home, or to a place like home. We present innovative in situ and numerical modeling approaches developed to understand the underlying mechanisms of larval transport in the ocean. We describe a novel concept of a Lagrangian platform, the Drifting In Situ Chamber (DISC), designed to observe and quantify complex larval behaviors and their interactions with the pelagic environment. We give a brief history of larval ecology research with the DISC, showing that swimming is directional in most species, guided by cues as diverse as the position of the sun or the underwater soundscape, and even that (unlike humans!) larvae orient better and swim faster when moving as a group. The observed Lagrangian behavior of individual larvae are directly implemented in the Connectivity Modeling System (CMS), an open source Lagrangian tracking application. Simulations help demonstrate the impact that larval behavior has compared to passive Lagrangian trajectories. These methodologies are already the base of exciting findings and are promising tools for documenting and simulating the behavior of other small pelagic organisms, forecasting their migration in a changing ocean.

  17. Mechanistic modelling of genetic and epigenetic events in radiation carcinogenesis

    International Nuclear Information System (INIS)

    Andreev, S. G.; Eidelman, Y. A.; Salnikov, I. V.; Khvostunov, I. K.

    2006-01-01

    Methodological problems arise on the way of radiation carcinogenesis modelling with the incorporation of radiobiological and cancer biology mechanistic data. The results of biophysical modelling of different endpoints [DNA DSB induction, repair, chromosome aberrations (CA) and cell proliferation] are presented and applied to the analysis of RBE-LET relationships for radiation-induced neoplastic transformation (RINT) of C3H/10T1/2 cells in culture. Predicted values for some endpoints correlate well with the data. It is concluded that slowly repaired DSB clusters, as well as some kind of CA, may be initiating events for RINT. As an alternative interpretation, it is possible that DNA damage can induce RINT indirectly via epigenetic process. A hypothetical epigenetic pathway for RINT is discussed. (authors)

  18. Hydrodynamic modelling of extreme flood events in the Kashmir valley in India

    Science.gov (United States)

    Jain, Manoj; Parvaze, Sabah

    2017-04-01

    extreme flood events showed good agreement (within ±15%) with corresponding observed peak discharge. The model could simulated the most severe flood event of 2014 reasonably well with simulated peak discharge of 2055 m3/s which is just 3% more than the observed discharge. The developed hydrodynamic model may be useful in simulating extreme flood events in the Kashmir Valley with reasonably good reproduction of extreme flood events.

  19. Analysis, Design, Implementation and Evaluation of Graphical Design Tool to Develop Discrete Event Simulation Models Using Event Graphs and Simkit

    National Research Council Canada - National Science Library

    San

    2001-01-01

    ... (OR) modeling and analysis. However, designing and implementing DES can be a time-consuming and error-prone task, This thesis designed, implemented and evaluated a tool, the Event Graph Graphical Design Tool (EGGDT...

  20. Modelling shear wave splitting observations from Wellington, New Zealand

    Science.gov (United States)

    Marson-Pidgeon, Katrina; Savage, Martha K.

    2004-05-01

    Frequency-dependent anisotropy was previously observed at the permanent broad-band station SNZO, South Karori, Wellington, New Zealand. This has important implications for the interpretation of measurements in other subduction zones and hence for our understanding of mantle flow. This motivated us to make further splitting measurements using events recorded since the previous study and to develop a new modelling technique. Thus, in this study we have made 67 high-quality shear wave splitting measurements using events recorded at the SNZO station spanning a 10-yr period. This station is the only one operating in New Zealand for longer than 2 yr. Using a combination of teleseismic SKS and S phases and regional ScS phases provides good azimuthal coverage, allowing us to undertake detailed modelling. The splitting measurements indicate that in addition to the frequency dependence observed previously at this station, there are also variations with propagation and initial polarization directions. The fast polarization directions range between 2° and 103°, and the delay times range between 0.75 s and 3.05 s. These ranges are much larger than observed previously at SNZO or elsewhere in New Zealand. Because of the observed frequency dependence we measure the dominant frequency of the phase used to make the splitting measurement, and take this into account in the modelling. We fit the fast polarization directions fairly well with a two-layer anisotropic model with horizontal axes of symmetry. However, such a model does not fit the delay times or explain the frequency dependence. We have developed a new inversion method which allows for an inclined axis of symmetry in each of the two layers. However, applying this method to SNZO does not significantly improve the fit over a two-layer model with horizontal symmetry axes. We are therefore unable to explain the frequency dependence or large variation in delay time values with multiple horizontal layers of anisotropy, even

  1. VLA Radio Observations of the blazar TXS 0506+056 associated with the IceCube-170922A neutrino event

    Science.gov (United States)

    Tetarenko, A. J.; Sivakoff, G. R.; Kimball, A. E.; Miller-Jones, J. C. A.

    2017-10-01

    We report VLA radio observations of the blazar TXS 0506+056, following its identification as the potential astrophysical origin of the extremely high energy neutrino event IceCube-170922A (GCN #21916).

  2. Radio observations of the γ-ray quasar 0528+134. Superluminal motion and an extreme scattering event.

    Science.gov (United States)

    Pohl, M.; Reich, W.; Krichbaum, T. P.; Standke, K.; Britzen, S.; Reuter, H. P.; Reich, P.; Schlickeiser, R.; Fiedler, R. L.; Waltman, E. B.; Ghigo, F. D.; Johnston, K. J.

    1995-11-01

    in the Orion complex and that we note frequent fluctuations of the order of 25% at 2.3GHz/2.695GHz, our lowest monitoring frequencies, while the variations at higher frequencies are more smooth. It is shown that the appearance of the extreme scattering event in the light curves of 0528+134 depends strongly on its VLBI structure and on the observed spectral appearance in our two frequency VLBI data. Due to these strong constraints our successful modelling provides the best available evidence that unusual variability behaviour of AGN may be caused by extreme scattering events and that localised (r<1AU) and dense (n_e_=100-1000cm^-3^) plasma structures do exist in the interstellar medium of our Galaxy.

  3. Observational analyses of dramatic developments of a severe air pollution event in the Beijing area

    Science.gov (United States)

    Li, Ju; Sun, Jielun; Zhou, Mingyu; Cheng, Zhigang; Li, Qingchun; Cao, Xiaoyan; Zhang, Jingjiang

    2018-03-01

    A rapid development of a severe air pollution event in Beijing, China, at the end of November 2015 was investigated with unprecedented observations collected during the field campaign of the Study of Urban Rainfall and Fog/Haze (SURF-15). Different from previous statistical analyses of air pollution events and their correlations with meteorological environmental conditions in the area, the role of turbulent mixing in the pollutant transfer was investigated in detail. The analyses indicate that the major pollution source associated with high particulate matter of diameter 2.5 µm (PM2.5) was from south of Beijing. Before the day of the dramatic PM2.5 increase, the nighttime downslope flow from the mountains to the west and north of Beijing reduced the surface PM2.5 concentration northwest of Beijing. The nighttime surface stable boundary layer (SBL) not only kept the relatively less-polluted air near the surface, it also shielded the rough surface from the pollutant transfer by southwesterly winds above the SBL, leading to the fast transport of pollutants over the Beijing area at night. As the daytime convective turbulent mixing developed in the morning, turbulent mixing transported the elevated polluted air downward even though the weak surface wind was from northeast, leading to the dramatic increase of the surface PM2.5 concentration in the urban area. As a result of both turbulent mixing and advection processes with possible aerosol growth from secondary aerosol formation under the low-wind and high-humidity conditions, the PM2.5 concentration reached over 700 µg m-3 in the Beijing area by the end of the day. Contributions of the two transporting processes to the PM2.5 oscillations prior to this dramatic event were also analyzed. The study demonstrates the important role of large-eddy convective turbulent mixing in vertical transfer of pollutants and the role of the SBL in not only decoupling vertical transport of trace gases and aerosols but also in

  4. Analysis of hypoglycemic events using negative binomial models.

    Science.gov (United States)

    Luo, Junxiang; Qu, Yongming

    2013-01-01

    Negative binomial regression is a standard model to analyze hypoglycemic events in diabetes clinical trials. Adjusting for baseline covariates could potentially increase the estimation efficiency of negative binomial regression. However, adjusting for covariates raises concerns about model misspecification, in which the negative binomial regression is not robust because of its requirement for strong model assumptions. In some literature, it was suggested to correct the standard error of the maximum likelihood estimator through introducing overdispersion, which can be estimated by the Deviance or Pearson Chi-square. We proposed to conduct the negative binomial regression using Sandwich estimation to calculate the covariance matrix of the parameter estimates together with Pearson overdispersion correction (denoted by NBSP). In this research, we compared several commonly used negative binomial model options with our proposed NBSP. Simulations and real data analyses showed that NBSP is the most robust to model misspecification, and the estimation efficiency will be improved by adjusting for baseline hypoglycemia. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Analytic expressions for the construction of a fire event PSA model

    International Nuclear Information System (INIS)

    Kang, Dae Il; Kim, Kil Yoo; Kim, Dong San; Hwang, Mee Jeong; Yang, Joon Eon

    2016-01-01

    In this study, the changing process of an internal event PSA model to a fire event PSA model is analytically presented and discussed. Many fire PSA models have fire induced initiating event fault trees not shown in an internal event PSA model. Fire-induced initiating fault tree models are developed for addressing multiple initiating event issues. A single fire event within a fire compartment or fire scenario can cause multiple initiating events. As an example, a fire in a turbine building area can cause a loss of the main feed-water and loss of off-site power initiating events. Up to now, there has been no analytic study on the construction of a fire event PSA model using an internal event PSA model with fault trees of initiating events. In this paper, the changing process of an internal event PSA model to a fire event PSA model was analytically presented and discussed. This study results show that additional cutsets can be obtained if the fault trees of initiating events for a fire event PSA model are not exactly developed.

  6. Airborne observations of new particle formation events in the boundary layer using a Zeppelin

    Science.gov (United States)

    Lampilahti, Janne; Manninen, Hanna E.; Nieminen, Tuomo; Mirme, Sander; Pullinen, Iida; Yli-Juuti, Taina; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Lehtipalo, Katrianne; Ehn, Mikael; Mentel, Thomas F.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    Atmospheric new particle formation (NPF) is a frequent and ubiquitous process in the atmosphere and a major source of newly formed aerosol particles [1]. However, it is still unclear how the aerosol particle distribution evolves in space and time during an NPF. We investigated where in the planetary boundary layer does NPF begin and how does the aerosol number size distribution develop in space and time during it. We measured in Hyytiälä, southern Finland using ground based and airborne measurements. The measurements were part of the PEGASOS project. NPF was studied on six scientific flights during spring 2013 using a Zeppelin NT class airship. Ground based measurements were simultaneously conducted at SMEAR II station located in Hyytiälä. The flight profiles over Hyytiälä were flown between sunrise and noon during the growth of the boundary layer. The profiles over Hyytiälä covered vertically a distance of 100-1000 meters reaching the mixed layer, stable (nocturnal) boundary layer and the residual layer. Horizontally the profiles covered approximately a circular area of four kilometers in diameter. The measurements include particle number size distribution by Neutral cluster and Air Ion Spectrometer (NAIS), Differential Mobility Particle Sizer (DMPS) and Particle Size Magnifier (PSM) [2], meteorological parameters and position (latitude, longitude and altitude) of the Zeppelin. Beginning of NPF was determined from an increase in 1.7-3 nm ion concentration. Height of the mixed layer was estimated from relative humidity measured on-board the Zeppelin. Particle growth rate during NPF was calculated. Spatial inhomogeneities in particle number size distribution during NPF were located and the birthplace of the particles was estimated using the growth rate and trajectories. We observed a regional NPF event that began simultaneously and evolved uniformly inside the mixed layer. In the horizontal direction we observed a long and narrow high concentration plume of

  7. Tsunami Warning Criteria for Cascadia events based on Tsunami models

    Science.gov (United States)

    Huang, P. Y.; Nyland, D. L.; Knight, W.; Gately, K.; Hale, D.; Urban, G.; Waddell, J.; Carrick, J.; Popham, C.; Bahng, B.; Kim, Y.; Burgy, M.; Langley, S.; Preller, C. C.; Whitmore, P.

    2013-12-01

    Initial tsunami warning, advisory, and watch zones for potential Cascadia earthquakes have been revised based on maximum expected threat for tsunamis generated by earthquakes in this region. Presently, alert zones are initially based on travel time for earthquakes greater than magnitude 7.8 with all areas less than three hours away from the source being put into a tsunami warning. The impact of this change is to reduce the length of coastline which is immediately put it into a warning status. Tsunami Warning Centers often delineate initial tsunami alert zones based on pre-set criteria dependent on earthquake magnitude, location, depth, and tsunami travel time. In many cases, this approach can lead to over-warning. Over the last several years, the West Coast/Alaska Tsunami Warning Center (WCATWC) has attempted to refine the amount of coastline immediately placed in a warning status based on maximum expected threat instead of travel time. Tsunami forecast models used to predict impacts during events (for example, Alaska Tsunami Forecast Model (ATFM), Short-term Inundation Forecasting for Tsunamis (SIFT), and Rapid Inundation Forecasting of Tsunamis (RIFT)) can also be used a-priori to delineate zones at-risk for specified source zones. forecast models have proven reasonably accurate during recent events. For the Cascadia Subduction zone, several rupture scenarios ranging from magnitude 7.9 to 9.2, were computed. Forecasted wave heights at various points are then used to set the initial Warning/Watch/Advisory regions. This procedure is more efficient than a blanket warning - or a refined warning based on travel times - as appropriate threat levels are assigned based on expected impact. For example, after a magnitude 8.7 earthquake in the southern Cascadia Subduction zone, southern and most of central California can be left out of the warning zone and placed in an advisory, as none of this region contains expected impacts in the warning threshold (tsunami amplitude

  8. Numerical Modeling of the Severe Cold Weather Event over Central Europe (January 2006

    Directory of Open Access Journals (Sweden)

    D. Hari Prasad

    2010-01-01

    Full Text Available Cold waves commonly occur in higher latitudes under prevailing high pressure systems especially during winter season which cause serious economical loss and cold related death. Accurate prediction of such severe weather events is important for decision making by administrators and for mitigation planning. An Advanced high resolution Weather Research and Forecasting mesoscale model is used to simulate a severe cold wave event occurred during January 2006 over Europe. The model is integrated for 31 days starting from 00UTC of 1 January 2006 with 30 km horizontal resolution. Comparison of the model derived area averaged daily mean temperatures at 2m height from different zones over the central Europe with observations indicates that the model is able to simulate the occurrence of the cold wave with the observed time lag of 1 to 3days but with lesser intensity. The temperature, winds, surface pressure and the geopential heights at 500 hPa reveal that the cold wave development associates with the southward progression of a high pressure system and cold air advection. The results have good agreement with the analysis fields indicates that the model has the ability to reproduce the time evolution of the cold wave event.

  9. Coronal Fine Structure in Dynamic Events Observed by Hi-C

    Science.gov (United States)

    Winebarger, Amy; Schuler, Timothy

    2013-01-01

    The High-Resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket on 2012 July 11 and captured roughly 345 s of high spatial and temporal resolution images of the solar corona in a narrowband 193 Angstrom channel. We have analyzed the fluctuations in intensity of Active Region 11520. We selected events based on a lifetime greater than 11 s (two Hi-C frames) and intensities greater than a threshold determined from the photon and readout noise. We compare the Hi-C events with those determined from AIA. We find that HI-C detects shorter and smaller events than AIA. We also find that the intensity increase in the Hi-C events is approx. 3 times greater than the intensity increase in the AIA events we conclude the events are related to linear sub-structure that is unresolved by AIA

  10. The Electron Density in Explosive Transition Region Events Observed by IRIS

    Science.gov (United States)

    Doschek, G. A.; Warren, H. P.; Young, P. R.

    2016-11-01

    We discuss the intensity ratio of the O IV line at 1401.16 Å to the Si IV line at 1402.77 Å in Interface Region Imaging Spectrograph (IRIS) spectra. This intensity ratio is important if it can be used to measure high electron densities that cannot be measured using line intensity ratios of two different O IV lines from the multiplet within the IRIS wavelength range. Our discussion is in terms of considerably earlier observations made from the Skylab manned space station and other spectrometers on orbiting spacecraft. The earlier data on the O IV and Si IV ratio and other intersystem line ratios not available to IRIS are complementary to IRIS data. In this paper, we adopt a simple interpretation based on electron density. We adopt a set of assumptions and calculate the electron density as a function of velocity in the Si IV line profiles of two explosive events. At zero velocity the densities are about 2-3 × 1011 cm-3, and near 200 km s-1 outflow speed the densities are about 1012 cm-3. The densities increase with outflow speed up to about 150 km s-1 after which they level off. Because of the difference in the temperature of formation of the two lines and other possible effects such as non-ionization equilibrium, these density measurements do not have the precision that would be available if there were some additional lines near the formation temperature of O IV.

  11. Characteristics and conditions of production of transient luminous events observed over a maritime storm

    DEFF Research Database (Denmark)

    Soula, S.; van der Velde, O.; Palmiéri, J.

    2010-01-01

    On the night of 15/16 November 2007, cameras in southern France detected 30 transient luminous events (TLEs) over a storm located in the Corsican region (France). Among these TLEs, 19 were sprites, 6 were halos, and 5 were elves. For 26 of them, a positive “parent” cloud-to-ground lightning (P...... the following flash: one group with values less than 2 s and one with values greater than 2 s. About 79% of all CGs were produced in a sequence of at least two flashes less than 2 s apart. For 65.5% of the sequences, the first flash was positive with an average peak current of 73 kA, while the later +CG flashes...... in a sequence had much lower peak currents. Several triangulated sprites were found to be shifted from their P+CG flashes by about 10 to 50 km and preferentially downstream. The observations suggest that the P+CG flashes can initiate both sprites and other CG flashes in a storm....

  12. Ground-based solar radio observations of the August 1972 events

    International Nuclear Information System (INIS)

    Bhonsle, R.V.; Degaonkar, S.S.; Alurkar, S.K.

    1976-01-01

    Ground-based observations of the variable solar radio emission ranging from few millimetres to decametres have been used here as a diagnostic tool to gain coherent phenomenological understanding of the great 2, 4 and 7 August, 1972 solar events in terms of dominant physical processes like generation and propagation of shock waves in the solar atmosphere, particle acceleration and trapping. Four major flares are selected for detailed analysis on the basis of their ability to produce energetic protons, shock waves, polar cap absorptions (PCA) and sudden commencement (SC) geomagnetic storms. A comparative study of their radio characteristics is made. Evidence is seen for the pulsations during microwave bursts by the mechanism similar to that proposed by McLean et al. (1971), to explain the pulsations in the metre wavelength continuum radiation. It is suggested that the multiple peaks observed in some microwave bursts may be attributable to individual flares occurring sequentially due to a single initiating flare. Attempts have been made to establish identification of Type II bursts with the interplanetary shock waves and SC geomagnetic storms. Furthermore, it is suggested that it is the mass behind the shock front which is the deciding factor for the detection of shock waves in the interplantary space. It appears that more work is necessary in order to identify which of the three moving Type IV bursts (Wild and Smerd, 1972), namely, advancing shock front, expanding magnetic arch and ejected plasma blob serves as the piston-driver behind the interplanetary shocks. The existing criteria for proton flare prediction have been summarized and two new criteria have been proposed. (Auth.)

  13. The role of the observed tropical convection in the generation of frost events in the southern cone of South America

    Directory of Open Access Journals (Sweden)

    G. V. Müller

    2008-06-01

    Full Text Available Based on previous results obtained from observations and linear wave theory analysis, the hypothesis that large-scale patterns can generate extreme cold events in southeast South America through the propagation of remotely excited Rossby waves was already suggested. This work will confirm these findings and extend their analysis through a series of numerical experiments using a primitive equation model where waves are excited by a thermal forcing situated in positions chosen according to observed convection anomalies over the equatorial region. The basic state used for these experiments is a composite of austral winters with maximum and minimum frequency of occurrence of generalized frosts that can affect a large area known as the Wet Pampas located in the central and eastern part of Argentina. The results suggest that stationary Rossby waves may be one important mechanism linking anomalous tropical convection with the extreme cold events in the Wet Pampas. The combination of tropical convection and a specific basic state can generate the right environment to guide the Rossby waves trigged by the tropical forcing towards South America. Depending on the phase of the waves entering the South American continent, they can favour the advection of anomalous wind at low levels from the south carrying cold and dry air over the whole southern extreme of the continent, producing a generalized frost in the Wet Pampa region. On the other hand, when a basic state based on the composites of minimum frosts is used, an anomalous anticyclone over the southern part of the continent generates a circulation with a south-southeast wind which brings maritime air and therefore humidity over the Wet Pampas region, creating negative temperature anomalies only over the northeastern part of the region. Under these conditions even if frosts occur they would not be generalized, as observed for the other basic state with maximum frequency of occurrence of generalized frosts.

  14. The role of the observed tropical convection in the generation of frost events in the southern cone of South America

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, G.V. [Centro de Investigacion Cientifica y de Transferencia Tecnologica a la Produccion (CICYTTP/CONICET), Diamante (Argentina); Ambrizzi, T. [Universidade de Sao Paulo (Brazil). Dept. de Ciencias Atmosfericas; Ferraz, S.E. [Universidade Federal de Santa Maria/CRSPE-INPE (Brazil). Dept. de Fisica

    2008-07-01

    Based on previous results obtained from observations and linear wave theory analysis, the hypothesis that large-scale patterns can generate extreme cold events in southeast South America through the propagation of remotely excited Rossby waves was already suggested. This work will confirm these findings and extend their analysis through a series of numerical experiments using a primitive equation model where waves are excited by a thermal forcing situated in positions chosen according to observed convection anomalies over the equatorial region. The basic state used for these experiments is a composite of austral winters with maximum and minimum frequency of occurrence of generalized frosts that can affect a large area known as the Wet Pampas located in the central and eastern part of Argentina. The results suggest that stationary Rossby waves may be one important mechanism linking anomalous tropical convection with the extreme cold events in the Wet Pampas. The combination of tropical convection and a specific basic state can generate the right environment to guide the Rossby waves trigged by the tropical forcing towards South America. Depending on the phase of the waves entering the South American continent, they can favour the advection of anomalous wind at low levels from the south carrying cold and dry air over the whole southern extreme of the continent, producing a generalized frost in the Wet Pampa region. On the other hand, when a basic state based on the composites of minimum frosts is used, an anomalous anticyclone over the southern part of the continent generates a circulation with a south-southeast wind which brings maritime air and therefore humidity over the Wet Pampas region, creating negative temperature anomalies only over the northeastern part of the region. Under these conditions even if frosts occur they would not be generalized, as observed for the other basic state with maximum frequency of occurrence of generalized frosts. (orig.)

  15. Global observations of electromagnetic and particle energy flux for an event during northern winter with southward interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    H. Korth

    2008-06-01

    Full Text Available The response of the polar ionosphere–thermosphere (I-T system to electromagnetic (EM energy input is fundamentally different to that from particle precipitation. To understand the I-T response to polar energy input one must know the intensities and spatial distributions of both EM and precipitation energy deposition. Moreover, since individual events typically display behavior different from statistical models, it is important to observe the global system state for specific events. We present an analysis of an event in Northern Hemisphere winter for sustained southward interplanetary magnetic field (IMF, 10 January 2002, 10:00–12:00 UT, for which excellent observations are available from the constellation of Iridium satellites, the SuperDARN radar network, and the Far-Ultraviolet (FUV instrument on the IMAGE satellite. Using data from these assets we determine the EM and particle precipitation energy fluxes to the Northern Hemisphere poleward of 60° MLAT and examine their spatial distributions and intensities. The accuracy of the global estimates are assessed quantitatively using comparisons with in-situ observations by DMSP along two orbit planes. While the location of EM power input evaluated from Iridium and SuperDARN data is in good agreement with DMSP, the magnitude estimated from DMSP observations is approximately four times larger. Corrected for this underestimate, the total EM power input to the Northern Hemisphere is 188 GW. Comparison of IMAGE FUV-derived distributions of the particle energy flux with DMSP plasma data indicates that the IMAGE FUV results similarly locate the precipitation accurately while underestimating the precipitation input somewhat. The total particle input is estimated to be 20 GW, nearly a factor of ten lower than the EM input. We therefore expect the thermosphere response to be determined primarily by the EM input even under winter conditions, and accurate assessment of the EM energy input is therefore key

  16. Modeling crime events by d-separation method

    Science.gov (United States)

    Aarthee, R.; Ezhilmaran, D.

    2017-11-01

    Problematic legal cases have recently called for a scientifically founded method of dealing with the qualitative and quantitative roles of evidence in a case [1].To deal with quantitative, we proposed a d-separation method for modeling the crime events. A d-separation is a graphical criterion for identifying independence in a directed acyclic graph. By developing a d-separation method, we aim to lay the foundations for the development of a software support tool that can deal with the evidential reasoning in legal cases. Such a tool is meant to be used by a judge or juror, in alliance with various experts who can provide information about the details. This will hopefully improve the communication between judges or jurors and experts. The proposed method used to uncover more valid independencies than any other graphical criterion.

  17. Modeling extreme events: Sample fraction adaptive choice in parameter estimation

    Science.gov (United States)

    Neves, Manuela; Gomes, Ivette; Figueiredo, Fernanda; Gomes, Dora Prata

    2012-09-01

    When modeling extreme events there are a few primordial parameters, among which we refer the extreme value index and the extremal index. The extreme value index measures the right tail-weight of the underlying distribution and the extremal index characterizes the degree of local dependence in the extremes of a stationary sequence. Most of the semi-parametric estimators of these parameters show the same type of behaviour: nice asymptotic properties, but a high variance for small values of k, the number of upper order statistics to be used in the estimation, and a high bias for large values of k. This shows a real need for the choice of k. Choosing some well-known estimators of those parameters we revisit the application of a heuristic algorithm for the adaptive choice of k. The procedure is applied to some simulated samples as well as to some real data sets.

  18. Effects of solar proton events on dayglow observed by the TIMED/SABER satellite

    Science.gov (United States)

    Gao, Hong; Xu, Jiyao; Smith, Anne K.; Chen, Guang-Ming

    2017-07-01

    The effect of solar proton events on the daytime O2 and OH airglows and ozone and atomic oxygen concentrations in the mesosphere is studied using data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Five events occurred in September 2005, December 2006, March 2012, May 2013, and June 2015 that satisfy two criteria: the maximum proton fluxes are larger than 1000 pfu, and daytime data in the high latitude region are available from SABER. The event in December 2006 is studied in detail, and the effects of all five events are compared in brief. The results indicate that all four parameters in the mesosphere decrease during the events. During the event in 2006, the maximum depletions of O2 and OH dayglow emission rates and ozone and atomic oxygen volume mixing ratios at 70 km are respectively 31.6%, 37.0%, 42.4%, and 38.9%. The effect of the solar proton event changes with latitude, longitude, and altitude. The depletions due to the stronger events are larger on average than those due to the weaker events. The depletions of both dayglow emission rates are weaker than those of ozone and atomic oxygen. The responses of O2 and OH nightglow emissions around their peak altitudes to the SPEs are not as strong and regular as those for dayglow in the mesosphere.

  19. Aggressive Event Incidence using the Staff Observation of Aggression Scale-Revised (SOAS-R): A Longitudinal Study.

    Science.gov (United States)

    Iennaco, Joanne DeSanto; Whittemore, Robin; Dixon, Jane

    2017-09-01

    The aim of this study was to identify aggressive event incidence rates in the inpatient psychiatric setting, describe characteristics of events and differences based on aggression target and type (verbal vs. physical). A longitudinal study was carried out of aggressive events identified by workers in four inpatient psychiatric units using the Staff Observation of Aggression Scale-Revised (SOAS-R) over 6 weeks. A total of 113 aggressive events were recorded resulting in a rate of 13.27 events per bed per year. Verbal aggression was demonstrated in 86 % and physical aggression in 57 % of events. Most events (70.8 %, n = 81) targeted a worker. Compared to other targets, workers were 3.4 times more likely to feel threatened (95 % CI 1.2-9.6, χ 2  = 5.08, p = 0.0242), and less likely to have a visible injury (OR 0.15, 95 % CI 0.04-0.6; χ 2  = 7.1, p = 0.0078). Event severity ranged from 0 to 21 with a mean of 9.5(SD = 5.1), with 20 % considered severe. Verbal events had lower mean severity of 6.5(SD = 3.8) versus physical events with a severity of 11.8(SD = 4.8; t = 6.5, df = 111, p Aggression incidence was similar to incidence found in other studies. Workers were the target of most aggressive events and many were identified as having no understandable provocation. Further understanding of event characteristics will promote more effective prevention and management of aggressive events.

  20. An agent-based approach to modelling the effects of extreme events on global food prices

    Science.gov (United States)

    Schewe, Jacob; Otto, Christian; Frieler, Katja

    2015-04-01

    Extreme climate events such as droughts or heat waves affect agricultural production in major food producing regions and therefore can influence the price of staple foods on the world market. There is evidence that recent dramatic spikes in grain prices were at least partly triggered by actual and/or expected supply shortages. The reaction of the market to supply changes is however highly nonlinear and depends on complex and interlinked processes such as warehousing, speculation, and export restrictions. Here we present for the first time an agent-based modelling framework that accounts, in simplified terms, for these processes and allows to estimate the reaction of world food prices to supply shocks on a short (monthly) timescale. We test the basic model using observed historical supply, demand, and price data of wheat as a major food grain. Further, we illustrate how the model can be used in conjunction with biophysical crop models to assess the effect of future changes in extreme event regimes on the volatility of food prices. In particular, the explicit representation of storage dynamics makes it possible to investigate the potentially nonlinear interaction between simultaneous extreme events in different food producing regions, or between several consecutive events in the same region, which may both occur more frequently under future global warming.

