WorldWideScience

Sample records for models neural networks

  1. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  2. Plant Growth Models Using Artificial Neural Networks

    Science.gov (United States)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  3. Generalization performance of regularized neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1994-01-01

    Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...

  4. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  5. Modelling Microwave Devices Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Andrius Katkevičius

    2012-04-01

    Full Text Available Artificial neural networks (ANN have recently gained attention as fast and flexible equipment for modelling and designing microwave devices. The paper reviews the opportunities to use them for undertaking the tasks on the analysis and synthesis. The article focuses on what tasks might be solved using neural networks, what challenges might rise when using artificial neural networks for carrying out tasks on microwave devices and discusses problem-solving techniques for microwave devices with intermittent characteristics.Article in Lithuanian

  6. Neural network models of protein domain evolution

    OpenAIRE

    Sylvia Nagl

    2000-01-01

    Protein domains are complex adaptive systems, and here a novel procedure is presented that models the evolution of new functional sites within stable domain folds using neural networks. Neural networks, which were originally developed in cognitive science for the modeling of brain functions, can provide a fruitful methodology for the study of complex systems in general. Ethical implications of developing complex systems models of biomolecules are discussed, with particular reference to molecu...

  7. A quantum-implementable neural network model

    Science.gov (United States)

    Chen, Jialin; Wang, Lingli; Charbon, Edoardo

    2017-10-01

    A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.

  8. Psychometric Measurement Models and Artificial Neural Networks

    Science.gov (United States)

    Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.

    2004-01-01

    The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…

  9. Neural network models of categorical perception.

    Science.gov (United States)

    Damper, R I; Harnad, S R

    2000-05-01

    Studies of the categorical perception (CP) of sensory continua have a long and rich history in psychophysics. In 1977, Macmillan, Kaplan, and Creelman introduced the use of signal detection theory to CP studies. Anderson and colleagues simultaneously proposed the first neural model for CP, yet this line of research has been less well explored. In this paper, we assess the ability of neural-network models of CP to predict the psychophysical performance of real observers with speech sounds and artificial/novel stimuli. We show that a variety of neural mechanisms are capable of generating the characteristics of CP. Hence, CP may not be a special model of perception but an emergent property of any sufficiently powerful general learning system.

  10. Combining logistic regression and neural networks to create predictive models.

    OpenAIRE

    Spackman, K. A.

    1992-01-01

    Neural networks are being used widely in medicine and other areas to create predictive models from data. The statistical method that most closely parallels neural networks is logistic regression. This paper outlines some ways in which neural networks and logistic regression are similar, shows how a small modification of logistic regression can be used in the training of neural network models, and illustrates the use of this modification for variable selection and predictive model building wit...

  11. Optimizing neural network models: motivation and case studies

    OpenAIRE

    Harp, S A; T. Samad

    2012-01-01

    Practical successes have been achieved  with neural network models in a variety of domains, including energy-related industry. The large, complex design space presented by neural networks is only minimally explored in current practice. The satisfactory results that nevertheless have been obtained testify that neural networks are a robust modeling technology; at the same time, however, the lack of a systematic design approach implies that the best neural network models generally  rem...

  12. Functional model of biological neural networks.

    Science.gov (United States)

    Lo, James Ting-Ho

    2010-12-01

    A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.

  13. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  14. Flood routing modelling with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    R. Peters

    2006-01-01

    Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.

  15. Hybrid neural network models of transducers

    Science.gov (United States)

    Xie, Shilin; Zhang, Xinong; Chen, Shenglai; Zhu, Changchun

    2011-10-01

    A hybrid neural network (NN) approach is proposed and applied to modeling of transducers in the paper. The modeling procedures are also presented in detail. First, the simulated studies on the modeling of single input-single output and multi input-multi output transducers are conducted respectively by use of the developed hybrid NN scheme. Secondly, the hybrid NN modeling approach is utilized to characterize a six-axis force sensor prototype based on the measured data. The results show that the hybrid NN approach can significantly improve modeling precision in comparison with the conventional modeling method. In addition, the method is superior to NN black-box modeling because the former possesses smaller network scale, higher convergence speed, higher model precision and better generalization performance.

  16. Empirical generalization assessment of neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1995-01-01

    competing models. Since all models are trained on the same data, a key issue is to take this dependency into account. The optimal split of the data set of size N into a cross-validation set of size Nγ and a training set of size N(1-γ) is discussed. Asymptotically (large data sees), γopt→1......This paper addresses the assessment of generalization performance of neural network models by use of empirical techniques. We suggest to use the cross-validation scheme combined with a resampling technique to obtain an estimate of the generalization performance distribution of a specific model...

  17. Neural Network Program Package for Prosody Modeling

    Directory of Open Access Journals (Sweden)

    J. Santarius

    2004-04-01

    Full Text Available This contribution describes the programme for one part of theautomatic Text-to-Speech (TTS synthesis. Some experiments (for example[14] documented the considerable improvement of the naturalness ofsynthetic speech, but this approach requires completing the inputfeature values by hand. This completing takes a lot of time for bigfiles. We need to improve the prosody by other approaches which useonly automatically classified features (input parameters. Theartificial neural network (ANN approach is used for the modeling ofprosody parameters. The program package contains all modules necessaryfor the text and speech signal pre-processing, neural network training,sensitivity analysis, result processing and a module for the creationof the input data protocol for Czech speech synthesizer ARTIC [1].

  18. Neural networks in economic modelling : An empirical study

    NARCIS (Netherlands)

    Verkooijen, W.J.H.

    1996-01-01

    This dissertation addresses the statistical aspects of neural networks and their usability for solving problems in economics and finance. Neural networks are discussed in a framework of modelling which is generally accepted in econometrics. Within this framework a neural network is regarded as a sta

  19. Neural-networks-based Modelling and a Fuzzy Neural Networks Controller of MCFC

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Molten Carbonate Fuel Cells (MCFC) are produced with a highly efficient and clean power generation technology which will soon be widely utilized. The temperature characters of MCFC stack are briefly analyzed. A radial basis function (RBF) neural networks identification technology is applied to set up the temperature nonlinear model of MCFC stack, and the identification structure, algorithm and modeling training process are given in detail. A fuzzy controller of MCFC stack is designed. In order to improve its online control ability, a neural network trained by the I/O data of a fuzzy controller is designed. The neural networks can memorize and expand the inference rules of the fuzzy controller and substitute for the fuzzy controller to control MCFC stack online. A detailed design of the controller is given. The validity of MCFC stack modelling based on neural networks and the superior performance of the fuzzy neural networks controller are proved by Simulations.

  20. Stability analysis of discrete-time BAM neural networks based on standard neural network models

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sen-lin; LIU Mei-qin

    2005-01-01

    To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks.

  1. Microbial growth modelling with artificial neural networks.

    Science.gov (United States)

    Jeyamkonda, S; Jaya, D S; Holle, R A

    2001-03-20

    There is a growing interest in modelling microbial growth as an alternative to time-consuming, traditional, microbiological enumeration techniques. Several statistical models have been reported to describe the growth of different microorganisms, but there are accuracy problems. An alternate technique 'artificial neural networks' (ANN) for modelling microbial growth is explained and evaluated. Published data were used to build separate general regression neural network (GRNN) structures for modelling growth of Aeromonas hydrophila, Shigella flexneri, and Brochothrix thermosphacta. Both GRNN and published statistical model predictions were compared against the experimental data using six statistical indices. For training data sets, the GRNN predictions were far superior than the statistical model predictions, whereas the GRNN predictions were similar or slightly worse than statistical model predictions for test data sets for all the three data sets. GRNN predictions can be considered good, considering its performance for unseen data. Graphical plots, mean relative percentage residual, mean absolute relative residual, and root mean squared residual were identified as suitable indices for comparing competing models. ANN can now become a vehicle whereby predictive microbiology can be applied in food product development and food safety risk assessment.

  2. Models of neural networks with fuzzy activation functions

    Science.gov (United States)

    Nguyen, A. T.; Korikov, A. M.

    2017-02-01

    This paper investigates the application of a new form of neuron activation functions that are based on the fuzzy membership functions derived from the theory of fuzzy systems. On the basis of the results regarding neuron models with fuzzy activation functions, we created the models of fuzzy-neural networks. These fuzzy-neural network models differ from conventional networks that employ the fuzzy inference systems using the methods of neural networks. While conventional fuzzy-neural networks belong to the first type, fuzzy-neural networks proposed here are defined as the second-type models. The simulation results show that the proposed second-type model can successfully solve the problem of the property prediction for time – dependent signals. Neural networks with fuzzy impulse activation functions can be widely applied in many fields of science, technology and mechanical engineering to solve the problems of classification, prediction, approximation, etc.

  3. A hybrid neural network model for consciousness

    Institute of Scientific and Technical Information of China (English)

    蔺杰; 金小刚; 杨建刚

    2004-01-01

    A new framework for consciousness is introduced based upon traditional artificial neural network models. This framework reflects explicit connections between two parts of the brain: one global working memory and distributed modular cerebral networks relating to specific brain functions. Accordingly this framework is composed of three layers,physical mnemonic layer and abstract thinking layer,which cooperate together through a recognition layer to accomplish information storage and cognition using algorithms of how these interactions contribute to consciousness:(1)the reception process whereby cerebral subsystems group distributed signals into coherent object patterns;(2)the partial recognition process whereby patterns from particular subsystems are compared or stored as knowledge; and(3)the resonant learning process whereby global workspace stably adjusts its structure to adapt to patterns' changes. Using this framework,various sorts of human actions can be explained,leading to a general approach for analyzing brain functions.

  4. A hybrid neural network model for consciousness

    Institute of Scientific and Technical Information of China (English)

    蔺杰; 金小刚; 杨建刚

    2004-01-01

    A new framework for consciousness is introduced based upon traditional artificial neural network models. This framework reflects explicit connections between two parts of the brain: one global working memory and distributed modular cerebral networks relating to specific brain functions. Accordingly this framework is composed of three layers, physical mnemonic layer and abstract thinking layer, which cooperate together through a recognition layer to accomplish information storage and cognition using algorithms of how these interactions contribute to consciousness: (l) the reception process whereby cerebral subsystems group distributed signals into coherent object patterns; (2) the partial recognition process whereby patterns from particular subsystems are compared or stored as knowledge; and (3) the resonant learning process whereby global workspace stably adjusts its structure to adapt to patterns' changes. Using this framework, various sorts of human actions can be explained, leading to a general approach for analyzing brain functions.

  5. An information theoretic approach for combining neural network process models.

    Science.gov (United States)

    Sridhar, D V.; Bartlett, E B.; Seagrave, R C.

    1999-07-01

    Typically neural network modelers in chemical engineering focus on identifying and using a single, hopefully optimal, neural network model. Using a single optimal model implicitly assumes that one neural network model can extract all the information available in a given data set and that the other candidate models are redundant. In general, there is no assurance that any individual model has extracted all relevant information from the data set. Recently, Wolpert (Neural Networks, 5(2), 241 (1992)) proposed the idea of stacked generalization to combine multiple models. Sridhar, Seagrave and Barlett (AIChE J., 42, 2529 (1996)) implemented the stacked generalization for neural network models by integrating multiple neural networks into an architecture known as stacked neural networks (SNNs). SNNs consist of a combination of the candidate neural networks and were shown to provide improved modeling of chemical processes. However, in Sridhar's work SNNs were limited to using a linear combination of artificial neural networks. While a linear combination is simple and easy to use, it can utilize only those model outputs that have a high linear correlation to the output. Models that are useful in a nonlinear sense are wasted if a linear combination is used. In this work we propose an information theoretic stacking (ITS) algorithm for combining neural network models. The ITS algorithm identifies and combines useful models regardless of the nature of their relationship to the actual output. The power of the ITS algorithm is demonstrated through three examples including application to a dynamic process modeling problem. The results obtained demonstrate that the SNNs developed using the ITS algorithm can achieve highly improved performance as compared to selecting and using a single hopefully optimal network or using SNNs based on a linear combination of neural networks.

  6. Modeling of Magneto-Rheological Damper with Neural Network

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With the revival of magnetorheological technology research in the 1980's, its application in vehicles is increasingly focused on vibration suppression. Based on the importance of magnetorheological damper modeling, nonparametric modeling with neural network, which is a promising development in semi-active online control of vehicles with MR suspension, has been carried out in this study. A two layer neural network with 7 neurons in a hidden layer and 3 inputs and 1 output was established to simulate the behavior of MR damper at different excitation currents. In the neural network modeling, the damping force is a function of displacement, velocity and the applied current. A MR damper for vehicles is fabricated and tested by MTS; the data acquired are utilized for neural network training and validation. The application and validation show that the predicted forces of the neural network match well with the forces tested with a small variance, which demonstrates the effectiveness and precision of neural network modeling.

  7. Runoff Modelling in Urban Storm Drainage by Neural Networks

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld

    1995-01-01

    network is used to compute flow or water level at selected points in the sewer system, and to forecast the flow from a small residential area. The main advantages of the neural network are the build-in self calibration procedure and high speed performance, but the neural network cannot be used to extract......A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....

  8. Electronic circuits modeling using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Andrejević Miona V.

    2003-01-01

    Full Text Available In this paper artificial neural networks (ANN are applied to modeling of electronic circuits. ANNs are used for application of the black-box modeling concept in the time domain. Modeling process is described, so the topology of the ANN, the testing signal used for excitation, together with the complexity of ANN are considered. The procedure is first exemplified in modeling of resistive circuits. MOS transistor, as a four-terminal device, is modeled. Then nonlinear negative resistive characteristic is modeled in order to be used as a piece-wise linear resistor in Chua's circuit. Examples of modeling nonlinear dynamic circuits are given encompassing a variety of modeling problems. A nonlinear circuit containing quartz oscillator is considered for modeling. Verification of the concept is performed by verifying the ability of the model to generalize i.e. to create acceptable responses to excitations not used during training. Implementation of these models within a behavioral simulator is exemplified. Every model is implemented in realistic surrounding in order to show its interaction, and of course, its usage and purpose.

  9. Bayesian Recurrent Neural Network for Language Modeling.

    Science.gov (United States)

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  10. Neural network models: Insights and prescriptions from practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Samad, T. [Honeywell Technology Center, Minneapolis, MN (United States)

    1995-12-31

    Neural networks are no longer just a research topic; numerous applications are now testament to their practical utility. In the course of developing these applications, researchers and practitioners have been faced with a variety of issues. This paper briefly discusses several of these, noting in particular the rich connections between neural networks and other, more conventional technologies. A more comprehensive version of this paper is under preparation that will include illustrations on real examples. Neural networks are being applied in several different ways. Our focus here is on neural networks as modeling technology. However, much of the discussion is also relevant to other types of applications such as classification, control, and optimization.

  11. Role of neural network models for developing speech systems

    Indian Academy of Sciences (India)

    K Sreenivasa Rao

    2011-10-01

    This paper discusses the application of neural networks for developing different speech systems. Prosodic parameters of speech at syllable level depend on positional, contextual and phonological features of the syllables. In this paper, neural networks are explored to model the prosodic parameters of the syllables from their positional, contextual and phonological features. The prosodic parameters considered in this work are duration and sequence of pitch $(F_0)$ values of the syllables. These prosody models are further examined for applications such as text to speech synthesis, speech recognition, speaker recognition and language identification. Neural network models in voice conversion system are explored for capturing the mapping functions between source and target speakers at source, system and prosodic levels. We have also used neural network models for characterizing the emotions present in speech. For identification of dialects in Hindi, neural network models are used to capture the dialect specific information from spectral and prosodic features of speech.

  12. Intelligent Intrusion Detection System Model Using Rough Neural Network

    Institute of Scientific and Technical Information of China (English)

    YAN Huai-zhi; HU Chang-zhen; TAN Hui-min

    2005-01-01

    A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or malicious attacks using RNN with sub-nets. The sub-net is constructed by detection-oriented signatures extracted using rough set theory to detect different intrusions. It is proved that RNN detection method has the merits of adaptive, high universality,high convergence speed, easy upgrading and management.

