WorldWideScience

Sample records for models nrf2 regulates

  1. WDR23 regulates NRF2 independently of KEAP1.

    Directory of Open Access Journals (Sweden)

    Jacqueline Y Lo

    2017-04-01

    Full Text Available Cellular adaptation to stress is essential to ensure organismal survival. NRF2/NFE2L2 is a key determinant of xenobiotic stress responses, and loss of negative regulation by the KEAP1-CUL3 proteasome system is implicated in several chemo- and radiation-resistant cancers. Advantageously using C. elegans alongside human cell culture models, we establish a new WDR23-DDB1-CUL4 regulatory axis for NRF2 activity that operates independently of the canonical KEAP1-CUL3 system. WDR23 binds the DIDLID sequence within the Neh2 domain of NRF2 to regulate its stability; this regulation is not dependent on the KEAP1-binding DLG or ETGE motifs. The C-terminal domain of WDR23 is highly conserved and involved in regulation of NRF2 by the DDB1-CUL4 complex. The addition of WDR23 increases cellular sensitivity to cytotoxic chemotherapeutic drugs and suppresses NRF2 in KEAP1-negative cancer cell lines. Together, our results identify WDR23 as an alternative regulator of NRF2 proteostasis and uncover a cellular pathway that regulates NRF2 activity and capacity for cytoprotection independently of KEAP1.

  2. Nrf2-Mediated Regulation of Skeletal Muscle Glycogen Metabolism

    Science.gov (United States)

    Yagishita, Yoko; Katsuoka, Fumiki; Kitajima, Yasuo; Nunomiya, Aki; Nagatomi, Ryoichi; Pi, Jingbo; Biswal, Shyam S.

    2016-01-01

    Nrf2 (NF-E2-related factor 2) contributes to the maintenance of glucose homeostasis in vivo. Nrf2 suppresses blood glucose levels by protecting pancreatic β cells from oxidative stress and improving peripheral tissue glucose utilization. To elucidate the molecular mechanisms by which Nrf2 contributes to the maintenance of glucose homeostasis, we generated skeletal muscle (SkM)-specific Keap1 knockout (Keap1MuKO) mice that express abundant Nrf2 in their SkM and then examined Nrf2 target gene expression in that tissue. In Keap1MuKO mice, blood glucose levels were significantly downregulated and the levels of the glycogen branching enzyme (Gbe1) and muscle-type PhKα subunit (Phka1) mRNAs, along with those of the glycogen branching enzyme (GBE) and the phosphorylase b kinase α subunit (PhKα) protein, were significantly upregulated in mouse SkM. Consistent with this result, chemical Nrf2 inducers promoted Gbe1 and Phka1 mRNA expression in both mouse SkM and C2C12 myotubes. Chromatin immunoprecipitation analysis demonstrated that Nrf2 binds the Gbe1 and Phka1 upstream promoter regions. In Keap1MuKO mice, muscle glycogen content was strongly reduced and forced GBE expression in C2C12 myotubes promoted glucose uptake. Therefore, our results demonstrate that Nrf2 induction in SkM increases GBE and PhKα expression and reduces muscle glycogen content, resulting in improved glucose tolerance. Our results also indicate that Nrf2 differentially regulates glycogen metabolism in SkM and the liver. PMID:27044864

  3. Redox-sensitive transcription factor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia.

    Science.gov (United States)

    Ashino, Takashi; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi

    2013-04-01

    Reactive oxygen species are important mediators for platelet-derived growth factor (PDGF) signaling in vascular smooth muscle cells, whereas excess reactive oxygen species-induced oxidative stress contributes to the development and progression of vascular diseases, such as atherosclerosis. Activation of the redox-sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), is pivotal in cellular defense against oxidative stress by transcriptional upregulation of antioxidant proteins. This study aimed to elucidate the role of Nrf2 in PDGF-mediated vascular smooth muscle cell migration and neointimal hyperplasia. PDGF promoted nuclear translocation of Nrf2, followed by the induction of target genes, including NAD(P)H:quinone oxidoreductase-1, heme oxygenase-1, and thioredoxin-1. Nrf2 depletion by small interfering RNA enhanced PDGF-promoted Rac1 activation and reactive oxygen species production and persistently phosphorylated downstream extracellular signal-regulated kinase-1/2. Nrf2 depletion enhanced vascular smooth muscle cell migration in response to PDGF and wound scratch. In vivo, Nrf2-deficient mice showed enhanced neointimal hyperplasia in a wire injury model. These findings suggest that the Nrf2 system is important for PDGF-stimulated vascular smooth muscle cell migration by regulating reactive oxygen species elimination, which may contribute to neointimal hyperplasia after vascular injury. Our findings provide insight into the Nrf2 system as a novel therapeutic target for vascular remodeling and atherosclerosis.

  4. Calycosin regulates glucocorticoid-induced apoptosis via Nrf2/ARE ...

    African Journals Online (AJOL)

    Calycosin regulates glucocorticoid-induced apoptosis via Nrf2/ARE signaling in MC3T3-E1 cells. ... If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your ...

  5. Nrf2 protects the lung against inflammation induced by titanium dioxide nanoparticles: A positive regulator role of Nrf2 on cytokine release.

    Science.gov (United States)

    Delgado-Buenrostro, Norma L; Medina-Reyes, Estefany I; Lastres-Becker, Isabel; Freyre-Fonseca, Verónica; Ji, Zhaoxia; Hernández-Pando, Rogelio; Marquina, Brenda; Pedraza-Chaverri, José; Espada, Sandra; Cuadrado, Antonio; Chirino, Yolanda I

    2015-07-01

    Titanium dioxide nanoparticles (TiO2 NPs) have been classified as possibly carcinogenic to humans and they are an important nanomaterial widely used in pharmaceutical and paint industries. Inhalation is one of the most important routes of exposure in occupational settings. Several experimental models have shown that oxidative stress and inflammation are key mediators of cell damage. In this regard, Nrf2 modulates cytoprotection against oxidative stress and inflammation, however, its role in inflammation induced by TiO2 NPs exposure has been less investigated. The aim of this work was to investigate the role of Nrf2 in the cytokines produced after 4 weeks of TiO2 NPs exposure (5 mg/kg/2 days/week) using wild-type and Nrf2 knockout C57bl6 mice. Results showed that Nrf2 protects against inflammation and oxidative damage induced by TiO2 NPs exposure, however, Nrf2 is a positive mediator in the expression of IFN-γ, TNF-α, and TGF-β in bronchial epithelium and alveolar space after 4 weeks of exposure. These results suggest that Nrf2 has a central role in up-regulation of cytokines released during inflammation induced by TiO2 NPs and those cytokines are needed to cope with histological alterations in lung tissue. © 2014 Wiley Periodicals, Inc.

  6. Nrf2 regulates cellular behaviors and Notch signaling in oral squamous cell carcinoma cells.

    Science.gov (United States)

    Fan, Hong; Paiboonrungruan, Chorlada; Zhang, Xinyan; Prigge, Justin R; Schmidt, Edward E; Sun, Zheng; Chen, Xiaoxin

    2017-11-04

    Oxidative stress is known to play a pivotal role in the development of oral squamous cell carcinoma (OSCC). We have demonstrated that activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway has chemopreventive effects against oxidative stress-associated OSCC. However, Nrf2 have dual roles in cancer development; while it prevents carcinogenesis of normal cells, hyperactive Nrf2 also promotes the survival of cancer cells. This study is aimed to understand the function of Nrf2 in regulating cellular behaviors of OSCC cells, and the potential mechanisms through which Nrf2 facilitates OSCC. We established the Nrf2-overexpressing and Nrf2-knockdown OSCC cell lines, and examined the function of Nrf2 in regulating cell proliferation, migration, invasion, cell cycle and colony formation. Our data showed that Nrf2 overexpression promoted cancer phenotypes in OSCC cells, whereas Nrf2 silencing inhibited these phenotypes. In addition, Nrf2 positively regulated Notch signaling pathway in OSCC cells in vitro. Consistent with this observation, Nrf2 activation in Keap1 -/- mice resulted in not only hyperproliferation of squamous epithelial cells in mouse tongue as evidenced by increased expression of PCNA, but also activation of Notch signaling in these cells as evidenced by increased expression of NICD1 and Hes1. In conclusion, Nrf2 regulates cancer behaviors and Notch signaling in OSCC cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Inorganic Arsenic Induces NRF2-Regulated Antioxidant Defenses in Both Cerebral Cortex and Hippocampus in Vivo.

    Science.gov (United States)

    Zhang, Yang; Duan, Xiaoxu; Li, Jinlong; Zhao, Shuo; Li, Wei; Zhao, Lu; Li, Wei; Nie, Huifang; Sun, Guifang; Li, Bing

    2016-08-01

    Inorganic arsenic is reported to induce the reactive oxygen species-mediated oxidative stress, which is supposed to be one of the main mechanisms of arsenic-related neurological diseases. Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of antioxidant defense systems, up-regulates the expression of target genes to fight against oxidative damages caused by harmful substances, including metals. In the present study, mice were used as a model to investigate the oxidative stress levels and the expressions of NRF2-regulated antioxidant substances in both cerebral cortex and hippocampus with 5, 10 and 20 mg/kg NaAsO2 exposure intra-gastrically. Our results showed that acute NaAsO2 treatment resulted in decreased total anti-oxidative capacity (T-AOC) and increased maleic dialdehyde production in the nervous system. We also detected rapidly elevation of NRF2 protein levels by enhancement of Nrf2 transcription, especially at 20 mg/kg NaAsO2 exposure group. In the meantime, mRNA and protein levels of Nrf2 encoding antioxidant enzymes heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase 1 (NQO1) and glutathione S-transferase (GST) were consistently elevated time- and dose-dependently both in the cerebral cortex and hippocampus. Taken together, the presence study demonstrated the activation of NRF2 pathway, an early antioxidant defensive response, in both cerebral cortex and hippocampus upon inorganic arsenic (iAs) exposure in vivo. A better knowledge on the roles of NRF2 pathway in maintaining cellular redox homeostasis would be helpful for the strategies on improvement of neurotoxicity related to this metalloid.

  8. Effects of Nrf2 Deficiency on Bone Microarchitecture in an Experimental Model of Osteoporosis

    Directory of Open Access Journals (Sweden)

    Lidia Ibáñez

    2014-01-01

    Full Text Available Objective. Redox imbalance contributes to bone fragility. We have evaluated the in vivo role of nuclear factor erythroid derived 2-related factor-2 (Nrf2, an important regulator of cellular responses to oxidative stress, in bone metabolism using a model of postmenopausal osteoporosis. Methods. Ovariectomy was performed in both wild-type and mice deficient in Nrf2 (Nrf2−/−. Bone microarchitecture was analyzed by μCT. Serum markers of bone metabolism were also measured. Reactive oxygen species production was determined using dihydrorhodamine 123. Results. Sham-operated or ovariectomized Nrf2−/− mice exhibit a loss in trabecular bone mineral density in femur, accompanied by a reduction in cortical area in vertebrae. Nrf2 deficiency tended to increase osteoblastic markers and significantly enhanced osteoclastic markers in sham-operated animals indicating an increased bone turnover with a main effect on bone resorption. We have also shown an increased production of oxidative stress in bone marrow-derived cells from sham-operated or ovariectomized Nrf2−/− mice and a higher responsiveness of bone marrow-derived cells to osteoclastogenic stimuli in vitro. Conclusion. We have demonstrated in vivo a key role of Nrf2 in the maintenance of bone microarchitecture.

  9. Src subfamily kinases regulate nuclear export and degradation of transcription factor Nrf2 to switch off Nrf2-mediated antioxidant activation of cytoprotective gene expression.

    Science.gov (United States)

    Niture, Suryakant K; Jain, Abhinav K; Shelton, Phillip M; Jaiswal, Anil K

    2011-08-19

    Nrf2 (NF-E2-related factor 2) is a nuclear transcription factor that in response to chemical and radiation stress regulates coordinated induction of a battery of cytoprotective gene expressions leading to cellular protection. In this study, we investigated the role of Src kinases in the regulation of Nrf2 and downstream signaling. siRNA-mediated inhibition of Fyn, Src, Yes, and Fgr, but not Lyn, in mouse hepatoma Hepa-1 cells, led to nuclear accumulation of Nrf2 and up-regulation of Nrf2 downstream gene expression. Mouse embryonic fibroblasts with combined deficiency of Fyn/Src/Yes/Fgr supported results from siRNA. In addition, steady-state overexpression of Fyn, Src, and Yes phosphorylated Nrf2Tyr568 that triggered nuclear export and degradation of Nrf2 and down-regulation of Nrf2 downstream gene expression. Exposure of cells to antioxidant, oxidant, or UV radiation increased nuclear import of Fyn, Src, and Yes kinases, which phosphorylated Nrf2Tyr568 resulting in nuclear export and degradation of Nrf2. Further analysis revealed that stress-activated GSK3β acted upstream to the Src kinases and phosphorylated the Src kinases, leading to their nuclear localization and Nrf2 phosphorylation. The overexpression of Src kinases in Hepa-1 cells led to decreased Nrf2, increased apoptosis, and decreased cell survival. Mouse embryonic fibroblasts deficient in Src kinases showed nuclear accumulation of Nrf2, induction of Nrf2 and downstream gene expression, reduced apoptosis, and increased cell survival. The studies together demonstrate that Src kinases play a critical role in nuclear export and degradation of Nrf2, thereby providing a negative feedback mechanism to switch off Nrf2 activation and restore normal cellular homeostasis.

  10. Nrf2 transcription factor gene regulates basal transcription of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... The dietary additives caused a small induction of SOD2 in the Nrf2(-/-) mouse brain, ethoxyquin and kahwoel palmitate each ... to investigate this possi- bility, cytosols from the brains of Nrf2(-/-) and Nrf2(+/+) mice ... (1970) using a Bio-Rad mini-protean vertical electrophoresis kit. Typically, 20 µg proteins ...

  11. Inhibition of microRNA-153 protects neurons against ischemia/reperfusion injury in an oxygen-glucose deprivation and reoxygenation cellular model by regulating Nrf2/HO-1 signaling.

    Science.gov (United States)

    Ji, Qiong; Gao, Jianbo; Zheng, Yan; Liu, Xueli; Zhou, Qiangqiang; Shi, Canxia; Yao, Meng; Chen, Xia

    2017-07-01

    MicroRNAs are emerging as critical regulators in cerebral ischemia/reperfusion injury; however, their exact roles remain poorly understood. miR-153 is reported to be a neuron-related miRNA involved in neuroprotection. In this study, we aimed to investigate the precise role of miR-153 in regulating neuron survival during cerebral ischemia/reperfusion injury using an oxygen-glucose deprivation and reoxygenation (OGD/R) cellular model. We found that miR-153 was significantly upregulated in neurons subjected to OGD/R treatment. Inhibition of miR-153 significantly attenuated OGD/R-induced injury and oxidative stress in neurons. Nuclear factor erythroid 2-related factor 2 (Nrf2) was identified as a target gene of miR-153. Inhibition of miR-153 significantly promoted the expression of Nrf2 and heme oxygenase-1 (HO-1). However, silencing of Nrf2 significantly blocked the protective effects of miR-153 inhibition. Our study indicates that the inhibition of miR-153 protects neurons against OGD/R-induced injury by regulating Nrf2/HO-1 signaling and suggests a potential therapeutic target for cerebral ischemia/reperfusion injury. © 2017 Wiley Periodicals, Inc.

  12. Hydrogen peroxide prevents vascular calcification induced ROS production by regulating Nrf-2 pathway.

    Science.gov (United States)

    Zhang, Wensong; Li, Yi; Ding, Hanlu; Du, Yaqin; Wang, Li

    2016-08-01

    Although vascular calcification in end-stage renal disease (ESRD) represents a ubiquitous human health problem, effective therapies with limited side effects are still lacking, and the precise mechanisms are not fully understood. The Nrf-2/ARE pathway is a pivotal to regulate anti-oxidative responses in vascular calcification upon ESRD. Although Nrf-2 plays a crucial role in atherosclerosis, pulmonary fibrosis, and brain ischemia, the effect of Nrf-2 and oxidative stress on vascular calcification in ESRD patients is still unclear. The aim of this research was to study the protective role of hydrogen peroxide in vascular calcification and the mechanism of Nrf-2 and oxidative stress on vascular calcification. Here we used the rat vascular smooth muscle cell model of β-glycerophosphate-induced calcification resembling vascular calcification in ESRD to investigate the therapeutic effect of 0.01 mM hydrogen peroxide on vascular calcification and further explores the possible underlying mechanisms. Our current report shows the in vitro role of 0.01 mM hydrogen peroxide in protecting against intracellular ROS accumulation upon vascular calcification. Both hydrogen peroxide and sulforaphane pretreatment reduced ROS production, increased the expression of Nrf-2, and decreased the expression of Runx2 following calcification. Our study demonstrates that 0.01 mM hydrogen peroxide can effectively protect rat aortic vascular smooth muscle cells against oxidative stress by preventing vascular calcification induced ROS production through Nrf-2 pathway. These data might define an antioxidant role of hydrogen peroxide in vascular calcification upon ESRD.

  13. Nrf2 Signaling and the Slowed Aging Phenotype: Evidence from Long-Lived Models

    Directory of Open Access Journals (Sweden)

    Danielle R. Bruns

    2015-01-01

    Full Text Available Studying long-lived animals provides novel insight into shared characteristics of aging and represents a unique model to elucidate approaches to prevent chronic disease. Oxidant stress underlies many chronic diseases and resistance to stress is a potential mechanism governing slowed aging. The transcription factor nuclear factor (erythroid-derived 2-like 2 is the “master regulator” of cellular antioxidant defenses. Nrf2 is upregulated by some longevity promoting interventions and may play a role in regulating species longevity. However, Nrf2 expression and activity in long-lived models have not been well described. Here, we review evidence for altered Nrf2 signaling in a variety of slowed aging models that accomplish lifespan extension via pharmacological, nutritional, evolutionary, genetic, and presumably epigenetic means.

  14. Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Lili Ji

    Full Text Available Although multidrug-resistance-associated protein-1 (MRP1 is a major contributor to multi-drug resistance (MDR, the regulatory mechanism of Mrp1 still remains unclear. Nrf2 is a transcription factor that regulates cellular defense response through antioxidant response elements (AREs in normal tissues. Recently, Nrf2 has emerged as an important contributor to chemo-resistance in tumor tissues. In the present study, the role of Nrf2-ARE pathway on regulation of Mrp1 was investigated. Compared with H69 lung cancer cells, H69AR cells with MDR showed significantly higher Nrf2-ARE pathway activity and expression of Mrp1 as well. When Nrf2 was knocked down in H69AR cells, MRP1's expression decreased accordingly. Moreover, those H69AR cells with reduced Nrf2 level restored sensitivity to chemo-drugs. To explore how Nrf2-ARE pathway regulates Mrp1, the promoter of Mrp1 gene was searched, and two putative AREs--ARE1 and ARE2--were found. Using reporter gene and ChIP assay, both ARE1 and ARE2 showed response to and interaction with Nrf2. In 40 cases of cancer tissues, the expression of Nrf2 and MRP1 was measured by immunohistochemistry (IHC. As the quantitive data of IHC indicated, both Nrf2 and MRP1 showed significantly higher expression in tumor tissue than adjacent non-tumor tissue. And more important, the correlation analysis of the two genes proved that their expression was correlative. Taken together, theses data suggested that Nrf2-ARE pathway is required for the regulatory expression of Mrp1 and implicated Nrf2 as a new therapeutic target for MDR.

  15. Transcription factor Nrf2 maintains the basal expression of Mdm2: An implication of the regulation of p53 signaling by Nrf2.

    Science.gov (United States)

    You, Aram; Nam, Chang-Won; Wakabayashi, Nobunao; Yamamoto, Masayuki; Kensler, Thomas W; Kwak, Mi-Kyoung

    2011-03-15

    Co-operated regulation of oxidative stress-response transcription factors would be an important issue for animals to determine the cell fate under environmental stress. This notion raises a possibility that NF-E2-related factor 2 (Nrf2), which confers cytoprotection against oxidative stress, and p53 can have a direct co-regulation network. In the current study, we have indentified that the expression of murine double minute 2 (Mdm2) is repressed in nrf2-deleted murine embryonic fibroblasts (MEFs). This was confirmed by microarray, RT-PCR, and immunoblot analyses, and further promoter analysis showed that Nrf2 is directly involved in the basal expression of Mdm2 through the antioxidant response element, which is located in the first intron of this gene. This linkage between Nrf2 and Mdm2 appears to cause the accumulation of p53 protein in nrf2-deficent MEFs. In addition, we show that ovarian carcinoma A2780 cells with Nrf2 shRNA expression displayed higher levels of p53 activation in response to hydrogen peroxide treatment, leading to increased cell death. Collectively, our results suggest novel evidence that the inhibition of Nrf2 can suppress Mdm2 expression, which may result in p53 signaling modulation. In addition, this observation supports the concept that Nrf2 inhibition in cancer cells can facilitate apoptotic response upon environmental stress. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Calycosin regulates glucocorticoid-induced apoptosis via Nrf2/ARE ...

    African Journals Online (AJOL)

    treatment decreased expression levels of caspase-3/-8/-9 and PARP. In addition, DEX treatment significantly suppressed the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) as well as its downstream targets, viz, heme oxygenase-1 and quinone oxidoreductase-1. Interestingly, CA treatment reversed this ...

  17. The Dual Role of Nrf2 in Nonalcoholic Fatty Liver Disease: Regulation of Antioxidant Defenses and Hepatic Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Sílvia S. Chambel

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a progressive liver disease with ever-growing incidence in the industrialized world. It starts with the simple accumulation of lipids in the hepatocyte and can progress to the more severe nonalcoholic steatohepatitis (NASH, which is associated with inflammation, fibrosis, and cirrhosis. There is increasing awareness that reactive oxygen species and electrophiles are implicated in the pathogenesis of NASH. Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2 is a positive regulator of the expression of a battery of genes involved in the protection against oxidative/electrophilic stress. In rodents, Nrf2 is also known to participate in hepatic fatty acid metabolism, as a negative regulator of genes that promote hepatosteatosis. We review relevant evidence in the literature that these two mechanisms may contribute to the protective role of Nrf2 in the development of hepatic steatosis and in the progression to steatohepatitis, particularly in young animals. We propose that age may be a key to explain contradictory findings in the literature. In summary, Nrf2 mediates the crosstalk between lipid metabolism and antioxidant defense mechanisms in experimental models of NAFLD, and the nutritional or pharmacological induction of Nrf2 represents a promising potential new strategy for its prevention and treatment.

  18. Selenium antagonizes cadmium-induced apoptosis in chicken spleen but not involving Nrf2-regulated antioxidant response.

    Science.gov (United States)

    Chen, Menghao; Li, Xiaojing; Fan, Ruifeng; Cao, Changyu; Yao, Haidong; Xu, Shiwen

    2017-11-01

    The nuclear transcription factor NF-E2-related factor 2 (Nrf2) binds to antioxidant response elements (AREs) and is involved in the regulation of genes participated in defending cells against oxidative damage, which have been confirmed in animal models. Selenium (Se), known as an important element in the regulation of antioxidant activity, can antagonize Cadmium (Cd) toxicity in birds. However, the role of Nrf2 in selenium-cadmium interaction has not been reported in birds. To further explore the mechanism of selenium attenuating spleen toxicity induced by cadmium in chickens, cadmium chloride (CdCl 2 , 150mg/kg) and sodium selenite (Na 2 SeO 3 , 2mg/kg) were co-administrated or individually administered in the diet of chickens for 90 days. The results showed that Cd exposure increased the level of hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) and decreased the antioxidant enzyme activities, including superoxide dismutase (SOD), glutathione peroxidase (Gpx), total antioxidative capacity (T-AOC), catalase (CAT). Cd exposure increased obviously nuclear accumulation of Nrf2, and the expression of Nrf2 downstream heme oxygenase-1 (HO-1) and NAD(P)H: quinine oxidoreductase 1 (NQO1), reduced the expression of Kelch-like ECH-associated protein (keap1), Gpx-1 and thioredoxin reductase-1 (TrxR1). In addition, Cd induced the increase of bak, caspase9, p53, Cyt c mRNA levels, increased bax/bcl-2 ratio, increased caspase3 mRNA and protein levels. Selenium treatment reduced the accumulation of Cd in the spleen, attenuates Cd-induced Nrf2 nuclear accumulation, enhanced antioxidant enzyme activities, ameliorated Cd-induced oxidative stress and apoptosis in the spleen. In summary, our results demonstrate that Se ameliorated spleen toxicity induced by cadmium by modulating the antioxidant system, independently of Nrf2-regulated antioxidant response pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. NRF2/Long Noncoding RNA ROR Signaling Regulates Mammary Stem Cell Expansion and Protects against Estrogen Genotoxicity*

    Science.gov (United States)

    Zhang, Yongshu; Xia, Jixiang; Li, Qinglin; Yao, Yuan; Eades, Gabriel; Gernapudi, Ramkishore; Duru, Nadire; Kensler, Thomas W.; Zhou, Qun

    2014-01-01

    Long noncoding RNAs (lncRNAs) have emerged as key regulators of gene expression in embryonic stem cell (ESC) self-renewal and differentiation. In ESCs, lncRNAs are regulated at the genetic level via transcription factor binding to lncRNA gene promoters. Here we demonstrate that the key cytoprotective transcription factor NRF2 controls lncRNA expression in mammary stem cells. By profiling lncRNAs in wild-type and NRF2 knockdown mammary stem cells, we demonstrate that the lncRNA ROR, a regulator of embryonic stem cell pluripotency, is overexpressed upon NRF2 knockdown. We performed promoter analyses and examined predicted NRF2 binding elements in the ROR promoter using luciferase reporter constructs of a ROR promoter deletion series. Our studies revealed that NRF2 binds to two specific NRF2 response elements flanking the ROR promoter and that these two NRF2 response elements are equally important to suppress ROR transcription. In addition, we identified associated H3K27me3 chromatin modification and EZH2 binding at the ROR promoter that was dependent on NRF2 binding. We observed that NRF2 knockdown or ROR overexpression leads to increased stem cell self-renewal in mammary stem cells. Furthermore, we demonstrate Nrf2 regulation of the mammary stem cell population in vivo. These observations provide further evidence for the critical role of NRF2 in maintaining normal stem cell subpopulations in mammary epithelium. PMID:25231996

  20. NRF2/long noncoding RNA ROR signaling regulates mammary stem cell expansion and protects against estrogen genotoxicity.

    Science.gov (United States)

    Zhang, Yongshu; Xia, Jixiang; Li, Qinglin; Yao, Yuan; Eades, Gabriel; Gernapudi, Ramkishore; Duru, Nadire; Kensler, Thomas W; Zhou, Qun

    2014-11-07

    Long noncoding RNAs (lncRNAs) have emerged as key regulators of gene expression in embryonic stem cell (ESC) self-renewal and differentiation. In ESCs, lncRNAs are regulated at the genetic level via transcription factor binding to lncRNA gene promoters. Here we demonstrate that the key cytoprotective transcription factor NRF2 controls lncRNA expression in mammary stem cells. By profiling lncRNAs in wild-type and NRF2 knockdown mammary stem cells, we demonstrate that the lncRNA ROR, a regulator of embryonic stem cell pluripotency, is overexpressed upon NRF2 knockdown. We performed promoter analyses and examined predicted NRF2 binding elements in the ROR promoter using luciferase reporter constructs of a ROR promoter deletion series. Our studies revealed that NRF2 binds to two specific NRF2 response elements flanking the ROR promoter and that these two NRF2 response elements are equally important to suppress ROR transcription. In addition, we identified associated H3K27me3 chromatin modification and EZH2 binding at the ROR promoter that was dependent on NRF2 binding. We observed that NRF2 knockdown or ROR overexpression leads to increased stem cell self-renewal in mammary stem cells. Furthermore, we demonstrate Nrf2 regulation of the mammary stem cell population in vivo. These observations provide further evidence for the critical role of NRF2 in maintaining normal stem cell subpopulations in mammary epithelium. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals.

    Science.gov (United States)

    Qin, Si; Hou, De-Xing

    2016-08-01

    Keap1/Nrf2 system plays a critical role on cellular protection by regulating many antioxidant and detoxification enzyme genes through the antioxidant response element (ARE). Thus, it must work constantly to prevent the accumulation of reactive oxygen species (ROS) because excess ROS are associated with many diseases such as cancer, cardiovascular complications, inflammation, and neurodegeneration. Dietary phytochemicals widely distributing in fruits and vegetables have been considered to possess cancer chemopreventive potential through the induction of Keap1/Nrf2 system-mediated antioxidant and detoxification enzymes in a variety of manners. The data are extensive and are not well classified on the molecular mechanisms. In this review, we first briefly introduce the current knowledge on Keap1/Nrf2 system regulation including Keap1-dependent and Keap1-independent cascades, and epigenetic pathway. Then, we summarize the molecular targets of Keap1/Nrf2 system by dietary phytochemicals, and finally review the crosstalk between Keap1/Nrf2 system and other cellular signaling pathways to regulate diverse chronic diseases by dietary phytochemicals. These comprehensive data will help us to understand the potential effects of dietary phytochemicals on the prevention of chronic diseases and maintenance of human health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. AAV-Nrf2 Promotes Protection and Recovery in Animal Models of Oxidative Stress.

    Science.gov (United States)

    Liang, Katharine J; Woodard, Kenton T; Weaver, Mark A; Gaylor, John Paul; Weiss, Ellen R; Samulski, R Jude

    2017-03-01

    NRF2 is a transcription factor that drives antioxidant gene expression in multiple organ systems. We hypothesized that Nrf2 overexpression could be therapeutically applied toward diseases in which redox homeostasis is disrupted. In this study, adeno-associated virus (AAV)-Nrf2 was tested in a mouse model of acute acetaminophen-induced liver toxicity and successfully conferred protection from hepatotoxicity, validating the vector design and early onset of NRF2-mediated protection. Furthermore, therapeutic potential of AAV-Nrf2 in chronic disease also was tested in a light-induced mouse model of age-related macular degeneration. Adult BALB/c mice were intravitreally injected with AAV-Nrf2 and subject to light damage following injection. Retinal thickness and function were monitored following light damage using optical coherence tomography and electroretinography, respectively. By 3 months post-damage, injected eyes had greater retinal thickness compared to uninjected controls. At 1 month post-damage, AAV-Nrf2 injection facilitated full functional recovery from light damage. Our results suggest a therapeutic potential for Nrf2 overexpression in acute and long-term capacities in multiple organ systems, opening up doors for combination gene therapy where replacement gene therapy requires additional therapeutic support to prevent further degeneration. Published by Elsevier Inc.

  3. Nrf2 Regulates the Risk of a Diesel Exhaust Inhalation-Induced Immune Response during Bleomycin Lung Injury and Fibrosis in Mice.

    Science.gov (United States)

    Li, Ying-Ji; Shimizu, Takako; Shinkai, Yusuke; Hirata, Yukiyo; Inagaki, Hirofumi; Takeda, Ken; Azuma, Arata; Yamamoto, Masayuki; Kawada, Tomoyuki

    2017-03-17

    The present study investigated the effects of diesel exhaust (DE) on an experimental model of bleomycin (BLM)-induced lung injury and fibrosis in mice. BLM was intravenously administered to both Nrf2 +/+ and Nrf2 -/- C57BL/6J mice on day 0. The mice were exposed to DE for 56 days from 28 days before the BLM injection to 28 days after the BLM injection. Inhalation of DE induced significant inhibition of airway clearance function and the proinflammatory cytokine secretion in macrophages, an increase in neutrophils, and severe lung inflammatory injury, which were greater in Nrf2 -/- mice than in Nrf2 +/+ mice. In contrast, inhalation of DE was observed to induce a greater increase of hydroxyproline content in the lung tissues and significantly higher pulmonary antioxidant enzyme mRNA expression in the Nrf2 +/+ mice than in Nrf2 -/- mice. DE is an important risk factor, and Nrf2 regulates the risk of a DE inhalation induced immune response during BLM lung injury and fibrosis in mice.

  4. NRF2 regulates endothelial glycolysis and proliferation with miR-93 and mediates the effects of oxidized phospholipids on endothelial activation.

    Science.gov (United States)

    Kuosmanen, Suvi M; Kansanen, Emilia; Kaikkonen, Minna U; Sihvola, Virve; Pulkkinen, Kati; Jyrkkänen, Henna-Kaisa; Tuoresmäki, Pauli; Hartikainen, Juha; Hippeläinen, Mikko; Kokki, Hannu; Tavi, Pasi; Heikkinen, Sami; Levonen, Anna-Liisa

    2018-02-16

    Phospholipids, such as 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC), are the major components of cell membranes. Their exposure to reactive oxygen species creates oxidized phospholipids, which predispose to the development of chronic inflammatory diseases and metabolic disorders through endothelial activation and dysfunction. Although the effects of oxidized PAPC (oxPAPC) on endothelial cells have been previously studied, the underlying molecular mechanisms evoking biological responses remain largely unknown. Here, we investigated the molecular mechanisms of oxPAPC function with a special emphasis on NRF2-regulated microRNAs (miRNAs) in human umbilical vein endothelial cells (HUVECs) utilizing miRNA profiling, global run-on sequencing (GRO-seq), genome-wide NRF2 binding model, and RNA sequencing (RNA-seq) with miRNA overexpression and silencing. We report that the central regulators of endothelial activity, KLF2 for quiescence, PFKFB3 for glycolysis, and VEGFA, FOXO1 and MYC for growth and proliferation, are regulated by transcription factor NRF2 and the NRF2-regulated miR-106b∼25 cluster member, miR-93, in HUVECs. Mechanistically, oxPAPC was found to induce glycolysis and proliferation NRF2-dependently, and oxPAPC-dependent induction of the miR-106b∼25 cluster was mediated by NRF2. Additionally, several regulatory loops were established between NRF2, miR-93 and the essential regulators of healthy endothelium, collectively implying that NRF2 controls the switch between the quiescent and the proliferative endothelial states together with miR-93.

  5. Calycosin regulates glucocorticoid-induced apoptosis via Nrf2/ARE ...

    African Journals Online (AJOL)

    Purpose: To determine the anti-osteoporotic effect of calycosin (CA) and investigate the mechanism involved. Methods: To establish a cell model of osteoporosis, MC3T3-E1 cells were treated with dexamethasone (DEX). Subsequently, the levels of accumulated reactive oxygen species (ROS) and subsequent apoptotic cell ...

  6. Spatially and Temporally Regulated NRF2 Gene Therapy Using Mcp-1 Promoter in Retinal Ganglion Cell Injury

    Directory of Open Access Journals (Sweden)

    Kosuke Fujita

    2017-06-01

    Full Text Available Retinal ganglion cell degeneration triggered by axonal injury is believed to underlie many ocular diseases, including glaucoma and optic neuritis. In these diseases, retinal ganglion cells are affected unevenly, both spatially and temporally, such that healthy and unhealthy cells coexist in different patterns at different time points. Herein, we describe a temporally and spatially regulated adeno-associated virus gene therapy aiming to reduce undesired off-target effects on healthy retinal neurons. The Mcp-1 promoter previously shown to be activated in stressed retinal ganglion cells following murine optic nerve injury was combined with the neuroprotective intracellular transcription factor Nrf2. In this model, Mcp-1 promoter-driven NRF2 expression targeting only stressed retinal ganglion cells showed efficacy equivalent to non-selective cytomegalovirus promoter-driven therapy for preventing cell death. However, cytomegalovirus promoter-mediated NRF2 transcription induced cellular stress responses and death of Brn3A-positive uninjured retinal ganglion cells. Such undesired effects were reduced substantially by adopting the Mcp-1 promoter. Combining a stress-responsive promoter and intracellular therapeutic gene is a versatile approach for specifically targeting cells at risk of degeneration. This strategy may be applicable to numerous chronic ocular and non-ocular conditions.

  7. Aging-related decline in the induction of Nrf2-regulated antioxidant genes in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Lulu Zhou

    2018-04-01

    Full Text Available Evidence from animal studies suggests that stress-induced increases in Nrf2-regulated antioxidant gene expression, a critical mechanism of cellular protection, declines with aging. This study examined whether this also occurs in humans. We measured the basal and inducible levels of Nrf2-regulated antioxidant genes in human bronchial epithelial (HBE cells from subjects of young adult (21–29 years and older (60–69 years non-smokers, and explored factors affecting expresion. The basal expression of three representative Nrf2-regulated genes, the catalytic and modulator subunits of glutamate cysteine ligase (GCLC and GCLM, respectively, and NAD(PH quinone oxidoreductase 1 (NQO1, was higher in cells from the older donors compared with cells from the young adult donors. Upon exposure to the Nrf2 activator, sulforaphane (SF, the expression of these antioxidant genes was increased in cells from both the young adults and the older donors; however, the induction by SF in older donor cells was significantly less than that seen in young adult cells. In addition, the activation of an EpRE-driven reporter by SF was lower in cells from older donors compared to cells from young adults. The basal expression of Nrf2 protein was also lower in cells from older donors than cells from young adults. Furthermore, we found that the basal expression of both Bach1 and c-Myc, two Nrf2 suppressors, was higher in cells from older adults than from young adult donors. In summary, our data suggest that, as in other species, basal expression of Nrf2-regulated genes increases with aging, while inducibility declines with aging. The increased expression of Nrf2 suppressors such as Bach1 and c-Myc may contribute to the impaired inducibility of the Nrf2-regulated antioxidant genes with aging in human bronchial epithelial cells.

  8. Nrf2 regulates mass accrual and the antioxidant endogenous response in bone differently depending on the sex and age.

    Directory of Open Access Journals (Sweden)

    Gretel Gisela Pellegrini

    Full Text Available Accumulation of reactive oxygen species (ROS is an important pathogenic mechanism underling the loss of bone mass and strength with aging and other conditions leading to osteoporosis. The transcription factor erythroid 2-related factor2 (Nrf2 plays a central role in activating the cellular response to ROS. Here, we examined the endogenous response of bone regulated by Nrf2, and its relationship with bone mass and architecture in the male and female murine skeleton. Young (3 month-old and old (15 month-old Nrf2 knockout (KO mice of either sex exhibited the expected reduction in Nrf2 mRNA expression compared to wild type (WT littermates. Nrf2 deletion did not lead to compensatory increase in Nrf1 or Nrf3, other members of this transcription factor family; and instead, Nrf1 expression was lower in KO mice. Compared to the respective WT littermate controls, female KO mice, young and old, exhibited lower expression of both detoxifying and antioxidant enzymes; young male KO mice, displayed lower expression of detoxifying enzymes but not antioxidant enzymes; and old male KO mice showed no differences in either detoxifying or antioxidant enzymes. Moreover, old male WT mice exhibited lower Nrf2 levels, and consequently lower expression of both detoxifying and antioxidant enzymes, compared to old female WT mice. These endogenous antioxidant responses lead to delayed rate of bone acquisition in female KO mice and higher bone acquisition in male KO mice as quantified by DXA and μCT, demonstrating that Nrf2 is required for full bone accrual in the female skeleton but unnecessary and even detrimental in the male skeleton. Therefore, Nrf2 regulates the antioxidant endogenous response and bone accrual differently depending on sex and age. These findings suggest that therapeutic interventions that target Nrf2 could be developed to enhance the endogenous antioxidant response in a sex- and age-selective manner.

  9. Nrf2 regulates mass accrual and the antioxidant endogenous response in bone differently depending on the sex and age

    Science.gov (United States)

    Pellegrini, Gretel Gisela; Cregor, Meloney; McAndrews, Kevin; Morales, Cynthya Carolina; McCabe, Linda Doyle; McCabe, George P.; Peacock, Munro; Burr, David; Weaver, Connie; Bellido, Teresita

    2017-01-01

    Accumulation of reactive oxygen species (ROS) is an important pathogenic mechanism underling the loss of bone mass and strength with aging and other conditions leading to osteoporosis. The transcription factor erythroid 2-related factor2 (Nrf2) plays a central role in activating the cellular response to ROS. Here, we examined the endogenous response of bone regulated by Nrf2, and its relationship with bone mass and architecture in the male and female murine skeleton. Young (3 month-old) and old (15 month-old) Nrf2 knockout (KO) mice of either sex exhibited the expected reduction in Nrf2 mRNA expression compared to wild type (WT) littermates. Nrf2 deletion did not lead to compensatory increase in Nrf1 or Nrf3, other members of this transcription factor family; and instead, Nrf1 expression was lower in KO mice. Compared to the respective WT littermate controls, female KO mice, young and old, exhibited lower expression of both detoxifying and antioxidant enzymes; young male KO mice, displayed lower expression of detoxifying enzymes but not antioxidant enzymes; and old male KO mice showed no differences in either detoxifying or antioxidant enzymes. Moreover, old male WT mice exhibited lower Nrf2 levels, and consequently lower expression of both detoxifying and antioxidant enzymes, compared to old female WT mice. These endogenous antioxidant responses lead to delayed rate of bone acquisition in female KO mice and higher bone acquisition in male KO mice as quantified by DXA and μCT, demonstrating that Nrf2 is required for full bone accrual in the female skeleton but unnecessary and even detrimental in the male skeleton. Therefore, Nrf2 regulates the antioxidant endogenous response and bone accrual differently depending on sex and age. These findings suggest that therapeutic interventions that target Nrf2 could be developed to enhance the endogenous antioxidant response in a sex- and age-selective manner. PMID:28152064

  10. Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy

    Directory of Open Access Journals (Sweden)

    Antonio Cuadrado

    2018-04-01

    Full Text Available Tauopathies are a group of neurodegenerative disorders where TAU protein is presented as aggregates or is abnormally phosphorylated, leading to alterations of axonal transport, neuronal death and neuroinflammation. Currently, there is no treatment to slow progression of these diseases. Here, we have investigated whether dimethyl fumarate (DMF, an inducer of the transcription factor NRF2, could mitigate tauopathy in a mouse model. The signaling pathways modulated by DMF were also studied in mouse embryonic fibroblast (MEFs from wild type or KEAP1-deficient mice. The effect of DMF on neurodegeneration, astrocyte and microglial activation was examined in Nrf2+/+ and Nrf2−/− mice stereotaxically injected in the right hippocampus with an adeno-associated vector expressing human TAUP301L and treated daily with DMF (100 mg/kg, i.g during three weeks. DMF induces the NRF2 transcriptional through a mechanism that involves KEAP1 but also PI3K/AKT/GSK-3-dependent pathways. DMF modulates GSK-3β activity in mouse hippocampi. Furthermore, DMF modulates TAU phosphorylation, neuronal impairment measured by calbindin-D28K and BDNF expression, and inflammatory processes involved in astrogliosis, microgliosis and pro-inflammatory cytokines production. This study reveals neuroprotective effects of DMF beyond disruption of the KEAP1/NRF2 axis by inhibiting GSK3 in a mouse model of tauopathy. Our results support repurposing of this drug for treatment of these diseases. Keywords: DMF, Inflammation, Neurodegeneration, NRF2, Oxidative stress, TAU/ GSK-3

  11. Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes.

    Science.gov (United States)

    Ajit, Deepa; Simonyi, Agnes; Li, Runting; Chen, Zihong; Hannink, Mark; Fritsche, Kevin L; Mossine, Valeri V; Smith, Robert E; Dobbs, Thomas K; Luo, Rensheng; Folk, William R; Gu, Zezong; Lubahn, Dennis B; Weisman, Gary A; Sun, Grace Y

    2016-07-01

    The increase in oxidative stress and inflammatory responses associated with neurodegenerative diseases has drawn considerable attention towards understanding the transcriptional signaling pathways involving NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and Nrf2 (Nuclear Factor Erythroid 2-like 2). Our recent studies with immortalized murine microglial cells (BV-2) demonstrated effects of botanical polyphenols to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) and enhance Nrf2-mediated antioxidant responses (Sun et al., 2015). In this study, an immortalized rat astrocyte (DI TNC1) cell line expressing a luciferase reporter driven by the NF-κB or the Nrf2/Antioxidant Response Element (ARE) promoter was used to assess regulation of these two pathways by phytochemicals such as quercetin, rutin, cyanidin, cyanidin-3-O-glucoside, as well as botanical extracts from Withania somnifera (Ashwagandha), Sutherlandia frutescens (Sutherlandia) and Euterpe oleracea (Açaí). Quercetin effectively inhibited LPS-induced NF-κB reporter activity and stimulated Nrf2/ARE reporter activity in DI TNC1 astrocytes. Cyanidin and the glycosides showed similar effects but only at much higher concentrations. All three botanical extracts effectively inhibited LPS-induced NF-κB reporter activity. These extracts were capable of enhancing ARE activity by themselves and further enhanced ARE activity in the presence of LPS. Quercetin and botanical extracts induced Nrf2 and HO-1 protein expression. Interestingly, Ashwagandha extract was more active in inducing Nrf2 and HO-1 expression in DI TNC1 astrocytes as compared to Sutherlandia and Açaí extracts. In summary, this study demonstrated NF-kB and Nrf2/ARE promoter activities in DI TNC1 astrocytes, and further showed differences in ability for specific botanical polyphenols and extracts to down-regulate LPS-induced NF-kB and up-regulate the NRF2/ARE activities in these cells. Copyright © 2016 Elsevier Ltd

  12. Laminarin protects against hydrogen peroxide-induced oxidative damage in MRC-5 cells possibly via regulating NRF2.

    Science.gov (United States)

    Liu, Xue; Liu, Huaman; Zhai, Yi; Li, Yan; Zhu, Xue; Zhang, Wei

    2017-01-01

    Oxidative damage is a major cause of lung diseases, including pulmonary fibrosis. Laminarin is a kind of polysaccharide extracted from brown algae and plays vital roles in various biological processes. However, the functions and mechanisms of laminarin in pulmonary oxidative damage are poorly understood. This study aimed at investigating the protective effect of laminarin against pulmonary oxidative damage and underlying mechanisms. Human lung fibroblasts MRC-5 cells were treated with hydrogen peroxide to induce oxidative damage. Laminarin treatment was performed before or after hydrogen peroxide treatment, and then major indexes of oxidative damage, including superoxide dismutase (SOD), malondialdehyde (MDA), reduced glutathione (GSH) and catalase (CAT), were quantified by biochemical assays. The expression of oxidation-related factor, nuclear factor erythroid 2 like 2 (NRF2) was analyzed by qPCR, Western blot and immunofluorescence assay. NRF2 knockdown and overexpression were performed by cell transfection to reveal possible mechanisms. Results showed that laminarin treatment of 0.020 mg/mL for 24 h, especially the pre-treatment, could significantly relieve changes in SOD, MDA, GSH and CAT that were altered by hydrogen peroxide, and promote NRF2 mRNA ( P  < 0.001). NRF2 protein was also elevated by laminarin, and nuclear translocation was observed. Factors in NRF2 signaling pathways, including KEAP1, NQO1, GCLC and HO1, were all regulated by laminarin. Roles of NRF2 were tested, suggesting that NRF2 regulated the concentration of SOD, MDA, GSH and CAT, suppressed KEAP1, and promoted NQO1, GCLC and HO1. These findings suggested the protective role of laminarin against pulmonary oxidative damage, which might involve the regulation of NRF2 signaling pathways. This study provided information for the clinical application of laminarin to pulmonary diseases like pulmonary fibrosis.

  13. Pirfenidone attenuates bleomycin-induced pulmonary fibrosis in mice by regulating Nrf2/Bach1 equilibrium.

    Science.gov (United States)

    Liu, Yuan; Lu, Fuai; Kang, Lirong; Wang, Zhihua; Wang, Yongfu

    2017-04-18

    Oxidative stress is one of the important factors involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF). The equilibrium of Nuclear factor-erythroid-related factor 2 (Nrf2)/[BTB (broad-complex, tramtrack and bric-a-brac) and CNC (cap'n'collar protein) homology 1, Bach1] determines the expression level of antioxidant factors, further regulating the function of oxidation/antioxidation capacity. Pirfenidone (PFD) is one of two currently for IPF therapy approved drugs. PFD regulates intracellular antioxidants, inhibits secretion of inflammatory cytokines and collagen synthesis. However the mechanisms of its antioxidant effects remain elusive. Effects of PFD treatment were studied in mouse lung fibroblasts (MLF) following induction by transforming-growth factor beta 1 (TGF-β1) and in mice following bleomycin-induced lung fibrosis. The mRNA and protein levels of oxidative stress-related factors Nrf2/Bach1 and their downstream antioxidant factors heme oxygenase-1 (Ho-1) and glutathione peroxidase 1 (Gpx1) were determined by RT-PCR and Western blot. Fibrosis-related cytokines interleukin-6 (IL-6) and myofibroblast markers type 1 collagen α1 (COL1A1) levels in supernate of MLF, serum, and bronchoalveolar lavage fluid (BALF) as well as malondialdehyde (MDA) in serum and BALF were detected by ELISA, reactive oxygen species (ROS) generation was measured by 2',7'- dichlorofluorescin diacetate (DCFH-DA) assay and lung pathological/morphological alterations in mice were observed by HE and Masson to assess the antioxidant mechanism and therapeutic effects on pulmonary fibrosis induced by bleomycin. PFD inhibited Bach1 mRNA and protein expressions in mouse lung fibroblasts induced by TGF-β1 and lung tissues with pulmonary fibrosis induced by bleomycin. Furthermore, it improved Nrf2, Ho-1 and Gpx1 mRNA and protein expressions. After PFD treatment, COL1A1and IL-6 levels in supernate of MLF, serum, and BALF as well as ROS in lung tissues and MDA in serum and BALF from

  14. Keap1-Independent Regulation of Nrf2 Activity by Protein Acetylation and a BET Bromodomain Protein.

    Science.gov (United States)

    Chatterjee, Nirmalya; Tian, Min; Spirohn, Kerstin; Boutros, Michael; Bohmann, Dirk

    2016-05-01

    Mammalian BET proteins comprise a family of bromodomain-containing epigenetic regulators with complex functions in chromatin organization and gene regulation. We identified the sole member of the BET protein family in Drosophila, Fs(1)h, as an inhibitor of the stress responsive transcription factor CncC, the fly ortholog of Nrf2. Fs(1)h physically interacts with CncC in a manner that requires the function of its bromodomains and the acetylation of CncC. Treatment of cultured Drosophila cells or adult flies with fs(1)h RNAi or with the BET protein inhibitor JQ1 de-represses CncC transcriptional activity and engages protective gene expression programs. The mechanism by which Fs(1)h inhibits CncC function is distinct from the canonical mechanism that stimulates Nrf2 function by abrogating Keap1-dependent proteasomal degradation. Consistent with the independent modes of CncC regulation by Keap1 and Fs(1)h, combinations of drugs that can specifically target these pathways cause a strong synergistic and specific activation of protective CncC- dependent gene expression and boosts oxidative stress resistance. This synergism might be exploitable for the design of combinatorial therapies to target diseases associated with oxidative stress or inflammation.

  15. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis

    International Nuclear Information System (INIS)

    Lambertucci, Flavia; Motiño, Omar; Villar, Silvina; Rigalli, Juan Pablo; Luján Alvarez, María de; Catania, Viviana A; Martín-Sanz, Paloma; Carnovale, Cristina Ester; Quiroga, Ariel Darío; Francés, Daniel Eleazar; Ronco, María Teresa

    2017-01-01

    Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial role of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24 hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis. - Highlights: • BZL improves survival rate after polymicrobial sepsis • BZL enhances hepatic NRF2 nuclear accumulation in a model of sepsis, in part, by a mechanism dependent on PKC activation • BZL-enhanced NRF2 induction regulates antioxidant enzymes and increases antioxidant cellular defenses in sepsis • BZL blocks liver ROS production and ROS-induced TLR4 plasma membrane expression in septic mice

  16. Sulforaphane reverses glucocorticoid-induced apoptosis in osteoblastic cells through regulation of the Nrf2 pathway

    Directory of Open Access Journals (Sweden)

    Lin H

    2014-07-01

    Full Text Available Hao Lin,1,* Bo Wei,1,* Guangsheng Li,1 Jinchang Zheng,1 Jiecong Sun,1 Jiaqi Chu,2 Rong Zeng,1 Yanru Niu21Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, People’s Republic of China; 2Laboratory Institute of Minimally Invasive Orthopedic Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, People’s Republic of China *These authors contributed equally to this work Abstract: Apoptosis of osteoblasts triggered by high-dose glucocorticoids (GCs has been identified as a major cause of osteoporosis. However, the underlying molecular mechanisms accounting for this action remain elusive, which has impeded the prevention and cure of this side effect. Sulforaphane (SFP is a naturally occurring isothiocyanate that has huge health benefits for humans. In this study, by using osteoblastic MC3T3-E1 cells as a model, we demonstrate the protective effects of SFP against dexamethasone (Dex-induced apoptosis and elucidate the underlying molecular mechanisms. The results show that SFP could effectively inhibit the Dex-induced growth inhibition and release of lactate dehydrogenase in MC3T3-E1 cells. Treatment with Dex induced caspase-dependent apoptosis in MC3T3-E1 cells, as evidenced by an increase in the Sub-G1 phase, chromatin condensation, and deoxyribonucleic acid fragmentation, which were significantly suppressed by coincubation with SFP. Mitochondria-mediated apoptosis pathway contributed importantly to Dex-induced apoptosis, as revealed by the activation of caspase-3/-9 and subsequent cleavage of poly adenosine diphosphate ribose polymerase, which was also effectively blocked by SFP. Moreover, treatments of Dex strongly induced overproduction of reactive oxygen species and inhibited the expression of nuclear factor erythroid 2-related factor 2 (Nrf2 and the downstream effectors HO1 and NQO1. However, cotreatment with SFP effectively reversed this action of Dex. Furthermore, silencing of Nrf2 by

  17. Mutant huntingtin activates Nrf2-responsive genes and impairs dopamine synthesis in a PC12 model of Huntington's disease

    Directory of Open Access Journals (Sweden)

    den Dunnen Johan T

    2008-10-01

    Full Text Available Abstract Background Huntington's disease is a progressive autosomal dominant neurodegenerative disorder that is caused by a CAG repeat expansion in the HD or Huntington's disease gene. Although micro array studies on patient and animal tissue provide valuable information, the primary effect of mutant huntingtin will inevitably be masked by secondary processes in advanced stages of the disease. Thus, cell models are instrumental to study early, direct effects of mutant huntingtin. mRNA changes were studied in an inducible PC12 model of Huntington's disease, before and after aggregates became visible, to identify groups of genes that could play a role in the early pathology of Huntington's disease. Results Before aggregation, up-regulation of gene expression predominated, while after aggregates became visible, down-regulation and up-regulation occurred to the same extent. After aggregates became visible there was a down-regulation of dopamine biosynthesis genes accompanied by down-regulation of dopamine levels in culture, indicating the utility of this model to identify functionally relevant pathways. Furthermore, genes of the anti-oxidant Nrf2-ARE pathway were up-regulated, possibly as a protective mechanism. In parallel, we discovered alterations in genes which may result in increased oxidative stress and damage. Conclusion Up-regulation of gene expression may be more important in HD pathology than previously appreciated. In addition, given the pathogenic impact of oxidative stress and neuroinflammation, the Nrf2-ARE signaling pathway constitutes a new attractive therapeutic target for HD.

  18. Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function

    International Nuclear Information System (INIS)

    Jiang, Xin; Bai, Yang; Zhang, Zhiguo; Xin, Ying; Cai, Lu

    2014-01-01

    Diabetes-induced testicular apoptosis is predominantly due to increased oxidative stress. The nuclear factor-erythroid 2-related factor 2 (Nrf2), as a master transcription factor in controlling anti-oxidative systems, is able to be induced by sulforaphane (SFN). To examine whether SFN prevents testicular apoptosis, type 1 diabetic mouse model was induced with multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with and without SFN at 0.5 mg/kg daily in five days of each week for 3 months and then kept until 6 months. Diabetes significantly increased testicular apoptosis that was associated with endoplasmic reticulum stress and mitochondrial cell death pathways, shown by the increased expression of C/EBP homologous protein (CHOP), cleaved caspase-12, Bax to Bcl2 expression ratio, and cleaved caspase-3. Diabetes also significantly increased testicular oxidative damage, inflammation and fibrosis, and decreased germ cell proliferation. All these diabetic effects were significantly prevented by SFN treatment for the first 3 months, and the protective effect could be sustained at 3 months after SFN treatment. SFN was able to up-regulate Nrf2 expression and function. The latter was reflected by the increased phosphorylation of Nrf2 at Ser40 and expression of Nrf2 downstream antioxidants at mRNA and protein levels. These results suggest that type 1 diabetes significantly induced testicular apoptosis and damage along with increasing oxidative stress and cell death and suppressing Nrf2 expression and function. SFN is able to prevent testicular oxidative damage and apoptosis in type 1 diabetes mice, which may be associated with the preservation of testicular Nrf2 expression and function under diabetic condition. - Highlights: • Sulforaphane (SFN) could attenuate diabetes-induced germ cell apoptosis. • SFN could preserve germ cell proliferation under diabetic conditions. • SFN testicular protection was sustained until 3 months after

  19. Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xin; Bai, Yang; Zhang, Zhiguo [The First Hospital of Jilin University, Changchun 130021 (China); KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202 (United States); Xin, Ying, E-mail: xiny@jlu.edu.cn [KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202 (United States); Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021 (China); Cai, Lu, E-mail: l0cai001@louisville.edu [The First Hospital of Jilin University, Changchun 130021 (China); KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202 (United States)

    2014-09-01

    Diabetes-induced testicular apoptosis is predominantly due to increased oxidative stress. The nuclear factor-erythroid 2-related factor 2 (Nrf2), as a master transcription factor in controlling anti-oxidative systems, is able to be induced by sulforaphane (SFN). To examine whether SFN prevents testicular apoptosis, type 1 diabetic mouse model was induced with multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with and without SFN at 0.5 mg/kg daily in five days of each week for 3 months and then kept until 6 months. Diabetes significantly increased testicular apoptosis that was associated with endoplasmic reticulum stress and mitochondrial cell death pathways, shown by the increased expression of C/EBP homologous protein (CHOP), cleaved caspase-12, Bax to Bcl2 expression ratio, and cleaved caspase-3. Diabetes also significantly increased testicular oxidative damage, inflammation and fibrosis, and decreased germ cell proliferation. All these diabetic effects were significantly prevented by SFN treatment for the first 3 months, and the protective effect could be sustained at 3 months after SFN treatment. SFN was able to up-regulate Nrf2 expression and function. The latter was reflected by the increased phosphorylation of Nrf2 at Ser40 and expression of Nrf2 downstream antioxidants at mRNA and protein levels. These results suggest that type 1 diabetes significantly induced testicular apoptosis and damage along with increasing oxidative stress and cell death and suppressing Nrf2 expression and function. SFN is able to prevent testicular oxidative damage and apoptosis in type 1 diabetes mice, which may be associated with the preservation of testicular Nrf2 expression and function under diabetic condition. - Highlights: • Sulforaphane (SFN) could attenuate diabetes-induced germ cell apoptosis. • SFN could preserve germ cell proliferation under diabetic conditions. • SFN testicular protection was sustained until 3 months after

  20. Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals.

    Science.gov (United States)

    Stefanson, Amanda L; Bakovic, Marica

    2014-09-19

    It has become increasingly evident that chronic inflammation underpins the development of many chronic diseases including cancer, cardiovascular disease and type 2 diabetes. Oxidative stress is inherently a biochemical dysregulation of the redox status of the intracellular environment, which under homeostatic conditions is a reducing environment, whereas inflammation is the biological response to oxidative stress in that the cell initiates the production of proteins, enzymes, and other compounds to restore homeostasis. At the center of the day-to-day biological response to oxidative stress is the Keap1/Nrf2/ARE pathway, which regulates the transcription of many antioxidant genes that preserve cellular homeostasis and detoxification genes that process and eliminate carcinogens and toxins before they can cause damage. The Keap1/Nrf2/ARE pathway plays a major role in health resilience and can be made more robust and responsive by certain dietary factors. Transient activation of Nrf2 by dietary electrophilic phytochemicals can upregulate antioxidant and chemopreventive enzymes in the absence of actual oxidative stress inducers. Priming the Keap1/Nrf2/ARE pathway by upregulating these enzymes prior to oxidative stress or xenobiotic encounter increases cellular fitness to respond more robustly to oxidative assaults without activating more intense inflammatory NFκB-mediated responses.

  1. Dietary Regulation of Keap1/Nrf2/ARE Pathway: Focus on Plant-Derived Compounds and Trace Minerals

    Directory of Open Access Journals (Sweden)

    Amanda L. Stefanson

    2014-09-01

    Full Text Available It has become increasingly evident that chronic inflammation underpins the development of many chronic diseases including cancer, cardiovascular disease and type 2 diabetes. Oxidative stress is inherently a biochemical dysregulation of the redox status of the intracellular environment, which under homeostatic conditions is a reducing environment, whereas inflammation is the biological response to oxidative stress in that the cell initiates the production of proteins, enzymes, and other compounds to restore homeostasis. At the center of the day-to-day biological response to oxidative stress is the Keap1/Nrf2/ARE pathway, which regulates the transcription of many antioxidant genes that preserve cellular homeostasis and detoxification genes that process and eliminate carcinogens and toxins before they can cause damage. The Keap1/Nrf2/ARE pathway plays a major role in health resilience and can be made more robust and responsive by certain dietary factors. Transient activation of Nrf2 by dietary electrophilic phytochemicals can upregulate antioxidant and chemopreventive enzymes in the absence of actual oxidative stress inducers. Priming the Keap1/Nrf2/ARE pathway by upregulating these enzymes prior to oxidative stress or xenobiotic encounter increases cellular fitness to respond more robustly to oxidative assaults without activating more intense inflammatory NFκB-mediated responses.

  2. Topical Bixin Confers NRF2-Dependent Protection Against Photodamage and Hair Graying in Mouse Skin

    Science.gov (United States)

    Rojo de la Vega, Montserrat; Zhang, Donna D.; Wondrak, Georg T.

    2018-01-01

    Environmental exposure to solar ultraviolet (UV) radiation causes acute photodamage, premature aging, and skin cancer, attributable to UV-induced genotoxic, oxidative, and inflammatory stress. The transcription factor NRF2 [nuclear factor erythroid 2 (E2)-related factor 2] is the master regulator of the cellular antioxidant response protecting skin against various environmental stressors including UV radiation and electrophilic pollutants. NRF2 in epidermal keratinocytes can be activated using natural chemopreventive compounds such as the apocarotenoid bixin, an FDA-approved food additive and cosmetic ingredient from the seeds of the achiote tree (Bixa orellana). Here, we tested the feasibility of topical use of bixin for NRF2-dependent skin photoprotection in two genetically modified mouse models [SKH1 and C57BL/6J (Nrf2+/+ versus Nrf2-/-)]. First, we observed that a bixin formulation optimized for topical NRF2 activation suppresses acute UV-induced photodamage in Nrf2+/+ but not Nrf2-/- SKH1 mice, a photoprotective effect indicated by reduced epidermal hyperproliferation and oxidative DNA damage. Secondly, it was demonstrated that topical bixin suppresses PUVA (psoralen + UVA)-induced hair graying in Nrf2+/+ but not Nrf2-/- C57BL/6J mice. Collectively, this research provides the first in vivo evidence that topical application of bixin can protect against UV-induced photodamage and PUVA-induced loss of hair pigmentation through NRF2 activation. Topical NRF2 activation using bixin may represent a novel strategy for human skin photoprotection, potentially complementing conventional sunscreen-based approaches. PMID:29636694

  3. Nrf2 as a master regulator of tissue damage control and disease tolerance to infection.

    Science.gov (United States)

    Soares, Miguel P; Ribeiro, Ana M

    2015-08-01

    Damage control refers to those actions made towards minimizing damage or loss. Depending on the context, these can range from emergency procedures dealing with the sinking of a ship or to a surgery dealing with severe trauma or even to an imaginary company in Marvel comics, which repairs damaged property arising from conflicts between super heroes and villains. In the context of host microbe interactions, tissue damage control refers to an adaptive response that limits the extent of tissue damage associated with infection. Tissue damage control can limit the severity of infectious diseases without interfering with pathogen burden, conferring disease tolerance to infection. This contrasts with immune-driven resistance mechanisms, which although essential to protect the host from infection, can impose tissue damage to host parenchyma tissues. This damaging effect is countered by stress responses that confer tissue damage control and disease tolerance to infection. Here we discuss how the stress response regulated by the transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) acts in such a manner. © 2015 Authors.

  4. Review of NRF2-regulated genes induced in response to antioxidants

    Directory of Open Access Journals (Sweden)

    Ahmed Atia, Azman Abdullah

    2014-04-01

    Full Text Available Nuclear factor (erythroid-derived 2 -like 2 (Nrf2 is a transcription factor that plays an important role in the cellular protection against free radical damage and reduce the incidence of radical derived degenerative diseases such as cancer. Nrf2 is referred to as the “master regulator” of the antioxidant response due to the fact that it modulates the expression of several genes including phase-2 and antioxidant enzymes playing a crucial role in detoxification of electrophiles and reactive oxygen species (ROS, including glutathione-S-transferase (GST, gamma-glutamyl cysteine ligase (γ-GCL, glutathione-S-reductase (GSR, NAD(PH:quinoneoxidoreductase-1 (NQO1, heme oxygenase-1 (HO-1, etc. Following dissociation from it obligatory partner Kelch like ECH-associated protein 1 (Keap1, Nrf2 translocates to the nucleus and transactivates the antioxidant response element (ARE in the promoter region of several antioxidant genes. In this review, we discuss the role of the Nrf2 system, with particular focus on Nrf2-controlled target genes.

  5. Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    He JL

    2014-12-01

    Full Text Available Jin-Lian He,1 Zhi-Wei Zhou,2,3 Juan-Juan Yin,2 Chang-Qiang He,1 Shu-Feng Zhou,2,3 Yang Yu1 1College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China Abstract: Drug metabolizing enzymes (DMEs and drug transporters are regulated via epigenetic, transcriptional, posttranscriptional, and translational and posttranslational modifications. Phase I and II DMEs and drug transporters play an important role in the disposition and detoxification of a large number of endogenous and exogenous compounds. The nuclear factor (erythroid-derived 2-like 2 (Nrf2 is a critical regulator of a variety of important cytoprotective genes that are involved in disposition and detoxification of xenobiotics. Schisandra chinensis (SC is a commonly used traditional Chinese herbal medicine that has been primarily used to protect the liver because of its potent antioxidative and anti-inflammatory activities. SC can modulate some DMEs and drug transporters, but the underlying mechanisms are unclear. In this study, we aimed to explore the role of Nrf2 in the regulatory effect of SC extract (SCE on selected DMEs and drug transporters in human hepatocellular liver carcinoma cell line (HepG2 cells. The results showed that SCE, schisandrin A, and schisandrin B significantly increased the expression of NAD(PH: Nicotinamide Adenine Dinucleotide Phosphate-oxidase or:quinone oxidoreductase 1, heme oxygenase-1, glutamate–cysteine ligase, and glutathione S-transferase A4 at both transcriptional and posttranscriptional levels. Incubation of HepG2 cells with SCE resulted in a significant

  6. Curcumin by down-regulating NF-kB and elevating Nrf2, reduces brain edema and neurological dysfunction after cerebral I/R.

    Science.gov (United States)

    Li, Wei; Suwanwela, Nijasri C; Patumraj, Suthiluk

    2016-07-01

    Oxidation, inflammation, and apoptosis are three critical factors for the pathogenic mechanism of cerebral ischemia/reperfusion (I/R) injury. Curcumin exhibits substantial biological properties via anti-oxidation, anti-inflammation and anti-apoptotic effects; however, the molecular mechanism underlying the effects of curcumin against cerebral I/R injury remains unclear. To investigate the effects of curcumin on cerebral I/R injury associated with water content, infarction volume, and the expression of nuclear factor-kappa-B (NF-κB) and nuclear factor-erythroid-related factor-2 (Nrf2). Middle cerebral artery occlusion (MCAO, 1-hour occlusion and 24-hour reperfusion) was performed in male Wistar rats (n=64) as a cerebral I/R injury model. In the MCAO+CUR group, the rats were administered curcumin (300mg/kg BW, i.p.) at 30min after occlusion. The same surgical procedures were performed in SHAM rats without MCAO occlusion. At 24h post-operation, the parameters, including neurological deficit scores, blood brain barrier (BBB) disruption, water content, and infarction volume, were determined. Brain tissue NF-κB and Nrf2 expression levels were assayed through immunohistochemistry. Compared with the SHAM group, BBB disruption, neurological deficit, and increased brain water content and infarction volume were markedly demonstrated in the MCAO group. NF-κB expression was enhanced in the MCAO group. However, in the MCAO+CUR group, the upregulation of Nrf2, an anti-oxidation related protein, was consistent with a significant decline in the water content, infarction volume, and NF-κB expression. The protective effects of curcumin against cerebral I/R injury reflect anti-oxidation, anti-inflammation and anti-apoptotic activities, resulting in the elevation of Nrf2 and down-regulation of NF-κB. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Mitigation of radiation induced hematopoietic injury via regulation of Nrf-2 and increasing hematopoietic stem cells

    International Nuclear Information System (INIS)

    Patwardhan, R.S.; Sharma, Deepak; Checker, Rahul; Santosh Kumar, S.

    2014-01-01

    Therapeutic doses of ionizing radiation (IR) that can be delivered to tumors are restricted due to radiation induced damage to surrounding normal tissues thereby limiting the effectiveness of radiotherapy. Strategies to develop agents that selectively protect normal cells yielded limited success in the past. There is pressing need to develop safe, syndrome specific and effective radiation countermeasures to prevent or mitigate the harmful consequences of radiation exposure. Survival of bone marrow stem cells (HSCs) play a key role in protecting against IR induced hematopoietic injury. Many studies have shown manipulation of HSC frequency and/or survival as principal mechanism of radioprotection. It is known that, Nrf-2 plays crucial role in HSC survival and maintenance under oxidative stress conditions. In the present study, we have investigated the radioprotective ability of a flavonoid baicalein (5,6,7-trihydroxyflavone), extracted from the root of Scutellaria baicalensis Georgi, a medicinal plant traditionally used in Oriental medicine. There are numerous reports showing anti-inflammatory, anti-apoptotic, anti-oxidant, anti-cancer, anti-microbial, anti-mutagenic and neuroprotective properties of baicalein. Based on these reports, we have investigated the ability of baicalein to protect against radiation induced hematopoietic injury. Baicalein administration to mice protected against WBI induced mortality. Interestingly, the stem cell frequency increased in bone marrow cells obtained from baicalein administered mice as compared to vehicle treated mice. Baicalein treatment led to increased phospho-Nrf-2 levels in lineage negative BM-MNC. Administration of mice with Nrf-2 inhibitor prior to baicalein treatment led to significant abrogation of radioprotective ability of baicalein. This result suggests that, Nrf-2 may be playing a key role in baicalein mediated radioprotection. Here, we have shown that baicalein administration augments stem cell frequency, induces

  8. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury.

    Science.gov (United States)

    Ashino, Takashi; Yamamoto, Masayuki; Numazawa, Satoshi

    2016-05-20

    Abnormal increases in vascular smooth muscle cells (VSMCs) in the intimal region after a vascular injury is a key event in developing neointimal hyperplasia. To maintain vascular function, proliferation and apoptosis of VSMCs is tightly controlled during vascular remodeling. NF-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) system, a key component of the oxidative stress response that acts in maintaining homeostasis, plays an important role in neointimal hyperplasia after a vascular injury; however, the role of Nrf2/Keap1 in VSMC apoptosis has not been clarified. Here we report that 14 days after arterial injury in mice, TUNEL-positive VSMCs are detected in both the neointimal and medial layers. These layers contain cells expressing high levels of Nrf2 but low Keap1 expression. In VSMCs, Keap1 depletion induces features of apoptosis, such as positive TUNEL staining and annexin V binding. These changes are associated with an increased expression of nuclear Nrf2. Simultaneous Nrf2 depletion inhibits Keap1 depletion-induced apoptosis. At 14 days after the vascular injury, Nrf2-deficient mice demonstrated fewer TUNEL-positive cells and increased neointimal formation in the neointimal and medial areas. The results suggest that the Nrf2/Keap1 system regulates VSMC apoptosis during neointimal formation, thereby inhibiting neointimal hyperplasia after a vascular injury.