  1. Accurate Mass Measurements for Planetary Microlensing Events Using High Angular Resolution Observations

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Beaulieu

    2018-04-01

    Full Text Available The microlensing technique is a unique method to hunt for cold planets over a range of mass and separation, orbiting all varieties of host stars in the disk of our galaxy. It provides precise mass-ratio and projected separations in units of the Einstein ring radius. In order to obtain the physical parameters (mass, distance, orbital separation of the system, it is necessary to combine the result of light curve modeling with lens mass-distance relations and/or perform a Bayesian analysis with a galactic model. A first mass-distance relation could be obtained from a constraint on the Einstein ring radius if the crossing time of the source over the caustic is measured. It could then be supplemented by secondary constraints such as parallax measurements, ideally by using coinciding ground and space-born observations. These are still subject to degeneracies, like the orbital motion of the lens. A third mass-distance relation can be obtained thanks to constraints on the lens luminosity using high angular resolution observations with 8 m class telescopes or the Hubble Space Telescope. The latter route, although quite inexpensive in telescope time is very effective. If we have to rely heavily on Bayesian analysis and limited constraints on mass-distance relations, the physical parameters are determined to 30–40% typically. In a handful of cases, ground-space parallax is a powerful route to get stronger constraint on masses. High angular resolution observations will be able to constrain the luminosity of the lenses in the majority of the cases, and in favorable circumstances it is possible to derive physical parameters to 10% or better. Moreover, these constraints will be obtained in most of the planets to be discovered by the Euclid and WFIRST satellites. We describe here the state-of-the-art approaches to measure lens masses and distances with an emphasis on high angular resolution observations. We will discuss the challenges, recent results and

  2. Extreme subsurface warm events in the South China Sea during 1998/99 and 2006/07: observations and mechanisms

    Science.gov (United States)

    Xiao, Fuan; Zeng, Lili; Liu, Qin-Yan; Zhou, Wen; Wang, Dongxiao

    2018-01-01

    Conductivity-temperature-depth observations, objectively analyzed data, and model output are used to investigate the variability of subsurface temperature in the South China Sea (SCS) during 1948-2010. Two extreme subsurface warm events are identified during 1998/99 and 2006/07, with no corresponding extreme surface warming except in 1998. Mixed-layer heat budget analysis reveals that the lack of significant heat input from surface net heat flux or from current advection is responsible for the absence of extreme surface warming during 1999, and 2006/07. The surface net heat flux alone cannot explain the first phases of subsurface warming during 1998/99 and 2006/07. Warm advection from the southern SCS in 1998/99 and from the Kuroshio intrusion in 2006/07, induced by anomalous ocean currents, is likely the major contributor to warming of the subsurface water. During the second phase of warming, the surface net heat flux plays a damping role to cool the subsurface water, and the warm advection induced by anomalous SCS western boundary currents from the southern SCS leads to extremely warm subsurface water anomalies. The results show the importance of the Pacific western boundary currents, especially the Kuroshio, in maintaining extreme subsurface warm events in the SCS.

  3. Investigating the impact of climate change on crop phenological events in Europe with a phenology model

    Science.gov (United States)

    Ma, Shaoxiu; Churkina, Galina; Trusilova, Kristina

    2012-07-01

    Predicting regional and global carbon and water dynamics requires a realistic representation of vegetation phenology. Vegetation models including cropland models exist (e.g. LPJmL, Daycent, SIBcrop, ORCHIDEE-STICS, PIXGRO) but they have various limitations in predicting cropland phenological events and their responses to climate change. Here, we investigate how leaf onset and offset days of major European croplands responded to changes in climate from 1971 to 2000 using a newly developed phenological model, which solely relies on climate data. Net ecosystem exchange (NEE) data measured with eddy covariance technique at seven sites in Europe were used to adjust model parameters for wheat, barley, and rapeseed. Observational data from the International Phenology Gardens were used to corroborate modeled phenological responses to changes in climate. Enhanced vegetation index (EVI) and a crop calendar were explored as alternative predictors of leaf onset and harvest days, respectively, over a large spatial scale. In each spatial model simulation, we assumed that all European croplands were covered by only one crop type. Given this assumption, the model estimated that the leaf onset days for wheat, barley, and rapeseed in Germany advanced by 1.6, 3.4, and 3.4 days per decade, respectively, during 1961-2000. The majority of European croplands (71.4%) had an advanced mean leaf onset day for wheat, barley, and rapeseed (7.0% significant), whereas 28.6% of European croplands had a delayed leaf onset day (0.9% significant) during 1971-2000. The trend of advanced onset days estimated by the model is similar to observations from the International Phenology Gardens in Europe. The developed phenological model can be integrated into a large-scale ecosystem model to simulate the dynamics of phenological events at different temporal and spatial scales. Crop calendars and enhanced vegetation index have substantial uncertainties in predicting phenological events of croplands. Caution

  4. Understanding the ballistic event : Methodology and observations relevant to ceramic armour

    Science.gov (United States)

    Healey, Adam

    The only widely-accepted method of gauging the ballistic performance of a material is to carry out ballistic testing; due to the large volume of material required for a statistically robust test, this process is very expensive. Therefore a new test, or suite of tests, that employ widely-available and economically viable characterisation methods to screen candidate armour materials is highly desirable; in order to design such a test, more information on the armour/projectile interaction is required. This work presents the design process and results of using an adapted specimen configuration to increase the amount of information obtained from a ballistic test. By using a block of ballistic gel attached to the ceramic, the fragmentation generated during the ballistic event was captured and analysed. In parallel, quasi-static tests were carried out using ring-on-ring biaxial disc testing to investigate relationships between quasi-static and ballistic fragment fracture surfaces. Three contemporary ceramic armour materials were used to design the test and to act as a baseline; Sintox FA alumina, Hexoloy SA silicon carbide and 3M boron carbide. Attempts to analyse the post-test ballistic sample non-destructively using X-ray computed tomography (XCT) were unsuccessful due to the difference in the density of the materials and the compaction of fragments. However, the results of qualitative and quantitative fracture surface analysis using scanning electron microscopy showed similarities between the fracture surfaces of ballistic fragments at the edges of the tile and biaxial fragments; this suggests a relationship between quasi-static and ballistic fragments created away from the centre of impact, although additional research will be required to determine the reason for this. Ballistic event-induced porosity was observed and quantified on the fracture surfaces of silicon carbide samples, which decreased as distance from centre of impact increased; upon further analysis this

  5. Implementation of PSA models to estimate the probabilities associated with external event combination

    International Nuclear Information System (INIS)

    Burgazzi, Luciano

    2014-01-01

    This note endeavors to address some significant issues revealed by the Fukushima accident in Japan in 2011, such as the analysis of various dependency aspects arisen in the light of the external event PSA framework, as the treatment of the correlated hazards. To this aim some foundational notions to implement the PSA models related to specific aspects, like the external hazard combination, e.g., earthquake and tsunami as at the Fukushima accident, and the external hazard-caused internal events, e.g., seismic induced fire, are proposed and discussed to be incorporated within the risk assessment structure. Risk assessment of external hazards is required and utilized as an integrated part of PRA for operating and new reactor units. In the light of the Fukushima accident, of special interest are correlated events, whose modelling is proposed in the present study, in the form of some theoretical concepts, which lay the foundations for the PSA framework implementation. An applicative example is presented for illustrative purposes, since the analysis is carried out on the basis of generic numerical values assigned to an oversimplified model and results are achieved without any baseline comparison. Obviously the first step aimed at the process endorsement is the analysis of all available information in order to determine the level of applicability of the observed specific plant site events to the envisaged model and the statistical correlation analysis for event occurrence data that can be used as part of this process. Despite these drawbacks that actually do not qualify the achieved results, the present work represents an exploratory study aimed at resolving current open issues to be resolved in the PSA, like topics related to unanticipated scenarios: the combined external hazards of the earthquake and tsunami in Fukushima, external hazards causing internal events, such as seismic induced fire. These topics are to be resolved among the other ones as emerging from the

  6. Energy time dispersion of a new class of magnetospheric ion events observed near the Earth's bow shock

    Directory of Open Access Journals (Sweden)

    G. C. Anagnostopoulos

    2000-01-01

    Full Text Available We have analyzed high time resolution (\\geq6 s data during the onset and the decay phase of several energetic (\\geq35 keV ion events observed near the Earth's bow shock by the CCE/AMPTE and IMP-7/8 spacecraft, during times of intense substorm/geomagnetic activity. We found that forward energy dispersion at the onset of events (earlier increase of middle energy ions and/or a delayed fall of the middle energy ion fluxes at the end of events are often evident in high time resolution data. The energy spectra at the onset and the decay of this kind of events show a characteristic hump at middle (50-120 keV energies and the angular distributions display either anisotropic or broad forms. The time scale of energy dispersion in the ion events examined was found to range from several seconds to \\sim1 h depending on the ion energies compared and on the rate of variation of the Interplanetary Magnetic Field (IMF direction. Several canditate processes are discussed to explain the observations and it is suggested that a rigidity dependent transport process of magnetospheric particles within the magnetosheath is most probably responsible for the detection of this new type of near bow shock magnetospheric ion events. The new class of ion events was observed within both the magnetosheath and the upstream region.Key words. Interplanetary physics (energetic particles; planetary bow shocks

  7. Modeling extreme "Carrington-type" space weather events using three-dimensional global MHD simulations

    Science.gov (United States)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex

    2014-06-01

    There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al. (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst˜=-1600 nT.

  8. Forecasting rain events - Meteorological models or collective intelligence?

    Science.gov (United States)

    Arazy, Ofer; Halfon, Noam; Malkinson, Dan

    2015-04-01

    Collective intelligence is shared (or group) intelligence that emerges from the collective efforts of many individuals. Collective intelligence is the aggregate of individual contributions: from simple collective decision making to more sophisticated aggregations such as in crowdsourcing and peer-production systems. In particular, collective intelligence could be used in making predictions about future events, for example by using prediction markets to forecast election results, stock prices, or the outcomes of sport events. To date, there is little research regarding the use of collective intelligence for prediction of weather forecasting. The objective of this study is to investigate the extent to which collective intelligence could be utilized to accurately predict weather events, and in particular rainfall. Our analyses employ metrics of group intelligence, as well as compare the accuracy of groups' predictions against the predictions of the standard model used by the National Meteorological Services. We report on preliminary results from a study conducted over the 2013-2014 and 2014-2015 winters. We have built a web site that allows people to make predictions on precipitation levels on certain locations. During each competition participants were allowed to enter their precipitation forecasts (i.e. 'bets') at three locations and these locations changed between competitions. A precipitation competition was defined as a 48-96 hour period (depending on the expected weather conditions), bets were open 24-48 hours prior to the competition, and during betting period participants were allowed to change their bets with no limitation. In order to explore the effect of transparency, betting mechanisms varied across study's sites: full transparency (participants able to see each other's bets); partial transparency (participants see the group's average bet); and no transparency (no information of others' bets is made available). Several interesting findings emerged from

  9. Impact of agricultural management on pluvial flash floods - Case study of an extreme event observed in Austria in 2016

    Science.gov (United States)

    Lumassegger, Simon; Achleitner, Stefan; Kohl, Bernhard

    2017-04-01

    Central Europe was affected by extreme flash floods in summer 2016 triggered by short, high-intensity storm cells. Besides fluvial runoff, local pluvial floods appear to increase recently. In frame of the research project SAFFER-CC (sensitivity assessment of critical condition for local flash floods - evaluating the recurrence under climate change) surface runoff and pluvial flooding is assessed using a coupled hydrological/2D hydrodynamic model for the severely affected municipality of Schwertberg, Upper Austria. In this small catchment several flooding events occurred in the last years, where the most severe event occurred during summer 2016. Several areas could only be reached after the flood wave subsided with observed flood marks up to one meter. The modeled catchment is intensively cultivated with maize, sugar beets, winter wheat and soy on the hillside and hence highly vulnerable to water erosion. The average inclination is relatively steep with 15 % leading to high flow velocities of surface runoff associated with large amounts of transported sediments. To assess the influence of land use and soil conservation on flash floods, field experiments with a portable irrigation spray installation were carried out at different locations. The test plots were subjected to rainfall with constant intensity of 100 mm/h for one hour. Consecutively a super intense, one hour lasting, rainfall hydrograph was applied after 30 minutes at the same plots, ranging from 50 mm/h to 200 mm/h. Surface runoff was collected and measured in a tank and water samples were taken to determine the suspended material load. Large differences of runoff coefficients were determined depending on the agricultural management. The largest discharge was measured in a maize field, where surface runoff occurred immediately after start of irrigation. The determined runoff coefficients ranged from 0.22 for soy up to 0.65 for maize for the same soil type and inclination. The conclusion that runoff is

  10. Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping.

    Science.gov (United States)

    Faisan, Sylvain; Thoraval, Laurent; Armspach, Jean-Paul; Foucher, Jack R; Metz-Lutz, Marie-Noëlle; Heitz, Fabrice

    2005-01-01

    Most methods used in functional MRI (fMRI) brain mapping require restrictive assumptions about the shape and timing of the fMRI signal in activated voxels. Consequently, fMRI data may be partially and misleadingly characterized, leading to suboptimal or invalid inference. To limit these assumptions and to capture the broad range of possible activation patterns, a novel statistical fMRI brain mapping method is proposed. It relies on hidden semi-Markov event sequence models (HSMESMs), a special class of hidden Markov models (HMMs) dedicated to the modeling and analysis of event-based random processes. Activation detection is formulated in terms of time coupling between (1) the observed sequence of hemodynamic response onset (HRO) events detected in the voxel's fMRI signal and (2) the "hidden" sequence of task-induced neural activation onset (NAO) events underlying the HROs. Both event sequences are modeled within a single HSMESM. The resulting brain activation model is trained to automatically detect neural activity embedded in the input fMRI data set under analysis. The data sets considered in this article are threefold: synthetic epoch-related, real epoch-related (auditory lexical processing task), and real event-related (oddball detection task) fMRI data sets. Synthetic data: Activation detection results demonstrate the superiority of the HSMESM mapping method with respect to a standard implementation of the statistical parametric mapping (SPM) approach. They are also very close, sometimes equivalent, to those obtained with an "ideal" implementation of SPM in which the activation patterns synthesized are reused for analysis. The HSMESM method appears clearly insensitive to timing variations of the hemodynamic response and exhibits low sensitivity to fluctuations of its shape (unsustained activation during task). Real epoch-related data: HSMESM activation detection results compete with those obtained with SPM, without requiring any prior definition of the expected

  11. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS near and far detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. Thus, at the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. In contrast and unexpectedly, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation that peaks in the winter.

  12. A case for multi-model and multi-approach based event attribution: The 2015 European drought

    Science.gov (United States)

    Hauser, Mathias; Gudmundsson, Lukas; Orth, René; Jézéquel, Aglaé; Haustein, Karsten; Seneviratne, Sonia Isabelle

    2017-04-01

    Science on the role of anthropogenic influence on extreme weather events such as heat waves or droughts has evolved rapidly over the past years. The approach of "event attribution" compares the occurrence probability of an event in the present, factual world with the probability of the same event in a hypothetical, counterfactual world without human-induced climate change. Every such analysis necessarily faces multiple methodological choices including, but not limited to: the event definition, climate model configuration, and the design of the counterfactual world. Here, we explore the role of such choices for an attribution analysis of the 2015 European summer drought (Hauser et al., in preparation). While some GCMs suggest that anthropogenic forcing made the 2015 drought more likely, others suggest no impact, or even a decrease in the event probability. These results additionally differ for single GCMs, depending on the reference used for the counterfactual world. Observational results do not suggest a historical tendency towards more drying, but the record may be too short to provide robust assessments because of the large interannual variability of drought occurrence. These results highlight the need for a multi-model and multi-approach framework in event attribution research. This is especially important for events with low signal to noise ratio and high model dependency such as regional droughts. Hauser, M., L. Gudmundsson, R. Orth, A. Jézéquel, K. Haustein, S.I. Seneviratne, in preparation. A case for multi-model and multi-approach based event attribution: The 2015 European drought.

  13. The Run 2 ATLAS Analysis Event Data Model

    CERN Document Server

    SNYDER, S; The ATLAS collaboration; NOWAK, M; EIFERT, T; BUCKLEY, A; ELSING, M; GILLBERG, D; MOYSE, E; KOENEKE, K; KRASZNAHORKAY, A

    2014-01-01

    During the LHC's first Long Shutdown (LS1) ATLAS set out to establish a new analysis model, based on the experience gained during Run 1. A key component of this is a new Event Data Model (EDM), called the xAOD. This format, which is now in production, provides the following features: A separation of the EDM into interface classes that the user code directly interacts with, and data storage classes that hold the payload data. The user sees an Array of Structs (AoS) interface, while the data is stored in a Struct of Arrays (SoA) format in memory, thus making it possible to efficiently auto-vectorise reconstruction code. A simple way of augmenting and reducing the information saved for different data objects. This makes it possible to easily decorate objects with new properties during data analysis, and to remove properties that the analysis does not need. A persistent file format that can be explored directly with ROOT, either with or without loading any additional libraries. This allows fast interactive naviga...

  14. Implementation of the ATLAS Run 2 event data model

    CERN Document Server

    Buckley, Andrew; Elsing, Markus; Gillberg, Dag Ingemar; Koeneke, Karsten; Krasznahorkay, Attila; Moyse, Edward; Nowak, Marcin; Snyder, Scott; van Gemmeren, Peter

    2015-01-01

    During the 2013--2014 shutdown of the Large Hadron Collider, ATLAS switched to a new event data model for analysis, called the xAOD. A key feature of this model is the separation of the object data from the objects themselves (the `auxiliary store'). Rather being stored as member variables of the analysis classes, all object data are stored separately, as vectors of simple values. Thus, the data are stored in a `structure of arrays' format, while the user still can access it as an `array of structures'. This organization allows for on-demand partial reading of objects, the selective removal of object properties, and the addition of arbitrary user-defined properties in a uniform manner. It also improves performance by increasing the locality of memory references in typical analysis code. The resulting data structures can be written to ROOT files with data properties represented as simple ROOT tree branches. This talk will focus on the design and implementation of the auxiliary store and its interaction with RO...

  15. Implementation of the ATLAS Run 2 event data model

    Science.gov (United States)

    Buckley, A.; Eifert, T.; Elsing, M.; Gillberg, D.; Koeneke, K.; Krasznahorkay, A.; Moyse, E.; Nowak, M.; Snyder, S.; van Gemmeren, P.

    2015-12-01

    During the 2013-2014 shutdown of the Large Hadron Collider, ATLAS switched to a new event data model for analysis, called the xAOD. A key feature of this model is the separation of the object data from the objects themselves (the ‘auxiliary store’). Rather than being stored as member variables of the analysis classes, all object data are stored separately, as vectors of simple values. Thus, the data are stored in a ‘structure of arrays’ format, while the user still can access it as an ‘array of structures’. This organization allows for on-demand partial reading of objects, the selective removal of object properties, and the addition of arbitrary user- defined properties in a uniform manner. It also improves performance by increasing the locality of memory references in typical analysis code. The resulting data structures can be written to ROOT files with data properties represented as simple ROOT tree branches. This paper focuses on the design and implementation of the auxiliary store and its interaction with ROOT.

  16. International Observe the Moon Night: A Worldwide Public Observing Event that Annually Engages Scientists, Educators, and Citizen Enthusiasts in NASA Science

    Science.gov (United States)

    Buxner, S.; Jones, A. P.; Bleacher, L.; Wasser, M. L.; Day, B. H.; Shaner, A. J.; Bakerman, M. N.; Joseph, E.

    2017-12-01

    International Observe the Moon Night (InOMN) is an annual worldwide event, held in the fall, that celebrates lunar and planetary science and exploration. InOMN is sponsored by NASA's Lunar Reconnaissance Orbiter (LRO) in collaboration with NASA's Solar System Exploration Research Virtual Institute (SSERVI), the NASA's Heliophysics Education Consortium, CosmoQuest, Night Sky Network, and Science Festival Alliance. Other key partners include the NASA Museum Alliance, Night Sky Network, and NASA Solar System Ambassadors. In 2017, InOMN will bring together thousands of people across the globe to observe and learn about the Moon and its connection to planetary science. We are partnering with the NASA Science Mission Directorate total solar eclipse team to highlight InOMN as an opportunity to harness and sustain the interest and momentum in space science and observation following the August 21st eclipse. This is part of a new partnership with the Sun-Earth Day team, through the Heliophysics Education Consortium, to better connect the two largest NASA-sponsored public engagement events, increase participation in both events, and share best practices in implementation and evaluation between the teams. Over 3,800 InOMN events have been registered between 2010 and 2016, engaging over 550,000 visitors worldwide. Most InOMN events are held in the United States, with strong representation from many other countries. InOMN events are evaluated to determine the value of the events and to allow us to improve the experience for event hosts and visitors. Our results show that InOMN events are hosted by scientists, educators, and citizen enthusiasts around the world who leverage InOMN to bring communities together, get visitors excited and learn about the Moon - and beyond, and share resources to extend engagement in lunar and planetary science and observation. Through InOMN, we annually provide resources such as event-specific Moon maps, presentations, advertising materials, and

  17. Atypical energetic particle events observed prior energetic particle enhancements associated with corotating interaction regions

    Science.gov (United States)

    Khabarova, Olga; Malandraki, Olga; Zank, Gary; Jackson, Bernard; Bisi, Mario; Desai, Mihir; Li, Gang; le Roux, Jakobus; Yu, Hsiu-Shan

    2017-04-01

    Recent studies of mechanisms of particle acceleration in the heliosphere have revealed the importance of the comprehensive analysis of stream-stream interactions as well as the heliospheric current sheet (HCS) - stream interactions that often occur in the solar wind, producing huge magnetic cavities bounded by strong current sheets. Such cavities are usually filled with small-scale magnetic islands that trap and re-accelerate energetic particles (Zank et al. ApJ, 2014, 2015; le Roux et al. ApJ, 2015, 2016; Khabarova et al. ApJ, 2015, 2016). Crossings of these regions are associated with unusual variations in the energetic particle flux up to several MeV/nuc near the Earth's orbit. These energetic particle flux enhancements called "atypical energetic particle events" (AEPEs) are not associated with standard mechanisms of particle acceleration. The analysis of multi-spacecraft measurements of energetic particle flux, plasma and the interplanetary magnetic field shows that AEPEs have a local origin as they are observed by different spacecraft with a time delay corresponding to the solar wind propagation from one spacecraft to another, which is a signature of local particle acceleration in the region embedded in expanding and rotating background solar wind. AEPEs are often observed before the arrival of corotating interaction regions (CIRs) or stream interaction regions (SIRs) to the Earth's orbit. When fast solar wind streams catch up with slow solar wind, SIRs of compressed heated plasma or more regular CIRs are created at the leading edge of the high-speed stream. Since coronal holes are often long-lived structures, the same CIR re-appears often for several consecutive solar rotations. At low heliographic latitudes, such CIRs are typically bounded by forward and reverse waves on their leading and trailing edges, respectively, that steepen into shocks at heliocentric distances beyond 1 AU. Energetic ion increases have been frequently observed in association with CIR

  18. Survival and cardiovascular events in men treated with testosterone replacement therapy: an intention-to-treat observational cohort study.

    Science.gov (United States)

    Wallis, Christopher J D; Lo, Kirk; Lee, Yuna; Krakowsky, Yonah; Garbens, Alaina; Satkunasivam, Raj; Herschorn, Sender; Kodama, Ronald T; Cheung, Patrick; Narod, Steven A; Nam, Robert K

    2016-06-01

    Conflicting evidence exists for the association between testosterone replacement therapy and mortality and cardiovascular events. The US Food and Drug Administration recently cautioned that testosterone replacement therapy might increase risk of heart attack and stroke, based on evidence from studies with short treatment duration and follow-up. No previous study has assessed the effect of duration of testosterone treatment on these outcomes. We aimed to assess the association between long-term use of testosterone replacement therapy and mortality, cardiovascular events, and prostate cancer diagnoses, using a time-varying exposure analysis. We did a population-based matched cohort study of men aged 66 years or older newly treated with testosterone replacement therapy and controls matched for age, region of residence, comorbidity, diabetes status, and index year from 2007-12 in Ontario, Canada, using data from the Ontario Drug Benefit database, the Canadian Institute for Health Information (CIHI) Discharge Abstract Database, the CIHI National Ambulatory Care Reporting System, the Ontario Health Insurance Plan database, the Ontario Myocardial Infarction Database, the Ontario Diabetes Database, the Ontario Cancer Registry, and the Registered Persons database. We assessed the association between cumulative testosterone replacement therapy exposure and mortality, cardiovascular events, and prostate cancer using marginal models with a time-varying testosterone exposure. We included 10 311 men treated with testosterone replacement therapy and 28 029 controls between Jan 1, 2007, and June 30, 2012. Over a median follow-up of 5·3 years (IQR 3·6-7·5) in the testosterone replacement therapy group and 5·1 years (3·4-7·4) in the control group, patients treated with testosterone replacement therapy had lower mortality than did controls (hazard ratio [HR] 0·88, 95% CI 0·84-0·93). Patients in the lowest tertile of testosterone exposure had increased risk of mortality

  19. Prediction skill of rainstorm events over India in the TIGGE weather prediction models

    Science.gov (United States)

    Karuna Sagar, S.; Rajeevan, M.; Vijaya Bhaskara Rao, S.; Mitra, A. K.

    2017-12-01

    Extreme rainfall events pose a serious threat of leading to severe floods in many countries worldwide. Therefore, advance prediction of its occurrence and spatial distribution is very essential. In this paper, an analysis has been made to assess the skill of numerical weather prediction models in predicting rainstorms over India. Using gridded daily rainfall data set and objective criteria, 15 rainstorms were identified during the monsoon season (June to September). The analysis was made using three TIGGE (THe Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble) models. The models considered are the European Centre for Medium-Range Weather Forecasts (ECMWF), National Centre for Environmental Prediction (NCEP) and the UK Met Office (UKMO). Verification of the TIGGE models for 43 observed rainstorm days from 15 rainstorm events has been made for the period 2007-2015. The comparison reveals that rainstorm events are predictable up to 5 days in advance, however with a bias in spatial distribution and intensity. The statistical parameters like mean error (ME) or Bias, root mean square error (RMSE) and correlation coefficient (CC) have been computed over the rainstorm region using the multi-model ensemble (MME) mean. The study reveals that the spread is large in ECMWF and UKMO followed by the NCEP model. Though the ensemble spread is quite small in NCEP, the ensemble member averages are not well predicted. The rank histograms suggest that the forecasts are under prediction. The modified Contiguous Rain Area (CRA) technique was used to verify the spatial as well as the quantitative skill of the TIGGE models. Overall, the contribution from the displacement and pattern errors to the total RMSE is found to be more in magnitude. The volume error increases from 24 hr forecast to 48 hr forecast in all the three models.

  20. A Halo Event observed by the Hybrid Experiment at Mt. Chacaltaya

    International Nuclear Information System (INIS)

    Aoki, H.; Hashimoto, K.; Honda, K.; Inoue, N.; Kawasumi, N.; Martinic, N.; Navia O, C.; Ochi, N.; Ohmori, N.; Ohsawa, A.; Oliveira, C.; Shinozaki, K.; Tamada, M.; Ticona, R.; Tsushima, I.

    2006-01-01

    An experiment using an air shower array, a hadron calorimeter and an emulsion chamber is under way at Mt. Chacaltaya (5200 m, Bolivia). One of the highest energy events, having a halo (∼ 1 cm) in the centre of the family together with many γ-ray and hadron showers, is analyzed in detail. Available data for the event are on the halo (E halo =750 TeV) and on the high energy particles of electron/photon components by the emulsion chamber, and on the characteristics of the accompanied air shower (Ne=7.0x10 7 , s=0.59) by the air shower array. The diagram of the air shower size and the total energy of electron/photon components in the family, which shows discrepancy between the experimental data and simulated events (QGSJET code for nuclear collisions) in our previous reports, is discussed including the present event

  1. Multi-Sensory Aerosol Data and the NRL NAAPS model for Regulatory Exceptional Event Analysis

    Science.gov (United States)

    Husar, R. B.; Hoijarvi, K.; Westphal, D. L.; Haynes, J.; Omar, A. H.; Frank, N. H.