  13. Modelling the permeability of polymers: a neural network approach

    NARCIS (Netherlands)

    Wessling, M.; Mulder, M.H.V.; Bos, A.; Linden, van der M.K.T.; Bos, M.; Linden, van der W.E.

    1994-01-01

    In this short communication, the prediction of the permeability of carbon dioxide through different polymers using a neural network is studied. A neural network is a numeric-mathematical construction that can model complex non-linear relationships. Here it is used to correlate the IR spectrum of a p

  14. Neural Network Model for the Constitutive Relations of Soil

    Institute of Scientific and Technical Information of China (English)

    Zeng Jing; Wang Jing-tao

    2003-01-01

    The soil constitutive relation is one of the important issues in soil mechanics. It is very difficult to establish mathematical models because of the complexity of soil mechanical behavior. We propose a new method of neural network analysis for establishing soil constitutive models. Based on triaxial experiments of sand in the laboratory, the nonlinear constitutive models of sand expressed by the neural network were set up. In comparison with Duncan-Chang's model, the neural network method for sand modeling has been proved to be more convenient, accurate and it has a strong fault-tolerance function.

  15. Simulation Model of Magnetic Levitation Based on NARX Neural Networks

    Directory of Open Access Journals (Sweden)

    Dragan Antić

    2013-04-01

    Full Text Available In this paper, we present analysis of different training types for nonlinear autoregressive neural network, used for simulation of magnetic levitation system. First, the model of this highly nonlinear system is described and after that the Nonlinear Auto Regressive eXogenous (NARX of neural network model is given. Also, numerical optimization techniques for improved network training are described. It is verified that NARX neural network can be successfully used to simulate real magnetic levitation system if suitable training procedure is chosen, and the best two training types, obtained from experimental results, are described in details.

  16. Impulsive Neural Networks Algorithm Based on the Artificial Genome Model

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2014-05-01

    Full Text Available To describe gene regulatory networks, this article takes the framework of the artificial genome model and proposes impulsive neural networks algorithm based on the artificial genome model. Firstly, the gene expression and the cell division tree are applied to generate spiking neurons with specific attributes, neural network structure, connection weights and specific learning rules of each neuron. Next, the gene segment duplications and divergence model are applied to design the evolutionary algorithm of impulsive neural networks at the level of the artificial genome. The dynamic changes of developmental gene regulatory networks are controlled during the whole evolutionary process. Finally, the behavior of collecting food for autonomous intelligent agent is simulated, which is driven by nerves. Experimental results demonstrate that the algorithm in this article has the evolutionary ability on large-scale impulsive neural networks

  17. Comparison of Gompertz and neural network models of broiler growth.

    Science.gov (United States)

    Roush, W B; Dozier, W A; Branton, S L

    2006-04-01

    Neural networks offer an alternative to regression analysis for biological growth modeling. Very little research has been conducted to model animal growth using artificial neural networks. Twenty-five male chicks (Ross x Ross 308) were raised in an environmental chamber. Body weights were determined daily and feed and water were provided ad libitum. The birds were fed a starter diet (23% CP and 3,200 kcal of ME/kg) from 0 to 21 d, and a grower diet (20% CP and 3,200 kcal of ME/ kg) from 22 to 70 d. Dead and female birds were not included in the study. Average BW of 18 birds were used as the data points for the growth curve to be modeled. Training data consisted of alternate-day weights starting with the first day. Validation data consisted of BW at all other age periods. Comparison was made between the modeling by the Gompertz nonlinear regression equation and neural network modeling. Neural network models were developed with the Neuroshell Predictor. Accuracy of the models was determined by mean square error (MSE), mean absolute deviation (MAD), mean absolute percentage error (MAPE), and bias. The Gompertz equation was fit for the data. Forecasting error measurements were based on the difference between the model and the observed values. For the training data, the lowest MSE, MAD, MAPE, and bias were noted for the neural-developed neural network. For the validation data, the lowest MSE and MAD were noted with the genetic algorithm-developed neural network. Lowest bias was for the neural-developed network. As measured by bias, the Gompertz equation underestimated the values whereas the neural- and genetic-developed neural networks produced little or no overestimation of the observed BW responses. Past studies have attempted to interpret the biological significance of the estimates of the parameters of an equation. However, it may be more practical to ignore the relevance of parameter estimates and focus on the ability to predict responses.

  18. Neural and Cognitive Modeling with Networks of Leaky Integrator Units

    Science.gov (United States)

    Graben, Peter beim; Liebscher, Thomas; Kurths, Jürgen

    After reviewing several physiological findings on oscillations in the electroencephalogram (EEG) and their possible explanations by dynamical modeling, we present neural networks consisting of leaky integrator units as a universal paradigm for neural and cognitive modeling. In contrast to standard recurrent neural networks, leaky integrator units are described by ordinary differential equations living in continuous time. We present an algorithm to train the temporal behavior of leaky integrator networks by generalized back-propagation and discuss their physiological relevance. Eventually, we show how leaky integrator units can be used to build oscillators that may serve as models of brain oscillations and cognitive processes.

  19. Modeling Broadband Microwave Structures by Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    V. Otevrel

    2004-06-01

    Full Text Available The paper describes the exploitation of feed-forward neural networksand recurrent neural networks for replacing full-wave numerical modelsof microwave structures in complex microwave design tools. Building aneural model, attention is turned to the modeling accuracy and to theefficiency of building a model. Dealing with the accuracy, we describea method of increasing it by successive completing a training set.Neural models are mutually compared in order to highlight theiradvantages and disadvantages. As a reference model for comparisons,approximations based on standard cubic splines are used. Neural modelsare used to replace both the time-domain numeric models and thefrequency-domain ones.

  20. Diagnosing process faults using neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Buescher, K.L.; Jones, R.D.; Messina, M.J.

    1993-11-01

    In order to be of use for realistic problems, a fault diagnosis method should have the following three features. First, it should apply to nonlinear processes. Second, it should not rely on extensive amounts of data regarding previous faults. Lastly, it should detect faults promptly. The authors present such a scheme for static (i.e., non-dynamic) systems. It involves using a neural network to create an associative memory whose fixed points represent the normal behavior of the system.

  1. arXiv Modeling NNLO jet corrections with neural networks

    CERN Document Server

    Carrazza, Stefano

    2017-01-01

    We present a preliminary strategy for modeling multidimensional distributions through neural networks. We study the efficiency of the proposed strategy by considering as input data the two-dimensional next-to-next leading order (NNLO) jet k-factors distribution for the ATLAS 7 TeV 2011 data. We then validate the neural network model in terms of interpolation and prediction quality by comparing its results to alternative models.

  2. Artificial Neural Network Model for Optical Fiber Direction Coupler Design

    Institute of Scientific and Technical Information of China (English)

    李九生; 鲍振武

    2004-01-01

    A new approach to the design of the optical fiber direction coupler by using neural network is proposed. To train the artificial neural network,the coupling length is defined as the input sample, and the coupling ratio is defined as the output sample. Compared with the numerical value calculation of the theoretical formula, the error of the neural network model output is 1% less.Then, through the model, to design a broadband or a single wavelength optical fiber direction coupler becomes easy. The method is proved to be reliable, accurate and time-saving. So it is promising in the field of both investigation and application.

  3. Numeral eddy current sensor modelling based on genetic neural network

    Institute of Scientific and Technical Information of China (English)

    Yu A-Long

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness,on-line modelling and high precision.The maximum nonlinearity error can be reduced to 0.037% by using GNN.However, the maximum nonlinearity error is 0.075% using the least square method.

  4. Variable cluster analysis method for building neural network model

    Institute of Scientific and Technical Information of China (English)

    王海东; 刘元东

    2004-01-01

    To address the problems that input variables should be reduced as much as possible and explain output variables fully in building neural network model of complicated system, a variable selection method based on cluster analysis was investigated. Similarity coefficient which describes the mutual relation of variables was defined. The methods of the highest contribution rate, part replacing whole and variable replacement are put forwarded and deduced by information theory. The software of the neural network based on cluster analysis, which can provide many kinds of methods for defining variable similarity coefficient, clustering system variable and evaluating variable cluster, was developed and applied to build neural network forecast model of cement clinker quality. The results show that all the network scale, training time and prediction accuracy are perfect. The practical application demonstrates that the method of selecting variables for neural network is feasible and effective.

  5. Prediction Model of Sewing Technical Condition by Grey Neural Network

    Institute of Scientific and Technical Information of China (English)

    DONG Ying; FANG Fang; ZHANG Wei-yuan

    2007-01-01

    The grey system theory and the artificial neural network technology were applied to predict the sewing technical condition. The representative parameters, such as needle, stitch, were selected. Prediction model was established based on the different fabrics' mechanical properties that measured by KES instrument. Grey relevant degree analysis was applied to choose the input parameters of the neural network. The result showed that prediction model has good precision. The average relative error was 4.08% for needle and 4.25% for stitch.

  6. Interval standard neural network models for nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design approach employs a neural network, whose activation functions satisfy the sector conditions, to approximate the nonlinear system. To improve the approximation performance and to account for the parameter perturbations during operation, a novel neural network model termed standard neural network model (SNNM) is proposed. If the uncertainty is bounded, the SNNM is called an interval SNNM (ISNNM). A state-feedback control law is designed for the nonlinear system modelled by an ISNNM such that the closed-loop system is globally, robustly, and asymptotically stable. The control design equations are shown to be a set of linear matrix inequalities (LMIs) that can be easily solved by available convex optimization algorithms. An example is given to illustrate the control design procedure, and the performance of the proposed approach is compared with that of a related method reported in literature.

  7. Artificial neural network modeling of dissolved oxygen in reservoir.

    Science.gov (United States)

    Chen, Wei-Bo; Liu, Wen-Cheng

    2014-02-01

    The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.

  8. A scale-free neural network for modelling neurogenesis

    Science.gov (United States)

    Perotti, Juan I.; Tamarit, Francisco A.; Cannas, Sergio A.

    2006-11-01

    In this work we introduce a neural network model for associative memory based on a diluted Hopfield model, which grows through a neurogenesis algorithm that guarantees that the final network is a small-world and scale-free one. We also analyze the storage capacity of the network and prove that its performance is larger than that measured in a randomly dilute network with the same connectivity.

  9. Calculation of precise firing statistics in a neural network model

    Science.gov (United States)

    Cho, Myoung Won

    2017-08-01

    A precise prediction of neural firing dynamics is requisite to understand the function of and the learning process in a biological neural network which works depending on exact spike timings. Basically, the prediction of firing statistics is a delicate manybody problem because the firing probability of a neuron at a time is determined by the summation over all effects from past firing states. A neural network model with the Feynman path integral formulation is recently introduced. In this paper, we present several methods to calculate firing statistics in the model. We apply the methods to some cases and compare the theoretical predictions with simulation results.

  10. A neural network model for credit risk evaluation.

    Science.gov (United States)

    Khashman, Adnan

    2009-08-01

    Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.

  11. System partitioning on MCM using a new neural network model

    Institute of Scientific and Technical Information of China (English)

    胡卫明; 徐俊华; 严晓浪; 何志钧

    1999-01-01

    A new self-organizing neural network model is presented, which can get rid of some fatal defects facing the Kohonen self-organizing neural network, known as the slow training speed, difficulty in designing neighboring zone, and disability to deal with area constraints directly. Based on the new neural network, a new approach for performance-driven system partitioning on MCM is presented. In the algorithm, the total routing cost between the chips and the circle time are both minimized, while satisfying area and timing constraints. The neural network has a reasonable structure and its training speed is high. The algorithm is able to deal with the large scale circuit partitioning, and has total optimization effect. The algorithm is programmed with Visual C + + language, and experimental result shows that it is an effective method.

  12. Neural network models of learning and categorization in multigame experiments

    Directory of Open Access Journals (Sweden)

    Davide eMarchiori

    2011-12-01

    Full Text Available Previous research has shown that regret-driven neural networks predict behavior in repeated completely mixed games remarkably well, substantially equating the performance of the most accurate established models of learning. This result prompts the question of what is the added value of modeling learning through neural networks. We submit that this modeling approach allows for models that are able to distinguish among and respond differently to different payoff structures. Moreover, the process of categorization of a game is implicitly carried out by these models, thus without the need of any external explicit theory of similarity between games. To validate our claims, we designed and ran two multigame experiments in which subjects faced, in random sequence, different instances of two completely mixed 2x2 games. Then, we tested on our experimental data two regret-driven neural network models, and compared their performance with that of other established models of learning and Nash equilibrium.

  13. Optimization of recurrent neural networks for time series modeling

    DEFF Research Database (Denmark)

    Pedersen, Morten With

    1997-01-01

    The present thesis is about optimization of recurrent neural networks applied to time series modeling. In particular is considered fully recurrent networks working from only a single external input, one layer of nonlinear hidden units and a li near output unit applied to prediction of discrete time...

  14. Artificial neural networks modeling gene-environment interaction

    Directory of Open Access Journals (Sweden)

    Günther Frauke

    2012-05-01

    Full Text Available Abstract Background Gene-environment interactions play an important role in the etiological pathway of complex diseases. An appropriate statistical method for handling a wide variety of complex situations involving interactions between variables is still lacking, especially when continuous variables are involved. The aim of this paper is to explore the ability of neural networks to model different structures of gene-environment interactions. A simulation study is set up to compare neural networks with standard logistic regression models. Eight different structures of gene-environment interactions are investigated. These structures are characterized by penetrance functions that are based on sigmoid functions or on combinations of linear and non-linear effects of a continuous environmental factor and a genetic factor with main effect or with a masking effect only. Results In our simulation study, neural networks are more successful in modeling gene-environment interactions than logistic regression models. This outperfomance is especially pronounced when modeling sigmoid penetrance functions, when distinguishing between linear and nonlinear components, and when modeling masking effects of the genetic factor. Conclusion Our study shows that neural networks are a promising approach for analyzing gene-environment interactions. Especially, if no prior knowledge of the correct nature of the relationship between co-variables and response variable is present, neural networks provide a valuable alternative to regression methods that are limited to the analysis of linearly separable data.

  15. Study on neural network model for calculating subsidence factor

    Institute of Scientific and Technical Information of China (English)

    GUO Wen-bing; ZHANG Jie

    2007-01-01

    The major factors influencing subsidence factor were comprehensively analyzed. Then the artificial neural network model for calculating subsidence factor was set up with the theory of artificial neural network (ANN). A large amount of data from observation stations in China was collected and used as learning and training samples to train and test the artificial neural network model. The calculated results of the ANN model and the observed values were compared and analyzed in this paper. The results demonstrate that many factors can be considered in this model and the result is more precise and closer to observed values to calculate the subsidence factor by the ANN model. It can satisfy the need of engineering.

  16. Predictive modeling of dental pain using neural network.

    Science.gov (United States)

    Kim, Eun Yeob; Lim, Kun Ok; Rhee, Hyun Sill

    2009-01-01

    The mouth is a part of the body for ingesting food that is the most basic foundation and important part. The dental pain predicted by the neural network model. As a result of making a predictive modeling, the fitness of the predictive modeling of dental pain factors was 80.0%. As for the people who are likely to experience dental pain predicted by the neural network model, preventive measures including proper eating habits, education on oral hygiene, and stress release must precede any dental treatment.

  17. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  18. An ART neural network model of discrimination shift learning

    NARCIS (Netherlands)

    Raijmakers, M.E.J.; Coffey, E.; Stevenson, C.; Winkel, J.; Berkeljon, A.; Taatgen, N.; van Rijn, H.