  9. Nrf2 and Cardiovascular Defense

    Directory of Open Access Journals (Sweden)

    Reuben Howden

    2013-01-01

    Full Text Available The cardiovascular system is susceptible to a group of diseases that are responsible for a larger proportion of morbidity and mortality than any other disease. Many cardiovascular diseases are associated with a failure of defenses against oxidative stress-induced cellular damage and/or death, leading to organ dysfunction. The pleiotropic transcription factor, nuclear factor-erythroid (NF-E 2-related factor 2 (Nrf2, regulates the expression of antioxidant enzymes and proteins through the antioxidant response element. Nrf2 is an important component in antioxidant defenses in cardiovascular diseases such as atherosclerosis, hypertension, and heart failure. Nrf2 is also involved in protection against oxidant stress during the processes of ischemia-reperfusion injury and aging. However, evidence suggests that Nrf2 activity does not always lead to a positive outcome and may accelerate the pathogenesis of some cardiovascular diseases (e.g., atherosclerosis. The precise conditions under which Nrf2 acts to attenuate or stimulate cardiovascular disease processes are unclear. Further studies on the cellular environments related to cardiovascular diseases that influence Nrf2 pathways are required before Nrf2 can be considered a therapeutic target for the treatment of cardiovascular diseases.

  10. Prophylactic role of vitamin K supplementation on vascular inflammation in type 2 diabetes by regulating the NF-κB/Nrf2 pathway via activating Gla proteins.

    Science.gov (United States)

    Dihingia, Anjum; Ozah, Dibyajyoti; Baruah, Pranab Kumar; Kalita, Jatin; Manna, Prasenjit

    2018-01-24

    There is no previous study that has examined the relationship between circulating vitamin K1 (VK1) and vascular inflammation in type 2 diabetes (T2D). This study aims to examine the hypothesis that circulating VK1 deficiency may be associated with higher inflammation and insulin resistance in T2D patients and that VK1 supplementation regulates the NF-κB/Nrf2 pathway via activating VK-dependent Gla proteins and reduces vascular inflammation. The results showed that plasma VK1 levels were significantly lower and MCP-1, fasting glucose, HbA1c, and insulin resistance (HOMA-IR) were significantly higher in T2D patients compared to those in the controls. The lower levels of VK1 in T2D patients were significantly and inversely correlated with MCP-1 and HOMA-IR, which suggests that VK1 supplementation may reduce the vascular inflammation and insulin resistance in T2D. Using a high fat diet-fed T2D mice model this study further demonstrated that VK1 supplementation (1, 3, 5 μg per kg BW, 8 weeks) dose-dependently decreased the body weight gain, glucose intolerance, fasting glucose, glycated hemoglobin, HOMA-IR, and cytokine secretion (MCP-1 and IL-6) in T2D mice. Further cell culture studies showed that VK1 supplementation (1, 5, or 10 nM) decreased NF-κB phosphorylation and MCP-1 secretion and increased Nrf2 protein expression in high glucose (HG, 25 mM)-treated monocytes. Signal silencing studies with GGCX siRNA again depicted the role of VK-dependent Gla proteins in mediating the effect of VK1 on vascular inflammation in HG-treated cells. In conclusion, this study suggests that circulating VK1 has a positive effect in lowering vascular inflammation in T2D by regulating NF-κB/Nrf2 transcription factors via activating VK-dependent Gla proteins.

  11. Differential regulation of innate immune cytokine production through pharmacological activation of Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2 in burn patient immune cells and monocytes.

    Directory of Open Access Journals (Sweden)

    Timothy K Eitas

    Full Text Available Burn patients suffer from immunological dysfunction for which there are currently no successful interventions. Similar to previous observations, we find that burn shock patients (≥15% Total Burn Surface Area (TBSA injury have elevated levels of the innate immune cytokines Interleukin-6 (IL-6 and Monocyte Chemoattractant Protein-1 (MCP-1/CC-motif Chemokine Ligand 2(CCL2 early after hospital admission (0-48 Hours Post-hospital Admission (HPA. Functional immune assays with patient Peripheral Blood Mononuclear Cells (PBMCs revealed that burn shock patients (≥15% TBSA produced elevated levels of MCP-1/CCL2 after innate immune stimulation ex vivo relative to mild burn patients. Interestingly, treatment of patient PBMCs with the Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2 agonist, CDDO-Me(bardoxolone methyl, reduced MCP-1 production but not IL-6 or Interleukin-10 (IL-10 secretion. In enriched monocytes from healthy donors, CDDO-Me(bardoxolone methyl also reduced LPS-induced MCP1/CCL2 production but did not alter IL-6 or IL-10 secretion. Similar immunomodulatory effects were observed with Compound 7, which activates the NRF2 pathway through a different and non-covalent Mechanism Of Action (MOA. Hence, our findings with CDDO-Me(bardoxolone methyl and Compound 7 are likely to reflect a generalizable aspect of NRF2 activation. These observed effects were not specific to LPS-induced immune responses, as NRF2 activation also reduced MCP-1/CCL2 production after stimulation with IL-6. Pharmacological NRF2 activation reduced Mcp-1/Ccl2 transcript accumulation without inhibiting either Il-6 or Il-10 transcript levels. Hence, we describe a novel aspect of NRF2 activation that may contribute to the beneficial effects of NRF2 agonists during disease. Our work also demonstrates that the NRF2 pathway is retained and can be modulated to regulate important immunomodulatory functions in burn patient immune cells.

  12. Nrf2 Regulates the Sensitivity of Mouse Keratinocytes to Nitrogen Mustard via Multidrug Resistance-Associated Protein 1 (Mrp1)

    Science.gov (United States)

    Udasin, Ronald G.; Wen, Xia; Bircsak, Kristin M.; Aleksunes, Lauren M.; Shakarjian, Michael P.; Kong, Ah-Ng Tony; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2016-01-01

    Sulfur mustard and nitrogen mustard (mechlorethamine, HN2) are potent vesicants developed as chemical warfare agents. These electrophilic, bifunctional alkylating agents cause skin injury, including inflammation, edema, and blistering. HN2 covalently modifies macromolecules such as DNA, RNA, and proteins or is scavenged by glutathione, forming adducts that can contribute to toxicity. Multidrug resistance-associated protein 1 (Mrp1/MRP1) is a transmembrane ATPase known to efflux glutathione-conjugated electrophiles. In the present studies, we examined the effects of modulating Mrp1-mediated transport activity on the sensitivity of primary and PAM212 mouse keratinocytes to HN2. Primary keratinocytes, and to a lesser extent, PAM212 cells, express Mrp1 mRNA and protein and possess Mrp1 functional activity, as measured by calcein efflux. Sulforaphane, an activator of Nrf2, increased Mrp1 mRNA, protein, and functional activity in primary keratinocytes and PAM212 cells and decreased their sensitivity to HN2-induced growth inhibition (IC50 = 1.4 and 4.8 µM in primary keratinocytes and 1 and 13 µM in PAM212 cells, in the absence and presence of sulforaphane, respectively). The Mrp1 inhibitor, MK-571, reversed the effects of sulforaphane on HN2-induced growth inhibition in both primary keratinocytes and PAM212 cells. In primary keratinocytes from Nrf2−/− mice, sulforaphane had no impact on Mrp1 expression or activity, or on sensitivity to HN2, demonstrating that its effects depend on Nrf2. These data suggest that Mrp1-mediated efflux is important in regulating HN2-induced keratinocyte growth inhibition. Enhancing HN2 efflux from keratinocytes may represent a novel strategy for mitigating vesicant-induced cytotoxicity. PMID:26454883

  13. Pomegranate-mediated chemoprevention of experimental hepatocarcinogenesis involves Nrf2-regulated antioxidant mechanisms

    Science.gov (United States)

    Bishayee, Anupam; Bhatia, Deepak; Thoppil, Roslin J.; Darvesh, Altaf S.; Nevo, Eviatar; Lansky, Ephraim P.

    2011-01-01

    Hepatocellular carcinoma (HCC), one of the most prevalent and lethal cancers, has shown an alarming rise in the USA. Without effective therapy for HCC, novel chemopreventive strategies may effectively circumvent the current morbidity and mortality. Oxidative stress predisposes to hepatocarcinogenesis and is the major driving force of HCC. Pomegranate, an ancient fruit, is gaining tremendous attention due to its powerful antioxidant properties. Here, we examined mechanism-based chemopreventive potential of a pomegranate emulsion (PE) against dietary carcinogen diethylnitrosamine (DENA)-induced rat hepatocarcinogenesis that mimics human HCC. PE treatment (1 or 10 g/kg), started 4 weeks prior to the DENA challenge and continued for 18 weeks thereafter, showed striking chemopreventive activity demonstrated by reduced incidence, number, multiplicity, size and volume of hepatic nodules, precursors of HCC. Both doses of PE significantly attenuated the number and area of γ-glutamyl transpeptidase-positive hepatic foci compared with the DENA control. PE also attenuated DENA-induced hepatic lipid peroxidation and protein oxidation. Mechanistic studies revealed that PE elevated gene expression of an array of hepatic antioxidant and carcinogen detoxifying enzymes in DENA-exposed animals. PE elevated protein and messenger RNA expression of the hepatic nuclear factor E2-related factor 2 (Nrf2). Our results provide substantial evidence, for the first time, that pomegranate constituents afford chemoprevention of hepatocarcinogenesis possibly through potent antioxidant activity achieved by upregulation of several housekeeping genes under the control of Nrf2 without toxicity. The outcome of this study strongly supports the development of pomegranate-derived products in the prevention and treatment of human HCC, which remains a devastating disease. PMID:21389260

  14. NRF2 Signaling Negatively Regulates Phorbol-12-Myristate-13-Acetate (PMA-Induced Differentiation of Human Monocytic U937 Cells into Pro-Inflammatory Macrophages.

    Directory of Open Access Journals (Sweden)

    Min-Gu Song

    Full Text Available Blood monocytes are recruited to injured tissue sites and differentiate into macrophages, which protect against pathogens and repair damaged tissues. Reactive oxygen species (ROS are known to be an important contributor to monocytes' differentiation and macrophages' function. NF-E2-related factor 2 (NRF2, a transcription factor regulating cellular redox homeostasis, is known to be a critical modulator of inflammatory responses. We herein investigated the role of NRF2 in macrophage differentiation using the human monocytic U937 cell line and phorbol-12-myristate-13-acetate (PMA. In U937 cells with NRF2 silencing, PMA-stimulated cell adherence was significantly facilitated when compared to control U937 cells. Both transcript and protein levels for pro-inflammatory cytokines, including interleukine-1β (IL-1β, IL-6, and tumor necrosis factor-α (TNFα were highly elevated in PMA-stimulated NRF2-silenced U937 compared to the control. In addition, PMA-inducible secretion of monocyte chemotactic protein 1 (MCP-1 was significantly high in NRF2-silenced U937. As an underlying mechanism, we showed that NRF2-knockdown U937 retained high levels of cellular ROS and endoplasmic reticulum (ER stress markers expression; and subsequently, PMA-stimulated levels of Ca2+ and PKCα were greater in NRF2-knockdown U937 cells, which caused enhanced nuclear accumulation of nuclear factor-ҡB (NFҡB p50 and extracellular signal-regulated kinase (ERK-1/2 phosphorylation. Whereas the treatment of NRF2-silenced U937 cells with pharmacological inhibitors of NFҡB or ERK1/2 largely blocked PMA-induced IL-1β and IL-6 expression, indicating that these pathways are associated with cell differentiation. Taken together, our results suggest that the NRF2 system functions to suppress PMA-stimulated U937 cell differentiation into pro-inflammatory macrophages and provide evidence that the ROS-PKCα-ERK-NFҡB axis is involved in PMA-facilitated differentiation of NRF2-silenced U937

  15. Nrf2-AKT interactions regulate heme oxygenase 1 expression in kidney epithelia during hypoxia and hypoxia-reoxygenation.

    Science.gov (United States)

    Potteti, Haranatha R; Tamatam, Chandramohan R; Marreddy, Rakesh; Reddy, Narsa M; Noel, Sanjeev; Rabb, Hamid; Reddy, Sekhar P

    2016-11-01

    Ischemia-reperfusion (IR)-induced kidney injury is a major clinical problem, but its underlying mechanisms remain unclear. The transcription factor known as nuclear factor, erythroid 2-like 2 (NFE2L2 or Nrf2) is crucial for protection against oxidative stress generated by pro-oxidant insults. We have previously shown that Nrf2 deficiency enhances susceptibility to IR-induced kidney injury in mice and that its upregulation is protective. Here, we examined Nrf2 target antioxidant gene expression and the mechanisms of its activation in both human and murine kidney epithelia following acute (2 h) and chronic (12 h) hypoxia and reoxygenation conditions. We found that acute hypoxia modestly stimulates and chronic hypoxia strongly stimulates Nrf2 putative target HMOX1 expression, but not that of other antioxidant genes. Inhibition of AKT1/2 or ERK1/2 signaling blocked this induction; AKT1/2 but not ERK1/2 inhibition affected Nrf2 levels in basal and acute hypoxia-reoxygenation states. Unexpectedly, chromatin immunoprecipitation assays revealed reduced levels of Nrf2 binding at the distal AB1 and SX2 enhancers and proximal promoter of HMOX1 in acute hypoxia, accompanied by diminished levels of nuclear Nrf2. In contrast, Nrf2 binding at the AB1 and SX2 enhancers significantly but differentially increased during chronic hypoxia and reoxygenation, with reaccumulation of nuclear Nrf2 levels. Small interfering-RNA-mediated Nrf2 depletion attenuated acute and chronic hypoxia-inducible HMOX1 expression, and primary Nrf2-null kidney epithelia showed reduced levels of HMOX1 induction in response to both acute and chronic hypoxia. Collectively, our data demonstrate that Nrf2 upregulates HMOX1 expression in kidney epithelia through a distinct mechanism during acute and chronic hypoxia reoxygenation, and that both AKT1/2 and ERK1/2 signaling are required for this process. Copyright © 2016 the American Physiological Society.

  16. Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinone-stimulated rat primary astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Sun; Kim, Hee-Sun, E-mail: hskimp@ewha.ac.kr

    2014-05-16

    Highlights: • tBHQ increased HO-1 mRNA and protein levels in rat primary astrocytes. • tBHQ enhanced HO-1 gene transcription in an ARE-dependent manner. • tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. • Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. • Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction. - Abstract: Hemeoxygenase-1 (HO-1) is a phase II antioxidant enzyme that is primarily involved in detoxification and cytoprotection in a variety of tissues. However, the mechanism underlying HO-1 gene expression remains unclear. In the present study, we investigated the regulation of HO-1 expression in primary cultured astrocytes by using the natural antioxidant compound tertiary butylhydroquinone (tBHQ). We found that tBHQ increased HO-1 mRNA and protein levels. Promoter analysis revealed that tBHQ enhanced HO-1 gene transcription in an antioxidant response element (ARE)-dependent manner. In addition, tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. Small interfering RNA (siRNA) experiments demonstrated that Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. Thus, Nrf2 knockdown reduced the basal level of HO-1 expression but did not affect the fold induction by tBHQ. On the other hand, knockdown of c-Jun diminished tBHQ-mediated induction of HO-1 without affecting basal expression. The data suggest that Nrf2 generally modulates the basal expression of HO-1, while c-Jun mediates HO-1 induction in response to tBHQ. The results of co-immunoprecipitation assays demonstrated a physical interaction between Nrf2 and c-Jun in tBHQ-treated astrocytes. The results suggest that Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction in tBHQ-treated rat primary astrocytes.

  17. Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinone-stimulated rat primary astrocytes

    International Nuclear Information System (INIS)

    Park, Jin-Sun; Kim, Hee-Sun

    2014-01-01

    Highlights: • tBHQ increased HO-1 mRNA and protein levels in rat primary astrocytes. • tBHQ enhanced HO-1 gene transcription in an ARE-dependent manner. • tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. • Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. • Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction. - Abstract: Hemeoxygenase-1 (HO-1) is a phase II antioxidant enzyme that is primarily involved in detoxification and cytoprotection in a variety of tissues. However, the mechanism underlying HO-1 gene expression remains unclear. In the present study, we investigated the regulation of HO-1 expression in primary cultured astrocytes by using the natural antioxidant compound tertiary butylhydroquinone (tBHQ). We found that tBHQ increased HO-1 mRNA and protein levels. Promoter analysis revealed that tBHQ enhanced HO-1 gene transcription in an antioxidant response element (ARE)-dependent manner. In addition, tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. Small interfering RNA (siRNA) experiments demonstrated that Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. Thus, Nrf2 knockdown reduced the basal level of HO-1 expression but did not affect the fold induction by tBHQ. On the other hand, knockdown of c-Jun diminished tBHQ-mediated induction of HO-1 without affecting basal expression. The data suggest that Nrf2 generally modulates the basal expression of HO-1, while c-Jun mediates HO-1 induction in response to tBHQ. The results of co-immunoprecipitation assays demonstrated a physical interaction between Nrf2 and c-Jun in tBHQ-treated astrocytes. The results suggest that Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction in tBHQ-treated rat primary astrocytes

  18. Topical Bixin Confers NRF2-Dependent Protection Against Photodamage and Hair Graying in Mouse Skin

    Directory of Open Access Journals (Sweden)

    Montserrat Rojo de la Vega

    2018-03-01

    Full Text Available Environmental exposure to solar ultraviolet (UV radiation causes acute photodamage, premature aging, and skin cancer, attributable to UV-induced genotoxic, oxidative, and inflammatory stress. The transcription factor NRF2 [nuclear factor erythroid 2 (E2-related factor 2] is the master regulator of the cellular antioxidant response protecting skin against various environmental stressors including UV radiation and electrophilic pollutants. NRF2 in epidermal keratinocytes can be activated using natural chemopreventive compounds such as the apocarotenoid bixin, an FDA-approved food additive and cosmetic ingredient from the seeds of the achiote tree (Bixa orellana. Here, we tested the feasibility of topical use of bixin for NRF2-dependent skin photoprotection in two genetically modified mouse models [SKH1 and C57BL/6J (Nrf2+/+ versus Nrf2-/-]. First, we observed that a bixin formulation optimized for topical NRF2 activation suppresses acute UV-induced photodamage in Nrf2+/+ but not Nrf2-/- SKH1 mice, a photoprotective effect indicated by reduced epidermal hyperproliferation and oxidative DNA damage. Secondly, it was demonstrated that topical bixin suppresses PUVA (psoralen + UVA-induced hair graying in Nrf2+/+ but not Nrf2-/- C57BL/6J mice. Collectively, this research provides the first in vivo evidence that topical application of bixin can protect against UV-induced photodamage and PUVA-induced loss of hair pigmentation through NRF2 activation. Topical NRF2 activation using bixin may represent a novel strategy for human skin photoprotection, potentially complementing conventional sunscreen-based approaches.

  19. The circadian clock regulates rhythmic activation of the NRF2/glutathionemediated antioxidant defense pathway to modulate pulmonary fibrosis

    NARCIS (Netherlands)

    V. Pekovic-Vaughan (Vanja); J. Gibbs (Raphael); H. Yoshitane (Hikari); N. Yang (Nan); D. Pathiranage (Dharshika); B. Guo (Boliang); A. Sagami (Aya); K. Taguchi (Keiko); D. Bechtold (David); S.E. Loudon (Sjoukje); M. Yamamoto (Masayuki); J. Chan (Jefferson); G.T.J. van der Horst (Gijsbertus); Y. Fukada (Yoshitaka); Q. Meng (Qingyue)

    2014-01-01

    textabstractThe disruption of the NRF2 (nuclear factor erythroid-derived 2-like 2)/glutathione-mediated antioxidant defense pathway is a critical step in the pathogenesis of several chronic pulmonary diseases and cancer. While the mechanism of NRF2 activation upon oxidative stress has been widely

  20. The effect of Mastin® on expression of Nrf2 in the rat heart with subtotally nephrectomy chronic Kidney disease model

    Science.gov (United States)

    Nathania, J.; Soetikno, V.

    2017-08-01

    Chronic kidney disease (CKD) is increasingly prevalent in Indonesia and worldwide. One of the major causes of morbidity and mortality in CKD is the complication of cardiovascular disease. Mastin® is a supplement that is locally produced in Indonesia and is made from extract of mangosteen pericarp, which is reported to have antioxidative, anti-inflammatory, and antitumor properties. The present study aimed to investigate whether Mastin® could improve antioxidant responses in the rat heart during CKD by measuring the expression of nuclear factor erythroid-2-related factor (Nrf)2, a master regulator of antioxidant response elements. RNA was extracted from the heart tissue of three groups of rats: a normal group, a nephrectomy group, and a nephrectomy with Mastin® group. Two-step real-time RT-PCR was then conducted to calculate the relative expression of the Nrf2 gene. Nrf2 expression was markedly decreased in the nephrectomy group vs the normal group, but slightly increas ed in the nephrectomy with Mastin® group vs the nephrectomy group. CKD resulted in impaired activation of the Nrf2 pathway in the rat heart. Although the administration of Mastin® slightly increased Nrf2 expression, it was not enough to confer cardioprotective effects through the Nrf2 pathway.

  1. Regulation and novel action of thymidine phosphorylase in non-small cell lung cancer: crosstalk with Nrf2 and HO-1.

    Directory of Open Access Journals (Sweden)

    Magdalena Tertil

    Full Text Available Proangiogenic enzyme thymidine phosphorylase (TP is a promising target for anticancer therapy, yet its action in non-small cell lung carcinoma (NSCLC is not fully understood. To elucidate its role in NSCLC tumor growth, NCI-H292 lung mucoepidermoid carcinoma cells and endothelial cells were engineered to overexpress TP by viral vector transduction. NSCLC cells with altered expression of transcription factor Nrf2 or its target gene heme oxygenase-1 (HO-1 were used to study the regulation of TP and the findings from pre-clinical models were related to gene expression data from clinical NSCLC specimens. Overexpression of Nrf2 or HO-1 resulted in upregulation of TP in NCI-H292 cells, an effect mimicked by treatment with an antioxidant N-acetylcysteine and partially reversed by HO-1 knockdown. Overexpression of TP attenuated cell proliferation and migration in vitro, but simultaneously enhanced angiogenic potential of cancer cells supplemented with thymidine. The latter was also observed for SK-MES-1 squamous cell carcinoma and NCI-H460 large cell carcinoma cells. TP-overexpressing NCI-H292 tumors in vivo exhibited better oxygenation and higher expression of IL-8, IL-1β and IL-6. TP overexpression in endothelial cells augmented their angiogenic properties which was associated with enhanced generation of HO-1 and VEGF. Correlation of TP with the expression of HO-1 and inflammatory cytokines was confirmed in clinical samples of NSCLC. Altogether, the increased expression of IL-1β and IL-6 together with proangiogenic effects of TP-expressing NSCLC on endothelium can contribute to tumor growth, implying TP as a target for antiangiogenesis in NSCLC.

  2. Ruthenium Complexes Induce HepG2 Human Hepatocellular Carcinoma Cell Apoptosis and Inhibit Cell Migration and Invasion through Regulation of the Nrf2 Pathway

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2016-05-01

    Full Text Available Ruthenium (Ru complexes are currently the focus of substantial interest because of their potential application as chemotherapeutic agents with broad anticancer activities. This study investigated the in vitro and in vivo anticancer activities and mechanisms of two Ru complexes—2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine Ru(II carbonyl (Ru1 and 5,10,15,20-Tetraphenyl-21H,23H-porphine Ru(II carbonyl (Ru2—against human hepatocellular carcinoma (HCC cells. These Ru complexes effectively inhibited the cellular growth of three human hepatocellular carcinoma (HCC cells, with IC50 values ranging from 2.7–7.3 μM. In contrast, the complexes exhibited lower toxicity towards L02 human liver normal cells with IC50 values of 20.4 and 24.8 μM, respectively. Moreover, Ru2 significantly inhibited HepG2 cell migration and invasion, and these effects were dose-dependent. The mechanistic studies demonstrated that Ru2 induced HCC cell apoptosis, as evidenced by DNA fragmentation and nuclear condensation, which was predominately triggered via caspase family member activation. Furthermore, HCC cell treatment significantly decreased the expression levels of Nrf2 and its downstream effectors, NAD(PH: quinone oxidoreductase 1 (NQO1 and heme oxygenase 1 (HO1. Ru2 also exhibited potent in vivo anticancer efficacy in a tumor-bearing nude mouse model, as demonstrated by a time- and dose-dependent inhibition on tumor growth. The results demonstrate the therapeutic potential of Ru complexes against HCC via Nrf2 pathway regulation.

  3. Ruthenium Complexes Induce HepG2 Human Hepatocellular Carcinoma Cell Apoptosis and Inhibit Cell Migration and Invasion through Regulation of the Nrf2 Pathway

    Science.gov (United States)

    Lu, Yiyu; Shen, Ting; Yang, Hua; Gu, Weiguang

    2016-01-01

    Ruthenium (Ru) complexes are currently the focus of substantial interest because of their potential application as chemotherapeutic agents with broad anticancer activities. This study investigated the in vitro and in vivo anticancer activities and mechanisms of two Ru complexes—2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine Ru(II) carbonyl (Ru1) and 5,10,15,20-Tetraphenyl-21H,23H-porphine Ru(II) carbonyl (Ru2)—against human hepatocellular carcinoma (HCC) cells. These Ru complexes effectively inhibited the cellular growth of three human hepatocellular carcinoma (HCC) cells, with IC50 values ranging from 2.7–7.3 μM. In contrast, the complexes exhibited lower toxicity towards L02 human liver normal cells with IC50 values of 20.4 and 24.8 μM, respectively. Moreover, Ru2 significantly inhibited HepG2 cell migration and invasion, and these effects were dose-dependent. The mechanistic studies demonstrated that Ru2 induced HCC cell apoptosis, as evidenced by DNA fragmentation and nuclear condensation, which was predominately triggered via caspase family member activation. Furthermore, HCC cell treatment significantly decreased the expression levels of Nrf2 and its downstream effectors, NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO1). Ru2 also exhibited potent in vivo anticancer efficacy in a tumor-bearing nude mouse model, as demonstrated by a time- and dose-dependent inhibition on tumor growth. The results demonstrate the therapeutic potential of Ru complexes against HCC via Nrf2 pathway regulation. PMID:27213353

  4. Respiratory syncytial virus infection down-regulates antioxidant enzyme expression by triggering deacetylation-proteasomal degradation of Nrf2.

    Science.gov (United States)

    Komaravelli, Narayana; Tian, Bing; Ivanciuc, Teodora; Mautemps, Nicholas; Brasier, Allan R; Garofalo, Roberto P; Casola, Antonella

    2015-11-01

    Respiratory syncytial virus (RSV) is the most important cause of viral acute respiratory tract infections and hospitalizations in children, for which no vaccine or treatment is available. RSV infection in cells, mice, and children leads to rapid generation of reactive oxygen species, which are associated with oxidative stress and lung damage, due to a significant decrease in the expression of airway antioxidant enzymes (AOEs). Oxidative stress plays an important role in the pathogenesis of RSV-induced lung disease, as antioxidants ameliorate clinical disease and inflammation in vivo. The aim of this study is to investigate the unknown mechanism(s) of virus-induced inhibition of AOE expression. RSV infection is shown to induce a progressive reduction in nuclear and total cellular levels of the transcription factor NF-E2-related factor 2 (Nrf2), resulting in decreased binding to endogenous AOE gene promoters and decreased AOE expression. RSV induces Nrf2 deacetylation and degradation via the proteasome pathway in vitro and in vivo. Histone deacetylase and proteasome inhibitors block Nrf2 degradation and increase Nrf2 binding to AOE endogenous promoters, resulting in increased AOE expression. Known inducers of Nrf2 are able to increase Nrf2 activation and subsequent AOE expression during RSV infection in vitro and in vivo, with significant amelioration of oxidative stress. This is the first study to investigate the mechanism(s) of virus-induced inhibition of AOE expression. RSV-induced inhibition of Nrf2 activation, due to deacetylation and proteasomal degradation, could be targeted for therapeutic intervention aimed to increase airway antioxidant capacity during infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. SPBP Is a Sulforaphane Induced Transcriptional Coactivator of NRF2 Regulating Expression of the Autophagy Receptor p62/SQSTM1

    Science.gov (United States)

    Darvekar, Sagar Ramesh; Elvenes, Julianne; Brenne, Hanne Britt; Johansen, Terje; Sjøttem, Eva

    2014-01-01

    Organisms exposed to oxidative stress respond by orchestrating a stress response to prevent further damage. Intracellular levels of antioxidant agents increase, and damaged components are removed by autophagy induction. The KEAP1-NRF2 signaling pathway is the main pathway responsible for cell defense against oxidative stress and for maintaining the cellular redox balance at physiological levels. Sulforaphane, an isothiocyanate derived from cruciferous vegetables, is a potent inducer of KEAP1-NRF2 signaling and antioxidant response element driven gene expression. In this study, we show that sulforaphane enhances the expression of the transcriptional coregulator SPBP. The expression curve peaks 6–8 hours post stimulation, and parallels the sulforaphane-induced expression of NRF2 and the autophagy receptor protein p62/SQSTM1. Reporter gene assays show that SPBP stimulates the expression of p62/SQSTM1 via ARE elements in the promoter region, and siRNA mediated knock down of SPBP significantly decreases the expression of p62/SQSTM1 and the formation of p62/SQSTM1 bodies in HeLa cells. Furthermore, SPBP siRNA reduces the sulforaphane induced expression of NRF2, and the expression of the autophagy marker protein LC3B. Both these proteins contain ARE-like elements in their promoter regions. Over-expressed SPBP and NRF2 acts synergistically on the p62/SQSTM1 promoter and colocalize in nuclear speckles in HeLa cells. Collectively, these results suggest that SPBP is a coactivator of NRF2, and hence may be important for securing enhanced and sustained expression of NRF2 induced genes such as proteins involved in selective autophagy. PMID:24416372

  6. SPBP is a sulforaphane induced transcriptional coactivator of NRF2 regulating expression of the autophagy receptor p62/SQSTM1.

    Directory of Open Access Journals (Sweden)

    Sagar Ramesh Darvekar

    Full Text Available Organisms exposed to oxidative stress respond by orchestrating a stress response to prevent further damage. Intracellular levels of antioxidant agents increase, and damaged components are removed by autophagy induction. The KEAP1-NRF2 signaling pathway is the main pathway responsible for cell defense against oxidative stress and for maintaining the cellular redox balance at physiological levels. Sulforaphane, an isothiocyanate derived from cruciferous vegetables, is a potent inducer of KEAP1-NRF2 signaling and antioxidant response element driven gene expression. In this study, we show that sulforaphane enhances the expression of the transcriptional coregulator SPBP. The expression curve peaks 6-8 hours post stimulation, and parallels the sulforaphane-induced expression of NRF2 and the autophagy receptor protein p62/SQSTM1. Reporter gene assays show that SPBP stimulates the expression of p62/SQSTM1 via ARE elements in the promoter region, and siRNA mediated knock down of SPBP significantly decreases the expression of p62/SQSTM1 and the formation of p62/SQSTM1 bodies in HeLa cells. Furthermore, SPBP siRNA reduces the sulforaphane induced expression of NRF2, and the expression of the autophagy marker protein LC3B. Both these proteins contain ARE-like elements in their promoter regions. Over-expressed SPBP and NRF2 acts synergistically on the p62/SQSTM1 promoter and colocalize in nuclear speckles in HeLa cells. Collectively, these results suggest that SPBP is a coactivator of NRF2, and hence may be important for securing enhanced and sustained expression of NRF2 induced genes such as proteins involved in selective autophagy.

  7. Constitutive activation of Nrf2 induces a stable reductive state in the mouse myocardium

    Directory of Open Access Journals (Sweden)

    Gobinath Shanmugam

    2017-08-01

    Full Text Available Redox homeostasis regulates key cellular signaling pathways in both physiology and pathology. The cell's antioxidant response provides a defense against oxidative stress and establishes a redox tone permissive for cell signaling. The molecular regulation of the well-known Keap1/Nrf2 system acts as sensor responding to changes in redox homeostasis and is poorly studied in the heart. Importantly, it is not yet known whether Nrf2 alone can serve as a master regulator of cellular redox homeostasis without compensation of the transcriptional regulation of antioxidant response element (ARE genes through alternate mechanisms. Here, we addressed this question using cardiac-specific transgenic expression at two different levels of constitutively active nuclear erythroid related factor 2 (caNrf2 functioning independently of Keap1. The caNrf2 mice showed augmentation of glutathione (GSH, the key regulator of the cellular thiol redox state. The Trans-AM assay for Nrf2-binding to the antioxidant response element (ARE showed a dose-dependent increase associated with upregulation of several major antioxidant genes and proteins. This was accompanied by a significant decrease in dihydroethidium staining and malondialdehyde (MDA in the caNrf2-TG mice myocardium. Interestingly, caNrf2 gene-dosage dependent redox changes were noted resulting in generation of a multi-stage model of pro-reductive and reductive conditions in the myocardium of TG-low and TG-high mice, respectively. These data clearly show that Nrf2 levels alone are capable of serving as the master regulator of the ARE. These models provide an important platform to investigate the impact of the Nrf2 system independent of the need to regulate the activity of Keap1 and the consequent exposure to pro-oxidants or electrophiles, which have numerous off-target effects.

  8. Hawthorn (Crataegus oxyacantha L.) bark extract regulates antioxidant response element (ARE)-mediated enzyme expression via Nrf2 pathway activation in normal hepatocyte cell line.

    Science.gov (United States)

    Krajka-Kuźniak, Violetta; Paluszczak, Jarosław; Oszmiański, Jan; Baer-Dubowska, Wanda

    2014-04-01

    Hawthorn (Crataegus oxyacantha L.), a plant used in traditional medicine, is a rich source of procyanidins which have been reported to exhibit antioxidant and anti-carcinogenic activity. In this study, we assessed the effect of hawthorn bark extract (HBE) on Nrf2 pathway activation in THLE-2 and HepG2 cells. Treatment with 1.1 µg/mL, 5.5 µg/mL and 11 µg/mL of HBE resulted in the translocation of Nrf2 from the cytosol to the nucleus in both cell lines; however, the accumulation of phosphorylated Nrf2 was observed only in THLE-2. Accordingly, treatment of cells with HBE was associated with an increase in the mRNA and protein level of such Nrf2-dependent genes as glutathione S-transferases (GSTA, GSTP, GSTM, GSTT), NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) (0.2-1.1-fold change, p < 0.05), however, only in normal THLE-2 hepatocytes. The induction of NQO1 correlated with an increased level of p53 (0.21-0.42-fold change, p < 0.05). These effects may be related to induction of phosphorylation of upstream ERK and JNK kinases. Collectively, the results suggest that the Nrf2/ARE pathway may play an important role in the regulation of procyanidin-mediated antioxidant/detoxifying effects in hepatocytes, and this may explain the hepatoprotective and chemopreventive properties of these phytochemicals. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Targeting NRF2 signaling for cancer chemoprevention

    International Nuclear Information System (INIS)

    Kwak, Mi-Kyoung; Kensler, Thomas W.

    2010-01-01

    Modulation of the metabolism and disposition of carcinogens through induction of cytoprotective enzymes is one of several promising strategies to prevent cancer. Chemopreventive efficacies of inducers such as dithiolethiones and sulforaphane have been extensively studied in animals as well as in humans. The KEAP1-NRF2 system is a key, but not unilateral, molecular target for these chemopreventive agents. The transcription factor NRF2 (NF-E2-related factor 2) is a master regulator of the expression of a subset of genes, which produce proteins responsible for the detoxication of electrophiles and reactive oxygen species as well as the removal or repair of some of their damage products. It is believed that chemopreventive enzyme inducers affect the interaction between KEAP1 and NRF2 through either mediating conformational changes of the KEAP1 protein or activating phosphorylation cascades targeting the KEAP1-NRF2 complex. These events in turn affect NRF2 stability and trafficking. Recent advances elucidating the underlying structural biology of KEAP1-NRF2 signaling and identification of the gene clusters under the transcriptional control of NRF2 are facilitating understanding of the potential pleiotropic effects of NRF2 activators and discovery of novel classes of potent chemopreventive agents such as the triterpenoids. Although there is appropriately a concern regarding a deleterious role of the KEAP1-NRF2 system in cancer cell biology, especially as the pathway affects cell survival and drug resistance, the development and the use of NRF2 activators as chemopreventive agents still holds a great promise for protection of normal cells from a diversity of environmental stresses that contribute to the burden of cancer and other chronic, degenerative diseases.

  10. RNAi Screen for NRF2 Inducers Identifies Targets That Rescue Primary Lung Epithelial Cells from Cigarette Smoke Induced Radical Stress.

    Directory of Open Access Journals (Sweden)

    Frances-Rose Schumacher

    Full Text Available Chronic Obstructive Pulmonary Disease (COPD is a highly prevalent condition characterized by inflammation and progressive obstruction of the airways. At present, there is no treatment that suppresses the chronic inflammation of the disease, and COPD patients often succumb to the condition. Excessive oxidative stress caused by smoke inhalation is a major driving force of the disease. The transcription factor NRF2 is a critical player in the battle against oxidative stress and its function is impaired in COPD. Increasing NRF2 activity may therefore be a viable therapeutic option for COPD treatment. We show that down regulation of KEAP1, a NRF2 inhibitor, protects primary human lung epithelial cells from cigarette-smoke-extract (CSE induced cell death in an established in vitro model of radical stress. To identify new potential drug targets with a similar effect, we performed a siRNA screen of the 'druggable' genome using a NRF2 transcriptional reporter cell line. This screen identified multiple genes that when down regulated increased NRF2 transcriptional activity and provided a survival benefit in the in vitro model. Our results suggest that inhibiting components of the ubiquitin-proteasome system will have the strongest effects on NRF2 transcriptional activity by increasing NRF2 levels. We also find that down regulation of the small GTPase Rab28 or the Estrogen Receptor ESRRA provide a survival benefit. Rab28 knockdown increased NRF2 protein levels, indicating that Rab28 may regulate NRF2 proteolysis. Conversely ESRRA down regulation increased NRF2 transcriptional activity without affecting NRF2 levels, suggesting a proteasome-independent mechanism.

  11. Close teamwork between Nrf2 and peroxiredoxins 1 and 6 for the regulation of prostaglandin D2 and E2 production in macrophages in acute inflammation.

    Science.gov (United States)

    Ishii, Tetsuro

    2015-11-01

    Inflammation is a complex biological self-defense reaction triggered by tissue damage or infection by pathogens. Acute inflammation is regulated by the time- and cell type-dependent production of cytokines and small signaling molecules including reactive oxygen species and prostaglandins. Recent studies have unveiled the important role of the transcription factor Nrf2 in the regulation of prostaglandin production through transcriptional regulation of peroxiredoxins 1 and 6 (Prx1 and Prx6) and lipocalin-type prostaglandin D synthase (L-PGDS). Prx1 and Prx6 are multifunctional proteins important for cell protection against oxidative stress, but also work together to facilitate production of prostaglandins E2 and D2 (PGE2 and PGD2). Prx1 secreted from cells under mild oxidative stress binds Toll-like receptor 4 and induces NF-κB activation, important for the expression of cyclooxygenase-2 and microsomal PGE synthase-1 (mPGES-1) expression. The activated MAPKs p38 and ERK phosphorylate Prx6, leading to NADPH oxidase-2 activation, which contributes to production of PGD2 by hematopoietic prostaglandin D synthase (H-PGDS). PGD2 and its end product 15-deoxy-∆(12,14)-prostaglandin J2 (15d-PGJ2) activate Nrf2 thereby forming a positive feedback loop for further production of PGD2 by L-PGDS. Maintenance of cellular glutathione levels is an important role of Nrf2 not only for cell protection but also for the synthesis of prostaglandins, as mPGES-1 and H-PGDS require glutathione for their activities. This review is aimed at describing the functions of Prx1 and Prx6 in the regulation of PGD2 and PGE2 production in acute inflammation in macrophages and the importance of 15d-PGJ2 as an intrinsic Nrf2 activator. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The rise of antioxidant signaling-The evolution and hormetic actions of Nrf2

    International Nuclear Information System (INIS)

    Maher, Jonathan; Yamamoto, Masayuki

    2010-01-01

    Organisms have evolved sophisticated and redundant mechanisms to manage oxidative and electrophilic challenges that arise from internal metabolism or xenobiotic challenge for survival. NF-E2-related factor 2 (Nrf2) is a transcription factor that has evolved over millennia from primitive origins, with homologues traceable back to invertebrate Caenorhabditis and Drosophila species. The ancestry of Nrf2 clearly has deep-seated roots in hematopoiesis, yet has diversified into a transcription factor that can mediate a multitude of antioxidant signaling and detoxification genes. In higher organisms, a more sophisticated means of tightly regulating Nrf2 activity was introduced via the cysteine-rich kelch-like ECH-associated protein 1 (Keap1), thus suggesting a need to modulate Nrf2 activity. This is evidenced in Keap1 -/- mice, which succumb to juvenile mortality due to hyperkeratosis of the gastrointestinal tract. Although Nrf2 activation protects against acute toxicity and prevents or attenuates several disease states, constitutive activation in some tumors leads to poor clinical outcomes, suggesting Nrf2 has evolved in response to a multitude of selective pressures. The purpose of this review is to examine the origins of Nrf2, while highlighting the versatility and protective abilities elicited upon activation. Various model systems in which Nrf2 is normally beneficial but in which exaggerated pharmacology exacerbates a physiological or pathological condition will be addressed. Although Darwinian principles have selected Nrf2 activity for maximal beneficial effect based on environmental and oxidative challenge, both sub- or super-physiological effects have been noted to be detrimental. The functions of Nrf2 thus suggest a hormetic factor that has evolved empirically over time.

  13. Adaphostin toxicity in a sensitive non-small cell lung cancer model is mediated through Nrf2 signaling and heme oxygenase 1

    Directory of Open Access Journals (Sweden)

    Monks Anne

    2010-07-01

    Full Text Available Abstract Background Preclinical toxicity of adaphostin has been related to oxidative stress. This study investigated the regulatory mechanism underlying adaphostin induction of heme oxygenase 1 (HMOX1 which plays a significant role in modulation of drug-induced toxicity in the non-small cell lung cancer cell line model, NCI-H522. Methods The transcriptional response of NCI-H522 to adaphostin prominently involved oxidative stress genes, particularly HMOX1. Reactive oxygen species (ROS involvement was additionally established by generation of ROS prior to modulation of adaphostin-toxicity with antioxidants. To identify up-stream regulatory elements of HMOX1, immunofluorescence was used to evaluate nuclear translocation of the transcription factor, NF-E2-related factor 2 (Nrf2, in the presence of adaphostin. The PI3-kinase inhibitor, wortmannin, was employed as a pharmacological inhibitor of this process. Results Generation of ROS provided a substantial foundation for the sensitivity of NCI-H522 to adaphostin. However, in contrast to leukemia cell lines, transcriptional response to oxidative stress was associated with induction of HMOX1, which was dependent on nuclear translocation of the transcription factor, Nrf2. Pretreatment of cells with wortmannin inhibited translocation of Nrf2 and induction of HMOX1. Wortmannin pretreatment was also able to diminish adaphostin induction of HMOX1, and as a consequence, enhance the toxicity of adaphostin to NCI-H522. Conclusions Adaphostin-induced oxidative stress in NCI-H522 was mediated through nuclear translocation of Nrf2 leading to upregulation of HMOX1. Inhibition of Nrf2 translocation by wortmannin inhibited this cytoprotective response, and enhanced the toxicity of adaphostin, suggesting that inhibitors of the PI3K pathway, such as wortmannin, might augment the antiproliferative effects of adaphostin in solid tumors that depend on the Nrf2/ARE pathway for protection against oxidative stress.

  14. Adaphostin toxicity in a sensitive non-small cell lung cancer model is mediated through Nrf2 signaling and heme oxygenase 1.

    Science.gov (United States)

    Fer, Nicole D; Shoemaker, Robert H; Monks, Anne

    2010-07-09

    Preclinical toxicity of adaphostin has been related to oxidative stress. This study investigated the regulatory mechanism underlying adaphostin induction of heme oxygenase 1 (HMOX1) which plays a significant role in modulation of drug-induced toxicity in the non-small cell lung cancer cell line model, NCI-H522. The transcriptional response of NCI-H522 to adaphostin prominently involved oxidative stress genes, particularly HMOX1. Reactive oxygen species (ROS) involvement was additionally established by generation of ROS prior to modulation of adaphostin-toxicity with antioxidants. To identify up-stream regulatory elements of HMOX1, immunofluorescence was used to evaluate nuclear translocation of the transcription factor, NF-E2-related factor 2 (Nrf2), in the presence of adaphostin. The PI3-kinase inhibitor, wortmannin, was employed as a pharmacological inhibitor of this process. Generation of ROS provided a substantial foundation for the sensitivity of NCI-H522 to adaphostin. However, in contrast to leukemia cell lines, transcriptional response to oxidative stress was associated with induction of HMOX1, which was dependent on nuclear translocation of the transcription factor, Nrf2. Pretreatment of cells with wortmannin inhibited translocation of Nrf2 and induction of HMOX1. Wortmannin pretreatment was also able to diminish adaphostin induction of HMOX1, and as a consequence, enhance the toxicity of adaphostin to NCI-H522. Adaphostin-induced oxidative stress in NCI-H522 was mediated through nuclear translocation of Nrf2 leading to upregulation of HMOX1. Inhibition of Nrf2 translocation by wortmannin inhibited this cytoprotective response, and enhanced the toxicity of adaphostin, suggesting that inhibitors of the PI3K pathway, such as wortmannin, might augment the antiproliferative effects of adaphostin in solid tumors that depend on the Nrf2/ARE pathway for protection against oxidative stress.

  15. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer's disease.

    Science.gov (United States)

    Zhao, Fangfang; Zhang, Jianlei; Chang, Na

    2018-04-05

    Sulforaphane was reported to exert neuroprotective effects via upregulating expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and has received increasing attention as an alternative candidate for treatment of Alzheimer's disease (AD). However, the mechanism to account for Nrf2 upregulation by sulforaphane in AD remains unknown. Herein, we found that sulforaphane upregulated Nrf2 expression and promoted Nrf2 nuclear translocation via decreasing DNA methylation levels of the Nrf2 promoter in mouse neuroblastoma N2a cells stably expressing human Swedish mutant amyloid precursor protein (N2a/APPswe cells), a cellular model of AD. Furthermore, sulforaphane (1.25 and 2.5 μM) decreased the levels of amyloid β 1-40 (Aβ 1-40 ) (21.7% and 33.4% decrease for intracellular Aβ 1-40 ; 22.0% and 30.2% decrease in culture medium), Aβ 1-42 (26.4% and 42.9% decrease for intracellular Aβ 1-42 ; 25.8% and 43.8% decrease in culture medium), reactive oxygen species (15.0% and 28.5% decrease), and malondialdehyde (MDA) (34.4% and 39.2% decrease) and increased superoxide dismutase (SOD) (60.0% and 89.3% increase) activity in N2a/APPswe cells. Sulforaphane also decreased the levels of pro-inflammatory cytokines interleukin 1β (IL-1β) (16.5% and 33.6% decrease) and IL-6 (15.6% and 26.1% decrease) and reduced phosphorylated nuclear factor-κB (NF-κB) p65 (19.2% and 32.2% decrease), cyclooxygenase-2 (COX-2) (20.5% and 28.6% decrease), and iNOS protein (40.2% and 54.7% decrease) expression levels in N2a/APPswe cells. Our study suggested that sulforaphane upregulated the expression of Nrf2 and promoted the nuclear translocation of Nrf2 by decreasing DNA demethylation levels of the Nrf2 promoter, thus leading to antioxidative and anti-inflammatory effects in a cellular model of AD. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Nrf2 mediates redox adaptations to exercise

    Directory of Open Access Journals (Sweden)

    Aaron J. Done

    2016-12-01

    Full Text Available The primary aim of this review is to summarize the current literature on the effects of acute exercise and regular exercise on nuclear factor erythroid 2-related factor 2 (Nrf2 activity and downstream targets of Nrf2 signaling. Nrf2 (encoded in humans by the NFE2L2 gene is the master regulator of antioxidant defenses, a transcription factor that regulates expression of more than 200 cytoprotective genes. Increasing evidence indicates that Nrf2 signaling plays a key role in how oxidative stress mediates the beneficial effects of exercise. Episodic increases in oxidative stress induced through bouts of acute exercise stimulate Nrf2 activation and when applied repeatedly, as with regular exercise, leads to upregulation of endogenous antioxidant defenses and overall greater ability to counteract the damaging effects of oxidative stress. The evidence of Nrf2 activation in response to exercise across variety of tissues may be an important mechanism of how exercise exerts its well-known systemic effects that are not limited to skeletal muscle and myocardium. Additionally there are emerging data that results from animal studies translate to humans.

  17. Beneficial Role of Some Natural Products to Attenuate the Diabetic Cardiomyopathy Through Nrf2 Pathway in Cell Culture and Animal Models.

    Science.gov (United States)

    Sathibabu Uddandrao, V V; Brahmanaidu, Parim; Nivedha, P R; Vadivukkarasi, S; Saravanan, Ganapathy

    2017-10-27

    Diabetic cardiomyopathy, as one of the main cardiac complications in diabetic patients, is identified to connect with oxidative stress that is due to interruption in balance between reactive oxygen species or/and reactive nitrogen species generation and their clearance by antioxidant protection systems. Transcription factor the nuclear factor erythroid 2-related factor 2 (Nrf2) plays a significant role in maintaining the oxidative homeostasis by regulating multiple downstream antioxidants. The Nrf2 plays a significant role in ARE-mediated basal and inducible expression of more than 200 genes that can be grouped into numerous categories as well as antioxidant genes and phase II detoxifying enzymes. On the other hand, activation of Nrf2 by natural and synthetic therapeutics or antioxidants has been revealed effective for the prevention and treatment of toxicities and diseases connected with oxidative stress. Hence, recently focus has been shifted toward plants and plant-based medicines in curing such chronic diseases, as they are supposed to be less toxic. In this review, we focused on the role of some natural products on diabetic cardiomyopathy through Nrf2 pathway.

  18. Nrf2 activation prevents cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai C. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie J. [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  19. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model.

    Science.gov (United States)

    Li, Xue; Xie, Xiaoyun; Lian, Weishuai; Shi, Rongfeng; Han, Shilong; Zhang, Haijun; Lu, Ligong; Li, Maoquan

    2018-04-13

    Diabetic foot ulcers (DFU) increase the risks of infection and amputation in patients with diabetes mellitus (DM). The impaired function and senescence of endothelial progenitor cells (EPCs) and high glucose-induced ROS likely exacerbate DFUs. We assessed EPCs in 60 patients with DM in a hospital or primary care setting. We also evaluated the therapeutic effects of exosomes secreted from adipose-derived stem cells (ADSCs) on stress-mediated senescence of EPCs induced by high glucose. Additionally, the effects of exosomes and Nrf2 overexpression in ADSCs were investigated in vitro and in vivo in a diabetic rat model. We found that ADSCs that secreted exosomes promoted proliferation and angiopoiesis in EPCs in a high glucose environment and that overexpression of Nrf2 increased this protective effect. Wounds in the feet of diabetic rats had a significantly reduced ulcerated area when treated with exosomes from ADSCs overexpressing Nrf2. Increased granulation tissue formation, angiogenesis, and levels of growth factor expression as well as reduced levels of inflammation and oxidative stress-related proteins were detected in wound beds. Our data suggest that exosomes from ADSCs can potentially promote wound healing, particularly when overexpressing Nrf2 and therefore that the transplantation of exosomes may be suitable for clinical application in the treatment of DFUs.

  20. Acupuncture ameliorates cognitive impairment and hippocampus neuronal loss in experimental vascular dementia through Nrf2-mediated antioxidant response.

    Science.gov (United States)

    Wang, Xue-Rui; Shi, Guang-Xia; Yang, Jing-Wen; Yan, Chao-Qun; Lin, Li-Ting; Du, Si-Qi; Zhu, Wen; He, Tian; Zeng, Xiang-Hong; Xu, Qian; Liu, Cun-Zhi

    2015-12-01

    Emerging evidence suggests acupuncture could exert neuroprotection in the vascular dementia via anti-oxidative effects. However, the involvement of Nrf2, a master regulator of antioxidant defense, in acupuncture-induced neuroprotection in vascular dementia remains undetermined. The goal of our study was to investigate the contribution of Nrf2 in acupuncture and its effects on vascular dementia. Morris water maze and Nissl staining were used to assess the effect of acupuncture on cognitive function and hippocampal neurodegeneration in experimental vascular dementia. The distribution of Nrf2 in neurons in hippocampus, the protein expression of Nrf2 in both cytosol and nucleus, and the protein and mRNA levels of its downstream target genes NQO1 and HO-1 were detected by double immunofluorescent staining, Western blotting and realtime PCR analysis respectively. Cognitive function and microglia activation were measured in both wild-type and Nrf2 gene knockout mice after acupuncture treatment. We found that acupuncture could remarkably reverse the cognitive deficits, neuron cell loss, reactive oxygen species production, and decreased cerebral blood flow. It was notable that acupuncture enhanced nuclear translocation of Nrf2 in neurons and up-regulate the protein and mRNA levels of Nrf2 and its target genes HO-1 and NQO1. Moreover, acupuncture could significantly down-regulated the over-activation of microglia after common carotid artery occlusion surgery. However, the reversed cognitive deficits, neuron cell loss and microglia activation by acupuncture were abolished in Nrf2 gene knockout mice. In conclusion, these findings provide evidence that the neuroprotection of acupuncture in models of vascular dementia was via the Nrf2 activation and Nrf2-dependent microglia activation. Copyright © 2015. Published by Elsevier Inc.

  1. Translational control of Nrf2 within the open reading frame

    International Nuclear Information System (INIS)

    Perez-Leal, Oscar; Barrero, Carlos A.; Merali, Salim

    2013-01-01

    Highlights: •Identification of a novel Nrf2 translational repression mechanism. •The repressor is within the 3′ portion of the Nrf2 ORF. •The translation of Nrf2 or eGFP is reduced by the regulatory element. •The translational repression can be reversed with synonymous codon substitutions. •The molecular mechanism requires the mRNA sequence, but not the encoded amino acids. -- Abstract: Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is a transcription factor that is essential for the regulation of an effective antioxidant and detoxifying response. The regulation of its activity can occur at transcription, translation and post-translational levels. Evidence suggests that under environmental stress conditions, new synthesis of Nrf2 is required – a process that is regulated by translational control and is not fully understood. Here we described the identification of a novel molecular process that under basal conditions strongly represses the translation of Nrf2 within the open reading frame (ORF). This mechanism is dependent on the mRNA sequence within the 3′ portion of the ORF of Nrf2 but not in the encoded amino acid sequence. The Nrf2 translational repression can be reversed with the use of synonymous codon substitutions. This discovery suggests an additional layer of control to explain the reason for the low Nrf2 concentration under quiescent state

  2. Nrf2 activation involves an oxidative-stress independent pathway in tetrafluoroethylcysteine-induced cytotoxicity.

    Science.gov (United States)

    Ho, Han K; White, Collin C; Fernandez, Carolina; Fausto, Nelson; Kavanagh, Terrance J; Nelson, Sidney D; Bruschi, Sam A

    2005-08-01

    Tetrafluoroethylcysteine (TFEC), a metabolite of the industrial gas tetrafluoroethylene, can cause both nephrotoxicity and limited hepatotoxicity in animal models, and this is associated with the covalent modification of specific intramitochondrial proteins including heat shock protein 60 (HSP60), mitochondrial HSP70 (mtHSP70), aspartate aminotransferase (AST), aconitase, and alpha-ketoglutarate dehydrogenase (alphaKGDH). Using the murine TAMH cell line as a useful in vitro model for TFEC toxicity, we demonstrate a rapid and sustained induction of Nrf2, a member of the "cap-and-collar" transcription factor family, following exposure to cytotoxic concentrations of TFEC. A functional correlate was also established with the rapid translocation of cytosolic Nrf2 into the nucleus. In addition, transcriptional and translational upregulation of known Nrf2 regulated genes including glutamate cysteine ligase (GCL), both catalytic and modulatory subunits, heme oxygenase-1, and glutathione S-transferase (GST) isoforms were detected. While Nrf2 activation is often linked to perturbation of cellular thiol status and/or oxidative stress, we were unable to detect any significant depletion of cellular glutathione or oxidation of mitochondrial membrane cardiolipin or increases in reactive oxygen species (ROS). These data suggest Nrf2 activation is likely independent of classical oxidative stress or, at best, a result of a transient, low-level redox stress. Moreover, supporting evidence indicates an early endoplasmic reticular (ER) stress response after TFEC treatment, with a time-dependent upregulation of the ER responsive genes gadd34, gadd45, gadd153, and ndr1 . These findings suggest an alternative pathway for Nrf2 activation, i.e., Nrf2 phosphorylation through ER-mediated protein kinases such as PKR-like endoplasmic reticular kinase (PERK). Overall, the results implicate a role for Nrf2 in the cellular response to TFEC toxicity and suggest a previously unrecognized role for the

  3. Tanshinone I Activates the Nrf2-Dependent Antioxidant Response and Protects Against As(III)-Induced Lung Inflammation In Vitro and In Vivo

    Science.gov (United States)

    Tao, Shasha; Zheng, Yi; Lau, Alexandria; Jaramillo, Melba C.; Chau, Binh T.; Lantz, R. Clark; Wong, Pak K.

    2013-01-01

    Abstract Aims: The NF-E2 p45-related factor 2 (Nrf2) signaling pathway regulates the cellular antioxidant response and activation of Nrf2 has recently been shown to limit tissue damage from exposure to environmental toxicants, including As(III). In an attempt to identify improved molecular agents for systemic protection against environmental insults, we have focused on the identification of novel medicinal plant-derived Nrf2 activators. Results: Tanshinones [tanshinone I (T-I), tanshinone IIA, dihydrotanshinone, cryptotanshinone], phenanthrenequinone-based redox therapeutics derived from the medicinal herb Salvia miltiorrhiza, have been tested as experimental therapeutics for Nrf2-dependent cytoprotection. Using a dual luciferase reporter assay overexpressing wild-type or mutant Kelch-like ECH-associated protein-1 (Keap1), we demonstrate that T-I is a potent Keap1-C151-dependent Nrf2 activator that stabilizes Nrf2 by hindering its ubiquitination. In human bronchial epithelial cells exposed to As(III), T-I displays pronounced cytoprotective activity with upregulation of Nrf2-orchestrated gene expression. In Nrf2 wild-type mice, systemic administration of T-I attenuates As(III) induced inflammatory lung damage, a protective effect not observed in Nrf2 knockout mice. Innovation: Tanshinones have been identified as a novel class of Nrf2-inducers for antioxidant tissue protection in an in vivo As(III) inhalation model, that is relevant to low doses of environmental exposure. Conclusion: T-I represents a prototype Nrf2-activator that displays cytoprotective activity upon systemic administration targeting lung damage originating from environmental insults. T-I based Nrf2-directed systemic intervention may provide therapeutic benefit in protecting other organs against environmental insults. Antioxid. Redox Signal. 19, 1647–1661. PMID:23394605

  4. Ferulic acid (FA) abrogates γ-radiation induced oxidative stress and DNA damage by up-regulating nuclear translocation of Nrf2 and activation of NHEJ pathway.

    Science.gov (United States)

    Das, Ujjal; Manna, Krishnendu; Khan, Amitava; Sinha, Mahuya; Biswas, Sushobhan; Sengupta, Aaveri; Chakraborty, Anindita; Dey, Sanjit

    2017-01-01

    The present study was aimed to evaluate the radioprotective effect of ferulic acid (FA), a naturally occurring plant flavonoid in terms of DNA damage and damage related alterations of repair pathways by gamma radiation. FA was administered at a dose of 50 mg/kg body weight for five consecutive days prior to exposing the swiss albino mice to a single dose of 10 Gy gamma radiation. Ionising radiation induces oxidative damage manifested by decreased expression of Cu, Zn-SOD (SOD stands for super oxide dismutase), Mn-SOD and catalase. Gamma radiation promulgated reactive oxygen species (ROS) mediated DNA damage and modified repair pathways. ROS enhanced nuclear translocation of p53, activated ATM (ataxia telangiectasia-mutated protein), increased expression of GADD45a (growth arrest and DNA-damage-inducible protein) gene and inactivated Non homologous end joining (NHEJ) repair pathway. The comet formation in irradiated mice peripheral blood mononuclear cells (PBMC) reiterated the DNA damage in IR exposed groups. FA pretreatment significantly prevented the comet formation and regulated the nuclear translocation of p53, inhibited ATM activation and expression of GADD45a gene. FA promoted the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and activated NHEJ repair pathway to overcome ROS mediated oxidative stress and DNA damage. Therefore, the current study stated that FA can challenge the oxidative stress by (i) inducing nuclear translocation of Nrf2, (ii) scavenging ROS, and (iii) activating NHEJ DNA repair process.

  5. Effect of Redox Modulating NRF2 Activators on Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Bo-hyun Choi

    2014-08-01

    Full Text Available Chronic kidney disease (CKD is featured by a progressive decline of kidney function and is mainly caused by chronic diseases such as diabetes mellitus and hypertension. CKD is a complex disease due to cardiovascular complications and high morbidity; however, there is no single treatment to improve kidney function in CKD patients. Since biological markers representing oxidative stress are significantly elevated in CKD patients, oxidative stress is receiving attention as a contributing factor to CKD pathology. Nuclear factor erythroid-2 related factor 2 (NRF2 is a predominant transcription factor that regulates the expression of a wide array of genes encoding antioxidant proteins, thiol molecules and their generating enzymes, detoxifying enzymes, and stress response proteins, all of which can counteract inflammatory and oxidative damages. There is considerable experimental evidence suggesting that NRF2 signaling plays a protective role in renal injuries that are caused by various pathologic conditions. In addition, impaired NRF2 activity and consequent target gene repression have been observed in CKD animals. Therefore, a pharmacological intervention activating NRF2 signaling can be beneficial in protecting against kidney dysfunction in CKD. This review article provides an overview of the role of NRF2 in experimental CKD models and describes current findings on the renoprotective effects of naturally occurring NRF2 activators, including sulforaphane, resveratrol, curcumin, and cinnamic aldehyde. These experimental results, coupled with recent clinical experiences with a synthetic triterpenoid, bardoxolone methyl, have brought a light of hope for ameliorating CKD progression by preventing oxidative stress and maintaining cellular redox homeostasis.

  6. Effects of Nrf2 deficiency on arsenic metabolism in mice.

    Science.gov (United States)

    Wang, Huihui; Zhu, Jiayu; Li, Lu; Li, Yongfang; Lv, Hang; Xu, Yuanyuan; Sun, Guifan; Pi, Jingbo

    2017-12-15

    Inorganic arsenic (iAs) is a known toxicant and carcinogen. Worldwide arsenic exposure has become a threat to human health. The severity of arsenic toxicity is strongly correlated with the speed of arsenic metabolism (methylation) and clearance. Furthermore, oxidative stress is recognized as a major mechanism for arsenic-induced toxicity. Nuclear factor-E2-related factor 2 (Nrf2), a key regulator in cellular adaptive antioxidant response, is clearly involved in alleviation of arsenic-induced oxidative damage. Multiple studies demonstrate that Nrf2 deficiency mice are more vulnerable to arsenic-induced intoxication. However, what effect Nrf2 deficiency might have on arsenic metabolism in mice is still unknown. In the present study, we measured the key enzymes involved in arsenic metabolism in Nrf2-WT and Nrf2-KO mice. Our results showed that basal transcript levels of glutathione S-transferase omega 2 (Gsto2) were significantly higher and GST mu 1 (Gstm1) lower in Nrf2-KO mice compared to Nrf2-WT control. Arsenic speciation and methylation rate in liver and urine was then studied in mice treated with 5mg/kg sodium arsenite for 12h. Although there were some alterations in arsenic metabolism enzymes between Nrf2-WT and Nrf2-KO mice, the Nrf2 deficiency had no significant effect on arsenic methylation. These results suggest that the Nrf2-KO mice are more sensitive to arsenic than Nrf2-WT mainly because of differences in adaptive antioxidant detoxification capacity rather than arsenic methylation capacity. Copyright © 2017. Published by Elsevier Inc.

  7. Therapeutic advantage of pro-electrophilic drugs to activate the Nrf2/ARE pathway in Alzheimer's disease models.

    Science.gov (United States)

    Lipton, Stuart A; Rezaie, Tayebeh; Nutter, Anthony; Lopez, Kevin M; Parker, James; Kosaka, Kunio; Satoh, Takumi; McKercher, Scott R; Masliah, Eliezer; Nakanishi, Nobuki

    2016-12-01

    Alzheimer's disease (AD) is characterized by synaptic and neuronal loss, which occurs at least partially through oxidative stress induced by oligomeric amyloid-β (Aβ)-peptide. Carnosic acid (CA), a chemical found in rosemary and sage, is a pro-electrophilic compound that is converted to its active form by oxidative stress. The active form stimulates the Keap1/Nrf2 transcriptional pathway and thus production of phase 2 antioxidant enzymes. We used both in vitro and in vivo models. For in vitro studies, we evaluated protective effects of CA on primary neurons exposed to oligomeric Aβ. For in vivo studies, we used two transgenic mouse models of AD, human amyloid precursor protein (hAPP)-J20 mice and triple transgenic (3xTg AD) mice. We treated these mice trans-nasally with CA twice weekly for 3 months. Subsequently, we performed neurobehavioral tests and quantitative immunohistochemistry to assess effects on AD-related phenotypes, including learning and memory, and synaptic damage. In vitro, CA reduced dendritic spine loss in rat neurons exposed to oligomeric Aβ. In vivo, CA treatment of hAPP-J20 mice improved learning and memory in the Morris water maze test. Histologically, CA increased dendritic and synaptic markers, and decreased astrogliosis, Aβ plaque number, and phospho-tau staining in the hippocampus. We conclude that CA exhibits therapeutic benefits in rodent AD models and since the FDA has placed CA on the 'generally regarded as safe' (GRAS) list, thus obviating the need for safety studies, human clinical trials will be greatly expedited.

  8. Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson's disease through an NRF2-dependent mechanism.

    Science.gov (United States)

    Trinh, Kien; Andrews, Laurie; Krause, James; Hanak, Tyler; Lee, Daewoo; Gelb, Michael; Pallanck, Leo

    2010-04-21

    Epidemiological studies have revealed a significantly reduced risk of Parkinson's disease (PD) among coffee and tobacco users, although it is unclear whether these correlations reflect neuroprotective/symptomatic effects of these agents or preexisting differences in the brains of tobacco and coffee users. Here, we report that coffee and tobacco, but not caffeine or nicotine, are neuroprotective in fly PD models. We further report that decaffeinated coffee and nicotine-free tobacco are as neuroprotective as their caffeine and nicotine-containing counterparts and that the neuroprotective effects of decaffeinated coffee and nicotine-free tobacco are also evident in Drosophila models of Alzheimer's disease and polyglutamine disease. Finally, we report that the neuroprotective effects of decaffeinated coffee and nicotine-free tobacco require the cytoprotective transcription factor Nrf2 and that a known Nrf2 activator in coffee, cafestol, is also able to confer neuroprotection in our fly models of PD. Our findings indicate that coffee and tobacco contain Nrf2-activating compounds that may account for the reduced risk of PD among coffee and tobacco users. These compounds represent attractive candidates for therapeutic intervention in PD and perhaps other neurodegenerative diseases.

  9. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs.

    Science.gov (United States)

    Pan, Xiaoqi; Wu, Xu; Yan, Dandan; Peng, Cheng; Rao, Chaolong; Yan, Hong

    2018-05-15

    Acrylamide (ACR) is a classic neurotoxin in animals and humans. However, the mechanism underlying ACR neurotoxicity remains controversial, and effective prevention and treatment measures against this condition are scarce. This study focused on clarifying the crosstalk between the involved signaling pathways in ACR-induced oxidative stress and inflammatory response and investigating the protective effect of antioxidant N-acetylcysteine (NAC) against ACR in PC12 cells. Results revealed that ACR exposure led to oxidative stress characterized by significant increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels and glutathione (GSH) consumption. Inflammatory response was observed based on the dose-dependently increased levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6). NAC attenuated ACR-induced enhancement of MDA and ROS levels and TNF-α generation. In addition, ACR activated nuclear transcription factor E2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. Knockdown of Nrf2 by siRNA significantly blocked the increased NF-κB p65 protein expression in ACR-treated PC12 cells. Down-regulation of NF-κB by specific inhibitor BAY11-7082 similarly reduced ACR-induced increase in Nrf2 protein expression. NAC treatment increased Nrf2 expression and suppressed NF-κB p65 expression to ameliorate oxidative stress and inflammatory response caused by ACR. Further results showed that mitogen-activated protein kinases (MAPKs) pathway was activated prior to the activation of Nrf2 and NF-κB pathways. Inhibition of MAPKs blocked Nrf2 and NF-κB pathways. Collectively, ACR activated Nrf2 and NF-κB pathways which were regulated by MAPKs. A crosstalk between Nrf2 and NF-κB pathways existed in ACR-induced cell damage. NAC protected against oxidative damage and inflammatory response induced by ACR by activating Nrf2 and inhibiting NF-κB pathways in PC12 cells. Copyright © 2018 Elsevier B

  10. NRF2 Protection against Liver Injury Produced by Various Hepatotoxicants

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2013-01-01

    Full Text Available To investigate the role of Nrf2 as a master defense against the hepatotoxicity produced by various chemicals, Nrf2-null, wild-type, Keap1-knock down (Keap1-Kd and Keap1-hepatocyte knockout (Keap1-HKO mice were used as a “graded Nrf2 activation” model. Mice were treated with 14 hepatotoxicants at appropriate doses, and blood and liver samples were collected thereafter (6 h to 7 days depending on the hepatotoxicant. Graded activation of Nrf2 offered a Nrf2-dependent protection against the hepatotoxicity produced by carbon tetrachloride, acetaminophen, microcystin, phalloidin, furosemide, cadmium, and lithocholic acid, as evidenced by serum alanine aminotransferase (ALT activities and by histopathology. Nrf2 activation also offered moderate protection against liver injury produced by ethanol, arsenic, bromobenzene, and allyl alcohol but had no effects on the hepatotoxicity produced by D-galactosamine/endotoxin and the Fas ligand antibody Jo-2. Graded Nrf2 activation reduced the expression of inflammatory genes (MIP-2, mKC, IL-1β, IL-6, and TNFα, oxidative stress genes (Ho-1, Egr1, ER stress genes (Gadd45 and Gadd153, and genes encoding cell death (Noxa, Bax, Bad, and caspase3. Thus, this study demonstrates that Nrf2 prevents the liver from many, but not all, hepatotoxicants. The Nrf2-mediated protection is accompanied by induction of antioxidant genes, suppression of inflammatory responses, and attenuation of oxidative stress.