    2013-12-01

    Beyond scientific exploration and analysis, multi-sensory observations along with models are finding increasing applications for operational air quality management. EPA's Exceptional Event (EE) Rule allows the exclusion of data strongly influenced by impacts from "exceptional events," such as smoke from wildfires or dust from abnormally high winds. The EE Rule encourages the use of satellite observations and other non-standard data along with models as evidence for formal documentation of EE samples for exclusion. Thus, the implementation of the EE Rule is uniquely suited for the direct application of integrated multi-sensory observations and indirectly through the assimilation into an aerosol simulation model. Here we report the results of a project: NASA and NAAPS Products for Air Quality Decision Making. The project uses of observations from multiple satellite sensors, surface-based aerosol measurements and the NRL Aerosol Analysis and Prediction System (NAAPS) model that assimilates key satellite observations. The satellite sensor data for detecting and documenting smoke and dust events include: MODIS AOD and Images; OMI Aerosol Index, Tropospheric NO2; AIRS, CO. The surface observations include the EPA regulatory PM2.5 network; the IMPROVE/STN aerosol chemical network; AIRNOW PM2.5 mass network, and surface met. data. Within this application, crucial role is assigned to the NAAPS model for estimating the surface concentration of windblown dust and biomass smoke. The operational model assimilates quality-assured daily MODIS data and 2DVAR to adjust the model concentrations and CALIOP-based climatology to adjust the vertical profiles at 6-hour intervals. The assimilation of satellite data from multiple satellites significantly contributes to the usefulness of NAAPS for EE analysis. The NAAPS smoke and dust simulations were evaluated using the IMPROVE/STN chemical data. The multi-sensory observations along with the model simulations are integrated into a web

  2. Modelling new particle formation events in the South African savannah

    Directory of Open Access Journals (Sweden)

    Rosa T. Gierens

    2014-05-01

    Full Text Available Africa is one of the less studied continents with respect to atmospheric aerosols. Savannahs are complex dynamic systems sensitive to climate and land-use changes, but the interaction of these systems with the atmosphere is not well understood. Atmospheric particles, called aerosols, affect the climate on regional and global scales, and are an important factor in air quality. In this study, measurements from a relatively clean savannah environment in South Africa were used to model new particle formation and growth. There already are some combined long-term measurements of trace gas concentrations together with aerosol and meteorological variables available, but to our knowledge this is the first detailed simulation that includes all the main processes relevant to particle formation. The results show that both of the particle formation mechanisms investigated overestimated the dependency of the formation rates on sulphuric acid. From the two particle formation mechanisms tested in this work, the approach that included low volatile organic compounds to the particle formation process was more accurate in describing the nucleation events than the approach that did not. To obtain a reliable estimate of aerosol concentration in simulations for larger scales, nucleation mechanisms would need to include organic compounds, at least in southern Africa. This work is the first step in developing a more comprehensive new particle formation model applicable to the unique environment in southern Africa. Such a model will assist in better understanding and predicting new particle formation � knowledge which could ultimately be used to mitigate impacts of climate change and air quality.

  3. Inferences for Joint Modelling of Repeated Ordinal Scores and Time to Event Data

    Directory of Open Access Journals (Sweden)

    Arindom Chakraborty

    2010-01-01

    Full Text Available In clinical trials and other follow-up studies, it is natural that a response variable is repeatedly measured during follow-up and the occurrence of some key event is also monitored. There has been a considerable study on the joint modelling these measures together with information on covariates. But most of the studies are related to continuous outcomes. In many situations instead of observing continuous outcomes, repeated ordinal outcomes are recorded over time. The joint modelling of such serial outcomes and the time to event data then becomes a bit complicated. In this article we have attempted to analyse such models through a latent variable model. In view of the longitudinal variation on the ordinal outcome measure, it is desirable to account for the dependence between ordered categorical responses and survival time for different causes due to unobserved factors. A flexible Monte Carlo EM (MCEM method based on exact likelihood is proposed that can simultaneously handle the longitudinal ordinal data and also the censored time to event data. A computationally more efficient MCEM method based on approximation of the likelihood is also proposed. The method is applied to a number of ordinal scores and survival data from trials of a treatment for children suffering from Duchenne Muscular Dystrophy. Finally, a simulation study is conducted to examine the finite sample properties of the proposed estimators in the joint model under two different methods.

  4. Compositional Models for Video Event Detection: A Multiple Kernel Learning Latent Variable Approach (Open Access)

    Science.gov (United States)

    2014-03-03

    segments that correspond to scenes observed within the event category (e.g., for wed - ding ceremony videos, outdoor park scenes or people danc- ing...several subcategories (e.g., a wedding 1186 11, zt 22, zt SS zt , lφ lφ lφ Global Models Scene Type Models .... .... 2b Cb1b gφ gφ gφ XVideo Figure 2...in a video is denoted by ts. ceremony at a church, house, or park). Further, it is assumed that a particular video corresponds to only one subcategory

  5. Should we trust models or observations

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.

    1982-01-01

    Scientists and laymen alike already trust observational data more than theories-this is made explicit in all formalizations of the scientific method. It was demonstrated again during the Supersonic Transport (SST) controversy by the continued efforts to reconcile the computed effect of the 1961-62 nuclear test series on the ozone layer with the observational record. Scientists, caught in the focus of the political limelight, sometimes, demonstrated their faith in the primacy of observations by studiously ignoring or dismissing as erroneous data at variance with the prevailing theoretical consensus-thereby stalling the theoretical modifications required to accommodate the observations. (author)

  6. Reconstructing Methane Emission Events in the Arctic Ocean: Observations from the Past to Present

    Science.gov (United States)

    Panieri, G.; Mienert, J.; Fornari, D. J.; Torres, M. E.; Lepland, A.

    2015-12-01

    Methane hydrates are ice-like crystals that are present along continental margins, occurring in the pore space of deep sediments or as massive blocks near the seafloor. They form in high pressure and low temperature environments constrained by thermodynamic stability, and supply of methane. In the Arctic, gas hydrates are abundant, and the methane released by their destabilization can affect local to global carbon budgets and cycles, ocean acidification, and benthic community survival. With the aim to locate in space and time the periodicity of methane venting, CAGE is engaged in a vast research program in the Arctic, a component of which comprises the analyses of numerous sediment cores and correlative geophysical and geochemical data from different areas. Here we present results from combined analyses of biogenic carbonate archives along the western Svalbard Margin, which reveal past methane venting events in this region. The reconstruction of paleo-methane discharge is complicated by precipitation of secondary carbonate on foraminifera shells, driven by an increase in alkalinity during anaerobic oxidation of methane (AOM). The biogeochemical processes involved in methane cycling and processes that drive methane migration affect the depth where AOM occurs, with relevance to secondary carbonate formation. Our results show the value and complexity of separating primary vs. secondary signals in bioarchives with relevance to understanding fluid-burial history in methane seep provinces. Results from our core analyses are integrated with observations made during the CAGE15-2 cruise in May 2015, when we deployed a towed vehicle equipped with camera, multicore and water sampling capabilities. The instrument design was based on the Woods Hole Oceanographic Institution (WHOI) MISO TowCam sled equipped with a deep-sea digital camera and CTD real-time system. Sediment sampling was visually-guided using this system. In one of the pockmarks along the Vestnesa Ridge where high

  7. ELF whistler events with a reduced intensity observed by the DEMETER spacecraft

    Science.gov (United States)

    Zahlava, J.; Nemec, F.; Santolik, O.; Kolmasova, I.; Parrot, M.

    2017-12-01

    A survey of VLF frequency-time spectrograms obtained by the DEMETER spacecraft (2004-2010, altitude about 700 km) revealed that the intensity of fractional hop whistlers is sometimes significantly reduced at specific frequencies. These frequencies are typically above about 3.4 kHz (second cutoff frequency of the Earth-ionosphere waveguide), and they vary smoothly in time. The events were explained by the wave propagation in the Earth-ionosphere waveguide, and a resulting interference of the first few waveguide modes. We analyze the events whose frequency-time structure is rather similar, but at frequencies below 1 kHz. Altogether, 284 events are identified during the periods with active Burst mode, when high resolution data are measured by DEMETER. The vast majority of events (93%) occurs during the nighttime. All six electromagnetic field components are available, which allows us to perform a detailed wave analysis. An overview of the properties of these events is presented, and their possible origin is discussed.

  8. Spatially explicit modelling of extreme weather and climate events ...

    African Journals Online (AJOL)

    The reality of climate change continues to influence the intensity and frequency of extreme weather events such as heat waves, droughts, floods, and landslides. The impacts of the cumulative interplay of these extreme weather and climate events variation continue to perturb governments causing a scramble into formation ...

  9. Galactic Cosmic Ray Event-Based Risk Model (GERM) Code

    Science.gov (United States)

    Cucinotta, Francis A.; Plante, Ianik; Ponomarev, Artem L.; Kim, Myung-Hee Y.

    2013-01-01

    This software describes the transport and energy deposition of the passage of galactic cosmic rays in astronaut tissues during space travel, or heavy ion beams in patients in cancer therapy. Space radiation risk is a probability distribution, and time-dependent biological events must be accounted for physical description of space radiation transport in tissues and cells. A stochastic model can calculate the probability density directly without unverified assumptions about shape of probability density function. The prior art of transport codes calculates the average flux and dose of particles behind spacecraft and tissue shielding. Because of the signaling times for activation and relaxation in the cell and tissue, transport code must describe temporal and microspatial density of functions to correlate DNA and oxidative damage with non-targeted effects of signals, bystander, etc. These are absolutely ignored or impossible in the prior art. The GERM code provides scientists data interpretation of experiments; modeling of beam line, shielding of target samples, and sample holders; and estimation of basic physical and biological outputs of their experiments. For mono-energetic ion beams, basic physical and biological properties are calculated for a selected ion type, such as kinetic energy, mass, charge number, absorbed dose, or fluence. Evaluated quantities are linear energy transfer (LET), range (R), absorption and fragmentation cross-sections, and the probability of nuclear interactions after 1 or 5 cm of water equivalent material. In addition, a set of biophysical properties is evaluated, such as the Poisson distribution for a specified cellular area, cell survival curves, and DNA damage yields per cell. Also, the GERM code calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle in a selected material. The GERM code makes the numerical estimates of basic

  10. Analysis of operational events by ATHEANA framework for human factor modelling

    International Nuclear Information System (INIS)

    Bedreaga, Luminita; Constntinescu, Cristina; Doca, Cezar; Guzun, Basarab

    2007-01-01

    In the area of human reliability assessment, the experts recognise the fact that the current methods have not represented correctly the role of human in prevention, initiating and mitigating the accidents in nuclear power plants. The nature of this deficiency appears because the current methods used in modelling of human factor have not taken into account the human performance and reliability such as it has been observed in the operational events. ATHEANA - A Technique for Human Error ANAlysis - is a new methodology for human analysis that has included the specific data of operational events and also psychological models for human behaviour. This method has included new elements such as the unsafe action and error mechanisms. In this paper we present the application of ATHEANA framework in the analysis of operational events that appeared in different nuclear power plants during 1979-2002. The analysis of operational events has consisted of: - identification of the unsafe actions; - including the unsafe actions into a category, omission ar commission; - establishing the type of error corresponding to the unsafe action: slip, lapse, mistake and circumvention; - establishing the influence of performance by shaping the factors and some corrective actions. (authors)

  11. Constructing Experience: Event Models from Perception to Action.

    Science.gov (United States)

    Richmond, Lauren L; Zacks, Jeffrey M

    2017-12-01

    Mental representations of everyday experience are rich, structured, and multimodal. In this article we consider the adaptive pressures that led to human construction of such representations, arguing that structured event representations enable cognitive systems to more effectively predict the trajectory of naturalistic everyday activity. We propose an account of how cortical systems and the hippocampus (HPC) interact to construct, maintain, and update event representations. This analysis throws light on recent research on story comprehension, event segmentation, episodic memory, and action planning. It also suggests how the growing science base can be deployed to diagnose impairments in event perception and memory, and to improve memory for everyday events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. SMAP observes flooding from land to sea: The Texas event of 2015

    Science.gov (United States)

    Fournier, Severine; Reager, John; Lee, Tong; Vazquez-Cuervo, Jorge; David, Cedric; Gierach, Michelle

    2017-04-01

    Floods can have damaging impacts on both land and sea, yet studies of flooding events tend to focus on only one side of the land/sea continuum. Here we present the first two-sided analysis, focusing on the May 2015 severe flood in Texas. Our investigation benefits from simultaneous measurements of land-surface soil moisture and sea surface salinity from NASA's recent Soil Moisture Active Passive (SMAP) mission as well as ancillary data. We report the comprehensive chronology of the flood event: above average rainfall preceding the flood caused soils to saturate; record rainfall then generated record river discharge; subsequently, an unusual freshwater plume associated with anomalous ocean currents formed in the north-central Gulf of Mexico. Together with the Mississippi River plume further east, the Texas plume created a rare "horseshoe" pattern that have potential biogeochemical implications. Such integrated land/sea analysis of flood evolution can improve impact assessments of future extreme flooding events.

  13. Observation of μe events in anti ν and ν interactions in neon

    International Nuclear Information System (INIS)

    Ballagh, H.C.; Bingham, H.H.; Bosetti, P.; Fretter, W.B.; Gee, D.; Grivaz, J.; Lynch, G.R.; Marriner, J.P.; Orthel, J.; Porter, F.C.; Sokoloff, M.D.; Stevenson, M.L.; Yost, G.P.; Cence, R.J.; Harris, F.A.; Jones, M.D.; Katsura, T.; Parker, S.I.; Peterson, V.Z.; Peters, M.W.; Stenger, V.J.; Burnett, T.H.; Csorna, S.; Lubatti, H.J.; Moriyasu, K.; Rudnicka, H.; Swider, G.M.; Yuldashev, B.S.

    1977-01-01

    Based on four μ + e - X and six μ - e + X events (with estimated backgrounds 1.1 and 0.6 events respectively), in the Fermilab 15-in. neon (64 at. %) hydrogen bubble chamber, the fractions of μ + e - and μ - e + production relative to nu-bar/sub μ/and ν/sub μ/charged-current interactions in a broad band nu-bar beam are, respectively, f-bar = (0.15/sup +0.14//sub 0.08/) % and f = (0.34/sup +0.23//sub -0.13/) %; f-bar/f = 0.45/sup +0.6//sub -0.3/

  14. Energies of precipitating electrons during pulsating aurora events derived from ionosonde observations

    International Nuclear Information System (INIS)

    MacDougall, J.W.; Hofstee, J.; Koehler, J.A.

    1981-01-01

    The time-history of particle energies and fluxes associated with pulsating auroras in the morning sector is derived from ionosonde measurements. All the pulsating auroras studied showed a similar history with the pulsations occurring during a time interval of the order of an hour during which the average auroral Maxwellian characteristic energy stays relatively constant but the energy flux decreases progressively during the event. A possible explanation for this behaviour in terms of an injection of particles into a magnetospheric 'bottle' near the midnight meridian and the progressive precipitation out of the bottle during the pulsating event is suggested. (auth)

  15. Solar Coronal Jets: Observations, Theory, and Modeling

    Science.gov (United States)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  16. On the two steps threshold selection for over-threshold modelling of extreme events

    Science.gov (United States)

    Bernardara, Pietro; Mazas, Franck; Weiss, Jerome; Andreewsky, Marc; Kergadallan, Xavier; Benoit, Michel; Hamm, Luc

    2013-04-01

    The estimation of the probability of occurrence of extreme events is traditionally achieved by fitting a probability distribution on a sample of extreme observations. In particular, the extreme value theory (EVT) states that values exceeding a given threshold converge through a Generalized Pareto Distribution (GPD) if the original sample is composed of independent and identically distributed values. However, the temporal series of sea and ocean variables usually show strong temporal autocorrelation. Traditionally, in order to select independent events for the following statistical analysis, the concept of a physical threshold is introduced: events that excess that threshold are defined as "extreme events". This is the so-called "Peak Over a Threshold (POT)" sampling, widely spread in the literature and currently used for engineering applications among many others. In the past, the threshold for the statistical sampling of extreme values asymptotically convergent toward GPD and the threshold for the physical selection of independent extreme events were confused, as the same threshold was used for both sampling data and to meet the hypothesis of extreme value convergence, leading to some incoherencies. In particular, if the two steps are performed simultaneously, the number of peaks over the threshold can increase but also decrease when the threshold decreases. This is logic in a physical point of view, since the definition of the sample of "extreme events" changes, but is not coherent with the statistical theory. We introduce a two-steps threshold selection for over-threshold modelling, aiming to discriminate (i) a physical threshold for the selection of extreme and independent events, and (ii) a statistical threshold for the optimization of the coherence with the hypothesis of the EVT. The former is a physical events identification procedure (also called "declustering") aiming at selecting independent extreme events. The latter is a purely statistical optimization

  17. Strategies to Automatically Derive a Process Model from a Configurable Process Model Based on Event Data

    Directory of Open Access Journals (Sweden)

    Mauricio Arriagada-Benítez

    2017-10-01

    Full Text Available Configurable process models are frequently used to represent business workflows and other discrete event systems among different branches of large organizations: they unify commonalities shared by all branches and describe their differences, at the same time. The configuration of such models is usually done manually, which is challenging. On the one hand, when the number of configurable nodes in the configurable process model grows, the size of the search space increases exponentially. On the other hand, the person performing the configuration may lack the holistic perspective to make the right choice for all configurable nodes at the same time, since choices influence each other. Nowadays, information systems that support the execution of business processes create event data reflecting how processes are performed. In this article, we propose three strategies (based on exhaustive search, genetic algorithms and a greedy heuristic that use event data to automatically derive a process model from a configurable process model that better represents the characteristics of the process in a specific branch. These strategies have been implemented in our proposed framework and tested in both business-like event logs as recorded in a higher educational enterprise resource planning system and a real case scenario involving a set of Dutch municipalities.

  18. Multipoint observation of the response of the magnetosphere and ionosphere related to the sudden impulse event on 19 November 2007

    Directory of Open Access Journals (Sweden)

    Segarra Antoni

    2015-01-01

    Full Text Available The aim of this study is to provide a complete scope of a magnetic sudden impulse (SI event along its way through interplanetary space and the magnetosphere until its arrival to the ground. In our case, we chose the event of 19th November 2007 because of the availability of enough well-located spacecraft at that moment for our purpose. We have used a 16 spacecraft data set. We calculated the mass flux variation and the change in magnetic field components across the discontinuity. Thus, we identified the solar wind discontinuity as a shock. We also calculated the orientation of the solar wind shock front. Then, we examined the effects of the shock front propagation in detail. With this large data set, we obtained a global view of the travelling wave front and identified the effects of the compressional wave front. Thus, we determined in detail the shock front passing through the different parts of the magnetosphere. We described the compressional effects in the bow shock, the magnetosheath, and the magnetopause and we depicted the propagation inside the inner magnetosphere. Moreover, we used an extensive data set from magnetic observatories on the ground and so we studied the global distribution of the SI waveform. Finally, the comparison of the observational facts with those derived from the theoretical model showed a good consistency. On the basis of the waveforms and polarizations of this SI, we determined the location in latitude where ionospheric currents (ICs changed their sense. And also, we related polarization at ground to polarization measured by GOES spacecraft.

  19. Catalogue of {>} 55 MeV Wide-longitude Solar Proton Events Observed by SOHO, ACE, and the STEREOs at {≈} 1 AU During 2009 - 2016

    Science.gov (United States)

    Paassilta, Miikka; Papaioannou, Athanasios; Dresing, Nina; Vainio, Rami; Valtonen, Eino; Heber, Bernd

    2018-04-01

    Based on energetic particle observations made at {≈} 1 AU, we present a catalogue of 46 wide-longitude ({>} 45°) solar energetic particle (SEP) events detected at multiple locations during 2009 - 2016. The particle kinetic energies of interest were chosen as {>} 55 MeV for protons and 0.18 - 0.31 MeV for electrons. We make use of proton data from the Solar and Heliospheric Observatory/Energetic and Relativistic Nuclei and Electron Experiment (SOHO/ERNE) and the Solar Terrestrial Relations Observatory/High Energy Telescopes (STEREO/HET), together with electron data from the Advanced Composition Explorer/Electron, Proton, and Alpha Monitor (ACE/EPAM) and the STEREO/ Solar Electron and Proton Telescopes (SEPT). We consider soft X-ray data from the Geostationary Operational Environmental Satellites (GOES) and coronal mass ejection (CME) observations made with the SOHO/ Large Angle and Spectrometric Coronagraph (LASCO) and STEREO/ Coronagraphs 1 and 2 (COR1, COR2) to establish the probable associations between SEP events and the related solar phenomena. Event onset times and peak intensities are determined; velocity dispersion analysis (VDA) and time-shifting analysis (TSA) are performed for protons; TSA is performed for electrons. In our event sample, there is a tendency for the highest peak intensities to occur when the observer is magnetically connected to solar regions west of the flare. Our estimates for the mean event width, derived as the standard deviation of a Gaussian curve modelling the SEP intensities (protons {≈} 44°, electrons {≈} 50°), largely agree with previous results for lower-energy SEPs. SEP release times with respect to event flares, as well as the event rise times, show no simple dependence on the observer's connection angle, suggesting that the source region extent and dominant particle acceleration and transport mechanisms are important in defining these characteristics of an event. There is no marked difference between the speed

  20. Observation of rotational component in digital data of mining induced seismic events

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Knejzlík, Jaromír; Lednická, Markéta

    2012-01-01

    Roč. 7, č. 1 (2012), s. 75-85 ISSN 1896-3145. [Ochrona środowiska w górnictwie podziemnym, odkrywkowym i otworowym. Wieliczka - Zakrzow, 16.05.2012-18.05.2012] Institutional research plan: CEZ:AV0Z30860518 Keywords : rotational component * mining induced seismic event * field measurement Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  1. Cytogenetics observation and radiation influence evaluation of exposed persons in a discontinuous radiation exposure event

    International Nuclear Information System (INIS)

    Chen Ying; Liu Xiulin; Yang Guoshan; Ge Shili; Jin Cuizhen; Yao Bo

    2003-01-01

    The cytogenetics results and dose estimation of exposed and related persons in an discontinuous radiation exposure event were reported in this paper. According to dicentrics + ring and micronucleus results combined with clinical data, slight (middle) degree of subacute radiation symptom of the victim was diagnosed. A part of 52 examined persons were exposed to radiation in a certain degree

  2. OGLE-2016-BLG-0168 Binary Microlensing Event: Prediction and Confirmation of the Microlens Parallax Effect from Space-based Observations

    Energy Technology Data Exchange (ETDEWEB)

    Shin, I.-G.; Yee, J. C.; Jung, Y. K. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Udalski, A.; Skowron, J.; Mróz, P.; Soszyński, I.; Poleski, R.; Szymański, M. K.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M. [Warsaw University Observatory, Al. Ujazdowskie 4,00-478 Warszawa (Poland); Novati, S. Calchi [IPAC, Mail Code 100-22, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Han, C. [Department of Physics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Albrow, M. D. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch 8020 (New Zealand); Gould, A. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Chung, S.-J.; Hwang, K.-H.; Ryu, Y.-H. [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-Gu, Daejeon 34055 (Korea, Republic of); Collaboration: OGLE Collaboration; KMTNet Group; Spitzer Team; and others

    2017-11-01

    The microlens parallax is a crucial observable for conclusively identifying the nature of lens systems in microlensing events containing or composed of faint (even dark) astronomical objects such as planets, neutron stars, brown dwarfs, and black holes. With the commencement of a new era of microlensing in collaboration with space-based observations, the microlens parallax can be routinely measured. In addition, space-based observations can provide opportunities to verify the microlens parallax measured from ground-only observations and to find a unique solution to the lensing light-curve analysis. Furthermore, since most space-based observations cannot cover the full light curves of lensing events, it is also necessary to verify the reliability of the information extracted from fragmentary space-based light curves. We conduct a test based on the microlensing event OGLE-2016-BLG-0168, created by a binary lens system consisting of almost equal mass M-dwarf stars, to demonstrate that it is possible to verify the microlens parallax and to resolve degeneracies using the space-based light curve even though the observations are fragmentary. Since space-based observatories will frequently produce fragmentary light curves due to their short observing windows, the methodology of this test will be useful for next-generation microlensing experiments that combine space-based and ground-based collaboration.

  3. WRF simulation of a precipitation event over the Tibetan Plateau, China – an assessment using remote sensing and ground observations

    Directory of Open Access Journals (Sweden)

    F. Maussion

    2011-06-01

    much of the precipitation on the TiP is originating. The choice of the physical parameterisation scheme will thus be always a compromise depending on the specific purpose of a model simulation. Our study demonstrates the high importance of orographic precipitation, but the problem of the orographic bias remains unsolved since reliable observational data are still missing. The results are relevant for anyone interested in carrying out a regional atmospheric reanalysis. Many hydrological analyses and applications like rainfall-runoff modelling or the analysis of flood events require precipitation rates at daily or even hourly intervals. Thus, our study offers a process-oriented alternative for retrieving precipitation fields of high spatio-temporal resolution in regions like the TiP, where other data sources are limited.

  4. Water quantity and quality response of a green roof to storm events: Experimental and monitoring observations.

    Science.gov (United States)

    Carpenter, Corey M G; Todorov, Dimitar; Driscoll, Charles T; Montesdeoca, Mario

    2016-11-01

    Syracuse, New York is working under a court-ordered agreement to limit combined sewer overflows (CSO) to local surface waters. Green infrastructure technologies, including green roofs, are being implemented as part of a CSO abatement strategy and to develop co-benefits of diminished stormwater runoff, including decreased loading of contaminants to the wastewater system and surface waters. The objective of this study was to examine the quantity and quality of discharge associated with precipitation events over an annual cycle from a green roof in Syracuse, NY and to compare measurements from this monitoring program with results from a roof irrigation experiment. Wet deposition, roof drainage, and water quality were measured for 87 storm events during an approximately 12 month period over 2011-2012. Water and nutrient (total phosphorus, total nitrogen, and dissolved organic carbon) mass balances were conducted on an event basis to evaluate retention annually and during the growing and non-growing seasons. These results are compared with a hydrological manipulation experiment, which comprised of artificially watering of the roof. Loadings of nutrients were calculated for experimental and actual storms using the concentration of nutrients and the flow data of water discharging the roof. The green roof was effective in retaining precipitation quantity from storm events (mean percent retention 96.8%, SD = 2.7%, n = 87), although the relative fraction of water retained decreased with increases in the size of the event. There was no difference in water retention of the green roof for the growing and non-growing seasons. Drainage waters exhibited high concentration of nutrients during the warm temperature growing season, particularly total nitrogen and dissolved organic carbon. Overall, nutrient losses were low because of the strong retention of water. However, there was marked variation in the retention of nutrients by season due to variations in concentrations in roof

  5. Bicycle Rider Control: Observations, Modeling & Experiments

    OpenAIRE

    Kooijman, J.D.G.

    2012-01-01

    Bicycle designers traditionally develop bicycles based on experience and trial and error. Adopting modern engineering tools to model bicycle and rider dynamics and control is another method for developing bicycles. This method has the potential to evaluate the complete design space, and thereby develop well handling bicycles for specific user groups in a much shorter time span. The recent benchmarking of the Whipple bicycle model for the balance and steer of a bicycle is an opening enabling t...

  6. Odessa Tsunami of 27 June 2014: Observations and Numerical Modelling

    Science.gov (United States)

    Šepić, Jadranka; Rabinovich, Alexander B.; Sytov, Victor N.

    2017-11-01

    On 27 June, a 1-2-m high wave struck the beaches of Odessa, the third largest Ukrainian city, and the neighbouring port-town Illichevsk (northwestern Black Sea). Throughout the day, prominent seiche oscillations were observed in several other ports of the Black Sea. Tsunamigenic synoptic conditions were found over the Black Sea, stretching from Romania in the west to the Crimean Peninsula in the east. Intense air pressure disturbances and convective thunderstorm clouds were associated with these conditions; right at the time of the event, a 1.5-hPa air pressure jump was recorded at Odessa and a few hours earlier in Romania. We have utilized a barotropic ocean numerical model to test two hypotheses: (1) a tsunami-like wave was generated by an air pressure disturbance propagating directly over Odessa ("Experiment 1"); (2) a tsunami-like wave was generated by an air pressure disturbance propagating offshore, approximately 200 km to the south of Odessa, and along the shelf break ("Experiment 2"). Both experiments decisively confirm the meteorological origin of the tsunami-like waves on the coast of Odessa and imply that intensified long ocean waves in this region were generated via the Proudman resonance mechanism while propagating over the northwestern Black Sea shelf. The "Odessa tsunami" of 27 June 2014 was identified as a "beach meteotsunami", similar to events regularly observed on the beaches of Florida, USA, but different from the "harbour meteotsunamis", which occurred 1-3 days earlier in Ciutadella (Baleares, Spain), Mazara del Vallo (Sicily, Italy) and Vela Luka (Croatia) in the Mediterranean Sea, despite that they were associated with the same atmospheric system moving over the Mediterranean/Black Sea region on 23-27 June 2014.

  7. A statistical analysis of angular distribution of neutrino events observed in Kamiokande II and IMB detectors from supernova SN 1987 A

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1989-01-01

    A detailed statistical analysis of angular distribution of neutrino events observed in Kamiokande II and IMB detectors on UT 07:35, 2/23'87 is carried out. Distribution functions of the mean scattering angles in the reaction anti υ e p→e + n and υe→υe are constructed with account taken of the multiple Coulomb scattering and the experimental angular errors. The Smirnov and Wald-Wolfowitz run tests are used to test the hypothesis that the angular distributions of events from the two detectors agree with each other. We test with the use of the Kolmogorov and Mises statistical criterions the hypothesis that the recorded events all represent anti υ e p→e + n inelastic scatterings. Then the Neyman-Pearson test is applied to each event in testing the hypothesis anti υ e p→e + n against the alternative υe→υe. The hypotheses that the number of elastic events equals s=0, 1, 2, ... against the alternatives s≠0, 1, 2, ... are tested on the basis of the generalized likelihood ratio criterion. The confidence intervals for the number of elastic events are also constructed. The current supernova models fail to give a satisfactory account of the angular distribution data. (orig.)

  8. Assessment of extreme precipitation events over Amazon simulated by global climate models from HIGEM family.

    Science.gov (United States)

    Custodio, Maria; Ambrizzi, Tercio; da Rocha, Rosmeri

    2015-04-01

    coupled and uncoupled models capture the observed signal of the ENSO and MJO oscillations, although with reversed phase in some cases. The austral summer and winter composites of interannual and intraseasonal anomalies showed for wet and dry extreme events the same spatial distribution in models and reanalyses. The interannual variability analysis showed that coupled simulations intensify the impact of the El Niño Southern Oscillation (ENSO) in the Amazon. In the Intraseasonal scale, although the simulations intensify this signal, the coupled models present larger similarities with observations than the atmospheric models for the extremes of precipitation. Note that there are differences between simulated and observed IS anomalies indicating that the models have problems to correctly represent the intensity of low frequency phenomena in this scale. The simulation of ENSO in GCMs can be attributed to their high resolution, mainly in the oceanic component, which contributes to the better solution of the small scale vortices in the ocean. This implies in improvements in the forecasting of sea surface temperature (SST) and as consequence in the ability of atmosphere to respond to this feature.