    2009-01-01

    We present an ART-based neural network model (adapted from [2]) of the development of discrimination-shift learning that models the trial-by-trial learning process in great detail. In agreement with the results of human participants (4-20 years of age) in [1] the model revealed two distinct learning

  19. The Use of Neural Network Technology to Model Swimming Performance

    Science.gov (United States)

    Silva, António José; Costa, Aldo Manuel; Oliveira, Paulo Moura; Reis, Victor Machado; Saavedra, José; Perl, Jurgen; Rouboa, Abel; Marinho, Daniel Almeida

    2007-01-01

    The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons) and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females) of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility), swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics) and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron) with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances) is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports. Key pointsThe non-linear analysis resulting from the use of feed forward neural network allowed us the development of four performance models.The mean difference between the true and estimated results performed by each one of the four neural network models constructed was low.The neural network tool can be a good approach in the resolution of the performance modeling as an alternative to the standard statistical models that presume well-defined distributions and independence among all inputs.The use of neural networks for sports

  20. Fuzzy Entropy: Axiomatic Definition and Neural Networks Model

    Institute of Scientific and Technical Information of China (English)

    QINGMing; CAOYue; HUANGTian-min

    2004-01-01

    The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy system is known as fuzzy entropy. Fuzzy entropy has been focused and studied by many researchers in various fields. In this paper, firstly, the axiomatic definition of fuzzy entropy is discussed. Then, neural networks model of fuzzy entropy is proposed, based on the computing capability of neural networks. In the end, two examples are discussed to show the efficiency of the model.

  1. Artificial Neural Networks

    OpenAIRE

    Chung-Ming Kuan

    2006-01-01

    Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems. In this entry, we introduce ANN using familiar econometric terminology and provide an overview of ANN modeling approach and its implementation methods.

  2. Artificial Neural Networks for Modeling Knowing and Learning in Science.

    Science.gov (United States)

    Roth, Wolff-Michael

    2000-01-01

    Advocates artificial neural networks as models for cognition and development. Provides an example of how such models work in the context of a well-known Piagetian developmental task and school science activity: balance beam problems. (Contains 59 references.) (Author/WRM)

  3. Artificial Neural Networks for Modeling Knowing and Learning in Science.

    Science.gov (United States)

    Roth, Wolff-Michael

    2000-01-01

    Advocates artificial neural networks as models for cognition and development. Provides an example of how such models work in the context of a well-known Piagetian developmental task and school science activity: balance beam problems. (Contains 59 references.) (Author/WRM)

  4. A Neural Network Model of Retrieval-Induced Forgetting

    Science.gov (United States)

    Norman, Kenneth A.; Newman, Ehren L.; Detre, Greg

    2007-01-01

    Retrieval-induced forgetting (RIF) refers to the finding that retrieving a memory can impair subsequent recall of related memories. Here, the authors present a new model of how the brain gives rise to RIF in both semantic and episodic memory. The core of the model is a recently developed neural network learning algorithm that leverages regular…

  5. Neural Networks for Electrohydrodynamic Effect Modelling

    Directory of Open Access Journals (Sweden)

    Jolanta Gancarz

    2004-01-01

    Full Text Available This paper presents currently achieved results concerning methods of electrohydrodynamic effect used in geophysics simulated with feedforward networks trained with backpropagation algorithm, radial basis function networks and generalized regression networks.

  6. Neural Networks For Electrohydrodynamic Effect Modelling

    Directory of Open Access Journals (Sweden)

    Wiesław Wajs

    2004-01-01

    Full Text Available This paper presents currently achieved results concerning methods of electrohydrodynamiceffect used in geophysics simulated with feedforward networks trained with backpropagation algorithm, radial basis function networks and generalized regression networks.

  7. Product Cost Management Structures: a review and neural network modelling

    Directory of Open Access Journals (Sweden)

    P. Jha

    2003-11-01

    Full Text Available This paper reviews the growth of approaches in product costing and draws synergies with information management and resource planning systems, to investigate potential application of state of the art modelling techniques of neural networks. Increasing demands on costing systems to serve multiple decision-making objectives, have made it essential to use better techniques for analysis of available data. This need is highlighted in the paper. The approach of neural networks, which have several analogous facets to complement and aid the information demands of modern product costing, Enterprise Resource Planning (ERP structures and the dominant-computing environment (for information management in the object oriented paradigm form the domain for investigation. Simulated data is used in neural network applications across activities that consume resources and deliver products, to generate information for monitoring and control decisions. The results in application for feature extraction and variation detection and their implications are presented in the paper.

  8. Neural network versus classical time series forecasting models

    Science.gov (United States)

    Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam

    2017-05-01

    Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.

  9. Neural network emulation of a rainfall-runoff model

    Directory of Open Access Journals (Sweden)

    R. J. Abrahart

    2007-02-01

    Full Text Available The potential of an artificial neural network to perform simple non-linear hydrological transformations is examined. Four neural network models were developed to emulate different facets of a recognised non-linear hydrological transformation equation that possessed a small number of variables and contained no temporal component. The modeling process was based on a set of uniform random distributions. The cloning operation facilitated a direct comparison with the exact equation-based relationship. It also provided broader information about the power of a neural network to emulate existing equations and model non-linear relationships. Several comparisons with least squares multiple linear regression were performed. The first experiment involved a direct emulation of the Xinanjiang Rainfall-Runoff Model. The next two experiments were designed to assess the competencies of two neural solutions that were developed on a reduced number of inputs. This involved the omission and conflation of previous inputs. The final experiment used derived variables to model intrinsic but otherwise concealed internal relationships that are of hydrological interest. Two recent studies have suggested that neural solutions offer no worthwhile improvements in comparison to traditional weighted linear transfer functions for capturing the non-linear nature of hydrological relationships. Yet such fundamental properties are intrinsic aspects of catchment processes that cannot be excluded or ignored. The results from the four experiments that are reported in this paper are used to challenge the interpretations from these two earlier studies and thus further the debate with regards to the appropriateness of neural networks for hydrological modelling.

  10. Improved neural network modeling of inverse lens distortion

    CSIR Research Space (South Africa)

    De Villiers, JP

    2011-04-01

    Full Text Available Inverse lens distortion modelling allows one to find the pixel in a distorted image which corresponds to a known point in object space, such as may be produced by a RADAR. This paper extends recent work using neural networks as a compromise between...

  11. THE USE OF NEURAL NETWORK TECHNOLOGY TO MODEL SWIMMING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    António José Silva

    2007-03-01

    Full Text Available The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility, swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports

  12. Introducing Artificial Neural Networks through a Spreadsheet Model

    Science.gov (United States)

    Rienzo, Thomas F.; Athappilly, Kuriakose K.

    2012-01-01

    Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…

  13. A Constructive Neural-Network Approach to Modeling Psychological Development

    Science.gov (United States)

    Shultz, Thomas R.

    2012-01-01

    This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…

  14. Pragmatic Bootstrapping: A Neural Network Model of Vocabulary Acquisition

    Science.gov (United States)

    Caza, Gregory A.; Knott, Alistair

    2012-01-01

    The social-pragmatic theory of language acquisition proposes that children only become efficient at learning the meanings of words once they acquire the ability to understand the intentions of other agents, in particular the intention to communicate (Akhtar & Tomasello, 2000). In this paper we present a neural network model of word learning which…

  15. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    Science.gov (United States)

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  16. A Constructive Neural-Network Approach to Modeling Psychological Development

    Science.gov (United States)

    Shultz, Thomas R.

    2012-01-01

    This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…

  17. Pragmatic Bootstrapping: A Neural Network Model of Vocabulary Acquisition

    Science.gov (United States)

    Caza, Gregory A.; Knott, Alistair

    2012-01-01

    The social-pragmatic theory of language acquisition proposes that children only become efficient at learning the meanings of words once they acquire the ability to understand the intentions of other agents, in particular the intention to communicate (Akhtar & Tomasello, 2000). In this paper we present a neural network model of word learning which…

  18. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    Science.gov (United States)

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  19. Introducing Artificial Neural Networks through a Spreadsheet Model

    Science.gov (United States)

    Rienzo, Thomas F.; Athappilly, Kuriakose K.

    2012-01-01

    Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…

  20. Mutual information in a dilute, asymmetric neural network model

    Science.gov (United States)

    Greenfield, Elliot

    We study the computational properties of a neural network consisting of binary neurons with dilute asymmetric synaptic connections. This simple model allows us to simulate large networks which can reflect more of the architecture and dynamics of real neural networks. Our main goal is to determine the dynamical behavior that maximizes the network's ability to perform computations. To this end, we apply information theory, measuring the average mutual information between pairs of pre- and post-synaptic neurons. Communication of information between neurons is an essential requirement for collective computation. Previous workers have demonstrated that neural networks with asymmetric connections undergo a transition from ordered to chaotic behavior as certain network parameters, such as the connectivity, are changed. We find that the average mutual information has a peak near the order-chaos transition, implying that the network can most efficiently communicate information between cells in this region. The mutual information peak becomes increasingly pronounced when the basic model is extended to incorporate more biologically realistic features, such as a variable threshold and nonlinear summation of inputs. We find that the peak in mutual information near the phase transition is a robust feature of the system for a wide range of assumptions about post-synaptic integration.

  1. Modelling and control PEMFC using fuzzy neural networks

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Proton exchange membrane generation technology is highly efficient, clean and considered as the most hopeful "green" power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model and control online. This paper first simply analyzes the characters of the PEMFC; and then uses the approach and self-study ability of artificial neural networks to build the model of the nonlinear system, and uses the adaptive neural-networks fuzzy infer system (ANFIS) to build the temperature model of PEMFC which is used as the reference model of the control system, and adjusts the model parameters to control it online. The model and control are implemented in SIMULINK environment. Simulation results showed that the test data and model agreed well, so it will be very useful for optimal and real-time control of PEMFC system.

  2. Building footprint extraction from digital surface models using neural networks

    Science.gov (United States)

    Davydova, Ksenia; Cui, Shiyong; Reinartz, Peter

    2016-10-01

    Two-dimensional building footprints are a basis for many applications: from cartography to three-dimensional building models generation. Although, many methodologies have been proposed for building footprint extraction, this topic remains an open research area. Neural networks are able to model the complex relationships between the multivariate input vector and the target vector. Based on these abilities we propose a methodology using neural networks and Markov Random Fields (MRF) for automatic building footprint extraction from normalized Digital Surface Model (nDSM) and satellite images within urban areas. The proposed approach has mainly two steps. In the first step, the unary terms are learned for the MRF energy function by a four-layer neural network. The neural network is learned on a large set of patches consisting of both nDSM and Normalized Difference Vegetation Index (NDVI). Then prediction is performed to calculate the unary terms that are used in the MRF. In the second step, the energy function is minimized using a maxflow algorithm, which leads to a binary building mask. The building extraction results are compared with available ground truth. The comparison illustrates the efficiency of the proposed algorithm which can extract approximately 80% of buildings from nDSM with high accuracy.

  3. Modeling of methane emissions using artificial neural network approach

    Directory of Open Access Journals (Sweden)

    Stamenković Lidija J.

    2015-01-01

    Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007

  4. Neural Network Modeling of UH-60A Pilot Vibration

    Science.gov (United States)

    Kottapalli, Sesi

    2003-01-01

    Full-scale flight-test pilot floor vibration is modeled using neural networks and full-scale wind tunnel test data for low speed level flight conditions. Neural network connections between the wind tunnel test data and the tlxee flight test pilot vibration components (vertical, lateral, and longitudinal) are studied. Two full-scale UH-60A Black Hawk databases are used. The first database is the NASMArmy UH-60A Airloads Program flight test database. The second database is the UH-60A rotor-only wind tunnel database that was acquired in the NASA Ames SO- by 120- Foot Wind Tunnel with the Large Rotor Test Apparatus (LRTA). Using neural networks, the flight-test pilot vibration is modeled using the wind tunnel rotating system hub accelerations, and separately, using the hub loads. The results show that the wind tunnel rotating system hub accelerations and the operating parameters can represent the flight test pilot vibration. The six components of the wind tunnel N/rev balance-system hub loads and the operating parameters can also represent the flight test pilot vibration. The present neural network connections can significandy increase the value of wind tunnel testing.

  5. Statistical modelling of neural networks in {gamma}-spectrometry applications

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, V.; Martinez, J.M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Morel, J.; Lepy, M.C. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Applications et de la Metrologie des Rayonnements Ionisants

    1995-12-31

    Layered Neural Networks, which are a class of models based on neural computation, are applied to the measurement of uranium enrichment, i.e. the isotope ratio {sup 235} U/({sup 235} U + {sup 236} U + {sup 238} U). The usual method consider a limited number of {Gamma}-ray and X-ray peaks, and require previously calibrated instrumentation for each sample. But, in practice, the source-detector ensemble geometry conditions are critically different, thus a means of improving the above convention methods is to reduce the region of interest: this is possible by focusing on the K{sub {alpha}} X region where the three elementary components are present. Real data are used to study the performance of neural networks. Training is done with a Maximum Likelihood method to measure uranium {sup 235} U and {sup 238} U quantities in infinitely thick samples. (authors). 18 refs., 6 figs., 3 tabs.

  6. Review of neural network modelling of cracking process

    Science.gov (United States)

    Rosli, M. N.; Aziz, N.

    2016-11-01

    Cracking process is a very important process that converts low value products into high value products such as conversion of naphtha into ethylene and propylene. The process is nonlinear with extensive reaction network. Thus, nonlinear technique such as artificial neural network is explored to develop the model of the system. The paper will review and discuss the research works done on the technique in modelling cracking process using artificial neural network starting from early 1990s until recent development in 2015. Timeline is provided to show progression of work done throughout the years, the main issues addressed, and the proposed techniques for each. In the next section, the main objective of each work and each techniques explored by previous researchers is discussed in more detail. A table that summarizes previous works is provided to show common works done throughout the years. Lastly, potential gap for future works in the area is highlighted.

  7. Robust nonlinear system identification using neural-network models.

    Science.gov (United States)

    Lu, S; Basar, T

    1998-01-01

    We study the problem of identification for nonlinear systems in the presence of unknown driving noise, using both feedforward multilayer neural network and radial basis function network models. Our objective is to resolve the difficulty associated with the persistency of excitation condition inherent to the standard schemes in the neural identification literature. This difficulty is circumvented here by a novel formulation and by using a new class of identification algorithms recently obtained by Didinsky et al. We show how these algorithms can be exploited to successfully identify the nonlinearity in the system using neural-network models. By embedding the original problem in one with noise-perturbed state measurements, we present a class of identifiers (under L1 and L2 cost criteria) which secure a good approximant for the system nonlinearity provided that some global optimization technique is used. In this respect, many available learning algorithms in the current neural-network literature, e.g., the backpropagation scheme and the genetic algorithms-based scheme, with slight modifications, can ensure the identification of the system nonlinearity. Subsequently, we address the same problem under a third, worst case L(infinity) criterion for an RBF modeling. We present a neural-network version of an H(infinity)-based identification algorithm from Didinsky et al and show how, along with an appropriate choice of control input to enhance excitation, under both full-state-derivative information (FSDI) and noise-perturbed full-state-information (NPFSI), it leads to satisfaction of a relevant persistency of excitation condition, and thereby to robust identification of the nonlinearity. Results from several simulation studies have been included to demonstrate the effectiveness of these algorithms.

  8. Artificial Neural Network L* from different magnetospheric field models

    Science.gov (United States)

    Yu, Y.; Koller, J.; Zaharia, S. G.; Jordanova, V. K.