  11. Targeted deletion of Nrf2 reduces urethane-induced lung tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Alison K Bauer

    Full Text Available Nrf2 is a key transcription factor that regulates cellular redox and defense responses. However, permanent Nrf2 activation in human lung carcinomas promotes pulmonary malignancy and chemoresistance. We tested the hypothesis that Nrf2 has cell survival properties and lack of Nrf2 suppresses chemically-induced pulmonary neoplasia by treating Nrf2(+/+ and Nrf2(-/- mice with urethane. Airway inflammation and injury were assessed by bronchoalveolar lavage analyses and histopathology, and lung tumors were analyzed by gross and histologic analysis. We used transcriptomics to assess Nrf2-dependent changes in pulmonary gene transcripts at multiple stages of neoplasia. Lung hyperpermeability, cell death and apoptosis, and inflammatory cell infiltration were significantly higher in Nrf2(-/- mice compared to Nrf2(+/+ mice 9 and 11 wk after urethane. Significantly fewer lung adenomas were found in Nrf2(-/- mice than in Nrf2(+/+ mice at 12 and 22 wk. Nrf2 modulated expression of genes involved cell-cell signaling, glutathione metabolism and oxidative stress response, and immune responses during early stage neoplasia. In lung tumors, Nrf2-altered genes had roles in transcriptional regulation of cell cycle and proliferation, carcinogenesis, organismal injury and abnormalities, xenobiotic metabolism, and cell-cell signaling genes. Collectively, Nrf2 deficiency decreased susceptibility to urethane-induced lung tumorigenesis in mice. Cell survival properties of Nrf2 were supported, at least in part, by reduced early death of initiated cells and heightened advantage for tumor cell expansion in Nrf2(+/+ mice relative to Nrf2(-/- mice. Our results were consistent with the concept that Nrf2 over-activation is an adaptive response of cancer conferring resistance to anti-cancer drugs and promoting malignancy.

  12. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice.

    Science.gov (United States)

    Chartoumpekis, Dionysios V; Ziros, Panos G; Psyrogiannis, Agathoklis I; Papavassiliou, Athanasios G; Kyriazopoulou, Venetsana E; Sykiotis, Gerasimos P; Habeos, Ioannis G

    2011-10-01

    Obesity is characterized by chronic oxidative stress. Fibroblast growth factor 21 (FGF21) has recently been identified as a novel hormone that regulates metabolism. NFE2-related factor 2 (Nrf2) is a transcription factor that orchestrates the expression of a battery of antioxidant and detoxification genes under both basal and stress conditions. The current study investigated the role of Nrf2 in a mouse model of long-term high-fat diet (HFD)-induced obesity and characterized its crosstalk to FGF21 in this process. Wild-type (WT) and Nrf2 knockout (Nrf2-KO) mice were fed an HFD for 180 days. During this period, food consumption and body weights were measured. Glucose metabolism was assessed by an intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test. Total RNA was prepared from liver and adipose tissue and was used for quantitative real-time RT-PCR. Fasting plasma was collected and analyzed for blood chemistries. The ST-2 cell line was used for transfection studies. Nrf2-KO mice were partially protected from HFD-induced obesity and developed a less insulin-resistant phenotype. Importantly, Nrf2-KO mice had higher plasma FGF21 levels and higher FGF21 mRNA levels in liver and white adipose tissue than WT mice. Thus, the altered metabolic phenotype of Nrf2-KO mice under HFD was associated with higher expression and abundance of FGF21. Consistently, the overexpression of Nrf2 in ST-2 cells resulted in decreased FGF21 mRNA levels as well as in suppressed activity of a FGF21 promoter luciferase reporter. The identification of Nrf2 as a novel regulator of FGF21 expands our understanding of the crosstalk between metabolism and stress defense.

  13. Andrographolide exerts anti-hepatitis C virus activity by up-regulating haeme oxygenase-1 via the p38 MAPK/Nrf2 pathway in human hepatoma cells.

    Science.gov (United States)

    Lee, Jin-Ching; Tseng, Chin-Kai; Young, Kung-Chia; Sun, Hung-Yu; Wang, Shainn-Wei; Chen, Wei-Chun; Lin, Chun-Kuang; Wu, Yu-Hsuan

    2014-01-01

    This study aimed to evaluate the anti-hepatitis C virus (HCV) activity of andrographolide, a diterpenoid lactone extracted from Andrographis paniculata, and to identify the signalling pathway involved in its antiviral action. Using HCV replicon and HCVcc infectious systems, we identified anti-HCV activity of andrographolide by measuring protein and RNA levels. A reporter activity assay was used to determine transcriptional regulation of anti-HCV agents. A specific inhibitor and short hairpin RNAs were used to investigate the mechanism responsible for the effect of andrographolide on HCV replication. In HCV replicon and HCVcc infectious systems, andrographolide time- and dose-dependently suppressed HCV replication. When combined with IFN-α, an inhibitor targeting HCV NS3/4A protease (telaprevir), or NS5B polymerase (PSI-7977), andrographolide exhibited a significant synergistic effect. Andrographolide up-regulated the expression of haeme oxygenase-1 (HO-1), leading to increased amounts of its metabolite biliverdin, which was found to suppress HCV replication by promoting the antiviral IFN responses and inhibiting NS3/4A protease activity. Significantly, these antiviral effects were attenuated by an HO-1-specific inhibitor or HO-1 gene knockdown, indicating that HO-1 contributed to the anti-HCV activity of andrographolide. Andrographolide activated p38 MAPK phosphorylation, which stimulated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated HO-1 expression, and this was found to be associated with its anti-HCV activity. Our results demonstrate that andrographolide has the potential to control HCV replication and suggest that targeting the Nrf2-HO-1 signalling pathway might be a promising strategy for drug development. © 2013 The British Pharmacological Society.

  14. Myopathic lamin mutations cause reductive stress and activate the nrf2/keap-1 pathway.

    Directory of Open Access Journals (Sweden)

    George Dialynas

    2015-05-01

    Full Text Available Mutations in the human LMNA gene cause muscular dystrophy by mechanisms that are incompletely understood. The LMNA gene encodes A-type lamins, intermediate filaments that form a network underlying the inner nuclear membrane, providing structural support for the nucleus and organizing the genome. To better understand the pathogenesis caused by mutant lamins, we performed a structural and functional analysis on LMNA missense mutations identified in muscular dystrophy patients. These mutations perturb the tertiary structure of the conserved A-type lamin Ig-fold domain. To identify the effects of these structural perturbations on lamin function, we modeled these mutations in Drosophila Lamin C and expressed the mutant lamins in muscle. We found that the structural perturbations had minimal dominant effects on nuclear stiffness, suggesting that the muscle pathology was not accompanied by major structural disruption of the peripheral nuclear lamina. However, subtle alterations in the lamina network and subnuclear reorganization of lamins remain possible. Affected muscles had cytoplasmic aggregation of lamins and additional nuclear envelope proteins. Transcription profiling revealed upregulation of many Nrf2 target genes. Nrf2 is normally sequestered in the cytoplasm by Keap-1. Under oxidative stress Nrf2 dissociates from Keap-1, translocates into the nucleus, and activates gene expression. Unexpectedly, biochemical analyses revealed high levels of reducing agents, indicative of reductive stress. The accumulation of cytoplasmic lamin aggregates correlated with elevated levels of the autophagy adaptor p62/SQSTM1, which also binds Keap-1, abrogating Nrf2 cytoplasmic sequestration, allowing Nrf2 nuclear translocation and target gene activation. Elevated p62/SQSTM1 and nuclear enrichment of Nrf2 were identified in muscle biopsies from the corresponding muscular dystrophy patients, validating the disease relevance of our Drosophila model. Thus, novel

  15. Antihyperalgesic Properties of Honokiol in Inflammatory Pain Models by Targeting of NF-κB and Nrf2 Signaling

    Directory of Open Access Journals (Sweden)

    Sidra Khalid

    2018-03-01

    Full Text Available The present study investigates the possible anti-nociceptive effect of intraperitoneal (i.p. honokiol: a phenolic compound originally isolated from Magnolia officinalis, in acute and chronic inflammatory pain models. Doses of 0.1, 5, and 10 mg/kg honokiol were administered in carrageenan induced pain and the dose (honokiol 10 mg/kg i.p. with most significant response among behavioral tests was selected for further experiments. The i.p. administration of honokiol inhibits mechanical hyperalgesia, mechanical allodynia, and thermal hyperalgesia, without causing any apparent toxicity. To elucidate the effect of honokiol on various cytokines and antioxidant enzymes, quantitative real-time-PCR was performed to determine the expression levels of pro-inflammatory cytokines and antioxidant enzymes. It is demonstrated that honokiol significantly reduced the expression levels of tumor necrosis factor (TNF-α, interleukin-1β (IL-1β, interleukin-6 (IL-6, and vascular endothelial growth factor (VEGF. Similarly, honokiol was also found to potentiate the expression of nuclear factor erythroid 2–related factor 2 (Nrf2, superoxide dismutase 2 (SOD2, and heme oxygenase-1 (HO-1 levels. Additionally, honokiol significantly reduced plasma nitrite levels as compared to complete Freund’s adjuvant (CFA induced group. X-ray analysis and hematoxylin and eosin (H&E staining of inflamed and treated paws showed that honokiol reduced the inflammation with significantly less leukocyte infiltration and soft tissue inflammation. In order to explore the possible mechanism of action of honokiol, agonists [piroxicam (5 mg/kg, tramadol (50 mg/kg, and gabapentin (5 mg/kg i.p.] as well as antagonists [naloxone (4 mg/kg, olanzapine (10 mg/kg, and flumazenil (0.2 mg/kg i.p.] were used to study involvement of various receptors on the anti-nociceptive effect of honokiol. The potential side effects of honokiol on muscle activity were assessed. An adverse effect testing of honokiol by

  16. Age-related retinopathy in NRF2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Zhenyang Zhao

    2011-04-01

    Full Text Available Cumulative oxidative damage is implicated in the pathogenesis of age-related macular degeneration (AMD. Nuclear factor erythroid 2-related factor 2 (NRF2 is a transcription factor that plays key roles in retinal antioxidant and detoxification responses. The purposes of this study were to determine whether NRF2-deficient mice would develop AMD-like retinal pathology with aging and to explore the underlying mechanisms.Eyes of both wild type and Nrf2(-/- mice were examined in vivo by fundus photography and electroretinography (ERG. Structural changes of the outer retina in aged animals were examined by light and electron microscopy, and immunofluorescence labeling. Our results showed that Nrf2(-/- mice developed age-dependent degenerative pathology in the retinal pigment epithelium (RPE. Drusen-like deposits, accumulation of lipofuscin, spontaneous choroidal neovascularization (CNV and sub-RPE deposition of inflammatory proteins were present in Nrf2(-/- mice after 12 months. Accumulation of autophagy-related vacuoles and multivesicular bodies was identified by electron microscopy both within the RPE and in Bruch's membrane of aged Nrf2(-/- mice.Our data suggest that disruption of Nfe2l2 gene increased the vulnerability of outer retina to age-related degeneration. NRF2-deficient mice developed ocular pathology similar to cardinal features of human AMD and deregulated autophagy is likely a mechanistic link between oxidative injury and inflammation. The Nrf2(-/- mice can provide a novel model for mechanistic and translational research on AMD.

  17. Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy

    Directory of Open Access Journals (Sweden)

    Neoptolemos John P

    2011-04-01

    Full Text Available Abstract Background Nrf2 is a key transcriptional regulator of a battery of genes that facilitate phase II/III drug metabolism and defence against oxidative stress. Nrf2 is largely regulated by Keap1, which directs Nrf2 for proteasomal degradation. The Nrf2/Keap1 system is dysregulated in lung, head and neck, and breast cancers and this affects cellular proliferation and response to therapy. Here, we have investigated the integrity of the Nrf2/Keap1 system in pancreatic cancer. Results Keap1, Nrf2 and the Nrf2 target genes AKR1c1 and GCLC were detected in a panel of five pancreatic cancer cell lines. Mutation analysis of NRF2 exon 2 and KEAP1 exons 2-6 in these cell lines identified no mutations in NRF2 and only synonomous mutations in KEAP1. RNAi depletion of Nrf2 caused a decrease in the proliferation of Suit-2, MiaPaca-2 and FAMPAC cells and enhanced sensitivity to gemcitabine (Suit-2, 5-flurouracil (FAMPAC, cisplatin (Suit-2 and FAMPAC and gamma radiation (Suit-2. The expression of Nrf2 and Keap1 was also analysed in pancreatic ductal adenocarcinomas (n = 66 and 57, respectively and matching normal benign epithelium (n = 21 cases. Whilst no significant correlation was seen between the expression levels of Keap1 and Nrf2 in the tumors, interestingly, Nrf2 staining was significantly greater in the cytoplasm of tumors compared to benign ducts (P Conclusions Expression of Nrf2 is up-regulated in pancreatic cancer cell lines and ductal adenocarcinomas. This may reflect a greater intrinsic capacity of these cells to respond to stress signals and resist chemotherapeutic interventions. Nrf2 also appears to support proliferation in certain pancreatic adenocarinomas. Therefore, strategies to pharmacologically manipulate the levels and/or activity of Nrf2 may have the potential to reduce pancreatic tumor growth, and increase sensitivity to therapeutics.

  18. The anti-inflammatory activity of Phellinus linteus (Berk. & M.A. Curt.) is mediated through the PKCdelta/Nrf2/ARE signaling to up-regulation of heme oxygenase-1.

    Science.gov (United States)

    Kim, Byung-Chul; Jeon, Woo-Kwang; Hong, Hye-Young; Jeon, Kyung-Bum; Hahn, Jang-Hee; Kim, Young-Myeong; Numazawa, Satoshi; Yosida, Takemi; Park, Eun-Hee; Lim, Chang-Jin

    2007-09-05

    It has been reported that heme oxygenase-1 (HO-1) mediates the anti-inflammatory activity of the n-BuOH subfraction (PL) prepared from fruiting bodies of Phellinus linteus. This continuing work aimed to elucidate the signaling pathway to the up-regulation of HO-1 by PL. In RAW264.7 macrophage cells, PL was able to enhance phosphorylation of protein kinase Cdelta (PKCdelta), but not PKCalpha/betaII, in a time-dependent manner. PL-induced HO-1 expression was dramatically released by GF109203X, a general inhibitor of PKC, and rottlerin, a specific PKCdelta inhibitor but not by Gö6976, a selective inhibitor for PKCalpha/beta. Additionally, PL treatment resulted in a marked increase in antioxidant response element (ARE)-driven transcriptional activity, which was dependent on PKCdelta but not PKCalpha. An increase by PL treatment in the ARE-driven transcriptional activity was further enhanced by Nrf2, whereas it was diminished by Keap1. Furthermore, pretreatment of rottlerin and overexpression of PKCdelta (K376R), a kinase-inactive form of PKCdelta, partly blocked the suppression by PL of nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, and iNOS promoter activity, which were elevated in the lypopolysaccharide (LPS)-activated macrophages. Similarly, expression of matrix metalloproteinase-9 (MMP-9) and its promoter activity were suppressed by PL, which were dependent upon PKCdelta. The present findings indicate that Phellinus linteus gives rise to an anti-inflammatory activity though the PKCdelta/Nrf2/ARE signaling to the up-regulation of HO-1 in an in vitro inflammation model.

  19. Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents

    International Nuclear Information System (INIS)

    Higgins, Larry G.; Kelleher, Michael O.; Eggleston, Ian M.; Itoh, Ken; Yamamoto, Masayuki; Hayes, John D.

    2009-01-01

    Sulforaphane can stimulate cellular adaptation to redox stressors through transcription factor Nrf2. Using mouse embryonic fibroblasts (MEFs) as a model, we show herein that the normal homeostatic level of glutathione in Nrf2 -/- MEFs was only 20% of that in their wild-type counterparts. Furthermore, the rate of glutathione synthesis following its acute depletion upon treatment with 3 μmol/l sulforaphane was very substantially lower in Nrf2 -/- MEFs than in wild-type cells, and the rebound leading to a ∼ 1.9-fold increase in glutathione that occurred 12-24 h after Nrf2 +/+ MEFs were treated with sulforaphane was not observed in Nrf2 -/- fibroblasts. Wild-type MEFs that had been pre-treated for 24 h with 3 μmol/l sulforaphane exhibited between 1.4- and 3.2-fold resistance against thiol-reactive electrophiles, including isothiocyanates, α,β-unsaturated carbonyl compounds (e.g. acrolein), aryl halides and alkene epoxides. Pre-treatment of Nrf2 +/+ MEFs with sulforaphane also protected against hydroperoxides (e.g. cumene hydroperoxide, CuOOH), free radical-generating compounds (e.g. menadione), and genotoxic electrophiles (e.g. chlorambucil). By contrast, Nrf2 -/- MEFs were typically ∼ 50% less tolerant of these agents than wild-type fibroblasts, and sulforaphane pre-treatment did not protect the mutant cells against xenobiotics. To test whether Nrf2-mediated up-regulation of glutathione represents the major cytoprotective mechanism stimulated by sulforaphane, 5 μmol/l buthionine sulfoximine (BSO) was used to inhibit glutathione synthesis. In Nrf2 +/+ MEFs pre-treated with sulforaphane, BSO diminished intrinsic resistance and abolished inducible resistance to acrolein, CuOOH and chlorambucil, but not menadione. Thus Nrf2-dependent up-regulation of GSH is the principal mechanism by which sulforaphane pre-treatment induced resistance to acrolein, CuOOH and chlorambucil, but not menadione.

  20. 17β-Estradiol up-regulates Nrf2 via PI3K/AKT and estrogen receptor signaling pathways to suppress light-induced degeneration in rat retina.

    Science.gov (United States)

    Zhu, C; Wang, S; Wang, B; Du, F; Hu, C; Li, H; Feng, Y; Zhu, R; Mo, M; Cao, Y; Li, A; Yu, X

    2015-09-24

    Human age-related retinal diseases, such as age-related macular degeneration (AMD), are intimately associated with decreased tissue oxygenation and hypoxia. Different antioxidants have been investigated to reverse AMD. In the present study, we describe the antioxidant 17β-estradiol (βE2) and investigate its protective effects on retinal neurons. Fourteen days after ovariectomy, adult Sprague-Dawley rats were exposed to 8000-lux light for 12h to induce retinal degeneration. Reactive oxygen species (ROS) levels were assessed by confocal fluorescence microscopy using 2,7-dichlorofluorescein diacetate. Nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant enzyme mRNA expression were detected by real-time PCR. Western blotting was used to evaluate NRF2 activation. NRF2 translocation was determined by immunohistochemistry, with morphological changes monitored by hematoxylin and eosin staining. Following light exposure, βE2 significantly reduced ROS production. βE2 also up-regulated NRF2 mRNA and protein levels, with maximal expression at 4 and 12h post-exposure, respectively. Interestingly, following βE2 administration, NRF2 was translocated from the cytoplasm to the nucleus, primarily in the outer nuclear layer. βE2 also up-regulated NRF2, which triggered phase-2 antioxidant enzyme expression (superoxide dismutases 1 and 2, catalase, glutaredoxins 1 and 2, and thioredoxins 1 and 2), reduced ROS production, and ameliorated retinal damage. However, the beneficial effects of βE2 were markedly suppressed by pretreatment with LY294002 or ICI182780, specific inhibitors of the phosphatidylinositol 3-kinase-Akt (PI3K/AKT), and estrogen receptor (ER) signaling pathways, respectively. Taken together, these observations suggest that βE2 exerts antioxidative effects following light-induced retinal degeneration potentially via NRF2 activation. This protective mechanism may depend on two pathways: a rapid, non-genomic-type PI3K/AKT response, and a genomic-type ER

  1. Targeted disruption of Nrf2 causes regenerative immune-mediated hemolytic anemia

    Science.gov (United States)

    Lee, Jong-Min; Chan, Kaimin; Kan, Yuet Wai; Johnson, Jeffrey A.

    2004-01-01

    A basic leucine zipper transcription factor, NF-E2-related factor 2 (Nrf2), plays a critical role in the cellular defense mechanism by mediating a coordinate up-regulation of antioxidant responsive element-driven detoxification and antioxidant genes. Here, we report that targeted disruption of Nrf2 causes regenerative immune-mediated hemolytic anemia due to increased sequestration of damaged erythrocytes. Splenomegaly and spleen toxicity in Nrf2-/- mice raised a possibility of hemolytic anemia and splenic extramedullary hematopoiesis in Nrf2-/- mice. In support of this, hematology analysis revealed that Nrf2-/- mice suffer from anemia with abnormal red cell morphologies (i.e., Howell-Jolly bodies, acantocytes, and schistocytes). In addition, Nrf2-/- erythrocytes were more sensitive to H2O2-induced hemolysis, and erythrocyte-bound IgG levels were markedly increased in Nrf2-/- mice compared with Nrf2+/+ mice. Because IgG bound to erythrocytes in the presence of oxidative damage in erythrocytes (regardless of Nrf2 genotype), these data support that Nrf2-/- erythrocytes have higher levels of damage compared with Nrf2+/+ cells. Finally, Nrf2-/- mice showed increased levels of erythrocyte-bound IgG compared with Nrf2+/+ mice after H2O2 injection in vivo, suggesting that the decreased glutathione and increased H2O2 render the Nrf2-/- mice more susceptible to toxicity. Taken together, these observations indicate that a chronic increase in oxidative stress due to decreased antioxidant capacity sensitizes erythrocytes and causes hemolytic anemia in Nrf2-/- mice, suggesting a pivotal role of Nrf2-antioxidant responsive element pathway in the cellular antioxidant defense system. PMID:15210949

  2. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    International Nuclear Information System (INIS)

    Mercado, Nicolas; Thimmulappa, Rajesh; Thomas, Catherine M.R.; Fenwick, Peter S.; Chana, Kirandeep K.; Donnelly, Louise E.; Biswal, Shyam; Ito, Kazuhiro; Barnes, Peter J.

    2011-01-01

    Research highlights: → Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. → HDAC inhibition decreases Nrf2 protein stability. → HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. → HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show that down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H 2 O 2 ) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H 2 O 2 -induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.

  3. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, Nicolas [Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY (United Kingdom); Thimmulappa, Rajesh [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Thomas, Catherine M.R.; Fenwick, Peter S.; Chana, Kirandeep K.; Donnelly, Louise E. [Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY (United Kingdom); Biswal, Shyam [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Ito, Kazuhiro [Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY (United Kingdom); Barnes, Peter J., E-mail: p.j.barnes@imperial.ac.uk [Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY (United Kingdom)

    2011-03-11

    Research highlights: {yields} Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. {yields} HDAC inhibition decreases Nrf2 protein stability. {yields} HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. {yields} HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show that down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H{sub 2}O{sub 2}) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H{sub 2}O{sub 2}-induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.

  4. Mechanism of chemical activation of Nrf2.

    Directory of Open Access Journals (Sweden)

    Yun Li

    Full Text Available NF-E2 related factor-2 (Nrf2 promotes the transcription of many cytoprotective genes and is a major drug target for prevention of cancer and other diseases. Indeed, the cancer-preventive activities of several well-known chemical agents were shown to depend on Nrf2 activation. It is well known that chemopreventive Nrf2 activators stabilize Nrf2 by blocking its ubiquitination, but previous studies have indicated that this process occurs exclusively in the cytoplasm. Kelch-like ECH-associated protein 1 (Keap1 binds to Nrf2 and orchestrates Nrf2 ubiquitination, and it has been a widely-held view that inhibition of Nrf2 ubiquitination by chemopreventive agents results from the dissociation of Nrf2 from its repressor Keap1. Here, we show that while the activation of Nrf2 by prototypical chemical activators, including 5,6-dihydrocyclopenta-1,2-dithiole-3-thione (CPDT and sulforaphane (SF, results solely from inhibition of its ubiquitination, such inhibition occurs predominantly in the nucleus. Moreover, the Nrf2 activators promote Nrf2 association with Keap1, rather than disassociation, which appears to result from inhibition of Nrf2 phosphorylation at Ser40. Available evidence suggests the Nrf2 activators may block Nrf2 ubiquitination by altering Keap1 conformation via reaction with the thiols of specific Keap1 cysteines. We further show that while the inhibitory effects of CPDT and SF on Nrf2 ubiquitination depend entirely on Keap1, Nrf2 is also degraded by a Keap1-independent mechanism. These findings provide significant new insight about Nrf2 activation and suggest that exogenous chemical activators of Nrf2 enter the nucleus to exert most of their inhibitory impact on Nrf2 ubiquitination and degradation.

  5. Nrf2 Inhibits Periodontal Ligament Stem Cell Apoptosis under Excessive Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yanli Liu

    2017-05-01

    Full Text Available The present study aimed to analyze novel mechanisms underlying Nrf2-mediated anti-apoptosis in periodontal ligament stem cells (PDLSCs in the periodontitis oxidative microenvironment. We created an oxidative stress model with H2O2-treated PDLSCs. We used real-time PCR, Western blotting, TUNEL staining, fluorogenic assay and transfer genetics to confirm the degree of oxidative stress and apoptosis as well as the function of nuclear factor-erythroid 2-related factor 2 (Nrf2. We demonstrated that with upregulated levels of reactive oxygen species (ROS and malondialdehyde (MDA, the effect of oxidative stress was obvious under H2O2 treatment. Oxidative molecules were altered after the H2O2 exposure, whereby the signaling of Nrf2 was activated with an increase in its downstream effectors, heme oxygenase-1 (HO-1, NAD(PH:quinone oxidoreductase 1 (NQO1 and γ-glutamyl cysteine synthetase (γ-GCS. Additionally, the apoptosis levels gradually increased with oxidative stress by the upregulation of caspase-9, caspase-3, Bax and c-Fos levels in addition to the downregulation of Bcl-2. However, there was no alterations in levels of caspase-8. The enhanced antioxidant effect could not mitigate the occurrence of apoptosis. Furthermore, Nrf2 overexpression effectively improved the anti-oxidative levels and increased cell proliferation. At the same time, overexpression effectively restrained TUNEL staining and decreased the molecular levels of caspase-9, caspase-3, Bax and c-Fos, but not that of caspase-8. In contrast, silencing the expression of Nrf2 levels had the opposite effect. Collectively, Nrf2 alleviates PDLSCs via its effects on regulating oxidative stress and anti-intrinsic apoptosis by the activation of oxidative enzymes.

  6. Nrf2/p62 Signaling in Apoptosis Resistance and Its Role in Cadmium-induced Carcinogenesis*

    Science.gov (United States)

    Son, Young-Ok; Pratheeshkumar, Poyil; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Zhang, Zhuo; Shi, Xianglin

    2014-01-01

    The cadmium-transformed human lung bronchial epithelial BEAS-2B cells exhibit a property of apoptosis resistance as compared with normal non-transformed BEAS-2B cells. The level of basal reactive oxygen species (ROS) is extremely low in transformed cells in correlation with elevated expressions of both antioxidant enzymes (catalase, SOD1, and SOD2) and antiapoptotic proteins (Bcl-2/Bcl-xL). Moreover, Nrf2 and p62 are highly expressed in these transformed cells. The knockdown of Nrf2 or p62 by siRNA enhances ROS levels and cadmium-induced apoptosis. The binding activities of Nrf2 on the antioxidant response element promoter regions of p62/Bcl-2/Bcl-xL were dramatically increased in the cadmium-exposed transformed cells. Cadmium exposure increased the formation of LC3-II and the frequency of GFP-LC3 punctal cells in non-transformed BEAS-2B cells, whereas these increases are not shown in transformed cells, an indication of autophagy deficiency of transformed cells. Furthermore, the expression levels of Nrf2 and p62 are dramatically increased during chronic long term exposure to cadmium in the BEAS-2B cells as well as antiapoptotic proteins and antioxidant enzymes. These proteins are overexpressed in the tumor tissues derived from xenograft mouse models. Moreover, the colony growth is significantly attenuated in the transformed cells by siRNA transfection specific for Nrf2 or p62. Taken together, this study demonstrates that cadmium-transformed cells have acquired autophagy deficiency, leading to constitutive p62 and Nrf2 overexpression. These overexpressions up-regulate the antioxidant proteins catalase and SOD and the antiapoptotic proteins Bcl-2 and Bcl-xL. The final consequences are decrease in ROS generation, apoptotic resistance, and increased cell survival, proliferation, and tumorigenesis. PMID:25157103

  7. Rapamycin protects against paraquat-induced pulmonary fibrosis: Activation of Nrf2 signaling pathway.

    Science.gov (United States)

    Xu, Yiheng; Tai, Wenlin; Qu, Xiaoyuan; Wu, Wenjuan; Li, ZhenKun; Deng, Shuhao; Vongphouttha, Chanthasone; Dong, Zhaoxing

    2017-08-19

    Paraquat (PQ) is a widely used herbicide indeveloping countries worldwide, and pulmonary fibrosis is one of the most typical features of PQ poisoning. The molecular mechanism of PQ toxicity especially how to treat PQ-induced pulmonary fibrosis is still largely unknown. In animal model of pulmonary fibrosis, we used HE staining, western blotting assay and Real-time PCR assay to analyze the effects of rapamycin on the PQ-induced epithelial mesenchymal transition (EMT). We found that PQ induced the pulmonary fibrosis using HE staining and Masson's staining, and up-regulated the activity of HYP and the mRNA expressions of Collagen I and III (COL-1and COL-3) in pulmonary tissues. We also found that rapamycin down-regulated the mesenchymal cell marker Vimentin and up-regulated the epithelial cell marker E-cadherin both in mRNA and protein levels compared with PQ group. And the EMT associated transcription factor Snail was decreased by rapamycin treatment compared with PQ group. And PQ decreased the Nrf2 expression both in mRNA and protein levels, and rapamycin inhibited these effects of PQ. SFN, a activator of Nrf2, could inhibit the EMT and the expression of Snail. And knockdowon of Nrf2 could abolish the inhibitory effects of rapamycin of PQ-induced EMT. In conclusion, rapamycin protects against paraquat-induced pulmonary fibrosis by activation of Nrf2 signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Enhanced B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation contributes to ABCC1-mediated chemoresistance and glutathione-mediated survival in acquired topoisomerase II poison-resistant cancer cells.

    Science.gov (United States)

    Chen, Huang-Hui; Chang, Hsin-Huei; Chang, Jang-Yang; Tang, Ya-Chu; Cheng, Yung-Chi; Lin, Li-Mei; Cheng, Shu-Ying; Huang, Chih-Hsiang; Sun, Man-Wu; Chen, Chiung-Tong; Kuo, Ching-Chuan

    2017-12-01

    Nuclear factor erythroid-2-related factor 2 (NRF2) mainly regulates transcriptional activation through antioxidant-responsive elements (AREs) present in the promoters of NRF2 target genes. Recently, we found that NRF2 was overexpressed in a KB-derived drug-resistant cancer cell panel. In this panel, KB-7D cells, which show acquired resistance to topoisomerase II (Top II) poisons, exhibited the highest NRF2 activation. To investigate whether NRF2 directly contributed to acquired resistance against Top II poisons, we manipulated NRF2 by genetic and pharmacological approaches. The result demonstrated that silencing of NRF2 by RNA interference increased the sensitivity and treatment with NRF2 activator decreased the sensitivity of KB and KB-7D cells toward Top II poisons. Further, increased B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation activated NRF2 signaling in KB-7D cells. Moreover, increased binding of NRF2 to an ARE in the promoter of ATP-binding cassette subfamily C member 1 (ABCC1) directly contributed to Top II poison resistance. In addition, activation of NRF2 increased glutathione level and antioxidant capacity in KB-7D cells compared with that in KB cells; moreover, high glutathione level provided survival advantage to KB-7D cells. Our study is the first to show that aberrant NRF2 activation is via increased B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation, which increases the acquired resistance and promote the survival of Top II poison-resistant cancer cells. Importantly, NRF2 downstream effectors ABCC1 and glutathione directly contribute to acquired resistance and survival, respectively. These results suggest that blockade of NRF2 signaling may enhance therapeutic efficacy and reduce the survival of Top II poison-refractory tumors in clinical. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Novel Hematopoietic Target Genes in the NRF2-Mediated Transcriptional Pathway

    Directory of Open Access Journals (Sweden)

    Michelle R. Campbell

    2013-01-01

    Full Text Available Nuclear factor- (erythroid-derived 2 like 2 (NFE2L2, NRF2 is a key transcriptional activator of the antioxidant response pathway and is closely related to erythroid transcription factor NFE2. Under oxidative stress, NRF2 heterodimerizes with small Maf proteins and binds cis-acting enhancer sequences found near oxidative stress response genes. Using the dietary isothiocyanate sulforaphane (SFN to activate NRF2, chromatin immunoprecipitation sequencing (ChIP-seq identified several hundred novel NRF2-mediated targets beyond its role in oxidative stress. Activated NRF2 bound the antioxidant response element (ARE in promoters of several known and novel target genes involved in iron homeostasis and heme metabolism, including known targets FTL and FTH1, as well as novel binding in the globin locus control region. Five novel NRF2 target genes were chosen for followup: AMBP, ABCB6, FECH, HRG-1 (SLC48A1, and TBXAS1. SFN-induced gene expression in erythroid K562 and lymphoid cells were compared for each target gene. NRF2 silencing showed reduced expression in lymphoid, lung, and hepatic cells. Furthermore, stable knockdown of NRF2 negative regulator KEAP1 in K562 cells resulted in increased NQO1, AMBP, and TBXAS1 expression. NFE2 binding sites in K562 cells revealed similar binding profiles as lymphoid NRF2 sites in all potential NRF2 candidates supporting a role for NRF2 in heme metabolism and erythropoiesis.

  10. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yue [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Handong, E-mail: njhdwang@hotmail.com [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Qiang [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Ding, Hui [Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wu, Heming [Department of Neurosurgery, Nanjing Jingdu Hospital, No. 34, Biao 34, Yanggongjing Road, Nanjing 210002, Jiangsu Province (China); Pan, Hao [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China)

    2016-01-15

    Gliomas are the leading cause of death among adults with primary brain malignancies. Treatment for malignant gliomas remains limited, and targeted therapies have been incompletely explored. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, the role and mechanism of Nrf2 in cancer cell proliferation was investigated in multiple glioma cell lines. We first evaluated the expression patterns of Nrf2 in four glioma cell lines and found all four cell lines expressed Nrf2, but the highest level was observed in U251 cells. We further evaluated the biological functions of Nrf2 in U251 glioma cell proliferation by specific inhibition of Nrf2 using short hairpin RNA (shRNA). We found that Nrf2 depletion inhibited glioma cell proliferation. Nrf2 depletion also decreased colony formation in U251 cells stably expressing Nrf2 shRNA compared to scrambled control shRNA. Moreover, suppression of Nrf2 expression could lead to ATP depletion (with concomitant rise in AMP/ATP ratio) and consequently to AMPK-activated mTOR inhibition. Finally, activation of adenosine monophosphate–activated protein kinase (AMPK) by treated with phenformin, an AMPK agonist, can mimic the inhibitory effect of Nrf2 knockdown in U251 cells. In conclusion, our findings will shed light to the role and mechanism of Nrf2 in regulating glioma proliferation via ATP-depletion-induced AMPK activation and consequent mTOR inhibition, a novel insight into our understanding the role and mechanism of Nrf2 in glioma pathoetiology. To our knowledge, this is also the first report to provide a rationale for the implication of cross-linking between Nrf2 and mTOR signaling.

  11. Antioxidant-mediated up-regulation of OGG1 via NRF2 induction is associated with inhibition of oxidative DNA damage in estrogen-induced breast cancer

    International Nuclear Information System (INIS)

    Singh, Bhupendra; Chatterjee, Anwesha; Ronghe, Amruta M; Bhat, Nimee K; Bhat, Hari K

    2013-01-01

    Estrogen metabolism-mediated oxidative stress is suggested to play an important role in estrogen-induced breast carcinogenesis. We have earlier demonstrated that antioxidants, vitamin C (Vit C) and butylated hydroxyanisole (BHA) inhibit 17β-estradiol (E2)-mediated oxidative stress and oxidative DNA damage, and breast carcinogenesis in female August Copenhagen Irish (ACI) rats. The objective of the present study was to characterize the mechanism by which above antioxidants prevent DNA damage during breast carcinogenesis. Female ACI rats were treated with E2; Vit C; Vit C + E2; BHA; and BHA + E2 for up to 240 days. mRNA and protein levels of a DNA repair enzyme 8-Oxoguanine DNA glycosylase (OGG1) and a transcription factor NRF2 were quantified in the mammary and mammary tumor tissues of rats after treatment with E2 and compared with that of rats treated with antioxidants either alone or in combination with E2. The expression of OGG1 was suppressed in mammary tissues and in mammary tumors of rats treated with E2. Expression of NRF2 was also significantly suppressed in E2-treated mammary tissues and in mammary tumors. Vitamin C or BHA treatment prevented E2-mediated decrease in OGG1 and NRF2 levels in the mammary tissues. Chromatin immunoprecipitation analysis confirmed that antioxidant-mediated induction of OGG1 was through increased direct binding of NRF2 to the promoter region of OGG1. Studies using silencer RNA confirmed the role of OGG1 in inhibition of oxidative DNA damage. Our studies suggest that antioxidants Vit C and BHA provide protection against oxidative DNA damage and E2-induced mammary carcinogenesis, at least in part, through NRF2-mediated induction of OGG1

  12. Conservation of the Keap1-Nrf2 System: An Evolutionary Journey through Stressful Space and Time

    Directory of Open Access Journals (Sweden)

    Yuji Fuse

    2017-03-01

    Full Text Available The Keap1-Nrf2 system is an evolutionarily conserved defense mechanism against oxidative and xenobiotic stress. Its regulatory mechanisms, e.g., stress-sensing mechanism, proteasome-based regulation of Nrf2 activity and selection of target genes, have been elucidated mainly in mammals. In addition, emerging model animals, such as zebrafish, fruit fly and Caenorhabditis elegans, have been shown to have similar anti-stress systems to mammals, suggesting that analogous defense systems are widely conserved throughout the animal kingdom. Experimental evidence in lower animals provides important information beyond mere laboratory-confined utility, such as regarding how these systems transformed during evolution, which may help characterize the mammalian system in greater detail. Recent advances in genome projects of both model and non-model animals have provided a great deal of useful information toward this end. We herein review the research on Keap1-Nrf2 and its analogous systems in both mammals and lower model animals. In addition, by comparing the amino acid sequences of Nrf2 and Keap1 proteins from various species, we can deduce the evolutionary history of the anti-stress system. This combinatorial approach using both experimental and genetic data will suggest perspectives of approach for researchers studying the stress response.

  13. Synthetic Lignan Secoisolariciresinol Diglucoside (LGM2605) Reduces Asbestos-Induced Cytotoxicity in an Nrf2-Dependent and -Independent Manner

    Science.gov (United States)

    Pietrofesa, Ralph A.; Chatterjee, Shampa; Park, Kyewon; Arguiri, Evguenia; Albelda, Steven M.; Christofidou-Solomidou, Melpo

    2018-01-01

    Asbestos exposure triggers inflammatory processes associated with oxidative stress and tissue damage linked to malignancy. LGM2605 is the synthetic lignan secoisolariciresinol diglucoside (SDG) with free radical scavenging, antioxidant, and anti-inflammatory properties in diverse inflammatory cell and mouse models, including exposure to asbestos fibers. Nuclear factor-E2 related factor 2 (Nrf2) activation and boosting of endogenous tissue defenses were associated with the protective action of LGM2605 from asbestos-induced cellular damage. To elucidate the role of Nrf2 induction by LGM2605 in protection from asbestos-induced cellular damage, we evaluated LGM2605 in asbestos-exposed macrophages from wild-type (WT) and Nrf2 disrupted (Nrf2−/−) mice. Cells were pretreated with LGM2605 (50 µM and 100 µM) and exposed to asbestos fibers (20 µg/cm2) and evaluated 8 h and 24 h later for inflammasome activation, secreted cytokine levels (interleukin-1β (IL-1β), interleukin-18 (IL-18), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNFα)), cytotoxicity and cell death, nitrosative stress, and Nrf2-regulated enzyme levels. Asbestos exposure induced robust oxidative and nitrosative stress, cell death and cytotoxicity, which were equally mitigated by LGM2605. Inflammasome activation was significantly attenuated in Nrf2−/− macrophages compared to WT, and the protective action of LGM2605 was seen only in WT cells. In conclusion, in a cell model of asbestos-induced toxicity, LGM2605 acts via protective mechanisms that may not involve Nrf2 activation. PMID:29498660

  14. Synthetic Lignan Secoisolariciresinol Diglucoside (LGM2605 Reduces Asbestos-Induced Cytotoxicity in an Nrf2-Dependent and -Independent Manner

    Directory of Open Access Journals (Sweden)

    Ralph A. Pietrofesa

    2018-03-01

    Full Text Available Asbestos exposure triggers inflammatory processes associated with oxidative stress and tissue damage linked to malignancy. LGM2605 is the synthetic lignan secoisolariciresinol diglucoside (SDG with free radical scavenging, antioxidant, and anti-inflammatory properties in diverse inflammatory cell and mouse models, including exposure to asbestos fibers. Nuclear factor-E2 related factor 2 (Nrf2 activation and boosting of endogenous tissue defenses were associated with the protective action of LGM2605 from asbestos-induced cellular damage. To elucidate the role of Nrf2 induction by LGM2605 in protection from asbestos-induced cellular damage, we evaluated LGM2605 in asbestos-exposed macrophages from wild-type (WT and Nrf2 disrupted (Nrf2−/− mice. Cells were pretreated with LGM2605 (50 µM and 100 µM and exposed to asbestos fibers (20 µg/cm2 and evaluated 8 h and 24 h later for inflammasome activation, secreted cytokine levels (interleukin-1β (IL-1β, interleukin-18 (IL-18, interleukin-6 (IL-6, and tumor necrosis factor alpha (TNFα, cytotoxicity and cell death, nitrosative stress, and Nrf2-regulated enzyme levels. Asbestos exposure induced robust oxidative and nitrosative stress, cell death and cytotoxicity, which were equally mitigated by LGM2605. Inflammasome activation was significantly attenuated in Nrf2−/− macrophages compared to WT, and the protective action of LGM2605 was seen only in WT cells. In conclusion, in a cell model of asbestos-induced toxicity, LGM2605 acts via protective mechanisms that may not involve Nrf2 activation.

  15. Regulation by Phloroglucinol of Nrf2/Maf-Mediated Expression of Antioxidant Enzymes and Inhibition of Osteoclastogenesis via the RANKL/RANK Signaling Pathway: In Silico study

    Science.gov (United States)

    Rahim, Agus Hadian; Setiawan, Bambang; Dewi, Firli Rahmah Primula; Noor, Zairin

    2015-01-01

    Introduction: Phloroglucinol is an antioxidant compound with many positive effects on health. The purpose of this study was to determine the role of phloroglucinol in osteoclastogenesis via the RANKL/RANK signaling pathway and the activity of the transcription factor Nrf2. Material and methods: Analysis was performed in silico using the primary method of docking by the use of Hex 8.0 software and Haddock web server. Analysis of interactions was then performed to determine interactions between the ligand and its receptors by using the software LigPlus and LigandScout 3.1. Results: Results indicated that phloroglucinol compound was thought to inhibit osteoclastogenesis via three mechanisms: inhibiting RANKL−RANK interaction, sustaining the RANKL−OPG bond, and increasing the activity of the transcription factor Nrf2. PMID:26483597

  16. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  17. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  18. Nrf2-dependent gene expressions: a molecular toxicological aspect.

    Science.gov (United States)

    Numazawa, Satoshi; Yoshida, Takemi

    2004-05-01

    Although NF-E2 related factor 2 (Nrf2) was found to be a transcriptional regulator that controls an expression of the beta-globin gene, the notion is now widely accepted that this transfactor serves as a master regulator for the gene expression of a battery of proteins acting on anti-oxidative stress and detoxification of electrophiles. The function of Nrf2 that bears transcriptional activation depends solely on its nuclear localization, which is regulated by interaction with the cytosolic anchor protein Keap1 and its own turnover rate. In the present mini-review, we focus on the regulation of Nrf2 function and discuss the physiological and toxicological aspects of this transcriptional factor.

  19. Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy

    Directory of Open Access Journals (Sweden)

    Priyanka Basak

    Full Text Available The Nuclear factor erythroid2-related factor2 (Nrf2, a master regulator of redox homoeostasis, is a key transcription factor regulating a wide array of genes for antioxidant and detoxification enzymes. It protects organs from various kinds of toxic insults. On the other hand, activation of Nrf2 is also correlated with cancer progression and chemoresistance. Downregulation of Nrf2 activity has attracted an increasing amount of attention as it may provide an alternative cancer therapy. In this review, we examine recent studies on roles of Nrf2 in several pathophysiological conditions emphasising cancer. We discuss elaborately the current knowledge on Nrf2 regulation including KEAP1-dependent and KEAP1-independent cascades. KEAP1/Nrf2 system is a master regulator of cellular response against a variety of environmental stresses. We also highlight several tightly controlled regulations of Nrf2 by numerous proteins, small molecules, toxic metals, etc. In addition, we evaluate the possible therapeutic approaches of increasing chemosensitivity via modulating Nrf2 signaling. Keywords: Nrf2, Transcription factor, KEAP1, Oxidative stress, Cell proliferation, Carcinogenesis, Chemoprevention

  20. Simvastatin Treatment Upregulates HO-1 in Patients with Abdominal Aortic Aneurysm but Independently of Nrf2

    Directory of Open Access Journals (Sweden)

    Aleksandra Piechota-Polanczyk

    2018-01-01

    Full Text Available Heme oxygenase-1 (HO-1, encoded by HMOX1 gene and regulated by Nrf2 transcription factor, is a cytoprotective enzyme. Its deficiency may exacerbate abdominal aortic aneurysm (AAA development, which is also often associated with hyperlipidemia. Beneficial effects of statins, the broadly used antilipidemic drugs, were attributed to modulation of Nrf2/HO-1 axis. However, the effect of statins on Nrf2/HO-1 pathway in patients with AAA has not been studied yet. We analyzed AAA tissue from patients treated with simvastatin (N = 28 or without statins (N = 14. Simvastatin treatment increased HO-1 protein level in AAA, both in endothelial cells (ECs and in smooth muscle cells (SMCs, but increased Nrf2 localization was restricted only to vasa vasorum. Nrf2 target genes HMOX1, NQO1, and GCLM expression remained unchanged in AAA. In vitro studies showed that simvastatin raises HO-1 protein level slightly in ECs and to much higher extent in SMCs, which is not related to Nrf2/ARE activation, although HMOX1 expression is upregulated by simvastatin in both cell types. In conclusion, simvastatin-induced modulation of HO-1 level in ECs and SMCs in vitro is not related to Nrf2/ARE activity. Likewise, divergent HO-1 and Nrf2 localization together with stable expression of Nrf2 target genes, including HMOX1, in AAA tissue denotes Nrf2 independency.

  1. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells

    Directory of Open Access Journals (Sweden)

    Kaori Yama

    2015-04-01

    Full Text Available Epalrestat (EPS is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Recently, we found that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH in rat Schwann cells. GSH plays a crucial role in protecting endothelial cells from oxidative stress, thereby preventing vascular diseases. Here we show that EPS increases GSH levels in not only Schwann cells but also endothelial cells. Treatment of bovine aortic endothelial cells (BAECs, an in vitro model of the vascular endothelium, with EPS caused a dramatic increase in intracellular GSH levels. This was concomitant with the up-regulation of glutamate cysteine ligase, an enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Moreover, EPS stimulated the expression of thioredoxin and heme oxygenase-1, which have important redox regulatory functions in endothelial cells. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that regulates the expression of antioxidant genes. EPS increased nuclear Nrf2 levels in BAECs. Nrf2 knockdown by siRNA suppressed the EPS-induced glutamate cysteine ligase, thioredoxin-1, and heme oxygenase-1 expression. Interestingly, LY294002, an inhibitor of phosphatidylinositol 3-kinase, abolished the EPS-stimulated GSH synthesis, suggesting that the kinase is associated with Nrf2 activation induced by EPS. Furthermore, EPS reduced the cytotoxicity induced by H2O2 and tert-butylhydroperoxide, indicating that EPS plays a role in protecting cells from oxidative stress. Taken together, the results provide evidence that EPS exerts new beneficial effects on endothelial cells by increasing GSH, thioredoxin, and heme oxygenase-1 levels through the activation of Nrf2. We suggest that EPS has the potential to prevent several vascular diseases caused by oxidative stress.

  2. Genetic activation of Nrf2 protects against fasting-induced oxidative stress in livers of mice.

    Directory of Open Access Journals (Sweden)

    Yu-Kun Jennifer Zhang

    Full Text Available Acute fasting causes elevated oxidative stress. The current study investigated the effects of the nuclear factor erythoid 2-related factor 2 (Nrf2, the sensor of oxidative stress in cells, on energy homeostasis and liver pathophysiology during fasting. Feed was removed from mice possessing none (Nrf2-null, normal (wild-type, WT, enhanced (Keap1-knockdown, K1-KD, and maximum (hepatocyte-specific Keap1-knockout, K1-HKO Nrf2 activity in liver for 24 h. Body weight, blood glucose, and blood lipid profiles were similar among mice with graded Nrf2 activity under either fed or fasted conditions. Fasting reduced liver size in mice expressing Nrf2, but not in Nrf2-null mice. Nrf2-null mice accumulated more non-esterified free fatty acids and triglycerides in liver after fasting than the other genotypes of mice. Fatty acids are mainly catabolized in mitochondria, and Nrf2-null mice had lower mitochondrial content in liver under control feeding conditions, which was further reduced by fasting. In contrast, mitochondrial contents in mice with enhanced Nrf2 activity were not affected by fasting. Oxidative stress, determined by staining of free radicals and quantification of malondialdehyde equivalents, was highest in Nrf2-null and lowest in K1-HKO mice after fasting. The exacerbated oxidative stress in livers of Nrf2-null mice is predicted to lead to damages to mitochondria, and therefore diminished oxidation and increased accumulation of lipids in livers of Nrf2-null mice. In summary, the Nrf2-regulated signaling pathway is critical in protecting mitochondria from oxidative stress during feed deprivation, which ensures efficient utilization of fatty acids in livers of mice.

  3. Keap1-Nrf2 Signaling: A Target for Cancer Prevention by Sulforaphane

    Science.gov (United States)

    Kensler, Thomas W; Egner, Patricia A; Agyeman, Abena S.; Visvanathan, Kala; Groopman, John D; Chen, Jian-Guo; Chen, Tao-Yang; Fahey, Jed W; Talalay, Paul

    2013-01-01

    Sulforaphane is a promising agent under preclinical evaluation in many models of disease prevention. This bioactive phytochemical affects many molecular targets in cellular and animal models; however, amongst the most sensitive is Keap1, a key sensor for the adaptive stress response system regulated through the transcription factor Nrf2. Keap1 is a sulfhydryl-rich protein that represses Nrf2 signaling by facilitating the poly ubiquitination of Nrf2 thereby enabling its subsequent proteasomal degradation. Interaction of sulforaphane with Keap1 disrupts this function and allows for nuclear accumulation of Nrf2 and activation of its transcriptional program. Enhanced transcription of Nrf2 target genes provokes a strong cytoprotective response that enhances resistance to carcinogenesis and other diseases mediated by exposures to electrophiles and oxidants. Clinical evaluation of sulforaphane has been largely conducted by utilizing preparations of broccoli or broccoli sprouts rich in either sulforaphane or its precursor form in plants, a stable β-thioglucose conjugate termed glucoraphanin. We have conducted a series of clinical trials in Qidong, China, a region where exposures to food- and air-borne carcinogens has been considerable, to evaluate the suitability of broccoli sprout beverages, rich in either glucoraphanin (GRR) or sulforaphane SFR or both for their bioavailability, tolerability and pharmacodynamic action in population-based interventions. Results from these clinical trials indicate that interventions with well characterized preparations of broccoli sprouts may enhance the detoxication of aflatoxins and air-borne toxins, which may in turn attenuate their associated health risks, including cancer, in exposed individuals. PMID:22752583

  4. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    International Nuclear Information System (INIS)

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H.; Mattson, Mark P.; Camandola, Simonetta

    2013-01-01

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity

  5. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    Energy Technology Data Exchange (ETDEWEB)

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng; Greig, Nigel H. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Mattson, Mark P. [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States); Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Camandola, Simonetta, E-mail: camandolasi@mail.nih.gov [Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224 (United States)

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity.

  6. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway.

    Science.gov (United States)

    Son, Tae Gen; Kawamoto, Elisa M; Yu, Qian-Sheng; Greig, Nigel H; Mattson, Mark P; Camandola, Simonetta

    2013-04-19

    Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal and glial cultures, and protects neurons against glutamate-induced excitotoxicity. Published by Elsevier Inc.

  7. KEAP1 and Done? Targeting the NRF2 Pathway with Sulforaphane.

    Science.gov (United States)

    Dinkova-Kostova, Albena T; Fahey, Jed W; Kostov, Rumen V; Kensler, Thomas W

    2017-11-01

    Since the re-discovery of sulforaphane in 1992 and the recognition of the bioactivity of this phytochemical, many studies have examined its mode of action in cells, animals and humans. Broccoli, especially as young sprouts, is a rich source of sulforaphane and broccoli-based preparations are now used in clinical studies probing efficacy in health preservation and disease mitigation. Many putative cellular targets are affected by sulforaphane although only one, KEAP1-NRF2 signaling, can be considered a validated target at this time. The transcription factor NRF2 is a master regulator of cell survival responses to endogenous and exogenous stressors. This review summarizes the chemical biology of sulforaphane as an inducer of NRF2 signaling and efficacy as an inhibitor of carcinogenesis. It also provides a summary of the current findings from clinical trials using a suite of broccoli sprout preparations on a series of short-term endpoints reflecting a diversity of molecular actions. Sulforaphane, as a pure chemical, protects against chemical-induced skin, oral, stomach, colon, lung and bladder carcinogenesis and in genetic models of colon and prostate carcinogenesis. In many of these settings the antitumorigenic efficacy of sulforaphane is dampened in Nrf2 -disrupted animals. Broccoli preparations rich in glucoraphanin or sulforaphane exert demonstrable pharmacodynamic action in over a score of clinical trials. Measures of NRF2 pathway response and function are serving as guideposts for the optimization of dose, schedule and formulation as clinical trials with broccoli-based preparations become more commonplace and more rigorous in design and implementation.

  8. Copper exposure induces toxicity to the antioxidant system via the destruction of Nrf2/ARE signaling and caspase-3-regulated DNA damage in fish muscle: Amelioration by myo-inositol

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei-Dan; Liu, Yang [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Jiang, Jun [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Wu, Pei [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Feng, Lin, E-mail: fenglin@sicau.edu.cn [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Zhou, Xiao-Qiu, E-mail: zhouxq@sicau.edu.cn [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China)

    2015-02-15

    time that Cu exposure caused oxidative damage to the muscle by decreasing the antioxidant enzyme activities via the down-regulation of the expression of genes related to the disruption of the Nrf2/ARE signaling, and this down-regulation was partially caused by caspase-3-regulated DNA fragmentation. Finally, MI protects fish against Cu toxicity.

  9. Copper exposure induces toxicity to the antioxidant system via the destruction of Nrf2/ARE signaling and caspase-3-regulated DNA damage in fish muscle: Amelioration by myo-inositol

    International Nuclear Information System (INIS)

    Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Feng, Lin; Zhou, Xiao-Qiu

    2015-01-01

    time that Cu exposure caused oxidative damage to the muscle by decreasing the antioxidant enzyme activities via the down-regulation of the expression of genes related to the disruption of the Nrf2/ARE signaling, and this down-regulation was partially caused by caspase-3-regulated DNA fragmentation. Finally, MI protects fish against Cu toxicity

  10. Sulforaphane Suppresses Hepatitis C Virus Replication by Up-Regulating Heme Oxygenase-1 Expression through PI3K/Nrf2 Pathway.

    Directory of Open Access Journals (Sweden)

    Jung-Sheng Yu

    Full Text Available Hepatitis C virus (HCV infection-induced oxidative stress is a major risk factor for the development of HCV-associated liver disease. Sulforaphane (SFN is an antioxidant phytocompound that acts against cellular oxidative stress and tumorigenesis. However, there is little known about its anti-viral activity. In this study, we demonstrated that SFN significantly suppressed HCV protein and RNA levels in HCV replicon cells and infectious system, with an IC50 value of 5.7 ± 0.2 μM. Moreover, combination of SFN with anti-viral drugs displayed synergistic effects in the suppression of HCV replication. In addition, we found nuclear factor erythroid 2-related factor 2 (Nrf2/HO-1 induction in response to SFN and determined the signaling pathways involved in this process, including inhibition of NS3 protease activity and induction of IFN response. In contrast, the anti-viral activities were attenuated by knockdown of HO-1 with specific inhibitor (SnPP and shRNA, suggesting that anti-HCV activity of SFN is dependent on HO-1 expression. Otherwise, SFN stimulated the phosphorylation of phosphoinositide 3-kinase (PI3K leading Nrf2-mediated HO-1 expression against HCV replication. Overall, our results indicated that HO-1 is essential in SFN-mediated anti-HCV activity and provide new insights in the molecular mechanism of SFN in HCV replication.

  11. Overview of Nrf2 as Therapeutic Target in Epilepsy

    Directory of Open Access Journals (Sweden)

    Liliana Carmona-Aparicio

    2015-08-01

    Full Text Available Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2, which plays a central role in the regulation of antioxidant response elements (ARE and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy.

  12. NRF2 deficiency replicates transcriptomic changes in Alzheimer's patients and worsens APP and TAU pathology

    Directory of Open Access Journals (Sweden)

    Ana I. Rojo

    2017-10-01

    Full Text Available Failure to translate successful neuroprotective preclinical data to a clinical setting in Alzheimer's disease (AD indicates that amyloidopathy and tauopathy alone provide an incomplete view of disease. We have tested here the relevance of additional homeostatic deviations that result from loss of activity of transcription factor NRF2, a crucial regulator of multiple stress responses whose activity declines with ageing. A transcriptomic analysis demonstrated that NRF2-KO mouse brains reproduce 7 and 10 of the most dysregulated pathways of human ageing and AD brains, respectively. Then, we generated a mouse that combines amyloidopathy and tauopathy with either wild type (AT-NRF2-WT or NRF2-deficiency (AT-NRF2-KO. AT-NRF2-KO brains presented increased markers of oxidative stress and neuroinflammation as well as higher levels of insoluble phosphorylated-TAU and Aβ*56 compared to AT-NRF2-WT mice. Young adult AT-NRF2-KO mice exhibited deficits in spatial learning and memory and reduced long term potentiation in the perforant pathway. This study demonstrates the relevance of normal homeostatic responses that decline with ageing, such as NRF2 activity, in the protection against proteotoxic, inflammatory and oxidative stress and provide a new strategy to fight AD.

  13. Cytoprotective Role of Nrf2 in Electrical Pulse Stimulated C2C12 Myotube.

    Directory of Open Access Journals (Sweden)

    Masaki Horie

    Full Text Available Regular physical exercise is central to a healthy lifestyle. However, exercise-related muscle contraction can induce reactive oxygen species and reactive nitrogen species (ROS/RNS production in skeletal muscle. The nuclear factor-E2-related factor-2 (Nrf2 transcription factor is a cellular sensor for oxidative stress. Regulation of nuclear Nrf2 signaling regulates antioxidant responses and protects organ structure and function. However, the role of Nrf2 in exercise- or contraction-induced ROS/RNS production in skeletal muscle is not clear. In this study, using differentiated C2C12 cells and electrical pulse stimulation (EPS of muscle contraction, we explored whether Nrf2 plays a role in the skeletal muscle response to muscle contraction-induced ROS/RNS. We found that EPS (40 V, 1 Hz, 2 ms stimulated ROS/RNS accumulation and Nrf2 activation. We also showed that expression of NQO1, HO-1 and GCLM increased after EPS-induced muscle contraction and was remarkably suppressed in cells with Nrf2 knockdown. We also found that the antioxidant N-acetylcysteine (NAC significantly attenuated Nrf2 activation after EPS, whereas the nitric oxide synthetase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME did not. Furthermore, Nrf2 knockdown after EPS markedly decreased ROS/RNS redox potential and cell viability and increased expression of the apoptosis marker Annexin V in C2C12 myotubes. These results indicate that Nrf2 activation and expression of Nrf2 regulated-genes protected muscle against the increased ROS caused by EPS-induced muscle contraction. Thus, our findings suggest that Nrf2 may be a key factor for preservation of muscle function during muscle contraction.

  14. Targeting Nrf2 in healthy and malignant ovarian epithelial cells : Protection versus promotion

    NARCIS (Netherlands)

    van der Wijst, Monique G. P.; Huisman, Christian; Mposhi, Archibold; Roelfes, Gerard; Rots, Marianne G.

    Risk factors indicate the importance of oxidative stress during ovarian carcinogenesis. To tolerate oxidative stress, cells activate the transcription factor Nrf2 (Nfe2l2), the master regulator of antioxidant and cytoprotective genes. Indeed, for most cancers, hyperactivity of Nrf2 is observed, and

  15. Sulforaphane Ameliorates Bladder Dysfunction through Activation of the Nrf2-ARE Pathway in a Rat Model of Partial Bladder Outlet Obstruction

    Directory of Open Access Journals (Sweden)

    Chong Liu

    2016-01-01

    Full Text Available Purpose. We evaluated the effect of sulforaphane (SFN treatment on the function and changes of expression of Nrf2-ARE pathway in the bladder of rats with bladder outlet obstruction (BOO. Materials and Methods. A total of 18 male Sprague-Dawley rats at age of 8 weeks were divided into 3 groups (6 of each: the sham operated group, the BOO group, and the BOO+SFN group. We examined histological alterations and the changes of oxidative stress markers and the protein expression of the Nrf2-ARE pathway. Results. We found that SFN treatment could prolong micturition interval and increase bladder capacity and bladder compliance. However, the peak voiding pressure was lower than BOO group. SFN treatment can ameliorate the increase of collagen fibers induced by obstruction. SFN treatment also increased the activity of SOD, GSH-Px, and CAT compared to the other groups. The level of bladder cell apoptosis was decreased in BOO rats with SFN treatment. Moreover, SFN could reduce the ratio of Bax/Bcl-2 expression. Furthermore, SFN could activate the Nrf2 expression with elevation of its target antioxidant proteins. Conclusions. The sulforaphane-mediated decrease of oxidative stress and activation of the Nrf2-ARE pathway may ameliorate bladder dysfunction caused by bladder outlet obstruction.

  16. Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity

    International Nuclear Information System (INIS)

    Okawa, Hiromi; Motohashi, Hozumi; Kobayashi, Akira; Aburatani, Hiroyuki; Kensler, Thomas W.; Yamamoto, Masayuki

    2006-01-01

    Nrf2 is a key regulator of many detoxifying enzyme genes, and cytoplasmic protein Keap1 represses the Nrf2 activity under quiescent conditions. Germ line deletion of the keap1 gene results in constitutive activation of Nrf2, but the pups unexpectedly died before weaning. To investigate how constitutive activation of Nrf2 influences the detoxification system in adult mice, we generated mice bearing a hepatocyte-specific disruption of the keap1 gene. Homozygous mice were viable and their livers displayed no apparent abnormalities, but nuclear accumulation of Nrf2 is elevated. Microarray analysis revealed that, while many detoxifying enzyme genes are highly expressed, some of the typical Nrf2-dependent genes are only marginally increased in the Keap1-deficient liver. The mutant mice were significantly more resistant to toxic doses of acetaminophen than control animals. These results demonstrate that chronic activation of Nrf2 confers animals with resistance to xenobiotics without affecting the morphological and physiological integrity of hepatocytes

  17. A possible involvement of Nrf2-mediated heme oxygenase-1 up-regulation in protective effect of the proton pump inhibitor pantoprazole against indomethacin-induced gastric damage in rats

    Directory of Open Access Journals (Sweden)

    Lee Ho-Jae

    2012-10-01

    Full Text Available Abstract Background Proton pump is an integral membrane protein that is ubiquitous ATP binding cassette (ABC involved in many transport processes in all living organisms, among which a specialized form of pump, so called p-type proton pump, exists in the parietal cells of stomach. Though proton pump inhibitors (PPIs are frequently prescribed to prevent nonsteroidal anti-inflammatory drugs (NSAIDs-induced gastric damage, the acid suppressive actions do not suffice to explain. Methods In order to document the effects of pantoprazole, one of PPIs, on the NSAIDs-induced gastric damage, in vitro and in vivo studies were performed. Immunocytochemistry, Western blot analysis, electrophoretic mobility shift assay and RT-PCR were conducted to evaluate the induction of heme oxygenase-1 (HO-1 through Nrf2 activation in normal gastric mucosal RGM-1 cells or in vivo stomach tissues from rats treated with indomethacin and/or pantoprazole. Results Pantoprazole activated Nrf2 through inactivation of Keap1, after which the expression of HO-1 was significantly increased in a dose-dependent manner in RGM-1 cells. Increased ARE-DNA binding activity was observed maximally at 1 h with 300 μM of pantoprazole. The expression of HO-1 induced by pantoprazole was significantly associated with the increased in vitro tube formation (P P In vivo model of indomethacin-induced gastric damage could validate in vitro-drawn results that pantoprazole remarkably protected against indomethacin-induced gastric damage, in which zinc protoporphyrin (5 mg/kg, ip significantly abolished the protective efficacy of pantoprazole. Conclusion These results demonstrate that Nrf2-mediated HO-1 induction of PPIs afforded a significant protective effect against NSAIDs-induced gastric damage beyond acid suppressive actions.

  18. Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration

    Directory of Open Access Journals (Sweden)

    Kira M. Holmström

    2013-06-01

    Transcription factor Nrf2 and its repressor Keap1 regulate a network of cytoprotective genes involving more than 1% of the genome, their best known targets being drug-metabolizing and antioxidant genes. Here we demonstrate a novel role for this pathway in directly regulating mitochondrial bioenergetics in murine neurons and embryonic fibroblasts. Loss of Nrf2 leads to mitochondrial depolarisation, decreased ATP levels and impaired respiration, whereas genetic activation of Nrf2 increases the mitochondrial membrane potential and ATP levels, the rate of respiration and the efficiency of oxidative phosphorylation. We further show that Nrf2-deficient cells have increased production of ATP in glycolysis, which is then used by the F1Fo-ATPase for maintenance of the mitochondrial membrane potential. While the levels and in vitro activities of the respiratory complexes are unaffected by Nrf2 deletion, their activities in isolated mitochondria and intact live cells are substantially impaired. In addition, the rate of regeneration of NADH after inhibition of respiration is much slower in Nrf2-knockout cells than in their wild-type counterparts. Taken together, these results show that Nrf2 directly regulates cellular energy metabolism through modulating the availability of substrates for mitochondrial respiration. Our findings highlight the importance of efficient energy metabolism in Nrf2-mediated cytoprotection.

  19. High NRF2 expression controls endoplasmic reticulum stress induced apoptosis in multiple myeloma.

    Science.gov (United States)

    Sun, Yu; Abdul Aziz, Amina; Bowles, Kristian; Rushworth, Stuart

    2018-01-01

    Multiple myeloma (MM) is an incurable disease characterized by clonal plasma cell proliferation. The stress response transcription factor Nuclear factor erythroid 2 [NF-E2]-related factor 2 (NRF2) is known to be activated in MM in response to proteasome inhibitors (PI). Here, we hypothesize that the transcription factor NRF2 whose physiological role is to protect cells from reactive oxygen species via the regulation of drug metabolism and antioxidant gene plays an important role in MM cells survival and proliferation. We report for the first time that NRF2 is constitutively activated in circa 50% of MM primary samples and all MM cell lines. Moreover, genetic inhibition of constitutively expressed NRF2 reduced MM cell viability. We confirm that PI induced further expression of NRF2 in MM cell lines and primary MM. Furthermore, genetic inhibition of NRF2 of PI treated MM cells increased ER-stress through the regulation of CCAAT-enhancer-binding protein homologous protein (CHOP). Finally, inhibition of NRF2 in combination with PI treatment significantly increased apoptosis in MM cells. Here we identify NRF2 as a key regulator of MM survival in treatment naive and PI treated cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-κB signaling and Nrf2 pathway in high fat diet fed mice.

    Science.gov (United States)

    Xu, Min-Xuan; Wang, Ming; Yang, Wei-Wei

    2017-01-01

    High-fat diet-induced metabolic syndrome followed by chronic kidney disease caused by intestinal endotoxemia have received extensive attention. Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) and oxidative stress-related Nrf2/Keap1 were regarded as the key target points involved in metabolic inflammation and kidney injury. However, the molecular mechanism of interaction between TLR4/NF-κB and Nrf2 activation in high-fat diet-induced renal injury is not absolutely understood. Quercetin, a natural product, has been reported to possess antitumor and anti-inflammatory effects. In this regard, this study attempted to prepare poly(d,l-lactide- co -glycolide)-loaded gold nanoparticles precipitated with quercetin (GQ) to investigate the anti-inflammatory and anti-oxidative stress effects in high-fat diet-induced kidney failure. For this study, C57BL/6 mice fed fat-rich fodder were used as the metabolic syndrome model to evaluate the protective effects of GQ on kidney injury and to determine whether TLR4/NF-κB and Nrf2 pathways were associated with the process. Moreover, histological examinations, enzyme-linked immunosorbent assay, Western blot, and basic blood tests and systemic inflammation-related indicators were used to investigate the inhibitory effects of GQ and underlying molecular mechanism by which it may reduce renal injury. Of note, podocyte injury was found to participate in endotoxin-stimulated inflammatory response. TLR4/NF-κB and Nrf2 pathways were upregulated with high-fat diet intake in mice, resulting in reduction of superoxide dismutase activity and increase in superoxide radical, H 2 O 2 , malondialdehyde, XO, XDH, and XO/XDH ratio. In addition, upregulation of TLR4/NF-κB and oxidative stress by endotoxin were observed in vitro, which were suppressed by GQ administration, ultimately alleviating podocyte injury. These findings indicated that GQ could restore the metabolic disorders caused by high-fat diet, which suppresses insulin

  1. Antroquinonol mitigates an accelerated and progressive IgA nephropathy model in mice by activating the Nrf2 pathway and inhibiting T cells and NLRP3 inflammasome.

    Science.gov (United States)

    Yang, Shun-Min; Ka, Shuk-Man; Hua, Kuo-Feng; Wu, Tzu-Hua; Chuang, Yi-Ping; Lin, Ya-Wen; Yang, Feng-Ling; Wu, Shih-Hsiung; Yang, Sung-Sen; Lin, Shih-Hua; Chang, Jia-Ming; Chen, Ann

    2013-08-01

    High levels of reactive oxygen species (ROS), systemic T cell activation, and macrophage infiltration in the kidney are implicated in the acceleration and progression of IgA nephropathy (IgAN), the most frequent type of primary glomerulonephritis. However, the pathogenic mechanism of IgAN is still little understood, and it remains a challenge to establish a specific therapeutic strategy for this type of glomerular disorder. Recently, we showed that antroquinonol (Antroq), a pure active compound from Antrodia camphorata mycelium, inhibits renal inflammation and reduces oxidative stress in a mouse model of renal fibrosis. But the anti-inflammatory and immune-regulatory effects of Antroq on the acceleration and progression of primary glomerular disorders have not been determined. In this study, we show that Antroq administration substantially impeded the development of severe renal lesions, such as intense glomerular proliferation, crescents, sclerosis, and periglomerular interstitial inflammation, in mice with induced accelerated and progressive IgAN (AcP-IgAN). Further mechanistic analysis in AcP-IgAN mice showed that, early in the developmental stage of the AcP-IgAN model, Antroq promoted the Nrf2 antioxidant pathway and inhibited the activation of T cells and NLRP3 inflammasome. Significantly improved proteinuria/renal function and histopathology in AcP-IgAN mice of an established stage supported potential therapeutic effects of Antroq on the disease. In addition, Antroq was shown to inhibit activation of NLRP3 inflammasome in vitro by an IgA immune complex (IC) partly involving a reduced ROS production in IgA-IC-primed macrophages, and this finding may be helpful in the understanding of the mode of action of Antroq in the treated AcP-IgAN mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Inflammation and airway hyperresponsiveness after chlorine exposure are prolonged by Nrf2 deficiency in mice.