  9. Multi-wavelength Observations of Two Explosive Events and Their Effects on the Solar Atmosphere

    Directory of Open Access Journals (Sweden)

    Agustinus G. Admiranto

    2016-09-01

    Full Text Available We investigated two flares in the solar atmosphere that occurred on June 3, 2012 and July 6, 2012 and caused propagation of Moreton and EIT waves. In the June 3 event, we noticed a filament winking which presumably was caused by the wave propagation from the flare. An interesting feature of this event is that there was a reflection of this wave by a coronal hole located alongside the wave propagation, but not all of this wave was transmitted by the coronal hole. Using the running difference method, we calculated the speed of Moreton and EIT waves and we found values of 926 km/s before the reflection and 276 km/s after the reflection (Moreton wave and 1,127 km/s before the reflection and 46 km/s after the reflection (EIT wave. In the July 6 event, this phenomenon was accompanied by type II and type III solar radio bursts, and we also performed a running difference analysis to find the speed of the Moreton wave, obtaining a value of 988 km/s. The speed derived from the analysis of the solar radio burst was 1,200 km/s, and we assume that this difference was caused by the different nature of the motions in these phenomena, where the solar radio burst was caused by the propagating particles, not waves.

  10. Polar cap patches observed during the magnetic storm of November 2003: observations and modeling

    Directory of Open Access Journals (Sweden)

    C. E. Valladares

    2015-09-01

    Full Text Available We present multi-instrumented measurements and multi-technique analysis of polar cap patches observed early during the recovery phase of the major magnetic storm of 20 November 2003 to investigate the origin of the polar cap patches. During this event, the Qaanaaq imager observed elongated polar cap patches, some of which containing variable brightness; the Qaanaaq digisonde detected abrupt NmF2 fluctuations; the Sondrestrom incoherent scatter radar (ISR measured patches placed close to but poleward of the auroral oval–polar cap boundary; and the DMSP-F13 satellite intersected topside density enhancements, corroborating the presence of the patches seen by the imager, the digisonde, and the Sondrestrom ISR. A 2-D cross-correlation analysis was applied to series of two consecutive red-line images, indicating that the magnitude and direction of the patch velocities were in good agreement with the SuperDARN convection patterns. We applied a back-tracing analysis to the patch locations and found that most of the patches seen between 20:41 and 21:29 UT were likely transiting the throat region near 19:41 UT. Inspection of the SuperDARN velocities at this time indicates spatial and temporal collocation of a gap region between patches and large (1.7 km s−1 line-of-sight velocities. The variable airglow brightness of the patches observed between 20:33 and 20:43 UT was investigated using the numerical Global Theoretical Ionospheric Model (GTIM driven by the SuperDARN convection patterns and a variable upward/downward neutral wind. Our numerical results indicate that variations in the airglow intensity up to 265 R can be produced by a constant 70 m s−1 downward vertical wind.

  11. Television Advertising and Children's Observational Modeling.

    Science.gov (United States)

    Atkin, Charles K.

    This paper assesses advertising effects on children and adolescents from a social learning theory perspective, emphasizing imitative performance of vicariously reinforced consumption stimuli. The basic elements of social psychologist Albert Bandura's modeling theory are outlined. Then specific derivations from the theory are applied to the problem…

  12. Bicycle Rider Control : Observations, Modeling & Experiments

    NARCIS (Netherlands)

    Kooijman, J.D.G.

    2012-01-01

    Bicycle designers traditionally develop bicycles based on experience and trial and error. Adopting modern engineering tools to model bicycle and rider dynamics and control is another method for developing bicycles. This method has the potential to evaluate the complete design space, and thereby

  13. Observational consequences of a dark interaction model

    Energy Technology Data Exchange (ETDEWEB)

    Campos, M. de, E-mail: campos@if.uff.b [Roraima Federal University (UFRR), Paricarana, Boa Vista, RO (Brazil). Physics Dept.

    2010-12-15

    We study a model with decay of dark energy and creation of the dark matter particles. We integrate the field equations and find the transition redshift where the evolution process of the universe change the accelerated expansion, and discuss the luminosity distance, acoustic oscillations and the state finder parameters. (author)

  14. A Note on the Observational Evidence for the Existence of Event Horizons in Astrophysical Black Hole Candidates

    Directory of Open Access Journals (Sweden)

    Cosimo Bambi

    2013-01-01

    Full Text Available Black holes have the peculiar and intriguing property of having an event horizon, a one-way membrane causally separating their internal region from the rest of the Universe. Today, astrophysical observations provide some evidence for the existence of event horizons in astrophysical black hole candidates. In this short paper, I compare the constraint we can infer from the nonobservation of electromagnetic radiation from the putative surface of these objects with the bound coming from the ergoregion instability, pointing out the respective assumptions and limitations.

  15. Relational event models for longitudinal network data with an application to interhospital patient transfers.

    Science.gov (United States)

    Vu, Duy; Lomi, Alessandro; Mascia, Daniele; Pallotti, Francesca

    2017-06-30

    The main objective of this paper is to introduce and illustrate relational event models, a new class of statistical models for the analysis of time-stamped data with complex temporal and relational dependencies. We outline the main differences between recently proposed relational event models and more conventional network models based on the graph-theoretic formalism typically adopted in empirical studies of social networks. Our main contribution involves the definition and implementation of a marked point process extension of currently available models. According to this approach, the sequence of events of interest is decomposed into two components: (a) event time and (b) event destination. This decomposition transforms the problem of selection of event destination in relational event models into a conditional multinomial logistic regression problem. The main advantages of this formulation are the possibility of controlling for the effect of event-specific data and a significant reduction in the estimation time of currently available relational event models. We demonstrate the empirical value of the model in an analysis of interhospital patient transfers within a regional community of health care organizations. We conclude with a discussion of how the models we presented help to overcome some the limitations of statistical models for networks that are currently available. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Estimating the probabilities of rare arrhythmic events in multiscale computational models of cardiac cells and tissue.

    Directory of Open Access Journals (Sweden)

    Mark A Walker

    2017-11-01

    Full Text Available Ectopic heartbeats can trigger reentrant arrhythmias, leading to ventricular fibrillation and sudden cardiac death. Such events have been attributed to perturbed Ca2+ handling in cardiac myocytes leading to spontaneous Ca2+ release and delayed afterdepolarizations (DADs. However, the ways in which perturbation of specific molecular mechanisms alters the probability of ectopic beats is not understood. We present a multiscale model of cardiac tissue incorporating a biophysically detailed three-dimensional model of the ventricular myocyte. This model reproduces realistic Ca2+ waves and DADs driven by stochastic Ca2+ release channel (RyR gating and is used to study mechanisms of DAD variability. In agreement with previous experimental and modeling studies, key factors influencing the distribution of DAD amplitude and timing include cytosolic and sarcoplasmic reticulum Ca2+ concentrations, inwardly rectifying potassium current (IK1 density, and gap junction conductance. The cardiac tissue model is used to investigate how random RyR gating gives rise to probabilistic triggered activity in a one-dimensional myocyte tissue model. A novel spatial-average filtering method for estimating the probability of extreme (i.e. rare, high-amplitude stochastic events from a limited set of spontaneous Ca2+ release profiles is presented. These events occur when randomly organized clusters of cells exhibit synchronized, high amplitude Ca2+ release flux. It is shown how reduced IK1 density and gap junction coupling, as observed in heart failure, increase the probability of extreme DADs by multiple orders of magnitude. This method enables prediction of arrhythmia likelihood and its modulation by alterations of other cellular mechanisms.

  17. Multiwavelength follow-up observations of the tidal disruption event candidate 2XMMi J184725.1-631724

    Science.gov (United States)

    Lin, Dacheng; Strader, Jay; Carrasco, Eleazar R.; Godet, Olivier; Grupe, Dirk; Webb, Natalie A.; Barret, Didier; Irwin, Jimmy A.

    2018-03-01

    The ultrasoft X-ray flare 2XMMi J184725.1-631724 was serendipitously detected in two XMM-Newton observations in 2006 and 2007, with a peak luminosity of 6 × 1043 erg s-1. It was suggested to be a tidal disruption event (TDE) because its position is consistent with the centre of an inactive galaxy. It is the only known X-ray TDE candidate whose X-ray spectra showed evidence of a weak steep power-law component besides a dominant supersoft thermal disc. We have carried out multiwavelength follow-up observations of the event. Multiple X-ray monitorings show that the X-ray luminosity has decayed significantly after 2011. Especially, in our deep Chandra observation in 2013, we detected a very faint counterpart that supports the nuclear origin of 2XMMi J184725.1-631724 but had an X-ray flux a factor of ˜1000 lower than in the peak of the event. Compared with follow-up ultraviolet (UV) observations, we found that there might be some enhanced UV emission associated with the TDE in the first XMM-Newton observation. We also obtained a high-quality UV-optical spectrum with the Southern Astrophysical Research (SOAR) Telescope and put a very tight constraint on the persistent nuclear activity, with a persistent X-ray luminosity expected to be lower than the peak of the flare by a factor of >2700. Therefore, our multiwavelength follow-up observations strongly support the TDE explanation of the event.

  18. The Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Glagla, M.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Gross, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfe, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration; Ofek, Eran O.; Kasliwal, Mansi M.; Nugent, Peter E.; Arcavi, Iair; Bloom, Joshua S.; Kulkarni, Shrinivas R.; Perley, Daniel A.; Barlow, Tom; Horesh, Assaf; Gal-Yam, Avishay; Howell, D. A.; Dilday, Ben; PTF Collaboration; Evans, Phil A.; Kennea, Jamie A.; Swift Collaboration; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Waters, C.; Flewelling, H.; Tonry, J. L.; Rest, A.; Smartt, S. J.; Pan-STARRS1 Science Consortium

    2015-09-01

    The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.°2 away from the neutrino alert direction, with an error radius of 0.°54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2σ within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.

  19. Spectrophotometric Modeling of MAHLI Goniometer Observations

    Science.gov (United States)

    Liang, W.; Johnson, J. R.; Hayes, A.; Lemmon, M. T.; Bell, J. F., III; Grundy, W. M.; Deen, R. G.

    2017-12-01

    The Mars Hand Lends Imager (MAHLI) on the Curiosity rover's robotic arm was used as a goniometer to acquire a multiple-viewpoint data set on sol 544 [1]. Images were acquired at 20 arm positions, all centered at the same location and from a near-constant distance of 1.0 m from the surface. Although this sequence was acquired at only one time of day ( 13:30 LTST), it provided phase angle coverage from 0-110°. Images were converted to radiance from calibrated PDS files (DRXX) using radiance scaling factors and MAHLI focus position counts in an algorithm that rescaled the data to match the Mastcam M-34 calibration via comparison of sky images acquired during the mission. Converted MAHLI radiance values from an image of the Mastcam calibration target compared favorably in the red, green, and blue Bayer filters to M-34 radiance values from an image of the same target taken minutes afterwards. The 20 MAHLI images allowed construction of a digital terrain model (DTM), although images with shadows cast by the rover arm were more challenging to include. Their current absence restricts the lowest phase angles available to about 17°. The DTM enables calculation of surface normals that can be used with sky models to correct for diffuse reflectance on surface facets prior to Hapke modeling [cf. 2-6]. Regions of interest (ROIs) were extracted using one of the low emission-angle images as a template. ROI unit types included soils, light-toned surfaces (5 cm felsic rock "Nita"), dark-toned rocks with variable textures and dust cover, and larger areas representative of the average surface (see attached figure). These ROIs were translated from the template image to the other images through a matching of DTM three-dimensional coordinates. Preliminary phase curves (prior to atmospheric correction) show that soil-dominated surfaces are most backscattering, whereas rocks are least backscattering, and light-toned surfaces exhibit wavelength-dependent scattering. Future work will

  20. Analysis of the big halo event observed by Pamir emulsion chamber -P3B-90-

    International Nuclear Information System (INIS)

    Yamashita, Seibun

    1986-01-01

    There is observed a big air family (named as 'P3B-90') with a large halo by Pamir carbon chamber, called P3B, in USSR-Japan joint experiment at Pamir plateau (4370 m above sea level). Total observed energy of this halo is estimated to be 19000 TeV. It penetrates through both the upper and the lower chamber without decreasing its size. Such strong penetrative power is due to the existence of many hadrons in the halo region which are produced through the atmospheric successive interactions. The energy ratio of hadronic part to electromagnetic part is 1/3 and it is nearly equal to the case of 'Andromeda' observed in Chacaltaya experiment. On the other hand, 298 shower spots (>1 TeV) with total observed energy 1163 TeV are found within about 30 cm of radius from the center of the family. Among the observed shower spots, 45 spots are identified as hadronic ones, whose total observed energy is 345 TeV and 253 spots are electromagnetic ones with total observed energy 818 TeV. There exists a large difference in the power index of the energy spectrum between the electromagnetic and the hadronic components. That is, the hadronic component has a harder spectrum than the electromagnetic component. It shows that there exist a lot of hadrons in high energy region among the observed shower spots. This seems to be a general tendency of the super-high energy families. (author)

  1. Skill of Operational Aerosol Forecast Models in Predicting Aerosol Events and Trends of the Eastern United States.

    Science.gov (United States)

    Reid, J. S.; Kaku, K.; Xian, P.; Benedetti, A.; Colarco, P. R.; da Silva, A. M., Jr.; Holben, B. N.; Rubin, J.; Tanaka, T. Y.; Zhang, J.

    2016-12-01

    Global aerosol forecast models are now commonplace, providing predictions of dust storms, smoke event transport and even anthropogenic pollution events out to 6 days or even seasonally. These models often serve dual purposes providing analysis or reanalysis products for earth science applications as well as aerosol forecast guidance. The NASA Studies of Emissions & Atmospheric Composition, Clouds & Climate Coupling by Regional Surveys (SEAC4RS) coupled with the International Cooperative for Aerosol Prediction Multi Model Ensemble (ICAP-MME) provided an excellent opportunity to evaluate the nature and skill of global aerosol forecast models to simulate or predict the nature of a relatively "simple" anthropogenic pollution regime of the eastern United States. Generally, models are able to capture the relative distribution of haze events two days out, and reanalysis versions easily capture decadal trends. However, aerosol physics, chemistry, and meteorology uncertainties lead to the conclusion that these forecasts and reanalyses should be interpreted along the same semi-quantitative lines as most forecasters interpret meteorological model forecasts and analyses. Here, we systematically explore how differences in model configuration and data assimilation methodologies translate into differences in final model analysis and forecasts in a series of events observed during SEAC4RS and then extrapolate findings to the problem of decadal monitoring. We also explore the impact and ramifications of transient events such as biomass burning and dust impact forecast product interpretation.

  2. Interacting Dark Energy Models and Observations

    Science.gov (United States)

    Shojaei, Hamed; Urioste, Jazmin

    2017-01-01

    Dark energy is one of the mysteries of the twenty first century. Although there are candidates resembling some features of dark energy, there is no single model describing all the properties of dark energy. Dark energy is believed to be the most dominant component of the cosmic inventory, but a lot of models do not consider any interaction between dark energy and other constituents of the cosmic inventory. Introducing an interaction will change the equation governing the behavior of dark energy and matter and creates new ways to explain cosmic coincidence problem. In this work we studied how the Hubble parameter and density parameters evolve with time in the presence of certain types of interaction. The interaction serves as a way to convert dark energy into matter to avoid a dark energy-dominated universe by creating new equilibrium points for the differential equations. Then we will use numerical analysis to predict the values of distance moduli at different redshifts and compare them to the values for the distance moduli obtained by WMAP (Wilkinson Microwave Anisotropy Probe). Undergraduate Student

  3. Event timing in associative learning: from biochemical reaction dynamics to behavioural observations.

    Directory of Open Access Journals (Sweden)

    Ayse Yarali

    Full Text Available Associative learning relies on event timing. Fruit flies for example, once trained with an odour that precedes electric shock, subsequently avoid this odour (punishment learning; if, on the other hand the odour follows the shock during training, it is approached later on (relief learning. During training, an odour-induced Ca(++ signal and a shock-induced dopaminergic signal converge in the Kenyon cells, synergistically activating a Ca(++-calmodulin-sensitive adenylate cyclase, which likely leads to the synaptic plasticity underlying the conditioned avoidance of the odour. In Aplysia, the effect of serotonin on the corresponding adenylate cyclase is bi-directionally modulated by Ca(++, depending on the relative timing of the two inputs. Using a computational approach, we quantitatively explore this biochemical property of the adenylate cyclase and show that it can generate the effect of event timing on associative learning. We overcome the shortage of behavioural data in Aplysia and biochemical data in Drosophila by combining findings from both systems.

  4. Comparison of observed and modeled longwave radiances

    Science.gov (United States)

    Stone, Kenneth; Coakley, J. A., Jr.

    1990-01-01

    Calculated LW radiances based on NMC profiles of temperature and humidities for the month of July 1985 are obtained using standard procedures for performing radiative transfer calculations, and are within 3 percent (against a standard deviation of 4 percent) for global daytime land comparsions and within 1 percent (against a standard deviation of 1.5 percent) for a case study located over North America. The calculated values over the global data set show a slight trend with the surface temperature, and since there is no obvious trend with the column amount of water vapor, it is argued that the trend with temperature is evidence that absorption by other components (i.e., CO2O3 and other trace gases not included in these calculations) in the model could be improved.

  5. A prediction and damage assessment model for snowmelt flood events in middle and high latitudes Region

    Science.gov (United States)

    Qiao, C.; Huang, Q.; Chen, T.; Zhang, X.

    2017-12-01

    In the context of global warming, the snowmelt flood events in the mountainous area of the middle and high latitudes are increasingly frequent and create severe casualties and property damages. Carrying out the prediction and risk assessment of the snowmelt flood is of great importance in the water resources management, the flood warning and prevention. Based on the remote sensing and GIS techniques, the relationships of the variables influencing the snowmelt flood such as the snow area, the snow depth, the air temperature, the precipitation, the land topography and land covers are analyzed and a prediction and damage assessment model for snowmelt floods is developed. This model analyzes and predicts the flood submerging area, flood depth, flood grade, and the damages of different underlying surfaces in the study area in a given time period based on the estimation of snowmelt amount, the snowmelt runoff, the direction and velocity of the flood. Then it was used to predict a snowmelt flood event in the Ertis River Basin in northern Xinjiang, China, during March and June, 2005 and to assess its damages including the damages of roads, transmission lines, settlements caused by the floods and the possible landslides using the hydrological and meteorological data, snow parameter data, DEM data and land use data. A comparison was made between the prediction results from this model and observation data including the flood measurement and its disaster loss data, which suggests that this model performs well in predicting the strength and impact area of snowmelt flood and its damage assessment. This model will be helpful for the prediction and damage assessment of snowmelt flood events in the mountainous area in the middle and high latitudes in spring, which has great social and economic significance because it provides a relatively reliable method for snowmelt flood prediction and reduces the possible damages caused by snowmelt floods.

  6. Observations of rapid-fire event tremor at Lascar volcano, Chile

    Science.gov (United States)

    Asch, Guenter; Wylegalla, K.; Hellweg, M.; Seidl, D.; Rademacher, H.

    1996-01-01

    During the Proyecto de Investigacio??n Sismolo??gica de la Cordillera Occidental (PISCO '94) in the Atacama desert of Northern Chile, a continuously recording broadband seismic station was installed to the NW of the currently active volcano, Lascar. For the month of April, 1994, an additional network of three, short period, three-component stations was deployed around the volcano to help discriminate its seismic signals from other local seismicity. During the deployment, the volcanic activity at Lascar appeared to be limited mainly to the emission of steam and SO2. Tremor from Lascar is a random, ??rapid-fire?? series of events with a wide range of amplitudes and a quasi-fractal structure. The tremor is generated by an ensemble of independent elementary sources clustered in the volcanic edifice. In the short-term, the excitation of the sources fluctuates strongly, while the long-term power spectrum is very stationary.

  7. Developing a forecast model of solar proton flux profiles for well-connected events

    Science.gov (United States)

    Ji, E. Y.; Moon, Y. J.; Park, J.

    2014-12-01

    We have developed a forecast model of solar proton flux profile (> 10 MeV channel) for well-connected events. Among 136 solar proton events (SPEs) from 1986 to 2006, we select 49 well-connected ones that are all associated with single X-ray flares stronger than M1 class and start to increase within four hours after their X-ray peak times. These events show rapid increments in proton flux. By comparing several empirical functions, we select a modified Weibull curve function to approximate a SPE flux profile, which is similar to the particle injection rate. The parameters (peak value, rise time and decay time) of this function are determined by the relationship between X-ray flare parameters (peak flux, impulsive time, and emission measure) and SPE parameters. For 49 well-connected SPEs, the linear correlation between the predicted proton peak flux and the observed proton peak fluxes is 0.65 with the RMS error of 0.55 pfu in the log10. In addition, we have developed another forecast model based on flare and CME parameters using 22 SPEs. The used CME parameters are linear speed and angular width. As a result, we find that the linear correlation between the predicted proton peak flux and the observed proton peak fluxes is 0.83 with the RMS error of 0.35 pfu in the log10. From the relationship between the model error and CME acceleration, we find that CME acceleration is also an important factor for predicting proton flux profiles.

  8. The role of extreme drought events in modelling the distribution of beech at its xeric limit

    Science.gov (United States)

    Rasztovits, Ervin; Berki, Imre; Eredics, Attila; Móricz, Norbert

    2014-05-01

    Context: Projections of species distribution models (SDMs) for future climate conditions are based on long term mean climate data. For management and conservation issues SDMs have been extensively used, but it is not tested whether models that are successful in predicting current distributions are equally powerful in predicting distributions under future climates. Methods: Observations after 2003 confirms that extreme drought events played an important role in driving beech mortality at low-elevation xeric limits. The objective of this study was (1) to set up a simple extreme drought event based vitality model (EDM) using sanitary logging information as a proxy of vitality response of beech and (2) to compare the spatial pattern of the predicted vitality loss provided by the EDM with the distribution limits of the SDMs for three terms (2025, 2050 and 2100) in Hungary to assess model performance. Results: Prediction for vitality loss for 2025 obtained from the EDM was in agreement with those of the SDM, but for the end of the century the EDM predicted a more serious decline in almost all regions of Hungary. Conclusion: The result of the comparison suggests that the increasing frequency and severity of extremes might play a more important role in limiting the distribution of beech in the future near to the xeric limit than long-term means.

  9. Observing painful events in others leads to a temporally extended general response facilitation in the self.

    Science.gov (United States)

    Galang, Carl Michael; Naish, Katherine R; Arbabi, Keon; Obhi, Sukhvinder S

    2017-11-01

    Excitability in the motor cortex is modulated when we observe other people receiving a painful stimulus (Avenanti et al., Nat Neurosci 8(7):955-960, 2005). However, the task dependency of this modulation is not well understood, as different paradigms have yielded seemingly different results. Previous neurophysiological work employing transcranial magnetic stimulation (TMS) suggests that watching another person's hand being pierced by a needle leads to a muscle specific inhibition, assessed via motor evoked potentials. Results from previous behavioural studies suggest that overt behavioural responses are facilitated due to pain observation (Morrison et al., Cereb Cortex 17:2214-2222, 2007b; Morrison et al., Cognition 104:407-416, 2007a). There are several paradigmatic differences both between typical TMS studies and behavioural studies, and within behavioural studies themselves, that limit our overall understanding of how pain observation affects the motor system. In the current study, we combine elements of typical TMS experimental designs in a behavioural assessment of how pain observation affects overt behavioural responding. Specifically, we examined the muscle specificity, timing, and direction of modulation of motor responses due to pain observation. To assess muscle specificity, we employed pain and non-pain videos from previous TMS studies in a Go/No-Go task in which participants responded by either pressing a key with their index finger or with their foot. To assess timing, we examined response times for Go signals presented at 0 or 500 ms after the video. Results indicate that observation of another individual receiving a painful stimulus leads to a non-effector specific, temporally extended response facilitation (e.g., finger and foot facilitation present at 0 and 500 ms delays), compared to observation of non-pain videos. This behavioural facilitation effect differs from the typical motor inhibition seen in TMS studies, and we argue that the effects of

  10. The ARISE project: multi-instrument observations in the middle atmosphere for improving extreme event monitoring and weather forecasts

    Science.gov (United States)

    Blanc, Elisabeth

    2017-04-01

    The ARISE project integrates different station networks providing observations from ground to the lower thermosphere, including the infrasound network developed for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification regime augmented by national stations, the Network for the Detection of Atmospheric Composition Changes (NDACC) providing Lidar measurements, complementary Mesosphere-Stratosphere-Troposphere (MST) and meteor radars, wind radiometers, ionospheric sounders and satellites. The main objective is to recover the vertical structure of the atmospheric disturbances over broad spatial and temporal scales with unprecedented resolution in both space and time. The poster highlights recent results obtained in the main project applications which focus on weather and climate forecasting, remote observations of extreme events such as thunderstorms or volcanic eruptions, and characterisation of large scale disturbances such as gravity waves and sudden stratospheric warming events.

  11. NUMERICAL MODELING OF THE 2009 IMPACT EVENT ON JUPITER

    Energy Technology Data Exchange (ETDEWEB)

    Pond, Jarrad W. T.; Palotai, Csaba; Gabriel, Travis; Harrington, Joseph; Rebeli, Noemi [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Korycansky, Donald G., E-mail: jarradpond@gmail.com [Department of Earth and Planetary Science, University of California, Santa Cruz, CA 95064 (United States)

    2012-02-01

    We have investigated the 2009 July impact event on Jupiter using the ZEUS-MP 2 three-dimensional hydrodynamics code. We studied the impact itself and the following plume development. Eight impactors were considered: 0.5 km and 1 km porous ({rho} = 1.760 g cm{sup -3}) and non-porous ({rho} = 2.700 g cm{sup -3}) basalt impactors, and 0.5 km and 1 km porous ({rho} = 0.600 g cm{sup -3}) and non-porous ({rho} = 0.917 g cm{sup -3}) ice impactors. The simulations consisted of these bolides colliding with Jupiter at an incident angle of {theta} = 69 Degree-Sign from the vertical and with an impact velocity of v = 61.4 km s{sup -1}. Our simulations show the development of relatively larger, faster plumes created after impacts involving 1 km diameter bodies. Comparing simulations of the 2009 event with simulations of the Shoemaker-Levy 9 (SL9) events reveals a difference in plume development, with the higher incident angle of the 2009 impact leading to a shallower terminal depth and a smaller and slower plume. We also studied the amount of dynamical chaos present in the simulations conducted at the 2009 incident angle. Compared to the chaos of the SL9 simulations, where {theta} Almost-Equal-To 45 Degree-Sign , we find no significant difference in chaos at the higher 2009 incident angle.

  12. Rain-on-snow events over North America based on two Canadian regional climate models

    Science.gov (United States)

    Il Jeong, Dae; Sushama, Laxmi

    2018-01-01

    This study evaluates projected changes to rain-on-snow (ROS) characteristics (i.e., frequency, rainfall amount, and runoff) for the future 2041-2070 period with respect to the current 1976-2005 period over North America using six simulations, based on two Canadian RCMs, driven by two driving GCMs for RCP4.5 and 8.5 emission pathways. Prior to assessing projected changes, the two RCMs are evaluated by comparing ERA-Interim driven RCM simulations with available observations, and results indicate that both models reproduce reasonably well the observed spatial patterns of ROS event frequency and other related features. Analysis of current and future simulations suggest general increases in ROS characteristics during the November-March period for most regions of Canada and for northwestern US for the future period, due to an increase in the rainfall frequency with warmer air temperatures in future. Future ROS runoff is often projected to increase more than future ROS rainfall amounts, particularly for northeastern North America, during snowmelt months, as ROS events usually accelerate snowmelt. The simulations show that ROS event is a primary flood generating mechanism over most of Canada and north-western and -central US for the January-May period for the current period and this is projected to continue in the future period. More focused analysis over selected basins shows decreases in future spring runoff due to decreases in both snow cover and ROS runoff. The above results highlight the need to take into consideration ROS events in water resources management adaptation strategies for future climate.

  13. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the

  14. Predicting Individual Action Switching in Passively Experienced and Continuous Interactive Tasks Using the Fluid Events Model

    Directory of Open Access Journals (Sweden)

    Gabriel A. Radvansky

    2016-01-01

    Full Text Available The Fluid Events Model is aimed at predicting changes in the actions people take on a moment-by-moment basis. In contrast with other research on action selection, this work does not investigate why some course of action was selected, but rather the likelihood of discontinuing the current course of action and selecting another in the near future. This is done using both task-based and experience-based factors. Prior work evaluated this model in the context of trial-by-trial, independent, interactive events, such as choosing how to copy a figure of a line drawing. In this paper, we extend this model to more covert event experiences, such as reading narratives, as well as to continuous interactive events, such as playing a video game. To this end, the model was applied to existing data sets of reading time and event segmentation for written and picture stories. It was also applied to existing data sets of performance in a strategy board game, an aerial combat game, and a first person shooter game in which a participant’s current state was dependent on prior events. The results revealed that the model predicted behavior changes well, taking into account both the theoretically defined structure of the described events, as well as a person’s prior experience. Thus, theories of event cognition can benefit from efforts that take into account not only how events in the world are structured, but also how people experience those events.

  15. Consequences of Expected and Observed Victim Resistance for Offender Violence during Robbery Events

    NARCIS (Netherlands)

    Lindegaard, M.; Bernasco, W.; Jacques, S.