    2011-12-01

    The third adiabatic invariant L* plays an important role in modeling and understanding the radiation belt dynamics. The popular way to numerically obtain the L* value follows the recipe described by Roederer [1970], which is, however, slow and computational expensive. This work focuses on a new technique, which can compute the L* value in microseconds without losing much accuracy: artificial neural networks. Since L* is related to the magnetic flux enclosed by a particle drift shell, global magnetic field information needed to trace the drift shell is required. A series of currently popular empirical magnetic field models are applied to create the L* data pool using 1 million data samples which are randomly selected within a solar cycle and within the global magnetosphere. The networks, trained from the above L* data pool, can thereby be used for fairly efficient L* calculation given input parameters valid within the trained temporal and spatial range. Besides the empirical magnetospheric models, a physics-based self-consistent inner magnetosphere model (RAM-SCB) developed at LANL is also utilized to calculate L* values and then to train the L* neural network. This model better predicts the magnetospheric configuration and therefore can significantly improve the L*. The above neural network L* technique will enable, for the first time, comprehensive solar-cycle long studies of radiation belt processes. However, neural networks trained from different magnetic field models can result in different L* values, which could cause mis-interpretation of radiation belt dynamics, such as where the source of the radiation belt charged particle is and which mechanism is dominant in accelerating the particles. Such a fact calls for attention to cautiously choose a magnetospheric field model for the L* calculation.

  9. Data acquisition in modeling using neural networks and decision trees

    Directory of Open Access Journals (Sweden)

    R. Sika

    2011-04-01

    Full Text Available The paper presents a comparison of selected models from area of artificial neural networks and decision trees in relation with actualconditions of foundry processes. The work contains short descriptions of used algorithms, their destination and method of data preparation,which is a domain of work of Data Mining systems. First part concerns data acquisition realized in selected iron foundry, indicating problems to solve in aspect of casting process modeling. Second part is a comparison of selected algorithms: a decision tree and artificial neural network, that is CART (Classification And Regression Trees and BP (Backpropagation in MLP (Multilayer Perceptron networks algorithms.Aim of the paper is to show an aspect of selecting data for modeling, cleaning it and reducing, for example due to too strong correlationbetween some of recorded process parameters. Also, it has been shown what results can be obtained using two different approaches:first when modeling using available commercial software, for example Statistica, second when modeling step by step using Excel spreadsheetbasing on the same algorithm, like BP-MLP. Discrepancy of results obtained from these two approaches originates from a priorimade assumptions. Mentioned earlier Statistica universal software package, when used without awareness of relations of technologicalparameters, i.e. without user having experience in foundry and without scheduling ranks of particular parameters basing on acquisition, can not give credible basis to predict the quality of the castings. Also, a decisive influence of data acquisition method has been clearly indicated, the acquisition should be conducted according to repetitive measurement and control procedures. This paper is based on about 250 records of actual data, for one assortment for 6 month period, where only 12 data sets were complete (including two that were used for validation of neural network and useful for creating a model. It is definitely too

  10. Recursive Bayesian recurrent neural networks for time-series modeling.

    Science.gov (United States)

    Mirikitani, Derrick T; Nikolaev, Nikolay

    2010-02-01

    This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.

  11. An Adaptive Neural Network Model for Nonlinear Programming Problems

    Institute of Scientific and Technical Information of China (English)

    Xiang-sun Zhang; Xin-jian Zhuo; Zhu-jun Jing

    2002-01-01

    In this paper a canonical neural network with adaptively changing synaptic weights and activation function parameters is presented to solve general nonlinear programming problems. The basic part of the model is a sub-network used to find a solution of quadratic programming problems with simple upper and lower bounds. By sequentially activating the sub-network under the control of an external computer or a special analog or digital processor that adjusts the weights and parameters, one then solves general nonlinear programming problems. Convergence proof and numerical results are given.

  12. Artificial neural network modeling of p-cresol photodegradation.

    Science.gov (United States)

    Abdollahi, Yadollah; Zakaria, Azmi; Abbasiyannejad, Mina; Masoumi, Hamid Reza Fard; Moghaddam, Mansour Ghaffari; Matori, Khamirul Amin; Jahangirian, Hossein; Keshavarzi, Ashkan

    2013-06-03

    The complexity of reactions and kinetic is the current problem of photodegradation processes. Recently, artificial neural networks have been widely used to solve the problems because of their reliable, robust, and salient characteristics in capturing the non-linear relationships between variables in complex systems. In this study, an artificial neural network was applied for modeling p-cresol photodegradation. To optimize the network, the independent variables including irradiation time, pH, photocatalyst amount and concentration of p-cresol were used as the input parameters, while the photodegradation% was selected as output. The photodegradation% was obtained from the performance of the experimental design of the variables under UV irradiation. The network was trained by Quick propagation (QP) and the other three algorithms as a model. To determine the number of hidden layer nodes in the model, the root mean squared error of testing set was minimized. After minimizing the error, the topologies of the algorithms were compared by coefficient of determination and absolute average deviation. The comparison indicated that the Quick propagation algorithm had minimum root mean squared error, 1.3995, absolute average deviation, 3.0478, and maximum coefficient of determination, 0.9752, for the testing data set. The validation test results of the artificial neural network based on QP indicated that the root mean squared error was 4.11, absolute average deviation was 8.071 and the maximum coefficient of determination was 0.97. Artificial neural network based on Quick propagation algorithm with topology 4-10-1 gave the best performance in this study.

  13. Translation rescoring through recurrent neural network language models

    OpenAIRE

    PERIS ABRIL, ÁLVARO

    2014-01-01

    This work is framed into the Statistical Machine Translation field, more specifically into the language modeling challenge. In this area, have classically predominated the n-gram approach, but, in the latest years, different approaches have arisen in order to tackle this problem. One of this approaches is the use of artificial recurrent neural networks, which are supposed to outperform the n-gram language models. The aim of this work is to test empirically these new language...

  14. Character recognition using a neural network model with fuzzy representation

    Science.gov (United States)

    Tavakoli, Nassrin; Seniw, David

    1992-01-01

    The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.

  15. Neural network connectivity and response latency modelled by stochastic processes

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano

    is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas...... generation of pikes. When a stimulus is applied to the network, the spontaneous rings may prevail and hamper detection of the effects of the stimulus. Therefore, the spontaneous rings cannot be ignored and the response latency has to be detected on top of a background signal. Everything becomes more dicult...

  16. Consumer Choice Prediction: Artificial Neural Networks versus Logistic Models

    Directory of Open Access Journals (Sweden)

    Christopher Gan

    2005-01-01

    Full Text Available Conventional econometric models, such as discriminant analysis and logistic regression have been used to predict consumer choice. However, in recent years, there has been a growing interest in applying artificial neural networks (ANN to analyse consumer behaviour and to model the consumer decision-making process. The purpose of this paper is to empirically compare the predictive power of the probability neural network (PNN, a special class of neural networks and a MLFN with a logistic model on consumers’ choices between electronic banking and non-electronic banking. Data for this analysis was obtained through a mail survey sent to 1,960 New Zealand households. The questionnaire gathered information on the factors consumers’ use to decide between electronic banking versus non-electronic banking. The factors include service quality dimensions, perceived risk factors, user input factors, price factors, service product characteristics and individual factors. In addition, demographic variables including age, gender, marital status, ethnic background, educational qualification, employment, income and area of residence are considered in the analysis. Empirical results showed that both ANN models (MLFN and PNN exhibit a higher overall percentage correct on consumer choice predictions than the logistic model. Furthermore, the PNN demonstrates to be the best predictive model since it has the highest overall percentage correct and a very low percentage error on both Type I and Type II errors.

  17. A neural network model of attention-modulated neurodynamics.

    Science.gov (United States)

    Gu, Yuqiao; Liljenström, Hans

    2007-12-01

    Visual attention appears to modulate cortical neurodynamics and synchronization through various cholinergic mechanisms. In order to study these mechanisms, we have developed a neural network model of visual cortex area V4, based on psychophysical, anatomical and physiological data. With this model, we want to link selective visual information processing to neural circuits within V4, bottom-up sensory input pathways, top-down attention input pathways, and to cholinergic modulation from the prefrontal lobe. We investigate cellular and network mechanisms underlying some recent analytical results from visual attention experimental data. Our model can reproduce the experimental findings that attention to a stimulus causes increased gamma-frequency synchronization in the superficial layers. Computer simulations and STA power analysis also demonstrate different effects of the different cholinergic attention modulation action mechanisms.

  18. IUKF neural network modeling for FOG temperature drift

    Institute of Scientific and Technical Information of China (English)

    Feng Zha; Jiangning Xu; Jingshu Li; Hongyang He

    2013-01-01

    A novel neural network based on iterated unscented Kalman filter (IUKF) algorithm is established to model and com-pensate for the fiber optic gyro (FOG) bias drift caused by tempe-rature. In the network, FOG temperature and its gradient are set as input and the FOG bias drift is set as the expected output. A 2-5-1 network trained with IUKF algorithm is established. The IUKF algorithm is developed on the basis of the unscented Kalman filter (UKF). The weight and bias vectors of the hidden layer are set as the state of the UKF and its process and measurement equations are deduced according to the network architecture. To solve the unavoidable estimation deviation of the mean and covariance of the states in the UKF algorithm, iterative computation is introduced into the UKF after the measurement update. While the measure-ment noise R is extended into the state vectors before iteration in order to meet the statistic orthogonality of estimate and mea-surement noise. The IUKF algorithm can provide the optimized estimation for the neural network because of its state expansion and iteration. Temperature rise (-20-20◦C) and drop (70-20◦C) tests for FOG are carried out in an attemperator. The temperature drift model is built with neural network, and it is trained respec-tively with BP, UKF and IUKF algorithms. The results prove that the proposed model has higher precision compared with the back-propagation (BP) and UKF network models.

  19. Nonlinear Time Series Model for Shape Classification Using Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A complex nonlinear exponential autoregressive (CNEAR) model for invariant feature extraction is developed for recognizing arbitrary shapes on a plane. A neural network is used to calculate the CNEAR coefficients. The coefficients, which constitute the feature set, are proven to be invariant to boundary transformations such as translation, rotation, scale and choice of starting point in tracing the boundary. The feature set is then used as the input to a complex multilayer perceptron (C-MLP) network for learning and classification. Experimental results show that complicated shapes can be accurately recognized even with the low-order model and that the classification method has good fault tolerance when noise is present.

  20. Neural Networks for Model-Based Recognition

    Science.gov (United States)

    1991-06-12

    network. November 23, 1990 -21:52 IDRAFT 17 where X P is the pseudo inverse of Xo. The coefficients of Rpt can also be obtained using three ADALINEs ...the pseudo inverse or an ADALINE . 5 Convergence and Comparison of the Two Mean Field Approaches In the 2-D problem, both mean field approaches MFAI...Also small time steps have to be taken to avoid oscillations November 23, 1990 - 21:52 DRAFT 18 Figure 12: ADALINE for calculation of R. and

  1. Neural network model to control an experimental chaotic pendulum

    NARCIS (Netherlands)

    Bakker, R; Schouten, JC; Takens, F; vandenBleek, CM

    1996-01-01

    A feedforward neural network was trained to predict the motion of an experimental, driven, and damped pendulum operating in a chaotic regime. The network learned the behavior of the pendulum from a time series of the pendulum's angle, the single measured variable. The validity of the neural network,

  2. Autonomous Traffic Signal Control Model with Neural Network Analogy

    CERN Document Server

    Ohira, T

    1997-01-01

    We propose here an autonomous traffic signal control model based on analogy with neural networks. In this model, the length of cycle time period of traffic lights at each signal is autonomously adapted. We find a self-organizing collective behavior of such a model through simulation on a one-dimensional lattice model road: traffic congestion is greatly diffused when traffic signals have such autonomous adaptability with suitably tuned parameters. We also find that effectiveness of the system emerges through interactions between units and shows a threshold transition as a function of proportion of adaptive signals in the model.

  3. Modeling of surface dust concentrations using neural networks and kriging

    Science.gov (United States)

    Buevich, Alexander G.; Medvedev, Alexander N.; Sergeev, Alexander P.; Tarasov, Dmitry A.; Shichkin, Andrey V.; Sergeeva, Marina V.; Atanasova, T. B.

    2016-12-01

    Creating models which are able to accurately predict the distribution of pollutants based on a limited set of input data is an important task in environmental studies. In the paper two neural approaches: (multilayer perceptron (MLP)) and generalized regression neural network (GRNN)), and two geostatistical approaches: (kriging and cokriging), are using for modeling and forecasting of dust concentrations in snow cover. The area of study is under the influence of dust emissions from a copper quarry and a several industrial companies. The comparison of two mentioned approaches is conducted. Three indices are used as the indicators of the models accuracy: the mean absolute error (MAE), root mean square error (RMSE) and relative root mean square error (RRMSE). Models based on artificial neural networks (ANN) have shown better accuracy. When considering all indices, the most precision model was the GRNN, which uses as input parameters for modeling the coordinates of sampling points and the distance to the probable emissions source. The results of work confirm that trained ANN may be more suitable tool for modeling of dust concentrations in snow cover.

  4. Capacitive MEMS accelerometer wide range modeling using artificial neural network

    Directory of Open Access Journals (Sweden)

    A. Baharodimehr

    2009-08-01

    Full Text Available This paper presents a nonlinear model for a capacitive microelectromechanical accelerometer (MEMA. System parameters ofthe accelerometer are developed using the effect of cubic term of the folded‐flexure spring. To solve this equation, we use theFEA method. The neural network (NN uses the Levenberg‐Marquardt (LM method for training the system to have a moreaccurate response. The designed NN can identify and predict the displacement of the movable mass of accelerometer. Thesimulation results are very promising.

  5. A neural network model for short term river flow prediction

    OpenAIRE

    2006-01-01

    International audience; This paper presents a model using rain gauge and weather radar data to predict the runoff of a small alpine catchment in Austria. The gapless spatial coverage of the radar is important to detect small convective shower cells, but managing such a huge amount of data is a demanding task for an artificial neural network. The method described here uses statistical analysis to reduce the amount of data and find an appropriate input vector. Based on this analysis, radar meas...

  6. Batch Process Modelling and Optimal Control Based on Neural Network Models

    Institute of Scientific and Technical Information of China (English)

    Jie Zhang

    2005-01-01

    This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.

  7. Computational modeling of neural plasticity for self-organization of neural networks.

    Science.gov (United States)

    Chrol-Cannon, Joseph; Jin, Yaochu

    2014-11-01

    Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence.

  8. Neural Networks for Modeling and Control of Particle Accelerators

    CERN Document Server

    Edelen, A.L.; Chase, B.E.; Edstrom, D.; Milton, S.V.; Stabile, P.

    2016-01-01

    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  9. A Multiobjective Sparse Feature Learning Model for Deep Neural Networks.

    Science.gov (United States)

    Gong, Maoguo; Liu, Jia; Li, Hao; Cai, Qing; Su, Linzhi

    2015-12-01

    Hierarchical deep neural networks are currently popular learning models for imitating the hierarchical architecture of human brain. Single-layer feature extractors are the bricks to build deep networks. Sparse feature learning models are popular models that can learn useful representations. But most of those models need a user-defined constant to control the sparsity of representations. In this paper, we propose a multiobjective sparse feature learning model based on the autoencoder. The parameters of the model are learnt by optimizing two objectives, reconstruction error and the sparsity of hidden units simultaneously to find a reasonable compromise between them automatically. We design a multiobjective induced learning procedure for this model based on a multiobjective evolutionary algorithm. In the experiments, we demonstrate that the learning procedure is effective, and the proposed multiobjective model can learn useful sparse features.