    Science.gov (United States)

    Ano, Satoshi; Panariti, Alice; Allard, Benoit; O'Sullivan, Michael; McGovern, Toby K; Hamamoto, Yoichiro; Ishii, Yukio; Yamamoto, Masayuki; Powell, William S; Martin, James G

    2017-01-01

    Chlorine gas (Cl 2 ) is a potent oxidant and trigger of irritant induced asthma. We explored NF-E2-related factor 2 (Nrf2)-dependent mechanisms in the asthmatic response to Cl 2 , using Nrf2-deficient mice, buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis and sulforaphane (SFN), a phytochemical regulator of Nrf2. Airway inflammation and airway hyperresponsiveness (AHR) were assessed 24 and 48h after a 5-min nose-only exposure to 100ppm Cl 2 of Nrf2-deficient and wild type Balb/C mice treated with BSO or SFN. Animals were anesthetized, paralyzed and mechanically ventilated (FlexiVent™) and challenged with aerosolized methacholine. Bronchoalveolar lavage (BAL) was performed and lung tissues were harvested for assessment of gene expression. Cl 2 exposure induced a robust AHR and an intense neutrophilic inflammation that, although similar in Nrf2-deficient mice and wild-type mice at 24h after Cl 2 exposure, were significantly greater at 48h post exposure in Nrf2-deficient mice. Lung GSH and mRNA for Nrf2-dependent phase II enzymes (NQO-1 and GPX2) were significantly lower in Nrf2-deficient than wild-type mice after Cl 2 exposure. BSO reduced GSH levels and promoted Cl 2 -induced airway inflammation in wild-type mice, but not in Nrf2-deficient mice, whereas SFN suppressed Cl 2 -induced airway inflammation in wild-type but not in Nrf2-deficient mice. AHR was not affected by either BSO or SFN at 48h post Cl 2 exposure. Nrf2-dependent phase II enzymes play a role in the resolution of airway inflammation and AHR after Cl 2 exposure. Moderate deficiency of GSH affects the magnitude of acute inflammation but not AHR. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  4. Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice.

    Directory of Open Access Journals (Sweden)

    Thomas E Sussan

    Full Text Available BACKGROUND: Oxidative stress and inflammation are two critical factors that drive the formation of plaques in atherosclerosis. Nrf2 is a redox-sensitive transcription factor that upregulates a battery of antioxidative genes and cytoprotective enzymes that constitute the cellular response to oxidative stress. Our previous studies have shown that disruption of Nrf2 in mice (Nrf2(-/- causes increased susceptibility to pulmonary emphysema, asthma and sepsis due to increased oxidative stress and inflammation. Here we have tested the hypothesis that disruption of Nrf2 in mice causes increased atherosclerosis. PRINCIPAL FINDINGS: To investigate the role of Nrf2 in the development of atherosclerosis, we crossed Nrf2(-/- mice with apoliporotein E-deficient (ApoE(-/- mice. ApoE(-/- and ApoE(-/-Nrf2(-/- mice were fed an atherogenic diet for 20 weeks, and plaque area was assessed in the aortas. Surprisingly, ApoE(-/-Nrf2(-/- mice exhibited significantly smaller plaque area than ApoE(-/- controls (11.5% vs 29.5%. This decrease in plaque area observed in ApoE(-/-Nrf2(-/- mice was associated with a significant decrease in uptake of modified low density lipoproteins (AcLDL by isolated macrophages from ApoE(-/-Nrf2(-/- mice. Furthermore, atherosclerotic plaques and isolated macrophages from ApoE(-/-Nrf2(-/- mice exhibited decreased expression of the scavenger receptor CD36. CONCLUSIONS: Nrf2 is pro-atherogenic in mice, despite its antioxidative function. The net pro-atherogenic effect of Nrf2 may be mediated via positive regulation of CD36. Our data demonstrates that the potential effects of Nrf2-targeted therapies on cardiovascular disease need to be investigated.

  5. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    International Nuclear Information System (INIS)

    Jing, Xu; Ren, Dongmei; Wei, Xinbing; Shi, Huanying; Zhang, Xiumei; Perez, Ruth G.; Lou, Haiyan; Lou, Hongxiang

    2013-01-01

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury

  6. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model

    Science.gov (United States)

    Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses. PMID:26798423

  7. Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-kB signaling and Nrf2 pathway in high fat diet fed mice

    Directory of Open Access Journals (Sweden)

    Xu MX

    2017-01-01

    Full Text Available Min-Xuan Xu,1,2,* Ming Wang,3,* Wei-Wei Yang4 1Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 2College of Engineering and Applied Sciences, Nanjing University, Nanjing, 3Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 4Department of Nephrology, Huai’an First People’s Hospital, Nanjing Medical University, Jiangsu, People’s Republic of China *These authors contributed equally to this work Abstract: High-fat diet-induced metabolic syndrome followed by chronic kidney disease caused by intestinal endotoxemia have received extensive attention. Toll-like receptor 4 (TLR4/nuclear factor-kappa B (NF-κB and oxidative stress-related Nrf2/Keap1 were regarded as the key target points involved in metabolic inflammation and kidney injury. However, the molecular mechanism of interaction between TLR4/NF-κB and Nrf2 activation in high-fat diet-induced renal injury is not absolutely understood. Quercetin, a natural product, has been reported to possess antitumor and anti-inflammatory effects. In this regard, this study attempted to prepare poly(d,l-lactide-co-glycolide-loaded gold nanoparticles precipitated with quercetin (GQ to investigate the anti-inflammatory and anti-oxidative stress effects in high-fat diet-induced kidney failure. For this study, C57BL/6 mice fed fat-rich fodder were used as the metabolic syndrome model to evaluate the protective effects of GQ on kidney injury and to determine whether TLR4/NF-κB and Nrf2 pathways were associated with the process. Moreover, histological examinations, enzyme-linked immunosorbent assay, Western blot, and basic blood tests and systemic inflammation-related indicators were used to investigate the inhibitory effects of GQ and underlying molecular mechanism by which it may reduce renal injury. Of note, podocyte

  8. Flavonoids as Putative Inducers of the Transcription Factors Nrf2, FoxO, and PPARγ

    Directory of Open Access Journals (Sweden)

    Kathrin Pallauf

    2017-01-01

    Full Text Available Dietary flavonoids have been shown to extend the lifespan of some model organisms and may delay the onset of chronic ageing-related diseases. Mechanistically, the effects could be explained by the compounds scavenging free radicals or modulating signalling pathways. Transcription factors Nrf2, FoxO, and PPARγ possibly affect ageing by regulating stress response, adipogenesis, and insulin sensitivity. Using Hek-293 cells transfected with luciferase reporter constructs, we tested the potency of flavonoids from different subclasses (flavonols, flavones, flavanols, and isoflavones to activate these transcription factors. Under cell-free conditions (ABTS and FRAP assays, we tested their free radical scavenging activities and used α-tocopherol and ascorbic acid as positive controls. Most of the tested flavonoids, but not the antioxidant vitamins, stimulated Nrf2-, FoxO-, and PPARγ-dependent promoter activities. Flavonoids activating Nrf2 also tended to induce a FoxO and PPARγ response. Interestingly, activation patterns of cellular stress response by flavonoids were not mirrored by their activities in ABTS and FRAP assays, which depended mostly on hydroxylation in the flavonoid B ring and, in some cases, extended that of the vitamins. In conclusion, the free radical scavenging properties of flavonoids do not predict whether these molecules can stimulate a cellular response linked to activation of longevity-associated transcription factors.

  9. Flavonoids as Putative Inducers of the Transcription Factors Nrf2, FoxO, and PPARγ.

    Science.gov (United States)

    Pallauf, Kathrin; Duckstein, Nils; Hasler, Mario; Klotz, Lars-Oliver; Rimbach, Gerald

    2017-01-01

    Dietary flavonoids have been shown to extend the lifespan of some model organisms and may delay the onset of chronic ageing-related diseases. Mechanistically, the effects could be explained by the compounds scavenging free radicals or modulating signalling pathways. Transcription factors Nrf2, FoxO, and PPAR γ possibly affect ageing by regulating stress response, adipogenesis, and insulin sensitivity. Using Hek-293 cells transfected with luciferase reporter constructs, we tested the potency of flavonoids from different subclasses (flavonols, flavones, flavanols, and isoflavones) to activate these transcription factors. Under cell-free conditions (ABTS and FRAP assays), we tested their free radical scavenging activities and used α -tocopherol and ascorbic acid as positive controls. Most of the tested flavonoids, but not the antioxidant vitamins, stimulated Nrf2-, FoxO-, and PPAR γ -dependent promoter activities. Flavonoids activating Nrf2 also tended to induce a FoxO and PPAR γ response. Interestingly, activation patterns of cellular stress response by flavonoids were not mirrored by their activities in ABTS and FRAP assays, which depended mostly on hydroxylation in the flavonoid B ring and, in some cases, extended that of the vitamins. In conclusion, the free radical scavenging properties of flavonoids do not predict whether these molecules can stimulate a cellular response linked to activation of longevity-associated transcription factors.

  10. UVA Irradiation Enhances Brusatol-Mediated Inhibition of Melanoma Growth by Downregulation of the Nrf2-Mediated Antioxidant Response

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2018-01-01

    Full Text Available Brusatol (BR is a potent inhibitor of Nrf2, a transcription factor that is highly expressed in cancer tissues and confers chemoresistance. UVA-generated reactive oxygen species (ROS can damage both normal and cancer cells and may be of potential use in phototherapy. In order to provide an alternative method to treat the aggressive melanoma, we sought to investigate whether low-dose UVA with BR is more effective in eliminating melanoma cells than the respective single treatments. We found that BR combined with UVA led to inhibition of A375 melanoma cell proliferation by cell cycle arrest in the G1 phase and triggers cell apoptosis. Furthermore, inhibition of Nrf2 expression attenuated colony formation and tumor development from A375 cells in heterotopic mouse models. In addition, cotreatment of UVA and BR partially suppressed Nrf2 and its downstream target genes such as HO-1 along with the PI3K/AKT pathway. We propose that cotreatment increased ROS-induced cell cycle arrest and cellular apoptosis and inhibits melanoma growth by regulating the AKT-Nrf2 pathway in A375 cells which offers a possible therapeutic intervention strategy for the treatment of human melanoma.

  11. Protective Effect of Decursin Extracted from Angelica gigas in Male Infertility via Nrf2/HO-1 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Woong Jin Bae

    2016-01-01

    Full Text Available Higher testicular temperature results in altered spermatogenesis due to heat-related oxidative stress. We examined the effects of decursin extracted from Angelica gigas Nakai on antioxidant activity in vitro and in a cryptorchidism-induced infertility rat model. TM3 Leydig cell viability was measured based on oxidative stress according to treatment. Either distilled water or AG 400 mg/kg of A. gigas extract was administered orally for 4 weeks after unilateral cryptorchidism was induced. After 1, 2, and 4 weeks, six rats from the control group and six rats from treatment group were sacrificed. Testicular weight, semen quality, antioxidant activities, nuclear factor erythroid 2-related factor 2 (Nrf2 protein, and mRNA expression of Nrf2-regulated genes were analyzed. Treatment with A. gigas extract (1 protected TM3 cells against oxidative stress in a dose-dependent manner, (2 improved the mean weight of the cryptorchid testis, (3 maintained sperm counts, motility, and spermatogenic cell density, (4 decreased levels of 8-hydroxy-2-deoxyguanosine (8-OHdG and increased levels of superoxide dismutase (SOD, (5 significantly increased Nrf2 and heme oxygenase-1 (HO-1, and (6 significantly decreased apoptosis. This study suggests that decursin extracted from A. gigas is a supplemental agent that can reduce oxidative stress by Nrf2-mediated upregulation of HO-1 in rat experimentally induced unilateral cryptorchidism and may improve cryptorchidism-induced infertility.

  12. A PGAM5-KEAP1-Nrf2 complex is required for stress-induced mitochondrial retrograde trafficking.

    Science.gov (United States)

    O'Mealey, Gary B; Plafker, Kendra S; Berry, William L; Janknecht, Ralf; Chan, Jefferson Y; Plafker, Scott M

    2017-10-15

    The Nrf2 transcription factor is a master regulator of the cellular anti-stress response. A population of the transcription factor associates with the mitochondria through a complex with KEAP1 and the mitochondrial outer membrane histidine phosphatase, PGAM5. To determine the function of this mitochondrial complex, we knocked down each component and assessed mitochondrial morphology and distribution. We discovered that depletion of Nrf2 or PGAM5, but not KEAP1, inhibits mitochondrial retrograde trafficking induced by proteasome inhibition. Mechanistically, this disrupted motility results from aberrant degradation of Miro2, a mitochondrial GTPase that links mitochondria to microtubules. Rescue experiments demonstrate that this Miro2 degradation involves the KEAP1-cullin-3 E3 ubiquitin ligase and the proteasome. These data are consistent with a model in which an intact complex of PGAM5-KEAP1-Nrf2 preserves mitochondrial motility by suppressing dominant-negative KEAP1 activity. These data further provide a mechanistic explanation for how age-dependent declines in Nrf2 expression impact mitochondrial motility and induce functional deficits commonly linked to neurodegeneration. © 2017. Published by The Company of Biologists Ltd.

  13. Bixin protects mice against ventilation-induced lung injury in an NRF2-dependent manner.

    Science.gov (United States)

    Tao, Shasha; Rojo de la Vega, Montserrat; Quijada, Hector; Wondrak, Georg T; Wang, Ting; Garcia, Joe G N; Zhang, Donna D

    2016-01-05

    Mechanical ventilation (MV) is a therapeutic intervention widely used in the clinic to assist patients that have difficulty breathing due to lung edema, trauma, or general anesthesia. However, MV causes ventilator-induced lung injury (VILI), a condition characterized by increased permeability of the alveolar-capillary barrier that results in edema, hemorrhage, and neutrophil infiltration, leading to exacerbated lung inflammation and oxidative stress. This study explored the feasibility of using bixin, a canonical NRF2 inducer identified during the current study, to ameliorate lung damage in a murine VILI model. In vitro, bixin was found to activate the NRF2 signaling pathway through blockage of ubiquitylation and degradation of NRF2 in a KEAP1-C151 dependent manner; intraperitoneal (IP) injection of bixin led to pulmonary upregulation of the NRF2 response in vivo. Remarkably, IP administration of bixin restored normal lung morphology and attenuated inflammatory response and oxidative DNA damage following MV. This observed beneficial effect of bixin derived from induction of the NRF2 cytoprotective response since it was only observed in Nrf2(+/+) but not in Nrf2(-/-) mice. This is the first study providing proof-of-concept that NRF2 activators can be developed into pharmacological agents for clinical use to prevent patients from lung injury during MV treatment.

  14. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone.

    Science.gov (United States)

    Arowojolu, Omotayo A; Orlow, Seth J; Elbuluk, Nada; Manga, Prashiela

    2017-07-01

    Vitiligo, characterised by progressive melanocyte death, can be initiated by exposure to vitiligo-inducing phenols (VIPs). VIPs generate oxidative stress in melanocytes and activate the master antioxidant regulator NRF2. While NRF2-regulated antioxidants are reported to protect melanocytes from oxidative stress, the role of NRF2 in the melanocyte response to monobenzone, a clinically relevant VIP, has not been characterised. We hypothesised that activation of NRF2 may protect melanocytes from monobenzone-induced toxicity. We observed that knockdown of NRF2 or NRF2-regulated antioxidants NQO1 and PRDX6 reduced melanocyte viability, but not viability of keratinocytes and fibroblasts, suggesting that melanocytes were preferentially dependent upon NRF2 activity for growth compared to other cutaneous cells. Furthermore, melanocytes activated the NRF2 response following monobenzone exposure and constitutive NRF2 activation reduced monobenzone toxicity, supporting NRF2's role in the melanocyte stress response. In contrast, melanocytes from individuals with vitiligo (vitiligo melanocytes) did not activate the NRF2 response as efficiently. Dimethyl fumarate-mediated NRF2 activation protected normal and vitiligo melanocytes against monobenzone-induced toxicity. Given the contribution of oxidant-antioxidant imbalance in vitiligo, modulation of this pathway may be of therapeutic interest. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Tomokazu; Matsumoto, Takashi; Itoi, Ayano; Kawana, Ayako; Nishiyama, Takahito; Ogura, Kenichiro [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan); Hiratsuka, Akira, E-mail: hiratuka@toyaku.ac.jp [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan)

    2011-10-07

    Highlights: {yields} We found a novel inhibitor of Nrf2 known as a chemoresistance factor. {yields} Overexpressed Nrf2 in lung cancer cells was suppressed by Cinnamomi Cortex extract. {yields} Cytotoxic action of anticancer drugs in cells treated with the extract was enhanced. {yields} Procyanidin tetramers and pentamers were active components in suppressing Nrf2. -- Abstract: Nuclear factor-E2-related factor 2 (Nrf2) is an important cytoprotective transcription factor because Nrf2-regulated enzymes play a key role in antioxidant and detoxification processes. Recent studies have reported that lung cancer cells overexpressing Nrf2 exhibit increased resistance to chemotherapy. Suppression of overexpressed Nrf2 is needed for a new therapeutic approach against lung cancers. In the present study, we found that Cinnamomi Cortex extract (CCE) has an ability to suppress Nrf2-regulated enzyme activity and Nrf2 expression in human lung cancer A549 cells with high Nrf2 activity. Moreover, we demonstrated that CCE significantly enhances sensitivity of A549 cells to the cytotoxic action of doxorubicin and etoposide as well as increasing the intracellular accumulation of both drugs. These results suggest that CCE might be an effective concomitant agent to reduce anticancer drug resistance derived from Nrf2 overexpression. Bioactivity-guided fractionation revealed that procyanidin tetramers and pentamers contained in CCE were active components in suppressing Nrf2.

  16. Nrf2 is required to maintain the self-renewal of glioma stem cells

    International Nuclear Information System (INIS)

    Zhu, Jianhong; Wang, Handong; Sun, Qing; Ji, Xiangjun; Zhu, Lin; Cong, Zixiang; Zhou, Yuan; Liu, Huandong; Zhou, Mengliang

    2013-01-01

    Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioma stem cells (GSCs). Self-renewal is a complex biological process necessary for maintaining the glioma stem cells. Nuclear factor rythroid 2-related factor 2(Nrf2) plays a significant role in protecting cells from endogenous and exogenous stresses. Nrf2 is a key nuclear transcription factor that regulates antioxidant response element (ARE)-containing genes. Previous studies have demonstrated the significant role of Nrf2 in the proliferation of glioblastoma, and in their resistance to radioactive therapies. We examined the effect of knocking down Nrf2 in GSCs. Nrf2 expression was down-regulated by shRNA transinfected with lentivirus. Expression levels of Nestin, Nrf2, BMI-1, Sox2 and Cyclin E were assessed by western blotting, quantitative polymerase chain reaction (qPCR) and immunohistochemistry analysis. The capacity for self-renewal in vitro was assessed by genesis of colonies. The capacity for self-renewal in vivo was analyzed by tumor genesis of xenografts in nude mice. Knockdown of Nrf2 inhibited the proliferation of GSCs, and significantly reduced the expression of BMI-1, Sox2 and CyclinE. Knocking down of Nrf2 changed the cell cycle distribution of GSCs by causing an uncharacteristic increase in the proportion of cells in the G2 phase and a decrease in the proportion of cells in the S phase of the cell cycle. Nrf2 is required to maintain the self-renewal of GSCs, and its down-regulation can attenuate the self-renewal of GSCs significantly

  17. The aberrantly expressed long non-coding RNA in the substantia nigra and corpus striatum of Nrf2-knockout mice.

    Science.gov (United States)

    Liu, Jian; Xu, Yali; Kang, Yunxiao; Cao, Shanhu; Shi, Geming; Cui, Huixian; Sun, Shaoguang; Wang, Lei

    2017-10-01

    Nuclear factor erythroid 2 like 2 (Nrf2) functions as a neuroprotective agent in Parkinson's disease (PD). This study aimed to investigate the key long non-coding RNAs (lncRNAs) correlated with Nrf2, which might provide valuable information for the exploration of pathogenesis of PD. The lncRNA and mRNA expression profiling of substantia nigra and corpus striatum of Nrf2 (-/-) mice model was obtained from microarray analysis. The animal experiments conducted for this study were approved by the ethics committee of Hebei Medical University. Bioinformatics analyses were conducted, including differentially expressed lncRNAs/mRNA (differentially expressed lncRNA, DEL/differentially expressed mRNA, DEM) identification, DEL-DEM coexpression network construction, and biological functions prediction. Quantitative real-time polymerase chain reaction (qRT-PCR) was subjected to validate abnormally expressed DELs and DEMs in the substantia nigra and corpus striatum of Nrf2 (-/-) mice model. A total of 48 DELs (37 down-regulated and 11 up-regulated) were identified both in Nrf2 (-/-) substantia nigra and corpus striatum; 96 DEMs and 643 DEMs were identified in the substantia nigra and corpus striatum, respectively. DEL-DEM coexpressed network was constructed. LncRNA AK076880, AK036620, and AK020330 had high connectivity with DEMs both in the substantia nigra and corpus striatum. These DEMs were significantly enriched in signaling pathways such as the calcium signaling pathway, Huntington's disease, Alzheimer's disease, mitogen-activated protein kinase (MAPK) signaling pathway, and the Wnt signaling pathway. Generally, qRT-PCR validation results of selected DEMs and DELs were consistent with microarray data. The dysregulated DELs and DEMs in the substantia nigra and corpus striatum of Nrf2 (-/-) mice were identified. Our results might provide useful information for further exploring the pathogenesis mechanism of PD. © 2017 International Society for Neurochemistry.

  18. Acceleration of UVB-induced photoageing in nrf2 gene-deficient mice.

    Science.gov (United States)

    Hirota, Ayako; Kawachi, Yasuhiro; Yamamoto, Masayuki; Koga, Tsutomu; Hamada, Kazuhiko; Otsuka, Fujio

    2011-08-01

    Ultraviolet (UV) radiation is one of the most important environmental factors involved in the pathogenesis of premature skin ageing, termed photoageing. The harmful effects of UV in photoageing are associated with the generation of reactive oxygen species, and cellular antioxidants act to prevent the occurrence and reduce the severity of UV-induced photoageing. The transcription factor Nrf2 and its cytoplasmic anchor protein, Keap1, are central regulators of the cellular antioxidant response. Here, we investigated the role of the Nrf2-Keap1 pathway in photoageing using nrf2 gene-deficient (nrf2(-/-)) mice. Our results indicated that UVB-irradiated nrf2(-/-) mice showed accelerated photoageing, such as coarse wrinkle formation, loss of skin flexibility, epidermal thickening and deposition of extracellular matrix in the upper dermis. In addition, nrf2(-/-) mice also showed an increase in cutaneous reactivity for the lipid peroxidation product 4-hydroxy-2-nonenal and a significant decrease in cutaneous glutathione level. These findings indicate that Nrf2 plays the important role in the protection against UVB-induced photoageing. © 2011 John Wiley & Sons A/S.

  19. 2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-κB, AP-1 and MAPK pathways in human proximal tubular cells

    Science.gov (United States)

    Gong, Xuezhong; Ivanov, Vladimir N.; Hei, Tom K.

    2015-01-01

    Our recent study demonstrated that sodium arsenite at a clinically relevant dose induced nephrotoxicity in human renal proximal tubular epithelial cell line HK-2, which could be inhibited by natural product 2,3,5,6-Tetramethylpyrazine (TMP) with antioxidant activity. The present study demonstrated that arsenic exposure resulted in protein and enzymatic induction of heme oxygenase-1 (HO-1) in dose- and time-dependent manners in HK-2 cells. Blocking HO-1enzymatic activity by Zinc protoporphyrin (ZnPP) augmented arsenic-induced apoptosis, ROS production and mitochondrial dysfunction, suggesting a critical role for HO-1 as a renal protectant in this procession. On the other hand, TMP, upstream of HO-1, inhibited arsenic-induced ROS production and ROS-dependent HO-1 expression. TMP also prevented mitochondria dysfunction and suppressed activation of the intrinsic apoptotic pathway in HK-2 cells. Our results revealed that the regulation of arsenic-induced HO-1 expression was performed through multiple ROS-dependent signal pathways and the corresponding transcription factors, including p38 MAPK and JNK (but not ERK), AP-1, Nrf2 and NF-κB. TMP inhibited arsenic-induced activations of JNK, p38 MAPK, ERK, AP-1 and Nrf2 and block HO-1 protein expression. The present study, furthermore, demonstrated arsenic-induced expression of Arsenic response protein 2 (ARS2) that was regulated by p38 MAPK, ERK and NF-κB. To our knowledge, this is the first report showing that ARS2 involved in arsenic-induced nephrotoxicity while TMP pretreatment prevented such an up-regulation of ARS2 in HK-2 cells. Given ARS2 and HO-1 sharing the similar regulation mechanism, we speculated that ARS2 might also mediate cell survival in this procession. In summary, our study highlighted a role of HO-1 in the protection against arsenic-induced cytotoxicity downstream from the primary targets of TMP and further indicated that TMP may be used as a potential therapeutic agent in the treatment of arsenic

  20. n-Butyl-α-D-fructofuranoside Isolated from Ulmus davidiana Enhances Nrf2 Activity Through Activation of JNK.

    Science.gov (United States)

    Choi, Hee-Jin; Choi, Hee-Jung; Park, Mi-Joo; Chung, Tae-Wook; Joo, Myungsoo; Kim, Cheorl-Ho; Chang, Hyun-Wook; Son, Jong-Keun; Ha, Ki-Tae

    The root bark of Ulmus davidiana Nakai (Ulmaceae), a traditional Korean medicinal plant, is used for treating inflammatory diseases. We investigated the Nrf2-activating effect of U. davidiana and identified a novel Nrf2 activator from its constituent compounds. Cytotoxicity was measured by MTT assay, and the Nrf2 activity was examined by luciferasereporter assay and western blot analysis. The expression of Nrf2-dependent antioxidant genes was estimated by RT-PCR. The signal pathway related to Nrf2 activation was analyzed by treating specific signaling inhibitors. Anti-inflammatory effects were determined using an NO assay and western blot analysis. Ulmus davidiana and its constituent compounds, including catechin-3-O-α-L-rhamnopyranoside, α-nigerose, n-butyl α-D-fructofuranoside (NBF), and procyanidin B3, enhanced the transcriptional activity of Nrf2. Of these compounds, only NBF possessed a distinctive structure and exhibited ROS-independent Nrf2 activation. In addition, NBF significantly increased the nuclear translocation of Nrf2 and the expression of Nrf2-dependent detoxifying enzymes, including HO-1 and NQO-1, in dose-dependent manner. The Nrf2 activation induced by NBF was mediated by the phosphorylation of JNK. Consequently, pretreatment with NBF inhibited the LPS-induced expression of pro-inflammatory genes. To the best of our knowledge, this is the first study to report on the Nrf2-activating effect of U. davidiana and NBF. Given the importance of Nrf2 as a negative regulator in various inflammatory diseases, NBF could be considered as a novel candidate for the prevention and treatment of inflammatory diseases.

  1. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qipeng; Yao, Bei; Li, Ning; Ma, Lei; Deng, Yanchao; Yang, Yang; Zeng, Cheng; Yang, Zhicheng [Department of Clinical Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Liu, Bing, E-mail: liubing520@gdpu.edu.cn [Department of Clinical Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006 (China)

    2017-03-15

    The redox adaptation mechanisms in cancer cells are very complex and remain largely unclear. Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and confers apoptosis resistance on NSCLC cells. However, the comprehensive mechanisms for NOX4-mediated oxidative resistance of cancer cells remain still undentified. The present study found that NOX4-derived H{sub 2}O{sub 2} enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) stability via disruption of redox-dependent proteasomal degradation and stimulated its activity through activation of PI3K signaling. Specifically, the results showed that ectopic NOX4 expression did not induce apoptosis of A549 cells; however, inhibition of Nrf2 resulted in obvious apoptotic death of NOX4-overexpressed A549 cells, accompanied by a significant increase in H{sub 2}O{sub 2} level and decrease in GSH content. Besides, inhibition of Nrf2 could suppress cell growth and efficiently reverse the enhancement effect of NOX4 on cell growth. The in vivo data confirmed that inhibition of Nrf2 could interfere apoptosis resistance in NOX4-overexpressed A549 tumors and led to cell growth inhibition. In conclusion, these results reveal that Nrf2 is critically involved in redox adaptation regulation in NOX4-overexpressed NSCLC cells. Therefore, NOX4 and Nrf2 may be promising combination targets against malignant progression of NSCLC. - Highlights: • NOX4-derived H{sub 2}O{sub 2} upregulates Nrf2 expression and activity in NSCLC. • Nrf2 confers apoptosis resistance in NOX4-overexpressed NSCLC cells. • Inhibition of Nrf2 reverses the enhancement effect of NOX4 on cell growth.

  2. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation

    International Nuclear Information System (INIS)

    Han, Jae Yun; Cho, Seung Sik; Yang, Ji Hye; Kim, Kyu Min; Jang, Chang Ho; Park, Da Eon; Bang, Joon Seok; Jung, Young Suk; Ki, Sung Hwan

    2015-01-01

    The chalcone compound isosalipurposide (ISPP) has been successfully isolated from the native Korean plant species Corylopsis coreana Uyeki (Korean winter hazel). However, the therapeutic efficacy of ISPP remains poorly understood. This study investigated whether ISPP has the capacity to activate NF-E2-related factor (Nrf2)-antioxidant response element (ARE) signaling and induce its target gene expression, and to determined the protective role of ISPP against oxidative injury of hepatocytes. In HepG2 cells, nuclear translocation of Nrf2 is augmented by ISPP treatment. Consistently, ISPP increased ARE reporter gene activity and the protein levels of glutamate cysteine ligase (GCL) and hemeoxygenase (HO-1), resulting in increased intracellular glutathione levels. Cells pretreated with ISPP were rescued from tert-butylhydroperoxide-induced reactive oxygen species (ROS) production and glutathione depletion and consequently, apoptotic cell death. Moreover, ISPP ameliorated the mitochondrial dysfunction and apoptosis induced by rotenone which is an inhibitor of complex 1 of the mitochondrial respiratory chain. The specific role of Nrf2 activation by ISPP was demonstrated using an ARE-deletion mutant plasmid and Nrf2-knockout cells. Finally, we observed that extracellular signal-regulated kinase (ERK) and AMP-activated protein kinase (AMPK), but not protein kinase C (PKC)-δ or other mitogen-activated protein kinases (MAPKs), are involved in the activation of Nrf2 by ISPP. Taken together, our results demonstrate that ISPP has a cytoprotective effect against oxidative damage mediated through Nrf2 activation and induction of its target gene expression in hepatocytes. - Highlights: • We investigated the effect of ISPP on Nrf2 activation. • ISPP increased Nrf2 activity and its target gene expression. • ISPP inhibited the mitochondrial dysfunction and ROS production. • Nrf2 activation by ISPP is dependent on ERK1/2 and AMPK phosphorylation. • ISPP may be a promising

  3. Nrf2 Activation Protects against Solar-Simulated Ultraviolet Radiation in Mice and Humans.

    Science.gov (United States)

    Knatko, Elena V; Ibbotson, Sally H; Zhang, Ying; Higgins, Maureen; Fahey, Jed W; Talalay, Paul; Dawe, Robert S; Ferguson, James; Huang, Jeffrey T-J; Clarke, Rosemary; Zheng, Suqing; Saito, Akira; Kalra, Sukirti; Benedict, Andrea L; Honda, Tadashi; Proby, Charlotte M; Dinkova-Kostova, Albena T

    2015-06-01

    The transcription factor Nrf2 determines the ability to adapt and survive under conditions of electrophilic, oxidative, and inflammatory stress by regulating the expression of elaborate networks comprising nearly 500 genes encoding proteins with versatile cytoprotective functions. In mice, disruption of Nrf2 increases susceptibility to carcinogens and accelerates disease pathogenesis. Paradoxically, Nrf2 is upregulated in established human tumors, but whether this upregulation drives carcinogenesis is not known. Here we show that the incidence, multiplicity, and burden of solar-simulated UV radiation-mediated cutaneous tumors that form in SKH-1 hairless mice in which Nrf2 is genetically constitutively activated are lower than those that arise in their wild-type counterparts. Pharmacologic Nrf2 activation by topical biweekly applications of small (40 nmol) quantities of the potent bis(cyano enone) inducer TBE-31 has a similar protective effect against solar-simulated UV radiation in animals receiving long-term treatment with the immunosuppressive agent azathioprine. Genetic or pharmacologic Nrf2 activation lowers the expression of the pro-inflammatory factors IL6 and IL1β, and COX2 after acute exposure of mice to UV radiation. In healthy human subjects, topical applications of extracts delivering the Nrf2 activator sulforaphane reduced the degree of solar-simulated UV radiation-induced skin erythema, a quantifiable surrogate endpoint for cutaneous damage and skin cancer risk. Collectively, these data show that Nrf2 is not a driver for tumorigenesis even upon exposure to a very potent and complete carcinogen and strongly suggest that the frequent activation of Nrf2 in established human tumors is a marker of metabolic adaptation. ©2015 American Association for Cancer Research.

  4. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jae Yun [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Cho, Seung Sik [College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729 (Korea, Republic of); Yang, Ji Hye; Kim, Kyu Min; Jang, Chang Ho [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Park, Da Eon [College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729 (Korea, Republic of); Bang, Joon Seok [Graduate School of Clinical Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Jung, Young Suk [College of Pharmacy, Pusan National University, Busan (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2015-08-15

    The chalcone compound isosalipurposide (ISPP) has been successfully isolated from the native Korean plant species Corylopsis coreana Uyeki (Korean winter hazel). However, the therapeutic efficacy of ISPP remains poorly understood. This study investigated whether ISPP has the capacity to activate NF-E2-related factor (Nrf2)-antioxidant response element (ARE) signaling and induce its target gene expression, and to determined the protective role of ISPP against oxidative injury of hepatocytes. In HepG2 cells, nuclear translocation of Nrf2 is augmented by ISPP treatment. Consistently, ISPP increased ARE reporter gene activity and the protein levels of glutamate cysteine ligase (GCL) and hemeoxygenase (HO-1), resulting in increased intracellular glutathione levels. Cells pretreated with ISPP were rescued from tert-butylhydroperoxide-induced reactive oxygen species (ROS) production and glutathione depletion and consequently, apoptotic cell death. Moreover, ISPP ameliorated the mitochondrial dysfunction and apoptosis induced by rotenone which is an inhibitor of complex 1 of the mitochondrial respiratory chain. The specific role of Nrf2 activation by ISPP was demonstrated using an ARE-deletion mutant plasmid and Nrf2-knockout cells. Finally, we observed that extracellular signal-regulated kinase (ERK) and AMP-activated protein kinase (AMPK), but not protein kinase C (PKC)-δ or other mitogen-activated protein kinases (MAPKs), are involved in the activation of Nrf2 by ISPP. Taken together, our results demonstrate that ISPP has a cytoprotective effect against oxidative damage mediated through Nrf2 activation and induction of its target gene expression in hepatocytes. - Highlights: • We investigated the effect of ISPP on Nrf2 activation. • ISPP increased Nrf2 activity and its target gene expression. • ISPP inhibited the mitochondrial dysfunction and ROS production. • Nrf2 activation by ISPP is dependent on ERK1/2 and AMPK phosphorylation. • ISPP may be a promising

  5. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Wu, Qipeng; Yao, Bei; Li, Ning; Ma, Lei; Deng, Yanchao; Yang, Yang; Zeng, Cheng; Yang, Zhicheng; Liu, Bing

    2017-01-01

    The redox adaptation mechanisms in cancer cells are very complex and remain largely unclear. Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and confers apoptosis resistance on NSCLC cells. However, the comprehensive mechanisms for NOX4-mediated oxidative resistance of cancer cells remain still undentified. The present study found that NOX4-derived H 2 O 2 enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) stability via disruption of redox-dependent proteasomal degradation and stimulated its activity through activation of PI3K signaling. Specifically, the results showed that ectopic NOX4 expression did not induce apoptosis of A549 cells; however, inhibition of Nrf2 resulted in obvious apoptotic death of NOX4-overexpressed A549 cells, accompanied by a significant increase in H 2 O 2 level and decrease in GSH content. Besides, inhibition of Nrf2 could suppress cell growth and efficiently reverse the enhancement effect of NOX4 on cell growth. The in vivo data confirmed that inhibition of Nrf2 could interfere apoptosis resistance in NOX4-overexpressed A549 tumors and led to cell growth inhibition. In conclusion, these results reveal that Nrf2 is critically involved in redox adaptation regulation in NOX4-overexpressed NSCLC cells. Therefore, NOX4 and Nrf2 may be promising combination targets against malignant progression of NSCLC. - Highlights: • NOX4-derived H 2 O 2 upregulates Nrf2 expression and activity in NSCLC. • Nrf2 confers apoptosis resistance in NOX4-overexpressed NSCLC cells. • Inhibition of Nrf2 reverses the enhancement effect of NOX4 on cell growth.

  6. The NRF2 Activation and Antioxidative Response Are Not Impaired Overall during Hyperoxia-Induced Lung Epithelial Cell Death

    Directory of Open Access Journals (Sweden)

    Haranatha R. Potteti

    2013-01-01

    Full Text Available Lung epithelial and endothelial cell death caused by pro-oxidant insults is a cardinal feature of acute lung injury/acute respiratory distress syndrome (ALI/ARDS patients. The NF-E2-related factor 2 (NRF2 activation in response to oxidant exposure is crucial to the induction of several antioxidative and cytoprotective enzymes that mitigate cellular stress. Since prolonged exposure to hyperoxia causes cell death, we hypothesized that chronic hyperoxia impairs NRF2 activation, resulting in cell death. To test this hypothesis, we exposed nonmalignant small airway epithelial cells (AECs to acute (1–12 h and chronic (36–48 h hyperoxia and evaluated cell death, NRF2 nuclear accumulation and target gene expression, and NRF2 recruitment to the endogenous HMOX1 and NQO1 promoters. As expected, hyperoxia gradually induced death in AECs, noticeably and significantly by 36 h; ~60% of cells were dead by 48 h. However, we unexpectedly found increased expression levels of NRF2-regulated antioxidative genes and nuclear NRF2 in AECs exposed to chronic hyperoxia as compared to acute hyperoxia. Chromatin Immunoprecipitation (ChIP assays revealed an increased recruitment of NRF2 to the endogenous HMOX1 and NQO1 promoters in AECs exposed to acute or chronic hyperoxia. Thus, our findings demonstrate that NRF2 activation and antioxidant gene expression are functional during hyperoxia-induced lung epithelial cell death and that chronic hyperoxia does not impair NRF2 signaling overall.

  7. MiR-21-Mediated Suppression of Smad7 Induces TGFβ1 and Can Be Inhibited by Activation of Nrf2 in Alcohol-Treated Lung Fibroblasts.

    Science.gov (United States)

    Marts, Lucian T; Green, David E; Mills, Stephen T; Murphy, Tamara; Sueblinvong, Viranuj

    2017-11-01

    We previously demonstrated that chronic alcohol ingestion augments TGFβ1 expression in the lung fibroblast and increases the risk of fibroproliferative disrepair in a mouse model of acute lung injury. The effect of alcohol on TGFβ1 is mitigated by treatment with sulforaphane (SFP), which can activate nuclear factor (erythroid-derived 2)-like 2 (Nrf2). However, the mechanisms by which alcohol amplifies, or SFP attenuates, TGFβ1 expression in the fibroblast are not known. MicroRNA (miR)-21 has been shown to inhibit Smad7, a TGFβ1 signaling inhibitor. In this study, we hypothesized that alcohol augments TGFβ1 expression through up-regulation of miR-21, which subsequently inhibits Smad7. Primary mouse lung fibroblasts were cultured ± alcohol ± SFP and assessed for gene expression of miR-21, and gene and/or protein expression of Nrf2, Nrf2-regulated antioxidant enzymes, Smad7, STAT3, and TGFβ1. NIH 3T3 fibroblasts were transfected with a miR-21 inhibitor and cultured ± alcohol. α-SMA, Smad7, and TGFβ1 protein expression were then assessed. In parallel, NIH 3T3 lung fibroblasts were transfected with Nrf2 silencing RNA (siRNA) and cultured ± alcohol ± SFP. Gene expression of miR-21, Nrf2, Smad7, and TGFβ1 was assessed. MiR-21 gene expression was increased by 12-fold at 48 hours, and Smad7 gene expression and protein expression were reduced by ~30% in alcohol-treated fibroblasts. In parallel, inhibition of miR-21 attenuated alcohol-mediated decrease in Smad7 and increase in TGFβ1 and α-SMA protein expression. Treatment with SFP mitigated the effect of alcohol on miR-21, Smad7 and total and phosphorylated STAT3, and restored Nrf2-regulated antioxidant gene expression. Silencing of Nrf2 prevented the effect of SFP on miR-21, Smad7, and TGFβ1 gene expression in alcohol-treated NIH 3T3 fibroblasts. Alcohol treatment increases TGFβ1 in fibroblasts, at least in part, through augmentation of miR-21, which then inhibits Smad7 expression. These effects

  8. Keap1/Nrf2 pathway in kidney cancer : frequent methylation of KEAP1 gene promoter in clear renal cell carcinoma

    NARCIS (Netherlands)

    Fabrizio, Federico Pio; Costantini, Manuela; Copetti, Massimiliano; la Torre, Annamaria; Sparaneo, Angelo; Fontana, Andrea; Poeta, Luana; Gallucci, Michele; Sentinelli, Steno; Graziano, Paolo; Parente, Paola; Pompeo, Vincenzo; De Salvo, Laura; Simone, Giuseppe; Papalia, Rocco; Picardo, Francesco; Balsamo, Teresa; Flammia, Gerardo Paolo; Trombetta, Domenico; Pantalone, Angela; Kok, Klaas; Paranita, Ferronika; Muscarella, Lucia Anna; Fazio, Vito Michele

    2017-01-01

    The Keap1/Nrf2 pathway is a master regulator of the cellular redox state through the induction of several antioxidant defence genes implicated in chemotherapeutic drugs resistance of tumor cells. An increasing body of evidence supports a key role for Keap1/Nrf2 pathway in kidney diseases and renal

  9. Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light.

    Science.gov (United States)

    Chen, Wan-Ju; Wu, Caiying; Xu, Zhenhua; Kuse, Yoshiki; Hara, Hideaki; Duh, Elia J

    2017-01-01

    Oxidative stress plays a key role in age-related macular degeneration and hereditary retinal degenerations. Light damage in rodents has been used extensively to model oxidative stress-induced photoreceptor degeneration, and photo-oxidative injury from blue light is particularly damaging to photoreceptors. The endogenous factors protecting photoreceptors from oxidative stress, including photo-oxidative stress, are continuing to be elucidated. In this study, we evaluated the effect of blue light exposure on photoreceptors and its relationship to Nrf2 using cultured murine photoreceptor (661W) cells. 661W cells were exposed to blue light at 2500 lux. Exposure to blue light for 6-24 h resulted in a significant increase in intracellular reactive oxygen species (ROS) and death of 661W cells in a time-dependent fashion. Blue light exposure resulted in activation of Nrf2, as indicated by an increase in nuclear translocation of Nrf2. This was associated with a significant induction of expression of Nrf2 as well as an array of Nrf2 target genes, including antioxidant genes, as indicated by quantitative reverse transcription PCR (qRT-PCR). In order to determine the functional role of Nrf2, siRNA-mediated knockdown studies were performed. Nrf2-knockdown in 661W cells resulted in significant exacerbation of blue light-induced reactive oxygen species levels as well as cell death. Taken together, these findings indicate that Nrf2 is an important endogenous protective factor against oxidative stress in photoreceptor cells. This suggests that drugs targeting Nrf2 could be considered as a neuroprotective strategy for photoreceptors in AMD and other retinal conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A Novel EphA2 Inhibitor Exerts Beneficial Effects in PI-IBS in Vivo and in Vitro Models via Nrf2 and NF-κB Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Li Zeng

    2018-03-01

    Full Text Available Though the detailed pathological mechanism of post-infectious irritable bowel syndrome (PI-IBS remains unclear, accumulating evidence indicates that oxidative stress and inflammation are implicated in the process of PI-IBS. Oxidative stress and inflammation are regulated by Nrf2 and NF-κB signaling pathways, respectively. EphA2, a member of Eph receptor family, promotes oxidative stress and inflammatory responses via regulation of Nrf2 and NF-κB signaling pathways in various types of human diseases. Understanding the mechanisms by which EphA2 regulate oxidative stress and inflammation in PI-IBS is important for the development of new strategies to treat PI-IBS. However, the effects of ALW-II-41-27, a novel EphA2 inhibitor on PI-IBS and the underlying molecular mechanisms have never been studied. In the present study, we showed that ALW-II-41-27 decreased gastrointestinal motility and abdominal withdrawal reflex (AWR scores, markedly reduced the levels of oxidative stress markers [4-hydroxy-2-nonenal (4-HNE, protein carbonyl, and 8-hydroxy-2-de-axyguanine (8-OHdG] and proinflammatory cytokines (TNF-α, IL-6, IL-17, and ICAM-1, and remarkably increased the level of anti-inflammatory cytokine (IL-10 in serum and colon of Trichinella spiralis-infected mice. Moreover, ALW-II-41-27 was effective in suppressing oxidative stress and inflammation in LPS-treated NCM460 colonic cells. Treatment of ALW-II-41-27 reversed the activation of NF-κB and inactivation of Nrf2 in LPS-treated NCM460 cells. Importantly, these protective effects of ALW-II-41-27 were partially inhibited by EphA2 KO and abolished by EphA2 overexpression. In conclusion, EphA2 may represent a promising therapeutic target for patients with PI-IBS and ALW-II-41-27 might function as a novel therapeutic agent for PI-IBS.

  11. The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance

    Directory of Open Access Journals (Sweden)

    A. L. Furfaro

    2016-01-01

    Full Text Available The transcription factor, nuclear factor erythroid 2 p45-related factor 2 (Nrf2, acts as a sensor of oxidative or electrophilic stresses and plays a pivotal role in redox homeostasis. Oxidative or electrophilic agents cause a conformational change in the Nrf2 inhibitory protein Keap1 inducing the nuclear translocation of the transcription factor which, through its binding to the antioxidant/electrophilic response element (ARE/EpRE, regulates the expression of antioxidant and detoxifying genes such as heme oxygenase 1 (HO-1. Nrf2 and HO-1 are frequently upregulated in different types of tumours and correlate with tumour progression, aggressiveness, resistance to therapy, and poor prognosis. This review focuses on the Nrf2/HO-1 stress response mechanism as a promising target for anticancer treatment which is able to overcome resistance to therapies.

  12. Melatonin Attenuates Memory Impairment Induced by Klotho Gene Deficiency Via Interactive Signaling Between MT2 Receptor, ERK, and Nrf2-Related Antioxidant Potential

    Science.gov (United States)

    Shin, Eun-Joo; Chung, Yoon Hee; Le, Hoang-Lan Thi; Jeong, Ji Hoon; Dang, Duy-Khanh; Nam, Yunsung; Wie, Myung Bok; Nah, Seung-Yeol; Nabeshima, Yo-Ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2015-01-01

    Background: We demonstrated that oxidative stress plays a crucial role in cognitive impairment in klotho mutant mice, a genetic model of aging. Since down-regulation of melatonin due to aging is well documented, we used this genetic model to determine whether the antioxidant property of melatonin affects memory impairment. Methods: First, we examined the effects of melatonin on hippocampal oxidative parameters and the glutathione/oxidized glutathione (GSH/GSSG) ratio and memory dysfunction of klotho mutant mice. Second, we investigated whether a specific melatonin receptor is involved in the melatonin-mediated pharmacological response by application with melatonin receptor antagonists. Third, we examined phospho-extracellular-signal-regulated kinase (ERK) expression, nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, Nrf2 DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression. Finally, we examined effects of the ERK inhibitor SL327 in response to antioxidant efficacy and memory enhancement mediated by melatonin. Results: Treatment with melatonin resulted in significant attenuations of oxidative damage, a decrease in the GSH/GSSG ratio, and a significant amelioration of memory impairment in this aging model. These effects of melatonin were significantly counteracted by the selective MT2 receptor antagonist 4-P-PDOT. Importantly, 4-P-PDOT or SL327 also counteracted melatonin-mediated attenuation in response to the decreases in phospho-ERK expression, Nrf2 nuclear translocation, Nrf2 DNA-binding activity, and GCL mRNA expression in the hippocampi of klotho mutant mice. SL327 also counteracted the up-regulation of the GSH/GSSG ratio and the memory enhancement mediated by melatonin in klotho mutant mice. Conclusions: Melatonin attenuates oxidative stress and the associated memory impairment induced by klotho deficiency via signaling interaction between the MT2 receptor and ERK- and Nrf2-related antioxidant potential. PMID

  13. Naturally Occurring Nrf2 Activators: Potential in Treatment of Liver Injury

    Directory of Open Access Journals (Sweden)

    Ravirajsinh N. Jadeja

    2016-01-01

    Full Text Available Oxidative stress plays a major role in acute and chronic liver injury. In hepatocytes, oxidative stress frequently triggers antioxidant response by activating nuclear erythroid 2-related factor 2 (Nrf2, a transcription factor, which upregulates various cytoprotective genes. Thus, Nrf2 is considered a potential therapeutic target to halt liver injury. Several studies indicate that activation of Nrf2 signaling pathway ameliorates liver injury. The hepatoprotective potential of naturally occurring compounds has been investigated in various models of liver injuries. In this review, we comprehensively appraise various phytochemicals that have been assessed for their potential to halt acute and chronic liver injury by enhancing the activation of Nrf2 and have the potential for use in humans.

  14. Escin activates AKT-Nrf2 signaling to protect retinal pigment epithelium cells from oxidative stress.

    Science.gov (United States)

    Wang, Kaijun; Jiang, Yiqian; Wang, Wei; Ma, Jian; Chen, Min

    2015-12-25

    Here we explored the anti-oxidative and cytoprotective potentials of escin, a natural triterpene-saponin, against hydrogen peroxide (H2O2) in retinal pigment epithelium (RPE) cells. We showed that escin remarkably attenuated H2O2-induced death and apoptosis of established (ARPE-19) and primary murine RPE cells. Meanwhile, ROS production and lipid peroxidation by H2O2 were remarkably inhibited by escin. Escin treatment in RPE cells resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by transcription of anti-oxidant-responsive element (ARE)-regulated genes, including HO-1, NQO-1 and SRXN-1. Knockdown of Nrf2 through targeted shRNAs/siRNAs alleviated escin-mediated ARE gene transcription, and almost abolished escin-mediated anti-oxidant activity and RPE cytoprotection against H2O2. Reversely, escin was more potent against H2O2 damages in Nrf2-over-expressed ARPE-19 cells. Further studies showed that escin-induced Nrf2 activation in RPE cells required AKT signaling. AKT inhibitors (LY294002 and perifosine) blocked escin-induced AKT activation, and dramatically inhibited Nrf2 phosphorylation, its cytosol accumulation and nuclear translocation in RPE cells. Escin-induced RPE cytoprotection against H2O2 was also alleviated by the AKT inhibitors. Together, these results demonstrate that escin protects RPE cells from oxidative stress possibly through activating AKT-Nrf2 signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Nrf2 signaling contributes to the neuroprotective effects of urate against 6-OHDA toxicity.

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    Full Text Available BACKGROUND: Mounting evidence shows that urate may become a biomarker of Parkinson's disease (PD diagnosis and prognosis and a neuroprotectant candidate for PD therapy. However, the cellular and molecular mechanisms underlying its neuroprotective actions remain poorly understood. RESULTS: In this study, we showed that urate pretreatment protected dopaminergic cell line (SH-SY5Y and MES23.5 against 6-hydroxydopamine (6-OHDA- and hydrogen peroxide- induced cell damage. Urate was found to be accumulated into SH-SY5Y cells after 30 min treatment. Moreover, urate induced NF-E2-related factor 2 (Nrf2 accumulation by inhibiting its ubiquitinationa and degradation, and also promoted its nuclear translocation; however, it did not modulate Nrf2 mRNA level or Kelch-like ECH-associated protein 1 (Keap1 expression. In addition, urate markedly up-regulated the transcription and protein expression of γ-glutamate-cysteine ligase catalytic subunit (γ-GCLC and heme oxygenase-1 (HO-1, both of which are controlled by Nrf2 activity. Furthermore, Nrf2 knockdown by siRNA abolished the intracellular glutathione augmentation and the protection exerted by urate pretreatment. CONCLUSION: Our findings demonstrated that urate treatment may result in Nrf2-targeted anti-oxidant genes transcription and expression by reducing Nrf2 ubiquitination and degradation and promoting its nuclear translocation, and thus offer neuroprotection on dopaminergic cells against oxidative stresses.

  16. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.

    Science.gov (United States)

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A

    2015-06-01

    Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2). © 2015 International Society for Neurochemistry.

  17. Transcriptional regulation of Hb-α and Hb-β through nuclear factor E2-related factor-2 (Nrf2) activation in human vaginal cells: A novel mechanism of cellular adaptability to oxidative stress.

    Science.gov (United States)

    Saha, Debarchana; Koli, Swanand; Reddy, Kudumula Venkata Rami

    2017-06-01

    Hemoglobin (Hb), a major protein involved in transport of oxygen (O 2 ), is expressed by erythroid lineages. Until recently, it was not known whether non-erythroid cells express Hb. The objective was to evaluate the expression and functional significance of Hb-α and Hb-β in human primary vaginal epithelial cells (hPVECs) and decipher downstream signaling. RT-PCR, qRT-PCR, flow cytometry, Western blot, immunofluorescence were used to evaluate the expression of Hb-α, Hb-β, and nuclear factor E2-related factor-2(Nrf2) after hydrogen peroxide (H 2 O 2 ) induction. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay were used to determine the binding efficiency of Nrf2 on the Hb-α promoter. Stimulation of hPVECs and human vaginal epithelial cell line, VK2/E6E7 with H 2 O 2 augmented the expression of Hb-α, Hb-β, Nrf2, heme oxygenase-1 (HO-1), and reactive oxygen species (ROS). Treatment of these cells with Nrf2 inhibitor, trigonelline (Trig) inhibited Hb-α and Hb-β expressions. Hb-α and Hb-β overexpression downregulated H 2 O 2 -induced ROS. The presence of Nrf2 binding domain was demonstrated within Hb-α promoter. The results revealed for the first time that Hb-α and Hb-β were induced by oxidative stress through the activation of Nrf2. Overexpression of Hb-α and Hb-β ameliorated H 2 O 2 -induced oxidative stress, indicating one of the possible mechanism(s) to protect hPVECS from oxidative stress. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Disruption of Nrf2/ARE signaling impairs antioxidant mechanisms and promotes cell degradation pathways in aged skeletal muscle.

    Science.gov (United States)

    Miller, Corey J; Gounder, Sellamuthu S; Kannan, Sankaranarayanan; Goutam, Karan; Muthusamy, Vasanthi R; Firpo, Matthew A; Symons, J David; Paine, Robert; Hoidal, John R; Rajasekaran, Namakkal Soorappan

    2012-06-01

    Age-associated decline in antioxidant potential and accumulation of reactive oxygen/nitrogen species are primary causes for multiple health problems, including muscular dystrophy and sarcopenia. The role of the nuclear erythroid-2-p45-related factor-2 (Nrf2) signaling has been implicated in antioxidant gene regulation. Here, we investigated the loss-of-function mechanisms for age-dependent regulation of Nrf2/ARE (Antioxidant Response Element) signaling in skeletal muscle (SM). Under basal physiological conditions, disruption of Nrf2 showed minimal effects on antioxidant defenses in young (2months) Nrf2-/- mice. Interestingly, mRNA and protein levels of NADH Quinone Oxidase-1 were dramatically (*P24months) had a significant increase in ROS along with a decrease in glutathione (GSH) levels and impaired antioxidants in Nrf2-/- when compared to WT SM. Further, disruption of Nrf2 appears to induce oxidative stress (increased ROS, HNE-positive proteins), ubiquitination and pro-apoptotic signals in the aged SM of Nrf2-/- mice. These results indicate a direct role for Nrf2/ARE signaling on impairment of antioxidants, which contribute to muscle degradation pathways upon aging. Our findings conclude that though the loss of Nrf2 is not amenable at younger age; it could severely affect the SM defenses upon aging. Thus, Nrf2 signaling might be a potential therapeutic target to protect the SM from age-dependent accumulation of ROS by rescuing redox homeostasis to prevent age-related muscle disorders such as sarcopenia and myopathy. © 2012 Elsevier B.V. All rights reserved.

  19. ROLE OF NRF2 IN THE OXIDATIVE STRESS-DEPENDENT HYPERTENSION ASSOCIATED WITH THE DEPLETION OF DJ-1

    Science.gov (United States)

    Cuevas, Santiago; Yang, Yu; Konkalmatt, Prasad; Asico, Laureano; Feranil, Jun; Jones, John; Villar, Van Anthony; Armando, Ines; Jose, Pedro A.

    2015-01-01

    Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure. We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor Nrf2 regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys, decreases Nrf2 expression and activity and increases reactive oxygen species production; blood pressure is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1−/− mice have decreased renal Nrf2 expression and activity, and increased nitro-tyrosine levels an dopamine 2 receptor d blood pressure. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. A Nrf2 inducer, bardoxolone, normalizes the systolic blood pressure and renal malondialdehyde levels in DJ-1−/− mice without affecting them in their wild-type littermates. Because Nrf2 ubiquitination is increased in DJ-1−/− mice, we conclude that the protective effect of DJ-1 on renal oxidative stress is mediated, in part, by preventing Nrf2 degradation. Moreover, renal dopamine 2 receptor and DJ-1 are necessary for normal Nrf2 activity to keep a normal redox balance and blood pressure. PMID:25895590

  20. Sulforaphane prevents pulmonary damage in response to inhaled arsenic by activating the Nrf2-defense response

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi [Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning 110001 (China); Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721 (United States); Tao, Shasha [Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721 (United States); Lian, Fangru [Department of Pathology, University of Arizona, 1501 North Campbell Ave, Tucson, AZ 85724 (United States); Chau, Binh T. [Department of Cellular and Molecular Medicine, The University of Arizona, 1501 North Campbell Ave, Tucson, AZ 85724 (United States); Chen, Jie; Sun, Guifan [Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning 110001 (China); Fang, Deyu [Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 (United States); Lantz, R. Clark [Department of Cellular and Molecular Medicine, The University of Arizona, 1501 North Campbell Ave, Tucson, AZ 85724 (United States); Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724 (United States); Zhang, Donna D., E-mail: dzhang@pharmacy.arizona.edu [Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721 (United States); Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724 (United States)

    2012-12-15

    Exposure to arsenic is associated with an increased risk of lung disease. Novel strategies are needed to reduce the adverse health effects associated with arsenic exposure in the lung. Nrf2, a transcription factor that mediates an adaptive cellular defense response, is effective in detoxifying environmental insults and prevents a broad spectrum of diseases induced by environmental exposure to harmful substances. In this report, we tested whether Nrf2 activation protects mice from arsenic-induced toxicity. We used an in vivo arsenic inhalation model that is highly relevant to low environmental human exposure to arsenic-containing dusts. Two-week exposure to arsenic-containing dust resulted in pathological alterations, oxidative DNA damage, and mild apoptotic cell death in the lung; all of which were blocked by sulforaphane (SF) in an Nrf2-dependent manner. Mechanistically, SF-mediated activation of Nrf2 alleviated inflammatory responses by modulating cytokine production. This study provides strong evidence that dietary intervention targeting Nrf2 activation is a feasible approach to reduce adverse health effects associated with arsenic exposure. -- Highlights: ► Exposed to arsenic particles and/or SF have elevated Nrf2 and its target genes. ► Sulforaphane prevents pathological alterations, oxidative damage and cell death. ► Sulforaphane alleviates infiltration of inflammatory cells into the lungs. ► Sulforaphane suppresses arsenic-induced proinflammatory cytokine production.

  1. Phytoestrogens modulate hepcidin expression by Nrf2: Implications for dietary control of iron absorption

    Science.gov (United States)

    Bayele, Henry K.; Balesaria, Sara; Srai, Surjit K.S.

    2015-01-01

    Hepcidin is a liver-derived antimicrobial peptide that regulates iron absorption and is also an integral part of the acute phase response. In a previous report, we found evidence that this peptide could also be induced by toxic heavy metals and xenobiotics, thus broadening its teleological role as a defensin. However it remained unclear how its sensing of disparate biotic and abiotic stressors might be integrated at the transcriptional level. We hypothesized that its function in cytoprotection may be regulated by NFE2-related factor 2 (Nrf2), the master transcriptional controller of cellular stress defenses. In this report, we show that hepcidin regulation is inextricably linked to the acute stress response through Nrf2 signaling. Nrf2 regulates hepcidin expression from a prototypical antioxidant response element in its promoter, and by synergizing with other basic leucine-zipper transcription factors. We also show that polyphenolic small molecules or phytoestrogens commonly found in fruits and vegetables including the red wine constituent resveratrol can induce hepcidin expression in vitro and post-prandially, with concomitant reductions in circulating iron levels and transferrin saturation by one such polyphenol quercetin. Furthermore, these molecules derepress hepcidin promoter activity when its transcription by Nrf2 is repressed by Keap1. Taken together, the data show that hepcidin is a prototypical antioxidant response or cytoprotective gene within the Nrf2 transcriptional circuitry. The ability of phytoestrogens to modulate hepcidin expression in vivo suggests a novel mechanism by which diet may impact iron homeostasis. PMID:26546695

  2. Salutary effect of pre-treatment with an Nrf2 inducer on ischemia reperfusion injury in the rat liver

    Science.gov (United States)

    Masuda, Yuichi; Vaziri, Nosratola D.; Takasu, Chie; Li, Shiri; Robles, Lourdes; Pham, Christine; Le, Aimee; Vo, Kelly; Farzaneh, Seyed H.; Stamos, Michael J.; Ichii, Hirohito

    2014-01-01

    Background Ischemia-reperfusion injury (IRI) is a common phenomenon occurring during liver surgery, transplantation, and trauma. IRI causes oxidative stress which plays a critical role in causing organ damage. The Nrf2 is the master regulator of numerous genes, encoding antioxidant, detoxifying, and cytoprotective molecules. Nrf2 dysfunction has been implicated in the pathogenesis of several inflammatory disorders, cancer, and aging. This study was undertaken to investigate the effect of Nrf2 pathway activator (dh404) on warm liver IRI in a rodent model. Methods Ten Sprague-Dawley rats were treated with dh404 or vehicle. Dh404 was dissolved in sesame oil and was given orally (1.5mg/kg) the night before and 5 hours before procedures. Rat livers were subjected to 60 minutes of 70% ischemia followed by 3 hours of reperfusion. Serum ALT and Malondialdehyde (MDA) were determined and liver tissue was processed for histological examination, and determination of apoptosis, myeloperoxidase (MPO) activity, ADP/ATP ratio, and expressions of Nrf2, eNOS, anti-oxidant enzymes, and inflammatory mediators. Results Serum ALT and MDA levels and tissue MPO activity were significantly lower, expression of the anti-oxidant enzyme, glutamate cysteine ligase were significantly higher, whereas expression of NFkB and COX-2 was unchanged in the dh404-treated group. Although the total Suzuki histology score did not differ significantly, the extent of sinusoidal congestion, vacuolization, and apoptosis was significantly reduced in the dh404 treated compared to the untreated group (P<0.01). Conclusions Pre-treatment with dh404 resulted in partial attenuation of hepatic ischemia reperfusion injury in rats. PMID:25558293

  3. Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Juanjuan, E-mail: jwu32@emory.edu [Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Suite 4211 WMB, Atlanta, GA 30322 (United States); Williams, Devin [Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310 (United States); Walter, Grant A. [Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Suite 4211 WMB, Atlanta, GA 30322 (United States); Thompson, Winston E. [Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310 (United States); Sidell, Neil [Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Suite 4211 WMB, Atlanta, GA 30322 (United States)

    2014-11-01

    The actions of the transcription factor Nuclear factor erythroid 2-related factor (Nrf2) in breast cancer have been shown to include both pro-oncogenic and anti-oncogenic activities which is influenced, at least in part, by the hormonal environment. However, direct regulation of Nrf2 by steroid hormones (estrogen and progesterone) has received only scant attention. Nrf2 is known to be regulated by its cytosolic binding protein, Kelch-like ECH-associated protein 1 (Keap1), and by a Keap1-independent mechanism involving a series of phosphorylation steps mediated by phosphatidylinositol 3-kinase (PI3K) and glycogen synthase kinase 3 beta (GSK3β). Here, we report that estrogen (E2) increases Nrf2 activity in MCF7 breast cancer cells through activation of the PI3K/GSK3β pathway. Utilizing antioxidant response element (ARE)-containing luciferase reporter constructs as read-outs for Nrf2 activity, our data indicated that E2 increased ARE activity >14-fold and enhanced the action of the Nrf2 activators, tertiary butylhydroquinone (tBHQ) and sulforaphane (Sul) 4 to 9 fold compared with cells treated with tBHQ or Sul as single agents. This activity was shown to be an estrogen receptor-mediated phenomenon and was antagonized by progesterone. In addition to its action on the reporter constructs, mRNA and protein levels of heme oxygenase 1, an endogenous target gene of Nrf2, was markedly upregulated by E2 both alone and in combination with tBHQ. Importantly, E2-induced Nrf2 activation was completely suppressed by the PI3K inhibitors LY294002 and Wortmannin while the GSK3β inhibitor CT99021 upregulated Nrf2 activity. Confirmation that E2 was, at least partly, acting through the PI3K/GSK3β pathway was indicated by our finding that E2 increased the phosphorylation status of both GSK3β and Akt, a well-characterized downstream target of PI3K. Together, these results demonstrate a novel mechanism by which E2 can regulate Nrf2 activity in estrogen receptor-positive breast cancer

  4. Role of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity

    International Nuclear Information System (INIS)

    Kang, Su Jin; Ryoo, In-geun; Lee, Young Joon; Kwak, Mi-Kyoung

    2012-01-01

    Silver nanoparticles (nano-Ag) have been widely used in various commercial products including textiles, electronic appliances and biomedical products. However, there remains insufficient information on the potential risk of nano-Ag to human health and environment. In the current study, we have investigated the role of NF-E2-related factor 2 (Nrf2) transcription factor in nano-Ag-induced cytotoxicity. When Nrf2 expression was blocked using interring RNA expression in ovarian carcinoma cell line, nano-Ag treatment showed a substantial decrease in cell viability with concomitant increases in apoptosis and DNA damage compared to the control cells. Target gene analysis revealed that the expression of heme oxygenase-1 (HO-1) was highly elevated by nano-Ag in nonspecific shRNA expressing cells, while Nrf2 knockdown cells (NRF2i) did not increase HO-1 expression. The role of HO-1 in cytoprotection against nano-Ag was reinforced by results using pharmacological inducer of HO-1: cobalt protoporphyrin-mediated HO-1 activation in the NRF2i cells prevented nano-Ag-mediated cell death. Similarly, pharmacological or genetic inhibition of HO-1 in nonspecific control cells exacerbated nano-Ag toxicity. As the upstream signaling mechanism, nano-Ag required the phosphoinositide 3-kinase (PI3K) and p38MAPK signaling cascades for HO-1 induction. The treatment with either PI3K inhibitor or p38MAPK inhibitor suppressed HO-1 induction and intensified nano-Ag-induced cell death. Taken together, these results suggest that Nrf2-dependent HO-1 up-regulation plays a protective role in nano-Ag-induced DNA damage and consequent cell death. In addition, nano-Ag-mediated HO-1 induction is associated with the PI3K and p38MAPK signaling pathways. -- Highlights: ► Role of Nrf2 signaling in silver nanoparticle toxicity. ► Silver nanoparticle toxicity is increased by Nrf2 blockade. ► Nrf2-dependent HO-1 induction protects cells from silver nanoparticle toxicity. ► PI3K and p38MAPK cascades are

  5. Could Low-Protein Diet Modulate Nrf2 Pathway in Chronic Kidney Disease?

    Science.gov (United States)

    Anjos, Juliana Saraiva; Cardozo, Ludmila F M F; Esgalhado, Marta; Lindholm, Bengt; Stenvinkel, Peter; Fouque, Denis; Mafra, Denise

    2018-02-13

    Oxidative stress and inflammation are common findings in chronic kidney disease (CKD) patients, and they are directly linked to clinical outcomes such as protein energy wasting and cardiovascular disease. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is the master regulator of antioxidant genes, regulating the expression of detoxifying enzymes of phase II and antioxidant responses. Furthermore, Nrf2 can also regulate anti-inflammatory cellular responses, by inhibiting nuclear factor kappa B activity (transcription factor that promotes inflammation). Therefore, modulating Nrf2 can be a new therapeutic approach to reduce inflammation and oxidative stress in CKD. Low-protein diet (LPD) prescribed for nondialysis CKD patients presents numerous benefits already well established, including reduction of inflammation and oxidative stress. However, there is no available data regarding the relationship between LPD and Nrf2 modulation in these patients. This review aims to discuss the impact, if any, of LPD on Nrf2 expression, in nondialysis CKD patients. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  6. Competition of nuclear factor-erythroid 2 factors related transcription factor isoforms, Nrf1 and Nrf2, in antioxidant enzyme induction

    Directory of Open Access Journals (Sweden)

    Nikolai L. Chepelev

    2013-01-01

    Full Text Available Although the Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2 regulated expression of multiple antioxidant and cytoprotective genes through the electrophile responsive element (EpRE is well established, interaction of Nrf2/EpRE with Nrf1, a closely-related transcription factor, is less well understood. Due to either proteolysis or alternative translation, Nrf1 has been found as proteins of varying size, p120, p95, and p65, which have been described as either activators of EpRE or competitive inhibitors of Nrf2. We investigated the effect of Nrf1 on EpRE-regulated gene expression using the catalytic and modifier subunits of glutamate cysteine ligase (GCLC and GCLM as models and explored the potential role of Nrf1 in altering their expression in aging and upon chronic exposure to airborne nano-sized particulate matter (nPM. Nrf1 knockout resulted in the increased expression of GCLC and GCLM in human bronchial epithelial (HBE1 cells. Overexpression Nrf2 in combination with either p120 or p65 diminished or failed to further increase the GCLC- and GLCM-EpRE luciferase activity. All known forms of Nrf1 protein, remained unchanged in the lungs of mice with age or in response to nPM. Our study shows that Nrf1 could inhibit EpRE activity in vitro, whereas the precise role of Nrf1 in vivo requires further investigations. We conclude that Nrf1 may not be directly responsible for the loss of Nrf2-dependent inducibility of antioxidant and cytoprotective genes observed in aged animals.

  7. Nrf2 protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced oxidative injury and steatohepatitis

    International Nuclear Information System (INIS)

    Lu Hong; Cui Wei; Klaassen, Curtis D.