    2015-01-01

    Objectives: Drawing on the rational choice perspective, this study aims at explaining why some robberies take place with physical force while others occur only with threat. The focus is how expected and observed victim resistance impact physical force by robbers. Methods: We draw on quantitative and

  16. An extreme internal solitary wave event observed in the northern South China Sea.

    Science.gov (United States)

    Huang, Xiaodong; Chen, Zhaohui; Zhao, Wei; Zhang, Zhiwei; Zhou, Chun; Yang, Qingxuan; Tian, Jiwei

    2016-07-21

    With characteristics of large amplitude and strong current, internal solitary wave (ISW) is a major hazard to marine engineering and submarine navigation; it also has significant impacts on marine ecosystems and fishery activity. Among the world oceans, ISWs are particular active in the northern South China Sea (SCS). In this spirit, the SCS Internal Wave Experiment has been conducted since March 2010 using subsurface mooring array. Here, we report an extreme ISW captured on 4 December 2013 with a maximum amplitude of 240 m and a peak westward current velocity of 2.55 m/s. To the authors' best knowledge, this is the strongest ISW of the world oceans on record. Full-depth measurements also revealed notable impacts of the extreme ISW on deep-ocean currents and thermal structures. Concurrent mooring measurements near Batan Island showed that the powerful semidiurnal internal tide generation in the Luzon Strait was likely responsible for the occurrence of the extreme ISW event. Based on the HYCOM data-assimilation product, we speculate that the strong stratification around Batan Island related to the strengthening Kuroshio may have contributed to the formation of the extreme ISW.

  17. A long-duration active region: Evolution and quadrature observations of ejective events

    Science.gov (United States)

    Cremades, H.; Mandrini, C. H.; Fuentes, M. C. López; Merenda, L.; Cabello, I.; López, F. M.; Poisson, M.

    2017-10-01

    Unknown aspects of the initiation, evolution, and associated phenomena of coronal mass ejections (CMEs), together with their capability of perturbing the fragile technological equilibrium on which nowadays society depends, turn them a compelling subject of study. While space weather forecasts are thus far not able to predict when and where in the Sun will the next CME take place, various CME triggering mechanisms have been proposed, without reaching consensus on which is the predominant one. To improve our knowledge in these respects, we investigate a long-duration active region throughout its life, from birth until decay along five solar rotations, in connection with its production of ejective events. We benefit from the wealth of solar remote-sensing data with improved temporal, spatial, and spectral resolution provided by the ground-breaking space missions STEREO, SDO, and SOHO. During the investigated time interval, which covers the months July - November 2010, the STEREO spacecraft were nearly 180 degrees apart, allowing for the uninterrupted tracking of the active region and its ensuing CMEs. The ejective aspect is examined from multi-viewpoint coronagraphic images, while the dynamics of the active region photospheric magnetic field are inspected by means of SDO/HMI data for specific subintervals of interest. The ultimate goal of this work in progress is to identify common patterns in the ejective aspect that can be connected with the active region characteristics.

  18. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Science.gov (United States)

    Mironova, I. A.; Usoskin, I. G.; Kovaltsov, G. A.; Petelina, S. V.

    2012-01-01

    Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP) event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III), and Optical Spectrograph and Infrared Imaging System (OSIRIS), we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak-moderate events. The present

  19. Rodin: an open toolset for modelling and reasoning in Event-B

    DEFF Research Database (Denmark)

    Abrial, Jean-Raymond; Butler, Michael J.; Hallerstede, Stefan

    2010-01-01

    Event-B is a formal method for system-level modelling and analysis. Key features of Event-B are the use of set theory as a modelling notation, the use of refinement to represent systems at different abstraction levels and the use of mathematical proof to verify consistency between refinement levels...

  20. Boosting joint models for longitudinal and time-to-event data

    DEFF Research Database (Denmark)

    Waldmann, Elisabeth; Taylor-Robinson, David; Klein, Nadja

    2017-01-01

    Joint models for longitudinal and time-to-event data have gained a lot of attention in the last few years as they are a helpful technique clinical studies where longitudinal outcomes are recorded alongside event times. Those two processes are often linked and the two outcomes should thus be model...

  1. Incoherent scatter radar observations of AGW/TID events generated by the moving solar terminator

    Directory of Open Access Journals (Sweden)

    V. G. Galushko

    1998-07-01

    Full Text Available Observations of traveling ionospheric disturbances (TIDs associated with atmospheric gravity waves (AGWs generated by the moving solar terminator have been made with the Millstone Hill incoherent scatter radar. Three experiments near 1995 fall equinox measured the AGW/TID velocity and direction of motion. Spectral and cross-correlation analysis of the ionospheric density observations indicates that ST-generated AGWs/TIDs were observed during each experiment, with the more-pronounced effect occurring at sunrise. The strongest oscillations in the ionospheric parameters have periods of 1.5 to 2 hours. The group and phase velocities have been determined and show that the disturbances propagate in the horizontal plane perpendicular to the terminator with the group velocity of 300-400 m s-1 that corresponds to the ST speed at ionospheric heights. The high horizontal group velocity seems to contradict the accepted theory of AGW/TID propagation and indicates a need for additional investigation.Key words. Ionosphere (wave propagation · Meteorology and atmospheric dynamics (waves and tides

  2. The sequentially discounting autoregressive (SDAR) method for on-line automatic seismic event detecting on long term observation

    Science.gov (United States)

    Wang, L.; Toshioka, T.; Nakajima, T.; Narita, A.; Xue, Z.

    2017-12-01

    In recent years, more and more Carbon Capture and Storage (CCS) studies focus on seismicity monitoring. For the safety management of geological CO2 storage at Tomakomai, Hokkaido, Japan, an Advanced Traffic Light System (ATLS) combined different seismic messages (magnitudes, phases, distributions et al.) is proposed for injection controlling. The primary task for ATLS is the seismic events detection in a long-term sustained time series record. Considering the time-varying characteristics of Signal to Noise Ratio (SNR) of a long-term record and the uneven energy distributions of seismic event waveforms will increase the difficulty in automatic seismic detecting, in this work, an improved probability autoregressive (AR) method for automatic seismic event detecting is applied. This algorithm, called sequentially discounting AR learning (SDAR), can identify the effective seismic event in the time series through the Change Point detection (CPD) of the seismic record. In this method, an anomaly signal (seismic event) can be designed as a change point on the time series (seismic record). The statistical model of the signal in the neighborhood of event point will change, because of the seismic event occurrence. This means the SDAR aims to find the statistical irregularities of the record thought CPD. There are 3 advantages of SDAR. 1. Anti-noise ability. The SDAR does not use waveform messages (such as amplitude, energy, polarization) for signal detecting. Therefore, it is an appropriate technique for low SNR data. 2. Real-time estimation. When new data appears in the record, the probability distribution models can be automatic updated by SDAR for on-line processing. 3. Discounting property. the SDAR introduces a discounting parameter to decrease the influence of present statistic value on future data. It makes SDAR as a robust algorithm for non-stationary signal processing. Within these 3 advantages, the SDAR method can handle the non-stationary time-varying long

  3. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.

    Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.

    In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.

    A Study on Modeling Approaches in Discrete Event Simulation Using Design Patterns

    National Research Council Canada - National Science Library

    Kim, Leng Koh

    2007-01-01

    .... This modeling paradigm encompasses several modeling approaches active role of events, entities as independent components, and chaining components to enable interactivity that are excellent ways of building a DES system...

  4. Spatio-Temporal Modeling of the Earth Events and Moving of Celestial Bodies

    Science.gov (United States)

    Bulatova, Natalia P.

    2011-09-01

    It is well known that periodical and cyclical movements of cosmic sources of gravitation considerably affect Earth's geospheres (atmosphere, hydrosphere, crust, etc.) by producing tides and related phenomena, as well as the state of tectonic blocks, lithosphere plates and deep crust fractures. The result of such influence may be earthquakes and other catastrophes. Nowadays, the question modeling of geophysical processes is considerably actual. Thus studies in area of Earth' sciences have been moved from practice of observation of separate phenomena to the systematic quantitative investigation in interdisciplinary areas. A system of two modules is proposed by the author each using its own system of coordinates: (1) the model of three-dimensional spherical body of the Earth with the system of coordinates (III) including the time of events that happened on the Earth and (2) a compact model of the relative motion of celestial bodies in space and time as vectors that are changing their directions. Note the data bases of the Earth sciences have been used to construct the module (1), while the module (2) has been built using astronomic parameters of celestial bodies. The module (2) is known as "Method of moving source" (MDS) [1, 2]. As a result, on the basis of systematization, joint analysis and complexity of cosmic data and databases of Earth sciences the cause-and-effect relations between events on Earth and space bodies are established.

  5. Modelling the statistical dependence of rainfall event variables through copula functions

    Directory of Open Access Journals (Sweden)

    M. Balistrocchi

    2011-06-01

    Full Text Available In many hydrological models, such as those derived by analytical probabilistic methods, the precipitation stochastic process is represented by means of individual storm random variables which are supposed to be independent of each other. However, several proposals were advanced to develop joint probability distributions able to account for the observed statistical dependence. The traditional technique of the multivariate statistics is nevertheless affected by several drawbacks, whose most evident issue is the unavoidable subordination of the dependence structure assessment to the marginal distribution fitting. Conversely, the copula approach can overcome this limitation, by dividing the problem in two distinct parts. Furthermore, goodness-of-fit tests were recently made available and a significant improvement in the function selection reliability has been achieved. Herein the dependence structure of the rainfall event volume, the wet weather duration and the interevent time is assessed and verified by test statistics with respect to three long time series recorded in different Italian climates. Paired analyses revealed a non negligible dependence between volume and duration, while the interevent period proved to be substantially independent of the other variables. A unique copula model seems to be suitable for representing this dependence structure, despite the sensitivity demonstrated by its parameter towards the threshold utilized in the procedure for extracting the independent events. The joint probability function was finally developed by adopting a Weibull model for the marginal distributions.

  6. Correlation between human observer performance and model observer performance in differential phase contrast CT

    International Nuclear Information System (INIS)

    Li, Ke; Garrett, John; Chen, Guang-Hong

    2013-01-01

    Purpose: With the recently expanding interest and developments in x-ray differential phase contrast CT (DPC-CT), the evaluation of its task-specific detection performance and comparison with the corresponding absorption CT under a given radiation dose constraint become increasingly important. Mathematical model observers are often used to quantify the performance of imaging systems, but their correlations with actual human observers need to be confirmed for each new imaging method. This work is an investigation of the effects of stochastic DPC-CT noise on the correlation of detection performance between model and human observers with signal-known-exactly (SKE) detection tasks.Methods: The detectabilities of different objects (five disks with different diameters and two breast lesion masses) embedded in an experimental DPC-CT noise background were assessed using both model and human observers. The detectability of the disk and lesion signals was then measured using five types of model observers including the prewhitening ideal observer, the nonprewhitening (NPW) observer, the nonprewhitening observer with eye filter and internal noise (NPWEi), the prewhitening observer with eye filter and internal noise (PWEi), and the channelized Hotelling observer (CHO). The same objects were also evaluated by four human observers using the two-alternative forced choice method. The results from the model observer experiment were quantitatively compared to the human observer results to assess the correlation between the two techniques.Results: The contrast-to-detail (CD) curve generated by the human observers for the disk-detection experiments shows that the required contrast to detect a disk is inversely proportional to the square root of the disk size. Based on the CD curves, the ideal and NPW observers tend to systematically overestimate the performance of the human observers. The NPWEi and PWEi observers did not predict human performance well either, as the slopes of their CD

  7. Human megakaryoblastic proliferation and differentiation events observed by phase-contrast cinematography.

    Science.gov (United States)

    Boll, I T; Domeyer, C; Bührer, C

    1997-01-01

    Microcinematographic documentation of mitoses, amitoses, endomitoses, or cytoplasmic fusion shortly after completion of mitoses was done in bone marrow specimens of patients with quantitative platelet disorders and controls. In patients with platelet disorders, most mitoses with cell duplication occurred in large promegakaryocytes after 4-fold nuclear and cytoplasmic enhancement. Normal specimens showed polyploidization happening in small megakaryoblasts, while mitoses with cell duplication were seen only after cultivation in freeze-thawed sera of patients with platelet disorders. Frequently, lymphocytes were observed to contact megakaryoblastic cells undergoing mitoses, amitoses and endomitoses and to enter the cytoplasm of megakaryocytes (emperipolesis), leaving it again after several hours.

  8. Building traceable Event-B models from requirements

    OpenAIRE

    Alkhammash, Eman; Butler, Michael; Fathabadi, Asieh Salehi; Cîrstea, Corina

    2015-01-01

    Abstract Bridging the gap between informal requirements and formal specifications is a key challenge in systems engineering. Constructing appropriate abstractions in formal models requires skill and managing the complexity of the relationships between requirements and formal models can be difficult. In this paper we present an approach that aims to address the twin challenges of finding appropriate abstractions and managing traceability between requirements and models. Our approach is based o...

  9. A review on earthquake and tsunami hazards of the Sumatran plate boundary: Observing expected and unexpected events after the Aceh-Andaman Mw 9.15 event

    Science.gov (United States)

    Natawidjaja, D.

    2013-12-01

    The 600-km Mentawai megathrust had produced two giant historical earthquakes generating big tsunamies in 1797 and 1833. The SuGAr (Sumatran GPS continuous Array) network, first deployed in 2002, shows that the subduction interface underlying Mentawai Islands and the neighboring Nias section in the north are fully locked, thus confirming their potential hazards. Outreach activities to warn people about earthquake and tsunamies had been started since 4 months prior to the 26 December 2004 in Aceh-Andaman earthquake (Mw 9.15). Later in March 2005, the expected megathrust earthquake (Mw 8.7) hit Nias-Simelue area and killed about 2000 people, releasing the accumulated strain since the previous 1861 event (~Mw 8.5). After then many Mw 7s and smaller events occured in Sumatra, filling areas between and around two giant ruptures and heighten seismicities in neighboring areas. In March 2007, the twin earthquake disaster (Mw 6.3 and Mw 6.4) broke two consecutive segments of the transcurrent Sumatran fault in the Singkarak lake area. Only six month later, in September 2007, the rapid-fire-failures of three consecutive megathrust patches (Mw 8.5, Mw 7.9 and Mw 7.0) ruptured a 250-km-section of the southern part of the Mentawai. It was a big surprise since this particular section is predicted as a very-low coupled section from modelling the SuGAr data, and hence, bypassing the more potential fully coupled section of the Mentawai in between the 2005 and 2007 ruptures. In September 2009, a rare unexpected event (Mw 7.6) suddenly ruptured an intracrustal fault in the subducted slab down under Padang City and killed about 500 people. Padang had been in preparation for the next tsunami but not for strong shakes from near by major earthquake. This event seems to have remotely triggered another Mw 6.7 on the Sumatran fault near kerinci Lake, a few hundred kilometers south of Padang, in less than a day. Just a year later, in November 2010, again an unexpected large slow-slip event of

  10. Observation-Based Modeling for Model-Based Testing

    NARCIS (Netherlands)

    Kanstrén, T.; Piel, E.; Gross, H.G.

    2009-01-01

    One of the single most important reasons that modeling and modelbased testing are not yet common practice in industry is the perceived difficulty of making the models up to the level of detail and quality required for their automated processing. Models unleash their full potential only through

  11. THEMIS observation of a substorm event on 04:35, 22 February 2008

    Directory of Open Access Journals (Sweden)

    J. Liu

    2009-05-01

    Full Text Available We report on THEMIS in-situ and ground-based observations during a substorm between 04:30~04:50 UT on 22 February 2008. The spacecraft (probes were aligned along the tail between XGSM=−5 RE to −25 RE. The most distant probe P1 (X=−24.5 RE detected two successive tailward moving bipolar magnetic structures. P2 (X=−18 RE, P3 (X=−11 RE, P4 (X=−10.5 RE all captured signatures related to the Earthward movement of a magnetic structure. THEMIS ground stations and all-sky imagers also recorded Pi2 pulsations and a sudden brightening in a white-light auroral imager followed by poleward expansion. We perform a detailed timing analysis of probe and ground-based data and reconstruct the time sequence of phenomena during this substorm. The earliest sign of substorm onset was the bipolar perturbation in the northward component of the magnetic field (interpreted as the result of reconnection onset at P1 at 04:35:16 UT and corresponding magnetic perturbation at P2 at 04:35:14 UT. Auroral onset was seen at or before 04:36:55 UT, consistent with the visual onset of high-latitude magnetic pulsations at around that time. Earthward flows at P3 and P4 seen at ~04:36:03 UT, and dipolarization onset at ~04:36:50 UT, were observed at almost the same time as the ground onset signature, implying that near-Earth dipolarization happened in the aftermath of tail reconnection but not significantly ahead of the auroral intensification. Reconnection in the tail preceded ground onset and near-Earth dipolarization (current disruption by ~2 min. Two reconnection pulses (the first one weaker than the second one accompanied by correlative increases of cumulative magnetic flux transfer into the reconnection region were observed. A direct association of the reconnection pulses with two auroral intensifications can be made

  12. Observations of Small-scale IRIS Bombs (Reconnection Events) in an Evolving Active Region

    Science.gov (United States)

    Madsen, C. A.; Tian, H.; DeLuca, E. E.

    2015-12-01

    We present the first Interface Region Imaging Spectrograph (IRIS) observations of small-scale bombs evolving with their host active region. Bombs appear most clearly in the IRIS 1330 Å and 1400 Å slit-jaw images as small (~1 arcsec), compact, intense brightenings at transition region temperatures. Their NUV/FUV emission spectra exhibit dramatic line splitting and strong absorption features indicative of bidirectional flows from magnetic reconnection embedded deep within the cool lower solar atmosphere. The bombs may contribute significantly to the heating of the solar atmosphere in active regions; however, it's unclear how prevalent the bombs are throughout the lifetime of an active region. Using a semi-automated detection method, we locate bombs within AR 11850 over the course of four observations from 06:00 UT on September 25, 2013 until 11:30 UT the next day. The active region is first observed in an emerging phase and rapidly grows into a mature active region with well-developed sunspots. The bomb occurrence rate drops dramatically as the active region fully emerges. We also find that the bombs fall into two distinct populations: one appears largely during active region emergence and contains a majority of the bombs, while the other population is present regardless of active region age. The first population of bombs is typically found embedded in the low-lying loops prominent in the young active region. Furthermore, we use Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) line-of-sight magnetograms to show that the bombs associated with the first population occur at the boundaries between the upward and downward flux of small, isolated bipolar regions. These regions dissipate as the active region emerges and reconfigures its magnetic field into two large network patches of upward and downward flux with a clear inversion line. The second, smaller population of bombs usually occurs far from the active region loop structures in the plage and

  13. Hypertension control after an initial cardiac event among Medicare patients with diabetes mellitus: A multidisciplinary group practice observational study.

    Science.gov (United States)

    Chaddha, Ashish; Smith, Maureen A; Palta, Mari; Johnson, Heather M

    2018-04-23

    Patients with diabetes mellitus and cardiovascular disease have a high risk of mortality and/or recurrent cardiovascular events. Hypertension control is critical for secondary prevention of cardiovascular events. The objective was to determine rates and predictors of achieving hypertension control among Medicare patients with diabetes and uncontrolled hypertension after hospital discharge for an initial cardiac event. A retrospective analysis of linked electronic health record and Medicare data was performed. The primary outcome was hypertension control within 1 year after hospital discharge for an initial cardiac event. Cox proportional hazard models assessed sociodemographics, medications, utilization, and comorbidities as predictors of control. Medicare patients with diabetes were more likely to achieve hypertension control when prescribed beta-blockers at discharge or with a history of more specialty visits. Adults ≥ 80 were more likely to achieve control with diuretics. These findings demonstrate the importance of implementing guideline-directed multidisciplinary care in this complex and high-risk population. ©2018 Wiley Periodicals, Inc.

  14. A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones

    Science.gov (United States)

    Yin, A.; Meng, L.

    2016-12-01

    Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends

  15. Sensitivity of the Atmospheric Response to Warm Pool El Nino Events to Modeled SSTs and Future Climate Forcings

    Science.gov (United States)

    Hurwitz, Margaret M.; Garfinkel, Chaim I.; Newman, Paul A.; Oman, Luke D.

    2013-01-01

    Warm pool El Nino (WPEN) events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific. Under present-day climate conditions, WPEN events generate poleward propagating wavetrains and enhance midlatitude planetary wave activity, weakening the stratospheric polar vortices. The late 21st century extratropical atmospheric response to WPEN events is investigated using the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM), version 2. GEOSCCM simulations are forced by projected late 21st century concentrations of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) and by SSTs and sea ice concentrations from an existing ocean-atmosphere simulation. Despite known ocean-atmosphere model biases, the prescribed SST fields represent a best estimate of the structure of late 21st century WPEN events. The future Arctic vortex response is qualitatively similar to that observed in recent decades but is weaker in late winter. This response reflects the weaker SST forcing in the Nino 3.4 region and subsequently weaker Northern Hemisphere tropospheric teleconnections. The Antarctic stratosphere does not respond to WPEN events in a future climate, reflecting a change in tropospheric teleconnections: The meridional wavetrain weakens while a more zonal wavetrain originates near Australia. Sensitivity simulations show that a strong poleward wavetrain response to WPEN requires a strengthening and southeastward extension of the South Pacific Convergence Zone; this feature is not captured by the late 21st century modeled SSTs. Expected future increases in GHGs and decreases in ODSs do not affect the polar stratospheric responses to WPEN.

  16. Safety Discrete Event Models for Holonic Cyclic Manufacturing Systems

    Science.gov (United States)

    Ciufudean, Calin; Filote, Constantin

    In this paper the expression “holonic cyclic manufacturing systems” refers to complex assembly/disassembly systems or fork/join systems, kanban systems, and in general, to any discrete event system that transforms raw material and/or components into products. Such a system is said to be cyclic if it provides the same sequence of products indefinitely. This paper considers the scheduling of holonic cyclic manufacturing systems and describes a new approach using Petri nets formalism. We propose an approach to frame the optimum schedule of holonic cyclic manufacturing systems in order to maximize the throughput while minimize the work in process. We also propose an algorithm to verify the optimum schedule.

  17. Models for simulation of transient events in a wind farm

    DEFF Research Database (Denmark)

    Sørensen, P.; Hansen, A. D.; Bindner, H.

    2002-01-01

    with different tools with each other and with measurements. This present paper limits to describe the models including our reflections on which effects we expect to be essential for obtaining useful simulation results. The models comprise the substation, where the wind farm is connected, the power collection...

  18. Towards standardized measurement of adverse events in spine surgery: conceptual model and pilot evaluation

    Directory of Open Access Journals (Sweden)

    Deyo Richard A

    2006-06-01

    Full Text Available Abstract Background Independent of efficacy, information on safety of surgical procedures is essential for informed choices. We seek to develop standardized methodology for describing the safety of spinal operations and apply these methods to study lumbar surgery. We present a conceptual model for evaluating the safety of spine surgery and describe development of tools to measure principal components of this model: (1 specifying outcome by explicit criteria for adverse event definition, mode of ascertainment, cause, severity, or preventability, and (2 quantitatively measuring predictors such as patient factors, comorbidity, severity of degenerative spine disease, and invasiveness of spine surgery. Methods We created operational definitions for 176 adverse occurrences and established multiple mechanisms for reporting them. We developed new methods to quantify the severity of adverse occurrences, degeneration of lumbar spine, and invasiveness of spinal procedures. Using kappa statistics and intra-class correlation coefficients, we assessed agreement for the following: four reviewers independently coding etiology, preventability, and severity for 141 adverse occurrences, two observers coding lumbar spine degenerative changes in 10 selected cases, and two researchers coding invasiveness of surgery for 50 initial cases. Results During the first six months of prospective surveillance, rigorous daily medical record reviews identified 92.6% of the adverse occurrences we recorded, and voluntary reports by providers identified 38.5% (surgeons reported 18.3%, inpatient rounding team reported 23.1%, and conferences discussed 6.1%. Trained observers had fair agreement in classifying etiology of 141 adverse occurrences into 18 categories (kappa = 0.35, but agreement was substantial (kappa ≥ 0.61 for 4 specific categories: technical error, failure in communication, systems failure, and no error. Preventability assessment had moderate agreement (mean weighted

  19. Understanding Transient Forcing with Plasma Instability Model, Ionospheric Propagation Model and GNSS Observations

    Science.gov (United States)

    Deshpande, K.; Zettergren, M. D.; Datta-Barua, S.

    2017-12-01

    Fluctuations in the Global Navigation Satellite Systems (GNSS) signals observed as amplitude and phase scintillations are produced by plasma density structures in the ionosphere. Phase scintillation events in particular occur due to structures at Fresnel scales, typically about 250 meters at ionospheric heights and GNSS frequency. Likely processes contributing to small-scale density structuring in auroral and polar regions include ionospheric gradient-drift instability (GDI) and Kelvin-Helmholtz instability (KHI), which result, generally, from magnetosphere-ionosphere interactions (e.g. reconnection) associated with cusp and auroral zone regions. Scintillation signals, ostensibly from either GDI or KHI, are frequently observed in the high latitude ionosphere and are potentially useful diagnostics of how energy from the transient forcing in the cusp or polar cap region cascades, via instabilities, to small scales. However, extracting quantitative details of instabilities leading to scintillation using GNSS data drastically benefits from both a model of the irregularities and a model of GNSS signal propagation through irregular media. This work uses a physics-based model of the generation of plasma density irregularities (GEMINI - Geospace Environment Model of Ion-Neutral Interactions) coupled to an ionospheric radio wave propagation model (SIGMA - Satellite-beacon Ionospheric-scintillation Global Model of the upper Atmosphere) to explore the cascade of density structures from medium to small (sub-kilometer) scales. Specifically, GEMINI-SIGMA is used to simulate expected scintillation from different instabilities during various stages of evolution to determine features of the scintillation that may be useful to studying ionospheric density structures. Furthermore we relate the instabilities producing GNSS scintillations to the transient space and time-dependent magnetospheric phenomena and further predict characteristics of scintillation in different geophysical

  1. Construction and Quantification of the One Top model of the Fire Events PSA

    International Nuclear Information System (INIS)

    Kang, Dae Il; Lee, Yoon Hwan; Han, Sang Hoon

    2008-01-01

    KAERI constructed the one top model of the fire events PSA for Ulchin Unit 3 and 4 by using the 'mapping technique'. The mapping technique was developed for the construction and quantification of external events PSA models with a one top model for an internal events PSA. With 'AIMS', the mapping technique can be implemented by the construction of mapping tables. The mapping tables include fire rooms, fire ignition frequency, related initiating events, fire transfer events, and the internal PSA basic events affected by a fire. The constructed one top fire PSA model is based on previously conducted fire PSA results for Ulchin Unit 3 and 4. In this paper, we introduce the construction procedure and quantification results of the one top model of the fire events PSA by using the mapping technique. As the one top model of the fire events PSA developed in this study is based on the previous study, we also introduce the previous fire PSA approach focused on quantification

  2. Modeling Psychological Contract Violation using Dual Regime Models: An Event-based Approach

    Directory of Open Access Journals (Sweden)

    Joeri Hofmans

    2017-11-01

    Full Text Available A good understanding of the dynamics of psychological contract violation requires theories, research methods and statistical models that explicitly recognize that violation feelings follow from an event that violates one's acceptance limits, after which interpretative processes are set into motion, determining the intensity of these violation feelings. Whereas theories—in the form of the dynamic model of the psychological contract—and research methods—in the form of daily diary research and experience sampling research—are available by now, the statistical tools to model such a two-stage process are still lacking. The aim of the present paper is to fill this gap in the literature by introducing two statistical models—the Zero-Inflated model and the Hurdle model—that closely mimic the theoretical process underlying the elicitation violation feelings via two model components: a binary distribution that models whether violation has occurred or not, and a count distribution that models how severe the negative impact is. Moreover, covariates can be included for both model components separately, which yields insight into their unique and shared antecedents. By doing this, the present paper offers a methodological-substantive synergy, showing how sophisticated methodology can be used to examine an important substantive issue.

  3. The time variation of atomic oxygen emission around Io during a volcanic event observed with Hisaki/EXCEED

    Science.gov (United States)

    Koga, Ryoichi; Tsuchiya, Fuminori; Kagitani, Masato; Sakanoi, Takeshi; Yoneda, Mizuki; Yoshioka, Kazuo; Kimura, Tomoki; Murakami, Go; Yamazaki, Atsushi; Yoshikawa, Ichiro; Smith, H. Todd

    2018-01-01

    Io has an atmosphere produced by volcanism and sublimation of frosts deposited around active volcanoes. However, the time variation of atomic oxygen escaping Io's atmosphere is not well known. In this paper, we show a significant increase in atomic oxygen around Io during a volcanic event. Brightening of Io's extended sodium nebula was observed in the spring of 2015. We used the Hisaki satellite to investigate the time variation of atomic oxygen emission around Io during the same period. This investigation reveals that the duration of atomic oxygen brightness increases from a volcanically quiet level to a maximum level during the same approximate time period of 30 days as the observed sodium brightness. On the other hand, the recovery of the atomic oxygen brightness from the maximum to the quiet level (60 days) was longer than that of the sodium nebula decreasing (40 days). Additionally, a dawn-dusk asymmetry of the atomic oxygen emission is observed.