  10. Stochastic downscaling of precipitation with neural network conditional mixture models

    Science.gov (United States)

    Carreau, Julie; Vrac, Mathieu

    2011-10-01

    We present a new class of stochastic downscaling models, the conditional mixture models (CMMs), which builds on neural network models. CMMs are mixture models whose parameters are functions of predictor variables. These functions are implemented with a one-layer feed-forward neural network. By combining the approximation capabilities of mixtures and neural networks, CMMs can, in principle, represent arbitrary conditional distributions. We evaluate the CMMs at downscaling precipitation data at three stations in the French Mediterranean region. A discrete (Dirac) component is included in the mixture to handle the "no-rain" events. Positive rainfall is modeled with a mixture of continuous densities, which can be either Gaussian, log-normal, or hybrid Pareto (an extension of the generalized Pareto). CMMs are stochastic weather generators in the sense that they provide a model for the conditional density of local variables given large-scale information. In this study, we did not look for the most appropriate set of predictors, and we settled for a decent set as the basis to compare the downscaling models. The set of predictors includes the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalyses sea level pressure fields on a 6 × 6 grid cell region surrounding the stations plus three date variables. We compare the three distribution families of CMMs with a simpler benchmark model, which is more common in the downscaling community. The difference between the benchmark model and CMMs is that positive rainfall is modeled with a single Gamma distribution. The results show that CMM with hybrid Pareto components outperforms both the CMM with Gaussian components and the benchmark model in terms of log-likelihood. However, there is no significant difference with the log-normal CMM. In general, the additional flexibility of mixture models, as opposed to using a single distribution, allows us to better represent the

  11. Neural network connectivity and response latency modelled by stochastic processes

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano

    is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies......Stochastic processes and their rst passage times have been widely used to describe the membrane potential dynamics of single neurons and to reproduce neuronal spikes, respectively.However, cerebral cortex in human brains is estimated to contain 10-20 billions of neurons and each of them...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas...

  12. Global attractivity in delayed Cohen-Grossberg neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.-H. [Department of Mathematics, National Central University, Jhongli City 32001, Taiwan (China)], E-mail: 93241006@cc.ncu.edu.tw; Yang, S.-Y. [Department of Mathematics, National Central University, Jhongli City 32001, Taiwan (China)], E-mail: syyang@math.ncu.edu.tw

    2009-02-28

    In this paper, we investigate the global attractivity of Cohen-Grossberg neural network models with connection time delays for both discrete and distributed cases via the Lyapunov functional method. Without assuming the monotonicity and differentiability of activation functions and the symmetry of connection matrix, we establish three new sufficient conditions for the global exponential stability of a unique equilibrium for the delayed Cohen-Grossberg neural network no matter whether the connection time delay is of discrete type or distributed type. In particular, all the three new criteria are independent of time delays and do not include one another. To demonstrate the differences and features of the new stability criteria, several examples are discussed to compare the present results with the existing ones.

  13. A multilayer neural network model for perception of rotational motion

    Institute of Scientific and Technical Information of China (English)

    郭爱克; 孙海坚; 杨先一

    1997-01-01

    A multilayer neural nerwork model for the perception of rotational motion has been developed usingReichardt’s motion detector array of correlation type, Kohonen’s self-organized feature map and Schuster-Wagner’s oscillating neural network. It is shown that the unsupervised learning could make the neurons on the second layer of the network tend to be self-organized in a form resembling columnar organization of selective directions in area MT of the primate’s visual cortex. The output layer can interpret rotation information and give the directions and velocities of rotational motion. The computer simulation results are in agreement with some psychophysical observations of rotation-al perception. It is demonstrated that the temporal correlation between the oscillating neurons would be powerful for solving the "binding problem" of shear components of rotational motion.

  14. Neural Network Model Based Cluster Head Selection for Power Control

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2011-01-01

    Full Text Available Mobile ad-hoc network has challenge of the limited power to prolong the lifetime of the network, because power is a valuable resource in mobile ad-hoc network. The status of power consumption should be continuously monitored after network deployment. In this paper, we propose coverage aware neural network based power control routing with the objective of maximizing the network lifetime. Cluster head selection is proposed using adaptive learning in neural networks followed by coverage. The simulation results show that the proposed scheme can be used in wide area of applications in mobile ad-hoc network.

  15. Neural Network in Modeling Malaysian Oil Palm Yield

    Directory of Open Access Journals (Sweden)

    Zuhaimy Ismail

    2011-01-01

    Full Text Available Problem statement: Forecasting of palm oil yield has become an important element in the management of oil palm industry for proper planning and decision making. The importance of yield forecasting has led us to explore modeling of palm oil yield for Malaysia using the most recent development of Artificial Neural Network (ANN. The main issue in yield forecasting is to predict the future value with the minimum error. Approach: Artificial neural networks are computing systems containing many interconnected nonlinear neurons, capable of extracting linear and nonlinear regularity in a given data set. It is an artificial intelligence model originally designed to replicate the human brains learning process, a network with many elements or neurons that are connected by communications channels or connectors. The ANN can perform a particular function when certain values are assigned to the connections or weights between elements. In this study, a secondary data set from the Malaysian Palm Oil Board (MPOB on the foliar nutrient composition, fertilizer trials and Fresh Fruit Bunch (FFB yield were taken and analyzed. The foliar nutrient composition variables are the nitrogen N, phosphorus P, potassium K, calcium Ca and magnesium Mg concentration, while the fertilizer trials data are the N, P, K and Mg fertilizers and are measured in kg per palm per year. The foliar composition data was presented in the form of measured values whiles the fertilizer data in ordinal levels, from zero to three. Results: Two experiments were conducted to demonstrate the implementation ANN and for both experiment, the result demonstrated that the number of hidden nodes produces an effect to the overall forecast performance of the ANN architecture. From the first experiment, it shows that the number of runs does not affect the ANN performance, but changing the momentum to learning rates, due to shows a significant improvement in the forecast result. The experimental result will be

  16. Forecasting Stock Exchange Movements Using Artificial Neural Network Models and Hybrid Models

    Science.gov (United States)

    Güreşen, Erkam; Kayakutlu, Gülgün

    Forecasting stock exchange rates is an important financial problem that is receiving increasing attention. During the last few years, a number of neural network models and hybrid models have been proposed for obtaining accurate prediction results, in an attempt to outperform the traditional linear and nonlinear approaches. This paper evaluates the effectiveness of neural network models; recurrent neural network (RNN), dynamic artificial neural network (DAN2) and the hybrid neural networks which use generalized autoregressive conditional heteroscedasticity (GARCH) and exponential generalized autoregressive conditional heteroscedasticity (EGARCH) to extract new input variables. The comparison for each model is done in two view points: MSE and MAD using real exchange daily rate values of Istanbul Stock Exchange (ISE) index XU10).

  17. Advanced models of neural networks nonlinear dynamics and stochasticity in biological neurons

    CERN Document Server

    Rigatos, Gerasimos G

    2015-01-01

    This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

  18. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  19. A neural network evaluation model for individual thermal comfort

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weiwei; Lian, Zhiwei; Zhao, Bo [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2007-10-15

    An evaluation model for individual thermal comfort is presented based on the BP neural network. The train data came from a thermal comfort survey. The evaluation results of the model showed a good match with the subject's real thermal sensation, which indicated that the model can be used to evaluate individual thermal comfort rightly. Taken a room air conditioner as an example, the application of the NNEM in creating a microenvironment for individual was discussed. The result showed that the NNEM can play an important role of connecting individual thermal comfort with the control on the air conditioner. (author)

  20. Trend time-series modeling and forecasting with neural networks.

    Science.gov (United States)

    Qi, Min; Zhang, G Peter

    2008-05-01

    Despite its great importance, there has been no general consensus on how to model the trends in time-series data. Compared to traditional approaches, neural networks (NNs) have shown some promise in time-series forecasting. This paper investigates how to best model trend time series using NNs. Four different strategies (raw data, raw data with time index, detrending, and differencing) are used to model various trend patterns (linear, nonlinear, deterministic, stochastic, and breaking trend). We find that with NNs differencing often gives meritorious results regardless of the underlying data generating processes (DGPs). This finding is also confirmed by the real gross national product (GNP) series.

  1. Prediction horizon effects on stochastic modelling hints for neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Drossu, R.; Obradovic, Z. [Washington State Univ., Pullman, WA (United States)

    1995-12-31

    The objective of this paper is to investigate the relationship between stochastic models and neural network (NN) approaches to time series modelling. Experiments on a complex real life prediction problem (entertainment video traffic) indicate that prior knowledge can be obtained through stochastic analysis both with respect to an appropriate NN architecture as well as to an appropriate sampling rate, in the case of a prediction horizon larger than one. An improvement of the obtained NN predictor is also proposed through a bias removal post-processing, resulting in much better performance than the best stochastic model.

  2. Hardware Neural Networks Modeling for Computing Different Performance Parameters of Rectangular, Circular, and Triangular Microstrip Antennas

    OpenAIRE

    2014-01-01

    In the last one decade, neural networks-based modeling has been used for computing different performance parameters of microstrip antennas because of learning and generalization features. Most of the created neural models are based on software simulation. As the neural networks show massive parallelism inherently, a parallel hardware needs to be created for creating faster computing machine by taking the advantages of the parallelism of the neural networks. This paper demonstrates a generaliz...

  3. Continuous Online Sequence Learning with an Unsupervised Neural Network Model.

    Science.gov (United States)

    Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff

    2016-09-14

    The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.

  4. A Neural Network Model for Prediction of Sound Quality

    DEFF Research Database (Denmark)

    Nielsen,, Lars Bramsløw

    error on the test set. The overall concept proved functional, but further testing with data obtained from a new rating experiment is necessary to better assess the utility of this measure. The weights in the trained neural networks were analyzed to qualitatively interpret the relation between...... obtained in subjective sound quality rating experiments based on input data from an auditory model. Various types of input data and data representations from the auditory model were used as input data for the chosen network structure, which was a three-layer perceptron. This network was trained by means...... was evaluated for two types of test set extracted from the complete data set. With a test set consisting of mixed stimuli, the prediction error was only slightly larger than the statistical error in the training data itself. Using a particular group of stimuli for the test set, there was a systematic prediction...

  5. Landslide susceptibility analysis using an artificial neural network model

    Science.gov (United States)

    Mansor, Shattri; Pradhan, Biswajeet; Daud, Mohamed; Jamaludin, Normalina; Khuzaimah, Zailani

    2007-10-01

    This paper deals with landslide susceptibility analysis using an artificial neural network model for Cameron Highland, Malaysia. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys. Topographical/geological data and satellite images were collected and processed using GIS and image processing tools. There are ten landslide inducing parameters which are considered for the landslide hazards. These parameters are topographic slope, aspect, curvature and distance from drainage, all derived from the topographic database; geology and distance from lineament, derived from the geologic database; landuse from Landsat satellite images; soil from the soil database; precipitation amount, derived from the rainfall database; and the vegetation index value from SPOT satellite images. Landslide hazard was analyzed using landslide occurrence factors employing the logistic regression model. The results of the analysis were verified using the landslide location data and compared with logistic regression model. The accuracy of hazard map observed was 85.73%. The qualitative landslide susceptibility analysis was carried out using an artificial neural network model by doing map overlay analysis in GIS environment. This information could be used to estimate the risk to population, property and existing infrastructure like transportation network.

  6. Artificial Neural Network Model of Hydrocarbon Migration and Accumulation

    Institute of Scientific and Technical Information of China (English)

    刘海滨; 吴冲龙

    2002-01-01

    Based on the dynamic simulation of the 3-D structure the sedimentary modeling, the unit entity model has been adopted to transfer the heterogeneous complex pas sage system into limited simple homogeneous entity, and then the traditional dyn amic simulation has been used to calculate the phase and the drive forces of the hyd rocarbon , and the artificial neural network(ANN) technology has been applied to resolve such problems as the direction, velocity and quantity of the hydrocarbo n migration among the unit entities. Through simulating of petroleum migration a nd accumulation in Zhu Ⅲ depression, the complex mechanism of hydrocarbon migra tion and accumulation has been opened out.

  7. A Neural Network Model for Forecasting CO2 Emission

    Directory of Open Access Journals (Sweden)

    C. Gallo

    2014-06-01

    Full Text Available Air pollution is today a serious problem, caused mainly by human activity. Classical methods are not considered able to efficiently model complex phenomena as meteorology and air pollution because, usually, they make approximations or too rigid schematisations. Our purpose is a more flexible architecture (artificial neural network model to implement a short-term CO2 emission forecasting tool applied to the cereal sector in Apulia region – in Southern Italy - to determine how the introduction of cultural methods with less environmental impact acts on a possible pollution reduction.

  8. A neural network model for olfactory glomerular activity prediction

    Science.gov (United States)

    Soh, Zu; Tsuji, Toshio; Takiguchi, Noboru; Ohtake, Hisao

    2012-12-01

    Recently, the importance of odors and methods for their evaluation have seen increased emphasis, especially in the fragrance and food industries. Although odors can be characterized by their odorant components, their chemical information cannot be directly related to the flavors we perceive. Biological research has revealed that neuronal activity related to glomeruli (which form part of the olfactory system) is closely connected to odor qualities. Here we report on a neural network model of the olfactory system that can predict glomerular activity from odorant molecule structures. We also report on the learning and prediction ability of the proposed model.

  9. Fuzzy stochastic neural network model for structural system identification

    Science.gov (United States)

    Jiang, Xiaomo; Mahadevan, Sankaran; Yuan, Yong

    2017-01-01

    This paper presents a dynamic fuzzy stochastic neural network model for nonparametric system identification using ambient vibration data. The model is developed to handle two types of imprecision in the sensed data: fuzzy information and measurement uncertainties. The dimension of the input vector is determined by using the false nearest neighbor approach. A Bayesian information criterion is applied to obtain the optimum number of stochastic neurons in the model. A fuzzy C-means clustering algorithm is employed as a data mining tool to divide the sensed data into clusters with common features. The fuzzy stochastic model is created by combining the fuzzy clusters of input vectors with the radial basis activation functions in the stochastic neural network. A natural gradient method is developed based on the Kullback-Leibler distance criterion for quick convergence of the model training. The model is validated using a power density pseudospectrum approach and a Bayesian hypothesis testing-based metric. The proposed methodology is investigated with numerically simulated data from a Markov Chain model and a two-story planar frame, and experimentally sensed data from ambient vibration data of a benchmark structure.

  10. Chaotic Simulated Annealing by A Neural Network Model with Transient Chaos

    CERN Document Server

    Chen, L; Chen, Luonan; Aihara, Kazuyuki

    1997-01-01

    We propose a neural network model with transient chaos, or a transiently chaotic neural network (TCNN) as an approximation method for combinatorial optimization problem, by introducing transiently chaotic dynamics into neural networks. Unlike conventional neural networks only with point attractors, the proposed neural network has richer and more flexible dynamics, so that it can be expected to have higher ability of searching for globally optimal or near-optimal solutions. A significant property of this model is that the chaotic neurodynamics is temporarily generated for searching and self-organizing, and eventually vanishes with autonomous decreasing of a bifurcation parameter corresponding to the "temperature" in usual annealing process. Therefore, the neural network gradually approaches, through the transient chaos, to dynamical structure similar to such conventional models as the Hopfield neural network which converges to a stable equilibrium point. Since the optimization process of the transiently chaoti...

  11. Discussion of stability in a class of models on recurrent wavelet neural networks

    Institute of Scientific and Technical Information of China (English)

    DENG Ren; LI Zhu-xin; FAN You-hong

    2007-01-01

    Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed.The new networks possess the advantages of WNNs and RNNs. In this paper, asymptotic stability of RWNNs is researched according to the Lyapunov theorem, and some theorems and formulae are given. The simulation results show the excellent performance of the networks in nonlinear dynamic system recognition.

  12. Modeling cognitive and emotional processes: a novel neural network architecture.

    Science.gov (United States)

    Khashman, Adnan

    2010-12-01

    In our continuous attempts to model natural intelligence and emotions in machine learning, many research works emerge with different methods that are often driven by engineering concerns and have the common goal of modeling human perception in machines. This paper aims to go further in that direction by investigating the integration of emotion at the structural level of cognitive systems using the novel emotional DuoNeural Network (DuoNN). This network has hidden layer DuoNeurons, where each has two embedded neurons: a dorsal neuron and a ventral neuron for cognitive and emotional data processing, respectively. When input visual stimuli are presented to the DuoNN, the dorsal cognitive neurons process local features while the ventral emotional neurons process the entire pattern. We present the computational model and the learning algorithm of the DuoNN, the input information-cognitive and emotional-parallel streaming method, and a comparison between the DuoNN and a recently developed emotional neural network. Experimental results show that the DuoNN architecture, configuration, and the additional emotional information processing, yield higher recognition rates and faster learning and decision making.