    2011-01-01

    Previous studies demonstrate that Nrf2, a master regulator of antioxidative responses, is essential in mediating induction of many antioxidative enzymes by acute activation of the AhR. However, the role of Nrf2 in protecting against oxidative stress and DNA damage induced by sustained activation of the AhR remains unknown and was investigated herein. Tissue and blood samples were collected from wild-type (WT) and Nrf2-null mice 21 days after administration of a low-toxic dose (10 μg/kg ip) of TCDD. Only Nrf2-null mice lost body weight after TCDD treatment; however, blood levels of ALT were not markedly changed in either genotype, indicating a lack of extensive necrosis. Compared to livers of TCDD-treated WT mice, livers of TCDD-treated Nrf2-null mice had: 1) degenerated hepatocytes, lobular inflammation, marked fat accumulation, and higher mRNA expression of inflammatory and fibrotic genes; 2) depletion of glutathione, elevation in lipid peroxidation and marker of DNA damage; 3) attenuated induction of phase-II enzymes Nqo1, Gsta1/2, and Ugt2b35 mRNAs, but higher induction of cytoprotective Ho-1, Prdx1, Trxr1, Gclc, and Epxh1 mRNAs; 4) higher mRNA expression of Fgf21 and triglyceride-synthesis genes, but down-regulation of bile-acid-synthesis genes and cholesterol-efflux transporters; and 5) trend of induction/activation of c-jun and NF-kB. Additionally, TCDD-treated Nrf2-null mice had impaired adipogenesis in white adipose tissue. In conclusion, Nrf2 protects livers of mice against oxidative stress, DNA damage, and steatohepatitis induced by TCDD-mediated sustained activation of the AhR. The aggravated hepatosteatosis in TCDD-treated Nrf2-null mice is due to increased lipogenesis in liver and impaired lipogenesis in white adipose tissue. - Highlights: → TCDD causes hepatosteatosis and induction of Nrf2-target genes in wild-type mice. → TCDD causes weight loss, oxidative injury, and steatohepatitis in Nrf2-null mice. → Livers of TCDD-treated Nrf2-null mice

  8. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jiyoung [National Research Laboratory, College of Pharmacy, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Cha, Young-Nam [Inha University College of Medicine, Incheon 382-751 (Korea, Republic of); Surh, Young-Joon, E-mail: surh@plaza.snu.ac.kr [National Research Laboratory, College of Pharmacy, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2010-08-07

    Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor that plays a central role in cellular defense against oxidative and electrophilic insults by timely induction of antioxidative and phase-2 detoxifying enzymes and related stress-response proteins. The 5'-flanking regions of genes encoding these cytoprotective proteins contain a specific consensus sequence termed antioxidant response element (ARE) to which Nrf2 binds. Recent studies have demonstrated that Nrf2-ARE signaling is also involved in attenuating inflammation-associated pathogenesis, such as autoimmune diseases, rheumatoid arthritis, asthma, emphysema, gastritis, colitis and atherosclerosis. Thus, disruption or loss of Nrf2 signaling causes enhanced susceptibility not only to oxidative and electrophilic stresses but also to inflammatory tissue injuries. During the early-phase of inflammation-mediated tissue damage, activation of Nrf2-ARE might inhibit the production or expression of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, cyclooxygenase-2 and inducible nitric oxide synthase. It is likely that the cytoprotective function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the induction of pro-inflammatory genes. This review highlights the protective role of Nrf2 in inflammation-mediated disorders with special focus on the inflammatory signaling modulated by this redox-regulated transcription factor.

  9. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders

    International Nuclear Information System (INIS)

    Kim, Jiyoung; Cha, Young-Nam; Surh, Young-Joon

    2010-01-01

    Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor that plays a central role in cellular defense against oxidative and electrophilic insults by timely induction of antioxidative and phase-2 detoxifying enzymes and related stress-response proteins. The 5'-flanking regions of genes encoding these cytoprotective proteins contain a specific consensus sequence termed antioxidant response element (ARE) to which Nrf2 binds. Recent studies have demonstrated that Nrf2-ARE signaling is also involved in attenuating inflammation-associated pathogenesis, such as autoimmune diseases, rheumatoid arthritis, asthma, emphysema, gastritis, colitis and atherosclerosis. Thus, disruption or loss of Nrf2 signaling causes enhanced susceptibility not only to oxidative and electrophilic stresses but also to inflammatory tissue injuries. During the early-phase of inflammation-mediated tissue damage, activation of Nrf2-ARE might inhibit the production or expression of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, cyclooxygenase-2 and inducible nitric oxide synthase. It is likely that the cytoprotective function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the induction of pro-inflammatory genes. This review highlights the protective role of Nrf2 in inflammation-mediated disorders with special focus on the inflammatory signaling modulated by this redox-regulated transcription factor.

  10. Linalool attenuates lung inflammation induced by Pasteurella multocida via activating Nrf-2 signaling pathway.

    Science.gov (United States)

    Wu, Qianchao; Yu, Lijun; Qiu, Jiaming; Shen, Bingyu; Wang, Di; Soromou, Lanan Wassy; Feng, Haihua

    2014-08-01

    Pasteurellosis caused by Pasteurella multocida manifest often as respiratory infection in farmed small ruminants. Although the incidence of pasteurellosis due to P. multocida mainly takes the form of pneumonia, there is limited information on host factors that play a role in disease pathogenesis in the milieu of host-pathogen interactions. Nuclear factor-erythroid 2 related factor 2 (Nrf-2), a critical regulator for various inflammatory and immune responses by controlling oxidative stress, may play an important role in the processes of inflammation induced by P. multocida. In this study, linalool, a natural compound of the essential oils in several aromatic plant species, elevated nuclear Nrf-2 protein translocation in the A549 lung cell line and in vivo. The P. multocida-induced pro-inflammatory cytokines expression was abrogated by Nrf-2 siRNA. Postponed treatment with linalool decreased lung neutrophil accumulation and enhanced clearance of P. multocida. Furthermore, linalool significantly increased the expression of antioxidant enzymes regulated by Nrf-2 and diminished lung tissue levels of several pro-inflammatory cytokines, including tumor necrosis factor α (TNF-α) and interleukin (IL)-6. In addition, animals treated with linalool had a marked improvement in survival. These findings have uncovered that linalool acts as a novel Nrf-2 activator for a novel therapeutic strategy in pathogen-mediated lung inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Molecular Evolution of the Nuclear Factor (Erythroid-Derived 2)-Like 2 Gene Nrf2 in Old World Fruit Bats (Chiroptera: Pteropodidae).

    Science.gov (United States)

    Yin, Qiuyuan; Zhu, Lei; Liu, Di; Irwin, David M; Zhang, Shuyi; Pan, Yi-Hsuan

    2016-01-01

    Mammals developed antioxidant systems to defend against oxidative damage in their daily life. Enzymatic antioxidants and low molecular weight antioxidants (LMWAs) constitute major parts of the antioxidant systems. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2, encoded by the Nrf2 gene) is a central transcriptional regulator, regulating transcription, of many antioxidant enzymes. Frugivorous bats eat large amounts of fruits that contain high levels of LMWAs such as vitamin C, thus, a reliance on LMWAs might greatly reduce the need for antioxidant enzymes in comparison to insectivorous bats. Therefore, it is possible that frugivorous bats have a reduced need for Nrf2 function due to their substantial intake of diet-antioxidants. To test whether the Nrf2 gene has undergone relaxed evolution in fruit-eating bats, we obtained Nrf2 sequences from 16 species of bats, including four Old World fruit bats (Pteropodidae) and one New World fruit bat (Phyllostomidae). Our molecular evolutionary analyses revealed changes in the selection pressure acting on Nrf2 gene and identified seven specific amino acid substitutions that occurred on the ancestral lineage leading to Old World fruit bats. Biochemical experiments were conducted to examine Nrf2 in Old World fruit bats and showed that the amount of catalase, which is regulated by Nrf2, was significantly lower in the brain, heart and liver of Old World fruit bats despite higher levels of Nrf2 protein in Old World fruit bats. Computational predictions suggest that three of these seven amino acid replacements might be deleterious to Nrf2 function. Therefore, the results suggest that Nrf2 gene might have experienced relaxed constraint in Old World fruit bats, however, we cannot rule out the possibility of positive selection. Our study provides the first data on the molecular adaptation of Nrf2 gene in frugivorous bats in compensation to the increased levels of LWMAs from their fruit-diet.

  12. Activation of p62-keap1-Nrf2 antioxidant pathway in the early stage of acetaminophen-induced acute liver injury in mice.

    Science.gov (United States)

    Shen, Zhenyu; Wang, Yu; Su, Zhenhui; Kou, Ruirui; Xie, Keqin; Song, Fuyong

    2018-02-25

    Acetaminophen (APAP) overdose can cause severe liver failure even death. Nearly half of drug-induced liver injury is attributed to APAP in the US and many European countries. Oxidative stress has been validated as a critical event involved in APAP-induced liver failure. p62/SQSTM1, a selective autophagy adaptor protein, is reported to regulate Nrf2-ARE antioxidant pathway in response to oxidative stress. However, the exact role of p62-keap1-Nrf2 antioxidant pathway in APAP-induced hepatotoxicity remains unknown. In the present study, the dose-response and time-course model in C57/BL6 mice were established by intraperitoneal injection of APAP. The results of serum alanine/aspartate aminotransferases (ALT/AST) and histological examination demonstrated that APAP overdose resulted in the severe liver injury. In the meantime, the levels of p62, phospho-p62 and nuclear Nrf2 were significantly increased by APAP in mice liver, suggesting an activation of p62-keap1-Nrf2 pathway. In addition, the expression of GSTA1 mRNA was increased in a dose-dependent manner, while the mRNA levels of HO-1 and GCLC were decreased with the increase of APAP dose. Our further investigation found that expression of HO-1 and GCLC peaked at 3 h∼6 h, and then were decreased gradually. Taken together, these results indicated that p62-keap1-Nrf2 antioxidant pathway was primarily activated in the early stage of APAP hepatotoxicity, which might play a protective role in the process of APAP-induced acute liver injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Neuroprotective effects of the triterpenoid, CDDO methyl amide, a potent inducer of Nrf2-mediated transcription.

    Directory of Open Access Journals (Sweden)

    Lichuan Yang

    Full Text Available The NF-E2-related factor-2 (Nrf2/antioxidant response element (ARE signaling pathway regulates phase 2 detoxification genes, including a variety of antioxidative enzymes. We tested neuroprotective effects of the synthetic triterpenoid CDDO-MA, a potent activator of the Nrf2/ARE signaling. CDDO-MA treatment of neuroblastoma SH-SY5Y cells resulted in Nrf2 upregulation and translocation from cytosol to nucleus and subsequent activation of ARE pathway genes. CDDO-MA blocked t-butylhydroperoxide-induced production of reactive oxygen species (ROS by activation of ARE genes only in wild type, but not Nrf2 knockout mouse embryonic fibroblasts. Oral administration of CDDO-MA resulted in significant protection against MPTP-induced nigrostriatal dopaminergic neurodegeneration, pathological alpha-synuclein accumulation and oxidative damage in mice. Additionally, CDDO-MA treatment in rats produced significant rescue against striatal lesions caused by the neurotoxin 3-NP, and associated increases in the oxidative damage markers malondialdehyde, F(2-Isoprostanes, 8-hydroxy-2-deoxyguanosine, 3-nitrotyrosine, and impaired glutathione homeostasis. Our results indicate that the CDDO-MA renders its neuroprotective effects through its potent activation of the Nrf2/ARE pathway, and suggest that triterpenoids may be beneficial for the treatment of neurodegenerative diseases like Parkinson's disease and Huntington's disease.

  14. The Role of the Nrf2/ARE Antioxidant System in Preventing Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Robert E. Smith

    2016-11-01

    Full Text Available It is widely believed that consuming foods and beverages that have high concentrations of antioxidants can prevent cardiovascular diseases and many types of cancer. As a result, many articles have been published that give the total antioxidant capacities of foods in vitro. However, many antioxidants behave quite differently in vivo. Some of them, such as resveratrol (in red wine and epigallocatechin gallate or EGCG (in green tea can activate the nuclear erythroid-2 like factor-2 (Nrf2 transcription factor. It is a master regulator of endogenous cellular defense mechanisms. Nrf2 controls the expression of many antioxidant and detoxification genes, by binding to antioxidant response elements (AREs that are commonly found in the promoter region of antioxidant (and other genes, and that control expression of those genes. The mechanisms by which Nrf2 relieves oxidative stress and limits cardiac injury as well as the progression to heart failure are described. Also, the ability of statins to induce Nrf2 in the heart, brain, lung, and liver is mentioned. However, there is a negative side of Nrf2. When over-activated, it can cause (not prevent cardiovascular diseases and multi-drug resistance cancer.

  15. Alteration of Nrf2 and Glutamate Cysteine Ligase expression contribute to lesions growth and fibrogenesis in ectopic endometriosis.

    Science.gov (United States)

    Marcellin, L; Santulli, P; Chouzenoux, S; Cerles, O; Nicco, C; Dousset, B; Pallardy, M; Kerdine-Römer, S; Just, P A; Chapron, C; Batteux, F

    2017-09-01

    The redox-sensitive nuclear factor erythroid-derived 2-like 2 (NRF2) controls endogenous antioxidant enzymes' transcription and protects against oxidative damage which is triggered by inflammation and known to favor progression of endometriosis. Glutamate Cysteine Ligase (GCL), a target gene of NRF2, is the first enzyme in the synthesis cascade of glutathione, an important endogenous antioxidant. Sixty-one patients, with thorough surgical examination of the abdominopelvic cavity, were recruited for the study: 31 with histologically-proven endometriosis and 30 disease-free women taken as controls. Expressions of NRF2 and GCL were investigated by quantitative RT-PCR and immunohistochemistry in eutopic and ectopic endometria from endometriosis-affected women and in endometrium of disease-free women. Ex vivo stromal and epithelial cells were extracted and purified from endometrial and endometriotic biopsies to explore expression of NRF2 and GCL in both stromal and epithelial compartments by western blot. Finally, in order to strengthen the role of NRF2 in endometriosis pathogenesis, we evaluated the drop of NRF2 expression in a mouse model of endometriosis using NRF2 knockout (NRF2 -/- ) mice. The mRNA levels of NRF2 and GCL were significantly lower in ectopic endometria of endometriosis-affected women compared to eutopic endometria of disease-free women. The immunohistochemical analysis confirmed the decreased expression of both NRF2 and GCL in ectopic endometriotic tissues compared to eutopic endometria of endometriosis-affected and disease-free women. Immunoblotting revealed a significant decreased of NRF2 and GCL expression in epithelial and stroma cells from ectopic lesions of endometriosis-affected women compared to eutopic endometria from controls. Using a murine model of endometriosis, NRF2 -/- implants were more fibrotic compared to wild-type with an increased weight and volume. These findings indicate that expression of the transcription factor NRF2 and its

  16. Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents.

    OpenAIRE

    Higgins, Larry G.; Kelleher, Michael O.; Eggleston, Ian M.; Itoh, Ken; Yamamoto, Masayuki; Hayes, John D.

    2009-01-01

    Sulforaphane can stimulate cellular adaptation to redox stressors through transcription factor Nrf2. Using mouse embryonic fibroblasts (MEFs) as a model, we show herein that the normal homeostatic level of glutathione in Nrf2(-/-) MEFs was only 20% of that in their wild-type counterparts. Furthermore, the rate of glutathione synthesis following its acute depletion upon treatment with 3 micromol/l sulforaphane was very substantially lower in Nrf2(-/-) MEFs than in wild-type cells, and the rebo...

  17. Requirement and epigenetics reprogramming of Nrf2 in suppression of tumor promoter TPA-induced mouse skin cell transformation by sulforaphane.

    Science.gov (United States)

    Su, Zheng-Yuan; Zhang, Chengyue; Lee, Jong Hun; Shu, Limin; Wu, Tien-Yuan; Khor, Tin Oo; Conney, Allan H; Lu, Yao-Ping; Kong, Ah-Ng Tony

    2014-03-01

    Nrf2 is a transcription factor that plays critical roles in regulating the expression of cellular defensive antioxidants and detoxification enzymes. However, the role of Nrf2 and Nrf2's epigenetics reprogramming in skin tumor transformation is unknown. In this study, we investigated the inhibitory role and epigenetics of Nrf2 on tumor transformation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in mouse skin epidermal JB6 (JB6 P+) cells and the anticancer effect of sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables. After five days of treatment, SFN significantly inhibited TPA-induced JB6 cellular transformation and SFN enhanced the nuclear translocation of Nrf2 and increased the mRNA and protein levels of the Nrf2 target genes HO-1, NQO1 and UGT1A1. Knockdown of Nrf2 attenuated the induction of Nrf2, HO-1 and NQO1 by SFN, enhanced TPA-induced colony formation and dampened the inhibitory effect of SFN on TPA-induced JB6 transformation. Epigenetics investigation using bisulfite genomic sequencing showed that SFN decreased the methylation ratio of the first 15 CpGs of the Nrf2 gene promoter, which was corroborated by increased Nrf2 mRNA expression. Furthermore, SFN strongly reduced the protein expression of DNA methyltransferases (DNMT1, DNMT3a and DNMT3b). SFN also inhibited the total histone deacetylase (HDAC) activity and decreased the protein expression of HDAC1, HDAC2, HDAC3 and HDAC4. Collectively, these results suggest that the anti-cancer effect of SFN against TPA-induced neoplastic transformation of mouse skin could involve the epigenetic reprogramming of anti-cancer genes such as Nrf2, leading to the epigenetic reactivation of Nrf2 and the subsequent induction of downstream target genes involved in cellular protection.

  18. Suppression of NRF2–ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells

    International Nuclear Information System (INIS)

    Peng, Hui; Wang, Huihui; Xue, Peng; Hou, Yongyong; Dong, Jian; Zhou, Tong; Qu, Weidong; Peng, Shuangqing; Li, Jin; Carmichael, Paul L.; Nelson, Bud; Clewell, Rebecca; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2016-01-01

    Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the antioxidant response element (ARE)-dependent transcription, plays a pivotal role in chemical detoxification in normal and tumor cells. Consistent with previous findings that NRF2–ARE contributes to chemotherapeutic resistance of cancer cells, we found that stable knockdown of NRF2 by lentiviral shRNA in human acute monocytic leukemia (AML) THP-1 cells enhanced the cytotoxicity of several chemotherapeutic agents, including arsenic trioxide (As 2 O 3 ), etoposide and doxorubicin. Using an ARE-luciferase reporter expressed in several human and mouse cells, we identified a set of compounds, including isonicotinic acid amides, isoniazid and ethionamide, that inhibited NRF2–ARE activity. Treatment of THP-1 cells with ethionamide, for instance, significantly reduced mRNA expression of multiple ARE-driven genes under either basal or As 2 O 3 -challenged conditions. As determined by cell viability and cell cycle, suppression of NRF2–ARE by ethionamide also significantly enhanced susceptibility of THP-1 and U937 cells to As 2 O 3 -induced cytotoxicity. In THP-1 cells, the sensitizing effect of ethionamide on As 2 O 3 -induced cytotoxicity was highly dependent on NRF2. To our knowledge, the present study is the first to demonstrate that ethionamide suppresses NRF2–ARE signaling and disrupts the transcriptional network of the antioxidant response in AML cells, leading to sensitization to chemotherapeutic agents. - Highlights: • Identification of novel inhibitors of ARE-dependent transcription • Suppression of NRF2–ARE sensitizes THP-1 cells to chemotherapy. • Ethionamide suppresses ARE-dependent transcriptional activity. • Ethionamide and isoniazid increase the cytotoxicity of As 2 O 3 in AML cells. • Sensitization of THP-1 cells to As 2 O 3 toxicity by ethionamide is NRF2-dependent.

  19. Repeated Nrf2 stimulation using sulforaphane protects fibroblasts from ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Sherin T.; Bergström, Petra; Hammarsten, Ola, E-mail: ola.hammarsten@clinchem.gu.se

    2014-05-01

    Most of the cytotoxicity induced by ionizing radiation is mediated by radical-induced DNA double-strand breaks. Cellular protection from free radicals can be stimulated several fold by sulforaphane-mediated activation of the transcription factor Nrf2 that regulates more than 50 genes involved in the detoxification of reactive substances and radicals. Here, we report that repeated sulforaphane treatment increases radioresistance in primary human skin fibroblasts. Cells were either treated with sulforaphane for four hours once or with four-hour treatments repeatedly for three consecutive days prior to radiation exposure. Fibroblasts exposed to repeated-sulforaphane treatment showed a more pronounced dose-dependent induction of Nrf2-regulated mRNA and reduced amount of radiation-induced free radicals compared with cells treated once with sulforaphane. In addition, radiation- induced DNA double-strand breaks measured by gamma-H2AX foci were attenuated following repeated sulforaphane treatment. As a result, cellular protection from ionizing radiation measured by the 5-ethynyl-2′-deoxyuridine (EdU) assay was increased, specifically in cells exposed to repeated sulforaphane treatment. Sulforaphane treatment was unable to protect Nrf2 knockout mouse embryonic fibroblasts, indicating that the sulforaphane-induced radioprotection was Nrf2-dependent. Moreover, radioprotection by repeated sulforaphane treatment was dose-dependent with an optimal effect at 10 uM, whereas both lower and higher concentrations resulted in lower levels of radioprotection. Our data indicate that the Nrf2 system can be trained to provide further protection from radical damage. - Highlights: • Repeated treatment with sulforaphane protects fibroblasts from ionizing radiation • Repeated sulforaphane treatment attenuates radiation induced ROS and DNA damage • Sulforaphane mediated protection is Nrf2 dependent.

  20. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Sundarraj; Pal, Debojyoti; Sandur, Santosh K., E-mail: sskumar@barc.gov.in

    2015-09-15

    Highlights: • Nrf2 inhibition in A549 cells led to attenuated DNA repair and radiosensitization. • Influence of Nrf2 on DNA repair is not linked to its antioxidant function. • Nrf2 influences DNA repair through homologous recombination (HR) repair pathway. • Many genes involved in HR pathway show ARE sequences in their upstream region. - Abstract: Nrf2 is a redox sensitive transcription factor that is involved in the co-ordinated transcription of genes involved in redox homeostasis. But the role of Nrf2 in DNA repair is not investigated in detail. We have employed A549 and MCF7 cells to study the role of Nrf2 on DNA repair by inhibiting Nrf2 using all-trans retinoic acid (ATRA) or by knock down approach prior to radiation exposure (4 Gy). DNA damage and repair analysis was studied by γH2AX foci formation and comet assay. Results suggested that the inhibition of Nrf2 in A549 or MCF7 cells led to significant slowdown in DNA repair as compared to respective radiation controls. The persistence of residual DNA damage even in the presence of free radical scavenger N-acetyl cysteine, suggested that the influence of Nrf2 on DNA repair was not linked to its antioxidant functions. Further, its influence on non-homologous end joining repair pathway was studied by inhibiting both Nrf2 and DNA-PK together. This led to synergistic reduction of survival fraction, indicating that Nrf2 may not be influencing the NHEJ pathway. To investigate the role of homologous recombination repair (HR) pathway, RAD51 foci formation was monitored. There was a significant reduction in the foci formation in cells treated with ATRA or shRNA against Nrf2 as compared to their respective radiation controls. Further, Nrf2 inhibition led to significant reduction in mRNA levels of RAD51. BLAST analysis was also performed on upstream regions of DNA repair genes to identify antioxidant response element and found that many repair genes that are involved in HR pathway may be regulated by Nrf2

  1. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Ya-Yun [Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Tseng, Yu-Ting [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Lo, Yi-Ching, E-mail: yichlo@kmu.edu.tw [Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2013-11-01

    Reactive oxygen intermediates production and apoptotic damage induced by high glucose are major causes of neuronal damage in diabetic neuropathy. Berberine (BBR), a natural antidiabetes drug with PI3K-activating activity, holds promise for diabetes because of its dual antioxidant and anti-apoptotic activities. We have previously reported that BBR attenuated H{sub 2}O{sub 2} neurotoxicity via activating the PI3K/Akt/Nrf2-dependent pathway. In this study, we further explored the novel protective mechanism of BBR on high glucose-induced apoptotic death and neurite damage of SH-SY5Y cells. Results indicated BBR (0.1–10 nM) significantly attenuated reactive oxygen species (ROS) production, nucleus condensation, and apoptotic death in high glucose-treated cells. However, AG1024, an inhibitor of insulin growth factor-1 (IGF-1) receptor, significantly abolished BBR protection against high glucose-induced neuronal death. BBR also increased Bcl-2 expression and decreased cytochrome c release. High glucose down-regulated IGF-1 receptor and phosphorylation of Akt and GSK-3β, the effects of which were attenuated by BBR treatment. BBR also activated nuclear erythroid 2-related factor 2 (Nrf2), the key antioxidative transcription factor, which is accompanied with up-regulation of hemeoxygenase-1 (HO-1). Furthermore, BBR markedly enhanced nerve growth factor (NGF) expression and promoted neurite outgrowth in high glucose-treated cells. To further determine the role of the Nrf2 in BBR neuroprotection, RNA interference directed against Nrf2 was used. Results indicated Nrf2 siRNA abolished BBR-induced HO-1, NGF, neurite outgrowth and ROS decrease. In conclusion, BBR attenuated high glucose-induced neurotoxicity, and we are the first to reveal this novel mechanism of BBR as an Nrf2 activator against glucose neurotoxicity, providing another potential therapeutic use of BBR on the treatment of diabetic complications. - Highlights: • BBR attenuates high glucose-induced ROS

  2. Allantopyrone A activates Keap1-Nrf2 pathway and protects PC12 cells from oxidative stress-induced cell death.

    Science.gov (United States)

    Uesugi, Shota; Muroi, Makoto; Kondoh, Yasumitsu; Shiono, Yoshihito; Osada, Hiroyuki; Kimura, Ken-Ichi

    2017-04-01

    Keap1-Nrf2 system is known as a sensor of electrophilic compounds, and protects cells from oxidative stress through induction of various antioxidant enzymes. We found by proteomic analysis that allantopyrone A, a metabolite isolated from an endophytic fungus, upregulates the expression of proteins that are regulated by the transcription factor Nrf2. Indeed, allantopyrone A increased the antioxidant enzyme heme oxygenase-1 in PC12 cells. Moreover, it induced localization of Nrf2 in the nucleus. Affinity purification of allantopyrone A-binding protein showed that this compound could bind directly to Keap1. Allantopyrone A suppressed intracellular reactive oxygen species level and cell death induced by H 2 O 2 in PC12 cells. These results indicate that allantopyrone A protects PC12 cells from oxidative stress-induced cell death through direct binding with Keap1 and activation of the Keap1-Nrf2 pathway.

  3. A polymethoxy flavonoids-rich Citrus aurantium extract ameliorates ethanol-induced liver injury through modulation of AMPK and Nrf2-related signals in a binge drinking mouse model.

    Science.gov (United States)

    Choi, Bong-Keun; Kim, Tae-Won; Lee, Dong-Ryung; Jung, Woon-Ha; Lim, Jong-Hwan; Jung, Ju-Young; Yang, Seung Hwan; Suh, Joo-Won

    2015-10-01

    Nobiletin and tangeretin are polymethoxy flavonoids (PMFs), found in rich quantities in the peel of citrus fruits. In the present study, we assessed the biological effect of the PMFs on liver damage using a mouse model of binge drinking. First, we extracted PMFs from the peels of Citrus aurantium to make Citrus aurantium extract (CAE). Male C57BL/6 mice were orally treated with silymarin and CAE (50, 100, and 200 mg/kg) for 3 days prior to ethanol (5 g/kg, total of 3 doses) oral gavage. Liver injury was observed in the ethanol alone group, as evidenced by increases in serum hepatic enzymes and histopathologic alteration, as well as by hepatic oxidative status disruption. CAE improved serum marker and hepatic structure and restored oxidative status by enhancing antioxidant enzyme levels and by reducing lipid peroxidation levels. In addition, CAE evidently suppressed inflammation and apoptosis in the livers of mice administered with ethanol, by 85% (tumor necrosis factor-α) and 44% compared to the control group, respectively. Furthermore, CAE activated lipid metabolism related signals and enhanced phosphorylation of AMP-activated protein kinase (AMPK) and nuclear factor E2-related factor 2 (Nrf2) with several cytoprotective proteins including heme oxygenase-1, NAD(P)H quinone oxidoreductase 1, and γ-glutamylcysteine synthetase. Taken together, the present study demonstrated that, CAE possesses antioxidant, anti-inflammatory, and antiapoptotic activity against ethanol-induced liver injury. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Escin activates AKT-Nrf2 signaling to protect retinal pigment epithelium cells from oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kaijun [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China); Jiang, Yiqian [The First People Hospital of Xiaoshan, Hangzhou (China); Wang, Wei; Ma, Jian [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China); Chen, Min, E-mail: eyedrchenminzj@163.com [Eye Center, The 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (China); Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou (China)

    2015-12-25

    Here we explored the anti-oxidative and cytoprotective potentials of escin, a natural triterpene-saponin, against hydrogen peroxide (H{sub 2}O{sub 2}) in retinal pigment epithelium (RPE) cells. We showed that escin remarkably attenuated H{sub 2}O{sub 2}-induced death and apoptosis of established (ARPE-19) and primary murine RPE cells. Meanwhile, ROS production and lipid peroxidation by H{sub 2}O{sub 2} were remarkably inhibited by escin. Escin treatment in RPE cells resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by transcription of anti-oxidant-responsive element (ARE)-regulated genes, including HO-1, NQO-1 and SRXN-1. Knockdown of Nrf2 through targeted shRNAs/siRNAs alleviated escin-mediated ARE gene transcription, and almost abolished escin-mediated anti-oxidant activity and RPE cytoprotection against H{sub 2}O{sub 2}. Reversely, escin was more potent against H{sub 2}O{sub 2} damages in Nrf2-over-expressed ARPE-19 cells. Further studies showed that escin-induced Nrf2 activation in RPE cells required AKT signaling. AKT inhibitors (LY294002 and perifosine) blocked escin-induced AKT activation, and dramatically inhibited Nrf2 phosphorylation, its cytosol accumulation and nuclear translocation in RPE cells. Escin-induced RPE cytoprotection against H{sub 2}O{sub 2} was also alleviated by the AKT inhibitors. Together, these results demonstrate that escin protects RPE cells from oxidative stress possibly through activating AKT-Nrf2 signaling.

  5. Tissue-restricted expression of Nrf2 and its target genes in zebrafish with gene-specific variations in the induction profiles.

    Directory of Open Access Journals (Sweden)

    Hitomi Nakajima

    Full Text Available The Keap1-Nrf2 system serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than one hundred cytoprotective proteins, including antioxidants and phase 2 detoxifying enzymes. Since induction profiles of Nrf2 target genes have been studied exclusively in cultured cells, and not in animal models, their tissue-specificity has not been well characterized. In this paper, we examined and compared the tissue-specific expression of several Nrf2 target genes in zebrafish larvae by whole-mount in situ hybridization (WISH. Seven zebrafish genes (gstp1, mgst3b, prdx1, frrs1c, fthl, gclc and hmox1a suitable for WISH analysis were selected from candidates for Nrf2 targets identified by microarray analysis. Tissue-restricted induction was observed in the nose, gill, and/or liver for all seven genes in response to Nrf2-activating compounds, diethylmaleate (DEM and sulforaphane. The Nrf2 gene itself was dominantly expressed in these three tissues, implying that tissue-restricted induction of Nrf2 target genes is defined by tissue-specific expression of Nrf2. Interestingly, the induction of frrs1c and gclc in liver and nose, respectively, was quite low and that of hmox1a was restricted in the liver. These results indicate the existence of gene-specific variations in the tissue specificity, which can be controlled by factors other than Nrf2.

  6. Procyanidins from Wild Grape (Vitis amurensis Seeds Regulate ARE-Mediated Enzyme Expression via Nrf2 Coupled with p38 and PI3K/Akt Pathway in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Woo-Sik Jeong

    2012-01-01

    Full Text Available Procyanidins, polymers of flavan-3-ol units, have been reported to exhibit many beneficial health effects such as antioxidant and anti-carcinogenic effects. In this study, we investigated the cancer chemopreventive properties of procyanidins from wild grape (Vitis amurensis seeds in particular their roles in inducing phase II detoxifying/antioxidant enzymes as well as in modulating the upstream kinases. Ethanolic extract of V. amurensis seeds was fractionated with a series of organic solvents and finally separated into six fractions, F1–F6. Chemical properties of the procyanidins were analyzed by vanillin assay, BuOH-HCl test, and depolymerization with phloroglucinol followed by LC/MS analysis. The F5 had the highest procyanidin content among all the fractions and strongly induced the reporter activity of antioxidant response element as well as the protein expression of nuclear factor E2-related factor (Nrf2 in HepG2 human hepatocarcinoma cells. The procyanidin-rich F5 also strongly induced the expression of the phase II detoxifying and antioxidant enzymes such as NAD(PH:quinone oxidoreductase1 and hemeoxygenase1. Phosphorylations of the upstream kinases such as MAPKs and PI3K/Akt were significantly increased by treatment with procyanidin fraction. In addition, the procyanidin-mediated Nrf2 expression was partly attenuated by PI3K inhibitor LY294002, and almost completely by p38 inhibitor SB202190, but neither by JNK inhibitor SP600125 nor by MEK1/2 inhibitor U0126. Taken together, the procyanidins from wild grape seeds could be used as a potential natural chemopreventive agent through Nrf2/ARE-mediated phase II detoxifying/antioxidant enzymes induction via p38 and PI3K/Akt pathway.

  7. Procyanidins from wild grape (Vitis amurensis) seeds regulate ARE-mediated enzyme expression via Nrf2 coupled with p38 and PI3K/Akt pathway in HepG2 cells.

    Science.gov (United States)

    Bak, Min-Ji; Jun, Mira; Jeong, Woo-Sik

    2012-01-01

    Procyanidins, polymers of flavan-3-ol units, have been reported to exhibit many beneficial health effects such as antioxidant and anti-carcinogenic effects. In this study, we investigated the cancer chemopreventive properties of procyanidins from wild grape (Vitis amurensis) seeds in particular their roles in inducing phase II detoxifying/antioxidant enzymes as well as in modulating the upstream kinases. Ethanolic extract of V. amurensis seeds was fractionated with a series of organic solvents and finally separated into six fractions, F1-F6. Chemical properties of the procyanidins were analyzed by vanillin assay, BuOH-HCl test, and depolymerization with phloroglucinol followed by LC/MS analysis. The F5 had the highest procyanidin content among all the fractions and strongly induced the reporter activity of antioxidant response element as well as the protein expression of nuclear factor E2-related factor (Nrf2) in HepG2 human hepatocarcinoma cells. The procyanidin-rich F5 also strongly induced the expression of the phase II detoxifying and antioxidant enzymes such as NAD(P)H:quinone oxidoreductase1 and hemeoxygenase1. Phosphorylations of the upstream kinases such as MAPKs and PI3K/Akt were significantly increased by treatment with procyanidin fraction. In addition, the procyanidin-mediated Nrf2 expression was partly attenuated by PI3K inhibitor LY294002, and almost completely by p38 inhibitor SB202190, but neither by JNK inhibitor SP600125 nor by MEK1/2 inhibitor U0126. Taken together, the procyanidins from wild grape seeds could be used as a potential natural chemopreventive agent through Nrf2/ARE-mediated phase II detoxifying/antioxidant enzymes induction via p38 and PI3K/Akt pathway.

  8. Andrographolide induces Nrf2 and heme oxygenase 1 in astrocytes by activating p38 MAPK and ERK.

    Science.gov (United States)

    Wong, Siew Ying; Tan, Michelle G K; Wong, Peter T H; Herr, Deron R; Lai, Mitchell K P

    2016-09-23

    Andrographolide is the major labdane diterpenoid originally isolated from Andrographis paniculata and has been shown to have anti-inflammatory and antioxidative effects. However, there is a dearth of studies on the potential therapeutic utility of andrographolide in neuroinflammatory conditions. Here, we aimed to investigate the mechanisms underlying andrographolide's effect on the expression of anti-inflammatory and antioxidant heme oxygenase-1 (HO-1) in primary astrocytes. Measurements of the effects of andrograholide on antioxidant HO-1 and its transcription factor, Nrf2, include gene expression, protein turnover, and activation of putative signaling regulators. Andrographolide potently activated Nrf2 and also upregulated HO-1 expression in primary astrocytes. Andrographolide's effects on Nrf2 seemed to be biphasic, with acute (within 1 h) reductions in Nrf2 ubiquitination efficiency and turnover rate, followed by upregulation of Nrf2 mRNA between 8 and 24 h. The acute regulation of Nrf2 by andrographolide seemed to be independent of Keap1 and partly mediated by p38 MAPK and ERK signaling. These data provide further insights into the mechanisms underlying andrographolide's effects on astrocyte-mediated antioxidant, and anti-inflammatory responses and support the further assessment of andrographolide as a potential therapeutic for neurological conditions in which oxidative stress and neuroinflammation are implicated.

  9. Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway

    International Nuclear Information System (INIS)

    Wu, Juan; Liu, Xinhui; Fan, Jinjin; Chen, Wenfang; Wang, Juan; Zeng, Youjia; Feng, Xiaorang; Yu, Xueqing; Yang, Xiao

    2014-01-01

    Bardoxolone methyl (BARD) is an antioxidant modulator that acts through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This study aimed to investigate the role of BARD in protecting kidneys from aristolochic acid (AA)-induced acute kidney injury (AKI). Male C57BL/6 mice received intraperitoneal (i.p.) injections of aristolochic acid I (AAI) (5 mg/kg/day) for 5 days to produce acute AA nephropathy (AAN) model. BARD (10 mg/kg/day, i.p.) was applied for 7 consecutive days, starting 2 days prior to AAI administration. The mice in the AA group showed AKI as evidenced by worsening kidney function evaluated by blood urea nitrogen (BUN) and serum creatinine (SCr) levels, and severe tubulointerstitial injury marked by massive tubule necrosis in kidney tissues. BARD significantly reduced BUN and SCr levels which were elevated by AAI. Additionally, AAI-induced histopathological renal damage was ameliorated by BARD. Furthermore, the expression of Nrf2 was reduced, and its repressor Kelch-like ECH-associated protein 1 (Keap1) was increased significantly, whereas heme oxygenase-1 (HO-1) was upregulated and NAD(P)H quinone oxidoreductase-1 (NQO1) was barely increased in the cytoplasm of tubules in kidneys after treatment with AAI. BARD significantly upregulated renal Nrf2, NQO1 and HO-1 expression and downregulated Keap1 expression compared with those in the AA group. Moreover, it was found that Nrf2 was expressed both in the cytoplasm and nuclear of glomeruli and tubules, whereas NQO1 and HO-1 were localized in the cytoplasm of tubules only. In conclusion, AA-induced acute renal injury was associated with impaired Nrf2 activation and expression of its downstream target genes in renal tissues. BARD prevented renal damage induced by AAI, and this renoprotective effect may be exerted by activating the Nrf2 signaling pathway and increasing expression of the downstream target genes

  10. What is Known Regarding the Participation of Factor Nrf-2 in Liver Regeneration?

    Directory of Open Access Journals (Sweden)

    José A. Morales-González

    2015-05-01

    Full Text Available It has been known for years that, after chemical damage or surgical removal of its tissue, the liver initiates a series of changes that, taken together, are known as regeneration, which are focused on the recovery of lost or affected tissue in terms of the anatomical or functional aspect. The Nuclear factor-erythroid 2-related factor (Nrf-2 is a reduction-oxidation reaction (redox-sensitive transcriptional factor, with the basic leucine Zipper domain (bZIP motif, encoding the NFE2L2 gene. The Keap1-Nrf2-ARE pathway is transcendental in the regulation of various cellular processes, such as antioxidant defenses, redox equilibrium, the inflammatory process, the apoptotic processes, intermediate metabolism, detoxification, and cellular proliferation. Some reports have demonstrated the regulator role of Nrf-2 in the cellular cycle of the hepatocyte, as well as in the modulation of the antioxidant response and of apoptotic processes during liver regeneration. It has been reported that there is a delay in liver regeneration after Partial hepatectomy (PH in the absence of Nrf-2, and similarly as a regulator of hepatic cytoprotection due to diverse chemical or biological agents, and in diseases such as hepatitis, fibrosis, cirrhosis, and liver cancer. This regulator/protector capacity is due to the modulation of the Antioxidant response elements (ARE. It is postulated that oxidative stress (OS can participate in the initial stages of liver regeneration and that Nrf-2 can probably participate. Studies are lacking on the different initiation stages, maintenance, and the termination of liver regeneration alone or with ethanol.

  11. Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Marta Pajares

    2017-04-01

    Full Text Available Neurodegenerative diseases are linked to the accumulation of specific protein aggregates, suggesting an intimate connection between injured brain and loss of proteostasis. Proteostasis refers to all the processes by which cells control the abundance and folding of the proteome thanks to a wide network that integrates the regulation of signaling pathways, gene expression and protein degradation systems. This review attempts to summarize the most relevant findings about the transcriptional modulation of proteostasis exerted by the transcription factor NRF2 (nuclear factor (erythroid-derived 2-like 2. NRF2 has been classically considered as the master regulator of the antioxidant cell response, although it is currently emerging as a key component of the transduction machinery to maintain proteostasis. As we will discuss, NRF2 could be envisioned as a hub that compiles emergency signals derived from misfolded protein accumulation in order to build a coordinated and perdurable transcriptional response. This is achieved by functions of NRF2 related to the control of genes involved in the maintenance of the endoplasmic reticulum physiology, the proteasome and autophagy.

  12. Oxidative Stress and Cardiovascular Aging: Interaction Between NRF-2 and ADMA.

    Science.gov (United States)

    Nair, Nandini; Gongora, Enrique

    2017-01-01

    The concept of antioxidant therapies assumes high importance as oxidative stress is associated with cardiovascular aging via endothelial dysfunction. This review focuses on exploring the interaction between nrf-2 and ADMA in influencing the nitric oxide pathway and cardiovascular function. A systematic review of literature from 1990 to 2016 was conducted using Pubmed and Google Scholar. The literature suggests a strong influence of nrf-2 activation on up regulation of DDAH I which degrades ADMA, the endogenous inhibitor of nitric oxide synthase. The resulting decrease of ADMA would in turn enhance nitric oxide (NO) production. This would support endothelial function by adequate NO production and homeostasis of endothelial function. As NO production has many positive pleiotropic effects in the cardiovascular system, such an interaction could be utilized for designing molecular therapeutics. The targets for therapy need not be limited to activation of nrf-2. Modulation of molecules downstream such as DDAH I can be used to regulate ADMA levels. Most current literature is supported by animal studies. The concept of antioxidant therapies needs to be tested in well-defined randomized control trials. The biochemical basis of nrf-2 activation needs to be substantiated in human studies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Dose-dependent transitions in Nrf2-mediated adaptive response and related stress responses to hypochlorous acid in mouse macrophages

    International Nuclear Information System (INIS)

    Woods, Courtney G.; Fu Jingqi; Xue Peng; Hou Yongyong; Pluta, Linda J.; Yang Longlong; Zhang Qiang; Thomas, Russell S.; Andersen, Melvin E.; Pi Jingbo

    2009-01-01

    Hypochlorous acid (HOCl) is potentially an important source of cellular oxidative stress. Human HOCl exposure can occur from chlorine gas inhalation or from endogenous sources of HOCl, such as respiratory burst by phagocytes. Transcription factor Nrf2 is a key regulator of cellular redox status and serves as a primary source of defense against oxidative stress. We recently demonstrated that HOCl activates Nrf2-mediated antioxidant response in cultured mouse macrophages in a biphasic manner. In an effort to determine whether Nrf2 pathways overlap with other stress pathways, gene expression profiling was performed in RAW 264.7 macrophages exposed to HOCl using whole genome mouse microarrays. Benchmark dose (BMD) analysis on gene expression data revealed that Nrf2-mediated antioxidant response and protein ubiquitination were the most sensitive biological pathways that were activated in response to low concentrations of HOCl (< 0.35 mM). Genes involved in chromatin architecture maintenance and DNA-dependent transcription were also sensitive to very low doses. Moderate concentrations of HOCl (0.35 to 1.4 mM) caused maximal activation of the Nrf2 pathway and innate immune response genes, such as IL-1β, IL-6, IL-10 and chemokines. At even higher concentrations of HOCl (2.8 to 3.5 mM) there was a loss of Nrf2-target gene expression with increased expression of numerous heat shock and histone cluster genes, AP-1-family genes, cFos and Fra1 and DNA damage-inducible Gadd45 genes. These findings confirm an Nrf2-centric mechanism of action of HOCl in mouse macrophages and provide evidence of interactions between Nrf2, inflammatory, and other stress pathways.

  14. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu

    2013-01-15

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidative stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The

  15. Proteasome inhibition induces both antioxidant and hb f responses in sickle cell disease via the nrf2 pathway.

    Science.gov (United States)

    Pullarkat, Vinod; Meng, Zhuo; Tahara, Stanley M; Johnson, Cage S; Kalra, Vijay K

    2014-01-01

    Oxidant stress is implicated in the manifestations of sickle cell disease including hemolysis and vascular occlusion. Strategies to induce antioxidant response as well as Hb F (α2γ2) have the potential to ameliorate the severity of sickle cell disease. Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or Nrf2) is a transcription factor that regulates antioxidant enzymes as well as γ-globin transcription. The Nrf2 in the cytoplasm is bound to its adapter protein Keap-1 that targets Nrf2 for proteasomal degradation, thereby preventing its nuclear translocation. We examined whether inhibiting the 26S proteasome using the clinically applicable proteasome inhibitors bortezomib and MLN 9708 would promote nuclear translocation of Nrf2, and thereby induce an antioxidant response and as well as Hb F in sickle cell disease. Proteasome inhibitors induced reactive oxygen species (ROS) and thereby increased Nrf2-dependent antioxidant enzyme transcripts, elevated cellular glutathione (GSH) levels and γ-globin transcripts as well as Hb F levels in the K562 cell line and also in erythroid burst forming units (BFU-E) generated from peripheral blood mononuclear cells of sickle cell disease patients. These responses were abolished by siRNA-mediated knockdown of Nrf2. Proteasome inhibitors, especially newer oral agents such as MLN9708 have the potential to be readily translated to clinical trials in sickle cell disease with the dual end points of antioxidant response and Hb F induction.

  16. Pro-oxidant status and Nrf2 levels in psoriasis vulgaris skin tissues and dimethyl fumarate-treated HaCaT cells.

    Science.gov (United States)

    Lee, Yoon Jin; Bae, Jin Ho; Kang, Sang-Gue; Cho, Sung Woo; Chun, Dong-Il; Nam, Seung Min; Kim, Chul Han; Nam, Hae Seon; Lee, Seon Hwa; Lee, Sang Han; Cho, Moon Kyun

    2017-09-01

    Reactive oxygen species (ROS) contribute to pathogenesis of many inflammatory skin diseases, including psoriasis. The aim of this study is to compare antioxidant protein expression in psoriasis vulgaris (PV) skin tissues with that in normal skin tissues in vivo and to evaluate the effects of dimethyl fumarate (DMF), used for the treatment of psoriasis, on ROS generation and apoptosis in a human keratinocyte cell line HaCaT. Compared with normal skin tissues, PV skin tissues showed increased protein oxidation as well as down-regulation of Nrf2 and its regulatory proteins such as HO-1 and AKR1C3. Using HaCaT cells to model DMF-induced pro-oxidant effects in the skin cells, we found that DMF treatment induced increased ROS levels and apoptotic cell death, as signified by increased proportion of cells with Annexin V-PE(+) staining and a sub-G 0 /G 1 peak in the cell cycle. Preceding these changes, DMF treatment resulted in up-regulation of Nrf2, HO-1, and AKR1C3 proteins in these cells. Collectively, increased oxidative stress and impaired cellular anti-oxidant enzyme systems may participate in the pathogenesis of PV. DMF may exert an additive therapeutic efficacy in PV by attenuating the redox burden and subsequent oxidative damage to normal keratinocytes through activation of Nrf2 pathway relative to PV.

  17. Astaxanthin Activates Nuclear Factor Erythroid-Related Factor 2 and the Antioxidant Responsive Element (Nrf2-ARE Pathway in the Brain after Subarachnoid Hemorrhage in Rats and Attenuates Early Brain Injury

    Directory of Open Access Journals (Sweden)

    Qi Wu

    2014-12-01

    Full Text Available Astaxanthin (ATX has been proven to ameliorate early brain injury (EBI after experimental subarachnoid hemorrhage (SAH by modulating cerebral oxidative stress. This study was performed to assess the effect of ATX on the Nrf2-ARE pathway and to explore the underlying molecular mechanisms of antioxidant properties of ATX in EBI after SAH. A total of 96 male SD rats were randomly divided into four groups. Autologous blood was injected into the prechiasmatic cistern of the rat to induce an experimental SAH model. Rats in each group were sacrificed at 24 h after SAH. Expressions of Nrf2 and heme oxygenase-1 (HO-1 were measured by Western blot and immunohistochemistry analysis. The mRNA levels of HO-1, NAD (P H: quinone oxidoreductase 1 (NQO-1, and glutathione S-transferase-α1 (GST-α1 were determined by real-time polymerase chain reaction (PCR. It was observed that administration of ATX post-SAH could up-regulate the cortical expression of these agents, mediated in the Nrf2-ARE pathway at both pretranscriptional and posttranscriptional levels. Meanwhile, oxidative damage was reduced. Furthermore, ATX treatment significantly attenuated brain edema, blood–brain barrier (BBB disruption, cellular apoptosis, and neurological dysfunction in SAH models. This study demonstrated that ATX treatment alleviated EBI in SAH model, possibly through activating the Nrf2-ARE pathway by inducing antioxidant and detoxifying enzymes.

  18. Activation of Transcription Factor Nrf2 Signalling by the Sphingosine Kinase Inhibitor SKI-II Is Mediated by the Formation of Keap1 Dimers

    Science.gov (United States)

    Mercado, Nicolas; Kizawa, Yasuo; Ueda, Keitaro; Xiong, Yeping; Kimura, Genki; Moses, Audric; Curtis, Jonathan M.; Ito, Kazuhiro; Barnes, Peter J.

    2014-01-01

    Background Anti-oxidant capacity is crucial defence against environmental or endogenous oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that plays a key defensive role against oxidative and cytotoxic stress and cellular senescence. However, Nrf2 signalling is impaired in several aging-related diseases, such as chronic pulmonary obstructive disease (COPD), cancer, and neurodegenerative diseases. Thus, novel therapeutics that enhance Nrf2 signalling are an attractive approach to treat these diseases. Methodology/Principal Findings Nrf2 was stabilized by SKI-II (2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole), which is a known sphingosine kinase inhibitor, in human bronchial epithelial cell line, BEAS2B, and in primary human bronchial epithelial cells, leading to enhancement of anti-oxidant proteins, such as HO-1, NQO1 and GCLM. The activation of Nrf2 was achieved by the generation of inactive dimerized form of Keap1, a negative regulator of Nrf2 expression, which was independent of sphingosine kinase inhibition. Using mice that were exposed to cigarette smoke, SKI-II induced Nrf2 expression together with HO-1 in their lungs. In addition, SKI-II reduced cigarette smoke mediated oxidative stress, macrophages and neutrophil infiltration and markers of inflammation in mice. Conclusions/Significance SKI-II appears to be a novel activator of Nrf2 signalling via the inactivation of Keap1. PMID:24505412

  19. Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2).

    Science.gov (United States)

    Schneider, Kevin; Valdez, Joshua; Nguyen, Janice; Vawter, Marquis; Galke, Brandi; Kurtz, Theodore W; Chan, Jefferson Y

    2016-04-01

    The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest thatNrf2plays a role in adipogenesisin vitro, and deletion of theNrf2gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity inNrf2(-/-)mice is associated with a 20-30% increase in energy expenditure. Analysis of bioenergetics revealed thatNrf2(-/-)white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a >2-fold increase inUcp1gene expression. Oxygen consumption is also increased nearly 2.5-fold inNrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increasedUcp1expression. Conversely, antioxidant chemicals (such asN-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor ofUcp1expression) decreasedUcp1and oxygen consumption inNrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limitingNrf2function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Decaffeinated Coffee and Nicotine-Free Tobacco Provide Neuroprotection in Drosophila Models of Parkinson's Disease through an NRF2-Dependent Mechanism

    OpenAIRE

    Trinh, Kien; Andrews, Laurie; Krause, James; Hanak, Tyler; Lee, Daewoo; Gelb, Michael; Pallanck, Leo

    2010-01-01

    Epidemiological studies have revealed a significantly reduced risk of Parkinson's disease (PD) among coffee and tobacco users, although it is unclear whether these correlations reflect neuroprotective/symptomatic effects of these agents or preexisting differences in the brains of tobacco and coffee users. Here, we report that coffee and tobacco, but not caffeine or nicotine, are neuroprotective in fly PD models. We further report that decaffeinated coffee and nicotine-free tobacco are as neur...

  1. Adaphostin toxicity in a sensitive non-small cell lung cancer model is mediated through Nrf2 signaling and heme oxygenase 1

    OpenAIRE

    Monks Anne; Shoemaker Robert H; Fer Nicole D

    2010-01-01

    Abstract Background Preclinical toxicity of adaphostin has been related to oxidative stress. This study investigated the regulatory mechanism underlying adaphostin induction of heme oxygenase 1 (HMOX1) which plays a significant role in modulation of drug-induced toxicity in the non-small cell lung cancer cell line model, NCI-H522. Methods The transcriptional response of NCI-H522 to adaphostin prominently involved oxidative stress genes, particularly HMOX1. Reactive oxygen species (ROS) involv...

  2. Anti-Inflammatory Therapy Modulates Nrf2-Keap1 in Kidney from Rats with Diabetes

    Directory of Open Access Journals (Sweden)

    Abraham Said Arellano-Buendía

    2016-01-01

    Full Text Available This study addressed the relationship of proinflammatory cytokines and Nrf2-Keap1 system in diabetic nephropathy. The experimental groups were control, diabetic, and diabetic treated with mycophenolate mofetil (MMF. The renal function, proinflammatory and profibrotic cytokines, oxidative stress, morphology, and nephrin expression were assessed. Diabetic group showed impaired renal function in association with oxidative stress and decreased Nrf2 nuclear translocation. These results were associated with increased mesangial matrix index, interstitial fibrosis, and increased nephrin expression in cortex and urine excretion. Additionally, interleukin-1β, IL-6, and transforming growth factor-β1 were increased in plasma and kidney. MMF treatment conserved renal function, prevented renal structural alterations, and partially prevented the proinflammatory and profibrotic cytokines overexpression. Despite that MMF treatment induced nephrin overexpression in renal tissue, preventing its urinary loss. MMF salutary effects were associated with a partial prevention of oxidative stress, increased Nrf2 nuclear translocation, and conservation of antioxidant enzymes in renal tissue. In conclusion, our results confirm that inflammation is a key factor in the progression of diabetic nephropathy and suggest that treatment with MMF protects the kidney by an antioxidant mechanism, possibly regulated at least in part by the Nrf2/Keap1 system, in addition to its well-known anti-inflammatory effects.

  3. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.

    Science.gov (United States)

    Mills, Evanna L; Ryan, Dylan G; Prag, Hiran A; Dikovskaya, Dina; Menon, Deepthi; Zaslona, Zbigniew; Jedrychowski, Mark P; Costa, Ana S H; Higgins, Maureen; Hams, Emily; Szpyt, John; Runtsch, Marah C; King, Martin S; McGouran, Joanna F; Fischer, Roman; Kessler, Benedikt M; McGettrick, Anne F; Hughes, Mark M; Carroll, Richard G; Booty, Lee M; Knatko, Elena V; Meakin, Paul J; Ashford, Michael L J; Modis, Louise K; Brunori, Gino; Sévin, Daniel C; Fallon, Padraic G; Caldwell, Stuart T; Kunji, Edmund R S; Chouchani, Edward T; Frezza, Christian; Dinkova-Kostova, Albena T; Hartley, Richard C; Murphy, Michael P; O'Neill, Luke A

    2018-03-28

    The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.

  4. Effect of Arsenic Exposure on NRF2-KEAP1 Pathway and Epigenetic Modification.

    Science.gov (United States)

    Janasik, Beata; Reszka, Edyta; Stanislawska, Magdalena; Jablonska, Ewa; Kuras, Renata; Wieczorek, Edyta; Malachowska, Beata; Fendler, Wojciech; Wasowicz, Wojciech

    2017-12-15

    Arsenic (As) is a known toxic element and carcinogen. Transcription factor nuclear factor-erythroid 2-related factor 2 (NRF2) controls cellular adaptation to oxidants and electrophiles by inducing antioxidant genes in response to redox stress. To explore associations between As level and NRF2-regulated cytoprotective genes expression, an observational study was conducted in a population of 61 occupationally exposed men with median (Me) age 50 years (interquartile range (IQR) 42-54) and in a control group of 52 men aged 40 (IQR 31-51.5) without occupational exposure. NRF2, KEAP1, GSTP1, HMOX1, NQO1, PRDX1, and TXNRD1 transcript levels were determined by means of quantitative real-time PCR along with the gene expression, methylation of NRF2 and KEAP1, as well as global DNA methylation were assessed. The median urine As tot. level in the exposed and control group was found to be 21.8 μg/g creat. (IQR 15.5-39.8 μg/g creat.) and 3.8 μg/g creat. (IQR 2.5-9.3) (p  R response to chronic arsenic exposure.

  5. Activation of Nrf2 protects against triptolide-induced hepatotoxicity.

    Directory of Open Access Journals (Sweden)

    Jia Li

    Full Text Available Triptolide, the major active component of Tripterygium wilfordii Hook f. (TWHF, has a wide range of pharmacological activities. However, the toxicities of triptolide, particularly the hepatotoxicity, limit its clinical application. The hepatotoxicity of triptolide has not been well characterized yet. The aim of this study was to investigate the role of NF-E2-related factor 2 (Nrf2 in triptolide-induced toxicity and whether activation of Nrf2 could protect against triptolide-induced hepatotoxicity. The results showed that triptolide caused oxidative stress and cell damage in HepG2 cells, and these toxic effects could be aggravated by Nrf2 knockdown or be counteracted by overexpression of Nrf2. Treatment with a typical Nrf2 agonist, sulforaphane (SFN, attenuated triptolide-induced liver dysfunction, structural damage, glutathione depletion and decrease in antioxidant enzymes in BALB/C mice. Moreover, the hepatoprotective effect of SFN on triptolide-induced liver injury was associated with the activation of Nrf2 and its downstream targets. Collectively, these results indicate that Nrf2 activation protects against triptolide-induced hepatotoxicity.

  6. Simultaneous determination of 8 neurotransmitters and their metabolite levels in rat brain using liquid chromatography in tandem with mass spectrometry: Application to the murine Nrf2 model of depression.

    Science.gov (United States)

    Wojnicz, Aneta; Avendaño Ortiz, José; Casas, Ana I; Freitas, Andiara E; G López, Manuela; Ruiz-Nuño, Ana

    2016-01-30

    Analysis of neurotransmitters and their metabolites is useful for the diagnosis of central nervous system diseases. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with protein precipitation was developed to monitor levels of adrenaline (AD), noradrenaline (NA), glutamic acid (Glu), γ-aminobutyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT), 5-hydroxyindole acetic acid (5-HIAA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) in rat brain tissue. Isoprenaline was used as an internal standard (IS). Neurotransmitters and metabolites were eluted with a reverse phase column under gradient conditions through a mobile phase consisting of 0.2% formic acid water solution/acetonitrile. The compounds were detected and quantified by LC-MS/MS with positive or negative electrospray ionization, which operates in multiple-reaction monitoring mode. The method was linear or polynomial (R(2)>0.99) for AD, NA, Glu, GABA, DA, 5-HT, 5-HIAA, and MHPG in the range of 0.25-200, 0.5-200, 250-20,000, 250-20,000, 0.25-200, 10-3000, 1-50, and 1-50ng/mL, respectively. The validation assays for accuracy and precision, matrix effect, extraction recovery, stability and carry-over of the samples for neurotransmitters and metabolites were consistent with the requirements of regulatory agencies. The method enables rapid quantification of neurotransmitters and their metabolites and has been applied in the nuclear factor (erythroid 2-derived)-like 2 (Nrf2) knockout mouse model of depression. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Repeated Nrf2 stimulation using sulforaphane protects fibroblasts from ionizing radiation.

    Science.gov (United States)

    Mathew, Sherin T; Bergström, Petra; Hammarsten, Ola

    2014-05-01

    Most of the cytotoxicity induced by ionizing radiation is mediated by radical-induced DNA double-strand breaks. Cellular protection from free radicals can be stimulated several fold by sulforaphane-mediated activation of the transcription factor Nrf2 that regulates more than 50 genes involved in the detoxification of reactive substances and radicals. Here, we report that repeated sulforaphane treatment increases radioresistance in primary human skin fibroblasts. Cells were either treated with sulforaphane for four hours once or with four-hour treatments repeatedly for three consecutive days prior to radiation exposure. Fibroblasts exposed to repeated-sulforaphane treatment showed a more pronounced dose-dependent induction of Nrf2-regulated mRNA and reduced amount of radiation-induced free radicals compared with cells treated once with sulforaphane. In addition, radiation- induced DNA double-strand breaks measured by gamma-H2AX foci were attenuated following repeated sulforaphane treatment. As a result, cellular protection from ionizing radiation measured by the 5-ethynyl-2'-deoxyuridine (EdU) assay was increased, specifically in cells exposed to repeated sulforaphane treatment. Sulforaphane treatment was unable to protect Nrf2 knockout mouse embryonic fibroblasts, indicating that the sulforaphane-induced radioprotection was Nrf2-dependent. Moreover, radioprotection by repeated sulforaphane treatment was dose-dependent with an optimal effect at 10 uM, whereas both lower and higher concentrations resulted in lower levels of radioprotection. Our data indicate that the Nrf2 system can be trained to provide further protection from radical damage. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The Crosstalk between Nrf2 and TGF-β1 in the Epithelial-Mesenchymal Transition of Pancreatic Duct Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Sarah Arfmann-Knübel

    Full Text Available Nrf2 and TGF-β1 both affect tumorigenesis in a dual fashion, either by preventing carcinogen induced carcinogenesis and suppressing tumor growth, respectively, or by conferring cytoprotection and invasiveness to tumor cells during malignant transformation. Given the involvement of Nrf2 and TGF-β1 in the adaptation of epithelial cells to persistent inflammatory stress, e.g. of the pancreatic duct epithelium during chronic pancreatitis, a crosstalk between Nrf2 and TGF-β1 can be envisaged. By using premalignant human pancreatic duct cells (HPDE and the pancreatic ductal adenocarcinoma cell line Colo357, we could show that Nrf2 and TGF-β1 independently but additively conferred an invasive phenotype to HPDE cells, whereas acting synergistically in Colo357 cells. This was accompanied by differential regulation of EMT markers like vimentin, Slug, L1CAM and E-cadherin. Nrf2 activation suppressed E-cadherin expression through an as yet unidentified ARE related site in the E-cadherin promoter, attenuated TGF-β1 induced Smad2/3-activity and enhanced JNK-signaling. In Colo357 cells, TGF-β1 itself was capable of inducing Nrf2 whereas in HPDE cells TGF-β1 per-se did not affect Nrf2 activity, but enhanced Nrf2 induction by tBHQ. In Colo357, but not in HPDE cells, the effects of TGF-β1 on invasion were sensitive to Nrf2 knock-down. In both cell lines, E-cadherin re-expression inhibited the proinvasive effect of Nrf2. Thus, the increased invasion of both cell lines relates to the Nrf2-dependent downregulation of E-cadherin expression. In line, immunohistochemistry analysis of human pancreatic intraepithelial neoplasias in pancreatic tissues from chronic pancreatitis patients revealed strong Nrf2 activity already in premalignant epithelial duct cells, accompanied by partial loss of E-cadherin expression. Our findings indicate that Nrf2 and TGF-β1 both contribute to malignant transformation through distinct EMT related mechanisms accounting for an

  9. Fenofibrate activates Nrf2 through p62-dependent Keap1 degradation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Su [Severance Biomedical Science Institute (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kang, Dong Hoon [Department of Life Science and Ewha Research Center for Systems Biology (Korea, Republic of); The Research Center for Cell Homeostasis, Ewha Womans University, Seoul 127-750 (Korea, Republic of); Lee, Da Hyun [Severance Biomedical Science Institute (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Bae, Soo Han, E-mail: soohanbae@yuhs.ac [Severance Biomedical Science Institute (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2015-09-25

    Peroxisome proliferator-activated receptor α (PPARα) activates the β-oxidation of fatty acids in the liver. Fenofibrate is a potent agonist of PPARα and is used in the treatment of hyperlipidemia. Fenofibrate treatment often induces the production of intracellular reactive oxygen species (ROS), leading to cell death. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway is an essential component of the defense mechanism against oxidative stress. However, the molecular mechanism underlying the regulation of the Nrf2-Keap1 pathway in fenofibrate-induced cell death is not known. In this study, we demonstrated that fenofibrate induces Keap1 degradation and Nrf2 activation. This fenofibrate-mediated Keap1 degradation is partly dependent on autophagy. Furthermore, fenofibrate-induced Keap1 degradation followed by Nrf2 activation is mainly mediated by p62, which functions as an adaptor protein in the autophagic pathway. Consistent with these findings, ablation of p62 increased fenofibrate-mediated apoptotic cell death associated with ROS accumulation. These results strongly suggest that p62 plays a crucial role in preventing fenofibrate-induced cell death. - Highlights: • Fenofibrate induces cell death by increasing ROS production. • The underlying defense mechanism against this effect is unknown. • Fenofibrate induces autophagy-dependent Keap1 degradation and Nrf2 activation. • This process is p62-dependent; lack of p62 enhanced fenofibrate-mediated apoptosis. • p62 plays a crucial role in preventing fenofibrate-induced cell death.

  10. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo

    Science.gov (United States)

    Kawamura, Tomohiro; Wakabayashi, Nobunao; Shigemura, Norihisa; Huang, Chien-Sheng; Masutani, Kosuke; Tanaka, Yugo; Noda, Kentaro; Peng, Ximei; Takahashi, Toru; Billiar, Timothy R.; Okumura, Meinoshin; Toyoda, Yoshiya; Kensler, Thomas W.

    2013-01-01

    Hyperoxic lung injury is a major concern in critically ill patients who receive high concentrations of oxygen to treat lung diseases. Successful abrogation of hyperoxic lung injury would have a huge impact on respiratory and critical care medicine. Hydrogen can be administered as a therapeutic medical gas. We recently demonstrated that inhaled hydrogen reduced transplant-induced lung injury and induced heme oxygenase (HO)-1. To determine whether hydrogen could reduce hyperoxic lung injury and investigate the underlying mechanisms, we randomly assigned rats to four experimental groups and administered the following gas mixtures for 60 h: 98% oxygen (hyperoxia), 2% nitrogen; 98% oxygen (hyperoxia), 2% hydrogen; 98% balanced air (normoxia), 2% nitrogen; and 98% balanced air (normoxia), 2% hydrogen. We examined lung function by blood gas analysis, extent of lung injury, and expression of HO-1. We also investigated the role of NF-E2-related factor (Nrf) 2, which regulates HO-1 expression, by examining the expression of Nrf2-dependent genes and the ability of hydrogen to reduce hyperoxic lung injury in Nrf2-deficient mice. Hydrogen treatment during exposure to hyperoxia significantly improved blood oxygenation, reduced inflammatory events, and induced HO-1 expression. Hydrogen did not mitigate hyperoxic lung injury or induce HO-1 in Nrf2-deficient mice. These findings indicate that hydrogen gas can ameliorate hyperoxic lung injury through induction of Nrf2-dependent genes, such as HO-1. The findings suggest a potentially novel and applicable solution to hyperoxic lung injury and provide new insight into the molecular mechanisms and actions of hydrogen. PMID:23475767

  11. Nrf2-inducing anti-oxidation stress response in the rat liver--new beneficial effect of lansoprazole.

    Science.gov (United States)

    Yamashita, Yasunobu; Ueyama, Takashi; Nishi, Toshio; Yamamoto, Yuta; Kawakoshi, Akatsuki; Sunami, Shogo; Iguchi, Mikitaka; Tamai, Hideyuki; Ueda, Kazuki; Ito, Takao; Tsuruo, Yoshihiro; Ichinose, Masao

    2014-01-01

    Lansoprazole is a potent anti-gastric ulcer drug that inhibits gastric proton pump activity. We identified a novel function for lansoprazole, as an inducer of anti-oxidative stress responses in the liver. Gastric administration of lansoprazole (10-100 mg/kg) to male Wistar rats produced a dose-dependent increase in hepatic mRNA levels of nuclear factor, erythroid-derived 2, -like 2 (Nrf2), a redox-sensitive transcription factor, at 3 h and Nrf2 immunoreactivity (IR) in whole hepatic lysates at 6 h. Conversely, the levels of Kelch-like ECH-associated protein (Keap1), which sequesters Nrf2 in the cytoplasm under un-stimulated conditions, were unchanged. Translocation of Nrf2 into the nuclei of hepatocytes was observed using western blotting and immunohistochemistry. Expression of mRNAs for Nrf2-dependent antioxidant and phase II enzymes, such as heme oxygenase 1 (HO-1), NAD (P) H dehydrogenase, quinone 1 (Nqo1), glutathione S-transferase A2 (Gsta2), UDP glucuronosyltransferase 1 family polypeptide A6 (Ugt1a6), were dose-dependently up-regulated at 3 h. Furthermore, the levels of HO-1 IR were dose-dependently increased in hepatocytes at 6 h. Subcutaneous administration of lansoprazole (30 mg/kg/day) for 7 successive days resulted in up-regulation and nuclear translocation of Nrf2 IR in hepatocytes and up-regulation of HO-1 IR in the liver. Pretreatment with lansoprazole attenuated thioacetamide (500 mg/kg)-induced acute hepatic damage via both HO-1-dependent and -independent pathways. Up-stream networks related to Nrf2 expression were investigated using microarray analysis, followed by data mining with Ingenuity Pathway Analysis. Up-regulation of the aryl hydrocarbon receptor (AhR)-cytochrome P450, family 1, subfamily a, polypeptide 1 (Cyp1a1) pathway was associated with up-regulation of Nrf2 mRNA. In conclusion, lansoprazole might have an alternative indication in the prevention and treatment of oxidative hepatic damage through the induction of both phase I and phase

  12. Nrf2-Inducing Anti-Oxidation Stress Response in the Rat Liver - New Beneficial Effect of Lansoprazole

    Science.gov (United States)

    Yamashita, Yasunobu; Ueyama, Takashi; Nishi, Toshio; Yamamoto, Yuta; Kawakoshi, Akatsuki; Sunami, Shogo; Iguchi, Mikitaka; Tamai, Hideyuki; Ueda, Kazuki; Ito, Takao; Tsuruo, Yoshihiro; Ichinose, Masao

    2014-01-01

    Lansoprazole is a potent anti-gastric ulcer drug that inhibits gastric proton pump activity. We identified a novel function for lansoprazole, as an inducer of anti-oxidative stress responses in the liver. Gastric administration of lansoprazole (10–100 mg/kg) to male Wistar rats produced a dose-dependent increase in hepatic mRNA levels of nuclear factor, erythroid-derived 2, -like 2 (Nrf2), a redox-sensitive transcription factor, at 3 h and Nrf2 immunoreactivity (IR) in whole hepatic lysates at 6 h. Conversely, the levels of Kelch-like ECH-associated protein (Keap1), which sequesters Nrf2 in the cytoplasm under un-stimulated conditions, were unchanged. Translocation of Nrf2 into the nuclei of hepatocytes was observed using western blotting and immunohistochemistry. Expression of mRNAs for Nrf2-dependent antioxidant and phase II enzymes, such as heme oxygenase 1 (HO-1), NAD (P) H dehydrogenase, quinone 1 (Nqo1), glutathione S-transferase A2 (Gsta2), UDP glucuronosyltransferase 1 family polypeptide A6 (Ugt1a6), were dose-dependently up-regulated at 3 h. Furthermore, the levels of HO-1 IR were dose-dependently increased in hepatocytes at 6 h. Subcutaneous administration of lansoprazole (30 mg/kg/day) for 7 successive days resulted in up-regulation and nuclear translocation of Nrf2 IR in hepatocytes and up-regulation of HO-1 IR in the liver. Pretreatment with lansoprazole attenuated thioacetamide (500 mg/kg)-induced acute hepatic damage via both HO-1-dependent and -independent pathways. Up-stream networks related to Nrf2 expression were investigated using microarray analysis, followed by data mining with Ingenuity Pathway Analysis. Up-regulation of the aryl hydrocarbon receptor (AhR)-cytochrome P450, family 1, subfamily a, polypeptide 1 (Cyp1a1) pathway was associated with up-regulation of Nrf2 mRNA. In conclusion, lansoprazole might have an alternative indication in the prevention and treatment of oxidative hepatic damage through the induction of both phase I and

  13. Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression.