  4. Observational analysis and large-scale pattern associated with cold events moving up the equator line over South America

    Science.gov (United States)

    Viana, Liviany; Herdies, Dirceu; Muller, Gabriela

    2017-04-01

    An observational study was carried out to quantify the events of cold air outbreak moving above the Equator from 1980 to 2013 during the austral winter period (May, June, July, August and September), and later analyzed the behavior of the circulation responsible for this displacement. The observational datasets from the Sector of Climatological studies of the Institute of Airspace Control of the city of Iauarete (0.61N, 69.0W; 120m), located at the extreme northern of the Brazilian Amazon Basin, were used for the analyzes. The meteorological variables used were the temperatures minimum, maximum and maximum atmospheric pressure. A new methodology was used to identify these events, calculated by the difference between the monthly average and 2 (two) standard deviations for the extremes of the air temperature, and the sum of 1 (one) standard deviation for the maximum atmospheric pressure. As a result, a total of 11 cold events were recorded that reached the extreme northern of the Brazilian Amazon Basin, with values recorded at a minimum temperature of 17.8 °C, at the maximum temperature of 21.0 °C and maximum atmospheric pressure reaching 1021.2 hPa. These reductions and augmentation are equivalent to the negative anomalies of 5.9 and 8.7 °C at the minimum and maximum temperatures, respectively, while a positive anomaly of 7.1 hPa was observed at the maximum pressure. In relation to the dynamic behavior of large-scale circulation, a Rossby wave-type configuration propagating from west to east over subtropical latitudes was observed from the European Center for Medium-Range Weather Forecast (ECMWF) since the days before the arrival of the event in the city of Iauarete. This behavior was observed both in the anomalies of the gepotencial (250 hPa and 850 hPa) and in the southern component of the wind (250 hPa and 850 hPa), both presenting statistical significance of 99 % (Student's T test). Therefore, a new criterion for the identification of "friagens" in the

  5. Spatial clustering and repeating of seismic events observed along the 1976 Tangshan fault, north China

    Science.gov (United States)

    Li, Le; Chen, Qi-Fu; Cheng, Xin; Niu, Fenglin

    2007-12-01

    Spatial and temporal features of the seismicity occurring along the Tangshan fault in 2001-2006 were investigated with data recorded by the Beijing metropolitan digital Seismic Network. The relocated seismicity with the double difference method clearly exhibits a dextral bend in the middle of the fault. More than 85% of the earthquakes were found in the two clusters forming the northern segment where relatively small coseismic slips were observed during the 1976 M7.8 earthquake. The b values calculated from the seismicity occurring in the northern and southern segment are 1.03 +/- 0.02 and 0.85 +/- 0.03, respectively. The distinct seismicity and b values are probably the collective effect of the fault geometry and the regional stress field that has an ENE-WSW oriented compression. Using cross-correlation and fine relocation analyses, we also identified a total of 21 doublets and 25 multiplets that make up >50% of the total seismicity. Most of the sequences are aperiodic with recurrence intervals varying from a few minutes to hundreds of days. Based on a quasi-periodic sequence, we obtained a fault slip rate of <=2.6 mm/yr at ~15 km, which is consistent with surface GPS measurements.

  6. A construction of observables for AKSZ sigma models

    OpenAIRE

    Mnev, Pavel

    2012-01-01

    A construction of gauge-invariant observables is suggested for a class of topological field theories, the AKSZ sigma-models. The observables are associated to extensions of the target Q-manifold of the sigma model to a Q-bundle over it with additional Hamiltonian structure in fibers.

  7. Is the island universe model consistent with observations?

    OpenAIRE

    Piao, Yun-Song

    2005-01-01

    We study the island universe model, in which initially the universe is in a cosmological constant sea, then the local quantum fluctuations violating the null energy condition create the islands of matter, some of which might corresponds to our observable universe. We examine the possibility that the island universe model is regarded as an alternative scenario of the origin of observable universe.

  8. modeling, observation and control, a multi-model approach

    OpenAIRE

    Elkhalil, Mansoura

    2011-01-01

    This thesis is devoted to the control of systems which dynamics can be suitably described by a multimodel approach from an investigation study of a model reference adaptative control performance enhancement. Four multimodel control approaches have been proposed. The first approach is based on an output reference model control design. A successful experimental validation involving a chemical reactor has been carried out. The second approach is based on a suitable partial state model reference ...

  9. Multi-Scale Observation of Time-Variable Interactions of a Stream and its Valley Bottom During a Storm Event

    Science.gov (United States)

    Hixson, J.; Ward, A. S.; Schmadel, N.

    2015-12-01

    The exchange of water and solutes across the stream-hyporheic-riparian-hillslope continuum is controlled by the interaction of dynamic hydrological processes with the underlying geological setting. Our current understanding of exchange processes is primarily based on field observations collected during baseflow conditions, with few studies considering time-variable stream-aquifer interactions during storm events. We completed ten sets of four in-stream tracer slug injections during and after a large storm event in a headwater catchment at the H.J. Andrews Experimental Forest, Oregon. The injections were performed in three adjacent 50-meter study reaches, enabling comparison of spatial heterogeneity in transport processes. Reach-scale data demonstrate apparent trends with discharge in both transient storage and long-term storage (commonly "channel water balance"). Comparison of flowpath-scale observations from a network of monitoring wells to reach-scale observations showed that the advective timescale changed with discharge making it difficult to infer process from simple, reach-scale tracer studies. Overall, our results highlight the opportunities and challenges for interpretation of multi-scale solute tracer data along the stream-hyporheic-riparian-hillslope continuum.

  10. Pathogenic Events in a Nonhuman Primate Model of Oral Poliovirus Infection Leading to Paralytic Poliomyelitis.

    Science.gov (United States)

    Shen, Ling; Chen, Crystal Y; Huang, Dan; Wang, Richard; Zhang, Meihong; Qian, Lixia; Zhu, Yanfen; Zhang, Alvin Zhuoran; Yang, Enzhuo; Qaqish, Arwa; Chumakov, Konstantin; Kouiavskaia, Diana; Vignuzzi, Marco; Nathanson, Neal; Macadam, Andrew J; Andino, Raul; Kew, Olen; Xu, Junfa; Chen, Zheng W

    2017-07-15

    Despite a great deal of prior research, the early pathogenic events in natural oral poliovirus infection remain poorly defined. To establish a model for study, we infected 39 macaques by feeding them single high doses of the virulent Mahoney strain of wild type 1 poliovirus. Doses ranging from 10 7 to 10 9 50% tissue culture infective doses (TCID 50 ) consistently infected all the animals, and many monkeys receiving 10 8 or 10 9 TCID 50 developed paralysis. There was no apparent difference in the susceptibilities of the three macaque species (rhesus, cynomolgus, and bonnet) used. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia, and virus was isolated from tonsils, gut mucosa, and draining lymph nodes. Viral replication proteins were detected in both epithelial and lymphoid cell populations expressing CD155 in the tonsil and intestine, as well as in spinal cord neurons. Necrosis was observed in these three cell types, and viral replication in the tonsil/gut was associated with histopathologic destruction and inflammation. The sustained response of neutralizing antibody correlated temporally with resolution of viremia and termination of virus shedding in oropharynges and feces. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), extending previous studies of poliovirus pathogenesis in humans. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis and to assess the efficacy of candidate antiviral drugs and new vaccines. IMPORTANCE Early pathogenic events of poliovirus infection remain largely undefined, and there is a lack of animal models mimicking natural oral human infection leading to paralytic poliomyelitis. All 39 macaques fed with

  11. Compressional wave events in the dawn plasma sheet observed by Interball-1

    Directory of Open Access Journals (Sweden)

    O. Verkhoglyadova

    1999-09-01

    Full Text Available Compressional waves with periods greater than 2 min (about 10-30 min at low geomagnetic latitudes, namely compressional Pc5 waves, are studied. The data set obtained with magnetometer MIF-M and plasma analyzer instrument CORALL on board the Interball-1 are analyzed. Measurements performed in October 1995 and October 1996 in the dawn plasma sheet at -30 RE ≤ XGSM and |ZGSM| ≤ 10 RE are considered. Anti-phase variations of magnetic field and ion plasma pressures are analyzed by searching for morphological similarities in the two time series. It is found that longitudinal and transverse magnetic field variations with respect to the background magnetic field are of the same order of magnitude. Plasma velocities are processed for each time period of the local dissimilarity in the pressure time series. Velocity disturbances occur mainly transversely to the local field line. The data reveal the rotation of the velocity vector. Because of the field line curvature, there is no fixed position of the rotational plane in the space. These vortices are localized in the regions of anti-phase variations of the magnetic field and plasma pressures, and the vortical flows are associated with the compressional Pc5 wave process. A theoretical model is proposed to explain the main features of the nonlinear wave processes. Our main goal is to study coupling of drift Alfven wave and magnetosonic wave in a warm inhomogeneous plasma. A vortex is the partial solution of the set of the equations when the compression is neglected. A compression effect gives rise to a nonlinear soliton-like solution.Key words. Magnetosphere physics (magnetotail · Space plasma physics (kinetic and MHD theory; non-linear phenomena

  12. Mapping the Most Significant Computer Hacking Events to a Temporal Computer Attack Model

    OpenAIRE

    Heerden , Renier ,; Pieterse , Heloise; Irwin , Barry

    2012-01-01

    Part 4: Section 3: ICT for Peace and War; International audience; This paper presents eight of the most significant computer hacking events (also known as computer attacks). These events were selected because of their unique impact, methodology, or other properties. A temporal computer attack model is presented that can be used to model computer based attacks. This model consists of the following stages: Target Identification, Reconnaissance, Attack, and Post-Attack Reconnaissance stages. The...

  13. Observed and predicted reduction of ischemic cardiovascular events in the Simvastatin and Ezetimibe in Aortic Stenosis trial

    DEFF Research Database (Denmark)

    Holme, Ingar; Boman, Kurt; Brudi, Philippe

    2010-01-01

    In the Simvastatin and Ezetimibe in Aortic Stenosis (SEAS) trial, combined ezetimibe (10 mg) and simvastatin (40 mg) decreased low-density lipoprotein cholesterol levels by 50% and ischemic cardiovascular event (ICE) risk by 22% compared to placebo. A larger decrease in ICE risk might have been...... expected for the degree of lipid-lowering observed. This analysis investigated relations between changes in lipoprotein components (LCs), and ICE risk decrease in the SEAS trial in all patients, by severity of aortic stenosis (AS), and compared to results of other clinical trials. A total of 1,570 patients...

  14. Ionosphere TEC disturbances before strong earthquakes: observations, physics, modeling (Invited)

    Science.gov (United States)

    Namgaladze, A. A.

    2013-12-01

    The phenomenon of the pre-earthquake ionospheric disturbances is discussed. A number of typical TEC (Total Electron Content) relative disturbances is presented for several recent strong earthquakes occurred in different ionospheric conditions. Stable typical TEC deviations from quiet background state are observed few days before the strong seismic events in the vicinity of the earthquake epicenter and treated as ionospheric earthquake precursors. They don't move away from the source in contrast to the disturbances related with geomagnetic activity. Sunlit ionosphere approach leads to reduction of the disturbances up to their full disappearance, and effects regenerate at night. The TEC disturbances often observed in the magnetically conjugated areas as well. At low latitudes they accompany with equatorial anomaly modifications. The hypothesis about the electromagnetic channel of the pre-earthquake ionospheric disturbances' creation is discussed. The lithosphere and ionosphere are coupled by the vertical external electric currents as a result of ionization of the near-Earth air layer and vertical transport of the charged particles through the atmosphere over the fault. The external electric current densities exceeding the regular fair-weather electric currents by several orders are required to produce stable long-living seismogenic electric fields such as observed by onboard measurements of the 'Intercosmos-Bulgaria 1300' satellite over the seismic active zones. The numerical calculation results using the Upper Atmosphere Model demonstrate the ability of the external electric currents with the densities of 10-8-10-9 A/m2 to produce such electric fields. The sumulations reproduce the basic features of typical pre-earthquake TEC relative disturbances. It is shown that the plasma ExB drift under the action of the seismogenic electric field leads to the changes of the F2 region electron number density and TEC. The upward drift velocity component enhances NmF2 and TEC and

  15. Model continuity in discrete event simulation: A framework for model-driven development of simulation models

    NARCIS (Netherlands)

    Cetinkaya, D; Verbraeck, A.; Seck, MD

    2015-01-01

    Most of the well-known modeling and simulation (M&S) methodologies state the importance of conceptual modeling in simulation studies, and they suggest the use of conceptual models during the simulation model development process. However, only a limited number of methodologies refers to how to

  16. An Observation Capability Metadata Model for EO Sensor Discovery in Sensor Web Enablement Environments

    Directory of Open Access Journals (Sweden)

    Chuli Hu

    2014-10-01

    Full Text Available Accurate and fine-grained discovery by diverse Earth observation (EO sensors ensures a comprehensive response to collaborative observation-required emergency tasks. This discovery remains a challenge in an EO sensor web environment. In this study, we propose an EO sensor observation capability metadata model that reuses and extends the existing sensor observation-related metadata standards to enable the accurate and fine-grained discovery of EO sensors. The proposed model is composed of five sub-modules, namely, ObservationBreadth, ObservationDepth, ObservationFrequency, ObservationQuality and ObservationData. The model is applied to different types of EO sensors and is formalized by the Open Geospatial Consortium Sensor Model Language 1.0. The GeosensorQuery prototype retrieves the qualified EO sensors based on the provided geo-event. An actual application to flood emergency observation in the Yangtze River Basin in China is conducted, and the results indicate that sensor inquiry can accurately achieve fine-grained discovery of qualified EO sensors and obtain enriched observation capability information. In summary, the proposed model enables an efficient encoding system that ensures minimum unification to represent the observation capabilities of EO sensors. The model functions as a foundation for the efficient discovery of EO sensors. In addition, the definition and development of this proposed EO sensor observation capability metadata model is a helpful step in extending the Sensor Model Language (SensorML 2.0 Profile for the description of the observation capabilities of EO sensors.

  17. Fuzzy model-based observers for fault detection in CSTR.

    Science.gov (United States)

    Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan

    2015-11-01

    Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. WDAC Task Team on Observations for Model Evaluation: Facilitating the use of observations for CMIP

    Science.gov (United States)

    Waliser, D. E.; Gleckler, P. J.; Ferraro, R.; Eyring, V.; Bosilovich, M. G.; Schulz, J.; Thepaut, J. N.; Taylor, K. E.; Chepfer, H.; Bony, S.; Lee, T. J.; Joseph, R.; Mathieu, P. P.; Saunders, R.

    2015-12-01

    Observations are essential for the development and evaluation of climate models. Satellite and in-situ measurements as well as reanalysis products provide crucial resources for these purposes. Over the last two decades, the climate modeling community has become adept at developing model intercomparison projects (MIPs) that provide the basis for more systematic comparisons of climate models under common experimental conditions. A prominent example among these is the coupled MIP (CMIP). Due to its growing importance in providing input to the IPCC, the framework for CMIP, now planning CMIP6, has expanded to include a very comprehensive and precise set of experimental protocols, with an advanced data archive and dissemination system. While the number, types and sophistication of observations over the same time period have kept pace, their systematic application to the evaluation of climate models has yet to be fully exploited due to a lack of coordinated protocols for identifying, archiving, documenting and applying observational resources. This presentation will discuss activities and plans of the World Climate Research Program (WCRP) Data Advisory Council's (WDAC) Task Team on Observations for Model Evaluation for facilitating the use of observations for model evaluation. The presentation will include an update on the status of the obs4MIPs and ana4MIPs projects, whose purpose is to provide a limited collection of well-established and documented observation and reanalysis datasets for comparison with Earth system models, targeting CMIP in particular. The presentation will also describe the role these activities and datasets play in the development of a set of community standard observation-based climate model performance metrics by the Working Group on Numerical Experimentation (WGNE)'s Performance Metrics Panel, as well as which CMIP6 experiments these activities are targeting, and where additional community input and contributions to these activities are needed.

  19. Finding Deadlocks of Event-B Models by Constraint Solving

    DEFF Research Database (Denmark)

    Hallerstede, Stefan; Leuschel, Michael

    we propose a constraint-based approach to nding deadlocks employing the ProB constraint solver to nd values for the constants and variables of formal models that describe a deadlocking state. We discuss the principles of the technique implemented in ProB's Prolog kernel and present some results...

  20. Modeling of cryoseismicity observed at the Fimbulisen Ice Shelf, East Antarctica

    Science.gov (United States)

    Hainzl, S.; Pirli, M.; Dahm, T.; Schweitzer, J.; Köhler, A.

    2017-12-01

    A source region of repetitive cryoseismic activity has been identified at the Fimbulisen ice shelf, in Dronning Maud Land, East Antarctica. The specific area is located at the outlet of the Jutulstraumen glacier, near the Kupol Moskovskij ice rise. A unique event catalog extending over 13 years, from 2003 to 2016 has been built based on waveform cross-correlation detectors and Hidden Markov Model classifiers. Phases of low seismicity rates are alternating with intense activity intervals that exhibit a strong tidal modulation. We performed a detailed analysis and modeling of the more than 2000 events recorded between July and October 2013. The observations are characterized by a number of very clear signals: (i) the event rate follows both the neap-spring and the semi-diurnal ocean-tide cycle; (ii) recurrences have a characteristic time of approximately 8 minutes; (iii) magnitudes vary systematically both on short and long time scales; and (iv) the events migrate within short-time clusters. We use these observations to constrain the dynamic processes at work at this particular region of the Fimbulisen ice shelf. Our model assumes a local grounding of the ice shelf, where stick-slip motion occurs. We show that the observations can be reproduced considering the modulation of the Coulomb-Failure stress by ocean tides.

  1. Spatial statistical modeling of shallow landslides—Validating predictions for different landslide inventories and rainfall events

    Science.gov (United States)

    von Ruette, Jonas; Papritz, Andreas; Lehmann, Peter; Rickli, Christian; Or, Dani

    2011-10-01

    Statistical models that exploit the correlation between landslide occurrence and geomorphic properties are often used to map the spatial occurrence of shallow landslides triggered by heavy rainfalls. In many landslide susceptibility studies, the true predictive power of the statistical model remains unknown because the predictions are not validated with independent data from other events or areas. This study validates statistical susceptibility predictions with independent test data. The spatial incidence of landslides, triggered by an extreme rainfall in a study area, was modeled by logistic regression. The fitted model was then used to generate susceptibility maps for another three study areas, for which event-based landslide inventories were also available. All the study areas lie in the northern foothills of the Swiss Alps. The landslides had been triggered by heavy rainfall either in 2002 or 2005. The validation was designed such that the first validation study area shared the geomorphology and the second the triggering rainfall event with the calibration study area. For the third validation study area, both geomorphology and rainfall were different. All explanatory variables were extracted for the logistic regression analysis from high-resolution digital elevation and surface models (2.5 m grid). The model fitted to the calibration data comprised four explanatory variables: (i) slope angle (effect of gravitational driving forces), (ii) vegetation type (grassland and forest; root reinforcement), (iii) planform curvature (convergent water flow paths), and (iv) contributing area (potential supply of water). The area under the Receiver Operating Characteristic (ROC) curve ( AUC) was used to quantify the predictive performance of the logistic regression model. The AUC values were computed for the susceptibility maps of the three validation study areas (validation AUC), the fitted susceptibility map of the calibration study area (apparent AUC: 0.80) and another

  2. Joint Models for Longitudinal and Time-to-Event Data With Applications in R

    CERN Document Server

    Rizopoulos, Dimitris

    2012-01-01

    In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest, e.g., prostate cancer studies where longitudinal PSA level measurements are collected in conjunction with the time-to-recurrence. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R provides a full treatment of random effects joint models for longitudinal and time-to-event outcomes that can be utilized to analyze such data. The content is primarily explanatory, focusing on applications of joint modeling, but

  3. A Unimodal Model for Double Observer Distance Sampling Surveys.

    Directory of Open Access Journals (Sweden)

    Earl F Becker

    Full Text Available Distance sampling is a widely used method to estimate animal population size. Most distance sampling models utilize a monotonically decreasing detection function such as a half-normal. Recent advances in distance sampling modeling allow for the incorporation of covariates into the distance model, and the elimination of the assumption of perfect detection at some fixed distance (usually the transect line with the use of double-observer models. The assumption of full observer independence in the double-observer model is problematic, but can be addressed by using the point independence assumption which assumes there is one distance, the apex of the detection function, where the 2 observers are assumed independent. Aerially collected distance sampling data can have a unimodal shape and have been successfully modeled with a gamma detection function. Covariates in gamma detection models cause the apex of detection to shift depending upon covariate levels, making this model incompatible with the point independence assumption when using double-observer data. This paper reports a unimodal detection model based on a two-piece normal distribution that allows covariates, has only one apex, and is consistent with the point independence assumption when double-observer data are utilized. An aerial line-transect survey of black bears in Alaska illustrate how this method can be applied.

  4. Pitfalls in alignment of observation models resolved using PROV as an upper ontology

    Science.gov (United States)

    Cox, S. J. D.

    2015-12-01

    A number of models for observation metadata have been developed in the earth and environmental science communities, including OGC's Observations and Measurements (O&M), the ecosystems community's Extensible Observation Ontology (OBOE), the W3C's Semantic Sensor Network Ontology (SSNO), and the CUAHSI/NSF Observations Data Model v2 (ODM2). In order to combine data formalized in the various models, mappings between these must be developed. In some cases this is straightforward: since ODM2 took O&M as its starting point, their terminology is almost completely aligned. In the eco-informatics world observations are almost never made in isolation of other observations, so OBOE pays particular attention to groupings, with multiple atomic 'Measurements' in each oboe:Observation which does not have a result of its own and thus plays a different role to an om:Observation. And while SSN also adopted terminology from O&M, mapping is confounded by the fact that SSN uses DOLCE as its foundation and places ssn:Observations as 'Social Objects' which are explicitly disjoint from 'Events', while O&M is formalized as part of the ISO/TC 211 harmonised (UML) model and sees om:Observations as value assignment activities. Foundational ontologies (such as BFO, GFO, UFO or DOLCE) can provide a framework for alignment, but different upper ontologies can be based in profoundly different worldviews and use of incommensurate frameworks can confound rather than help. A potential resolution is provided by comparing recent studies that align SSN and O&M, respectively, with the PROV-O ontology. PROV-O provides just three base classes: Entity, Activity and Agent. om:Observation is sub-classed from prov:Activity, while ssn:Observation is sub-classed from prov:Entity. This confirms that, despite the same name, om:Observation and ssn:Observation denote different aspects of the observation process: the observation event, and the record of the observation event, respectively. Alignment with the simple

  5. Towards modelling cost and risks of infrequent events in the cargo screening process

    OpenAIRE

    Sherman, Galina; Menachof, David; Siebers, Peer-Olaf; Aickelin, Uwe

    2013-01-01

    We introduce a simulation model of the port of Calais with a focus on the operation of immigration controls. Our aim is to compare the cost and benefits of different screening policies. Methodologically, we are trying to understand the limits of discrete event simulation of rare events. When will they become 'too rare' for simulation to give meaningful results?

  6. Modeling resilience, friability, and cost of an airport affected by the large-scale disruptive event

    NARCIS (Netherlands)

    Janic, M.

    2013-01-01

    This paper deals with modeling resilience, friability, and cost of an airport affected by the largescale disruptive event. These events affecting the airport's operations individually or in combination can be bad weather, failures of particular crucial aiiport and ATC (Air Traffic Control)

  7. Analysis and Modelling of Pedestrian Movement Dynamics at Large-scale Events

    NARCIS (Netherlands)

    Duives, D.C.

    2016-01-01

    To what extent can we model the movements of pedestrians who walk across a large-scale event terrain? This dissertation answers this question by analysing the operational movement dynamics of pedestrians in crowds at several large music and sport events in the Netherlands and extracting the key

  8. A stochastic model of gene expression including splicing events

    OpenAIRE

    Penim, Flávia Alexandra Mendes

    2014-01-01

    Tese de mestrado, Bioinformática e Biologia Computacional, Universidade de Lisboa, Faculdade de Ciências, 2014 Proteins carry out the great majority of the catalytic and structural work within an organism. The RNA templates used in their synthesis determines their identity, and this is dictated by which genes are transcribed. Therefore, gene expression is the fundamental determinant of an organism’s nature. The main objective of this thesis was to develop a stochastic computational model a...

  9. Modeling a typical winter-time dust event over the Arabian Peninsula and the Red Sea

    KAUST Repository

    Kalenderski, Stoitchko

    2013-02-20

    We used WRF-Chem, a regional meteorological model coupled with an aerosol-chemistry component, to simulate various aspects of the dust phenomena over the Arabian Peninsula and Red Sea during a typical winter-time dust event that occurred in January 2009. The model predicted that the total amount of emitted dust was 18.3 Tg for the entire dust outburst period and that the two maximum daily rates were ?2.4 Tg day-1 and ?1.5 Tg day-1, corresponding to two periods with the highest aerosol optical depth that were well captured by ground-and satellite-based observations. The model predicted that the dust plume was thick, extensive, and mixed in a deep boundary layer at an altitude of 3-4 km. Its spatial distribution was modeled to be consistent with typical spatial patterns of dust emissions. We utilized MODIS-Aqua and Solar Village AERONET measurements of the aerosol optical depth (AOD) to evaluate the radiative impact of aerosols. Our results clearly indicated that the presence of dust particles in the atmosphere caused a significant reduction in the amount of solar radiation reaching the surface during the dust event. We also found that dust aerosols have significant impact on the energy and nutrient balances of the Red Sea. Our results showed that the simulated cooling under the dust plume reached 100 W m-2, which could have profound effects on both the sea surface temperature and circulation. Further analysis of dust generation and its spatial and temporal variability is extremely important for future projections and for better understanding of the climate and ecological history of the Red Sea.

  10. Modeling a typical winter-time dust event over the Arabian Peninsula and the Red Sea

    Directory of Open Access Journals (Sweden)

    S. Kalenderski

    2013-02-01

    Full Text Available We used WRF-Chem, a regional meteorological model coupled with an aerosol-chemistry component, to simulate various aspects of the dust phenomena over the Arabian Peninsula and Red Sea during a typical winter-time dust event that occurred in January 2009. The model predicted that the total amount of emitted dust was 18.3 Tg for the entire dust outburst period and that the two maximum daily rates were ~2.4 Tg day−1 and ~1.5 Tg day−1, corresponding to two periods with the highest aerosol optical depth that were well captured by ground- and satellite-based observations. The model predicted that the dust plume was thick, extensive, and mixed in a deep boundary layer at an altitude of 3–4 km. Its spatial distribution was modeled to be consistent with typical spatial patterns of dust emissions. We utilized MODIS-Aqua and Solar Village AERONET measurements of the aerosol optical depth (AOD to evaluate the radiative impact of aerosols. Our results clearly indicated that the presence of dust particles in the atmosphere caused a significant reduction in the amount of solar radiation reaching the surface during the dust event. We also found that dust aerosols have significant impact on the energy and nutrient balances of the Red Sea. Our results showed that the simulated cooling under the dust plume reached 100 W m−2, which could have profound effects on both the sea surface temperature and circulation. Further analysis of dust generation and its spatial and temporal variability is extremely important for future projections and for better understanding of the climate and ecological history of the Red Sea.

  11. Strain specific and common pathogenic events in murine models of scrapie and bovine spongiform encephalopathy.

    Science.gov (United States)

    Lasmézas, C I; Deslys, J P; Demaimay, R; Adjou, K T; Hauw, J J; Dormont, D

    1996-07-01

    The development of transmissible spongiform encephalopathies in experimental models depends on two major factors: the intracerebral accumulation of an abnormal, protease-resistant isoform of PrP (PrPres), which is a host protein mainly expressed in neurons; and the existence of different strains of agent. In order to make a distinction between pathogenic mechanisms depending upon the accumulation of host-derived PrPres and the strain-specific effects, we quantified and compared the sequence of molecular [PrPres and glial fibrillary acidic protein (GFAP) accumulation] and pathological events in the brains of syngeneic mice throughout the course of infection with two different strains of agent. The bovine spongiform encephalopathy (BSE) agent exhibits properties different from any known scrapie source and has been studied in comparison with a classical scrapie strain. Convergent kinetic data in both models confirmed the cause-effect relationship between PrPres and pathological changes and showed that PrPres accumulation is directly responsible for astrocyte activation in vivo. Moreover, we observed a threshold level of PrPres for this effect on astroglial cells. However, despite similar infectivity titres, the BSE model produced less PrPres than scrapie, and the relative importance of gliosis was higher. The comparison of the molecular and pathological features after intracerebral or intraperitoneal inoculation also revealed differences between the models. Therefore, the mechanisms leading to the targeting and the fine regulation of the molecular events seem to be independent of the host PrP and to depend upon the agent. The possible involvement of a regulatory molecule accounting for these specificities has to be considered.

  12. Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models

    Science.gov (United States)

    Mazzoleni, Maurizio; Alfonso, Leonardo; Chacon-Hurtado, Juan; Solomatine, Dimitri

    2015-09-01

    Catastrophic floods cause significant socio-economical losses. Non-structural measures, such as real-time flood forecasting, can potentially reduce flood risk. To this end, data assimilation methods have been used to improve flood forecasts by integrating static ground observations, and in some cases also remote sensing observations, within water models. Current hydrologic and hydraulic research works consider assimilation of observations coming from traditional, static sensors. At the same time, low-cost, mobile sensors and mobile communication devices are becoming also increasingly available. The main goal and innovation of this study is to demonstrate the usefulness of assimilating uncertain streamflow observations that are dynamic in space and intermittent in time in the context of two different semi-distributed hydrological model structures. The developed method is applied to the Brue basin, where the dynamic observations are imitated by the synthetic observations of discharge. The results of this study show how model structures and sensors locations affect in different ways the assimilation of streamflow observations. In addition, it proves how assimilation of such uncertain observations from dynamic sensors can provide model improvements similar to those of streamflow observations coming from a non-optimal network of static physical sensors. This can be a potential application of recent efforts to build citizen observatories of water, which can make the citizens an active part in information capturing, evaluation and communication, helping simultaneously to improvement of model-based flood forecasting.