  13. A hybrid neural network model for noisy data regression.

    Science.gov (United States)

    Lee, Eric W M; Lim, Chee Peng; Yuen, Richard K K; Lo, S M

    2004-04-01

    A hybrid neural network model, based on the fusion of fuzzy adaptive resonance theory (FA ART) and the general regression neural network (GRNN), is proposed in this paper. Both FA and the GRNN are incremental learning systems and are very fast in network training. The proposed hybrid model, denoted as GRNNFA, is able to retain these advantages and, at the same time, to reduce the computational requirements in calculating and storing information of the kernels. A clustering version of the GRNN is designed with data compression by FA for noise removal. An adaptive gradient-based kernel width optimization algorithm has also been devised. Convergence of the gradient descent algorithm can be accelerated by the geometric incremental growth of the updating factor. A series of experiments with four benchmark datasets have been conducted to assess and compare effectiveness of GRNNFA with other approaches. The GRNNFA model is also employed in a novel application task for predicting the evacuation time of patrons at typical karaoke centers in Hong Kong in the event of fire. The results positively demonstrate the applicability of GRNNFA in noisy data regression problems.

  14. Searching for turbulence models by artificial neural network

    Science.gov (United States)

    Gamahara, Masataka; Hattori, Yuji

    2017-05-01

    An artificial neural network (ANN) is tested as a tool for finding a new subgrid model of the subgrid-scale (SGS) stress in large-eddy simulation. An ANN is used to establish a functional relation between the grid-scale flow field and the SGS stress without any assumption of the form of function. Data required for training and test of the ANN are provided by direct numerical simulation of a turbulent channel flow. It is shown that an ANN can establish a model similar to the gradient model. The correlation coefficients between the real SGS stress and the output of the ANN are comparable to or larger than similarity models, but smaller than a two-parameter dynamic mixed model. Large-eddy simulations using the trained ANN are also performed. Although ANN models show no advantage over the Smagorinsky model, the results confirm that the ANN is a promising tool for establishing a new subgrid model with further improvement.

  15. Runoff forecasting by artificial neural network and conventional model

    Directory of Open Access Journals (Sweden)

    A.R. Ghumman

    2011-12-01

    Full Text Available Rainfall runoff models are highly useful for water resources planning and development. In the present study rainfall–runoff model based on Artificial Neural Networks (ANNs was developed and applied on a watershed in Pakistan. The model was developed to suite the conditions in which the collected dataset is short and the quality of dataset is questionable. The results of ANN models were compared with a mathematical conceptual model. The cross validation approach was adopted for the generalization of ANN models. The precipitation used data was collected from Meteorological Department Karachi Pakistan. The results confirmed that ANN model is an important alternative to conceptual models and it can be used when the range of collected dataset is short and data is of low standard.

  16. A neural network model of ventriloquism effect and aftereffect.

    Directory of Open Access Journals (Sweden)

    Elisa Magosso

    Full Text Available Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli. By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.

  17. Generalized Adaptive Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  18. Neural Network based Modeling and Simulation of Transformer Inrush Current

    Directory of Open Access Journals (Sweden)

    Puneet Kumar Singh

    2012-05-01

    Full Text Available Inrush current is a very important phenomenon which occurs during energization of transformer at no load due to temporary over fluxing. It depends on several factors like magnetization curve, resistant and inductance of primary winding, supply frequency, switching angle of circuit breaker etc. Magnetizing characteristics of core represents nonlinearity which requires improved nonlinearity solving technique to know the practical behavior of inrush current. Since several techniques still working on modeling of transformer inrush current but neural network ensures exact modeling with experimental data. Therefore, the objective of this study was to develop an Artificial Neural Network (ANN model based on data of switching angle and remanent flux for predicting peak of inrush current. Back Propagation with Levenberg-Marquardt (LM algorithm was used to train the ANN architecture and same was tested for the various data sets. This research work demonstrates that the developed ANN model exhibits good performance in prediction of inrush current’s peak with an average of percentage error of -0.00168 and for modeling of inrush current with an average of percentage error of -0.52913.

  19. Neural Network Based Model for Predicting Housing Market Performance

    Institute of Scientific and Technical Information of China (English)

    Ahmed Khalafallah

    2008-01-01

    The United States real estate market is currently facing its worst hit in two decades due to the slowdown of housing sales. The most affected by this decline are real estate investors and home develop-ers who are currently struggling to break-even financially on their investments. For these investors, it is of utmost importance to evaluate the current status of the market and predict its performance over the short-term in order to make appropriate financial decisions. This paper presents the development of artificial neu-ral network based models to support real estate investors and home developers in this critical task. The pa-per describes the decision variables, design methodology, and the implementation of these models. The models utilize historical market performance data sets to train the artificial neural networks in order to pre-dict unforeseen future performances. An application example is analyzed to demonstrate the model capabili-ties in analyzing and predicting the market performance. The model testing and validation showed that the error in prediction is in the range between -2% and +2%.

  20. A neural network model for short term river flow prediction

    Science.gov (United States)

    Teschl, R.; Randeu, W. L.

    2006-07-01

    This paper presents a model using rain gauge and weather radar data to predict the runoff of a small alpine catchment in Austria. The gapless spatial coverage of the radar is important to detect small convective shower cells, but managing such a huge amount of data is a demanding task for an artificial neural network. The method described here uses statistical analysis to reduce the amount of data and find an appropriate input vector. Based on this analysis, radar measurements (pixels) representing areas requiring approximately the same time to dewater are grouped.

  1. A neural network model for short term river flow prediction

    Directory of Open Access Journals (Sweden)

    R. Teschl

    2006-01-01

    Full Text Available This paper presents a model using rain gauge and weather radar data to predict the runoff of a small alpine catchment in Austria. The gapless spatial coverage of the radar is important to detect small convective shower cells, but managing such a huge amount of data is a demanding task for an artificial neural network. The method described here uses statistical analysis to reduce the amount of data and find an appropriate input vector. Based on this analysis, radar measurements (pixels representing areas requiring approximately the same time to dewater are grouped.

  2. Neural Network method for Inverse Modeling of Material Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D., Jr.; Ivezic, N.D.; Zacharia, T.

    1999-07-10

    A method is described for inverse modeling of material deformation in applications of importance to the sheet metal forming industry. The method was developed in order to assess the feasibility of utilizing empirical data in the early stages of the design process as an alternative to conventional prototyping methods. Because properly prepared and employed artificial neural networks (ANN) were known to be capable of codifying and generalizing large bodies of empirical data, they were the natural choice for the application. The product of the work described here is a desktop ANN system that can produce in one pass an accurate die design for a user-specified part shape.

  3. Classification of Hydrological time series using Probabilistic Neural Network for River Flow Modeling by RBF Networks

    Science.gov (United States)

    Abghari, H.; van de Giesen, N.; Mahdavi, M.; Salajegheh, A.

    2009-04-01

    Artificial intelligence modeling of nonstationary rainfall-runoff has some restrictions in simulation accuracy due to the complexity and nonlinearity of training patterns. Preprocessing of trainings dataset could determine homogeneity of rainfall-runoff patterns before modeling. In this presentation, a new hybrid model of Artificial Intelligence in conjunction with clustering is introduced and applied to flow prediction. Simulation of Nazloochaei river flow in North-West Iran was the case used for development of a PNN-RBF model. PNN classify a training dataset in two groups based on Parezen theory using unsupervised classification. Subsequently each data group is used to train and test two RBF networks and the results are compared to the application of all data in a RBF network without classification. Results show that classification of rainfall-runoff patterns using PNN and prediction of runoff with RBF increase prediction precise of networks. Keywords: Probabilistic Neural Network, Radial Base Function Neural Network, Parezen theory, River Flow Prediction

  4. Recalling of Images using Hopfield Neural Network Model

    CERN Document Server

    Ramya, C; Shreedhara, Dr K S

    2011-01-01

    In the present paper, an effort has been made for storing and recalling images with Hopfield Neural Network Model of auto-associative memory. Images are stored by calculating a corresponding weight matrix. Thereafter, starting from an arbitrary configuration, the memory will settle on exactly that stored image, which is nearest to the starting configuration in terms of Hamming distance. Thus given an incomplete or corrupted version of a stored image, the network is able to recall the corresponding original image. The storing of the objects has been performed according to the Hopfield algorithm explained below. Once the net has completely learnt this set of input patterns, a set of testing patterns containing degraded images will be given to the net. Then the Hopfield net will tend to recall the closest matching pattern for the given degraded image. The simulated results show that Hopfield model is the best for storing and recalling images.

  5. Searching for turbulence models by artificial neural network

    CERN Document Server

    Gamahara, Masataka

    2016-01-01

    Artificial neural network (ANN) is tested as a tool for finding a new subgrid model of the subgrid-scale (SGS) stress in large-eddy simulation. ANN is used to establish a functional relation between the grid-scale (GS) flow field and the SGS stress without any assumption of the form of function. Data required for training and test of ANN are provided by direct numerical simulation (DNS) of a turbulent channel flow. It is shown that ANN can establish a model similar to the gradient model. The correlation coefficients between the real SGS stress and the output of ANN are comparable to or larger than similarity models, but smaller than a two-parameter dynamic mixed model.

  6. Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    In this paper we consider the forecasting performance of a well-defined class of flexible models, the so-called single hidden-layer feedforward neural network models. A major aim of our study is to find out whether they, due to their flexibility, are as useful tools in economic forecasting as some...... previous studies have indicated. When forecasting with neural network models one faces several problems, all of which influence the accuracy of the forecasts. First, neural networks are often hard to estimate due to their highly nonlinear structure. In fact, their parameters are not even globally...... on the linearisation idea: the Marginal Bridge Estimator and Autometrics. Second, one must decide whether forecasting should be carried out recursively or directly. Comparisons of these two methodss exist for linear models and here these comparisons are extended to neural networks. Finally, a nonlinear model...

  7. Performance Analysis of Software Effort Estimation Models Using Neural Networks

    Directory of Open Access Journals (Sweden)

    P.Latha

    2013-08-01

    Full Text Available Software Effort estimation involves the estimation of effort required to develop software. Cost overrun, schedule overrun occur in the software development due to the wrong estimate made during the initial stage of software development. Proper estimation is very essential for successful completion of software development. Lot of estimation techniques available to estimate the effort in which neural network based estimation technique play a prominent role. Back propagation Network is the most widely used architecture. ELMAN neural network a recurrent type network can be used on par with Back propagation Network. For a good predictor system the difference between estimated effort and actual effort should be as low as possible. Data from historic project of NASA is used for training and testing. The experimental Results confirm that Back propagation algorithm is efficient than Elman neural network.

  8. Application of Artificial Neural Networks in the Heart Electrical Axis Position Conclusion Modeling

    Science.gov (United States)

    Bakanovskaya, L. N.

    2016-08-01

    The article touches upon building of a heart electrical axis position conclusion model using an artificial neural network. The input signals of the neural network are the values of deflections Q, R and S; and the output signal is the value of the heart electrical axis position. Training of the network is carried out by the error propagation method. The test results allow concluding that the created neural network makes a conclusion with a high degree of accuracy.

  9. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  10. Neural Network Applications

    NARCIS (Netherlands)

    Vonk, E.; Jain, L.C.; Veelenturf, L.P.J.

    1995-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  11. Range of shortcuts in the dynamic model of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J [Department of Physics and Department of Chemical Engineering, Keimyung University, Daegu 704-701 (Korea, Republic of); Choi, M Y [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Chung, M S; Yoon, B-G, E-mail: bgyoon@ulsan.ac.k [Department of Physics, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

    2010-05-21

    We study, via extensive Monte Carlo calculations, the effects of the range of shortcuts in the dynamic model of neural networks. With the increase of the range of shortcuts, the Mattis-state order parameter grows and the ordered-state region expands in the phase diagram, encroaching upon the mixed-phase region in the phase diagram. In particular, the power spectra of the order parameter at stationarity are observed to exhibit different shapes, depending on the range of shortcuts in the network. The cluster size distribution of the memory-unmatched sites, as well as the distribution of waiting times for neuron firing, possesses strong correlations with the power spectra in their shapes, all exhibiting the most pronounced power-law behaviors when the range of shortcuts is long.

  12. Modeling biodegradation and kinetics of glyphosate by artificial neural network.

    Science.gov (United States)

    Nourouzi, Mohsen M; Chuah, Teong G; Choong, Thomas S Y; Rabiei, F

    2012-01-01

    An artificial neural network (ANN) model was developed to simulate the biodegradation of herbicide glyphosate [2-(Phosphonomethylamino) acetic acid] in a solution with varying parameters pH, inoculum size and initial glyphosate concentration. The predictive ability of ANN model was also compared with Monod model. The result showed that ANN model was able to accurately predict the experimental results. A low ratio of self-inhibition and half saturation constants of Haldane equations (glyphosate on bacteria growth. The value of K(i)/K(s) increased when the mixed inoculum size was increased from 10(4) to 10(6) bacteria/mL. It was found that the percentage of glyphosate degradation reached a maximum value of 99% at an optimum pH 6-7 while for pH values higher than 9 or lower than 4, no degradation was observed.

  13. Models of neural networks IV early vision and attention

    CERN Document Server

    Cowan, Jack; Domany, Eytan

    2002-01-01

    Close this book for a moment and look around you. You scan the scene by directing your attention, and gaze, at certain specific objects. Despite the background, you discern them. The process is partially intentional and partially preattentive. How all this can be done is described in the fourth volume of Models of Neural Networks devoted to Early Vision and Atten­ tion that you are holding in your hands. Early vision comprises the first stages of visual information processing. It is as such a scientific challenge whose clarification calls for a penetrating review. Here you see the result. The Heraeus Foundation (Hanau) is to be thanked for its support during the initial phase of this project. John Hertz, who has extensive experience in both computational and ex­ perimental neuroscience, provides in "Neurons, Networks, and Cognition" to neural modeling. John Van Opstal explains in a theoretical introduction "The Gaze Control System" how the eye's gaze control is performed and presents a novel theoretical des...

  14. Neural network modeling and control of proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    CHEN Yue-hua; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell(PEMFC)stack. A radial basis function(RBF)neural network model was trained by the input-output data of impedance. A fuzzy neural network controller Was designed to control the impedance response.The RBF neural network model was used to test the fuzzy neural network controller.The results show that the RBF model output Can imitate actual output well, themaximal errorisnotbeyond 20 mΩ, thetrainingtime is about 1 s by using 20 neurons, and the mean squared errors is 141.9 mΩ2.The impedance of the PEMFC stack is controlled within the optimum range when the load changes, and the adjustive time is ahnllt 3 rain.

  15. Short-Term Load Forecasting Model Based on Quantum Elman Neural Networks

    Directory of Open Access Journals (Sweden)

    Zhisheng Zhang

    2016-01-01

    Full Text Available Short-term load forecasting model based on quantum Elman neural networks was constructed in this paper. The quantum computation and Elman feedback mechanism were integrated into quantum Elman neural networks. Quantum computation can effectively improve the approximation capability and the information processing ability of the neural networks. Quantum Elman neural networks have not only the feedforward connection but also the feedback connection. The feedback connection between the hidden nodes and the context nodes belongs to the state feedback in the internal system, which has formed specific dynamic memory performance. Phase space reconstruction theory is the theoretical basis of constructing the forecasting model. The training samples are formed by means of K-nearest neighbor approach. Through the example simulation, the testing results show that the model based on quantum Elman neural networks is better than the model based on the quantum feedforward neural network, the model based on the conventional Elman neural network, and the model based on the conventional feedforward neural network. So the proposed model can effectively improve the prediction accuracy. The research in the paper makes a theoretical foundation for the practical engineering application of the short-term load forecasting model based on quantum Elman neural networks.