    Science.gov (United States)

    Bouvier, E; Brouillard, F; Molet, J; Claverie, D; Cabungcal, J-H; Cresto, N; Doligez, N; Rivat, C; Do, K Q; Bernard, C; Benoliel, J-J; Becker, C

    2017-12-01

    Stressful life events produce a state of vulnerability to depression in some individuals. The mechanisms that contribute to vulnerability to depression remain poorly understood. A rat model of intense stress (social defeat (SD), first hit) produced vulnerability to depression in 40% of animals. Only vulnerable animals developed a depression-like phenotype after a second stressful hit (chronic mild stress). We found that this vulnerability to depression resulted from a persistent state of oxidative stress, which was reversed by treatment with antioxidants. This persistent state of oxidative stress was due to low brain-derived neurotrophic factor (BDNF) levels, which characterized the vulnerable animals. We found that BDNF constitutively controlled the nuclear translocation of the master redox-sensitive transcription factor Nrf2, which activates antioxidant defenses. Low BDNF levels in vulnerable animals prevented Nrf2 translocation and consequently prevented the activation of detoxifying/antioxidant enzymes, ultimately resulting in the generation of sustained oxidative stress. Activating Nrf2 translocation restored redox homeostasis and reversed vulnerability to depression. This mechanism was confirmed in Nrf2-null mice. The mice displayed high levels of oxidative stress and were inherently vulnerable to depression, but this phenotype was reversed by treatment with antioxidants. Our data reveal a novel role for BDNF in controlling redox homeostasis and provide a mechanistic explanation for post-stress vulnerability to depression while suggesting ways to reverse it. Because numerous enzymatic reactions produce reactive oxygen species that must then be cleared, the finding that BDNF controls endogenous redox homeostasis opens new avenues for investigation.

  14. Oxidative Stress Responses and NRF2 in Human Leukaemia

    Directory of Open Access Journals (Sweden)

    Amina Abdul-Aziz

    2015-01-01

    Full Text Available Oxidative stress as a result of elevated levels of reactive oxygen species (ROS has been observed in almost all cancers, including leukaemia, where they contribute to disease development and progression. However, cancer cells also express increased levels of antioxidant proteins which detoxify ROS. This includes glutathione, the major antioxidant in human cells, which has recently been identified to have dysregulated metabolism in human leukaemia. This suggests that critical balance of intracellular ROS levels is required for cancer cell function, growth, and survival. Nuclear factor (erythroid-derived 2-like 2 (NRF2 transcription factor plays a dual role in cancer. Primarily, NRF2 is a transcription factor functioning to protect nonmalignant cells from malignant transformation and oxidative stress through transcriptional activation of detoxifying and antioxidant enzymes. However, once malignant transformation has occurred within a cell, NRF2 functions to protect the tumour from oxidative stress and chemotherapy-induced cytotoxicity. Moreover, inhibition of the NRF2 oxidative stress pathway in leukaemia cells renders them more sensitive to cytotoxic chemotherapy. Our improved understanding of NRF2 biology in human leukaemia may permit mechanisms by which we could potentially improve future cancer therapies. This review highlights the mechanisms by which leukaemic cells exploit the NRF2/ROS response to promote their growth and survival.

  15. Oxidative Stress in Cardiovascular Diseases: Involvement of Nrf2 Antioxidant Redox Signaling in Macrophage Foam Cells Formation

    Directory of Open Access Journals (Sweden)

    Bee Kee Ooi

    2017-11-01

    Full Text Available Oxidative stress is an important risk factor contributing to the pathogenesis of cardiovascular diseases. Oxidative stress that results from excessive reactive oxygen species (ROS production accounts for impaired endothelial function, a process which promotes atherosclerotic lesion or fatty streaks formation (foam cells. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a transcription factor involved in cellular redox homeostasis. Upon exposure to oxidative stress, Nrf2 is dissociated from its inhibitor Keap-1 and translocated into the nucleus, where it results in the transcriptional activation of cell defense genes. Nrf2 has been demonstrated to be involved in the protection against foam cells formation by regulating the expression of antioxidant proteins (HO-1, Prxs, and GPx1, ATP-binding cassette (ABC efflux transporters (ABCA1 and ABCG1 and scavenger receptors (scavenger receptor class B (CD36, scavenger receptor class A (SR-A and lectin-type oxidized LDL receptor (LOX-1. However, Nrf2 has also been reported to exhibit pro-atherogenic effects. A better understanding on the mechanism of Nrf2 in oxidative stress-induced cardiac injury, as well as the regulation of cholesterol uptake and efflux, are required before it can serve as a novel therapeutic target for cardiovascular diseases prevention and treatment.

  16. Propolis reversed cigarette smoke-induced emphysema through macrophage alternative activation independent of Nrf2.

    Science.gov (United States)

    Barroso, Marina Valente; Cattani-Cavalieri, Isabella; de Brito-Gitirana, Lycia; Fautrel, Alain; Lagente, Vincent; Schmidt, Martina; Porto, Luís Cristóvão; Romana-Souza, Bruna; Valença, Samuel Santos; Lanzetti, Manuella

    2017-10-15

    Chronic obstructive pulmonary disease (COPD) is an incurable and progressive disease. Emphysema is the principal manifestation of COPD, and the main cause of this condition is cigarette smoke (CS). Natural products have shown antioxidant and anti-inflammatory properties that can prevent acute lung inflammation and emphysema, but there are few reports in the literature regarding therapeutic approaches to emphysema. We hypothesized that supplementation with natural extracts would repair lung damage in emphysema caused by CS exposure. Mice were exposed to 60days of CS and then treated or not with three different natural extracts (mate tea, grape and propolis) orally for additional 60days. Histological analysis revealed significant improvements in lung histoarchitecture, with recovery of alveolar spaces in all groups treated with natural extracts. Propolis was also able to recovery alveolar septa and elastic fibers. Propolis also increased MMP-2 and decreased MMP-12 expression, favoring the process of tissue repair. Additionally, propolis recruited leukocytes, including macrophages, without ROS release. These findings led us to investigate the profile of these macrophages, and we showed that propolis could promote macrophage alternative activation, thus increasing the number of arginase-positive cells and IL-10 levels and favoring an anti-inflammatory microenvironment. We further investigated the participation of Nrf2 in lung repair, but no Nrf2 translocation to the nucleus was observed in lung cells. Proteins and enzymes related to Nrf2 were not altered, other than NQO1, which seemed to be activated by propolis in a Nrf2-independent manner. Finally, propolis downregulated IGF1 expression. In conclusion, propolis promoted lung repair in a mouse emphysema model via macrophage polarization from M1 to M2 in parallel to the downregulation of IGF1 expression in a Nrf2-independent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Nutritive values, flavor amino acids, healthcare fatty acids and flesh quality improved by manganese referring to up-regulating the antioxidant capacity and signaling molecules TOR and Nrf2 in the muscle of fish.

    Science.gov (United States)

    Jiang, Wei-Dan; Wu, Pei; Tang, Ren-Jun; Liu, Yang; Kuang, Sheng-Yao; Jiang, Jun; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2016-11-01

    Flesh quality, amino acid and fatty acid composition, antioxidant status and related molecule expression in fish muscle were estimated by feeding grass carp with diets containing 3.65-27.86mg/kg diet of manganese (Mn) for 8weeks. Results demonstrated that optimal Mn increased toughness, collagen content, and pH, and decreased the cooking loss, and cathepsin B and L activities to enhance the flesh quality of fish. Meanwhile, optimal Mn increased the protein, lipid, the total essential amino acid (AA) (especially umami AA), and healthcare fatty acids, C18: 1c+t, C20: 3n-3, C20: 4 and DHA contents. These might be partially related to the decreased lipid peroxidation and protein oxidation, and the enhanced activities of Mn superoxide dismutase (MnSOD), catalase (CAT) and glutathione peroxidase (GPx) modulated by their gene expression, Nrf2 and TOR signaling. We firstly demonstrated that Mn improved flesh quality, flavor and healthcare function in fish muscle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells.

    Directory of Open Access Journals (Sweden)

    Madhusudhanan Narasimhan

    Full Text Available Nuclear factor-erythroid 2-related factor 2 (Nrf2/NFE2L2, a redox-sensitive transcription factor plays a critical role in adaptation to cellular stress and affords cellular defense by initiating transcription of antioxidative and detoxification genes. While a protein can be regulated at multiple levels, control of Nrf2 has been largely studied at post-translational regulation points by Keap1. Importantly, post-transcriptional/translational based regulation of Nrf2 is less understood and to date there are no reports on such mechanisms in neuronal systems. In this context, studies involving the role of microRNAs (miRs which are normally considered as fine tuning regulators of protein production through translation repression and/or post-transcriptional alterations, are in place. In the current study, based on in-silico analysis followed by immunoblotting and real time analysis, we have identified and validated for the first time that human NFE2L2 could be targeted by miR153/miR27a/miR142-5p/miR144 in neuronal, SH-SY5Y cells. Co-transfection studies with individual miR mimics along with either WT 3' UTR of human Nrf2 or mutated miRNA targeting seed sequence within Nrf2 3' UTR, demonstrated that Nrf2 is a direct regulatory target of these miRs. In addition, ectopic expression of miR153/miR27a/miR142-5p/miR144 affected Nrf2 mRNA abundance and nucleo-cytoplasmic concentration of Nrf2 in a Keap1 independent manner resulting in inefficient transactivating ability of Nrf2. Furthermore, forced expression of miRs diminished GCLC and GSR expression resulting in alteration of Nrf2 dependent redox homeostasis. Finally, bioinformatics based miRNA-disease network analysis (MDN along with extended computational network analysis of Nrf2 associated pathologic processes suggests that if in a particular cellular scenario where any of these miR153/miR27a/miR142-5p/miR144 either individually or as a group is altered, it could affect Nrf2 thus triggering and

  19. Molecular Alterations in a Mouse Cardiac Model of Friedreich Ataxia

    DEFF Research Database (Denmark)

    Anzovino, Amy; Chiang, Shannon; Brown, Bronwyn E

    2017-01-01

    Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a master regulator of the antioxidant response. However, studies in models of Friedreich ataxia, a neurodegenerative and cardiodegenerative disease associated with oxidative stress, reported decreased Nrf2 expression attributable to unknown me...

  20. Contribution of Nrf2 to Atherogenic Phenotype Switching of Coronary Arterial Smooth Muscle Cells Lacking CD38 Gene

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2015-08-01

    Full Text Available Background/Aims: Recent studies have indicated that CD38 gene deficiency results in dedifferentiation or transdifferentiation of arterial smooth muscle cells upon atherogenic stimulations. However, the molecular mechanisms mediating this vascular smooth muscle (SMC phenotypic switching remain unknown. Methods & Results: In the present study, we first characterized the phenotypic change in the primary cultures of coronary arterial myocytes (CAMs from CD38-/- mice. It was shown that CD38 deficiency decreased the expression of contractile marker calponin, SM22α and α-SMA but increased the expression of SMC dedifferentiation marker, vimentin, which was accompanied by enhanced cell proliferation. This phenotypic change in CD38-/- CAMs was enhanced by 7-ketocholesterol (7-Ket, an atherogenic stimulus. We further found that the CD38 deficiency decreased the expression and activity of nuclear factor E2-related factor 2 (Nrf2, a basic leucine zipper (bZIP transcription factor sensitive to redox regulation. Similar to CD38 deletion, Nrf2 gene silencing increased CAM dedifferentiation upon 7-Ket stimulation. In contrast, the overexpression of Nrf2 gene abolished 7-Ket-induced dedifferentiation in CD38-/- CAMs. Given the sensitivity of Nrf2 to oxidative stress, we determined the role of redox signaling in the regulation of Nrf2 expression and activity associated with CD38 effect in CAM phenotype changes. It was demonstrated that in CD38-/- CAMs, 7-Ket failed to stimulate the production of O2-., while in CD38+/+ CAMs 7-Ket induced marked O2-. production and enhancement of Nrf2 activity, which was substantially attenuated by NOX4 gene silencing. Finally, we demonstrated that 7-Ket-induced and NOX4-dependent O2-. production was inhibited by 8-Br-cADPR, an antagonist of cADPR or NED-19, an antagonist of NAADP as product of CD38 ADP-ribosylcyclase, which significantly inhibited the level of cytosolic Ca2+ and the activation of Nrf2 under 7-Ket. Conclusion

  1. The effect of Nrf2 pathway activation on human pancreatic islet cells.

    Directory of Open Access Journals (Sweden)

    Yuichi Masuda

    Full Text Available Pancreatic islets are known to contain low level of antioxidants that renders them vulnerable to oxidative stress. Nrf2 is the master regulator of numerous genes, encoding antioxidant, detoxifying, and cytoprotective molecules. Activation of Nrf2 pathway induces up-regulation of numerous genes encoding antioxidant and phase II detoxifying enzymes and related proteins. However, little is known regarding the role of this pathway in human islet cells. The aim was to investigate the effect of Nrf2 activator (dh404, CDDO-9,11-dihydro-trifluoroethyl amide on human islet cells.Human islets were obtained from cadaveric donors. After dh404 treatment, Nrf2 translocation, mRNA expression, and protein abundance of its key target gene products were examined. The proportion of dh404-treated or non-treated viable islet beta cells was analyzed using flowcytemetry. The cytoprotective effects against oxidative stress and production of inflammatory mediators, and in vivo islet function after transplantation were determined.Nrf2 nuclear translocation was confirmed by con-focal microscope within 2 hours after treatment, which was associated with a dose-dependent increase in mRNA expression of anti-oxidants, including NQO1, HO-1, and GCLC. Enhanced HO-1 expression in dh404 treated islets was confirmed by Western Blot assay. Islet function after transplantation (2000 IEQ/mouse to diabetic nude mice was not affected with or without dh404 treatment. After induction of oxidative stress with hydrogen peroxide (200 μM the proportion of dh404-treated viable islet cells was significantly higher in the dh404-treated than untreated islets (74% vs.57%; P<0.05. Dh404 significantly decreased production of cytokines/chemokines including IL-1β, IL-6, IFN-γ and MCP-1.Treatment of human pancreatic islets with the potent synthetic Nrf2 activator, dh404, significantly increased expression of the key anti-oxidants enzymes, decreased inflammatory mediators in islets and conferred

  2. Silencing of NRF2 Reduces the Expression of ALDH1A1 and ALDH3A1 and Sensitizes to 5-FU in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hong-Quan Duong

    2017-07-01

    Full Text Available Pancreatic cancer remains an intractable cancer with a poor five-year survival rate, which requires new therapeutic modalities based on the biology of pancreatic oncogenesis. Nuclear factor E2 related factor-2 (NRF2, a key cytoprotective nuclear transcription factor, regulates antioxidant production, reduction, detoxification and drug efflux proteins. It also plays an essential role in cell homeostasis, cell proliferation and resistance to chemotherapy. We aimed to evaluate the possibility that modulation of NRF2 expression could be effective in the treatment of pancreatic cancer cells. We investigated whether the depletion of NRF2 by using small interfering RNAs (siRNAs is effective in the expression of biomarkers of pancreatic cancer stemness such as aldehyde dehydrogenase 1 family, member A1 (ALDH1A1 and aldehyde dehydrogenase 3 family, member A1 (ALDH3A1. NRF2 knockdown markedly reduced the expression of NRF2 and glutamate-cysteine ligase catalytic subunit (GCLC in cell lines established from pancreatic cancers. NRF2 silencing also decreased the ALDH1A1 and ALDH3A1 expression. Furthermore, this NRF2 depletion enhanced the antiproliferative effects of the chemotherapeutic agent, 5-fluorouracil (5-FU in pancreatic cancer cells.

  3. The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions

    Directory of Open Access Journals (Sweden)

    Hendrik Gremmels

    2017-01-01

    Full Text Available Background. Endothelial colony forming cells (ECFCs have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS. The transcription factor Nrf2 regulates the expression of antioxidant enzymes in response to ROS. Methods. Stable knockdown of Nrf2 and Keap1 was achieved by transduction with lentiviral shRNAs; activation of Nrf2 was induced by incubation with sulforaphane (SFN. Expression of Nrf2 target genes was assessed by qPCR, oxidative stress was assessed using CM-DCFDA, and angiogenesis was quantified by scratch-wound and tubule-formation assays. Results. Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. Conclusion. The results of this study indicate that Nrf2 plays an important role in the angiogenic capacity of ECFCs, particularly under conditions of increased oxidative stress. Pretreatment of ECFCs with SFN prior to implantation may be a protective strategy for tissue-engineered constructs or cell therapies.

  4. Sulforaphane is a Nrf2-independent inhibitor of mitochondrial fission

    Directory of Open Access Journals (Sweden)

    Gary B. O'Mealey

    2017-04-01

    Full Text Available The KEAP1-Nrf2-ARE antioxidant system is a principal means by which cells respond to oxidative and xenobiotic stresses. Sulforaphane (SFN, an electrophilic isothiocyanate derived from cruciferous vegetables, activates the KEAP1-Nrf2-ARE pathway and has become a molecule-of-interest in the treatment of diseases in which chronic oxidative stress plays a major etiological role. We demonstrate here that the mitochondria of cultured, human retinal pigment epithelial (RPE-1 cells treated with SFN undergo hyperfusion that is independent of both Nrf2 and its cytoplasmic inhibitor KEAP1. Mitochondrial fusion has been reported to be cytoprotective by inhibiting pore formation in mitochondria during apoptosis, and consistent with this, we show Nrf2-independent, cytoprotection of SFN-treated cells exposed to the apoptosis-inducer, staurosporine. Mechanistically, SFN mitigates the recruitment and/or retention of the soluble fission factor Drp1 to mitochondria and to peroxisomes but does not affect overall Drp1 abundance. These data demonstrate that the beneficial properties of SFN extend beyond activation of the KEAP1-Nrf2-ARE system and warrant further interrogation given the current use of this agent in multiple clinical trials.

  5. Andrographolide protects against cigarette smoke-induced oxidative lung injury via augmentation of Nrf2 activity

    Science.gov (United States)

    Guan, SP; Tee, W; Ng, DSW; Chan, TK; Peh, HY; Ho, WE; Cheng, C; Mak, JC; Wong, WSF

    2013-01-01

    Background and Purpose Cigarette smoke is a major cause for chronic obstructive pulmonary disease (COPD). Andrographolide is an active biomolecule isolated from the plant Andrographis paniculata. Andrographolide has been shown to activate nuclear factor erythroid-2-related factor 2 (Nrf2), a redox-sensitive antioxidant transcription factor. As Nrf2 activity is reduced in COPD, we hypothesize that andrographolide may have therapeutic value for COPD. Experimental Approach Andrographolide was given i.p. to BALB/c mice daily 2 h before 4% cigarette smoke exposure for 1 h over five consecutive days. Bronchoalveolar lavage fluid and lungs were collected for analyses of cytokines, oxidative damage markers and antioxidant activities. BEAS-2B bronchial epithelial cells were exposed to cigarette smoke extract (CSE) and used to study the antioxidant mechanism of action of andrographolide. Key Results Andrographolide suppressed cigarette smoke-induced increases in lavage fluid cell counts; levels of IL-1β, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Andrographolide promoted inductions of glutathione peroxidase (GPx) and glutathione reductase (GR) activities in lungs from cigarette smoke-exposed mice. In BEAS-2B cells, andrographolide markedly increased nuclear Nrf2 accumulation, promoted binding to antioxidant response element (ARE) and total cellular glutathione level in response to CSE. Andrographolide up-regulated ARE-regulated gene targets including glutamate-cysteine ligase catalytic (GCLC) subunit, GCL modifier (GCLM) subunit, GPx, GR and heme oxygenase-1 in BEAS-2B cells in response to CSE. Conclusions Andrographolide possesses antioxidative properties against cigarette smoke-induced lung injury probably via augmentation of Nrf2 activity and may have therapeutic potential for treating COPD. PMID:23146110

  6. Rosemary Extracts Upregulate Nrf2, Sestrin2, and MRP2 Protein Level in Human Hepatoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Xiao-pei Tong

    2017-01-01

    Full Text Available In the past few decades, the incidence of liver cancer has been rapidly rising across the world. Rosemary is known to possess antioxidant activity and is used as natural antioxidant food preservative. It is proposed to have anticancer activity in treating different tumor models. In this study, we try to explore the impact of rosemary extracts on upregulating the level of Nrf2 and Nrf2-regulatory proteins, Sestrin2 and MRP2 in HepG2 cells, and to speculate its potential mechanism. The anticancer activity of rosemary extract, including its polyphenolic diterpenes carnosic acid and carnosol, was evaluated to understand the potential effect on HepG2 cells. Rosemary extract, carnosic acid, and carnosol induced the expression of Sestrin2 and MRP2 associate with enhancement of Nrf2 protein level in HepG2 cells, in which carnosic acid showed most obvious effect. Although the activation pathway of Nrf2/ARE was not exactly assessed, it can be assumed that the enhancement of expression of Sestrin2 and MRP2 may result from upregulation of Nrf2.

  7. Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway.

    Science.gov (United States)

    Wu, Juan; Liu, Xinhui; Fan, Jinjin; Chen, Wenfang; Wang, Juan; Zeng, Youjia; Feng, Xiaorang; Yu, Xueqing; Yang, Xiao

    2014-04-06

    Bardoxolone methyl (BARD) is an antioxidant modulator that acts through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This study aimed to investigate the role of BARD in protecting kidneys from aristolochic acid (AA)-induced acute kidney injury (AKI). Male C57BL/6 mice received intraperitoneal (i.p.) injections of aristolochic acid I (AAI) (5mg/kg/day) for 5 days to produce acute AA nephropathy (AAN) model. BARD (10mg/kg/day, i.p.) was applied for 7 consecutive days, starting 2 days prior to AAI administration. The mice in the AA group showed AKI as evidenced by worsening kidney function evaluated by blood urea nitrogen (BUN) and serum creatinine (SCr) levels, and severe tubulointerstitial injury marked by massive tubule necrosis in kidney tissues. BARD significantly reduced BUN and SCr levels which were elevated by AAI. Additionally, AAI-induced histopathological renal damage was ameliorated by BARD. Furthermore, the expression of Nrf2 was reduced, and its repressor Kelch-like ECH-associated protein 1 (Keap1) was increased significantly, whereas heme oxygenase-1 (HO-1) was upregulated and NAD(P)H quinone oxidoreductase-1 (NQO1) was barely increased in the cytoplasm of tubules in kidneys after treatment with AAI. BARD significantly upregulated renal Nrf2, NQO1 and HO-1 expression and downregulated Keap1 expression compared with those in the AA group. Moreover, it was found that Nrf2 was expressed both in the cytoplasm and nuclear of glomeruli and tubules, whereas NQO1 and HO-1 were localized in the cytoplasm of tubules only. In conclusion, AA-induced acute renal injury was associated with impaired Nrf2 activation and expression of its downstream target genes in renal tissues. BARD prevented renal damage induced by AAI, and this renoprotective effect may be exerted by activating the Nrf2 signaling pathway and increasing expression of the downstream target genes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Whole blood transcriptional profiling reveals deregulation of oxidative and antioxidative defence genes in myelofibrosis and related neoplasms. Potential implications of downregulation of Nrf2 for genomic instability and disease progression

    DEFF Research Database (Denmark)

    Hasselbalch, Hans Carl; Thomassen, Mads; Riley, Caroline Hasselbalch

    2014-01-01

    in the regulation of the oxidative stress response and modulates both migration and retention of hematopoietic stem cells (HSCs) in their niche. The patogenetic importance of Nrf2 depletion in the context of expansion of the hematopoietic progenitor pool in MPNs is discussed with particular focus upon...... the implications of concomitant downregulation of Nrf2 and CXCR4 for stem cell mobilization....

  9. Frugal chemoprevention: targeting Nrf2 with foods rich in sulforaphane.

    Science.gov (United States)

    Yang, Li; Palliyaguru, Dushani L; Kensler, Thomas W

    2016-02-01

    With the properties of efficacy, safety, tolerability, practicability and low cost, foods containing bioactive phytochemicals are gaining significant attention as elements of chemoprevention strategies against cancer. Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)butane], a naturally occurring isothiocyanate produced by cruciferous vegetables such as broccoli, is found to be a highly promising chemoprevention agent against not only a variety of cancers such as breast, prostate, colon, skin, lung, stomach or bladder, but also cardiovascular disease, neurodegenerative diseases, and diabetes. For reasons of experimental exigency, preclinical studies have focused principally on sulforaphane itself, while clinical studies have relied on broccoli sprout preparations rich in either sulforaphane or its biogenic precursor, glucoraphanin. Substantive subsequent evaluation of sulforaphane pharmacokinetics and pharmacodynamics has been undertaken using either pure compound or food matrices. Sulforaphane affects multiple targets in cells. One key molecular mechanism of action for sulforaphane entails activation of the Nrf2-Keap1 signaling pathway although other actions contribute to the broad spectrum of efficacy in different animal models. This review summarizes the current status of pre-clinical chemoprevention studies with sulforaphane and highlights the progress and challenges for the application of foods rich in sulforaphane and/or glucoraphanin in the arena of clinical chemoprevention. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Skin Redox Balance Maintenance: The Need for an Nrf2-Activator Delivery System

    Directory of Open Access Journals (Sweden)

    Maya Ben-Yehuda Greenwald

    2016-01-01

    Full Text Available The skin, being the largest organ of the body, functions as a barrier between our body and the environment. It is consistently exposed to various exogenous and endogenous stressors (e.g., air pollutants, ionizing and non-ionizing irradiation, toxins, mitochondrial metabolism, enzyme activity, inflammatory process, etc. producing reactive oxygen species (ROS and physical damage (e.g., wounds, sunburns also resulting in reactive oxygen species production. Although skin is equipped with an array of defense mechanisms to counteract reactive oxygen species, augmented exposure and continued reactive oxygen species might result in excessive oxidative stress leading to many skin disorders including inflammatory diseases, pigmenting disorders and some types of cutaneous malignancy. The nuclear factor erythroid 2-related factor 2 (Nrf2 is an emerging regulator of cellular resistance and of defensive enzymes such as the phase II enzymes. Induction of the Keap1–Nrf2 pathway may have a beneficial effect in the treatment of a large number of skin disorders by stimulating an endogenous defense mechanism. However, prolonged and enhanced activation of this pathway is detrimental and, thus, limits the therapeutic potential of Keap1–Nrf2 modulators. Here, we review the consequences of oxidative stress to the skin, and the defense mechanisms that skin is equipped with. We describe the challenges of maintaining skin redox balance and its impact on skin status and function. Finally, we suggest a novel strategy for maintenance of skin redox homeostasis by modulating the Keap1–Nrf2 pathway using nanotechnology-based delivery systems.

  11. Embryotoxicity Caused by DON-Induced Oxidative Stress Mediated by Nrf2/HO-1 Pathway

    Directory of Open Access Journals (Sweden)

    Miao Yu

    2017-06-01

    Full Text Available Deoxynivalenol (DON belongs to the type B group of trichothecenes family, which is composed of sesquiterpenoid metabolites produced by Fusarium and other fungi in grain. DON may cause various toxicities, such as cytotoxicity, immunotoxicity, genotoxicity as well as teratogenicity and carcinogenicity. In the present study, we focus on a hypothesis that DON alters the expressions of Nrf2/HO-1 pathway by inducing embryotoxicity in C57BL/6 mouse (5.0, 2.5, 1.0, and 0 mg/kg/day and BeWo cell lines (0 and 50 nM; 3 h, 12 h and 24 h. Our results indicate that DON treatment in mice during pregnancy leads to ROS accumulation in the placenta, which results in embryotoxicity. At the same time Nrf2/HO-1 pathway is up-regulated by ROS to protect placenta cells from oxidative damage. In DON-treated BeWo cells, the level of ROS has time–effect and dose–effect relationships with HO-1 expression. Moderate increase in HO-1 protects the cell from oxidative damage, while excessive increase in HO-1 aggravates the oxidative damage, which is called in some studies the “threshold effect”. Therefore, oxidative stress may be the critical molecular mechanism for DON-induced embryotoxicity. Besides, Nrf2/HO-1 pathway accompanied by the “threshold effect” also plays an important role against DON-induced oxidative damage in this process.

  12. Ketone body 3-hydroxybutyrate mimics calorie restriction via the Nrf2 activator, fumarate, in the retina.

    Science.gov (United States)

    Izuta, Yusuke; Imada, Toshihiro; Hisamura, Ryuji; Oonishi, Erina; Nakamura, Shigeru; Inagaki, Emi; Ito, Masataka; Soga, Tomoyoshi; Tsubota, Kazuo

    2018-02-01

    Calorie restriction (CR) being the most robust dietary intervention provides various health benefits. D-3-hydroxybutyrate (3HB), a major physiological ketone, has been proposed as an important endogenous molecule for CR. To investigate the role of 3HB in CR, we investigated potential shared mechanisms underlying increased retinal 3HB induced by CR and exogenously applied 3HB without CR to protect against ischemic retinal degeneration. The repeated elevation of retinal 3HB, with or without CR, suppressed retinal degeneration. Metabolomic analysis showed that the antioxidant pentose phosphate pathway and its limiting enzyme, glucose-6-phosphate dehydrogenase (G6PD), were concomitantly preserved. Importantly, the upregulation of nuclear factor erythroid 2 p45-related factor 2 (Nrf2), a regulator of G6PD, and elevation of the tricarboxylic acid cycle's Nrf2 activator, fumarate, were also shared. Together, our findings suggest that CR provides retinal antioxidative defense by 3HB through the antioxidant Nrf2 pathway via modification of a tricarboxylic acid cycle intermediate during 3HB metabolism. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. Effects of Glucagon-Like Peptide-1 on Oxidative Stress and Nrf2 Signaling

    Directory of Open Access Journals (Sweden)

    Yoon Sin Oh

    2017-12-01

    Full Text Available Oxidative cellular damage caused by free radicals is known to contribute to the pathogenesis of various diseases such as cancer, diabetes, and neurodegenerative diseases, as well as to aging. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2 and Kelch-like ECH-associated protein1 (Keap1 signaling pathways play an important role in preventing stresses including oxidative and inflammatory stresses. Nrf2 is a master regulator of cellular stress responses, induces the expression of antioxidant and detoxification enzymes, and protects against oxidative stress-induced cell damage. Glucagon-like peptide-1 (GLP-1 is an incretin hormone, which was originally found to increase insulin synthesis and secretion. It is now widely accepted that GLP-1 has multiple functions beyond glucose control in various tissues and organs including brain, kidney, and heart. GLP-1 and GLP-1 receptor agonists are known to be effective in many chronic diseases, including diabetes, via antioxidative mechanisms. In this review, we summarize the current knowledge regarding the role of GLP-1 in the protection against oxidative damage and the activation of the Nrf2 signaling pathway.

  14. The Role of Nrf2-Mediated Pathway in Cardiac Remodeling and Heart Failure

    Directory of Open Access Journals (Sweden)

    Shanshan Zhou

    2014-01-01

    Full Text Available Heart failure (HF is frequently the consequence of sustained, abnormal neurohormonal, and mechanical stress and remains a leading cause of death worldwide. The key pathophysiological process leading to HF is cardiac remodeling, a term referring to maladaptation to cardiac stress at the molecular, cellular, tissue, and organ levels. HF and many of the conditions that predispose one to HF are associated with oxidative stress. Increased generation of reactive oxygen species (ROS in the heart can directly lead to increased necrosis and apoptosis of cardiomyocytes which subsequently induce cardiac remodeling and dysfunction. Nuclear factor-erythroid-2- (NF-E2- related factor 2 (Nrf2 is a transcription factor that controls the basal and inducible expression of a battery of antioxidant genes and other cytoprotective phase II detoxifying enzymes that are ubiquitously expressed in the cardiovascular system. Emerging evidence has revealed that Nrf2 and its target genes are critical regulators of cardiovascular homeostasis via the suppression of oxidative stress, which is the key player in the development and progression of HF. The purpose of this review is to summarize evidence that activation of Nrf2 enhances endogenous antioxidant defenses and counteracts oxidative stress-associated cardiac remodeling and HF.

  15. A novel natural Nrf2 activator with PPARγ-agonist (monascin) attenuates the toxicity of methylglyoxal and hyperglycemia

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Chang, Yu-Ying [Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Hsu, Ya-Wen [SunWay Biotechnology Company, Taipei, Taiwan (China); Pan, Tzu-Ming, E-mail: tmpan@ntu.edu.tw [Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2013-11-01

    Methylglyoxal (MG) is a toxic-glucose metabolite and a major precursor of advanced glycation endproducts (AGEs). MG has been reported to result in inflammation by activating receptor for AGEs (RAGE). We recently found that Monascus-fermented metabolite monascin acts as a novel natural peroxisome proliferator-activated receptor-γ (PPARγ) agonist that improves insulin sensitivity. We investigated the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats treated with oral administration of monascin or rosiglitazone. Monascin (a novel PPARγ agonist) activated nuclear factor-erythroid 2-related factor 2 (Nrf2) and down-regulated hyperinsulinmia in oral glucose tolerance test (OGTT). Monascin was able to elevate glyoxalase-1 expression via activation of hepatic Nrf2, hence, resulting in MG metabolism to D-lactic acid and protected from AGEs production in MG-treated rats. Rosiglitazone did not activate Nrf2 nor glyoxalase expression to lower serum and hepatic AGEs levels. Monascin acts as a novel natural Nrf2 activator with PPARγ-agonist activity were confirmed by Nrf2 and PPARγ reporter assays in Hep G2 cells. These findings suggest that monascin acts as an anti-diabetic and anti-oxidative stress agent to a greater degree than rosiglitazone and thus may have therapeutic potential for the prevention of diabetes. - Highlights: • Monascin acts as a PPARgamma agonist. • Monascin activates Nrf2 and AMPK. • Monascin promotes MG metabolism into D-lactic acid. • Monascin attenuates inflammation and diabetes in vivo.

  16. Sulforaphane Induces Nrf2 and Protects Against CYP2E1-dependent Binge Alcohol –induced Liver Steatosis

    Science.gov (United States)

    Zhou, Richard; Lin, Jianjun; Wu, Defeng

    2013-01-01

    Background The mechanism(s) by which alcohol causes cell injury are still not clear but a major mechanism appears to be the role of lipid peroxidation and oxidative stress in alcohol toxicity. CYP2E1-generated ROS contributes to the ethanol-induced oxidant stress and inhibition of CYP2E1 activity decreases ethanol-induced fatty liver. The transcription factor Nrf2 regulates the expression of many cytoprotective enzymes which results in cellular protection against a variety of toxins. Method The current study was designed to evaluate the ability of sulforaphane, an activator of Nrf2, to blunt CYP2E1-dependent, ethanol-induced steatosis in vivo and in vitro. Results The sulforaphane treatment activated Nrf2, increased levels of the Nrf2 target heme oxygenase -1 and subsequently lowered oxidant stress as shown by the decline in lipid peroxidation and 3-Nitrotyrosine protein adducts and an increase in GSH levels after the acute ethanol treatment. It decreased ethanol-elevated liver levels of triglycerides and cholesterol and Oil Red O staining. Similar results were found in vitro as addition of sulforaphane to HepG2 E47 cells, which express CYP2E1, elevated Nrf2 levels and decreased the accumulation of lipid in cells cultured with ethanol. Sulforaphane treatment had no effect on levels of or activity of CYP2E1. Conclusions Sulforaphane proved to be an effective in vivo inhibitor of acute ethanol–induced fatty liver in mice. General significance The possible amelioration of liver injury which occurs under these conditions by chemical activators of Nrf2 is of clinical relevance and worthy of further study. PMID:24060752

  17. Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis.

    Science.gov (United States)

    Zhou, Richard; Lin, Jianjun; Wu, Defeng

    2014-01-01

    The mechanism(s) by which alcohol causes cell injury are still not clear but a major mechanism appears to be the role of lipid peroxidation and oxidative stress in alcohol toxicity. CYP2E1-generated ROS contributes to the ethanol-induced oxidant stress and inhibition of CYP2E1 activity decreases ethanol-induced fatty liver. The transcription factor Nrf2 regulates the expression of many cytoprotective enzymes which results in cellular protection against a variety of toxins. The current study was designed to evaluate the ability of sulforaphane, an activator of Nrf2, to blunt CYP2E1-dependent, ethanol-induced steatosis in vivo and in vitro. The sulforaphane treatment activated Nrf2, increased levels of the Nrf2 target heme oxygenase-1 and subsequently lowered oxidant stress as shown by the decline in lipid peroxidation and 3-nitrotyrosine protein adducts and an increase in GSH levels after the acute ethanol treatment. It decreased ethanol-elevated liver levels of triglycerides and cholesterol and Oil Red O staining. Similar results were found in vitro as addition of sulforaphane to HepG2 E47 cells, which express CYP2E1, elevated Nrf2 levels and decreased the accumulation of lipid in cells cultured with ethanol. Sulforaphane treatment had no effect on levels of or activity of CYP2E1. Sulforaphane proved to be an effective in vivo inhibitor of acute ethanol-induced fatty liver in mice. The possible amelioration of liver injury which occurs under these conditions by chemical activators of Nrf2 is of clinical relevance and worthy of further study. © 2013.

  18. CD36 Upregulation Mediated by Intranasal LV-NRF2 Treatment Mitigates Hypoxia-Induced Progression of Alzheimer's-Like Pathogenesis

    Science.gov (United States)

    Wang, Chun-Yan; Xie, Jing-Wei; Cai, Jian-Hui; Wang, Tao; Xu, Ye; Wang, Xu

    2014-01-01

    Abstract Aims: There is extensive evidence that oxidative stress induces cellular dysfunction in the brain and plays a critical role in Alzheimer's disease (AD) pathogenesis. Hypoxia increases factors involved in oxidative stress injury and contributes to the onset and progression of AD. Nuclear factor erythroid 2-related factor 2 (NRF2), a major component regulating antioxidant response, is attenuated in the AD brain. Importantly, NRF2 directly regulates the alternative first exons of CD36, an important participant in oxidative and inflammatory processes. To explore the effects of hypoxia-induced deterioration of AD-like pathogenesis and investigate the correlation between hypoxia-induced NRF2 signal alterations and CD36 expression, we examined the NRF2 signaling, CD36, and oxidative stress events in hypoxia-treated APPswe/PSEN1dE9 (APP/PS1) mice brain. Results: We observed that hypoxia treatment increased oxidative stress, exacerbated inflammation, and aggravated learning defects in aged APP/PS1 mice. Microglia from hypoxia-treated mice brain exhibited marked reduction in CD36 expression and inhibition of β-amyloid (Aβ) degradation. Accordingly, hypoxia treatment caused a decrease in transactivation of NRF2 target genes in the aging mouse brain. Intranasal administration with a lentiviral vector encoding human NRF2 increased CD36 expression, ameliorated the weak antioxidant response triggered by hypoxia, diminished Aβ deposition, and improved spatial memory defects. Innovation: In this study, we demonstrated for the first time that NRF2 intranasal treatment-induced increases of CD36 could enhance Aβ clearance in AD transgenic mouse. Conclusion: These results suggest that targeting NRF2-mediated CD36 expression might provide a beneficial intervention for cognitive impairment and oxidative stress in AD progression. Antioxid. Redox Signal. 21, 2208–2230. PMID:24702189

  19. Penehyclidine Hydrochloride Pretreatment Ameliorates Rhabdomyolysis-Induced AKI by Activating the Nrf2/HO-1 Pathway and Alleviating [corrected] Endoplasmic Reticulum Stress in Rats. The.

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    Full Text Available Acute kidney injury (AKI is one of the most severe complications of rhabdomyolysis (RM. The underlying mechanisms and potential preventions need to be investigated. Penehyclidine hydrochloride (PHC was reported to ameliorate renal ischemia-reperfusion injury, but the effect of PHC on RM-reduced AKI is unknown. In this study, we established a rat model of RM-induced AKI using an intramuscular glycerol injection in the hind limbs. Rats were pretreated with PHC before the glycerol injection, and the heme oxygenase-1 (HO-1 inhibitor ZnPP was introduced to evaluate the effect of HO-1 on RM-induced AKI. PHC pretreatment ameliorated the pathological renal injury and renal dysfunction, and decreased the renal apoptosis rate in RM-induced AKI. PHC significantly up-regulated HO-1 expression, increased HO-1 enzymatic activity and decreased the accumulation of myoglobin in renal tissues. This effect was partly inhibited by ZnPP. PHC pretreatment also effectively up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2 and down-regulated glucose regulated protein 78 (GRP78 and caspase-12 at both the gene and protein levels. These results suggest that the protective effects of PHC pretreatment on RM-induced AKI occur at least in part through activating the Nrf2/HO-1 pathway and alleviating endoplasmic reticulum stress (ERS in rat renal tissues.

  20. Penehyclidine Hydrochloride Pretreatment Ameliorates Rhabdomyolysis-Induced AKI by Activating the Nrf2/HO-1 Pathway and Allevi-ating Endoplasmic Reticulum Stress in Rats

    Science.gov (United States)

    Zhao, Wei; Huang, XuDong; Zhang, LiXia; Yang, XinJun; Wang, LiHui; Chen, YunShuang; Wang, JingHua; Wu, GuangLi

    2016-01-01

    Acute kidney injury (AKI) is one of the most severe complications of rhabdomyolysis (RM). The underlying mechanisms and potential preventions need to be investigated. Penehyclidine hydrochloride (PHC) was reported to ameliorate renal ischemia-reperfusion injury, but the effect of PHC on RM-reduced AKI is unknown. In this study, we established a rat model of RM-induced AKI using an intramuscular glycerol injection in the hind limbs. Rats were pretreated with PHC before the glycerol injection, and the heme oxygenase-1 (HO-1) inhibitor ZnPP was introduced to evaluate the effect of HO-1 on RM-induced AKI. PHC pretreatment ameliorated the pathological renal injury and renal dysfunction, and decreased the renal apoptosis rate in RM-induced AKI. PHC significantly up-regulated HO-1 expression, increased HO-1 enzymatic activity and decreased the accumulation of myoglobin in renal tissues. This effect was partly inhibited by ZnPP. PHC pretreatment also effectively up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2) and down-regulated glucose regulated protein 78 (GRP78) and caspase-12 at both the gene and protein levels. These results suggest that the protective effects of PHC pretreatment on RM-induced AKI occur at least in part through activating the Nrf2/HO-1 pathway and alleviating endoplasmic reticulum stress (ERS) in rat renal tissues. PMID:26987113

  1. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV☆

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D.; Wondrak, Georg T.

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  2. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV.

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D; Wondrak, Georg T

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm(2) UVB; 1.53 J/cm(2) UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  3. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV

    Directory of Open Access Journals (Sweden)

    Shasha Tao

    2013-01-01

    Full Text Available Exposure to solar ultraviolet (UV radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2, a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I, dihydrotanshinone (DHT, tanshinone IIA (T-II-A and cryptotanshinone (CT] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1 with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA. The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities was significantly attenuated in DHT

  4. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner

    Science.gov (United States)

    Pellegrini, Gretel G.; Morales, Cynthya C.; Wallace, Taylor C.; Plotkin, Lilian I.; Bellido, Teresita

    2016-01-01

    Oats contain unique bioactive compounds known as avenanthramides (AVAs) with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin) in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT) and Nrf2 Knockout (KO) osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast apoptosis; further

  5. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner

    Directory of Open Access Journals (Sweden)

    Gretel G. Pellegrini

    2016-07-01

    Full Text Available Oats contain unique bioactive compounds known as avenanthramides (AVAs with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT and Nrf2 Knockout (KO osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast

  6. The PTEN/NRF2 Axis Promotes Human Carcinogenesis

    DEFF Research Database (Denmark)

    Rojo, Ana I; Rada, Patricia; Mendiola, Marta

    2014-01-01

    UNLABELLED: Abstract Aims: A recent study conducted in mice reported that liver-specific knockout of tumor suppressor Pten augments nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcriptional activity. Here, we further investigated how phosphatase and tensin homolog deleted on chromosome 1...

  7. Fumaric acid esters stimulate astrocytic VEGF expression through HIF-1α and Nrf2.

    Directory of Open Access Journals (Sweden)

    Diana Wiesner

    Full Text Available Fumaric acid esters (FAE are oral analogs of fumarate that have recently been shown to decrease relapse rate and disease progression in multiple sclerosis (MS, prompting to investigate their protective potential in other neurological diseases such as amyotrophic lateral sclerosis (ALS. Despite efficacy in MS, mechanisms of action of FAEs are still largely unknown. FAEs are known to activate the transcription factor Nrf2 and downstream anti-oxidant responses through the succination of Nrf2 inhibitor KEAP1. However, fumarate is also a known inhibitor of prolyl-hydroxylases domain enzymes (PhD, and PhD inhibition might lead to stabilization of the HIF-1α transcription factor under normoxic conditions and subsequent activation of a pseudo hypoxic response. Whether Nrf2 activation is associated with HIF-1α stabilization in response to FAEs in cell types relevant to MS or ALS remains unknown. Here, we show that FAEs elicit HIF-1α accumulation, and VEGF release as its expected consequence, in astrocytes but not in other cell types of the central nervous system. Reporter assays demonstrated that increased astrocytic VEGF release in response to FAEs was dependent upon both HIF-1α and Nrf2 activation. Last, astrocytes of transgenic mice expressing SOD1(G93A, an animal model of ALS, displayed reduced VEGF release in response to FAEs. These studies show that FAEs elicit different signaling pathways in cell types from the central nervous system, in particular a pseudo-hypoxic response in astrocytes. Disease relevant mutations might affect this response.

  8. Interplay between HSP90 and Nrf2 pathways in diabetes-associated atherosclerosis.

    Science.gov (United States)

    Lazaro, Iolanda; Oguiza, Ainhoa; Recio, Carlota; Lopez-Sanz, Laura; Bernal, Susana; Egido, Jesus; Gomez-Guerrero, Carmen

    Oxidative stress and inflammation are determinant processes in the development of diabetic vascular complications. Heat shock protein 90 (HSP90) overexpression in atherosclerotic plaques plays a role in sustaining inflammatory mechanisms, and its specific inhibition prevents atherosclerosis. The present work investigates, in a mouse model of diabetes-driven atherosclerosis, whether atheroprotection by pharmacological HSP90 inhibition is accomplished by bolstering antioxidant defense mechanisms headed by nuclear factor erythroid-derived 2-like 2 (Nrf2). Streptozotocin-induced diabetic apolipoprotein E-deficient mice were randomized to receive vehicle or HSP90 inhibitor (17-dimethylaminoethylamino-17-demethoxygeldanamycin, 4mg/kg) for 10 weeks. Aortic root sections were analyzed for plaque size and composition, transcription factor activity, and expression of inflammatory and antioxidant markers. In vitro studies were performed in murine macrophages cultured under hyperglycemic conditions. Treatment with HSP90 inhibitor promoted the activation of Nrf2 in the aortic tissue of diabetic mice (predominantly localized in macrophages and smooth muscle cells) and also in cultured cells. Nrf2 induction was associated with a concomitant inhibition of nuclear factor-κB (NF-κB) in atherosclerotic plaques, thus resulting in a significant reduction in lesion size and inflammatory component (leukocytes and cytokines). Furthermore, atheroprotection by HSP90 inhibition was linked to the induction of cytoprotective HSP70, antioxidant enzymes (heme oxygenase-1, superoxide dismutase and catalase) and autophagy machinery (LC3 and p62/SQSTM1) in aortic tissue. HSP90 inhibition protects from atherosclerosis in experimental diabetes through the induction of Nrf2-dependent cytoprotective mechanisms, reinforcing its therapeutic potential. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Kate E. Hawkins

    2016-03-01

    Full Text Available The potential of induced pluripotent stem cells (iPSCs in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation.

  10. Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice.

    Science.gov (United States)

    Freitas, Andiara E; Egea, Javier; Buendia, Izaskun; Gómez-Rangel, Vanessa; Parada, Esther; Navarro, Elisa; Casas, Ana Isabel; Wojnicz, Aneta; Ortiz, José Avendaño; Cuadrado, Antonio; Ruiz-Nuño, Ana; Rodrigues, Ana Lúcia S; Lopez, Manuela G

    2016-07-01

    Agmatine, an endogenous neuromodulator, is a potential candidate to constitute an adjuvant/monotherapy for the management of depression. A recent study by our group demonstrated that agmatine induces Nrf2 and protects against corticosterone effects in a hippocampal neuronal cell line. The present study is an extension of this previous study by assessing the antidepressant-like effect of agmatine in an animal model of depression induced by corticosterone in mice. Swiss mice were treated simultaneously with agmatine or imipramine at a dose of 0.1 mg/kg/day (p.o.) and corticosterone for 21 days and the daily administrations of experimental drugs were given immediately prior to corticosterone (20 mg/kg/day, p.o.) administrations. Wild-type C57BL/6 mice (Nrf2 (+/+)) and Nrf2 KO (Nrf2 (-/-)) were treated during 21 days with agmatine (0.1 mg/kg/day, p.o.) or vehicle. Twenty-four hours after the last treatments, the behavioral tests and biochemical assays were performed. Agmatine treatment for 21 days was able to abolish the corticosterone-induced depressive-like behavior and the alterations in the immunocontent of mature BDNF and synaptotagmin I, and in the serotonin and glutamate levels. Agmatine also abolished the corticosterone-induced changes in the morphology of astrocytes and microglia in CA1 region of hippocampus. In addition, agmatine treatment in control mice increased noradrenaline, serotonin, and dopamine levels, CREB phosphorylation, mature BDNF and synaptotagmin I immunocontents, and reduced pro-BDNF immunocontent in the hippocampus. Agmatine's ability to produce an antidepressant-like effect was abolished in Nrf2 (-/-) mice. The present results reinforce the participation of Nrf2 in the antidepressant-like effect produced by agmatine and expand literature data concerning its mechanisms of action.

  11. The Biofunctions of Phytochemicals and Their Applications in Farm Animals: The Nrf2/Keap1 System as a Target

    Directory of Open Access Journals (Sweden)

    Si Qin

    2017-10-01

    Full Text Available Reactive oxygen species (ROS can be caused by mechanical, thermal, infectious, and chemical stimuli, and their negative effects on the health of humans and other animals are of considerable concern. The nuclear factor (erythroid-derived 2-like 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1 system plays a major role in maintaining the balance between the production and elimination of ROS via the regulation of a series of detoxifying and antioxidant enzyme gene expressions by means of the antioxidant response element (ARE. Dietary phytochemicals, which are generally found in vegetables, fruits, grains, and herbs, have been reported to have health benefits and to improve the growth performance and meat quality of farm animals through the regulation of Nrf2-mediated phase II enzymes in a variety of ways. However, the enormous quantity of somewhat chaotic data that is available on the effects of phytochemicals needs to be properly classified according to the functions or mechanisms of phytochemicals. In this review, we first introduce the antioxidant properties of phytochemicals and their relation to the Nrf2/Keap1 system. We then summarize the effects of phytochemicals on the growth performance, meat quality, and intestinal microbiota of farm animals via targeting the Nrf2/Keap1 system. These exhaustive data contribute to better illuminate the underlying biofunctional properties of phytochemicals in farm animals.

  12. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway.

    Science.gov (United States)

    Saw, Constance Lay Lay; Guo, Yue; Yang, Anne Yuqing; Paredes-Gonzalez, Ximena; Ramirez, Christina; Pung, Douglas; Kong, Ah-Ng Tony

    2014-10-01

    Quercetin, kaempferol, and pterostilbene are abundant in berries. The anti-oxidative properties of these constituents may contribute to cancer chemoprevention. However, their precise mechanisms of action and their combinatorial effects are not completely understood. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates anti-oxidative stress enzymes and Phase II drug metabolizing/detoxifying enzymes by binding to antioxidant response element (ARE). This study aimed to investigate the anti-oxidative stress activities of quercetin, kaempferol, and pterostilbene individually and in combination, as well as the involvement of the Nrf2-ARE signaling pathway. Quercetin, kaempferol, and pterostilbene all exhibited strong free-radical scavenging activity in the DPPH assay. The MTS assay revealed that low concentration combinations we tested were relatively non-toxic to HepG2-C8 cells. The results of the DCFH-DA assay and combination index (CI) indicated that quercetin, kaempferol, and pterostilbene attenuated intracellular reactive oxygen species (ROS) levels when pretreated individually and had synergistic effects when used in combination. In addition, the combination treatment significantly induced ARE and increased the mRNA and protein expression of Nrf2-regulated genes. Collectively, our study demonstrated that the berry constituents quercetin, kaempferol, and pterostilbene activated the Nrf2-ARE signaling pathway and exhibited synergistic anti-oxidative stress activity at appropriate concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages

    International Nuclear Information System (INIS)

    Gu, Da-min; Lu, Pei-Hua; Zhang, Ke; Wang, Xiang; Sun, Min; Chen, Guo-Qian; Wang, Qiong

    2015-01-01

    In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 through lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling. - Highlights: • Pre-treatment of astragaloside IV (AS-IV) protects murine cortical neurons from OGD/R. • AS-IV activates Nrf2-ARE signaling in murine cortical neurons. • Nrf2 is required for AS-IV-mediated anti-oxidant and neuroprotective activities. • AS-IV stimulates HB-EGF release to trans-activate EGFR in murine cortical neurons. • EGFR mediates AS-IV-induced Nrf2 activation and neuroprotection against OGD/R

  14. EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Da-min [Department of Anesthesiology, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Lu, Pei-Hua, E-mail: lphty1_1@163.com [Department of Medical Oncology, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China); Zhang, Ke; Wang, Xiang [Department of Anesthesiology, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Sun, Min [Department of General Surgery, Affiliated Yixing People' s Hospital, Jiangsu University, Yixing (China); Chen, Guo-Qian [Department of Clinical Laboratory, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China); Wang, Qiong, E-mail: WangQiongprof1@126.com [Department of Clinical Laboratory, Wuxi People' s Hospital Affiliated to Nanjing Medical University, Wuxi (China)

    2015-02-13

    In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 through lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling. - Highlights: • Pre-treatment of astragaloside IV (AS-IV) protects murine cortical neurons from OGD/R. • AS-IV activates Nrf2-ARE signaling in murine cortical neurons. • Nrf2 is required for AS-IV-mediated anti-oxidant and neuroprotective activities. • AS-IV stimulates HB-EGF release to trans-activate EGFR in murine cortical neurons. • EGFR mediates AS-IV-induced Nrf2 activation and neuroprotection against OGD/R.

  15. Induction of cancer chemopreventive enzymes by coffee is mediated by transcription factor Nrf2. Evidence that the coffee-specific diterpenes cafestol and kahweol confer protection against acrolein

    International Nuclear Information System (INIS)

    Higgins, Larry G.; Cavin, Christophe; Itoh, Ken; Yamamoto, Masayuki; Hayes, John D.

    2008-01-01

    Mice fed diets containing 3% or 6% coffee for 5 days had increased levels of mRNA for NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione S-transferase class Alpha 1 (GSTA1) of between 4- and 20-fold in the liver and small intestine. Mice fed 6% coffee also had increased amounts of mRNA for UDP-glucuronosyl transferase 1A6 (UGT1A6) and the glutamate cysteine ligase catalytic (GCLC) subunit of between 3- and 10-fold in the small intestine. Up-regulation of these mRNAs was significantly greater in mice possessing Nrf2 (NF-E2 p45 subunit-related factor 2) than those lacking the transcription factor. Basal levels of mRNAs for NQO1, GSTA1, UGT1A6 and GCLC were lower in tissues from nrf2 -/- mice than from nrf2 +/+ mice, but modest induction occurred in the mutant animals. Treatment of mouse embryonic fibroblasts (MEFs) from nrf2 +/+ mice with either coffee or the coffee-specific diterpenes cafestol and kahweol (C + K) increased NQO1 mRNA up to 9-fold. MEFs from nrf2 -/- mice expressed less NQO1 mRNA than did wild-type MEFs, but NQO1 was induced modestly by coffee or C + K in the mutant fibroblasts. Transfection of MEFs with nqo1-luciferase reporter constructs showed that induction by C + K was mediated primarily by Nrf2 and required the presence of an antioxidant response element in the 5'-upstream region of the gene. Luciferase reporter activity did not increase following treatment of MEFs with 100 μmol/l furan, suggesting that this ring structure within C + K is insufficient for gene induction. Priming of nrf2 +/+ MEFs, but not nrf2 -/- MEFs, with C + K conferred 2-fold resistance towards acrolein

  16. Panaxatriol Saponins Attenuated Oxygen-Glucose Deprivation Injury in PC12 Cells via Activation of PI3K/Akt and Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yongliang Huang

    2014-01-01

    Full Text Available Panaxatriol saponins (PTS, the main components extracted from Panax notoginseng, have been shown to be efficacious in the prevention and treatment of cerebrovascular diseases in China. NF-E2-related factor 2 (Nrf2, a transcription factor regulating antioxidant and cytoprotective responses to oxidative stress, has received particular attention as a molecular target for pharmacological intervention of ischemic diseases. The aim of this study was to characterize the effect of PTS on the activation of Nrf2 signaling pathway and the potential role in its protective effect. We found that PTS induced heme oxygenase-1 (HO-1 expression in PC12 cells via activating Nrf2 signaling pathway. Phosphatidylinositol 3-kinase (PI3K/Akt kinase was involved in the upstream of this PTS activated pathway. Moreover, combination of the main components in PTS significantly enhanced the expression of Nrf2 mediated phase II enzymes. Importantly, the protective effect of PTS against oxygen-glucose deprivation-reperfusion (OGD-Rep induced cell death was significantly attenuated by PI3K inhibitor and antioxidant response element (ARE decoy oligonucleotides, suggesting that both PI3K/Akt and Nrf2 signaling pathway are essential during this protective process. Taken together, our results suggest that PTS may activate endogenous cytoprotective mechanism against OGD-Rep induced oxidative injury via the activation of PI3K/Akt and Nrf2 signaling pathway.

  17. Induction of the pi class of glutathione S-transferase by carnosic acid in rat Clone 9 cells via the p38/Nrf2 pathway.

    Science.gov (United States)

    Lin, Chia-Yuan; Wu, Chi-Rei; Chang, Shu-Wei; Wang, Yu-Jung; Wu, Jia-Jiuan; Tsai, Chia-Wen

    2015-06-01

    Induction of phase II enzymes is important in cancer chemoprevention. We compared the effect of rosemary diterpenes on the expression of the pi class of glutathione S-transferase (GSTP) in rat liver Clone 9 cells and the signaling pathways involved. Culturing cells with 1, 5, 10, or 20 μM carnosic acid (CA) or carnosol (CS) for 24 h in a dose-dependent manner increased the GSTP expression. CA was more potent than CS. The RNA level and the enzyme activity of GSTP were also enhanced by CA treatment. Treatment with 10 μM CA highly induced the reporter activity of the enhancer element GPEI. Furthermore, CA markedly increased the translocation of nuclear factor erythroid-2 related factor 2 (Nrf2) from the cytosol to the nucleus after 30 to 60 min. CA the stimulated the protein induction of p38, nuclear Nrf2, and GSTP was diminished in the presence of SB203580 (a p38 inhibitor). In addition, SB203580 pretreatment or silencing of Nrf2 by siRNA suppressed the CA-induced GPEI-DNA binding activity and GSTP protein expression. Knockdown of p38 or Nrf2 by siRNA abolished the activation of p38 and Nrf2 as well as the protein induction and enzyme activity of GSTP by CA. These results suggest that CA up-regulates the expression and enzyme activity of GSTP via the p38/Nrf2/GPEI pathway.

  18. Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production.

    Science.gov (United States)

    Wang, Yang; Wu, Yanping; Wang, Yibing; Fu, Aikun; Gong, Li; Li, Weifen; Li, Yali

    2017-04-01

    Oxidative stress (OS) plays a major role in the gastrointestinal disorders. Although probiotics were reported to repress OS, few researches compared the antioxidant ability of different Bacillus strains and deciphered the mechanisms. To select a Bacillus strain with higher antioxidant capacity, we used H 2 O 2 to induce intestinal porcine epithelial cell 1 (IPEC-1) OS model. The most suitable H 2 O 2 concentration and incubation time were determined by the half lethal dose and methyl thiazolyl tetrazolium. Correlation analysis was performed to choose a sensitive indicator for OS. As for the comparison of Bacillus, cells were divided into control, Bacillus treatment, H 2 O 2 treatment, and Bacillus pre-protection + H 2 O 2 treatment. Bacillus were co-cultured with IPEC-1 for 3 h in Bacillus and Bacillus pre-protection + H 2 O 2 treatments. Then, based on OS model, 300 μmol/L H 2 O 2 was added into medium of H 2 O 2 and Bacillus pre-protection + H 2 O 2 treatments for another 12 h. Antioxidant and apoptosis gene expressions were detected to screen the target strain. Nuclear factor erythroid-derived 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein1 (Keap1) pathway, reactive oxygen species (ROS) production, mitochondrial membrane potential (Δψm), apoptosis, and necrosis were analyzed. Results revealed that heme oxygenase-1 (HO-1) gene expression had a positive correlation with H 2 O 2 induction. Moreover, Bacillus amyloliquefaciens SC06 (SC06)-meditated IPEC-1 showed the best antioxidant capacity though modulating Nrf2 phosphorylation. Δψm was elevated, while ROS generation was reduced with SC06 pre-protection, resulting in decreased apoptosis and necrosis. Altogether, HO-1 expression could be regarded as an OS indicator. The regulation of Nrf2/Keap1 pathway and ROS production by SC06 are involved in alleviating OS of IPEC-1.

  19. Cordyceps sinensis increases hypoxia tolerance by inducing heme oxygenase-1 and metallothionein via Nrf2 activation in human lung epithelial cells.

    Science.gov (United States)

    Singh, Mrinalini; Tulsawani, Rajkumar; Koganti, Praveen; Chauhan, Amitabh; Manickam, Manimaran; Misra, Kshipra

    2013-01-01

    Cordyceps sinensis, an edible mushroom growing in Himalayan regions, is widely recognized in traditional system of medicine. In the present study, we report the efficacy of Cordyceps sinensis in facilitating tolerance to hypoxia using A549 cell line as a model system. Treatment with aqueous extract of Cordyceps sinensis appreciably attenuated hypoxia induced ROS generation, oxidation of lipids and proteins and maintained antioxidant status similar to that of controls via induction of antioxidant gene HO1 (heme oxygenase-1), MT (metallothionein) and Nrf2 (nuclear factor erythroid-derived 2-like 2). In contrast, lower level of NF κ B (nuclear factor kappaB) and tumor necrosis factor- α observed which might be due to higher levels of HO1, MT and transforming growth factor- β . Further, increase in HIF1 (hypoxia inducible factor-1) and its regulated genes; erythropoietin, vascular endothelial growth factor, and glucose transporter-1 was observed. Interestingly, Cordyceps sinensis treatment under normoxia did not regulate the expression HIF1, NF κ B and their regulated genes evidencing that Cordyceps sinensis per se did not have an effect on these transcription factors. Overall, Cordyceps sinensis treatment inhibited hypoxia induced oxidative stress by maintaining higher cellular Nrf2, HIF1 and lowering NF κ B levels. These findings provide a basis for possible use of Cordyceps sinensis in tolerating hypoxia.

  20. CKIP-1 affects the polyubiquitination of Nrf2 and Keap1 via mediating Smurf1 to resist HG-induced renal fibrosis in GMCs and diabetic mice kidneys.

    Science.gov (United States)

    Gong, Wenyan; Chen, Zhiquan; Zou, Yezi; Zhang, Lei; Huang, Junying; Liu, Peiqing; Huang, Heqing

    2018-02-01

    Our previous study indicated that Casein kinase 2 interacting protein-1 (CKIP-1) could promote the activation of the nuclear factor E2-related factor 2 (Nrf2)/ antioxidant response element (ARE) pathway, playing a significant role in inhibiting the fibrosis of diabetic nephropathy (DN). However, the underlying mechanism is still unknown. Here, we investigated whether CKIP-1 affects the polyubiquitination of Nrf2 and its cytosolic inhibitor kelch like ECH-associated protein 1 (Keap1) via mediating Smad ubiquitylation regulatory factor-1 (Smurf1) to promote the activation of the Nrf2/ARE signaling and resist high glucose (HG)-induced renal fibrosis in glomerular mesangial cells (GMCs) and diabetic mice kidneys. Results showed that the expression of Smurf1 increased in HG-induced GMCs, with a paramount upregulation at 1h. Overexpression of wild-type Smurf1 plasmid further promoted the HG-induced the over-production of fibronectin (FN) and intercellular adhesionmolecule-1 (ICAM-1), and depletion of Smurf1 dramatically reduced the expression of FN and ICAM-1. Overexpression of CKIP-1 decreased the K48-linked polyubiquitination and increased the K63-linked polyubiquitination of Nrf2 as well as enhanced the K48-linked polyubiquitination and reduced K63-linked polyubiquitination of Keap1, promoting the activation of the Nrf2/ARE pathway. Overexpression of Smurf1 increased the K48-linked polyubiquitination and decreased the K63-linked polyubiquitination of Nrf2, and down-regulated the K48-linked polyubiquitination and up-regulated the K63-linked polyubiquitination of Keap1, inhibiting the activation of the Nrf2/ARE pathway. CKIP-1 promoted the degradation of Smurf1 by increasing the ubiquitination of Smurf1. Treatment of CKIP-1 adenovirus infection reduced the Smurf1 levels, promoted the activation of the Nrf2/ARE pathway as well as suppressed the production of reactive oxygen species (ROS), and then improved the failure of renal function of diabetic mice. Experiments above

  1. Methionine sulfoxide reductase B3 deficiency stimulates heme oxygenase-1 expression via ROS-dependent and Nrf2 activation pathways

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Geun-Hee; Kim, Ki Young; Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr

    2016-05-13

    Methionine sulfoxide reductase B3 (MsrB3), which is primarily found in the endoplasmic reticulum (ER), is an important protein repair enzyme that stereospecifically reduces methionine-R-sulfoxide residues. We previously found that MsrB3 deficiency arrests the cell cycle at the G{sub 1}/S stage through up-regulation of p21 and p27. In this study, we report a critical role of MsrB3 in gene expression of heme oxygenase-1 (HO-1), which has an anti-proliferative effect associated with p21 up-regulation. Depletion of MsrB3 elevated HO-1 expression in mammalian cells, whereas MsrB3 overexpression had no effect. MsrB3 deficiency increased cellular reactive oxygen species (ROS), particularly in the mitochondria. ER stress, which is associated with up-regulation of HO-1, was also induced by depletion of MsrB3. Treatment with N-acetylcysteine as an ROS scavenger reduced augmented HO-1 levels in MsrB3-depleted cells. MsrB3 deficiency activated Nrf2 transcription factor by enhancing its expression and nuclear import. The activation of Nrf2 induced by MsrB3 depletion was confirmed by increased expression levels of its other target genes, such as γ-glutamylcysteine ligase. Taken together, these data suggest that MsrB3 attenuates HO-1 induction by inhibiting ROS production, ER stress, and Nrf2 activation. -- Highlights: •MsrB3 depletion induces HO-1 expression. •MsrB3 deficiency increases cellular ROS and ER stress. •MsrB3 deficiency activates Nrf2 by increasing its expression and nuclear import. •MsrB3 attenuates HO-1 induction by inhibiting ROS production and Nrf2 activation.

  2. Sulforaphane inhibits multiple inflammasomes through an Nrf2-independent mechanism.

    Science.gov (United States)

    Greaney, Allison J; Maier, Nolan K; Leppla, Stephen H; Moayeri, Mahtab

    2016-01-01

    The inflammasomes are intracellular complexes that have an important role in cytosolic innate immune sensing and pathogen defense. Inflammasome sensors detect a diversity of intracellular microbial ligands and endogenous danger signals and activate caspase-1, thus initiating maturation and release of the proinflammatory cytokines interleukin-1β and interleukin-18. These events, although crucial to the innate immune response, have also been linked to the pathology of several inflammatory and autoimmune disorders. The natural isothiocyanate sulforaphane, present in broccoli sprouts and available as a dietary supplement, has gained attention for its antioxidant, anti-inflammatory, and chemopreventive properties. We discovered that sulforaphane inhibits caspase-1 autoproteolytic activation and interleukin-1β maturation and secretion downstream of the nucleotide-binding oligomerization domain-like receptor leucine-rich repeat proteins NLRP1 and NLRP3, NLR family apoptosis inhibitory protein 5/NLR family caspase-1 recruitment domain-containing protein 4 (NAIP5/NLRC4), and absent in melanoma 2 (AIM2) inflammasome receptors. Sulforaphane does not inhibit the inflammasome by direct modification of active caspase-1 and its mechanism is not dependent on protein degradation by the proteasome or de novo protein synthesis. Furthermore, sulforaphane-mediated inhibition of the inflammasomes is independent of the transcription factor nuclear factor erythroid-derived 2-like factor 2 (Nrf2) and the antioxidant response-element pathway, to which many of the antioxidant and anti-inflammatory effects of sulforaphane have been attributed. Sulforaphane was also found to inhibit cell recruitment to the peritoneum and interleukin-1β secretion in an in vivo peritonitis model of acute gout and to reverse NLRP1-mediated murine resistance to Bacillus anthracis spore infection. These findings demonstrate that sulforaphane inhibits the inflammasomes through a novel mechanism and contributes to

  3. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway.

    Science.gov (United States)

    Yang, Wencheng; Yang, Yan; Yang, Jian-Yi; Liang, Ming; Song, Jiangtao

    2016-04-01

    The aim of the present study was to investigate the protective effect exerted by bone marrow mesenchymal stem cells (BMSCs) in combination with plumbagin on spinal cord injury (SCI) and explore the mechanism behind this protective effect. Firstly, BMSCs were extracted from male Sprague-Dawley rats, cultured in vitro, and identified by hematoxylin. Sprague-Dawley rats were then randomly divided into a control group, SCI model group, BMSC-treated group, a plumbagin-treated group, and a BMSC and plumbagin-treated group. After treatment with BMSCs combined with plumbagin, a Basso, Beattie and Bresnahan (BBB) test was carried out and the spinal cord water content was examined in order to analyze the effect of BMSCs combined with plumbagin on SCI. The myeloperoxidase (MPO), superoxide dismutase (SOD), malondialdehyde (MDA), nuclear factor-κB (NF-κB) p65 unit, tumor necrosis factor-α (TNF-α) levels were also detected. Moreover, nuclear factor erythroid 2‑related factor 2 (Nrf2), phosphoinositide 3-kinase (PI3K), phosphorylated (p-)Akt, p-p38 mitogen-activated protein kinase (MAPK), and p-extracellular-signal-regulated kinase (ERK) protein expression levels were measured using western blot analysis. Treatment with BMSCs combined with plumbagin significantly improved locomotor recovery and reduced the spinal cord water content after SCI. The increased MPO, MDA, NF-κB p65 and TNF-α levels were significantly suppressed and the decreased SOD was significantly increased in SCI rats. The suppression of Nrf2, p-Akt and p-ERK, as well as the promotion of p-p38 MAPK, were reversed by treatment with BMSCs combined with plumbagin. These effects suggest that treatment with BMSCs combined with plumbagin alleviates SCI through its effects on oxidative stress, inflammation, apoptotis and activation of the Nrf2 pathway.