  13. Predicting the future completing models of observed complex systems

    CERN Document Server

    Abarbanel, Henry

    2013-01-01

    Predicting the Future: Completing Models of Observed Complex Systems provides a general framework for the discussion of model building and validation across a broad spectrum of disciplines. This is accomplished through the development of an exact path integral for use in transferring information from observations to a model of the observed system. Through many illustrative examples drawn from models in neuroscience, fluid dynamics, geosciences, and nonlinear electrical circuits, the concepts are exemplified in detail. Practical numerical methods for approximate evaluations of the path integral are explored, and their use in designing experiments and determining a model's consistency with observations is investigated. Using highly instructive examples, the problems of data assimilation and the means to treat them are clearly illustrated. This book will be useful for students and practitioners of physics, neuroscience, regulatory networks, meteorology and climate science, network dynamics, fluid dynamics, and o...

  14. A Model of Dust-like Spherically Symmetric Gravitational Collapse without Event Horizon Formation

    Directory of Open Access Journals (Sweden)

    Piñol M.

    2015-10-01

    Full Text Available Some dynamical aspects of gravitational collapse are explored in this paper. A time- dependent spherically symmetric metric is proposed and the corresponding Einstein field equations are derived. An ultrarelativistic dust-like stress-momentum tensor is considered to obtain analytical solutions of these equations, with the perfect fluid con- sisting of two purely radial fluxes — the inwards flux of collapsing matter and the outwards flux of thermally emitted radiation. Thermal emission is calculated by means of a simplistic but illustrative model of uninteracting collapsing shells. Our results show an asymptotic approach to a maximal space-time deformation without the formation of event horizons. The size of the body is slightly larger than the Schwarzschild radius during most of its lifetime, so that there is no contradiction with either observations or previous theorems on black holes. The relation of the latter with our results is scruti- nized in detail.

  15. Event-plane dependent di-hadron correlations with harmonic vn subtraction in a hydrodynamic model

    Science.gov (United States)

    Castilho, Wagner M.; Qian, Wei-Liang; Hama, Yogiro; Kodama, Takeshi

    2018-02-01

    In this work, a hydrodynamic study of the di-hadron azimuthal correlations for the Au+Au collisions at 200 GeV is carried out. The correlations are evaluated using the ZYAM method for the centrality windows as well as the transverse momentum range in accordance with the existing data. Event-plane dependence of the correlation is obtained after the subtraction of contributions from the most dominant harmonic coefficients. In particular, the contribution from the triangular flow, v3, is removed from the proper correlations following the procedure implemented by the STAR collaboration. The resultant structure observed in the correlations was sometimes attributed to the mini-jet dynamics, but the present calculations show that a pure hydrodynamic model gives a reasonable agreement with the main feature of the published data. A brief discussion on the physical content of the present findings is presented.

  16. Assessment of the Weather Research and Forecasting (WRF model for simulation of extreme rainfall events in the upper Ganga Basin

    Directory of Open Access Journals (Sweden)

    I. Chawla

    2018-02-01

    Full Text Available Reliable estimates of extreme rainfall events are necessary for an accurate prediction of floods. Most of the global rainfall products are available at a coarse resolution, rendering them less desirable for extreme rainfall analysis. Therefore, regional mesoscale models such as the advanced research version of the Weather Research and Forecasting (WRF model are often used to provide rainfall estimates at fine grid spacing. Modelling heavy rainfall events is an enduring challenge, as such events depend on multi-scale interactions, and the model configurations such as grid spacing, physical parameterization and initialization. With this background, the WRF model is implemented in this study to investigate the impact of different processes on extreme rainfall simulation, by considering a representative event that occurred during 15–18 June 2013 over the Ganga Basin in India, which is located at the foothills of the Himalayas. This event is simulated with ensembles involving four different microphysics (MP, two cumulus (CU parameterizations, two planetary boundary layers (PBLs and two land surface physics options, as well as different resolutions (grid spacing within the WRF model. The simulated rainfall is evaluated against the observations from 18 rain gauges and the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA 3B42RT version 7 data. From the analysis, it should be noted that the choice of MP scheme influences the spatial pattern of rainfall, while the choice of PBL and CU parameterizations influences the magnitude of rainfall in the model simulations. Further, the WRF run with Goddard MP, Mellor–Yamada–Janjic PBL and Betts–Miller–Janjic CU scheme is found to perform best in simulating this heavy rain event. The selected configuration is evaluated for several heavy to extremely heavy rainfall events that occurred across different months of the monsoon season in the region. The model performance

  17. Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin

    Science.gov (United States)

    Chawla, Ila; Osuri, Krishna K.; Mujumdar, Pradeep P.; Niyogi, Dev

    2018-02-01

    Reliable estimates of extreme rainfall events are necessary for an accurate prediction of floods. Most of the global rainfall products are available at a coarse resolution, rendering them less desirable for extreme rainfall analysis. Therefore, regional mesoscale models such as the advanced research version of the Weather Research and Forecasting (WRF) model are often used to provide rainfall estimates at fine grid spacing. Modelling heavy rainfall events is an enduring challenge, as such events depend on multi-scale interactions, and the model configurations such as grid spacing, physical parameterization and initialization. With this background, the WRF model is implemented in this study to investigate the impact of different processes on extreme rainfall simulation, by considering a representative event that occurred during 15-18 June 2013 over the Ganga Basin in India, which is located at the foothills of the Himalayas. This event is simulated with ensembles involving four different microphysics (MP), two cumulus (CU) parameterizations, two planetary boundary layers (PBLs) and two land surface physics options, as well as different resolutions (grid spacing) within the WRF model. The simulated rainfall is evaluated against the observations from 18 rain gauges and the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) 3B42RT version 7 data. From the analysis, it should be noted that the choice of MP scheme influences the spatial pattern of rainfall, while the choice of PBL and CU parameterizations influences the magnitude of rainfall in the model simulations. Further, the WRF run with Goddard MP, Mellor-Yamada-Janjic PBL and Betts-Miller-Janjic CU scheme is found to perform best in simulating this heavy rain event. The selected configuration is evaluated for several heavy to extremely heavy rainfall events that occurred across different months of the monsoon season in the region. The model performance improved through incorporation

  18. Evaluation of internal noise methods for Hotelling observer models

    International Nuclear Information System (INIS)

    Zhang Yani; Pham, Binh T.; Eckstein, Miguel P.

    2007-01-01

    The inclusion of internal noise in model observers is a common method to allow for quantitative comparisons between human and model observer performance in visual detection tasks. In this article, we studied two different strategies for inserting internal noise into Hotelling model observers. In the first strategy, internal noise was added to the output of individual channels: (a) Independent nonuniform channel noise, (b) independent uniform channel noise. In the second strategy, internal noise was added to the decision variable arising from the combination of channel responses. The standard deviation of the zero mean internal noise was either constant or proportional to: (a) the decision variable's standard deviation due to the external noise, (b) the decision variable's variance caused by the external noise, (c) the decision variable magnitude on a trial to trial basis. We tested three model observers: square window Hotelling observer (HO), channelized Hotelling observer (CHO), and Laguerre-Gauss Hotelling observer (LGHO) using a four alternative forced choice (4AFC) signal known exactly but variable task with a simulated signal embedded in real x-ray coronary angiogram backgrounds. The results showed that the internal noise method that led to the best prediction of human performance differed across the studied model observers. The CHO model best predicted human observer performance with the channel internal noise. The HO and LGHO best predicted human observer performance with the decision variable internal noise. The present results might guide researchers with the choice of methods to include internal noise into Hotelling model observers when evaluating and optimizing medical image quality

  19. Coordinated Cluster, ground-based instrumentation and low-altitude satellite observations of transient poleward-moving events in the ionosphere and in the tail lobe

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    Full Text Available During the interval between 8:00–9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EISCAT Svalbard Radar (ESR at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches", with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( ± 5 min, the interplanetary magnetic field (IMF had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event, was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10–20 eV and the topside ionospheric enhancements seen by the ESR (at 400–700 km. We suggest that a potential barrier at the

  20. Coordinated Cluster, ground-based instrumentation and low-altitude satellite observations of transient poleward-moving events in the ionosphere and in the tail lobe

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2001-09-01

    Full Text Available During the interval between 8:00–9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EISCAT Svalbard Radar (ESR at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches", with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( ± 5 min, the interplanetary magnetic field (IMF had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event, was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10–20 eV and the topside ionospheric enhancements seen by the ESR (at 400–700 km. We suggest that a potential barrier at the

  1. The Possible Observation of Slow Slip Events Prior to the Occurrence of the 1999 Chi-Chi Earthquake

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2012-01-01

    Full Text Available Possible short-term precursors several days before the Taiwan Chi-Chi earthquake (Mw = 7.6 on 20 September 1999 were observed by examining crustal deformation that were directly integrated from broadband velocity seismograms. Significant deviations of the vertical displacement from a normal Earth tidal pattern on 15 - 19 September show some tiny surface crustal deformation having taken place several days in advance of the earthquake on 20 September. A series of slow slip events on the nearly horizontal plane (or decollement at depths between 10 and 12 km provide a possible explanation for generating the anomalous crustal deformations before the earthquake. Although those slow slip events are not well constrained owing to limited observations at only two broadband seismic stations, their possibility is acceptable from a geological standpoint if the decollement beneath central Taiwan can be evidenced from both geological and geodetic studies. However, no matter what the exact mechanism was which generated the irregular earth tidal deformation several days before the 1999 Taiwan Chi-Chi earthquake, these anomalous crustal deformations might be considered to be possible short-term earthquake precursors.

  2. Using ACE Observations of Interplanetary Particles and Magnetic Fields as Possible Contributors to Variations Observed at Van Allen Probes during Major events in 2013

    Science.gov (United States)

    Armstrong, T. P.; Manweiler, J. W.; Gerrard, A. J.; Gkioulidou, M.; Lanzerotti, L. J.; Patterson, J. D.

    2013-12-01

    Observations from ACE EPAM including energy spectra of protons, helium, and oxygen will be prepared for coordinated use in estimating the direct and indirect access of energetic particles to inner and outer geomagnetic trapping zones. Complete temporal coverage from ACE at 12 seconds, 5 minutes, 17 minutes, hourly and daily cadences will be used to catalog interplanetary events arriving at Earth including interplanetary magnetic field sector boundaries, interplanetary shocks, and interplanetary coronal mass ejections, ICMEs. The first 6 months of 2013 have included both highly disturbed times, March 17 and May 22, and extended quiet periods of little or no variations. Among the specific questions that ACE and Van Allen Probes coordinated observations may aid in resolving are: 1. How much, if any, direct capture of interplanetary energetic particles occurs and what conditions account for it? 2. How much influence do interplanetary field and particle variations have on energization and/or loss of geomagnetically trapped populations? The poster will also present important links and describe methods and important details of access to numerically expressed ACE EPAM and Van Allen Probes RBSPICE observations that can be flexibly and easily accessed via the internet for student and senior researcher use.

  3. Integrating Behaviour in Software Models: An Event Coordination Notation

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2011-01-01

    ) that deals with this problem. We present the main concepts and rationales behind this notation and discuss a prototype and run-time environment that executes these models, and provides an API so that other parts of the software can be easily integrated. The core concepts of the ECNO seem to be stabilizing...... now, and the prototypic implementation of ECNO and its runtime environment show that the concepts of ECNO work. Still, there are some design issues and open questions that we discuss in this paper....

  4. Mathematical model quantifies multiple daylight exposure and burial events for rock surfaces using luminescence dating

    International Nuclear Information System (INIS)

    Freiesleben, Trine; Sohbati, Reza; Murray, Andrew; Jain, Mayank; Al Khasawneh, Sahar; Hvidt, Søren; Jakobsen, Bo

    2015-01-01

    Interest in the optically stimulated luminescence (OSL) dating of rock surfaces has increased significantly over the last few years, as the potential of the method has been explored. It has been realized that luminescence-depth profiles show qualitative evidence for multiple daylight exposure and burial events. To quantify both burial and exposure events a new mathematical model is developed by expanding the existing models of evolution of luminescence–depth profiles, to include repeated sequential events of burial and exposure to daylight. This new model is applied to an infrared stimulated luminescence-depth profile from a feldspar-rich granite cobble from an archaeological site near Aarhus, Denmark. This profile shows qualitative evidence for multiple daylight exposure and burial events; these are quantified using the model developed here. By determining the burial ages from the surface layer of the cobble and by fitting the new model to the luminescence profile, it is concluded that the cobble was well bleached before burial. This indicates that the OSL burial age is likely to be reliable. In addition, a recent known exposure event provides an approximate calibration for older daylight exposure events. This study confirms the suggestion that rock surfaces contain a record of exposure and burial history, and that these events can be quantified. The burial age of rock surfaces can thus be dated with confidence, based on a knowledge of their pre-burial light exposure; it may also be possible to determine the length of a fossil exposure, using a known natural light exposure as calibration. - Highlights: • Evidence for multiple exposure and burial events in the history of a single cobble. • OSL rock surface dating model improved to include multiple burial/exposure cycles. • Application of the new model quantifies burial and exposure events.

  5. Modeling Temporal Bias of Uplift Events in Recommender Systems

    KAUST Repository

    Altaf, Basmah

    2013-05-08

    Today, commercial industry spends huge amount of resources in advertisement campaigns, new marketing strategies, and promotional deals to introduce their product to public and attract a large number of customers. These massive investments by a company are worthwhile because marketing tactics greatly influence the consumer behavior. Alternatively, these advertising campaigns have a discernible impact on recommendation systems which tend to promote popular items by ranking them at the top, resulting in biased and unfair decision making and loss of customers’ trust. The biasing impact of popularity of items on recommendations, however, is not fixed, and varies with time. Therefore, it is important to build a bias-aware recommendation system that can rank or predict items based on their true merit at given time frame. This thesis proposes a framework that can model the temporal bias of individual items defined by their characteristic contents, and provides a simple process for bias correction. Bias correction is done either by cleaning the bias from historical training data that is used for building predictive model, or by ignoring the estimated bias from the predictions of a standard predictor. Evaluated on two real world datasets, NetFlix and MovieLens, our framework is shown to be able to estimate and remove the bias as a result of adopted marketing techniques from the predicted popularity of items at a given time.

  6. Design a Learning-Oriented Fall Event Reporting System Based on Kirkpatrick Model.

    Science.gov (United States)

    Zhou, Sicheng; Kang, Hong; Gong, Yang

    2017-01-01

    Patient fall has been a severe problem in healthcare facilities around the world due to its prevalence and cost. Routine fall prevention training programs are not as effective as expected. Using event reporting systems is the trend for reducing patient safety events such as falls, although some limitations of the systems exist at current stage. We summarized these limitations through literature review, and developed an improved web-based fall event reporting system. The Kirkpatrick model, widely used in the business area for training program evaluation, has been integrated during the design of our system. Different from traditional event reporting systems that only collect and store the reports, our system automatically annotates and analyzes the reported events, and provides users with timely knowledge support specific to the reported event. The paper illustrates the design of our system and how its features are intended to reduce patient falls by learning from previous errors.

  7. Hydrologic Modeling in the Kenai River Watershed using Event Based Calibration

    Science.gov (United States)

    Wells, B.; Toniolo, H. A.; Stuefer, S. L.

    2015-12-01

    Understanding hydrologic changes is key for preparing for possible future scenarios. On the Kenai Peninsula in Alaska the yearly salmon runs provide a valuable stimulus to the economy. It is the focus of a large commercial fishing fleet, but also a prime tourist attraction. Modeling of anadromous waters provides a tool that assists in the prediction of future salmon run size. Beaver Creek, in Kenai, Alaska, is a lowlands stream that has been modeled using the Army Corps of Engineers event based modeling package HEC-HMS. With the use of historic precipitation and discharge data, the model was calibrated to observed discharge values. The hydrologic parameters were measured in the field or calculated, while soil parameters were estimated and adjusted during the calibration. With the calibrated parameter for HEC-HMS, discharge estimates can be used by other researches studying the area and help guide communities and officials to make better-educated decisions regarding the changing hydrology in the area and the tied economic drivers.

  8. Models for recurrent gas release event behavior in hazardous waste tanks

    International Nuclear Information System (INIS)

    Anderson, D.N.; Arnold, B.C.

    1994-08-01

    Certain radioactive waste storage tanks at the United States Department of Energy Hanford facilities continuously generate gases as a result of radiolysis and chemical reactions. The congealed sludge in these tanks traps the gases and causes the level of the waste within the tanks to rise. The waste level continues to rise until the sludge becomes buoyant and ''rolls over'', changing places with heavier fluid on top. During a rollover, the trapped gases are released, resulting, in a sudden drop in the waste level. This is known as a gas release event (GRE). After a GRE, the wastes leading to another GRE. We present nonlinear time waste re-congeals and gas again accumulates leading to another GRE. We present nonlinear time series models that produce simulated sample paths that closely resemble the temporal history of waste levels in these tanks. The models also imitate the random GRE, behavior observed in the temporal waste level history of a storage tank. We are interested in using the structure of these models to understand the probabilistic behavior of the random variable ''time between consecutive GRE's''. Understanding the stochastic nature of this random variable is important because the hydrogen and nitrous oxide gases released from a GRE, are flammable and the ammonia that is released is a health risk. From a safety perspective, activity around such waste tanks should be halted when a GRE is imminent. With credible GRE models, we can establish time windows in which waste tank research and maintenance activities can be safely performed

  9. Detecting influential observations in nonlinear regression modeling of groundwater flow

    Science.gov (United States)

    Yager, Richard M.

    1998-01-01

    Nonlinear regression is used to estimate optimal parameter values in models of groundwater flow to ensure that differences between predicted and observed heads and flows do not result from nonoptimal parameter values. Parameter estimates can be affected, however, by observations that disproportionately influence the regression, such as outliers that exert undue leverage on the objective function. Certain statistics developed for linear regression can be used to detect influential observations in nonlinear regression if the models are approximately linear. This paper discusses the application of Cook's D, which measures the effect of omitting a single observation on a set of estimated parameter values, and the statistical parameter DFBETAS, which quantifies the influence of an observation on each parameter. The influence statistics were used to (1) identify the influential observations in the calibration of a three-dimensional, groundwater flow model of a fractured-rock aquifer through nonlinear regression, and (2) quantify the effect of omitting influential observations on the set of estimated parameter values. Comparison of the spatial distribution of Cook's D with plots of model sensitivity shows that influential observations correspond to areas where the model heads are most sensitive to certain parameters, and where predicted groundwater flow rates are largest. Five of the six discharge observations were identified as influential, indicating that reliable measurements of groundwater flow rates are valuable data in model calibration. DFBETAS are computed and examined for an alternative model of the aquifer system to identify a parameterization error in the model design that resulted in overestimation of the effect of anisotropy on horizontal hydraulic conductivity.

  10. Model-Checking of Component-Based Event-Driven Real-Time Embedded Software

    National Research Council Canada - National Science Library

    Gu, Zonghua; Shin, Kang G

    2005-01-01

    .... We discuss application of model-checking to verify system-level concurrency properties of component-based real-time embedded software based on CORBA Event Service, using Avionics Mission Computing...

  11. The 8 Learning Events Model: a Pedagogic Conceptual Tool Supporting Diversification of Learning Methods

    NARCIS (Netherlands)

    Verpoorten, Dominique; Poumay, M; Leclercq, D

    2006-01-01

    Please, cite this publication as: Verpoorten, D., Poumay, M., & Leclercq, D. (2006). The 8 Learning Events Model: a Pedagogic Conceptual Tool Supporting Diversification of Learning Methods. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence

  12. Using competing risks model and competing events in outcome of pulmonary tuberculosis patients

    Directory of Open Access Journals (Sweden)

    Mehdi Kazempour Dizaji

    2016-01-01

    Conclusions: Use of competing risks model with competing events can provide a better way to understand the associated risk factors co-related with outcome of the pulmonary TB process, especially among DR-TB patients.

  13. How does observation uncertainty influence which stream water samples are most informative for model calibration?

    Science.gov (United States)

    Wang, Ling; van Meerveld, Ilja; Seibert, Jan

    2016-04-01

    Streamflow isotope samples taken during rainfall-runoff events are very useful for multi-criteria model calibration because they can help decrease parameter uncertainty and improve internal model consistency. However, the number of samples that can be collected and analysed is often restricted by practical and financial constraints. It is, therefore, important to choose an appropriate sampling strategy and to obtain samples that have the highest information content for model calibration. We used the Birkenes hydrochemical model and synthetic rainfall, streamflow and isotope data to explore which samples are most informative for model calibration. Starting with error-free observations, we investigated how many samples are needed to obtain a certain model fit. Based on different parameter sets, representing different catchments, and different rainfall events, we also determined which sampling times provide the most informative data for model calibration. Our results show that simulation performance for models calibrated with the isotopic data from two intelligently selected samples was comparable to simulations based on isotopic data for all 100 time steps. The models calibrated with the intelligently selected samples also performed better than the model calibrations with two benchmark sampling strategies (random selection and selection based on hydrologic information). Surprisingly, samples on the rising limb and at the peak were less informative than expected and, generally, samples taken at the end of the event were most informative. The timing of the most informative samples depends on the proportion of different flow components (baseflow, slow response flow, fast response flow and overflow). For events dominated by baseflow and slow response flow, samples taken at the end of the event after the fast response flow has ended were most informative; when the fast response flow was dominant, samples taken near the peak were most informative. However when overflow

  14. Characterization of the Sahelian-Sudan rainfall based on observations and regional climate models

    Science.gov (United States)

    Salih, Abubakr A. M.; Elagib, Nadir Ahmed; Tjernström, Michael; Zhang, Qiong

    2018-04-01

    The African Sahel region is known to be highly vulnerable to climate variability and change. We analyze rainfall in the Sahelian Sudan in terms of distribution of rain-days and amounts, and examine whether regional climate models can capture these rainfall features. Three regional models namely, Regional Model (REMO), Rossby Center Atmospheric Model (RCA) and Regional Climate Model (RegCM4), are evaluated against gridded observations (Climate Research Unit, Tropical Rainfall Measuring Mission, and ERA-interim reanalysis) and rain-gauge data from six arid and semi-arid weather stations across Sahelian Sudan over the period 1989 to 2008. Most of the observed rain-days are characterized by weak (0.1-1.0 mm/day) to moderate (> 1.0-10.0 mm/day) rainfall, with average frequencies of 18.5% and 48.0% of the total annual rain-days, respectively. Although very strong rainfall events (> 30.0 mm/day) occur rarely, they account for a large fraction of the total annual rainfall (28-42% across the stations). The performance of the models varies both spatially and temporally. RegCM4 most closely reproduces the observed annual rainfall cycle, especially for the more arid locations, but all of the three models fail to capture the strong rainfall events and hence underestimate its contribution to the total annual number of rain-days and rainfall amount. However, excessive moderate rainfall compensates this underestimation in the models in an annual average sense. The present study uncovers some of the models' limitations in skillfully reproducing the observed climate over dry regions, will aid model users in recognizing the uncertainties in the model output and will help climate and hydrological modeling communities in improving models.

  15. Prior event rate ratio adjustment: numerical studies of a statistical method to address unrecognized confounding in observational studies.

    Science.gov (United States)

    Yu, Menggang; Xie, Dawei; Wang, Xingmei; Weiner, Mark G; Tannen, Richard L

    2012-05-01

    The purpose of this study was to evaluate a statistical method, prior event rate ratio (PERR) adjustment, and an alternative, PERR-ALT, both of which have the potential to overcome "unmeasured confounding," both analytically and via simulation. Formulae were derived for the target estimates of both PERR methods, which were compared with results from simulations to ensure their validity. In addition to the theoretical insights gained, relative biases of both PERR methods for estimating exposure effects were also investigated via simulation studies and compared empirically with electronic medical record database study results. Theoretical derivations closely matched simulated results. In simulation studies, both PERR methods significantly reduce bias from unmeasured confounding compared with the standard Cox model. When there is no interaction between unmeasured confounders and time intervals, the estimate from PERR-ALT is unbiased, whereas the estimate from PERR has well-controlled relative bias. When interactions exist, relative biases tend to increase but not greatly, especially when the exposure effect is relatively large in comparison with the interaction effects. When the event rate is low and the sample size is limited, PERR is more computationally stable than PERR-ALT. In empiric study comparisons with randomized controlled trials, both PERR methods show potential to reduce bias from the standard Cox model similarly when unmeasured confounding is present. Extensive simulation studies and theoretical derivation show that PERR-based methods may reduce bias from unmeasured confounders when the exposure effect is relatively large in comparison with confounder-exposure interaction. The rare study event situation warrants further investigation. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Design of Experiments for Model Calibration of Multi-Physics Systems with Targeted Events of Interest

    Science.gov (United States)

    2017-03-01

    AFRL-RQ-WP-TP-2017-0034 DESIGN OF EXPERIMENTS FOR MODEL CALIBRATION OF MULTI-PHYSICS SYSTEMS WITH TARGETED EVENTS OF INTEREST (PREPRINT...STATEMENT. *//Signature// //Signature// BENJAMIN P. SMARSLOK MICHAEL S. BROWN, Branch Chief Program Manager Hypersonic Sciences...March 2017 4. TITLE AND SUBTITLE DESIGN OF EXPERIMENTS FOR MODEL CALIBRATION OF MULTI- PHYSICS SYSTEMS WITH TARGETED EVENTS OF INTEREST (PREPRINT) 5a

  17. COCOA code for creating mock observations of star cluster models

    Science.gov (United States)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele

    2018-04-01

    We introduce and present results from the COCOA (Cluster simulatiOn Comparison with ObservAtions) code that has been developed to create idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. In this paper, we describe the COCOA code and demonstrate its different applications by utilizing globular cluster (GC) models simulated with the MOCCA (MOnte Carlo Cluster simulAtor) code. COCOA is used to synthetically observe these different GC models with optical telescopes, perform point spread function photometry, and subsequently produce observed colour-magnitude diagrams. We also use COCOA to compare the results from synthetic observations of a cluster model that has the same age and metallicity as the Galactic GC NGC 2808 with observations of the same cluster carried out with a 2.2 m optical telescope. We find that COCOA can effectively simulate realistic observations and recover photometric data. COCOA has numerous scientific applications that maybe be helpful for both theoreticians and observers that work on star clusters. Plans for further improving and developing the code are also discussed in this paper.

  18. Southeast Atmosphere Studies: learning from model-observation syntheses

    Data.gov (United States)

    U.S. Environmental Protection Agency — Observed and modeled data shown in figure 2b-c. This dataset is associated with the following publication: Mao, J., A. Carlton, R. Cohen, W. Brune, S. Brown, G....

  19. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.

    Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  20. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    2003-06-01

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  1. Spatiotemporal evolution of slow slip events in a nonplanar fault model for northern Cascadia subduction zone

    Science.gov (United States)

    Li, Duo; Liu, Yajing

    2016-09-01

    Slow slip events (SSEs) are identified as the quasi-stable fault deformation in the deep transition zone from locked to continuous sliding in many subduction zones. In the well-instrumented Cascadia margin, a class of Mw6.0 slow slip events arise beneath Port Angeles every ˜14 months, as inferred from two decades of continuous geodetic monitoring. The along-strike bending of the incoming oceanic plate beneath north Washington is a unique geometric feature whose influence on slow slip processes is still unknown. Here we incorporate a realistic fault geometry of northern Cascadia in the framework of rate- and state-dependent friction law, to simulate the spatiotemporal evolution of slow slip events on a nonplanar subduction fault. The modeled SSEs capture the major characteristics revealed by GPS observations. The central 150 km long fault segment beneath Port Angeles acts as a repetitive slip patch, where SSEs appear every ˜1.5 years with a maximum slip of ˜2.5 cm. Two minor slip patches with smaller areas and cumulative slips straddle this central slip patch. The along-strike segmentation of slow slip is inversely related to the local fault dip and strike angles of the slow slip zone, suggesting strong geometrical control on the slow slip process. This correlation holds even after removing the effect of W/h∗, ratio between velocity-weakening SSE fault width and characteristic nucleation size. Besides the GPS-detectable fast-spreading phase, we find that each SSE cycle consists of deep pre-SSE preparation and post-SSE relaxation phases, which may be the driving mechanism for the deep tremor activity between major SSE episodes discovered in Cascadia.

  2. A spatial and nonstationary model for the frequency of extreme rainfall events

    DEFF Research Database (Denmark)

    Gregersen, Ida Bülow; Madsen, Henrik; Rosbjerg, Dan

    2013-01-01

    of extreme rainfall events, a statistical model is tested for this purpose. The model is built on the theory of generalized linear models and uses Poisson regression solved by generalized estimation equations. Spatial and temporal explanatory variables can be included simultaneously, and their relative...

  3. Meridional Flow Observations: Implications for the current Flux Transport Models

    International Nuclear Information System (INIS)

    Gonzalez Hernandez, Irene; Komm, Rudolf; Kholikov, Shukur; Howe, Rachel; Hill, Frank

    2011-01-01

    Meridional circulation has become a key element in the solar dynamo flux transport models. Available helioseismic observations from several instruments, Taiwan Oscillation Network (TON), Global Oscillation Network Group (GONG) and Michelson Doppler Imager (MDI), have made possible a continuous monitoring of the solar meridional flow in the subphotospheric layers for the last solar cycle, including the recent extended minimum. Here we review some of the meridional circulation observations using local helioseismology techniques and relate them to magnetic flux transport models.

  4. Joint model-based clustering of nonlinear longitudinal trajectories and associated time-to-event data analysis, linked by latent class membership: with application to AIDS clinical studies.

    Science.gov (United States)

    Huang, Yangxin; Lu, Xiaosun; Chen, Jiaqing; Liang, Juan; Zangmeister, Miriam

    2017-10-27

    Longitudinal and time-to-event data are often observed together. Finite mixture models are currently used to analyze nonlinear heterogeneous longitudinal data, which, by releasing the homogeneity restriction of nonlinear mixed-effects (NLME) models, can cluster individuals into one of the pre-specified classes with class membership probabilities. This clustering may have clinical significance, and be associated with clinically important time-to-event data. This article develops a joint modeling approach to a finite mixture of NLME models for longitudinal data and proportional hazard Cox model for time-to-event data, linked by individual latent class indicators, under a Bayesian framework. The proposed joint models and method are applied to a real AIDS clinical trial data set, followed by simulation studies to assess the performance of the proposed joint model and a naive two-step model, in which finite mixture model and Cox model are fitted separately.