  16. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    Science.gov (United States)

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  17. Neural Networks Modelling of Municipal Real Estate Market Rent Rates

    Directory of Open Access Journals (Sweden)

    Muczyński Andrzej

    2016-12-01

    Full Text Available This paper presents the results of research on the application of neural networks modelling of municipal real estate market rent rates. The test procedure was based on selected networks trained on the local real estate market data and transformation of the detected dependencies – through established models – to estimate the potential market rent rates of municipal premises. On this basis, the assessment of the adequacy of the actual market rent rates of municipal properties was made. Empirical research was conducted on the local real estate market of the city of Olsztyn in Poland. In order to describe the phenomenon of market rent rates formation an unidirectional three-layer network and a network of radial base was selected. Analyses showed a relatively low degree of convergence of the actual municipal rent rents with potential market rent rates. This degree was strongly varied depending on the type of business ran on the property and its’ social and economic impact. The applied research methodology and the obtained results can be used in order to rationalize municipal property management, including the activation of rental policy.

  18. Neural Networks for Hydrological Modeling Tool for Operational Purposes

    Science.gov (United States)

    Bhatt, Divya; Jain, Ashu

    2010-05-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. Runoff is generally computed using rainfall-runoff models. Computer based hydrologic models have become popular for obtaining hydrological forecasts and for managing water systems. Rainfall-runoff library (RRL) is computer software developed by Cooperative Research Centre for Catchment Hydrology (CRCCH), Australia consisting of five different conceptual rainfall-runoff models, and has been in operation in many water resources applications in Australia. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conceptual models actually in use in real catchments. In this paper, the results from an investigation on the use of RRL and ANNs are presented. Out of the five conceptual models in the RRL toolkit, SimHyd model has been used. Genetic Algorithm has been used as an optimizer in the RRL to calibrate the SimHyd model. Trial and error procedures were employed to arrive at the best values of various parameters involved in the GA optimizer to develop the SimHyd model. The results obtained from the best configuration of the SimHyd model are presented here. Feed-forward neural network model structure trained by back-propagation training algorithm has been adopted here to develop the ANN models. The daily rainfall and runoff data derived from Bird Creek Basin, Oklahoma, USA have been employed to develop all the models included here. A wide range of error statistics have been used to evaluate the performance of all the models

  19. A Hybrid Neural Network Prediction Model of Air Ticket Sales

    Directory of Open Access Journals (Sweden)

    Han-Chen Huang

    2013-11-01

    Full Text Available Air ticket sales revenue is an important source of revenue for travel agencies, and if future air ticket sales revenue can be accurately forecast, travel agencies will be able to advance procurement to achieve a sufficient amount of cost-effective tickets. Therefore, this study applied the Artificial Neural Network (ANN and Genetic Algorithms (GA to establish a prediction model of travel agency air ticket sales revenue. By verifying the empirical data, this study proved that the established prediction model has accurate prediction power, and MAPE (mean absolute percentage error is only 9.11%. The established model can provide business operators with reliable and efficient prediction data as a reference for operational decisions.

  20. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  1. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  2. Modelling the SOFC behaviours by artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, Jaroslaw; Swirski, Konrad [Institute of Heat Engineering, Warsaw University of Technology, 25 Nowowiejska Street, 00-665 Warsaw (Poland)

    2009-07-15

    The Artificial Neural Network (ANN) can be applied to simulate an object's behaviour without an algorithmic solution merely by utilizing available experimental data. The ANN is used for modelling singular cell behaviour. The optimal network architecture is shown and commented. The error backpropagation algorithm was used for an ANN training procedure. The ANN based SOFC model has the following input parameters: current density, temperature, fuel volume flow density (ml min{sup -1} cm{sup -2}), and oxidant volume flow density. Based on these input parameters, cell voltage is predicted by the model. Obtained results show that the ANN can be successfully used for modelling the singular solid oxide fuel cell. The self-learning process of the ANN provides an opportunity to adapt the model to new situations (e.g. certain types of impurities at inlet streams etc.). Based on the results from this study it can be concluded that, by using the ANN, an SOFC can be modelled with relatively high accuracy. In contrast to traditional models, the ANN is able to predict cell voltage without knowledge of numerous physical, chemical, and electrochemical factors. (author)

  3. A model of traffic signs recognition with convolutional neural network

    Science.gov (United States)

    Hu, Haihe; Li, Yujian; Zhang, Ting; Huo, Yi; Kuang, Wenqing

    2016-10-01

    In real traffic scenes, the quality of captured images are generally low due to some factors such as lighting conditions, and occlusion on. All of these factors are challengeable for automated recognition algorithms of traffic signs. Deep learning has provided a new way to solve this kind of problems recently. The deep network can automatically learn features from a large number of data samples and obtain an excellent recognition performance. We therefore approach this task of recognition of traffic signs as a general vision problem, with few assumptions related to road signs. We propose a model of Convolutional Neural Network (CNN) and apply the model to the task of traffic signs recognition. The proposed model adopts deep CNN as the supervised learning model, directly takes the collected traffic signs image as the input, alternates the convolutional layer and subsampling layer, and automatically extracts the features for the recognition of the traffic signs images. The proposed model includes an input layer, three convolutional layers, three subsampling layers, a fully-connected layer, and an output layer. To validate the proposed model, the experiments are implemented using the public dataset of China competition of fuzzy image processing. Experimental results show that the proposed model produces a recognition accuracy of 99.01 % on the training dataset, and yield a record of 92% on the preliminary contest within the fourth best.

  4. Modelling Spiking Neural Network from the Architecture Evaluation Perspective

    Institute of Scientific and Technical Information of China (English)

    Yu Ji; You-Hui Zhang; Wei-Min Zheng

    2016-01-01

    The brain-inspired spiking neural network (SNN) computing paradigm offers the potential for low-power and scalable computing, suited to many intelligent tasks that conventional computational systems find difficult. On the other hand, NoC (network-on-chips) based very large scale integration (VLSI) systems have been widely used to mimic neuro-biological architectures (including SNNs). This paper proposes an evaluation methodology for SNN applications from the aspect of micro-architecture. First, we extract accurate SNN models from existing simulators of neural systems. Second, a cycle-accurate NoC simulator is implemented to execute the aforementioned SNN applications to get timing and energy-consumption information. We believe this method not only benefits the exploration of NoC design space but also bridges the gap between applications (especially those from the neuroscientists’ community) and neuromorphic hardware. Based on the method, we have evaluated some typical SNNs in terms of timing and energy. The method is valuable for the development of neuromorphic hardware and applications.

  5. Stochastic neural network model for spontaneous bursting in hippocampal slices.

    Science.gov (United States)

    Biswal, B; Dasgupta, C

    2002-11-01

    A biologically plausible, stochastic, neural network model that exhibits spontaneous transitions between a low-activity (normal) state and a high-activity (epileptic) state is studied by computer simulation. Brief excursions of the network to the high-activity state lead to spontaneous population bursting similar to the behavior observed in hippocampal slices bathed in a high-potassium medium. Although the variability of interburst intervals in this model is due to stochasticity, first return maps of successive interburst intervals show trajectories that resemble the behavior expected near unstable periodic orbits (UPOs) of systems exhibiting deterministic chaos. Simulations of the effects of the application of chaos control, periodic pacing, and anticontrol to the network model yield results that are qualitatively similar to those obtained in experiments on hippocampal slices. Estimation of the statistical significance of UPOs through surrogate data analysis also leads to results that resemble those of similar analysis of data obtained from slice experiments and human epileptic activity. These results suggest that spontaneous population bursting in hippocampal slices may be a manifestation of stochastic bistable dynamics, rather than of deterministic chaos. Our results also question the reliability of some of the recently proposed, UPO-based, statistical methods for detecting determinism and chaos in experimental time-series data.

  6. Locally supervised neural networks for approximating terramechanics models

    Science.gov (United States)

    Song, Xingguo; Gao, Haibo; Ding, Liang; Spanos, Pol D.; Deng, Zongquan; Li, Zhijun

    2016-06-01

    Neural networks (NNs) have been widely implemented for identifying nonlinear models, and predicting the distribution of targets, due to their ability to store and learn training samples. However, for highly complex systems, it is difficult to build a robust global network model, and efficiently managing the large amounts of experimental data is often required in real-time applications. In this paper, an effective method for building local models is proposed to enhance robustness and learning speed in globally supervised NNs. Unlike NNs, Gaussian processes (GP) produce predictions that capture the uncertainty inherent in actual systems, and typically provides superior results. Therefore, in this study, each local NN is learned in the same manner as a Gaussian process. A mixture of local model NNs is created and then augmented using weighted regression. This proposed method, referred to as locally supervised NN for weighted regression like GP, is abbreviated as "LGPN", is utilized for approximating a wheel-terrain interaction model under fixed soil parameters. The prediction results show that the proposed method yields significant robustness, modeling accuracy, and rapid learning speed.

  7. MODELING NONLINEAR DYNAMICS OF CIRCULATING FLUIDIZED BEDS USING NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Wei; Chen; Atsushi; Tsutsumi; Haiyan; Lin; Kentaro; Otawara

    2005-01-01

    In the present work, artificial neural networks (ANNs) were proposed to model nonlinear dynamic behaviors of local voidage fluctuations induced by highly turbulent interactions between the gas and solid phases in circulating fluidized beds. The fluctuations of local voidage were measured by using an optical transmittance probe at various axial and radial positions in a circulating fluidized bed with a riser of 0.10 m in inner diameter and 10 m in height. The ANNs trained with experimental time series were applied to make short-term and long-term predictions of dynamic characteristics in the circulating fluidized bed. An early stop approach was adopted to enhance the long-term prediction capability of ANNs. The performance of the trained ANN was evaluated in terms of time-averaged characteristics, power spectra, cycle number and short-term predictability analysis of time series measured and predicted by the model.

  8. A network security situation prediction model based on wavelet neural network with optimized parameters

    Directory of Open Access Journals (Sweden)

    Haibo Zhang

    2016-08-01

    Full Text Available The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN with optimized parameters by the Improved Niche Genetic Algorithm (INGA. The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN, Genetic Algorithm-Back Propagation Neural Network (GA-BPNN and WNN.

  9. Committee neural network model for rock permeability prediction

    Science.gov (United States)

    Bagheripour, Parisa

    2014-05-01

    Quantitative formulation between conventional well log data and rock permeability, undoubtedly the most critical parameter of hydrocarbon reservoir, could be a potent tool for solving problems associated with almost all tasks involved in petroleum engineering. The present study proposes a novel approach in charge of the quest for high-accuracy method of permeability prediction. At the first stage, overlapping of conventional well log data (inputs) was eliminated by means of principal component analysis (PCA). Subsequently, rock permeability was predicted from extracted PCs using multi-layer perceptron (MLP), radial basis function (RBF), and generalized regression neural network (GRNN). Eventually, a committee neural network (CNN) was constructed by virtue of genetic algorithm (GA) to enhance the precision of ultimate permeability prediction. The values of rock permeability, derived from the MPL, RBF, and GRNN models, were used as inputs of CNN. The proposed CNN combines results of different ANNs to reap beneficial advantages of all models and consequently producing more accurate estimations. The GA, embedded in the structure of the CNN assigns a weight factor to each ANN which shows relative involvement of each ANN in overall prediction of rock permeability from PCs of conventional well logs. The proposed methodology was applied in Kangan and Dalan Formations, which are the major carbonate reservoir rocks of South Pars Gas Field-Iran. A group of 350 data points was used to establish the CNN model, and a group of 245 data points was employed to assess the reliability of constructed CNN model. Results showed that the CNN method performed better than individual intelligent systems performing alone.

  10. Prediction and Research on Vegetable Price Based on Genetic Algorithm and Neural Network Model

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm and neural work.Taking mushrooms as an example,the parameters of the model are analyzed through experiment.In the end,the results of genetic algorithm and BP neural network are compared.The results show that the absolute error of prediction data is in the scale of 10%;in the scope that the absolute error in the prediction data is in the scope of 20% and 15%.The accuracy of genetic algorithm based on neutral network is higher than the BP neutral network model,especially the absolute error of prediction data is within the scope of 20%.The accuracy of genetic algorithm based on neural network is obviously better than BP neural network model,which represents the favorable generalization capability of the model.

  11. Neural-networks-based feedback linearization versus model predictive control of continuous alcoholic fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Mjalli, F.S.; Al-Asheh, S. [Chemical Engineering Department, Qatar University, Doha (Qatar)

    2005-10-01

    In this work advanced nonlinear neural networks based control system design algorithms are adopted to control a mechanistic model for an ethanol fermentation process. The process model equations for such systems are highly nonlinear. A neural network strategy has been implemented in this work for capturing the dynamics of the mechanistic model for the fermentation process. The neural network achieved has been validated against the mechanistic model. Two neural network based nonlinear control strategies have also been adopted using the model identified. The performance of the feedback linearization technique was compared to neural network model predictive control in terms of stability and set point tracking capabilities. Under servo conditions, the feedback linearization algorithm gave comparable tracking and stability. The feedback linearization controller achieved the control target faster than the model predictive one but with vigorous and sudden controller moves. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  12. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    Science.gov (United States)

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  13. Synthetic Modeling of Autonomous Learning with a Chaotic Neural Network

    Science.gov (United States)

    Funabashi, Masatoshi

    We investigate the possible role of intermittent chaotic dynamics called chaotic itinerancy, in interaction with nonsupervised learnings that reinforce and weaken the neural connection depending on the dynamics itself. We first performed hierarchical stability analysis of the Chaotic Neural Network model (CNN) according to the structure of invariant subspaces. Irregular transition between two attractor ruins with positive maximum Lyapunov exponent was triggered by the blowout bifurcation of the attractor spaces, and was associated with riddled basins structure. We secondly modeled two autonomous learnings, Hebbian learning and spike-timing-dependent plasticity (STDP) rule, and simulated the effect on the chaotic itinerancy state of CNN. Hebbian learning increased the residence time on attractor ruins, and produced novel attractors in the minimum higher-dimensional subspace. It also augmented the neuronal synchrony and established the uniform modularity in chaotic itinerancy. STDP rule reduced the residence time on attractor ruins, and brought a wide range of periodicity in emerged attractors, possibly including strange attractors. Both learning rules selectively destroyed and preserved the specific invariant subspaces, depending on the neuron synchrony of the subspace where the orbits are situated. Computational rationale of the autonomous learning is discussed in connectionist perspective.

  14. Hardware Neural Networks Modeling for Computing Different Performance Parameters of Rectangular, Circular, and Triangular Microstrip Antennas

    Directory of Open Access Journals (Sweden)

    Taimoor Khan

    2014-01-01

    Full Text Available In the last one decade, neural networks-based modeling has been used for computing different performance parameters of microstrip antennas because of learning and generalization features. Most of the created neural models are based on software simulation. As the neural networks show massive parallelism inherently, a parallel hardware needs to be created for creating faster computing machine by taking the advantages of the parallelism of the neural networks. This paper demonstrates a generalized neural networks model created on field programmable gate array- (FPGA- based reconfigurable hardware platform for computing different performance parameters of microstrip antennas. Thus, the proposed approach provides a platform for developing low-cost neural network-based FPGA simulators for microwave applications. Also, the results obtained by this approach are in very good agreement with the measured results available in the literature.