  4. Ursodeoxycholic Acid Attenuates Acute Aortic Dissection Formation in Angiotensin II-Infused Apolipoprotein E-Deficient Mice Associated with Reduced ROS and Increased Nrf2 Levels

    Directory of Open Access Journals (Sweden)

    Wanjun Liu

    2016-03-01

    Full Text Available Background/Aims: Acute aortic dissection (AAD is characterized by excessive smooth muscle cell (SMC loss, extracellular matrix (ECM degradation and inflammation. In response to certain stimulations, oxidative stress is activated and regulates apoptosis and inflammation. Excessive apoptosis promotes aortic inflammation and degeneration, leading to AAD formation. This study aimed to clarify role of oxidative stress in the pathogenesis of AAD and whether the antioxidant ursodeoxycholic acid (UDCA attenuates AAD formation. Methods: Angiotensin II (Ang II was infused in 8-months male ApoE-/- mice for one week to establish a model of AAD. UDCA (10 mg/kg/day was administered via intragastric gavage for 3 consecutive days before AngII infusion and also during the AngII infusion for another consecutive 7 days. Results: Ang II-infusion resulted in the incidence of AAD at a rate of 35% (13/37 and UDCA markedly reduced the incidence of AAD to 16% (6/37, accompanied with reduced maximal aortic diameter measured at the suprarenal region of the abdominal aorta. Additionally, UDCA pretreatment prevented Ang II induced generations of reactive oxygen species (ROS and apoptosis of vascular smooth muscle cells (VSMCs both in vivo and in. vitro Mechanistically, we found UDCA markedly increased Nrf2 expression in VSMCs and prevented Ang II induced expression of NADPH subunits (p47, p67 and gp91 in Nrf2-dependent manner and rescued the activity of redox enzymes (Cu/Zn-SOD, Mn-SOD and CAT, thereby inhibiting apoptosis of VSMCs. Conclusion: These results demonstrate that UDCA prevented AAD formation by reducing apoptosis of VSMCs caused by oxidative stress in Nrf2 dependent manner and suggest that UDCA might have clinical potential to suppress AAD formation.

  5. Differential effect of covalent protein modification and glutathione depletion on the transcriptional response of Nrf2 and NF-kappaB.

    Science.gov (United States)

    Chia, Alvin J L; Goldring, Christopher E; Kitteringham, Neil R; Wong, Shi Quan; Morgan, Paul; Park, B Kevin

    2010-08-01

    Liver injury associated with exposure to therapeutic agents that undergo hepatic metabolism can involve the formation of reactive metabolites. These may cause redox perturbation which can result in oxidative stress as well as protein modification leading to activation or inhibition of cellular transcriptional responses. Nevertheless, the effects of these challenges on more than one transcriptional pathway simultaneously remain unclear. We have investigated two transcription factors known to be sensitive to electrophilic stress and redox perturbation, Nrf2 and NF-kappaB, in mouse liver cells. Cellular stress was induced by the probes: N-acetyl-p-benzoquinineimine (NAPQI), the reactive metabolite of acetaminophen; dinitrochlorobenzene (DNCB), a model electrophile; and buthionine (S,R)-sulfoximine (BSO), an inhibitor of glutamate-cysteine ligase. NAPQI, DNCB and BSO can all cause glutathione (GSH) depletion; however only NAPQI and DNCB can covalently bind proteins. We also employed RNAi to manipulate Keap1 (the inhibitor of Nrf2), Nrf2 itself and NF-kappaB-p65, to understand their roles in the response to drug stress. All three chemicals induced Nrf2, but NF-kappaB binding activity was only increased after BSO treatment. In fact, NF-kappaB binding activity decreased after exposure to NAPQI and DNCB. While RNAi depletion of Keap1 led to reduced toxicity following exposure to DNCB, depletion of Nrf2 and NF-kappaB augmented toxicity. Interestingly, increased Nrf2 caused by Keap1 depletion was reversed by co-depletion of NF-kappaB. We demonstrate that Keap1/Nrf2 and NF-kappaB respond differently to electrophiles that bind proteins covalently and the redox perturbation associated with glutathione depletion, and that crosstalk may enable NF-kappaB to partly influence Nrf2 expression during cellular stress. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  6. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice.

    Science.gov (United States)

    Mo, Chunfen; Wang, Ling; Zhang, Jie; Numazawa, Satoshi; Tang, Hong; Tang, Xiaoqiang; Han, Xiaojuan; Li, Junhong; Yang, Ming; Wang, Zhe; Wei, Dandan; Xiao, Hengyi

    2014-02-01

    The response of AMP-activated protein kinase (AMPK) to oxidative stress has been recently reported but the downstream signals of this response are largely unknown. Meanwhile, the upstream events for the activation of nuclear factor erythroid-2-related factor-2 (Nrf2), a critical transcriptional activator for antioxidative responses, remain unclear. In the present study, we investigated the relationship between AMPK and Nrf2 signal pathways in lipopolysaccharide (LPS)-triggered inflammatory system, in which berberine (BBR), a known AMPK activator, was used for inflammation suppression. In inflammatory macrophages, BBR attenuated LPS-induced expression of inflammatory genes (inducible nitric oxide synthase [iNOS], cyclooxygenase-2 [COX2], interleukin [IL]-6), and the generation of nitric oxide and reactive oxygen species, but increased the transcription of Nrf2-targeted antioxidative genes (NADPH quinone oxidoreductase-1 [NQO-1], heme oxygenase-1 [HO-1]), as well as the nuclear localization and phosphorylation of Nrf2 protein. Importantly, we found BBR-induced activation of Nrf2 is AMPK-dependent, as either pharmacologically or genetically inactivating AMPK blocked the activation of Nrf2. Consistent with in vitro experiments, BBR down-regulated the expression of proinflammatory genes but upregulated those of Nrf2-targeted genes in lungs of LPS-injected mice, and these effects were attenuated in Nrf2-deficient mice. Moreover, the effect of BBR on survival time extension and plasma redox regulation in endotoxin-shocked mice was largely weakened when Nrf2-depleted. Our results demonstrate convergence between AMPK and Nrf2 pathways and this intersection is essential for anti-inflammatory effect of BBR in LPS-stimulated macrophages and endotoxin-shocked mice. Uncovering this intersection is significant for understanding the relationship between energy homeostasis and antioxidative responses and may be beneficial for developing new therapeutic strategies against

  7. Lipoxin A4 Preconditioning Attenuates Intestinal Ischemia Reperfusion Injury through Keap1/Nrf2 Pathway in a Lipoxin A4 Receptor Independent Manner

    Directory of Open Access Journals (Sweden)

    Xue Han

    2016-01-01

    Full Text Available Oxidative stress plays a critical role in the pathogenesis of intestinal ischemia reperfusion (IIR injury. Enhancement in endogenous Lipoxin A4 (LXA4, a potent antioxidant and mediator, is associated with attenuation of IIR. However, the effects of LXA4 on IIR injury and the potential mechanisms are unknown. In a rat IIR (ischemia 45 minutes and subsequent reperfusion 6 hours model, IIR caused intestinal injury, evidenced by increased serum diamine oxidase, D-lactic acid, intestinal-type fatty acid-binding protein, and the oxidative stress marker 15-F2t-Isoprostane. LXA4 treatment significantly attenuated IIR injury by reducing mucosal 15-F2t-Isoprostane and elevating endogenous antioxidant superoxide dismutase activity, accompanied with Keap1/Nrf2 pathway activation. Meanwhile, LXA4 receptor antagonist Boc-2 reversed the protective effects of LXA4 on intestinal injury but failed to affect the oxidative stress and the related Nrf2 pathway. Furthermore, Nrf2 antagonist brusatol reversed the antioxidant effects conferred by LXA4 and led to exacerbation of intestinal epithelium cells oxidative stress and apoptosis, finally resulting in a decrease of survival rate of rat. Meanwhile, LXA4 pretreatment upregulated nuclear Nrf2 level and reduced hypoxia/reoxygenation-induced IEC-6 cell damage and Nrf2 siRNA reversed this protective effect of LXA4 in vitro. In conclusion, these findings suggest that LXA4 ameliorates IIR injury by activating Keap1/Nrf2 pathway in a LXA4 receptor independent manner.

  8. Green tea polyphenol (−)-epigallocatechin-3-gallate triggered hepatotoxicity in mice: Responses of major antioxidant enzymes and the Nrf2 rescue pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongxu; Wang, Yijun; Wan, Xiaochun [Key Laboratory of Tea Biochemistry & Biotechnology, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036 (China); Yang, Chung S. [Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Zhang, Jinsong, E-mail: zjs@ahau.edu.cn [Key Laboratory of Tea Biochemistry & Biotechnology, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036 (China)

    2015-02-15

    (−)-Epigallocatechin-3-gallate (EGCG), a constituent of green tea, has been suggested to have numerous health-promoting effects. On the other hand, high-dose EGCG is able to evoke hepatotoxicity. In the present study, we elucidated the responses of hepatic major antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2) rescue pathway to high-dose levels of EGCG in Kunming mice. At a non-lethal toxic dose (75 mg/kg, i.p.), repeated EGCG treatments markedly decreased the levels of superoxide dismutase, catalase, and glutathione peroxidase. As a rescue response, the nuclear distribution of Nrf2 was significantly increased; a battery of Nrf2-target genes, including heme oxygenase 1 (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and those involved in glutathione and thioredoxin systems, were all up-regulated. At the maximum tolerated dose (45 mg/kg, i.p.), repeated EGCG treatments did not disturb the major antioxidant defense. Among the above-mentioned genes, only HO1, NQO1, and GST genes were significantly but modestly up-regulated, suggesting a comprehensive and extensive activation of Nrf2-target genes principally occurs at toxic levels of EGCG. At a lethal dose (200 mg/kg, i.p.), a single EGCG treatment dramatically decreased not only the major antioxidant defense but also the Nrf2-target genes, demonstrating that toxic levels of EGCG are able to cause a biphasic response of Nrf2. Overall, the mechanism of EGCG-triggered hepatotoxicity involves suppression of major antioxidant enzymes, and the Nrf2 rescue pathway plays a vital role for counteracting EGCG toxicity. - Highlights: • EGCG at maximum tolerated dose does not disturb hepatic major antioxidant defense. • EGCG at maximum tolerated dose modestly upregulates hepatic Nrf2 target genes. • EGCG at toxic dose suppresses hepatic major antioxidant enzymes. • EGCG at non-lethal toxic dose pronouncedly activates hepatic Nrf2 rescue response. • EGCG at

  9. Curcumin Attenuates on Carbon Tetrachloride-Induced Acute Liver Injury in Mice via Modulation of the Nrf2/HO-1 and TGF-β1/Smad3 Pathway

    Directory of Open Access Journals (Sweden)

    Xinyan Peng

    2018-01-01

    Full Text Available This study aimed to investigate the protective effect of curcumin against carbon tetrachloride (CCl4-induced acute liver injury in a mouse model, and to explain the underlying mechanism. Curcumin at doses of 50, 100 and 200 mg/kg/day were administered orally once daily for seven days prior to CCl4 exposure. At 24 h, curcumin-attenuated CCl4 induced elevated serum transaminase activities and histopathological damage in the mouse’s liver. Curcumin pre-treatment at 50, 100 and 200 mg/kg significantly ameliorated CCl4-induced oxidative stress, characterized by decreased malondialdehyde (MDA formations, and increased superoxide dismutase (SOD, catalase (CAT activities and glutathione (GSH content, followed by a decrease in caspase-9 and -3 activities. Curcumin pre-treatment significantly decreased CCl4-induced inflammation. Furthermore, curcumin pre-treatment significantly down-regulated the expression of TGF-β1 and Smad3 mRNAs (both p < 0.01, and up-regulated the expression of nuclear-factor erythroid 2-related factor 2 (Nrf2 and HO-1 mRNA (both p < 0.01 in the liver. Inhibition of HO-1 attenuated the protective effect of curcumin on CCl4-induced acute liver injury. Given these outcomes, curcumin could protect against CCl4-induced acute liver injury by inhibiting oxidative stress and inflammation, which may partly involve the activation of Nrf2/HO-1 and inhibition of TGF-β1/Smad3 pathways.

  10. 6-OHDA-induced apoptosis and mitochondrial dysfunction are mediated by early modulation of intracellular signals and interaction of Nrf2 and NF-κB factors

    International Nuclear Information System (INIS)

    Tobón-Velasco, Julio C.; Limón-Pacheco, Jorge H.; Orozco-Ibarra, Marisol; Macías-Silva, Marina; Vázquez-Victorio, Genaro; Cuevas, Elvis; Ali, Syed F.

    2013-01-01

    6-Hydroxydopamine (6-OHDA) is a neurotoxin that generates an experimental model of Parkinson's disease in rodents and is commonly employed to induce a lesion in dopaminergic pathways. The characterization of those molecular mechanisms linked to 6-OHDA-induced early toxicity is needed to better understand the cellular events further leading to neurodegeneration. The present work explored how 6-OHDA triggers early downstream signaling pathways that activate neurotoxicity in the rat striatum. Mitochondrial function, caspases-dependent apoptosis, kinases signaling (Akt, ERK 1/2, SAP/JNK and p38) and crosstalk between nuclear factor kappa B (NF-κB) and nuclear factor-erythroid-2-related factor 2 (Nrf2) were evaluated at early times post-lesion. We found that 6-OHDA initiates cell damage via mitochondrial complex I inhibition, cytochrome c and apoptosis-inducing factor (AIF) release, as well as activation of caspases 9 and 3 to induce apoptosis, kinase signaling modulation and NF-κB-mediated inflammatory responses, accompanied by inhibition of antioxidant systems regulated by the Nrf2 pathway. Our results suggest that kinases SAP/JNK and p38 up-regulation may play a role in the early stages of 6-OHDA toxicity to trigger intrinsic pathways for apoptosis and enhanced NF-κB activation. In turn, these cellular events inhibit the activation of cytoprotective mechanisms, thereby leading to a condition of general damage

  11. Protective role of Nrf2 against mechanical-stretch-induced apoptosis in mouse fibroblasts: a potential therapeutic target of mechanical-trauma-induced stress urinary incontinence.

    Science.gov (United States)

    Li, Qiannan; Li, Bingshu; Liu, Cheng; Wang, Linlin; Tang, Jianming; Hong, Li

    2018-01-10

    We investigated the protective effect and underlying molecular mechanism of nuclear factor-E2-related factor 2 (Nrf2) against mechanical-stretch-induced apoptosis in mouse fibroblasts. Normal cells, Nrf2 silencing cells, and Nrf2 overexpressing cells were respectively divided into two groups-nonintervention and cyclic mechanical strain (CMS)-subjected to CMS of 5333 μ (1.0 Hz for 4 h), six groups in total (control, CMS, shNfe212, shNfe212 + CMS, LV-shNfe212, and LV-shNfe212 + CMS). After treatment, cell apoptosis; cell-cycle distribution; expressions of Nrf2, Bax, Bcl-2, Cyt-C, caspase-3, caspase-9, cleaved-caspase-3, and cleaved-caspase-9; mitochondrial membrane potential (ΔΨm); reactive oxygen species (ROS); and malondialdehyde (MDA) levels were measured. Thirty virgin female C57BL/6 mice were divided into two groups: control (without intervention) and vaginal distension (VD) groups, which underwent VD for 1 h with an 8-mm dilator (0.3 ml saline). Leak-point pressure (LPP) was tested on day 7 after VD; Nrf2 expression, apoptosis, and MDA levels were then measured in urethra and anterior vaginal wall. Mechanical stretch decreased Nrf2 messenger RNA (mRNA) and protein expressions. Overexpression of Nrf2 alleviated mechanical-stretch-induced cell apoptosis; S-phase arrest of cell cycle; up-regulation of Bax, cytochrome C (Cyt-C), ROS, MDA, ratio of cleaved-caspase-3/caspase-3 and cleaved-caspase-9/caspase-9; and exacerbated the decrease of Bcl2 and ΔΨm in L929 cells. On the contrary, silencing of Nrf2 showed opposite effects. Besides, VD reduced LPP levels and Nrf2 expression and increased cell apoptosis and MDA generation in the urethra and anterior vaginal wall. Nrf2 exhibits a protective role against mechanical-stretch -induced apoptosis on mouse fibroblasts, which might indicate a potential therapeutic target of mechanical-trauma-induced stress urinary incontinence (SUI).

  12. The Keap1-Nrf2 system in cancers: Stress response and anabolic metabolism

    Directory of Open Access Journals (Sweden)

    Yoichiro eMitsuishi

    2012-12-01

    Full Text Available The Keap1-Nrf2 pathway plays a central role in the protection of cells against oxidative and xenobiotic stresses. Nrf2 is a potent transcription activator that recognizes a unique DNA sequence known as the antioxidant response element (ARE. Under normal conditions, Nrf2 binds to Keap1 in the cytoplasm, resulting in proteasomal degradation. Following exposure to electrophiles or reactive oxygen species, Nrf2 becomes stabilized, translocates into the nucleus and activates the transcription of various cytoprotective genes. Increasing attention has been paid to the role of Nrf2 in cancer cells because the constitutive stabilization of Nrf2 has been observed in many human cancers with poor prognosis. Recent studies have shown that the antioxidant and detoxification activities of Nrf2 confer chemo- and radio-resistance to cancer cells. In this review, we provide an overview of the Keap1-Nrf2 system and discuss its role under physiological and pathological conditions, including cancers. We also introduce the results of our recent study describing Nrf2 function in the metabolism of cancer cells. Nrf2 likely confers a growth advantage to cancer cells through enhancing cytoprotection and anabolism. Finally, we discuss the possible impact of Nrf2 inhibitors on cancer therapy.

  13. Nuclear Factor E2-Related Factor-2 Negatively Regulates NLRP3 Inflammasome Activity by Inhibiting Reactive Oxygen Species-Induced NLRP3 Priming.

    Science.gov (United States)

    Liu, Xiuting; Zhang, Xin; Ding, Yang; Zhou, Wei; Tao, Lei; Lu, Ping; Wang, Yajing; Hu, Rong

    2017-01-01

    The NLRP3 inflammasome is a multiprotein complex that protects hosts against a variety of pathogens. However, the molecular mechanisms of modulating NLRP3 inflammasome activation, especially at the priming step, are still poorly understood. This study was designed to elucidate the negative regulation of nuclear factor E2-related factor-2 (Nrf2) on the activation of NLRP3 inflammasome. We reported that Nrf2 activation inhibited NLRP3 expression, caspase-1 cleavage, and subsequent IL-1β generation. Compared with normal cells, Nrf2-deficient cells showed upregulated cleaved caspase-1, which were attributed to the increased transcription of NLRP3 caused by excess reactive oxygen species (ROS). Furthermore, priming of the NLRP3 inflammasome was sensitive to the exogenous ROS levels induced by H 2 O 2 or rotenone. Combined with adenosine triphosphate, rotenone triggered higher activity of the NLRP3 inflammasome compared with lipopolysaccharide, suggesting that ROS promoted the priming step. In addition, Nrf2-induced NQO1 was involved in the inhibition of the NLRP3 inflammasome. In an in vivo alum-induced peritonitis mouse model, Nrf2 activation suppressed typical IL-1 signaling-dependent inflammation, whereas Nrf2 -/- mice exhibited a significant increase in the recruitment of immune cell and the generation of IL-1β compared with wild-type mice. We elucidated the effects and possible mechanisms of Nrf2 activation-induced NQO1 expression on NLRP3 inflammasome inactivation and established a novel regulatory role of the Nrf2 pathway in ROS-induced NLRP3 priming. We demonstrated Nrf2 negatively regulating NLRP3 inflammasome activity by inhibiting the priming step and suggested that Nrf2 could be a potential target for some uncontrolled inflammasome activation-associated diseases. Antioxid. Redox Signal. 26, 28-43.

  14. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells

    International Nuclear Information System (INIS)

    Pecorelli, Alessandra; Bocci, Velio; Acquaviva, Alessandra; Belmonte, Giuseppe; Gardi, Concetta; Virgili, Fabio; Ciccoli, Lucia; Valacchi, Giuseppe

    2013-01-01

    During the last decade, it has been shown that the activation of NRF2 and the binding to electrophile-responsive element (EpREs), stimulates the expression of a great number of genes responsible for the synthesis of phase I and phase II proteins, including antioxidants enzymes and heme oxygenase-1 (HO-1). This critical cell response occurs in cardiovascular, degenerative and chronic infective diseases aggravated by a chronic oxidative stress. In our previous reports we have shown that ozonated plasma is able to up-regulate HO-1 expression in endothelial cells. In the present work we investigated a candidate mechanism involved in this process. After treatment with increasing doses of ozonated serum (20, 40 and 80 μg/mL O 3 per mL of serum), a clear dose dependent activation of NRF2 and the subsequent induction of HO-1 and NAD(P)H quinone oxidoreductase 1(NQO1) was observed. This effect was also present when cells were treated with serum and hydrogen peroxide (H 2 O 2 ) or serum and 4-hydroxynonenal (4HNE). Moreover, the treatment with ozonated serum was associated with a dose-dependent activation of extracellular-signal-regulated kinases (ERK1/2) and p38 MAP kinases (p38), not directly involved in NRF2 activation. These data, provide a new insight on the mechanism responsible for the induction of HO-1 expression by ozonated serum in the endothelium, and have a practical importance as an expedient approach to the treatment of patients with both effective orthodox drugs and ozonated autohemotherapy, targeted to the restoration of redox homeostasis. - Highlights: ► Endothelial HO1 is upregulated by ozonated plasma ► This activation is induced by NRF2 and it is ERK independent. ► 4HNE and H 2 O 2 are the main molecules involved in this process. ► Ozonated plasma induced a hormetic effect ► Combination of orthodox medicine and ozonated plasma can be a useful treatment

  15. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pecorelli, Alessandra [Department of Molecular and Developmental Medicine, University of Siena (Italy); Child Neuropsychiatry Unit, University Hospital, AOUS, Siena (Italy); Bocci, Velio [Department of Physiology, University of Siena (Italy); Acquaviva, Alessandra [Department of Molecular and Developmental Medicine, University of Siena (Italy); Belmonte, Giuseppe [Department of Biomedical Sciences, University of Siena (Italy); Gardi, Concetta [Department of Molecular and Developmental Medicine, University of Siena (Italy); Virgili, Fabio [INRAN, Rome (Italy); Ciccoli, Lucia [Department of Molecular and Developmental Medicine, University of Siena (Italy); Valacchi, Giuseppe, E-mail: giuseppe.valacchi@unife.it [Department of Life Sciences and Biotechnology, University of Ferrara (Italy); Department of Food and Nutrition, Kyung Hee University, Seoul (Korea, Republic of)

    2013-02-15

    During the last decade, it has been shown that the activation of NRF2 and the binding to electrophile-responsive element (EpREs), stimulates the expression of a great number of genes responsible for the synthesis of phase I and phase II proteins, including antioxidants enzymes and heme oxygenase-1 (HO-1). This critical cell response occurs in cardiovascular, degenerative and chronic infective diseases aggravated by a chronic oxidative stress. In our previous reports we have shown that ozonated plasma is able to up-regulate HO-1 expression in endothelial cells. In the present work we investigated a candidate mechanism involved in this process. After treatment with increasing doses of ozonated serum (20, 40 and 80 μg/mL O{sub 3} per mL of serum), a clear dose dependent activation of NRF2 and the subsequent induction of HO-1 and NAD(P)H quinone oxidoreductase 1(NQO1) was observed. This effect was also present when cells were treated with serum and hydrogen peroxide (H{sub 2}O{sub 2}) or serum and 4-hydroxynonenal (4HNE). Moreover, the treatment with ozonated serum was associated with a dose-dependent activation of extracellular-signal-regulated kinases (ERK1/2) and p38 MAP kinases (p38), not directly involved in NRF2 activation. These data, provide a new insight on the mechanism responsible for the induction of HO-1 expression by ozonated serum in the endothelium, and have a practical importance as an expedient approach to the treatment of patients with both effective orthodox drugs and ozonated autohemotherapy, targeted to the restoration of redox homeostasis. - Highlights: ► Endothelial HO1 is upregulated by ozonated plasma ► This activation is induced by NRF2 and it is ERK independent. ► 4HNE and H{sub 2}O{sub 2} are the main molecules involved in this process. ► Ozonated plasma induced a hormetic effect ► Combination of orthodox medicine and ozonated plasma can be a useful treatment.

  16. Two sesquiterpene aminoquinones protect against oxidative injury in HaCaT keratinocytes via activation of AMPKα/ERK-Nrf2/ARE/HO-1 signaling.

    Science.gov (United States)

    Liu, Li; Wu, Wei; Li, Jing; Jiao, Wei-Hua; Liu, Li-Yun; Tang, Jie; Liu, Lei; Sun, Fan; Han, Bing-Nan; Lin, Hou-Wen

    2018-04-01

    To investigate the cytoprotective effects of two sesquiterpene aminoquinones isolated from the marine sponge Dysidea fragilis, Dysidaminone H (DA8) and 3'-methylamino-avarone (DA14), we examined their effects against hydrogen peroxide (H 2 O 2 )-induced oxidative injury in human keratinocyte cell line and elucidated the underlying mechanisms. Cell viability was detected using a CCK-8 assay kit. Intracellular reactive oxygen species (ROS) production was measured by fluorescence of 2, 7-Dichlorodi-hydrofluorescein diacetate (DCFH-DA). Messenger RNA and protein expression were measured by real-time quantitative PCR and western blotting analysis. Immunocytochemistry was performed to determine the intracellular location of nuclear factorerythroid 2 p45 related factor 2 (Nrf2). The antioxidant response element (ARE)-luciferase reporter gene assay and RNA interference were used to establish the role of ARE and Nrf2. DA8 and DA14 (DAs) resisted H 2 O 2 induced decline of cell viability by inhibiting the accumulation of ROS. Meanwhile, DAs increased HO-1 expression and ARE activity and induced Nrf2 expression, as well as the accumulation of Nrf2 in the cell nucleus. However, silencing of Nrf2 abolished DAs-induced HO-1 expression and ARE luciferase activation. In addition, DAs induced the phosphorylation of both cyclic AMP-activated protein kinase-α (AMPKα) and extracellular signal-regulated kinase (ERK), while specific inhibitors of AMPKα and ERK abrogated HO1 upregulation and Nrf2 activation. DAs provided cytoprotective effects against H 2 O 2 -induced cytotoxicity by activation of the Nrf2/ARE/HO-1 pathway via phosphorylation of AMPKα and ERK. The findings suggested that DA8 and DA14 might be the candidate therapeutic agents for skin diseases caused by oxidative injury. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Omeprazole induces heme oxygenase-1 in fetal human pulmonary microvascular endothelial cells via hydrogen peroxide-independent Nrf2 signaling pathway.

    Science.gov (United States)

    Patel, Ananddeep; Zhang, Shaojie; Shrestha, Amrit Kumar; Maturu, Paramahamsa; Moorthy, Bhagavatula; Shivanna, Binoy

    2016-11-15

    Omeprazole (OM) is an aryl hydrocarbon receptor (AhR) agonist and a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Recently, we showed that OM induces NAD (P) H quinone oxidoreductase-1 (NQO1) via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent mechanism. Heme oxygenase-1 (HO-1) is another cytoprotective and antioxidant enzyme that is regulated by Nrf2. Whether OM induces HO-1 in fetal human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce HO-1 expression via Nrf2 in HPMEC. OM induced HO-1 mRNA and protein expression in a dose-dependent manner. siRNA-mediated knockdown of AhR failed to abrogate, whereas knockdown of Nrf2 abrogated HO-1 induction by OM. To identify the underlying molecular mechanisms, we determined the effects of OM on cellular hydrogen peroxide (H 2 O 2 ) levels since oxidative stress mediated by the latter is known to activate Nrf2. Interestingly, the concentration at which OM induced HO-1 also increased H 2 O 2 levels. Furthermore, H 2 O 2 independently augmented HO-1 expression. Although N-acetyl cysteine (NAC) significantly decreased H 2 O 2 levels in OM-treated cells, we observed that OM further increased HO-1 mRNA and protein expression in NAC-pretreated compared to vehicle-pretreated cells, suggesting that OM induces HO-1 via H 2 O 2 -independent mechanisms. In conclusion, we provide evidence that OM transcriptionally induces HO-1 via AhR - and H 2 O 2 - independent, but Nrf2 - dependent mechanisms. These results have important implications for human disorders where Nrf2 and HO-1 play a beneficial role. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Salidroside's Protection Against UVB-Mediated Oxidative Damage and Apoptosis Is Associated with the Upregulation of Nrf2 Expression.

    Science.gov (United States)

    Yuan, Xiao-Ying; Pang, Xiao-Wen; Zhang, Guo-Qiang; Guo, Jian-You

    2017-01-01

    Salidroside is the major active component of Rhodiola rosea, a traditional Chinese herbal medicine used for protection against ultraviolet (UV) radiation. This study investigated whether salidroside can protect skin from ultraviolet B (UVB)-induced oxidative damage in human immortalized HaCaT keratinocytes and the skin of guinea pigs. Using HaCaT cell models, the effects of salidroside on oxidative damage and possible regulatory factors [including NF-E2-related factor 2 (Nrf2), NAD(P)H-quinone oxidoreductase (NQO1), and heme oxygenase 1 (HO-1)] were examined. In addition, the regulatory effects of salidroside on apoptotic sunburn cells (SBCs) and 8-hydroxy-2'-deoxyguanosine (8-OHdG)-positive epidermal cells on UVB-exposed guinea pig skin were also investigated. We found that salidroside pretreatment upregulated Nrf2 translocation to the nucleus and transcription activity in HaCaT cells, as reflected by the increased nuclear accumulation of Nrf2 as well as the gene and protein expression of downstream Nrf2 antioxidants, including NQO1 and HO-1. In addition, we also found that pretreatment with salidroside reactive oxygen species (ROS) in irradiated HaCaT cells. The oral administration of salidroside (0.1% w/w) to guinea pigs inhibited the UVB-mediated formation of apoptotic SBCs and 8-OHdG-positive epidermal cells in the skin of guinea pigs. Our results show that UVB-induced oxidative damage can be prevented by salidroside with upregulation of nuclear Nrf2 expression.

  19. Gastrodin protects against LPS-induced acute lung injury by activating Nrf2 signaling pathway.

    Science.gov (United States)

    Zhang, Zhuo; Zhou, Jie; Song, Daqiang; Sun, Yuhong; Liao, Changli; Jiang, Xian

    2017-05-09

    Gastrodin (GAS), a phenolic glucoside derived from Gastrodiaelata Blume, has been reported to have anti-inflammatory effect. The aim of this study was to investigate the effects of GAS on LPS-induced acute lung injury in mice. ALI was induced by the intranasal administration of LPS and GAS was given 1 h or 12 h after LPS treatment. The results indicated that GAS treatment markedly attenuated the damage of lung injury induced by LPS. GAS attenuated the activity of myeloperoxidase (MPO) and down-regulated the levels of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β in BALF. LPS-induced lung edema and lung function were also reversed by GAS. Furthermore, GAS was found to inhibit LPS-induced inflammatory cells infiltration. In addition, treatment of GAS inhibited LPS-induced NF-κB activation and up-regulated the expression of Nrf2 and HO-1. In conclusion, our results indicated that GAS had anti-inflammatory effects on LPS-induced acute lung injury. The anti-inflammatory mechanism of GAS was through the inhibition of NF-κB and activation of Nrf2 signaling pathways.

  20. Tetramethylpyrazine improves the recovery of spinal cord injury via Akt/Nrf2/HO-1 pathway.

    Science.gov (United States)

    Wang, Chao; Wang, Peng; Zeng, Wen; Li, Weixin

    2016-02-15

    Spinal cord injury (SCI) is one of the most severe traumatic conditions, resulting in postoperative complications. Our results and other reports have shown that tetramethylpyrazine (TMP) is able to exhibit neuro-protective effects after SCI. In the current study, we aimed to examine the possible mechanism underlying the neuro-protective effect of TMP in rat model of SCI. TMP improved locomotor functions and decreased permeability of blood-spinal cord barrier in rats with SCI, as evidenced by increase of Basso-Beattie-Bresnahan scores and decrease of Evans blue leakage. In addition, TMP decreased the expression of several proinflammatory cytokines, including IL-1β, TNFα and IL-18, reduced TUNEL-positive cells and caspase 3 and 9 activities, decreased thiobarbituric acid reactive substances content and increased glutathione level and superoxide dismutase activity in rats. All these effects were inhibited by zinc protoporphyrin IX (ZnPP), an inhibitor of HO-1, and LY294002, an inhibitor of Akt. Moreover, TMP inhibited the decrease of mRNA expression of HO-1 which was suppressed by ZnPP and LY294002. TMP inhibited the decrease of Akt phosphorylation in rats after SCI, which was suppressed by LY294002, but not ZnPP. Furthermore, LY294002, but not ZnPP, significantly inhibited TMP-induced increase of mRNA expression of Nrf2 and DNA binding activity of Nrf2 in HO-1 promoters in rat model of SCI. The data suggested that TMP induced neuro-protective effects against injury of spinal cord through the activation of Akt/Nrf2/HO-1 signaling pathway. These results have appointed a new path toward the understanding of pathogenesis and TMP-related therapy of SCI and associated neurodegenerative diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1.

    Science.gov (United States)

    Eggler, Aimee L; Small, Evan; Hannink, Mark; Mesecar, Andrew D

    2009-07-29

    Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that activates transcription of a battery of cytoprotective genes by binding to the ARE (antioxidant response element). Nrf2 is repressed by the cysteine-rich Keap1 (kelch-like ECH-associated protein 1) protein, which targets Nrf2 for ubiquitination and subsequent degradation by a Cul3 (cullin 3)-mediated ubiquitination complex. We find that modification of Cys(151) of human Keap1, by mutation to a tryptophan, relieves the repression by Keap1 and allows activation of the ARE by Nrf2. The Keap1 C151W substitution has a decreased affinity for Cul3, and can no longer serve to target Nrf2 for ubiquitination, though it retains its affinity for Nrf2. A series of 12 mutant Keap1 proteins, each containing a different residue at position 151, was constructed to explore the chemistry required for this effect. The series reveals that the extent to which Keap1 loses the ability to target Nrf2 for degradation, and hence the ability to repress ARE activation, correlates well with the partial molar volume of the residue. Other physico-chemical properties do not appear to contribute significantly to the effect. Based on this finding, a structural model is proposed whereby large residues at position 151 cause steric clashes that lead to alteration of the Keap1-Cul3 interaction. This model has significant implications for how electrophiles which modify Cys(151), disrupt the repressive function of Keap1.

  2. The NRF2-KEAP1 pathway is an early responsive gene network in arsenic exposed lymphoblastoid cells.

    Directory of Open Access Journals (Sweden)

    Emilio J Córdova

    Full Text Available Inorganic arsenic (iAs, a major environmental contaminant, has risen as an important health problem worldwide. More detailed identification of the molecular mechanisms associated with iAs exposure would help to establish better strategies for prevention and treatment. Although chronic iAs exposures have been previously studied there is little to no information regarding the early events of exposure to iAs. To better characterize the early mechanisms of iAs exposure we conducted gene expression studies using sublethal doses of iAs at two different time-points. The major transcripts differentially regulated at 2 hrs of iAs exposure included antioxidants, detoxificants and chaperones. Moreover, after 12 hrs of exposure many of the down-regulated genes were associated with DNA replication and S phase cell cycle progression. Interestingly, the most affected biological pathway by both 2 or 12 hrs of iAs exposure were the Nrf2-Keap1 pathway, represented by the highly up-regulated HMOX1 transcript, which is transcriptionally regulated by the transcription factor Nrf2. Additional Nrf2 targets included SQSTM1 and ABCB6, which were not previously associated with acute iAs exposure. Signalling pathways such as interferon, B cell receptor and AhR route were also responsive to acute iAs exposure. Since HMOX1 expression increased early (20 min and was responsive to low iAs concentrations (0.1 µM, this gene could be a suitable early biomarker for iAs exposure. In addition, the novel Nrf2 targets SQSTM1 and ABCB6 could play an important and previously unrecognized role in cellular protection against iAs.

  3. Serum oxidative stress-induced repression of Nrf2 and GSH depletion: a mechanism potentially involved in endothelial dysfunction of young smokers.

    Directory of Open Access Journals (Sweden)

    Anna Fratta Pasini

    Full Text Available Although oxidative stress plays a major role in endothelial dysfunction (ED, the role of glutathione (GSH, of nuclear erythroid-related factor 2 (Nrf2 and of related antioxidant genes (ARE are yet unknown. In this study we combined an in vivo with an in vitro model to assess whether cigarette smoking affects flow-mediated vasodilation (FMD, GSH concentrations and the Nrf2/ARE pathway in human umbilical vein endothelial cells (HUVECs.52 healthy subjects (26 non-smokers and 26 heavy smokers were enrolled in this study. In smokers we demonstrated increased oxidative stress, i.e., reduced concentrations of GSH and increased concentrations of oxidation products of the phospholipid 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (oxPAPC in serum and in peripheral blood mononuclear cells (PBMC, used as in vivo surrogates of endothelial cells. Moreover we showed impairment of FMD in smokers and a positive correlation with the concentration of GSH in PBMC of all subjects. In HUVECs exposed to smokers' serum but not to non-smokers' serum we found that oxidative stress increased, whereas nitric oxide and GSH concentrations decreased; interestingly the expression of Nrf2, of heme oxygenase-1 (HO-1 and of glutamate-cysteine ligase catalytic (GCLC subunit, the rate-limiting step of synthesis of GSH, was decreased. To test the hypothesis that the increased oxidative stress in smokers may have a causal role in the repression of Nrf2/ARE pathway, we exposed HUVECs to increasing concentrations of oxPAPC and found that at the highest concentration (similar to that found in smokers' serum the expression of Nrf2/ARE pathway was reduced. The knockdown of Nrf2 was associated to a significant reduction of HO-1 and GCLC expression induced by oxPAPC in ECs.In young smokers with ED a novel further consequence of increased oxidative stress is a repression of Nrf2/ARE pathway leading to GSH depletion.

  4. NRF2 ACTIVATION AS TARGET TO IMPLEMENT THERAPEUTIC TREATMENTS

    Directory of Open Access Journals (Sweden)

    Velio eBocci

    2015-02-01

    Full Text Available A chronic increase of oxidative stress is typical of serious pathologies such as myocardial infarction, stroke, chronic limb ischemia, chronic obstructive pulmonary disease (COPD, type II-diabetes, age-related macular degeneration leads to an epic increase of morbidity and mortality in all countries of the world. The initial inflammation followed by an excessive release of reactive oxygen species (ROS implies a diffused cellular injury that needs to be corrected by an inducible expression of the innate detoxifying and antioxidant system. The transcription factor Nrf2, when properly activated, is able to restore a redox homeostasis and possibly improve human health.

  5. NRF2 Activation as Target to Implement Therapeutic Treatments

    Science.gov (United States)

    Bocci, Velio; Valacchi, Giuseppe

    2015-02-01

    A chronic increase of oxidative stress is typical of serious pathologies such as myocardial infarction, stroke, chronic limb ischemia, chronic obstructive pulmonary disease (COPD), type II-diabetes, age-related macular degeneration leads to an epic increase of morbidity and mortality in all countries of the world. The initial inflammation followed by an excessive release of reactive oxygen species (ROS) implies a diffused cellular injury that needs to be corrected by an inducible expression of the innate detoxifying and antioxidant system. The transcription factor Nrf2, when properly activated, is able to restore a redox homeostasis and possibly improve human health.

  6. The Amelioration of N-Acetyl-p-Benzoquinone Imine Toxicity by Ginsenoside Rg3: The Role of Nrf2-Mediated Detoxification and Mrp1/Mrp3 Transports

    Directory of Open Access Journals (Sweden)

    Sang Il Gum

    2013-01-01

    Full Text Available Previously, we found that Korean red ginseng suppressed acetaminophen (APAP-induced hepatotoxicity via alteration of its metabolic profile involving GSTA2 induction and that ginsenoside Rg3 was a major component of this gene induction. In the present study, therefore, we assessed the protective effect of Rg3 against N-acetyl-p-benzoquinone imine (NAPQI, a toxic metabolic intermediate of APAP. Excess NAPQI resulted in GSH depletion with increases in the ALT and AST activities in H4IIE cells. Rg3 pretreatment reversed GSH depletion by NAPQI. Rg3 resulted in increased mRNA levels of the catalytic and modulatory subunit of glutamate cysteine ligase (GCL, the rate-limiting steps in GSH synthesis and subsequently increased GSH content. Rg3 increased levels of nuclear Nrf2, an essential transcriptional factor of these genes. The knockdown or knockout of the Nrf2 gene abrogated the inductions of mRNA and protein by Rg3. Abolishment of the reversal of GSH depletion by Rg3 against NAPQI was observed in Nrf2-deficient cells. Rg3 induced multidrug resistance-associated protein (Mrp 1 and Mrp3 mRNA levels, but not in Nrf2-deficient cells. Taken together, these results demonstrate that Rg3 is efficacious in protecting hepatocytes against NAPQI insult, due to GSH repletion and coordinated gene regulations of GSH synthesis and Mrp family genes by Nrf2.

  7. Antcin C from Antrodia cinnamomea Protects Liver Cells Against Free Radical-Induced Oxidative Stress and Apoptosis In Vitro and In Vivo through Nrf2-Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    M. Gokila Vani

    2013-01-01

    Full Text Available In this study, we investigated the cytoprotective effects of antcin C, a steroid-like compound isolated from Antrodia cinnamaomea against AAPH-induced oxidative stress and apoptosis in human hepatic HepG2 cells. Pretreatment with antcin C significantly protects hepatic cells from AAPH-induced cell death through the inhibition of ROS generation. Furthermore, AAPH-induced lipid peroxidation, ALT/AST secretion and GSH depletion was significantly inhibited by antcin C. The antioxidant potential of antcin C was correlated with induction of antioxidant genes including, HO-1, NQO-1, γ-GCLC, and SOD via transcriptional activation of Nrf2. The Nrf2 activation by antcin C is mediated by JNK1/2 and PI3K activation, whereas pharmacologic inhibition of JNK1/2 and PI3K abolished antcin C-induced Nrf2 activity. In addition, AAPH-induced apoptosis was significantly inhibited by antcin C through the down-regulation of pro-apoptotic factors including, Bax, cytochrome c, capase 9, -4, -12, -3, and PARP. In vivo studies also show that antcin C significantly protected mice liver from AAPH-induced hepatic injury as evidenced by reduction in hepatic enzymes in circulation. Further, immunocytochemistry analyses showed that antcin C significantly increased HO-1 and Nrf2 expression in mice liver tissues. These results strongly suggest that antcin C could protect liver cells from oxidative stress and cell death via Nrf2/ARE activation.

  8. Knockout of the Arp2/3 complex in epidermis causes a psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2.

    Science.gov (United States)

    van der Kammen, Rob; Song, Ji-Ying; de Rink, Iris; Janssen, Hans; Madonna, Stefania; Scarponi, Claudia; Albanesi, Cristina; Brugman, Wim; Innocenti, Metello

    2017-12-15

    The Arp2/3 complex assembles branched actin filaments, which are key to many cellular processes, but its organismal roles remain poorly understood. Here, we employed conditional A rpc4 knockout mice to study the function of the Arp2/3 complex in the epidermis. We found that depletion of the Arp2/3 complex by knockout of Arpc4 results in skin abnormalities at birth that evolve into a severe psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2. Knockout of Arpc4 in cultured keratinocytes was sufficient to induce nuclear accumulation of Nrf2, upregulation of Nrf2 target genes and decreased filamentous actin levels. Furthermore, pharmacological inhibition of the Arp2/3 complex unmasked the role of branched actin filaments in Nrf2 regulation. Consistent with this, we revealed that Nrf2 associates with the actin cytoskeleton in cells and binds to filamentous actin in vitro Finally, we discovered that Arpc4 is downregulated in both human and mouse psoriatic epidermis. Thus, the Arp2/3 complex affects keratinocyte shape and transcriptome through an actin-based cell-autonomous mechanism that influences epidermal morphogenesis and homeostasis. © 2017. Published by The Company of Biologists Ltd.

  9. Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2015-01-01

    Full Text Available Cardiovascular disease (CVD causes an unparalleled proportion of the global burden of disease and will remain the main cause of mortality for the near future. Oxidative stress plays a major role in the pathophysiology of cardiac disorders. Several studies have highlighted the cardinal role played by the overproduction of reactive oxygen or nitrogen species in the pathogenesis of ischemic myocardial damage and consequent cardiac dysfunction. Isothiocyanates (ITC are sulfur-containing compounds that are broadly distributed among cruciferous vegetables. Sulforaphane (SFN is an ITC shown to possess anticancer activities by both in vivo and epidemiological studies. Recent data have indicated that the beneficial effects of SFN in CVD are due to its antioxidant and anti-inflammatory properties. SFN activates NF-E2-related factor 2 (Nrf2, a basic leucine zipper transcription factor that serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than a hundred cytoprotective proteins, including antioxidants and phase II detoxifying enzymes. This review will summarize the evidence from clinical studies and animal experiments relating to the potential mechanisms by which SFN modulates Nrf2 activation and protects against CVD.

  10. NRF2 genotype improves endurance capacity in response to training.

    Science.gov (United States)

    He, Z; Hu, Y; Feng, L; Lu, Y; Liu, G; Xi, Y; Wen, L; McNaughton, L R

    2007-09-01

    The aim of this work was to examine the association between the polymorphisms in nuclear respiratory factor (NRF2) gene and endurance capacity measured prior to and after an 18-wk endurance training program in young Chinese men. The phenotypes measured were running economy (RE) and VO(2max). The RE was determined by measuring submaximal VO(2) for 5 min at a constant running speed of 12 km x h (-1) and VO(2max) was measured during an incremental test to volitional exhaustion. Genomic DNA was extracted from white cells of peripheral blood and the genotypes were examined in SNPrs12594956, rs8031031 and rs7181866 by PCR-RFLP. Genotype distributions were in Hardy-Weinberg equilibrium at three loci, and linkage disequilibrium was observed (LD D' = 1 and r (2) = 0.903) between rs8031031 and rs7181866. The VO(2max) was associated with rs12594956 at baseline while the training response of VO(2) at RE, was associated with rs12594956, rs8031031 and rs7181866. When the three SNPs were considered together, those carrying the ATG haplotype had 57.5 % higher training response in VO(2) at RE (p = 0.006) than non-carriers. In conclusion, polymorphisms in NRF2 gene may explain some of the between-person variance in endurance capacity.

  11. NRF2 Activation Impairs Quiescence and Bone Marrow Reconstitution Capacity of Hematopoietic Stem Cells.

    Science.gov (United States)

    Murakami, Shohei; Suzuki, Takuma; Harigae, Hideo; Romeo, Paul-Henri; Yamamoto, Masayuki; Motohashi, Hozumi

    2017-10-01

    Tissue stem cells are maintained in quiescence under physiological conditions but proliferate and differentiate to replenish mature cells under stressed conditions. The KEAP1-NRF2 system plays an essential role in stress response and cytoprotection against redox disturbance. To clarify the role of the KEAP1-NRF2 system in tissue stem cells, we focused on hematopoiesis in this study and used Keap1 -deficient mice to examine the effects of persistent activation of NRF2 on long-term hematopoietic stem cells (LT-HSCs). We found that persistent activation of NRF2 due to Keap1 deficiency did not change the number of LT-HSCs but reduced their quiescence in steady-state hematopoiesis. During hematopoietic regeneration after bone marrow (BM) transplantation, persistent activation of NRF2 reduced the BM reconstitution capacity of LT-HSCs, suggesting that NRF2 reduces the quiescence of LT-HSCs and promotes their differentiation, leading to eventual exhaustion. Transient activation of NRF2 by an electrophilic reagent also promotes the entry of LT-HSCs into the cell cycle. Taken together, our findings show that NRF2 drives the cell cycle entry and differentiation of LT-HSCs at the expense of their quiescence and maintenance, an effect that appears to be beneficial for prompt recovery from blood loss. We propose that the appropriate control of NRF2 activity by KEAP1 is essential for maintaining HSCs and guarantees their stress-induced regenerative response. Copyright © 2017 American Society for Microbiology.

  12. Propofol induces proliferation and invasion of gallbladder cancer cells through activation of Nrf2

    Directory of Open Access Journals (Sweden)

    Zhang Lingmin

    2012-08-01

    Full Text Available Abstract Background Propofol is one of the most commonly used intravenous anaesthetic agents during cancer resection surgery, but the effect of propofol on gallbladder cancer is not clear. NF-E2-related factor 2 (Nrf2 is abundantly expressed in cancer cells and relates to proliferation, invasion, and chemoresistance. The aims of the current study were to evaluate effects of propofol on the behavior of human GC cells and role of Nrf2 in these effects. Method The effects of propofol on cell proliferation, apoptosis, and invasion were detected by MTT assays, flow cytometry, and transwell assay. Also, activation of Nrf2 was determined by western blot, RT-PCR, and immunofluorescence assays. Nrf2 was knocked-down in GBC-SD cells by shRNA before evaluating the role of Nrf2 in the influence of propofol on biological behaviors. Results Propofol promoted the proliferation of GBC-SD cells in a dose- and time- dependent manner. After exposure to propofol for 48 h, GBC-SD cells showed decreased apoptosis and increased invasion. Also, propofol over-expressed Nrf2 at both the protein and mRNA levels and induced translocation of Nrf2 into the nucleus. Finally, loss of Nrf2 by shRNA reversed the effect of propofol on cell proliferation, apoptosis, and invasion. Conclusion Propofol induces proliferation and promotes invasion of GC cells through activation of Nrf2.

  13. Reactive oxygen species and PI3K/Akt signaling play key roles in the induction of Nrf2-driven heme oxygenase-1 expression in sulforaphane-treated human mesothelioma MSTO-211H cells.

    Science.gov (United States)

    Lee, Yoon-Jin; Jeong, Hyang-Yun; Kim, Yong-Bae; Lee, Yong-Jin; Won, Seong Youn; Shim, Jung-Hyun; Cho, Moon-Kyun; Nam, Hae-Seon; Lee, Sang-Han

    2012-02-01

    The nuclear factor erythroid-derived 2 related factor 2 (Nrf2)/heme oxygenase (HO)-1 induction plays cytoprotective roles against oxidative injury, apoptosis, and anticancer therapy; however, little is known about its regulation in human mesothelioma MSTO-211H cells. In this study, we investigated Nrf2/HO-1 induction in response to sulforaphane and determined the signaling pathways involved in this process. Sulforaphane treatment decreased cell viability and triggered a rapid and transient increase in the intracellular ROS levels. Pretreatment with N-acetylcysteine (NAC) prevented sulforaphane-induced cytotoxicity. Erk1/2 was activated within 1h of sulforaphane addition, whereas Akt phosphorylation was suppressed until the first 8h, and was then maintained at an elevated level until 72h, displaying a biphasic regulatory feature. Nrf2 protein levels in both nuclear and whole cell lysates were increased after sulforaphane treatment and were decreased by pretreatment with NAC, actinomycin D and cycloheximide. Activation of the Nrf2/HO-1 system after sulforaphane treatment was suppressed by pretreatment with NAC or Ly294002, a PI3K inhibitor. Knockdown of Nrf2 with siRNA decreased cell viability and attenuated sulforaphane-induced HO-1 up-regulation. Overall, our results indicate that ROS generation and/or activation of PI3K/Akt signaling regulate cell survival and Nrf2-driven HO-1 expression in sulforaphane-treated MSTO-211H cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Taurine Protects Mouse Spermatocytes from Ionizing Radiation-Induced Damage Through Activation of Nrf2/HO-1 Signaling

    Directory of Open Access Journals (Sweden)

    Wenjun Yang

    2017-12-01

    Full Text Available Background/Aims: The increasing prevalence of ionizing radiation exposure has inevitably raised public concern over the potential detrimental effects of ionizing radiation on male reproductive system function. The detection of drug candidates to prevent reproductive system from damage caused by ionizing radiation is urgent. We aimed to investigate the protective role of taurine on the injury of mouse spermatocyte-derived cells (GC-2 subjected to ionizing radiation. Methods: mouse spermatocytes (GC-2 cells were exposed to ionizing radiation with or without treatment of Taurine. The effect of ionizing radiation and Taurine treatment on GC-2 cells were evaluated by cell viability assay (CCK8, cell cycle and apoptosis. The relative protein abundance change was determined by Western blotting. The siRNA was used to explore whether Nrf2 signaling was involved in the cytoprotection of Taurine. Results: Taurine significantly inhibited the decrease of cell viability, percentage of apoptotic cells and cell cycle arrest induced by ionizing radiation. Western blot analysis showed that taurine significantly limited the ionizing radiation-induced down-regulation of CyclinB1 and CDK1, and suppressed activation of Fas/FasL system pathway. In addition, taurine treatment significantly increased the expression of Nrf2 and HO-1 in GC-2 cells exposed to ionizing radiation, two components in antioxidant pathway. The above cytoprotection of Taurine was blocked by siNrf2. Conclusion: Our results demonstrate that taurine has the potential to effectively protect GC-2 cells from ionizing radiation- triggered damage via upregulation of Nrf2/HO-1 signaling.

  15. Taurine Protects Mouse Spermatocytes from Ionizing Radiation-Induced Damage Through Activation of Nrf2/HO-1 Signaling.

    Science.gov (United States)

    Yang, Wenjun; Huang, Jinfeng; Xiao, Bang; Liu, Yan; Zhu, Yiqing; Wang, Fang; Sun, Shuhan

    2017-01-01

    The increasing prevalence of ionizing radiation exposure has inevitably raised public concern over the potential detrimental effects of ionizing radiation on male reproductive system function. The detection of drug candidates to prevent reproductive system from damage caused by ionizing radiation is urgent. We aimed to investigate the protective role of taurine on the injury of mouse spermatocyte-derived cells (GC-2) subjected to ionizing radiation. mouse spermatocytes (GC-2 cells) were exposed to ionizing radiation with or without treatment of Taurine. The effect of ionizing radiation and Taurine treatment on GC-2 cells were evaluated by cell viability assay (CCK8), cell cycle and apoptosis. The relative protein abundance change was determined by Western blotting. The siRNA was used to explore whether Nrf2 signaling was involved in the cytoprotection of Taurine. Taurine significantly inhibited the decrease of cell viability, percentage of apoptotic cells and cell cycle arrest induced by ionizing radiation. Western blot analysis showed that taurine significantly limited the ionizing radiation-induced down-regulation of CyclinB1 and CDK1, and suppressed activation of Fas/FasL system pathway. In addition, taurine treatment significantly increased the expression of Nrf2 and HO-1 in GC-2 cells exposed to ionizing radiation, two components in antioxidant pathway. The above cytoprotection of Taurine was blocked by siNrf2. Our results demonstrate that taurine has the potential to effectively protect GC-2 cells from ionizing radiation- triggered damage via upregulation of Nrf2/HO-1 signaling. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways

    International Nuclear Information System (INIS)

    Do, Minh Truong; Kim, Hyung Gyun; Khanal, Tilak; Choi, Jae Ho; Kim, Dong Hee; Jeong, Tae Cheon; Jeong, Hye Gwang

    2013-01-01

    Resistance to therapy is the major obstacle to more effective cancer treatment. Heme oxygenase-1 (HO-1) is often highly up-regulated in tumor tissues, and its expression is further increased in response to therapies. It has been suggested that inhibition of HO-1 expression is a potential therapeutic approach to sensitize tumors to chemotherapy and radiotherapy. In this study, we tested the hypothesis that the anti-tumor effects of metformin are mediated by suppression of HO-1 expression in cancer cells. Our results indicate that metformin strongly suppresses HO-1 mRNA and protein expression in human hepatic carcinoma HepG2, cervical cancer HeLa, and non-small-cell lung cancer A549 cells. Metformin also markedly reduced Nrf2 mRNA and protein levels in whole cell lysates and suppressed tert-butylhydroquinone (tBHQ)-induced Nrf2 protein stability and antioxidant response element (ARE)-luciferase activity in HepG2 cells. We also found that metformin regulation of Nrf2 expression is mediated by a Keap1-independent mechanism and that metformin significantly attenuated Raf-ERK signaling to suppress Nrf2 expression in cancer cells. Inhibition of Raf-ERK signaling by PD98059 decreased Nrf2 mRNA expression in HepG2 cells, confirming that the inhibition of Nrf2 expression is mediated by an attenuation of Raf-ERK signaling in cancer cells. The inactivation of AMPK by siRNA, DN-AMPK or the pharmacological AMPK inhibitor compound C, revealed that metformin reduced HO-1 expression in an AMPK-independent manner. These results highlight the Raf-ERK-Nrf2 axis as a new molecular target in anticancer therapy in response to metformin treatment. - Highlights: • Metformin inhibits HO-1 expression in cancer cells. • Metformin attenuates Raf-ERK-Nrf2 signaling. • Suppression of HO-1 by metformin is independent of AMPK. • HO-1 inhibition contributes to anti-proliferative effects of metformin

  17. Nrf2 and Keap1 Abnormalities in 104 Lung Adenocarcinoma Cases and Association with Clinicopathologic Features

    Directory of Open Access Journals (Sweden)

    Yu XIAO

    2018-03-01

    Full Text Available Background and objective There are significantly interindividual variations of the expression level of nuclear factor erythroid-2-related factor 2 (Nrf2 and/or Kelch-like ECH-associated protein 1 (Keap1 in our previous studies. It has been proven that Nrf2 or Keap1 is related to resistance of chemotherapeutic drugs and/or epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs. However, the expression of Nrf2 and Keap1 in lung adenocarcinoma patients with different “driver gene” is not clear. The aim of this study is to investigate the protein expression level of Nrf2 and Keap1 in lung adenocarcinoma and to elucidate the correlation between Nrf2 or Keap1 expression and the status of EGFR gene mutation and to determine the effects of Nrf2 and Keap1 on the patients. Methods Immunohistochemical analysis of Nrf2 and Keap1 in tumor specimens was performed in a total of 104 lung adenocarcinoma patients with the status of EGFR gene mutations or EGFR wide-type. Results The Nrf2 positive rate was 71.2% and Keap1 high expression rate was 34.6% in 104 patients. The Nrf2 positive rate significantly correlated with gender, stage and status of EGFR gene mutation (P0.05. The high expression of Keap1 was not significantly correlated with gender, age, smoking, differentiation, subtype of lung adenocarcinoma and status of EGFR gene mutation (P>0.05. The progression -free survival (PFS and overall survival (OS of the patients treated by EGFR-TKIs were significantly correlated with the expression level of Nrf2, but not with Keap1. The PFS and OS of the patients with Nrf2 high expression were significantly shorter than the patients with low/negative expression (P<0.05. Furthermore, Nrf2 high expression was the independent predictive factor for EGFR-TKIs induced PFS and OS (P<0.05. Conclusion The Nrf2 positive rate significantly correlated with the status of EGFR gene mutation in lung adenocarcinoma. The Nrf2 high expression significantly

  18. [Nrf2 and Keap1 Abnormalities in 104 Lung Adenocarcinoma Cases and Association with Clinicopathologic Features].

    Science.gov (United States)

    Xiao, Yu; Zhu, Xiang; Gu, Yangchun; Chen, Sen; Liang, Li; Cao, Baoshan

    2018-03-20

    There are significantly interindividual variations of the expression level of nuclear factor erythroid-2-related factor 2 (Nrf2) and/or Kelch-like ECH-associated protein 1 (Keap1) in our previous studies. It has been proven that Nrf2 or Keap1 is related to resistance of chemotherapeutic drugs and/or epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). However, the expression of Nrf2 and Keap1 in lung adenocarcinoma patients with different "driver gene" is not clear. The aim of this study is to investigate the protein expression level of Nrf2 and Keap1 in lung adenocarcinoma and to elucidate the correlation between Nrf2 or Keap1 expression and the status of EGFR gene mutation and to determine the effects of Nrf2 and Keap1 on the patients. Immunohistochemical analysis of Nrf2 and Keap1 in tumor specimens was performed in a total of 104 lung adenocarcinoma patients with the status of EGFR gene mutations or EGFR wide-type. The Nrf2 positive rate was 71.2% and Keap1 high expression rate was 34.6% in 104 patients. The Nrf2 positive rate significantly correlated with gender, stage and status of EGFR gene mutation (P0.05). The high expression of Keap1 was not significantly correlated with gender, age, smoking, differentiation, subtype of lung adenocarcinoma and status of EGFR gene mutation (P>0.05). The progression -free survival (PFS) and overall survival (OS) of the patients treated by EGFR-TKIs were significantly correlated with the expression level of Nrf2, but not with Keap1. The PFS and OS of the patients with Nrf2 high expression were significantly shorter than the patients with low/negative expression (P<0.05). Furthermore, Nrf2 high expression was the independent predictive factor for EGFR-TKIs induced PFS and OS (P<0.05). The Nrf2 positive rate significantly correlated with the status of EGFR gene mutation in lung adenocarcinoma. The Nrf2 high expression significantly correlated with PFS and OS of EGFR-TKIs. Therefore, Nrf2 may be a biomarker

  19. Fluvastatin inhibits AGE-induced cell proliferation and migration via an ERK5-dependent Nrf2 pathway in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Ae-Rang Hwang

    Full Text Available Advanced glycation endproduct (AGE-induced vascular smooth muscle cell (VSMC proliferation and reactive oxygen species (ROS production are emerging as important mechanisms of diabetic vasculopathy, but little is known about the molecular mechanism responsible for the antioxidative effects of statins on AGEs. It has been reported that statins exert pleiotropic effects on the cardiovascular system due to decreases in AGE-induced cell proliferation, migration, and vascular inflammation. Thus, in the present study, the authors investigated the molecular mechanism by which statins decrease AGE-induced cell proliferation and VSMC migration. In cultured VSMCs, statins upregulated Nrf2-related antioxidant gene, NQO1 and HO-1, via an ERK5-dependent Nrf2 pathway. Inhibition of ERK5 by siRNA or BIX02189 (a specific ERK5 inhibitor reduced the statin-induced upregulations of Nrf2, NQO1, and HO-1. Furthermore, fluvastatin was found to significantly increase ARE promoter activity through ERK5 signaling, and to inhibit AGE-induced VSMC proliferation and migration as determined by MTT assay, cell counting, FACS analysis, a wound scratch assay, and a migration chamber assay. In addition, AGE-induced proliferation was diminished in the presence of Ad-CA-MEK5α encoding a constitutively active mutant form of MEK5α (an upstream kinase of ERK5, whereas depletion of Nrf2 restored statin-mediated reduction of AGE-induced cell proliferation. Moreover, fluvastatin suppressed the protein expressions of cyclin D1 and Cdk4, but induced p27, and blocked VSMC proliferation by regulating cell cycle. These results suggest statin-induced activation of an ERK5-dependent Nrf2 pathway reduces VSMC proliferation and migration induced by AGEs, and that the ERK5-Nrf2 signal module be viewed as a potential therapeutic target of vasculopathy in patients with diabetes and complications of the disease.

  20. Lipoxin A4-induced heme oxygenase-1 protects cardiomyocytes against hypoxia/reoxygenation injury via p38 MAPK activation and Nrf2/ARE complex.

    Directory of Open Access Journals (Sweden)

    Xiao-Qing Chen

    Full Text Available To investigate whether lipoxin A4 (LXA4 increases expression of heme oxygenase-1(HO-1 in cardiomyocytes, whether LXA4-induced HO-1 protects cardiomyocytes against hypoxia/reoxygenation (H/R injury, and what are the mechanisms involved in the LXA4-induced HO-1 induction.Rat cardiomyocytes were exposed to H/R injury with or without preincubation with LXA4 or HO-1 inhibitor ZnPP-IX or various signal molecule inhibitors. Expressions of HO-1 protein and mRNA were analyzed by using Western blot and RT-PCR respectively. Activity of nuclear factor E2-related factor 2 (Nrf2 binding to the HO-1 E1 enhancer was assessed by chromatin immunoprecipitation. Nrf2 binding to the HO-1 antioxidant responsive element (ARE were measured by using electrophoretic mobility shift assay.Pretreatment of the cells undergoing H/R lesion with LXA4 significantly reduced the lactate dehydrogenase and creatine kinase productions, increased the cell viability, and increased the expressions of HO-1 protein and mRNA and HO-1 promoter activity. HO-1 inhibition abolished the protective role of LXA4 on the cells undergoing H/R lesion. LXA4 increased p38 mitogen-activated protein kinase (p38 MAPK activation, nuclear translocation of Nrf2, Nrf2 binding to the HO-1 ARE and E1 enhancer in cardiomyocytes with or without H/R exposure.The protection role of LXA4 against H/R injury of cardiomyocytes is related to upregulation of HO-1, via activation of p38 MAPK pathway and nuclear translocation of Nrf2 and Nrf2 binding to the HO-1 ARE and E1 enhancer, but not via activation of phosphatidyinositol-3-kinase or extracellular signal-regulated kinase pathway.

  1. Photothrombosis-Induced Infarction of the Mouse Cerebral Cortex Is Not Affected by the Nrf2-Activator Sulforaphane

    Science.gov (United States)

    Hou, Linda; Nilsson, Åsa; Pekna, Marcela; Pekny, Milos; Nilsson, Michael

    2012-01-01

    Sulforaphane-induced activation of the transcription factor NF-E2 related factor 2 (Nrf2 or the gene Nfe2l2) and subsequent induction of the phase II antioxidant system has previously been shown to exert neuroprotective action in a transient model of focal cerebral ischemia. However, its ability to attenuate functional and cellular deficits after permanent focal cerebral ischemia is not clear. We assessed the neuroprotective effects of sulforaphane in the photothrombotic model of permanent focal cerebral ischemia. Sulforaphane was administered (5 or 50 mg/kg, i.p.) after ischemic onset either as a single dose or as daily doses for 3 days. Sulforaphane increased transcription of Nrf2, Hmox1, GCLC and GSTA4 mRNA in the brain confirming activation of the Nrf2 system. Single or repeated administration of sulforaphane had no effect on the infarct volume, nor did it reduce the number of activated glial cells or proliferating cells when analyzed 24 and 72 h after stroke. Motor-function as assessed by beam-walking, cylinder-test, and adhesive test, did not improve after sulforaphane treatment. The results show that sulforaphane treatment initiated after photothrombosis-induced permanent cerebral ischemia does not interfere with key cellular mechanisms underlying tissue damage. PMID:22911746

  2. Photothrombosis-induced infarction of the mouse cerebral cortex is not affected by the Nrf2-activator sulforaphane.

    Directory of Open Access Journals (Sweden)

    Michelle J Porritt

    Full Text Available Sulforaphane-induced activation of the transcription factor NF-E2 related factor 2 (Nrf2 or the gene Nfe2l2 and subsequent induction of the phase II antioxidant system has previously been shown to exert neuroprotective action in a transient model of focal cerebral ischemia. However, its ability to attenuate functional and cellular deficits after permanent focal cerebral ischemia is not clear. We assessed the neuroprotective effects of sulforaphane in the photothrombotic model of permanent focal cerebral ischemia. Sulforaphane was administered (5 or 50 mg/kg, i.p. after ischemic onset either as a single dose or as daily doses for 3 days. Sulforaphane increased transcription of Nrf2, Hmox1, GCLC and GSTA4 mRNA in the brain confirming activation of the Nrf2 system. Single or repeated administration of sulforaphane had no effect on the infarct volume, nor did it reduce the number of activated glial cells or proliferating cells when analyzed 24 and 72 h after stroke. Motor-function as assessed by beam-walking, cylinder-test, and adhesive test, did not improve after sulforaphane treatment. The results show that sulforaphane treatment initiated after photothrombosis-induced permanent cerebral ischemia does not interfere with key cellular mechanisms underlying tissue damage.

  3. Polydatin Protects Bone Marrow Stem Cells against Oxidative Injury: Involvement of Nrf 2/ARE Pathways

    Directory of Open Access Journals (Sweden)

    Meihui Chen

    2016-01-01

    Full Text Available Polydatin, a glucoside of resveratrol, has been reported to possess potent antioxidative effects. In the present study, we aimed to investigate the effects of polydatin in bone marrow-derived mesenchymal stem cells (BMSCs death caused by hydrogen peroxide (H2O2, imitating the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. In our study, MTT results showed that polydatin effectively prevented the decrease of cell viability caused by H2O2. Hochest 33258, Annexin V-PI, and Western blot assay showed H2O2-induced apoptosis in BMSCs, which was attenuated by polydatin. Further studies indicated that polydatin significantly protects BMSCs against apoptosis due to its antioxidative effects and the regulation of Nrf 2/ARE pathway. Taken together, our results indicate that polydatin could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments.

  4. Glucose availability is a decisive factor for Nrf2-mediated gene expression

    Directory of Open Access Journals (Sweden)

    Elke H. Heiss

    2013-01-01

    Full Text Available Activation of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2 is one of the major cellular defense lines against oxidative and xenobiotic stress, but also influences genes involved in lipid and glucose metabolism. It is unresolved whether the cytoprotective and metabolic responses mediated by Nrf2 are connected or separable events in non-malignant cells. In this study we show that activation of Nrf2, either by the small molecule sulforaphane or knockout of the Nrf2 inhibitor Keap1, leads to increased cellular glucose uptake and increased glucose addiction in fibroblasts. Upon Nrf2 activation glucose is preferentially metabolized through the pentose phosphate pathway with increased production of NADPH. Interference with the supply of glucose or the pentose phosphate pathway and NADPH generation not only hampers Nrf2-mediated detoxification of reactive oxygen species on the enzyme level but also Nrf2-initiated expression of antioxidant defense proteins, such as glutathione reductase and heme-oxygenase1. We conclude that the Nrf2-dependent protection against oxidative stress relies on an intact pentose phosphate pathway and that there is crosstalk between metabolism and detoxification already at the level of gene expression in mammalian cells.

  5. Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing.

    Science.gov (United States)

    Hosur, Vishnu; Burzenski, Lisa M; Stearns, Timothy M; Farley, Michelle L; Sundberg, John P; Wiles, Michael V; Shultz, Leonard D

    2017-04-01

    Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2 cub/cub ) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2 cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2 cub/cub and Rhbdf2 +/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2 cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Nrf2 signaling and redox homeostasis in the aging heart: A potential target to prevent cardiovascular diseases?

    Science.gov (United States)

    Silva-Palacios, Alejandro; Königsberg, Mina; Zazueta, Cecilia

    2016-03-01

    Aging process is often accompanied with a high incidence of cardiovascular diseases (CVD) due to the synergistic effects of age-related changes in heart morphology/function and prolonged exposure to injurious effects of CVD risk factors. Oxidative stress, considered a hallmark of aging, is also an important feature in pathologies that predispose to CVD development, like hypertension, diabetes and obesity. Approaches directed to prevent the occurrence of CVD during aging have been explored both in experimental models and in controlled clinical trials, in order to improve health span, reduce hospitalizations and increase life quality during elderly. In this review we discuss oxidative stress role as a main risk factor that relates CVD with aging. As well as interventions that aim to reduce oxidative stress by supplementing with exogenous antioxidants. In particular, strategies of improving the endogenous antioxidant defenses through activating the nuclear factor related-2 factor (Nrf2) pathway; one of the best studied molecules in cellular redox homeostasis and a master regulator of the antioxidant and phase II detoxification response. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Vitamin E antagonizes ozone-induced asthma exacerbation in Balb/c mice through the Nrf2 pathway.

    Science.gov (United States)

    Duan, Liju; Li, Jinquan; Ma, Ping; Yang, Xu; Xu, Shunqing

    2017-09-01

    Millions of people are regularly exposed to ozone, a gas known to contribute significantly to worsening the symptoms of patients with asthma. However, the mechanisms underlying these ozone exacerbation effects are not fully understood. In this study, we examined the exacerbation effect of ozone in OVA-induced asthma mice and tried to demonstrate the protective mechanism of vitamin E (VE). An asthma mouse model was established, and used to identify the exacerbating effects of ozone by assessing cytokine and serum immunoglobulin concentrations, airway leukocyte infiltration, histopathological changes in lung tissues, and airway hyper-responsiveness. We then determined the amount of reactive oxygen species (ROS) accumulated, the extent to which VE induced ROS elimination, and examined the antagonistic effects of VE on the ozone-induced exacerbating effects. This study showed that 1-ppm ozone exposure could exacerbate OVA-induced asthma in mice. More importantly we found that ozone induced oxidative stress in asthmatic airways may lead to the inhibition of Nuclear factor-erythroid 2-related factor 2 (Nrf2), and may subsequently induce even more exaggerated oxidative stress associated with asthma exacerbation. Through VE induced Nrf2 activation and the subsequent increase in Nrf2 target protein expression, this study suggests a novel mechanism for alleviating ozone exacerbated asthma symptoms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Activation of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2) pathway through covalent modification of the 2-alkenal group of aliphatic electrophiles in Coriandrum sativum L.