  5. Runoff modeling of the Mara River using satellite observed soil ...

    African Journals Online (AJOL)

    The model is developed based on the relationships found between satellite observed soil moisture and rainfall and the measured runoff. It uses the satellite observed rainfall as the prime forcing, and the soil moisture to separate the fast surface runoff and slow base flow contributions. The soil moisture and rainfall products ...

  6. Observational Data-Driven Modeling and Optimization of Manufacturing Processes

    OpenAIRE

    Sadati, Najibesadat; Chinnam, Ratna Babu; Nezhad, Milad Zafar

    2017-01-01

    The dramatic increase of observational data across industries provides unparalleled opportunities for data-driven decision making and management, including the manufacturing industry. In the context of production, data-driven approaches can exploit observational data to model, control and improve the process performance. When supplied by observational data with adequate coverage to inform the true process performance dynamics, they can overcome the cost associated with intrusive controlled de...

  7. Time-symmetric universe model and its observational implication

    Energy Technology Data Exchange (ETDEWEB)

    Futamase, T.; Matsuda, T.

    1987-08-01

    A time-symmetric closed-universe model is discussed in terms of the radiation arrow of time. The time symmetry requires the occurrence of advanced waves in the recontracting phase of the Universe. We consider the observational consequences of such advanced waves, and it is shown that a test observer in the expanding phase can observe a time-reversed image of a source of radiation in the future recontracting phase.

  8. A time-symmetric Universe model and its observational implication

    International Nuclear Information System (INIS)

    Futamase, T.; Matsuda, T.

    1987-01-01

    A time-symmetric closed-universe model is discussed in terms of the radiation arrow of time. The time symmetry requires the occurrence of advanced waves in the recontracting phase of the Universe. The observational consequences of such advanced waves are considered, and it is shown that a test observer in the expanding phase can observe a time-reversed image of a source of radiation in the future recontracting phase

  9. Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study

    Science.gov (United States)

    Li, Jun; Fu, Siyao; He, Haibo; Jia, Hongfei; Li, Yanzhong; Guo, Yi

    2015-11-01

    Large-scale regional evacuation is an important part of national security emergency response plan. Large commercial shopping area, as the typical service system, its emergency evacuation is one of the hot research topics. A systematic methodology based on Cellular Automata with the Dynamic Floor Field and event driven model has been proposed, and the methodology has been examined within context of a case study involving the evacuation within a commercial shopping mall. Pedestrians walking is based on Cellular Automata and event driven model. In this paper, the event driven model is adopted to simulate the pedestrian movement patterns, the simulation process is divided into normal situation and emergency evacuation. The model is composed of four layers: environment layer, customer layer, clerk layer and trajectory layer. For the simulation of movement route of pedestrians, the model takes into account purchase intention of customers and density of pedestrians. Based on evacuation model of Cellular Automata with Dynamic Floor Field and event driven model, we can reflect behavior characteristics of customers and clerks at the situations of normal and emergency evacuation. The distribution of individual evacuation time as a function of initial positions and the dynamics of the evacuation process is studied. Our results indicate that the evacuation model using the combination of Cellular Automata with Dynamic Floor Field and event driven scheduling can be used to simulate the evacuation of pedestrian flows in indoor areas with complicated surroundings and to investigate the layout of shopping mall.

  10. Multiple Flux Rope Events at the High-Latitude Magnetopause: Cluster/Rapid Observation on January 26, 2001

    Science.gov (United States)

    Huang, Zong-Ying; Pu, Zu-Yin; Xiao, Chi-Jie; Xong, Qui-Gang; Fu, Sui-Yan; Xie, Lun; Shi, Quan-Qi; Cao, Jin-Bin; Liu, Zhen-Xing; Shen, Cao; Shi, Jian-Kui; Lu, Li; Wang, Nai-Quan; Chen, Tao; Fritz, T.; Glasmeier, K.-H.; Daly, P.; Reme, H.

    2004-04-01

    From 11:10 to 11:40UT on January 26, 2001 the four Cluster II spacecraft were located in the duskside high latitude regions of the magnetosheath and magnetosheath boundary layer (MSBL). During this time Interval the interplanetary magnetic field (IMF) had a negative Bz component. A detailed study on the multiple flux ropes (MFRs) observed in this period is conducted in this paper. It is found that: (1) The multiple flux ropes in the high latitude MSBL appeared quasi-periodically with a repeated time period of about 78s, which is much shorter than the averaged occurring period (about 8-11min) of the flux transfer events (FTEs) at the dayside magnetopause (MP). (2) All the flux ropes observed in this event had a strong core magnetic field. The axial orientation of the most flux ropes is found to lie in the direction of the minimum magnetic field variance; a few flux ropes had their axes lying in the direction of the middle magnetic field variance; while for the remainders their principle axes could not be determined by the method of Principal Axis Analysis (PAA). The reason that causes this complexity relys on the different trajectories of the spacecraft passing through the flux ropes. (3) Each flux rope had a good corresponding HT frame of reference in which it was in a quasi-steady state. All flux ropes moved along the surface of the MP in a similar direction indicating that these flux ropes all came from the dawnside low latitude. Their radial scale is 1-2RE, comparable to the normal diameter of FTEs observed atthe dayside MP. (4) The energetic ions originated from the magnetosphere flowed out to the magnetosheath on the whole, while the solar wind plasma flowed into the magnetosphere along the axis of the flux ropes. The flux ropes offered channels for the transport of the solar wind plasma into the magnetosphere and the escaping of the magnetospheric plasma into the interplanetary space. (5) Each event was accompanied by an enhanced reversal of the dusk

  11. Cosmological observables in the quasi-spherical Szekeres model

    Science.gov (United States)

    Buckley, Robert G.

    2014-10-01

    The standard model of cosmology presents a homogeneous universe, and we interpret cosmological data through this framework. However, structure growth creates nonlinear inhomogeneities that may affect observations, and even larger structures may be hidden by our limited vantage point and small number of independent observations. As we determine the universe's parameters with increasing precision, the accuracy is contingent on our understanding of the effects of such structures. For instance, giant void models can explain some observations without dark energy. Because perturbation theory cannot adequately describe nonlinear inhomogeneities, exact solutions to the equations of general relativity are important for these questions. The most general known solution capable of describing inhomogeneous matter distributions is the Szekeres class of models. In this work, we study the quasi-spherical subclass of these models, using numerical simulations to calculate the inhomogeneities' effects on observations. We calculate the large-angle CMB in giant void models and compare with simpler, symmetric void models that have previously been found inadequate to matchobservations. We extend this by considering models with early-time inhomogeneities as well. Then, we study distance observations, including selection effects, in models which are homogeneous on scales around 100 Mpc---consistent with standard cosmology---but inhomogeneous on smaller scales. Finally, we consider photon polarizations, and show that they are not directly affected by inhomogeneities. Overall, we find that while Szekeres models have some advantages over simpler models, they are still seriously limited in their ability to alter our parameter estimation while remaining within the bounds of current observations.

  12. Identification of storm surge events over the German Bight from atmospheric reanalysis and climate model data

    Science.gov (United States)

    Befort, D. J.; Fischer, M.; Leckebusch, G. C.; Ulbrich, U.; Ganske, A.; Rosenhagen, G.; Heinrich, H.

    2015-06-01

    A new procedure for the identification of storm surge situations for the German Bight is developed and applied to reanalysis and global climate model data. This method is based on the empirical approach for estimating storm surge heights using information about wind speed and wind direction. Here, we hypothesize that storm surge events are caused by high wind speeds from north-westerly direction in combination with a large-scale wind storm event affecting the North Sea region. The method is calibrated for ERA-40 data, using the data from the storm surge atlas for Cuxhaven. It is shown that using information of both wind speed and direction as well as large-scale wind storm events improves the identification of storm surge events. To estimate possible future changes of potential storm surge events, we apply the new identification approach to an ensemble of three transient climate change simulations performed with the ECHAM5/MPIOM model under A1B greenhouse gas scenario forcing. We find an increase in the total number of potential storm surge events of about 12 % [(2001-2100)-(1901-2000)], mainly based on changes of moderate events. Yearly numbers of storm surge relevant events show high interannual and decadal variability and only one of three simulations shows a statistical significant increase in the yearly number of potential storm surge events between 1900 and 2100. However, no changes in the maximum intensity and duration of all potential events is determined. Extreme value statistic analysis confirms no frequency change of the most severe events.

  13. The development of Haze Events observed by multi-satellite retrievals and Meteorological Analysis: A Case Study over Eastern China in December 2013

    Science.gov (United States)

    Zhang, Xiaoyu; Jiang, Binbin; Du, Yong; Yao, Lingling; Huang, Dasong

    2015-04-01

    With the rapid development of national economy and urbanization, the haze has been one of the environment disasters in eastern China. It is necessary that building a model of monitoring the haze for preventing and solving it in the future. In this study, NPP/AOT(550nm) >1and GOCI/AOT(555nm) >1 are adopted to dynamically monitor severe haze events in December 2013 over eastern China. Meanwhile, wind field data from CDAS-NCEP/DOE Reanalysis data and air temperature data from CDAS-NCEP/FNL are adopted to study the mechanism of the occurrence, migration and decay of the haze events. The haze event is composed of two consecutive cases. The first case occurred during 4-9 December is an exogenous haze for Yangtze River Delta, whereas the second case appeared during 11-15 December is an endogenous haze. This result shows:1) With the improved two-stream approximation model, GOCI is successful used to retrieve AOT with compared AERONET AOT, which demonstrates to be feasible in monitoring severe haze events. 2)Because of the large-scale observation capacity of NPP/AOT(550nm) product (×6km) and the high temporal resolution of GOCI/AOT(555nm), this study establishes a framework that detect the large-scale haze events using both data sets. 3)Weak wind speed of less than 5 m*s-1 is important for the development of the haze but the inversion is not a necessary condition for the haze. The strong cold air mass from the northern Siberia area and from East China Sea is the main force for the immigration, diffusion and decay of this haze event. 4)The air quality around Yangtze River Delta in winter is apt to suffer widely divergent influences including exogenous hazes carried by winter northwestward monsoon flows from northern Asia, and endogenous hazes induced by the rapid development of urbanization. The hit of multiple hazes over Yangtze River Delta lead to one of the most severe polluted regions of haze in China. Key words: NPP/AOT;GOCI/AOT; Haze;dynamic monitoring

  14. A Coincident Observation of Es Layer Scintillation Event with AFRL Pingtung SCINDA Station and FORMOSAT-3/COSMIC Satellites

    Science.gov (United States)

    Su, S. Y.; Nayak, C.; Tsai, L. C.; Liu, C. H.; Caton, R. G.; Groves, K. M.

    2017-12-01

    A coincident observation of daytime Es layer scintillation event was made by AFRL-NCU Pingtung SCINDA station and the FORMOSAT-3/COSMIC satellites on December 12, 2016. From 05 to 06 UT, three different FS-3/COSMIC satellites made 3 different soundings at L1 band that show the daytime Es layer characteristic U-shape scintillations at three IPP points. However, the SCINDA scintillation data obtained at 244 MHz does not indicate any U-shape variation. The SCINDA data yields the daytime westward drift of 50 m/s. A detailed Hilbert-Huang transform (HHT) analysis of these scintillation data at UHF and L1 band indicate that individual intrinsic mode function (IMF) does not contain the U-shape variation. Instead, certain IMF channel reveals the characteristics of ringing signals in the radiowave propagation characteristics in these two different frequency bands. The results can reveal the characteristics of daytime Es layer structure.

  15. An Exponential Tilt Mixture Model for Time-to-Event Data to Evaluate Treatment Effect Heterogeneity in Randomized Clinical Trials.

    Science.gov (United States)

    Wang, Chi; Tan, Zhiqiang; Louis, Thomas A

    2014-01-01

    Evaluating the effect of a treatment on a time-to-event outcome is the focus of many randomized clinical trials. It is often observed that the treatment effect is heterogeneous, where only a subgroup of the patients may respond to the treatment due to some unknown mechanism such as genetic polymorphism. In this paper, we propose a semiparametric exponential tilt mixture model to estimate the proportion of patients who respond to the treatment and to assess the treatment effect. Our model is a natural extension of parametric mixture models to a semiparametric setting with a time-to-event outcome. We propose a nonparametric maximum likelihood estimation approach for inference and establish related asymptotic properties. Our method is illustrated by a randomized clinical trial on biodegradable polymer-delivered chemotherapy for malignant gliomas patients.

  16. Estimating the Probability of Rare Events Occurring Using a Local Model Averaging.

    Science.gov (United States)

    Chen, Jin-Hua; Chen, Chun-Shu; Huang, Meng-Fan; Lin, Hung-Chih

    2016-10-01

    In statistical applications, logistic regression is a popular method for analyzing binary data accompanied by explanatory variables. But when one of the two outcomes is rare, the estimation of model parameters has been shown to be severely biased and hence estimating the probability of rare events occurring based on a logistic regression model would be inaccurate. In this article, we focus on estimating the probability of rare events occurring based on logistic regression models. Instead of selecting a best model, we propose a local model averaging procedure based on a data perturbation technique applied to different information criteria to obtain different probability estimates of rare events occurring. Then an approximately unbiased estimator of Kullback-Leibler loss is used to choose the best one among them. We design complete simulations to show the effectiveness of our approach. For illustration, a necrotizing enterocolitis (NEC) data set is analyzed. © 2016 Society for Risk Analysis.

  17. Modeling recent climate change induced extreme events in Bangladesh: A review

    Directory of Open Access Journals (Sweden)

    M. Rehan Dastagir

    2015-03-01

    Full Text Available Bangladesh is a resourceful and densely populated country that has been experiencing frequent disasters viz. cyclones, tidal surges, floods, salinity intrusions, droughts etc. which cause large damage to lives and properties every year. The frequency and intensity of the extreme events have increased significantly in recent decades due to climate change and global warming. This review paper synthesizes extreme climatic events in Bangladesh in the context of the climate modeling data. The modeling results of extreme events showed significant trends in Bangladesh due to climate change. The results of these climate models are significant to show the importance of climate modeling in Bangladesh and it will help to promote research on climate modeling in least developed countries like Bangladesh.

  18. Asymptotic behavior of observables in the asymmetric quantum Rabi model

    Science.gov (United States)

    Semple, J.; Kollar, M.

    2018-01-01

    The asymmetric quantum Rabi model with broken parity invariance shows spectral degeneracies in the integer case, that is when the asymmetry parameter equals an integer multiple of half the oscillator frequency, thus hinting at a hidden symmetry and accompanying integrability of the model. We study the expectation values of spin observables for each eigenstate and observe characteristic differences between the integer and noninteger cases for the asymptotics in the deep strong coupling regime, which can be understood from a perturbative expansion in the qubit splitting. We also construct a parent Hamiltonian whose exact eigenstates possess the same symmetries as the perturbative eigenstates of the asymmetric quantum Rabi model in the integer case.

  19. Tests of Financial Models in the Presence of Overlapping Observations.

    OpenAIRE

    Richardson, Matthew; Smith, Tom

    1991-01-01

    A general approach to testing serial dependence restrictions implied from financial models is developed. In particular, we discuss joint serial dependence restrictions imposed by random walk, market microstructure, and rational expectations models recently examined in the literature. This approach incorporates more information from the data by explicitly modeling dependencies induced by the use of overlapping observations. Because the estimation problem is sufficiently simple in this framewor...

  20. Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus

    Directory of Open Access Journals (Sweden)

    A. Nisantzi

    2014-11-01

    Full Text Available Four-year observations (2010–2014 with EARLINET polarization lidar and AERONET sun/sky photometer at Limassol (34.7° N, 33° E, Cyprus, were used to study the soil dust content in lofted fire smoke plumes advected from Turkey. This first systematic attempt to characterize less than 3-day-old smoke plumes in terms of particle linear depolarization ratio (PDR, measured with lidar, contributes to the more general effort to properly describe the life cycle of free-tropospheric smoke–dust mixtures from the emission event to phases of long-range transport (> 4 days after emission. We found significant PDR differences with values from 9 to 18% in lofted aerosol layers when Turkish fires contributed to the aerosol burden and of 3–13 % when Turkish fires were absent. High Ångström exponents of 1.4–2.2 during all these events with lofted smoke layers, occurring between 1 and 3 km height, suggest the absence of a pronounced particle coarse mode. When plotted vs. travel time (spatial distance between Limassol and last fire area, PDR decreased strongly from initial values around 16–18% (1 day travel to 4–8% after 4 days of travel caused by deposition processes. This behavior was found to be in close agreement with findings described in the literature. Computation of particle extinction coefficient and mass concentrations, derived from the lidar observations, separately for fine-mode dust, coarse-mode dust, and non-dust aerosol components show extinction-related dust fractions on the order of 10% (for PDR =4%, travel times > 4 days and 50% (PDR =15%, 1 day travel time and respective mass-related dust fractions of 25% (PDR =4% to 80% (PDR =15%. Biomass burning should therefore be considered as another source of free tropospheric soil dust.

  1. Methane emission through ebullition from an estuarine mudflat: 2. Field observations and modeling of occurrence probability

    Science.gov (United States)

    Chen, Xi; Schäfer, Karina V. R.; Slater, Lee

    2017-08-01

    Ebullition can transport methane (CH4) at a much faster rate than other pathways, albeit over limited time and area, in wetland soils and sediments. However, field observations present large uncertainties in ebullition occurrences and statistic models are needed to describe the function relationship between probability of ebullition occurrence and water level changes. A flow-through chamber was designed and installed in a mudflat of an estuarine temperate marsh. Episodic increases in CH4 concentration signaling ebullition events were observed during ebbing tides (15 events over 456 ebbing tides) and occasionally during flooding tides (4 events over 455 flooding tides). Ebullition occurrence functions were defined using logistic regression as the relative initial and end water levels, as well as tidal amplitudes were found to be the key functional variables related to ebullition events. Ebullition of methane was restricted by a surface frozen layer during winter; melting of this layer during spring thaw caused increases in CH4 concentration, with ebullition fluxes similar to those associated with large fluctuations in water level around spring tides. Our findings suggest that initial and end relative water levels, in addition to tidal amplitude, partly regulate ebullition events in tidal wetlands, modulated by the lunar cycle, storage of gas bubbles at different depths and seasonal changes in the surface frozen layer. Maximum tidal strength over a few days, rather than hourly water level, may be more closely associated with the possibility of ebullition occurrence as it represents a trade-off time scale in between hourly and lunar periods.

  2. Urinary symptoms following external beam radiotherapy of the prostate: Dose-symptom correlates with multiple-event and event-count models.

    Science.gov (United States)

    Yahya, Noorazrul; Ebert, Martin A; Bulsara, Max; House, Michael J; Kennedy, Angel; Joseph, David J; Denham, James W

    2015-11-01

    This study aimed to compare urinary dose-symptom correlates after external beam radiotherapy of the prostate using commonly utilised peak-symptom models to multiple-event and event-count models which account for repeated events. Urinary symptoms (dysuria, haematuria, incontinence and frequency) from 754 participants from TROG 03.04-RADAR trial were analysed. Relative (R1-R75 Gy) and absolute (A60-A75Gy) bladder dose-surface area receiving more than a threshold dose and equivalent uniform dose using exponent a (range: a ∈[1 … 100]) were derived. The dose-symptom correlates were analysed using; peak-symptom (logistic), multiple-event (generalised estimating equation) and event-count (negative binomial regression) models. Stronger dose-symptom correlates were found for incontinence and frequency using multiple-event and/or event-count models. For dysuria and haematuria, similar or better relationships were found using peak-symptom models. Dysuria, haematuria and high grade (⩾ 2) incontinence were associated to high dose (R61-R71 Gy). Frequency and low grade (⩾ 1) incontinence were associated to low and intermediate dose-surface parameters (R13-R41Gy). Frequency showed a parallel behaviour (a=1) while dysuria, haematuria and incontinence showed a more serial behaviour (a=4 to a ⩾ 100). Relative dose-surface showed stronger dose-symptom associations. For certain endpoints, the multiple-event and event-count models provide stronger correlates over peak-symptom models. Accounting for multiple events may be advantageous for a more complete understanding of urinary dose-symptom relationships. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Validated Competing Event Model for the Stage I-II Endometrial Cancer Population

    Energy Technology Data Exchange (ETDEWEB)

    Carmona, Ruben; Gulaya, Sachin; Murphy, James D. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Rose, Brent S. [Harvard Radiation Oncology Program, Harvard Medical School, Boston, Massachusetts (United States); Wu, John; Noticewala, Sonal [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); McHale, Michael T. [Department of Reproductive Medicine, Division of Gynecologic Oncology, University of California San Diego, La Jolla, California (United States); Yashar, Catheryn M. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Vaida, Florin [Department of Family and Preventive Medicine, Biostatistics and Bioinformatics, University of California San Diego Medical Center, San Diego, California (United States); Mell, Loren K., E-mail: lmell@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States)

    2014-07-15

    Purpose/Objectives(s): Early-stage endometrial cancer patients are at higher risk of noncancer mortality than of cancer mortality. Competing event models incorporating comorbidity could help identify women most likely to benefit from treatment intensification. Methods and Materials: 67,397 women with stage I-II endometrioid adenocarcinoma after total hysterectomy diagnosed from 1988 to 2009 were identified in Surveillance, Epidemiology, and End Results (SEER) and linked SEER-Medicare databases. Using demographic and clinical information, including comorbidity, we sought to develop and validate a risk score to predict the incidence of competing mortality. Results: In the validation cohort, increasing competing mortality risk score was associated with increased risk of noncancer mortality (subdistribution hazard ratio [SDHR], 1.92; 95% confidence interval [CI], 1.60-2.30) and decreased risk of endometrial cancer mortality (SDHR, 0.61; 95% CI, 0.55-0.78). Controlling for other variables, Charlson Comorbidity Index (CCI) = 1 (SDHR, 1.62; 95% CI, 1.45-1.82) and CCI >1 (SDHR, 3.31; 95% CI, 2.74-4.01) were associated with increased risk of noncancer mortality. The 10-year cumulative incidences of competing mortality within low-, medium-, and high-risk strata were 27.3% (95% CI, 25.2%-29.4%), 34.6% (95% CI, 32.5%-36.7%), and 50.3% (95% CI, 48.2%-52.6%), respectively. With increasing competing mortality risk score, we observed a significant decline in omega (ω), indicating a diminishing likelihood of benefit from treatment intensification. Conclusion: Comorbidity and other factors influence the risk of competing mortality among patients with early-stage endometrial cancer. Competing event models could improve our ability to identify patients likely to benefit from treatment intensification.

  4. Measurements and Modeling of Radiation Exposure Due to Solar Particle Events

    Science.gov (United States)

    Beck, P.; Conrad Wp6-Sgb Team

    Dose assessment procedures of cosmic radiation to aircraft crew are introduced in most of the European countries according the corresponding European directive and national regulations 96 29 Euratom However the radiation exposure due to solar particle events is still a matter of scientific research Several in-flight measurements were performed during solar storm conditions First models to estimate the exposure due to solar particle events were discussed previously Recently EURADOS European Radiation Dosimetry Group http www eurados org started to coordinate research activities in model improvements for dose assessment of solar particle events The coordinated research is a work package of the European research project CONRAD Coordinated Network for Radiation Dosimetry on complex mixed radiation fields at workplaces Major aim of sub group B of that work package is the validation of models for dose assessment of solar particle events using data from neutron ground level monitors in-flight measurement results obtained during a solar particle event and proton satellite data The paper describes the current status of obtainable solar storm measurements and gives an overview of the existing models for dose assessment of solar particle events in flight altitudes

  5. A time-varying subjective quality model for mobile streaming videos with stalling events

    Science.gov (United States)

    Ghadiyaram, Deepti; Pan, Janice; Bovik, Alan C.

    2015-09-01

    Over-the-top mobile video streaming is invariably influenced by volatile network conditions which cause playback interruptions (stalling events), thereby impairing users' quality of experience (QoE). Developing models that can accurately predict users' QoE could enable the more efficient design of quality-control protocols for video streaming networks that reduce network operational costs while still delivering high-quality video content to the customers. Existing objective models that predict QoE are based on global video features, such as the number of stall events and their lengths, and are trained and validated on a small pool of ad hoc video datasets, most of which are not publicly available. The model we propose in this work goes beyond previous models as it also accounts for the fundamental effect that a viewer's recent level of satisfaction or dissatisfaction has on their overall viewing experience. In other words, the proposed model accounts for and adapts to the recency, or hysteresis effect caused by a stall event in addition to accounting for the lengths, frequency of occurrence, and the positions of stall events - factors that interact in a complex way to affect a user's QoE. On the recently introduced LIVE-Avvasi Mobile Video Database, which consists of 180 distorted videos of varied content that are afflicted solely with over 25 unique realistic stalling events, we trained and validated our model to accurately predict the QoE, attaining standout QoE prediction performance.

  6. Observations that polar climate modelers use and want

    Science.gov (United States)

    Kay, J. E.; de Boer, G.; Hunke, E. C.; Bailey, D. A.; Schneider, D. P.

    2012-12-01

    Observations are essential for motivating and establishing improvement in the representation of polar processes within climate models. We believe that explicitly documenting the current methods used to develop and evaluate climate models with observations will help inform and improve collaborations between the observational and climate modeling communities. As such, we will present the current strategy of the Polar Climate Working Group (PCWG) to evaluate polar processes within Community Earth System Model (CESM) using observations. Our presentation will focus primarily on PCWG evaluation of atmospheric, sea ice, and surface oceanic processes. In the future, we hope to expand to include land surface, deep ocean, and biogeochemical observations. We hope our presentation, and a related working document developed by the PCWG (https://docs.google.com/document/d/1zt0xParsFeMYhlihfxVJhS3D5nEcKb8A41JH0G1Ic-E/edit) inspires new and useful interactions that lead to improved climate model representation of polar processes relevant to polar climate.

  7. Confronting Lemaitre–Tolman–Bondi models with observational cosmology

    International Nuclear Information System (INIS)

    Garcia-Bellido, Juan; Haugbølle, Troels

    2008-01-01

    The possibility that we live in a special place in the universe, close to the centre of a large void, seems an appealing alternative to the prevailing interpretation of the acceleration of the universe in terms of a ΛCDM model with a dominant dark energy component. In this paper we confront the asymptotically flat Lemaitre–Tolman–Bondi (LTB) models with a series of observations, from type Ia supernovae to cosmic microwave background and baryon acoustic oscillations data. We propose two concrete LTB models describing a local void in which the only arbitrary functions are the radial dependence of the matter density Ω M and the Hubble expansion rate H. We find that all observations can be accommodated within 1 sigma, for our models with four or five independent parameters. The best fit models have a χ 2 very close to that of the ΛCDM model. A general Fortran program for comparing LTB models with cosmological observations, that has been used to make the parameter scan in this paper, has been made public, and can be downloaded at http://www.phys.au.dk/~haugboel/software.shtml together with IDL routines for creating the likelihood plots. We perform a simple Bayesian analysis and show that one cannot exclude the hypothesis that we live within a large local void of an otherwise Einstein–de Sitter model

  8. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter.

    Science.gov (United States)

    Chen, Bing; Stein, Ariel F; Castell, Nuria; Gonzalez-Castanedo, Yolanda; Sanchez de la Campa, A M; de la Rosa, J D

    2016-01-01

    Metal smelting and processing are highly polluting activities that have a strong influence on the levels of heavy metals in air, soil, and crops. We employ an atmospheric transport and dispersion model to predict the pollution levels originated from the second largest Cu-smelter in Europe. The model predicts that the concentrations of copper (Cu), zinc (Zn), and arsenic (As) in an urban area close to the Cu-smelter can reach 170, 70, and 30 ng m−3, respectively. The model captures all the observed urban pollution events, but the magnitude of the elemental concentrations is predicted to be lower than that of the observed values; ~300, ~500, and ~100 ng m−3 for Cu, Zn, and As, respectively. The comparison between model and observations showed an average correlation coefficient of 0.62 ± 0.13. The simulation shows that the transport of heavy metals reaches a peak in the afternoon over the urban area. The under-prediction in the peak is explained by the simulated stronger winds compared with monitoring data. The stronger simulated winds enhance the transport and dispersion of heavy metals to the regional area, diminishing the impact of pollution events in the urban area. This model, driven by high resolution meteorology (2 km in horizontal), predicts the hourly-interval evolutions of atmospheric heavy metal pollutions in the close by urban area of industrial hotspot.

  9. MMS observations of magnetic reconnection signatures of dissipating ion inertial-scale flux ropes associated with dipolarization events

    Science.gov (United States)

    Poh, G.; Slavin, J. A.; Lu, S.; Le, G.; Cassak, P.; Eastwood, J. P.; Ozturk, D. S.; Zou, S.; Nakamura, R.; Baumjohann, W.; Russell, C. T.; Gershman, D. J.; Giles, B. L.; Pollock, C.; Moore, T. E.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    The formation of flux ropes is thought to be an integral part of the process that may have important consequences for the onset and subsequent rate of reconnection in the tail. Earthward flows, i.e. bursty bulk flows (BBFs), generate dipolarization fronts (DFs) as they interact with the closed magnetic flux in their path. Global hybrid simulations and THEMIS observations have shown that earthward-moving flux ropes can undergo magnetic reconnection with the near-Earth dipole field in the downtail region between the Near Earth Neutral Line and the near-Earth dipole field to create DFs-like signatures. In this study, we analyzed sequential "chains" of earthward-moving, ion-scal