    Science.gov (United States)

    Abiko, Yumi; Mizokawa, Mai; Kumagai, Yoshito

    2014-11-12

    Phytochemicals able to activate the transcription factor NF-E2-related factor 2 (Nrf2) were isolated from an extract of Coriandrum sativum L. (C. sativum) leaves by preparative octadecyl silica column chromatography. Ultraperformance liquid chromatography and liquid chromatography-tandem mass spectrometry analysis of the isolated components after derivatization with 2-diphenylacetyl-1,3-inandione-1-hydrazone and experiments with HepG2 cells revealed that (E)-2-alkenals with different carbon numbers play a role in Nrf2 activation in these cells. Such Nrf2 activation appears to be attributable to S-alkylation of Kelch-like ECH-associated protein 1 (Keap1), the negative regulator for Nrf2, as determined by a biotin-PEAC5-maleimide assay. Interestingly, (E)-2-butenal caused Keap1 modification and Nrf2 activation, whereas butanal did not. These results suggest that (E)-2-alkenals with an α,β-unsaturated aldehyde moiety, which is a common substituent in phytochemicals isolated from C. sativum leaves, activate the Keap1/Nrf2 pathway associated with cellular protection.

  9. Induction of activation of the antioxidant response element and stabilization of Nrf2 by 3-(3-pyridylmethylidene)-2-indolinone (PMID) confers protection against oxidative stress-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jia-Wei [Tianjin University, School of Chemical Engineering and Technology, Department of pharmaceutical engineering, Tianjin 300072 (China); Beijing Institute of Radiation Medicine, Beijing 100850 (China); Liu, Jing [Beijing Institute of Radiation Medicine, Beijing 100850 (China); Kong, Xiang-Zhen [Tianjin University, School of Chemical Engineering and Technology, Department of pharmaceutical engineering, Tianjin 300072 (China); Beijing Institute of Radiation Medicine, Beijing 100850 (China); Zhang, Shou-Guo [Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wang, Xiao-Hui [Beijing Institute of Radiation Medicine, Beijing 100850 (China); State Key laboratory of Proteomics, Beijing 100850 (China); Yu, Miao; Zhan, Yi-Qun; Li, Wei; Xu, Wang-Xiang [Beijing Institute of Radiation Medicine, Beijing 100850 (China); Tang, Liu-Jun [Beijing Institute of Radiation Medicine, Beijing 100850 (China); State Key laboratory of Proteomics, Beijing 100850 (China); Ge, Chang-Hui [Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wang, Lin, E-mail: wanlin07@sina.com [Beijing Institute of Radiation Medicine, Beijing 100850 (China); Li, Chang-Yan, E-mail: happylichy@yahoo.com.cn [Beijing Institute of Radiation Medicine, Beijing 100850 (China); State Key laboratory of Proteomics, Beijing 100850 (China); Yang, Xiao-Ming, E-mail: xmyang2@nic.bmi.ac.cn [Tianjin University, School of Chemical Engineering and Technology, Department of pharmaceutical engineering, Tianjin 300072 (China); Beijing Institute of Radiation Medicine, Beijing 100850 (China); State Key laboratory of Proteomics, Beijing 100850 (China)

    2012-03-01

    The antioxidant response elements (ARE) are a cis-acting enhancer sequence located in regulatory regions of antioxidant and detoxifying genes. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a member of the Cap ‘n’ Collar family of transcription factors that binds to the ARE and regulates the transcription of specific ARE-containing genes. Under oxidative stress, Nrf2/ARE induction is fundamental to defense against reactive oxygen species (ROS) and serves as a key factor in the protection against toxic xenobiotics. 3-(3-Pyridylmethylidene)-2-Indolinone (PMID) is a derivative of 2-indolinone compounds which act as protein kinase inhibitors and show anti-tumor activity. However, the role of PMID in the oxidative stress remains unknown. In the present study, we showed that PMID induced the activation of ARE-mediated transcription, increased the DNA-binding activity of Nrf2 and then up-regulated the expression of antioxidant genes such as HO-1, SOD, and NQO1. The level of Nrf2 protein was increased in cells treated with PMID by a post-transcriptional mechanism. Under CHX treatment, the stability of Nrf2 protein was enhanced by PMID with decreased turnover rate. We showed that PMID reduced the ubiquitination of Nrf2 and disrupted the Cullin3 (Cul3)-Keap1 interaction. Furthermore, cells treated with PMID showed resistance to cytotoxicity by H{sub 2}O{sub 2} and pro-oxidant 6-OHDA. PMID also up-regulated the antioxidant level in BALB/c mice. Taken together, the compound PMID induces the ARE-mediated gene expression through stabilization of Nrf2 protein and activation of Nrf2/ARE pathway and protects against oxidative stress-mediated cell death. -- Highlights: ► PMID up-regulates ARE-mediated antioxidant gene expression in vitro and in vivo. ► PMID enhances the stabilization of Nrf2 protein, decreasing Nrf2 turnover rate. ► PMID disrupted the Cullin3 (Cul3)-Keap1 interaction. ► PMID protects against cell death induced by H{sub 2}O{sub 2} and pro-oxidant 6

  10. Benzo[a]pyrene affects Jurkat T cells in the activated state via the antioxidant response element dependent Nrf2 pathway leading to decreased IL-2 secretion and redirecting glutamine metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Murugaiyan, Jayaseelan; Rockstroh, Maxie; Wagner, Juliane [Department of Proteomics, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Baumann, Sven [Department of Metabolomics, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Schorsch, Katrin [Department of Proteomics, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Trump, Saskia; Lehmann, Irina [Department of Environmental Immunology, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Bergen, Martin von [Department of Proteomics, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Department of Environmental Immunology, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg (Denmark); Tomm, Janina M., E-mail: Janina.tomm@ufz.de [Department of Proteomics, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany)

    2013-06-15

    There is a clear evidence that environmental pollutants, such as benzo[a]pyrene (B[a]P), can have detrimental effects on the immune system, whereas the underlying mechanisms still remain elusive. Jurkat T cells share many properties with native T lymphocytes and therefore are an appropriate model to analyze the effects of environmental pollutants on T cells and their activation. Since environmental compounds frequently occur at low, not acute toxic concentrations, we analyzed the effects of two subtoxic concentrations, 50 nM and 5 μM, on non- and activated cells. B[a]P interferes directly with the stimulation process as proven by an altered IL-2 secretion. Furthermore, B[a]P exposure results in significant proteomic changes as shown by DIGE analysis. Pathway analysis revealed an involvement of the AhR independent Nrf2 pathway in the altered processes observed in unstimulated and stimulated cells. A participation of the Nrf2 pathway in the change of IL-2 secretion was confirmed by exposing cells to the Nrf2 activator tBHQ. tBHQ and 5 μM B[a]P caused similar alterations of IL-2 secretion and glutamine/glutamate metabolism. Moreover, the proteome changes in unstimulated cells point towards a modified regulation of the cytoskeleton and cellular stress response, which was proven by western blotting. Additionally, there is a strong evidence for alterations in metabolic pathways caused by B[a]P exposure in stimulated cells. Especially the glutamine/glutamate metabolism was indicated by proteome pathway analysis and validated by metabolite measurements. The detrimental effects were slightly enhanced in stimulated cells, suggesting that stimulated cells are more vulnerable to the environmental pollutant model compound B[a]P. - Highlights: • B[a]P affects the proteome of Jurkat T cells also at low concentrations. • Exposure to B[a]P (50 nM, 5 μM) did not change Jurkat T cell viability. • Both B[a]P concentrations altered the IL-2 secretion of stimulated cells.

  11. Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells.

    Science.gov (United States)

    Foresti, Roberta; Bains, Sandip K; Pitchumony, Tamil Selvi; de Castro Brás, Lisandra E; Drago, Filippo; Dubois-Randé, Jean-Luc; Bucolo, Claudio; Motterlini, Roberto

    2013-10-01

    The nuclear factor erythroid derived 2-related factor 2 (Nrf2) and the antioxidant protein heme oxygenase-1 (HO-1) are crucial components of the cellular stress response. These two systems work together to combat oxidative stress and inflammation and are attractive drug targets for counteracting different pathologies, including neuroinflammation. We aimed to identify the most effective Nrf2/HO-1 activators that modulate the inflammatory response in microglia cells. In the present study, we searched the literature and selected 56 compounds reported to activate Nrf2 or HO-1 and analyzed them for HO-1 induction at 6 and 24h and cytotoxicity in BV2 microglial cells in vitro. Approximately 20 compounds up-regulated HO-1 at the concentrations tested (5-20 μM) with carnosol, supercurcumin, cobalt protoporphyrin-IX and dimethyl fumarate exhibiting the best induction/low cytotoxicity profile. Up-regulation of HO-1 by some compounds resulted in increased cellular bilirubin levels but did not augment the expression of proteins involved in heme synthesis (ALAS 1) or biliverdin reductase. Bilirubin production by HO-1 inducers correlated with their potency in inhibiting nitrite production after challenge with interferon-γ (INF-γ) or lipopolysaccharide (LPS). The compounds down-regulated the inflammatory response (TNF-α, PGE2 and nitrite) more strongly in cells challenged with INF-γ than LPS, and silencing HO-1 or Nrf2 with shRNA differentially affected the levels of inflammatory markers. These findings indicate that some small activators of Nrf2/HO-1 are effective modulators of microglia inflammation and highlight the chemical scaffolds that can serve for the synthesis of potent new derivatives to counteract neuroinflammation and neurodegeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Soybean-Derived Phytoalexins Improve Cognitive Function through Activation of Nrf2/HO-1 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ji Yeon Seo

    2018-01-01

    Full Text Available As soy-derived glyceollins are known to induce antioxidant enzymes in various types of cells and tissues, we hypothesized that the compounds could protect neurons from damage due to reactive oxygen species (ROS. In order to examine the neuroprotective effect of glyceollins, primary cortical neurons collected from mice and mouse hippocampal HT22 cells were challenged with glutamate. Glyceollins attenuated glutamate-induced cytotoxicity in primary cortical neuron isolated from mice carrying wild-type nuclear factor (erythroid-derived 2-like 2 (Nrf2, but the compounds were ineffective in those isolated from Nrf2 knockout mice, suggesting the involvement of the Nrf2 signaling pathway in glyceollin-mediated neuroprotection. Furthermore, the inhibition of heme oxygenase-1 (HO-1, a major downstream enzyme of Nrf2, abolished the suppressive effect of glyceollins against glutamate-induced ROS production and cytotoxicity, confirming that activation of HO-1 by glyceollins is responsible for the neuroprotection. To examine whether glyceollins also improve cognitive ability, mice pretreated with glyceollins were challenged with scopolamine and subjected to behavioral tests. Glyceollins attenuated scopolamine-induced cognitive impairment of mice, but failed to enhance memory in Nrf2 knockout mice, suggesting that the memory-enhancing effect is also mediated by the Nrf2 signaling pathway. Overall, glyceollins showed neuroprotection against glutamate-induced damage, and attenuated scopolamine-induced memory deficits in an Nrf2-dependent manner.

  13. Aldose Reductase Inhibitor Protects against Hyperglycemic Stress by Activating Nrf2-Dependent Antioxidant Proteins

    Directory of Open Access Journals (Sweden)

    Kirtikar Shukla

    2017-01-01

    Full Text Available We have shown earlier that pretreatment of cultured cells with aldose reductase (AR inhibitors prevents hyperglycemia-induced mitogenic and proinflammatory responses. However, the effects of AR inhibitors on Nrf2-mediated anti-inflammatory responses have not been elucidated yet. We have investigated how AR inhibitor fidarestat protects high glucose- (HG- induced cell viability changes by increasing the expression of Nrf2 and its dependent phase II antioxidant enzymes. Fidarestat pretreatment prevents HG (25 mM-induced Thp1 monocyte viability. Further, treatment of Thp1 monocytes with fidarestat caused a time-dependent increase in the expression as well as the DNA-binding activity of Nrf2. In addition, fidarestat augmented the HG-induced Nrf2 expression and activity and also upregulated the expression of Nrf2-dependent proteins such as hemeoxygenase-1 (HO1 and NQO1 in Thp1 cells. Similarly, treatment with AR inhibitor also induced the expression of Nrf2 and HO1 in STZ-induced diabetic mice heart and kidney tissues. Further, AR inhibition increased the HG-induced expression of antioxidant enzymes such as SOD and catalase and activation of AMPK-α1 in Thp1 cells. Our results thus suggest that pretreatment with AR inhibitor prepares the monocytes against hyperglycemic stress by overexpressing the Nrf2-dependent antioxidative proteins.

  14. Aldose Reductase Inhibitor Protects against Hyperglycemic Stress by Activating Nrf2-Dependent Antioxidant Proteins.

    Science.gov (United States)

    Shukla, Kirtikar; Pal, Pabitra Bikash; Sonowal, Himangshu; Srivastava, Satish K; Ramana, Kota V

    2017-01-01

    We have shown earlier that pretreatment of cultured cells with aldose reductase (AR) inhibitors prevents hyperglycemia-induced mitogenic and proinflammatory responses. However, the effects of AR inhibitors on Nrf2-mediated anti-inflammatory responses have not been elucidated yet. We have investigated how AR inhibitor fidarestat protects high glucose- (HG-) induced cell viability changes by increasing the expression of Nrf2 and its dependent phase II antioxidant enzymes. Fidarestat pretreatment prevents HG (25 mM)-induced Thp1 monocyte viability. Further, treatment of Thp1 monocytes with fidarestat caused a time-dependent increase in the expression as well as the DNA-binding activity of Nrf2. In addition, fidarestat augmented the HG-induced Nrf2 expression and activity and also upregulated the expression of Nrf2-dependent proteins such as hemeoxygenase-1 (HO1) and NQO1 in Thp1 cells. Similarly, treatment with AR inhibitor also induced the expression of Nrf2 and HO1 in STZ-induced diabetic mice heart and kidney tissues. Further, AR inhibition increased the HG-induced expression of antioxidant enzymes such as SOD and catalase and activation of AMPK- α 1 in Thp1 cells. Our results thus suggest that pretreatment with AR inhibitor prepares the monocytes against hyperglycemic stress by overexpressing the Nrf2-dependent antioxidative proteins.

  15. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury.

    Science.gov (United States)

    Kim, Eun Nim; Lim, Ji Hee; Kim, Min Young; Ban, Tae Hyun; Jang, In-Ae; Yoon, Hye Eun; Park, Cheol Whee; Chang, Yoon Sik; Choi, Bum Soon

    2018-01-11

    Two important issues in the aging kidney are mitochondrial dysfunction and oxidative stress. An Nrf2 activator, resveratrol, is known to have various effects. Resveratrol may prevent inflammation and oxidative stress by activating Nrf2 and SIRT1 signaling. We examined whether resveratrol could potentially ameliorate the cellular condition, such as renal injury due to cellular oxidative stress and mitochondrial dysfunction caused by aging. Male 18-month-old C57BL/6 mice were used. Resveratrol (40 mg/kg) was administered to aged mice for 6 months. We compared histological changes, oxidative stress, and aging-related protein expression in the kidney between the resveratrol-treated group (RSV) and the control group (cont). We performed experiments using small-interfering RNAs (siRNAs) for Nrf2 and SIRT1 in cultured HK2 cells. Resveratrol improved renal function, proteinuria, histological changes and inflammation in aging mice. Also, expression of Nrf2-HO-1-NOQ-1 signaling and SIRT1-AMPK-PGC-1α signaling was increased in the RSV group. Transfection with Nrf2 and SIRT1 siRNA prevented resveratrol-induced anti-oxidative effect in HK2 cells in media treated with H 2 O 2 . Activation of the Nrf2 and SIRT1 signaling pathways ameliorated oxidative stress and mitochondrial dysfunction. Pharmacological targeting of Nrf2 signaling molecules may reduce the pathologic changes of aging in the kidney.

  16. Nrf2 activators as potential modulators of injury in human kidney cells

    Directory of Open Access Journals (Sweden)

    Amandla Atilano-Roque

    2016-01-01

    Full Text Available Cisplatin is a chemotherapeutic agent used in the treatment of solid tumors, with clinical use often complicated by kidney toxicity. Nuclear factor (erythroid-derived-2-like 2 (Nrf2 is a transcription factor involved in kidney protectant effects. The purpose of this study was to determine whether the Nrf2 activators oltipraz, sulforaphane, and oleanolic acid could protect human kidney cells against cisplatin-induced injury and to compare the protective effects between three Nrf2 activators. Human proximal tubule cells (hPTC and human embryonic kidney 293 cells (HEK293 were exposed to cisplatin doses in the absence and presence of Nrf2 activators. Pre- and delayed-cisplatin and Nrf2 activator exposures were also assessed. Cell viability was enhanced with Nrf2 activator exposures, with differences detected between pre- and delayed-treatments. Both sulforaphane and oltipraz increased the expression of anti-oxidant genes GCLC and NQO1. These findings suggest potential human kidney protective benefits of Nrf2 activators with planned exposures to cisplatin.

  17. Curcumin attenuates insulin resistance in hepatocytes by inducing Nrf2 nuclear translocation.

    Science.gov (United States)

    Zhao, Shu-Guang; Li, Qiang; Liu, Zhen-Xiong; Wang, Jing-Jie; Wang, Xv-Xia; Qin, Ming; Wen, Qin-Sheng

    2011-01-01

    NF-E2-Related Factor-2 (Nrf2) is a transcription factor that plays a crucial role in the cellular protection against oxidative stress. Curcumin has been reported to induce Nrf2 nuclear translocation and upregulate the expression of numerous reactive oxygen species (ROS) detoxifying and antioxidant genes in hepatocytes. This study was designed to investigate whether curcumin-induced Nrf2 nuclear translocation could reduce ROS-mediated insulin resistance in cultured LO2 hepatocytes. Human LO2 hepatocytes were incubated with curcumine and glucose oxidase (GO) in the presence/absence of wortmannin (a phosphatidyinositol 3-kinase (PI3K) inhibitor), oxidative stress, cellular damage, Nrf2 nuclear translocation and insulin resistance were measured. GO exposure significantly increased intracellular ROS, glutathione (GSH) depletion, malondialdehyde (MDA) formation, and increased activities of cellular lactate dehydrogenase (LDH) and aspartate amino transferase (AST), as well as causing insulin resistance. Curcumin pretreatment significantly attenuated these disturbances in intracellular ROS, liver enzyme activity and significantly antagonized the lipid peroxidation, GSH depletion and insulin resistance induced by GO in LO2 hepatocytes. These effects paralleled Nrf2 nuclear translocation induced by curcumin. Wortmannin partially blocked curcumin-induced Nrf2 nuclear translocation. In addition, wortmannin prevented curcumin-induced improvements in intracellular ROS, MDA formation, GSH depletion, liver enzyme activity and insulin resistance in cultured LO2 hepatocytes. These findings suggest that curcumin could reduce ROS-mediated insulin resistance in hepatocytes, at least in part through nuclear translocation of Nrf2.

  18. Sulforaphane Protects Rodent Retinas against Ischemia-Reperfusion Injury through the Activation of the Nrf2/HO-1 Antioxidant Pathway

    Science.gov (United States)

    Liu, Ruixing; Brecha, Nicholas C.; Yu, Albert Cheung Hoi; Pu, Mingliang

    2014-01-01

    Retinal ischemia-reperfusion (I/R) injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF), which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2)-mediated induction of heme oxygenase-1 (HO-1). This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p.) injected with SF (12.5 mg/kg) or vehicle (corn oil) once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP) to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II) (ZnPP, 30 mg/kg, i.p.) treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs) and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL), and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway. PMID:25470382

  19. Sulforaphane protects rodent retinas against ischemia-reperfusion injury through the activation of the Nrf2/HO-1 antioxidant pathway.

    Directory of Open Access Journals (Sweden)

    Hong Pan

    Full Text Available Retinal ischemia-reperfusion (I/R injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF, which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2-mediated induction of heme oxygenase-1 (HO-1. This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p. injected with SF (12.5 mg/kg or vehicle (corn oil once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II (ZnPP, 30 mg/kg, i.p. treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL, and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway.

  20. Protective Effect of Tempol on Acute Kidney Injury Through PI3K/Akt/Nrf2 Signaling Pathway.

    Science.gov (United States)

    Zhang, Gensheng; Wang, Qiaoling; Zhou, Qin; Wang, Renjun; Xu, Minze; Wang, Huiping; Wang, Lei; Wilcox, Christopher S; Liu, Ruisheng; Lai, En Yin

    2016-01-01

    Tempol is a protective antioxidant against ischemic injury in many animal models. The molecular mechanisms are not well understood. Nuclear factor erythroid 2-related factor (Nrf2) is a master transcription factor during oxidative stress, which is enhanced by activation of protein kinase C (PKC) pathway. Another factor, tubular epithelial apoptosis, is mediated by activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, Akt) signaling pathway during renal ischemic injury. We tested the hypothesis that tempol activates PKC or PI3K/Akt/Nrf2 pathways to transcribe many genes that coordinate endogenous antioxidant defense. The right renal pedicle was clamped for 45 minutes and the left kidney was removed to study renal ischemia/reperfusion (I/R) injury in C57BL/6 mice. The response was assessed from serum parameters, renal morphology and renal expression of PKC, phosphorylated-PKC (p-PKC), Nrf2, heme oxygenase-1 (HO-1), Akt, phosphorylated-Akt (p-Akt), pro-caspase-3 and cleaved caspase-3 in groups of sham and I/R mice given vehicle, or tempol (50 or 100 mg/kg, intraperitoneal injection). The serum malondialdehyde (MDA, marker of reactive oxygen species) doubled and the BUN and creatinine increased 5- to 10-fold after I/R injury. Tempol (50 or 100 mg/kg) prevented the increases in MDA but only tempol (50 mg/kg) lessened the increases in BUN and creatinine and moderated the acute tubular necrosis. I/R did not change expression of PKC or p-PKC but reduced renal expression of Nrf2, p-Akt, HO-1 and pro-caspase-3 and increased cleaved caspase-3. Tempol (50 mg/kg) prevented these changes produced by I/R whereas tempol (100 mg/kg) had lesser or inconsistent effects. Tempol (50 mg/kg) prevents lipid peroxidation and attenuates renal damage after I/R injury. The beneficial pathway apparently is not dependent on upregulation or phosphorylation of PKC, at lower tempol doses, does implicate upregulation of Akt with expression of Nrf2 that could account for the increase

  1. Protective Effect of Tempol on Acute Kidney Injury Through PI3K/Akt/Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Gensheng Zhang

    2016-02-01

    Full Text Available Background/Aims: Tempol is a protective antioxidant against ischemic injury in many animal models. The molecular mechanisms are not well understood. Nuclear factor erythroid 2-related factor (Nrf2 is a master transcription factor during oxidative stress, which is enhanced by activation of protein kinase C (PKC pathway. Another factor, tubular epithelial apoptosis, is mediated by activation of phosphoinositide 3-kinase (PI3K/protein kinase B (PKB, Akt signaling pathway during renal ischemic injury. We tested the hypothesis that tempol activates PKC or PI3K/Akt/Nrf2 pathways to transcribe many genes that coordinate endogenous antioxidant defense. Methods: The right renal pedicle was clamped for 45 minutes and the left kidney was removed to study renal ischemia/reperfusion (I/R injury in C57BL/6 mice. The response was assessed from serum parameters, renal morphology and renal expression of PKC, phosphorylated-PKC (p-PKC, Nrf2, heme oxygenase-1 (HO-1, Akt, phosphorylated-Akt (p-Akt, pro-caspase-3 and cleaved caspase-3 in groups of sham and I/R mice given vehicle, or tempol (50 or 100 mg/kg, intraperitoneal injection. Results: The serum malondialdehyde (MDA, marker of reactive oxygen species doubled and the BUN and creatinine increased 5- to 10-fold after I/R injury. Tempol (50 or 100 mg/kg prevented the increases in MDA but only tempol (50 mg/kg lessened the increases in BUN and creatinine and moderated the acute tubular necrosis. I/R did not change expression of PKC or p-PKC but reduced renal expression of Nrf2, p-Akt, HO-1 and pro-caspase-3 and increased cleaved caspase-3. Tempol (50 mg/kg prevented these changes produced by I/R whereas tempol (100 mg/kg had lesser or inconsistent effects. Conclusion: Tempol (50 mg/kg prevents lipid peroxidation and attenuates renal damage after I/R injury. The beneficial pathway apparently is not dependent on upregulation or phosphorylation of PKC, at lower tempol doses, does implicate upregulation of Akt with

  2. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - implication in modification of radiation damage.

    Science.gov (United States)

    Anuranjani; Bala, Madhu

    2014-01-01

    Whole body exposure to low linear energy transfer (LET) ionizing radiations (IRs) damages vital intracellular bio-molecules leading to multiple cellular and tissue injuries as well as pathophysiologies such as inflammation, immunosuppression etc. Nearly 70% of damage is caused indirectly by radiolysis of intracellular water leading to formation of reactive oxygen species (ROS) and free radicals and producing a state of oxidative stress. The damage is also caused by direct ionization of biomolecules. The type of radiation injuries is dependent on the absorbed radiation dose. Sub-lethal IR dose produces more of DNA base damages, whereas higher doses produce more DNA single strand break (SSBs), and double strand breaks (DSBs). The Nrf2-ARE pathway is an important oxidative stress regulating pathway. The DNA DSBs repair regulated by MRN complex, immunomodulation and inflammation regulated by HMGB1 and various types of cytokines are some of the key pathways which interact with each other in a complex manner and modify the radiation response. Because the majority of radiation damage is via oxidative stress, it is essential to gain in depth understanding of the mechanisms of Nrf2-ARE pathway and understand its interactions with MRN complex, HMGB1 and cytokines to increase our understanding on the radiation responses. Such information is of tremendous help in development of medical radiation countermeasures, radioprotective drugs and therapeutics. Till date no approved and safe countermeasure is available for human use. This study reviews the Nrf2-ARE pathway and its crosstalk with MRN-complex, HMGB1 and cytokines (TNF-a, IL-6, IFN-? etc.). An attempt is also made to review the modification of some of these pathways in presence of selected antioxidant radioprotective compounds or herbal extracts.

  3. ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells.

    Science.gov (United States)

    Bao, Lingjie; Wu, Jianfa; Dodson, Matthew; Rojo de la Vega, Elisa Montserrat; Ning, Yan; Zhang, Zhenbo; Yao, Ming; Zhang, Donna D; Xu, Congjian; Yi, Xiaofang

    2017-06-01

    Previously, we have demonstrated that NRF2 plays a key role in mediating cisplatin resistance in ovarian cancer. To further explore the mechanism underlying NRF2-dependent cisplatin resistance, we stably overexpressed or knocked down NRF2 in parental and cisplatin-resistant human ovarian cancer cells, respectively. These two pairs of stable cell lines were then subjected to microarray analysis, where we identified 18 putative NRF2 target genes. Among these genes, ABCF2, a cytosolic member of the ABC superfamily of transporters, has previously been reported to contribute to chemoresistance in clear cell ovarian cancer. A detailed analysis on ABCF2 revealed a functional antioxidant response element (ARE) in its promoter region, establishing ABCF2 as an NRF2 target gene. Next, we investigated the contribution of ABCF2 in NRF2-mediated cisplatin resistance using our stable ovarian cancer cell lines. The NRF2-overexpressing cell line, containing high levels of ABCF2, was more resistant to cisplatin-induced apoptosis compared to its control cell line; whereas the NRF2 knockdown cell line with low levels of ABCF2, was more sensitive to cisplatin treatment than its control cell line. Furthermore, transient overexpression of ABCF2 in the parental cells decreased apoptosis and increased cell viability following cisplatin treatment. Conversely, knockdown of ABCF2 using specific siRNA notably increased apoptosis and decreased cell viability in cisplatin-resistant cells treated with cisplatin. This data indicate that the novel NRF2 target gene, ABCF2, plays a critical role in cisplatin resistance in ovarian cancer, and that targeting ABCF2 may be a new strategy to improve chemotherapeutic efficiency. © 2017 Wiley Periodicals, Inc.

  4. A novel role for small molecule glycomimetics in the protection against lipid-induced endothelial dysfunction: Involvement of Akt/eNOS and Nrf2/ARE signaling.

    Science.gov (United States)

    Mahmoud, Ayman M; Wilkinson, Fiona L; Jones, Alan M; Wilkinson, James A; Romero, Miguel; Duarte, Juan; Alexander, M Yvonne

    2017-01-01

    Glycomimetics are a diverse array of saccharide-inspired compounds, designed to mimic the bioactive functions of glycosaminoglycans. Therefore, glycomimetics represent a unique source of novel therapies to target aberrant signaling and protein interactions in a wide range of diseases. We investigated the protective effects of four newly synthesized small molecule glycomimetics against lipid-induced endothelial dysfunction, with an emphasis on nitric oxide (NO) and oxidative stress. Four aromatic sugar mimetics were synthesized by the stepwise transformation of 2,5-dihydroxybenzoic acid to derivatives (C1-C4) incorporating sulfate groups to mimic the structure of heparan sulfate. Glycomimetic-treated human umbilical vein endothelial cells (HUVECs) were exposed to palmitic acid to model lipid-induced oxidative stress. Palmitate-induced impairment of NO production was restored by the glycomimetics, through activation of Akt/eNOS signaling. Furthermore, C1-C4 significantly inhibited palmitate-induced reactive oxygen species (ROS) production, lipid peroxidation, and activity and expression of NADPH oxidase. These effects were attributed to activation of the Nrf2/ARE pathway and downstream activation of cellular antioxidant and cytoprotective proteins. In ex vivo vascular reactivity studies, the glycomimetics (C1-C4) also demonstrated a significant improvement in endothelium-dependent relaxation and decreased ROS production and NADPH oxidase activity in isolated mouse thoracic aortic rings exposed to palmitate. The small molecule glycomimetics, C1-C4, protect against lipid-induced endothelial dysfunction through up-regulation of Akt/eNOS and Nrf2/ARE signaling pathways. Thus, carbohydrate-derived therapeutics are a new class of glycomimetic drugs targeting endothelial dysfunction, regarded as the first line of defense against vascular complications in cardiovascular disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Antroquinonol differentially modulates T cell activity and reduces interleukin-18 production, but enhances Nrf2 activation, in murine accelerated severe lupus nephritis.

    Science.gov (United States)

    Tsai, Pei-Yi; Ka, Shuk-Man; Chang, Jia-Ming; Lai, Jenn-Haung; Dai, Ming-Shen; Jheng, Huei-Lin; Kuo, Mao-Tien; Chen, Peini; Chen, Ann

    2012-01-01

    Accelerated severe lupus nephritis (ASLN), with an acute onset of severe clinical manifestations and histopathologic renal lesions, may represent transformation of mild LN to a severe form of glomerulonephritis. Abnormal activation of T and B cells and/or oxidative stress may play a major role in the pathogenesis of ASLN. This study tested the hypothesis that antroquinonol, a purified compound and major effective component of Antrodia camphorata with antiinflammatory and antioxidant activities, might prevent the transformation of mild LN into higher-grade (severe) nephritis in a murine lupus model. Experimental ASLN was induced in (NZB×NZW)F1 mice by twice weekly intraperitoneal injections of Salmonella-type lipopolysaccharide (LPS). Starting 2 days after the first dose of LPS, mice were treated daily with antroquinonol, administered by gavage, for different durations up to 5 weeks. Antroquinonol administration significantly ameliorated the proteinuria, hematuria, impairment of renal function, and development of severe renal lesions, especially cellular crescent formation, neutrophil infiltration, fibrinoid necrosis, and T cell proliferation in the glomerulus, as well as periglomerular interstitial inflammation. Mechanistic analyses revealed that antroquinonol 1) inhibited T cell activation/proliferation, but enhanced Treg cell suppression and reduced renal production of interleukin-18 (IL-18); 2) inhibited production of reactive oxygen species and nitric oxide, but increased activation of Nrf2 in the kidney; and 3) suppressed renal inflammation via blocking of NF-κB activation. Antroquinonol may have therapeutic potential for the early treatment of ASLN via its differential regulation of T cell function and lowering of IL-18 production, but also via the promotion of Nrf2 activation. Copyright © 2012 by the American College of Rheumatology.

  6. Seaweed extracts and unsaturated fatty acid constituents from the green alga Ulva lactuca as activators of the cytoprotective Nrf2–ARE pathway

    Science.gov (United States)

    Wang, Rui; Paul, Valerie J.; Luesch, Hendrik

    2013-01-01

    Increased amounts of reactive oxygen species (ROS) have been implicated in many pathological conditions, including cancer. The major machinery that the cell employs to neutralize excess ROS is through the activation of the antioxidant-response element (ARE) that controls the activation of many phase II detoxification enzymes. The transcription factor that recognizes the ARE, Nrf2, can be activated by a variety of small molecules, most of which contain an α,β-unsaturated carbonyl system. In the pursuit of chemopreventive agents from marine organisms, we built, fractionated, and screened a library of 30 field-collected eukaryotic algae from Florida. An edible green alga, Ulva lactuca, yielded multiple active fractions by ARE–luciferase reporter assay. We isolated three monounsaturated fatty acid (MUFA) derivatives as active components, including a new keto-type C18 fatty acid (1), the corresponding shorter chain C16 acid (2), and an amide derivative (3) of the C18 acid. Their chemical structures were elucidated by NMR and mass spectrometry. All three contain the conjugated enone motif between C7 and C9, which is thought to be responsible for the ARE activity. Subsequent biological studies focused on 1, the most active and abundant ARE activator isolated. C18 acid 1 induced the expression of ARE-regulated cytoprotective genes, including NAD(P)H:quinone oxidoreductase 1, heme oxygenase 1, thioredoxin reductase 1, both subunits of the glutamate–cysteine ligase (catalytic subunit and modifier subunit), and the cystine/glutamate exchange transporter, in IMR-32 human neuroblastoma cells. Its cellular activity requires the presence of Nrf2 and PI3K function, based on RNA interference and pharmacological inhibitor studies, respectively. Treatment with 1 led only to Nrf2 activation, and not the increase in production of NRF2 mRNA. To test its ARE activity and cytoprotective potential in vivo, we treated mice with a single dose of a U. lactuca fraction that was enriched

  7. Ginsenoside Rb1 improves postoperative fatigue syndrome by reducing skeletal muscle oxidative stress through activation of the PI3K/Akt/Nrf2 pathway in aged rats.

    Science.gov (United States)

    Zhuang, Cheng-Le; Mao, Xiang-Yu; Liu, Shu; Chen, Wei-Zhe; Huang, Dong-Dong; Zhang, Chang-Jing; Chen, Bi-Cheng; Shen, Xian; Yu, Zhen

    2014-10-05

    Ginsenoside Rb1 is reported to possess anti-fatigue activity, but the mechanisms remain unknown. The aim of this study was to investigate the molecular mechanisms responsible for the anti-fatigue effect of ginsenoside Rb1 on postoperative fatigue syndrome induced by major small intestinal resection (MSIR) in aged rat. Aged rats with MSIR were administrated with ginsenoside Rb1 (15 mg/kg) once a day from 3 days before surgery to the day of sacrifice, or with saline as corresponding controls. Rats without MSIR but going through the same surgery procedure were administrated with saline as blank controls. Anti-fatigue effect was assessed by an open field test; superoxide dismutase, reactive oxygen species and malondialdehyde in skeletal muscle were determined. The mRNA levels of Akt2 and Nrf2 in skeletal muscle were measured by real-time quantitative PCR. The activation of Akt and Nrf2 was examined by western blot and immunohistofluorescence. Our results revealed that ginsenoside Rb1 significantly increased the journey and the rearing frequency, decreased the time of rest in aged rats with MSIR. In addition, ginsenoside Rb1 significantly reduced reactive oxygen species and malondialdehyde release and increased the superoxide dismutase activity of skeletal muscle in aged rats with MSIR. Ginsenoside Rb1 also increased the expression of Akt2 and Nrf2 mRNA, up-regulated Akt phosphorylation and Nrf2 nuclear translocation. These findings indicate that ginsenoside Rb1 has an anti-fatigue effect on postoperative fatigue syndrome in aged rat, and the mechanism possibly involves activation of the PI3K/Akt pathway with subsequent Nrf2 nuclear translocation and induction of antioxidant enzymes. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Andrographolide protects liver cells from H2O2 induced cell death by upregulation of Nrf-2/HO-1 mediated via adenosine A2a receptor signalling.

    Science.gov (United States)

    Mittal, Smriti P K; Khole, Swati; Jagadish, Nidhi; Ghosh, Debjani; Gadgil, Vijay; Sinkar, Vilas; Ghaskadbi, Saroj S

    2016-11-01

    Andrographolide, principle constituent of Andrographis paniculata Nees is used in traditional medicine in Southeast Asia and is known to exhibit various biological activities. Its antioxidant activity is due to its ability to activate one of the antioxidant enzymes, heme oxygenase-1 (HO-1) which is regulated transcriptionally through Nrf-2. However, molecular mechanism underlying activation of Nrf-2/HO-1 has not yet been clearly understood. Protective effect of andrographolide against H2O2 induced cell death, reactive oxygen species and lipid peroxidation was observed in HepG2 cells. Ability of andrographolide to modulate G-protein coupled receptor (GPCR) mediated signalling was determined using in silico docking and gene expression was analyzed by qRT-PCR, confocal microscopy and western blot analysis. We clearly show that andrographolide via adenosine A2A receptor signalling leads to activation of p38 MAP kinase, resulting in upregulation of Nrf-2, its translocation to nucleus and activation of HO-1. Additionally, it activates adenylate cyclase resulting in cAMP formation which in turn activates protein kinase A leading to inhibition of GSK-3β by phosphorylation. Inactivated GSK-3β leads to retention of Nrf-2 in the nucleus leading to sustained expression of HO-1 by binding to its antioxidant response element (ARE). Thus, andrographolide probably by binding to adenosine A2a receptor activates Nrf-2 transcription and also inhibits its exclusion from the nucleus by inactivating GSK-3β, together resulting in activation of HO-1. We speculate that andrographolide can be used as a therapeutic drug to combat oxidative stress implicated in pathogenesis of various diseases such as diabetes, osteoporosis, neurodegenerative diseases etc. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways.

    Science.gov (United States)

    Chen, Xiaosong; Yan, Liu; Guo, Zhihui; Chen, Zhaohong; Chen, Ying; Li, Ming; Huang, Chushan; Zhang, Xiaoping; Chen, Liangwan

    2016-09-08

    Autologous fat grafting is an effective reconstructive surgery technique; however, its success is limited by inconsistent graft retention and an environment characterized by high oxidative stress and inflammation. Adipose-derived stem cells (ADSCs) increase the survival of fat grafts, although the underlying mechanisms remain unclear. Here, TLR4(-/-) and Nrf2(-/-) mice were used to explore the effects of oxidative stress and inflammation on the viability and function of ADSCs in vitro and in vivo. Enrichment of fat grafts with ADSCs inhibited inflammatory cytokine production, enhanced growth factor levels, increased fat graft survival, downregulated NADPH oxidase (NOX)1 and 4 expression, increased vascularization and reduced ROS production in a manner dependent on toll-like receptor (TLR)-4 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Immunohistochemical analysis showed that exposure to hypoxia enhanced ADSC growth and promoted the differentiation of ADSCs into vascular endothelial cells. Hypoxia-induced inflammatory cytokine, growth factor and NOX1/4 upregulation, as well as increased ROS production and apoptosis in ADSCs were dependent on TLR4 and Nrf2, which also modulated the effect of ADSCs on promoting endothelial progenitor cell migration and angiogenesis. Western blot analyses showed that the effects of hypoxia on ADSCs were regulated by crosstalk between Nrf2 antioxidant responses and NF-κB- and TLR4-mediated inflammatory responses. Taken together, our results indicate that ADSCs can increase the survival of fat transplants through the modulation of inflammatory and oxidative responses via Nrf2 and TLR4, suggesting potential strategies to improve the use of ADSCs for cell therapy.

  10. Xanthohumol ameliorates lipopolysaccharide (LPS-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis

    Directory of Open Access Journals (Sweden)

    Hongming Lv

    2017-08-01

    Full Text Available Abundant natural flavonoids can induce nuclear factor-erythroid 2 related factor 2 (Nrf2 and/or AMP-activated protein kinase (AMPK activation, which play crucial roles in the amelioration of various inflammation- and oxidative stress-induced diseases, including acute lung injury (ALI. Xanthohumol (Xn, a principal prenylflavonoid, possesses anti-inflammation and anti-oxidant activities. However, whether Xn could protect from LPS-induced ALI through inducing AMPK/Nrf2 activation and its downstream signals, are still poorly elucidated. Accordingly, we focused on exploring the protective effect of Xn in the context of ALI and the involvement of underlying molecular mechanisms. Our findings indicated that Xn effectively alleviated lung injury by reduction of lung W/D ratio and protein levels, neutrophil infiltration, MDA and MPO formation, and SOD and GSH depletion. Meanwhile, Xn significantly lessened histopathological changes, reactive oxygen species (ROS generation, several cytokines secretion, and iNOS and HMGB1 expression, and inhibited Txnip/NLRP3 inflammasome and NF-κB signaling pathway activation. Additionally, Xn evidently decreased t-BHP-stimulated cell apoptosis, ROS generation and GSH depletion but increased various anti-oxidative enzymes expression regulated by Keap1-Nrf2/ARE activation, which may be associated with AMPK and GSK3β phosphorylation. However, Xn-mediated inflammatory cytokines and ROS production, histopathological changes, Txnip/NLRP3 inflammasome and NF-κB signaling pathway in WT mice were remarkably abrogated in Nrf2-/- mice. Our experimental results firstly provided a support that Xn effectively protected LPS-induced ALI against oxidative stress and inflammation damage which are largely dependent upon upregulation of the Nrf2 pathway via activation of AMPK/GSK3β, thereby suppressing LPS-activated Txnip/NLRP3 inflammasome and NF-κB signaling pathway.

  11. Flavonolignan 2,3-dehydrosilydianin activates Nrf2 and upregulates NAD(P)H:quinone oxidoreductase 1 in Hepa1c1c7 cells.

    Science.gov (United States)

    Roubalová, Lenka; Dinkova-Kostova, Albena T; Biedermann, David; Křen, Vladimír; Ulrichová, Jitka; Vrba, Jiří

    2017-06-01

    Silybum marianum (milk thistle) is a medicinal plant used for the treatment of various liver disorders. This study examined whether the main flavonolignans from S. marianum (i.e. silybin, silychristin, silydianin) and their 2,3-dehydro derivatives (i.e. 2,3-dehydrosilybin, 2,3-dehydrosilychristin, 2,3-dehydrosilydianin) activate the Nrf2 pathway, which regulates the expression of genes encoding many cytoprotective enzymes, including NAD(P)H:quinone oxidoreductase 1 (NQO1). After 48h of exposure, 2,3-dehydrosilydianin at concentrations of 25μM and higher significantly elevated the activity of NQO1 in murine hepatoma Hepa1c1c7 cells. In contrast, other tested compounds at non-cytotoxic concentrations had a mild or negligible effect on the NQO1 activity. Using a luciferase reporter assay, 2,3-dehydrosilydianin was found to significantly activate transcription via the antioxidant response element in stably transfected human AREc32 reporter cells. Moreover, 2,3-dehydrosilydianin caused the accumulation of Nrf2 and significantly induced the expression of the Nqo1 gene at both the mRNA and protein levels in Hepa1c1c7 cells. We found that 2,3-dehydrosilydianin also increased to some extent the expression of other Nrf2 target genes, namely of the heme oxygenase-1 gene (Hmox1) and the glutamate-cysteine ligase modifier subunit gene (Gclm). We conclude that 2,3-dehydrosilydianin activates Nrf2 and induces Nrf2-mediated gene expression in Hepa1c1c7 cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Sustained effects of neonatal systemic lipopolysaccharide on IL-1β and Nrf2 in adult rat substantia nigra are partly normalized by a Spirulina enriched diet

    Science.gov (United States)

    Patil, Jaspal; Matte, Ashok; Nissbrandt, Hans; Mallard, Carina; Sandberg, Mats

    2016-01-01

    Background/Aim Neonatal infection can sensitize the adult substantia nigra (SN) to secondary insults, causing a decrease in antioxidant capacity which may lead to Parkinson’s disease in adults. We studied, prolonged effect of systemic infection by (i.p.) administration of lipopolysaccharide (LPS) on interleukin 1 beta (IL-1β), the antioxidant regulators nuclear factor-erythroid 2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) in rat SN. Method and Results Five-day old rat pups were treated with LPS (i.p. 2 mg/kg). After 65 days, the mRNA level of IL-1β was significantly increased in parallel with decreases in mRNAs of the rate limiting catalytic subunit of glutathione synthesis, γglutamylcysteine ligas (γGCLC), Nrf2 and brain-derived neurotrophic factor (BDNF). Protein levels of γGCLC and Nrf2 were decreased while IL-1β protein was significantly increased. These LPS-induced long term changes were correlated with a decrease in phosphorylated AKT (pAKT) and phosphorylated-inactive GSK3β (pGSK3β). In another set of experiment, a Spirulina (0.1%) containing diet was given to lactating mothers 24 h before LPS treatment of the pups. The Spirulina supplemented diet decreased IL-1β protein expression in SN and elevated the mRNA level of the rate limiting catalytic subunit of glutathione synthesis, γglutamylcysteine ligas (γGCLC), Nrf2 protein, PGC-1α protein and pAKT. Conclusion Early life infection can negatively affect Nrf2, pAKT and pGSK3β for a long time in SN. A diet enriched in antioxidant and anti-inflammatory phytochemicals can partly restore some but not all the effects on the antioxidant defense, possibly via normalizing effects on pAKT. PMID:27931028

  13. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease

    Science.gov (United States)

    Tebay, Lauren E.; Robertson, Holly; Durant, Stephen T.; Vitale, Steven R.; Penning, Trevor M.; Dinkova-Kostova, Albena T.; Hayes, John D.

    2015-01-01

    Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulates the basal and stress-inducible expression of a battery of genes encoding key components of the glutathione-based and thioredoxin-based anti-oxidant systems, as well as aldo-keto reductase, glutathione S-transferase, and NAD(P)H:quinone oxi-doreductase-1 drug-metabolizing isoenzymes along with multidrug-resistance-associated efflux pumps. It therefore plays a pivotal role in both intrinsic resistance and cellular adaptation to reactive oxygen species (ROS) and xenobiotics. Activation of Nrf2 can, however, serve as a double-edged sword because some of the genes it induces may contribute to chemical carcinogenesis by promoting futile redox cycling of polycyclic aromatic hydrocarbon metabolites or confer resistance to chemotherapeutic drugs by increasing the expression of efflux pumps, suggesting its cytoprotective effects will vary in a context-specific fashion. In addition to cytoprotection, Nrf2 also controls genes involved in intermediary metabolism, positively regulating those involved in NADPH generation, purine biosynthesis, and the β-oxidation of fatty acids, while suppressing those involved in lipogenesis and gluconeogenesis. Nrf2 is subject to regulation at multiple levels. Its ability to orchestrate adaptation to oxidants and electrophiles is due principally to stress-stimulated modification of thiols within one of its repressors, the Kelch-like ECH-associated protein 1 (Keap1), which is present in the cullin-3 RING ubiquitin ligase (CRL) complex CRLKeap1. Thus modification of Cys residues in Keap1 blocks CRLKeap1 activity, allowing newly translated Nrf2 to accumulate rapidly and induce its target genes. The ability of Keap1 to repress Nrf2 can be attenuated by p62/sequestosome-1 in a mechanistic target of rapamycin complex 1 (mTORC1)-depen-dent manner, thereby allowing refeeding after fasting to increase Nrf2-target gene expression. In parallel with repression by Keap1, Nrf2 is also repressed

  14. Antioxidant Opuntia ficus-indica Extract Activates AHR-NRF2 Signaling and Upregulates Filaggrin and Loricrin Expression in Human Keratinocytes.

    Science.gov (United States)

    Nakahara, Takeshi; Mitoma, Chikage; Hashimoto-Hachiya, Akiko; Takahara, Masakazu; Tsuji, Gaku; Uchi, Hiroshi; Yan, Xianghong; Hachisuka, Junichi; Chiba, Takahito; Esaki, Hitokazu; Kido-Nakahara, Makiko; Furue, Masutaka

    2015-10-01

    Opuntia ficus-indica (OFI) is a cactus species widely used as an anti-inflammatory, antilipidemic, and hypoglycemic agent. It has been shown that OFI extract (OFIE) inhibits oxidative stress in animal models of diabetes and hepatic disease; however, its antioxidant mechanism remains largely unknown. In this study, we demonstrated that OFIE exhibited potent antioxidant activity through the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and the downstream antioxidant enzyme quinone oxidoreductase 1 (NQO1), which inhibited the generation of reactive oxygen species in keratinocytes challenged with tumor necrosis factor α or benzo[α]pyrene. The antioxidant capacity of OFIE was canceled in NRF2 knockdown keratinocytes. OFIE exerted this NRF2-NQO1 upregulation through activation of the aryl hydrocarbon receptor (AHR). Moreover, the ligation of AHR by OFIE upregulated the expression of epidermal barrier proteins: filaggrin and loricrin. OFIE also prevented TH2 cytokine-mediated downregulation of filaggrin and loricrin expression in an AHR-dependent manner because it was canceled in AHR knockdown keratinocytes. Antioxidant OFIE is a potent activator of AHR-NRF2-NQO1 signaling and may be beneficial in treating barrier-disrupted skin disorders.

  15. Preventive Effects of Velvet Antler (Cervus elaphus against Lipopolysaccharide-Induced Acute Lung Injury in Mice by Inhibiting MAPK/NF-κB Activation and Inducing AMPK/Nrf2 Pathways

    Directory of Open Access Journals (Sweden)

    Jui-Shu Chang

    2018-01-01

    Full Text Available Velvet antler (Cervus elaphus is a typical traditional animal medicine. It is considered to have various pharmacological effects including stimulation of the immune system, increase in the physical strength, and enhancement of sexual function. This paper aims to investigate the aqueous extract of velvet antler (AVA in the mouse models of LPS-induced ALI. Inhibition of NO, TNF-α, IL-1β, IL-6, and IL-10 productions contributes to the attenuation of LPS-induced lung inflammation by AVA. A 5-day pretreatment of AVA prevented histological alterations and enhanced antioxidant enzyme activity in lung tissues. AVA significantly reduced the material (total number of cells and proteins in the BALF. Western blot analysis revealed that the expression of iNOS and COX-2 and phosphorylation of IκB-α and MAPKs proteins are blocked in LPS-stimulated macrophages as well as LPS-induced lung injury in mice. Consistent with this concept, the phosphorylation of CaMKKβ, LKB1, AMPK, Nrf2, and HO-1 was activated after AVA treatment. The results from this study indicate AVA has anti-inflammatory effects in vivo and AVA is a potential model for the development of health food. In addition, its pathways may be at least partially associated with inhibiting MAPK/NF-κB activation and upregulating AMPK/Nrf2 pathways and the regulation of antioxidant enzyme activity.

  16. NRF2 and P73 polymorphisms in Egyptian women with breast cancer

    African Journals Online (AJOL)

    The aim of the study was to assess the role of Nrf2 promoter and P73 G4C14 to A4T14 polymorphisms in breast cancer and the potential relation to the onset of the disease. Eighty six female patients with breast tumor were included in this study. Nrf2 (rs6721961) and p73 (G4A) genetic polymorphisms in promoter and ...

  17. Role of Nrf2 in host defense against influenza virus in cigarette smoke-exposed mice.

    Science.gov (United States)

    Yageta, Yuichi; Ishii, Yukio; Morishima, Yuko; Masuko, Hironori; Ano, Satoshi; Yamadori, Tadahiro; Itoh, Ken; Takeuchi, Kaoru; Yamamoto, Masayuki; Hizawa, Nobuyuki

    2011-05-01

    Influenza virus is a common respiratory tract viral infection. Although influenza can be fatal in patients with chronic pulmonary diseases such as chronic obstructive pulmonary disease, its pathogenesis is not fully understood. The Nrf2-mediated antioxidant system is essential to protect the lungs from oxidative injury and inflammation. In the present study, we investigated the role of Nrf2 in protection against influenza virus-induced pulmonary inflammation after cigarette smoke exposure with both in vitro and in vivo approaches. For in vitro analyses, peritoneal macrophages isolated from wild-type and Nrf2-deficient mice were treated with poly(I:C) and/or cigarette smoke extract. For in vivo analysis, these mice were infected with influenza A virus with or without exposure to cigarette smoke. In Nrf2-deficient macrophages, NF-κB activation and the induction of its target inflammatory genes were enhanced after costimulation with cigarette smoke extract and poly(I:C) compared with wild-type macrophages. The induction of antioxidant genes was observed for the lungs of wild-type mice but not those of Nrf2-deficient mice after cigarette smoke exposure. Cigarette smoke-exposed Nrf2-deficient mice showed higher rates of mortality than did wild-type mice after influenza virus infection, with enhanced peribronchial inflammation, lung permeability damage, and mucus hypersecretion. Lung oxidant levels and NF-κB-mediated inflammatory gene expression in the lungs were also enhanced in Nrf2-deficient mice. Our data indicate that the antioxidant pathway controlled by Nrf2 is pivotal for protection against the development of influenza virus-induced pulmonary inflammation and injury under oxidative conditions.

  18. [Effect of American Ginseng Capsule on the liver oxidative injury and the Nrf2 protein expression in rats exposed by electromagnetic radiation of frequency of cell phone].

    Science.gov (United States)

    Luo, Ya-ping; Ma, Hui-Rong; Chen, Jing-Wei; Li, Jing-Jing; Li, Chun-xiang

    2014-05-01

    To observe the effect of American Ginseng Capsule (AGC) on the liver oxidative injury and the Nrf2 protein expression in the liver tissue of rats exposed by 900 MHz cell phone electromagnetic radiation. Totally 40 male SD rats were randomly divided into the normal control group, the model group, the Shuifei Jibin Capsule (SJC) group, and the AGC group,10 in each group. Rats in the normal control group were not irradiated. Rats in the rest three groups were exposed by imitated 900 MHz cellular phone for 4 h in 12 consecutive days. Meanwhile, rats in the SJC group and the AGC group were intragastrically administrated with suspension of SJC and AGC (1 mL/200 g body weight) respectively. Normal saline was administered to rats in the normal control group and the model group. The histolomorphological changes of the liver tissue were observed by HE staining. Contents of malonic dialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-PX)were detected by colorimetry. The Nrf2 protein expression of hepatocytes was detected by immunohistochemical assay and Western blot. Compared with the normal control group, hepatocyte nucleus was atrophied or partially disappeared, the contents of liver MDA and Nrf2 protein obviously increased (P electromagnetic radiation induced by 900 MHz cell phone could affect the expression of Nrf2 protein, induce oxidative injury, and induce abnormal morphology of liver cells. SJC and AGC could promote the morphological recovery of the liver cells. Its mechanism might be related to affecting the expression of Nrf2 protein and attenuating oxidative damage of liver cells.

  19. Aggressive mammary carcinoma progression in Nrf2 knockout mice treated with 7,12-dimethylbenz[a]anthracene

    International Nuclear Information System (INIS)

    Becks, Lisa; Shi, Runhua; McLarty, Jerry; Pruitt, Kevin; Zhang, Songlin; Kleiner-Hancock, Heather E; Prince, Misty; Burson, Hannah; Christophe, Christopher; Broadway, Mason; Itoh, Ken; Yamamoto, Masayuki; Mathis, Michael; Orchard, Elysse

    2010-01-01

    Activation of nuclear factor erythroid 2-related factor (Nrf2), which belongs to the basic leucine zipper transcription factor family, is a strategy for cancer chemopreventive phytochemicals. It is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1 and peroxiredoxin 1, by activating the antioxidant response element (ARE). We hypothesized that (1) the citrus coumarin auraptene may suppress premalignant mammary lesions via activation of Nrf2/ARE, and (2) that Nrf2 knockout (KO) mice would be more susceptible to mammary carcinogenesis. Premalignant lesions and mammary carcinomas were induced by medroxyprogesterone acetate and 7,12-dimethylbenz[a]anthracene treatment. The 10-week pre-malignant study was performed in which 8 groups of 10 each female wild-type (WT) and KO mice were fed either control diet or diets containing auraptene (500 ppm). A carcinogenesis study was also conducted in KO vs. WT mice (n = 30-34). Comparisons between groups were evaluated using ANOVA and Kaplan-Meier Survival statistics, and the Mann-Whitney U-test. All mice treated with carcinogen exhibited premalignant lesions but there were no differences by genotype or diet. In the KO mice, there was a dramatic increase in mammary carcinoma growth rate, size, and weight. Although there was no difference in overall survival, the KO mice had significantly lower mammary tumor-free survival. Also, in the KO mammary carcinomas, the active forms of NF-κB and β-catenin were increased ~2-fold whereas no differences in oxidized proteins were observed. Many other tumors were observed, including lymphomas. Interestingly, the incidences of lung adenomas in the KO mice were significantly higher than in the WT mice. We report, for the first time, that there was no apparent difference in the formation of premalignant lesions, but rather, the KO mice exhibited rapid, aggressive mammary carcinoma progression

  20. Design, synthesis, and evaluation of curcumin derivatives as Nrf2 activators and cytoprotectors against oxidative death.

    Science.gov (United States)

    Tu, Zhi-Shan; Wang, Qi; Sun, Dan-Dan; Dai, Fang; Zhou, Bo

    2017-07-07

    Activation of nuclear factor erythroid-2-related factor 2 (Nrf2) has been proven to be an effective means to prevent the development of cancer, and natural curcumin stands out as a potent Nrf2 activator and cancer chemopreventive agent. In this study, we synthesized a series of curcumin analogs by introducing the geminal dimethyl substituents on the active methylene group to find more potent Nrf2 activators and cytoprotectors against oxidative death. The geminally dimethylated and catechol-type curcumin analog (compound 3) was identified as a promising lead molecule in terms of its increased stability and cytoprotective activity against the tert-butyl hydroperoxide (t-BHP)-induced death of HepG2 cells. Mechanism studies indicate that its cytoprotective effects are mediated by activating the Nrf2 signaling pathway in the Michael acceptor- and catechol-dependent manners. Additionally, we verified by using copper and iron ion chelators that the two metal ion-mediated oxidations of compound 3 to its corresponding electrophilic o-quinone, contribute significantly to its Nrf2-dependent cytoprotection. This work provides an example of successfully designing natural curcumin-directed Nrf2 activators by a stability-increasing and proelectrophilic strategy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Metabolism and tissue distribution of sulforaphane in Nrf2 knockout and wild-type mice.

    Science.gov (United States)

    Clarke, John D; Hsu, Anna; Williams, David E; Dashwood, Roderick H; Stevens, Jan F; Yamamoto, Masayuki; Ho, Emily

    2011-12-01

    To determine the metabolism and tissue distribution of the dietary chemoprotective agent sulforaphane following oral administration to wild-type and Nrf2 knockout (Nrf2(-/-)) mice. Male and female wild-type and Nrf2(-/-) mice were given sulforaphane (5 or 20 μmoles) by oral gavage; plasma, liver, kidney, small intestine, colon, lung, brain and prostate were collected at 2, 6 and 24 h (h). The five major metabolites of sulforaphane were measured in tissues by high performance liquid chromatography coupled with tandem mass spectrometry. Sulforaphane metabolites were detected in all tissues at 2 and 6 h post gavage, with the highest concentrations in the small intestine, prostate, kidney and lung. A dose-dependent increase in sulforaphane concentrations was observed in all tissues except prostate. At 5 μmole, Nrf2(-/-) genotype had no effect on sulforaphane metabolism. Only Nrf2(-/-) females given 20 μmoles sulforaphane for 6 h exhibited a marked increase in tissue sulforaphane metabolite concentrations. The relative abundance of each metabolite was not strikingly different between genders and genotypes. Sulforaphane is metabolized and reaches target tissues in wild-type and Nrf2(-/-) mice. These data provide further evidence that sulforaphane is bioavailable and may be an effective dietary chemoprevention agent for several tissue sites.

  2. Nrf2 mitigates LRRK2- and α-synuclein-induced neurodegeneration by modulating proteostasis.

    Science.gov (United States)

    Skibinski, Gaia; Hwang, Vicky; Ando, Dale Michael; Daub, Aaron; Lee, Alicia K; Ravisankar, Abinaya; Modan, Sara; Finucane, Mariel M; Shaby, Benjamin A; Finkbeiner, Steven

    2017-01-31

    Mutations in leucine-rich repeat kinase 2 (LRRK2) and α-synuclein lead to Parkinson's disease (PD). Disruption of protein homeostasis is an emerging theme in PD pathogenesis, making mechanisms to reduce the accumulation of misfolded proteins an attractive therapeutic strategy. We determined if activating nuclear factor erythroid 2-related factor (Nrf2), a potential therapeutic target for neurodegeneration, could reduce PD-associated neuron toxicity by modulating the protein homeostasis network. Using a longitudinal imaging platform, we visualized the metabolism and location of mutant LRRK2 and α-synuclein in living neurons at the single-cell level. Nrf2 reduced PD-associated protein toxicity by a cell-autonomous mechanism that was time-dependent. Furthermore, Nrf2 activated distinct mechanisms to handle different misfolded proteins. Nrf2 decreased steady-state levels of α-synuclein in part by increasing α-synuclein degradation. In contrast, Nrf2 sequestered misfolded diffuse LRRK2 into more insoluble and homogeneous inclusion bodies. By identifying the stress response strategies activated by Nrf2, we also highlight endogenous coping responses that might be therapeutically bolstered to treat PD.

  3. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response.

    Science.gov (United States)

    Seo, Ji Yeon; Pyo, Euisun; An, Jin-Pyo; Kim, Jinwoong; Sung, Sang Hyun; Oh, Won Keun

    2017-01-01

    Therapeutic approach of Alzheimer's disease (AD) has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata , and focused on the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated heme oxygenase (HO)-1-inducing effects and the inhibitory activity of amyloid beta (A β ) 42 -induced microglial activation related to Nrf2 and nuclear factor κ B (NF- κ B)-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE) gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular A β 42 in BV-2 cells and decreased the production of interleukin (IL)-6, IL-1 β , prostaglandin (PG)E 2 , and nitric oxide (NO) because of artificial phagocytic A β 42 . It decreased pNF- κ B accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS) and cyclooxygenase II (COX-II) in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits A β 42 -overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD.

  4. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Ji Yeon Seo

    2017-01-01

    Full Text Available Therapeutic approach of Alzheimer’s disease (AD has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata, and focused on the Kelch-like ECH-associated protein 1 (Keap1/nuclear factor (erythroid-derived 2-like 2 (Nrf2-mediated heme oxygenase (HO-1-inducing effects and the inhibitory activity of amyloid beta (Aβ42-induced microglial activation related to Nrf2 and nuclear factor κB (NF-κB-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular Aβ42 in BV-2 cells and decreased the production of interleukin (IL-6, IL-1β, prostaglandin (PGE2, and nitric oxide (NO because of artificial phagocytic Aβ42. It decreased pNF-κB accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS and cyclooxygenase II (COX-II in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits Aβ42-overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD.

  5. Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2.

    Science.gov (United States)

    Tao, Shasha; Park, Sophia L; Rojo de la Vega, Montserrat; Zhang, Donna D; Wondrak, Georg T

    2015-12-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photodamage and carcinogenesis, and an urgent need exists for improved molecular photoprotective strategies different from (or synergistic with) photon absorption. Recent studies suggest a photoprotective role of cutaneous gene expression orchestrated by the transcription factor NRF2 (nuclear factor-E2-related factor 2). Here we have explored the molecular mechanism underlying carotenoid-based systemic skin photoprotection in SKH-1 mice and provide genetic evidence that photoprotection achieved by the FDA-approved apocarotenoid and food additive bixin depends on NRF2 activation. Bixin activates NRF2 through the critical Cys-151 sensor residue in KEAP1, orchestrating a broad cytoprotective response in cultured human keratinocytes as revealed by antioxidant gene expression array analysis. Following dose optimization studies for cutaneous NRF2 activation by systemic administration of bixin, feasibility of bixin-based suppression of acute cutaneous photodamage from solar UV exposure was investigated in Nrf2(+/+) versus Nrf2(-/-) SKH-1 mice. Systemic administration of bixin suppressed skin photodamage, attenuating epidermal oxidative DNA damage and inflammatory responses in Nrf2(+/+) but not in Nrf2(-/-) mice, confirming the NRF2-dependence of bixin-based cytoprotection. Taken together, these data demonstrate feasibility of achieving NRF2-dependent cutaneous photoprotection by systemic administration of the apocarotenoid bixin, a natural food additive consumed worldwide. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The angiogenic related functions of bone marrow mesenchymal stem cells are promoted by CBDL rat serum via the Akt/Nrf2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Cheng-Cheng; Chen, Bing; Gu, Jian-Teng; Ning, Jiao-Lin; Chen, Lin; Zeng, Jing; Yi, Bin, E-mail: yibin1974@163.com; Lu, Kai-Zhi, E-mail: lukaizhi2010@163.com

    2016-05-15

    Hepatopulmonary syndrome (HPS) is a complication of severe liver disease. It is characterized by an arterial oxygenation defect. Recent studies have demonstrated that pulmonary angiogenesis contributes to the abnormal gas exchange found in HPS. Additionally, mesenchymal stem cells (MSCs) are considered the stable source of VEGF-producing cells and have the potential to differentiate into multiple cell types. However, it has not been determined whether bone marrow mesenchymal stem cells (BM-MSCs) are mobilized and involved in the pulmonary angiogenesis in HPS. In this study, a CFU-F assay showed that the number of peripheral blood MSCs was increased in common bile duct ligation (CBDL) rats; however, there was no significant difference found in the number of BM-MSCs. In vitro, CBDL rat serum induced the overexpression of CXCR4 and PCNA in BM-MSCs. Consistently, the directional migration as well as the proliferation ability of BM-MSCs were enhanced by CBDL rat serum, as determined by a transwell migration and MTT assays. Moreover, the secretion of VEGF by BM-MSCs increased after treatment with CBDL rat serum. We also found that the expression of phospho-Akt, phospho-ERK, and Nrf2 in BM-MSCs was significantly up-regulated by CBDL rat serum in a time dependent manner, and the blockage of the Akt/Nrf2 signalling pathway with an Akt Inhibitor or Nrf2 siRNA, instead of an ERK inhibitor, attenuated the migration, proliferation and paracrine capacity of BM-MSCs. In conclusion, these findings indicated that the number of MSCs increased in the peripheral blood of CBDL rats, and the Akt/Nrf2 pathway plays a vital role in promoting the angiogenic related functions of BM-MSCs, which could be a potent contributor to pulmonary angiogenesis in HPS. - Highlights: • Peripheral blood MSCs was increased in CBDL rats; however, the difference found for the number of BM-MSCs was not significant. • The directional migration, proliferation and ability to secrete VEGF of BM-MSCs were

  7. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weixin [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wu, Mingchai [Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzou, Zhejiang (China); Tang, Longguang; Pan, Yong; Liu, Zhiguo [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zeng, Chunlai [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Wang, Jingying [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wei, Tiemin, E-mail: lswtm@sina.com [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Liang, Guang, E-mail: wzmcliangguang@163.com [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2015-01-15

    Background: Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. Methods: H9c2 cells challenged with H{sub 2}O{sub 2} or TBHP were used for in vitro bio-screening and mechanistic studies. The MDA, H{sub 2}O{sub 2} and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. Results: The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H{sub 2}O{sub 2}-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2–caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10 mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100 mg/kg). Conclusion: These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. - Highlights: • Mono-carbonyl analogue of curcumin, 14p, exhibited better chemical stability. • Compound 14p inhibited TBHP-induced apoptosis through activating Nrf2 in vitro. • Compound 14p limited myocardial ischemia

  8. Concerted action of p62 and Nrf2 protects cells from palmitic acid-induced lipotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Su [Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kang, Dong Hoon [Department of Life Science and Ewha Research Center for Systems Biology (Korea, Republic of); The Research Center for Cell Homeostasis, Ewha Womans University, Seoul 127-750 (Korea, Republic of); Lee, Da Hyun [Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Bae, Soo Han, E-mail: soohanbae@yuhs.ac [Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2015-10-09

    Nonalcoholic fatty liver disease (NAFLD), frequently associated with obesity and diabetes mellitus, is caused by the accumulation of excess fatty acids within liver cells. Palmitic acid (PA), a common saturated fatty acid found in mammals, induces the generation of reactive oxygen species (ROS) and elicits apoptotic cell death, known as lipotoxicity. However, protective mechanisms against PA-induced lipotoxicity have not been elucidated. In this study, we aimed to clarify the role of p62, an adapter protein in the autophagic process, as well as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in protecting cells from PA-induced lipotoxicity. The Nrf2-Keap1 pathway is essential for the protection of cells from oxidative stress. p62 enhances its binding to Keap1 and leads to Nrf2 activation. Here, we show that PA potentiates Keap1 degradation and thereby activates the transcription of Nrf2 target genes partially through autophagy. Furthermore, this PA-mediated Keap1 degradation depends on p62. Correspondingly, a lack of p62 attenuates the PA-mediated Nrf2 activation and increases the susceptibility of cells to oxidative stress. These results indicate that p62 plays an important role in protecting cells against lipotoxicity through Keap1 degradation-mediated Nrf2 activation. - Highlights: • PA induces Keap1 downregulation and activates Nrf2 target gene transcription. • PA-induced Keap1 degradation is partly mediated by the autophagic pathway. • PA-induced Keap1 degradation depends on p62. • Ablation of p62 exacerbates PA-mediated apoptotic cell death.

  9. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chian, Song; Thapa, Ruby; Chi, Zhexu [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Wang, Xiu Jun [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Tang, Xiuwen, E-mail: xiuwentang@zju.edu.cn [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China)

    2014-05-16

    Highlights: • Luteolin inhibits the Nrf2 pathway in mouse liver and in xenografted tumors. • Luteolin markedly inhibits the growth of xenograft tumors. • Luteolin enhances the anti-cancer effect of cisplatin in mice in vivo. • Luteolin could serve as an adjuvant in the chemotherapy of NSCLC. - Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is over-expressed in many types of tumor, promotes tumor growth, and confers resistance to anticancer therapy. Hence, Nrf2 is regarded as a novel therapeutic target in cancer. Previously, we reported that luteolin is a strong inhibitor of Nrf2 in vitro. Here, we showed that luteolin reduced the constitutive expression of NAD(P)H quinone oxidoreductase 1 in mouse liver in a time- and dose-dependent manner. Further, luteolin inhibited the expression of antioxidant enzymes and glutathione transferases, decreasing the reduced glutathione in the liver of wild-type mice under both constitutive and butylated hydroxyanisole-induced conditions. In contrast, such distinct responses were not detected in Nrf2{sup −/−} mice. In addition, oral administration of luteolin, either alone or combined with intraperitoneal injection of the cytotoxic drug cisplatin, greatly inhibited the growth of xenograft tumors from non-small-cell lung cancer (NSCLC) cell line A549 cells grown subcutaneously in athymic nude mice. Cell proliferation, the expression of Nrf2, and antioxidant enzymes were all reduced in tumor xenograft tissues. Furthermore, luteolin enhanced the anti-cancer effect of cisplatin. Together, our findings demonstrated that luteolin inhibits the Nrf2 pathway in vivo and can serve as an adjuvant in the chemotherapy of NSCLC.

  10. Expression of the Nrf2 and Keap1 proteins and their clinical significance in osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jihong, E-mail: zhangjihong63@163.com [Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, Shiyan 442000 (China); Wang, Xiaojuan, E-mail: yangjian142@163.com [Department of Internal Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000 (China); Wu, Wuzhou, E-mail: jiangchunli68@163.com [Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, Shiyan 442000 (China); Dang, Hongsheng, E-mai