  15. Unloading arm movement modeling using neural networks for a rotary hearth furnace

    Directory of Open Access Journals (Sweden)

    Iulia Inoan

    2011-12-01

    Full Text Available Neural networks are being applied in many fields of engineering having nowadays a wide range of application. Neural networks are very useful for modeling dynamic processes for which the mathematical modeling is hard to obtain, or for processes that can’t be modeled using mathematical equations. This paper describes the modeling process for the unloading arm movement from a rotary hearth furnace using neural networks with back propagation algorithm. In this case the designed network was trained using the simulation results from a previous calculated mathematical model.

  16. Meetei Mayek Unicode Modeling Using Swarm Intelligence and Neural Networks

    Directory of Open Access Journals (Sweden)

    Wahengbam Kanan Kumar

    2014-04-01

    Full Text Available The Different techniques have evolved for better optical character recognition for many scripts, yet very little literature has been found for Meetei Mayek script. The current paper exhibits a new approach to model and simulate handwritten Meetei mayek script by using advanced segmentation tools and recognition algorithms. Preprocessing of the acquired images is needed before segmentation and recognition steps; segmentation is done by using PSOFCM segmentation, while multilayer feed forward neural network with back propagation learning is used for the recognition purpose. It may be noted that PSOFCM segmentation proved useful for MRI image processing in our previous paper, the same technique is used for enhancing the characters. The detailed procedures along with the results are discussed in the sections shown below

  17. Tool Steel Heat Treatment Optimization Using Neural Network Modeling

    Science.gov (United States)

    Podgornik, Bojan; Belič, Igor; Leskovšek, Vojteh; Godec, Matjaz

    2016-11-01

    Optimization of tool steel properties and corresponding heat treatment is mainly based on trial and error approach, which requires tremendous experimental work and resources. Therefore, there is a huge need for tools allowing prediction of mechanical properties of tool steels as a function of composition and heat treatment process variables. The aim of the present work was to explore the potential and possibilities of artificial neural network-based modeling to select and optimize vacuum heat treatment conditions depending on the hot work tool steel composition and required properties. In the current case training of the feedforward neural network with error backpropagation training scheme and four layers of neurons (8-20-20-2) scheme was based on the experimentally obtained tempering diagrams for ten different hot work tool steel compositions and at least two austenitizing temperatures. Results show that this type of modeling can be successfully used for detailed and multifunctional analysis of different influential parameters as well as to optimize heat treatment process of hot work tool steels depending on the composition. In terms of composition, V was found as the most beneficial alloying element increasing hardness and fracture toughness of hot work tool steel; Si, Mn, and Cr increase hardness but lead to reduced fracture toughness, while Mo has the opposite effect. Optimum concentration providing high KIc/HRC ratios would include 0.75 pct Si, 0.4 pct Mn, 5.1 pct Cr, 1.5 pct Mo, and 0.5 pct V, with the optimum heat treatment performed at lower austenitizing and intermediate tempering temperatures.

  18. Simple Electromagnetic Modeling of Small Airplanes: Neural Network Approach

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper deals with the development of simple electromagnetic models of small airplanes, which can contain composite materials in their construction. Electromagnetic waves can penetrate through the surface of the aircraft due to the specific electromagnetic properties of the composite materials, which can increase the intensity of fields inside the airplane and can negatively influence the functionality of the sensitive avionics. The airplane is simulated by two parallel dielectric layers (the left-hand side wall and the right-hand side wall of the airplane. The layers are put into a rectangular metallic waveguide terminated by the absorber in order to simulate the illumination of the airplane by the external wave (both of the harmonic nature and pulse one. Thanks to the simplicity of the model, the parametric analysis can be performed, and the results can be used in order to train an artificial neural network. The trained networks excel in further reduction of CPU-time demands of an airplane modeling.

  19. Reliability Modeling of Microelectromechanical Systems Using Neural Networks

    Science.gov (United States)

    Perera. J. Sebastian

    2000-01-01

    Microelectromechanical systems (MEMS) are a broad and rapidly expanding field that is currently receiving a great deal of attention because of the potential to significantly improve the ability to sense, analyze, and control a variety of processes, such as heating and ventilation systems, automobiles, medicine, aeronautical flight, military surveillance, weather forecasting, and space exploration. MEMS are very small and are a blend of electrical and mechanical components, with electrical and mechanical systems on one chip. This research establishes reliability estimation and prediction for MEMS devices at the conceptual design phase using neural networks. At the conceptual design phase, before devices are built and tested, traditional methods of quantifying reliability are inadequate because the device is not in existence and cannot be tested to establish the reliability distributions. A novel approach using neural networks is created to predict the overall reliability of a MEMS device based on its components and each component's attributes. The methodology begins with collecting attribute data (fabrication process, physical specifications, operating environment, property characteristics, packaging, etc.) and reliability data for many types of microengines. The data are partitioned into training data (the majority) and validation data (the remainder). A neural network is applied to the training data (both attribute and reliability); the attributes become the system inputs and reliability data (cycles to failure), the system output. After the neural network is trained with sufficient data. the validation data are used to verify the neural networks provided accurate reliability estimates. Now, the reliability of a new proposed MEMS device can be estimated by using the appropriate trained neural networks developed in this work.

  20. Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    A. El-Shafie

    2011-07-01

    Full Text Available Rainfall is considered as one of the major component of the hydrological process, it takes significant part of evaluating drought and flooding events. Therefore, it is important to have accurate model for rainfall forecasting. Recently, several data-driven modeling approaches have been investigated to perform such forecasting task such as Multi-Layer Perceptron Neural Networks (MLP-NN. In fact, the rainfall time series modeling involves an important temporal dimension. On the other hand, the classical MLP-NN is a static and memoryless network architecture that is effective for complex nonlinear static mapping. This research focuses on investigating the potential of introducing a neural network that could address the temporal relationships of the rainfall series.

    Two different static neural networks and one dynamic neural network namely; Multi-Layer Peceptron Neural network (MLP-NN, Radial Basis Function Neural Network (RBFNN and Input Delay Neural Network (IDNN, respectively, have been examined in this study. Those models had been developed for two time horizon in monthly and weekly rainfall basis forecasting at Klang River, Malaysia. Data collected over 12 yr (1997–2008 on weekly basis and 22 yr (1987–2008 for monthly basis were used to develop and examine the performance of the proposed models. Comprehensive comparison analyses were carried out to evaluate the performance of the proposed static and dynamic neural network. Results showed that MLP-NN neural network model able to follow the similar trend of the actual rainfall, yet it still relatively poor. RBFNN model achieved better accuracy over the MLP-NN model. Moreover, the forecasting accuracy of the IDNN model outperformed during training and testing stage which prove a consistent level of accuracy with seen and unseen data. Furthermore, the IDNN significantly enhance the forecasting accuracy if compared with the other static neural network model as they could memorize the

  1. Electronic implementation of associative memory based on neural network models

    Science.gov (United States)

    Moopenn, A.; Lambe, John; Thakoor, A. P.

    1987-01-01

    An electronic embodiment of a neural network based associative memory in the form of a binary connection matrix is described. The nature of false memory errors, their effect on the information storage capacity of binary connection matrix memories, and a novel technique to eliminate such errors with the help of asymmetrical extra connections are discussed. The stability of the matrix memory system incorporating a unique local inhibition scheme is analyzed in terms of local minimization of an energy function. The memory's stability, dynamic behavior, and recall capability are investigated using a 32-'neuron' electronic neural network memory with a 1024-programmable binary connection matrix.

  2. Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Aminmohammad Saberian

    2014-01-01

    Full Text Available This paper presents a solar power modelling method using artificial neural networks (ANNs. Two neural network structures, namely, general regression neural network (GRNN feedforward back propagation (FFBP, have been used to model a photovoltaic panel output power and approximate the generated power. Both neural networks have four inputs and one output. The inputs are maximum temperature, minimum temperature, mean temperature, and irradiance; the output is the power. The data used in this paper started from January 1, 2006, until December 31, 2010. The five years of data were split into two parts: 2006–2008 and 2009-2010; the first part was used for training and the second part was used for testing the neural networks. A mathematical equation is used to estimate the generated power. At the end, both of these networks have shown good modelling performance; however, FFBP has shown a better performance comparing with GRNN.

  3. Application of experimental design techniques to structural simulation meta-model building using neural network

    Institute of Scientific and Technical Information of China (English)

    费庆国; 张令弥

    2004-01-01

    Neural networks are being used to construct meta-models in numerical simulation of structures. In addition to network structures and training algorithms, training samples also greatly affect the accuracy of neural network models. In this paper, some existing main sampling techniques are evaluated, including techniques based on experimental design theory,random selection, and rotating sampling. First, advantages and disadvantages of each technique are reviewed. Then, seven techniques are used to generate samples for training radial neural networks models for two benchmarks: an antenna model and an aircraft model. Results show that the uniform design, in which the number of samples and mean square error network models are considered, is the best sampling technique for neural network based meta-model building.

  4. EMP response modeling of TVS based on the recurrent neural network

    Directory of Open Access Journals (Sweden)

    Zhiqiang JI

    2015-04-01

    Full Text Available Due to the larger workload in the implementation process and the poor consistence between the test results and actual situation problems when using the transmission line pulse (TLP testing methods, a modeling method based on the recurrent neural network is proposed for EMP response forecast. Based on the TLP testing system, two categories of EMP are increased, which are the machine model ESD EMP and human metal model ESD EMP. Elman neural network, Jordan neural network and their combination namely Elman-Jordan neural network are established for response modeling of NUP2105L transient voltage suppressor (TVS forecasting the response under different EMP. The simulation results show that the recurrent neural network has satisfying modeling effects and high computation efficiency.

  5. Surrogate Modeling of Deformable Joint Contact using Artificial Neural Networks

    Science.gov (United States)

    Eskinazi, Ilan; Fregly, Benjamin J.

    2016-01-01

    Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models. PMID:26220591

  6. Nonlinear modeling of PEMFC based on neural networks identification

    Institute of Scientific and Technical Information of China (English)

    SUN Tao; CAO Guang-yi; ZHU Xin-jian

    2005-01-01

    The proton exchange membrane generation technology is highly efficient and clean, and is considered as the most hopeful "green" power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model. This paper first simply analyzes the necessity of the PEMFC generation technology, then introduces the generating principle from four aspects: electrode, single cell, stack, system; and then uses the approach and self-study ability of artificial neural network to build the model of nonlinear system, and adapts the Levenberg-Marquardt BP (LMBP) to build the electric characteristic model of PEMFC. The model uses experimental data as training specimens, on the condition the system is provided enough hydrogen. Considering the flow velocity of air (or oxygen) and the cell operational temperature as inputs, the cell voltage and current density as the outputs and establishing the electric characteristic model of PEMFC according to the different cell temperatures. The voltage-current output curves of model has some guidance effect for improving the cell performance, and provide basic data for optimizing cell performance that have practical significance.

  7. A new neural network model for the feedback stabilization of nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Mei-qin LIU; Sen-lin ZHANG; Gang-long YAN

    2008-01-01

    A new neural network model termed 'standard neural network model' (SNNM) is presented,and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system.The control design constraints are shown to be a set of linear matrix inequalities (LMIs),which can be easily solved by the MATLAB LMI Control Toolbox to determine the control law.Most recurrent neural networks (including the chaotic neural network) and nonlinear systems modeled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be stabilization controllers synthesized in the framework of a unified SNNM.Finally,three numerical examples are provided to illustrate the design developed in this paper.

  8. Modeling the dynamics of evaluation: a multilevel neural network implementation of the iterative reprocessing model.

    Science.gov (United States)

    Ehret, Phillip J; Monroe, Brian M; Read, Stephen J

    2015-05-01

    We present a neural network implementation of central components of the iterative reprocessing (IR) model. The IR model argues that the evaluation of social stimuli (attitudes, stereotypes) is the result of the IR of stimuli in a hierarchy of neural systems: The evaluation of social stimuli develops and changes over processing. The network has a multilevel, bidirectional feedback evaluation system that integrates initial perceptual processing and later developing semantic processing. The network processes stimuli (e.g., an individual's appearance) over repeated iterations, with increasingly higher levels of semantic processing over time. As a result, the network's evaluations of stimuli evolve. We discuss the implications of the network for a number of different issues involved in attitudes and social evaluation. The success of the network supports the IR model framework and provides new insights into attitude theory.

  9. Optimization of Component Based Software Engineering Model Using Neural Network

    Directory of Open Access Journals (Sweden)

    Gaurav Kumar

    2014-10-01

    Full Text Available The goal of Component Based Software Engineering (CBSE is to deliver high quality, more reliable and more maintainable software systems in a shorter time and within limited budget by reusing and combining existing quality components. A high quality system can be achieved by using quality components, framework and integration process that plays a significant role. So, techniques and methods used for quality assurance and assessment of a component based system is different from those of the traditional software engineering methodology. In this paper, we are presenting a model for optimizing Chidamber and Kemerer (CK metric values of component-based software. A deep analysis of a series of CK metrics of the software components design patterns is done and metric values are drawn from them. By using unsupervised neural network- Self Organizing Map, we have proposed a model that provides an optimized model for Software Component engineering model based on reusability that depends on CK metric values. Average, standard deviated and optimized values for the CK metric are compared and evaluated to show the optimized reusability of component based model.

  10. Neural Network Modeling to Predict Shelf Life of Greenhouse Lettuce

    Directory of Open Access Journals (Sweden)

    Wei-Chin Lin

    2009-04-01

    Full Text Available Greenhouse-grown butter lettuce (Lactuca sativa L. can potentially be stored for 21 days at constant 0°C. When storage temperature was increased to 5°C or 10°C, shelf life was shortened to 14 or 10 days, respectively, in our previous observations. Also, commercial shelf life of 7 to 10 days is common, due to postharvest temperature fluctuations. The objective of this study was to establish neural network (NN models to predict the remaining shelf life (RSL under fluctuating postharvest temperatures. A box of 12 - 24 lettuce heads constituted a sample unit. The end of the shelf life of each head was determined when it showed initial signs of decay or yellowing. Air temperatures inside a shipping box were recorded. Daily average temperatures in storage and averaged shelf life of each box were used as inputs, and the RSL was modeled as an output. An R2 of 0.57 could be observed when a simple NN structure was employed. Since the "future" (or remaining storage temperatures were unavailable at the time of making a prediction, a second NN model was introduced to accommodate a range of future temperatures and associated shelf lives. Using such 2-stage NN models, an R2 of 0.61 could be achieved for predicting RSL. This study indicated that NN modeling has potential for cold chain quality control and shelf life prediction.

  11. Model and Algorithm of BP Neural Network Based on Expanded Multichain Quantum Optimization

    Directory of Open Access Journals (Sweden)

    Baoyu Xu

    2015-01-01

    Full Text Available The model and algorithm of BP neural network optimized by expanded multichain quantum optimization algorithm with super parallel and ultra-high speed are proposed based on the analysis of the research status quo and defects of BP neural network to overcome the defects of overfitting, the random initial weights, and the oscillation of the fitting and generalization ability along with subtle changes of the network parameters. The method optimizes the structure of the neural network effectively and can overcome a series of problems existing in the BP neural network optimized by basic genetic algorithm such as slow convergence speed, premature convergence, and bad computational stability. The performance of the BP neural network controller is further improved. The simulation experimental results show that the model is with good stability, high precision of the extracted parameters, and good real-time performance and adaptability in the actual parameter extraction.

  12. Neural network modeling for dynamic pulsed GTAW process with wire filler based on MATLAB

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Double-sided weld pool shapes were determined by multiple welding parameters and wire feed parameters during pulsed GTAW with wire filler. Aiming at such a system with multiple inputs and outputs, an effective modeling method, consisting of the impulse signal design, model structure and parameter identification and verification, was developed based on MATLAB software. Then, dynamic neural network models, TDNNM (Topside dynamic neural network model) and BHDNNM (Backside width and topside height dynamic neural network model), were established to predict double-sided shape parameters of the weld pool. The characteristic relationship of the welding process was simulated and analyzed with the models.

  13. Prediction Model of Soil Nutrients Loss Based on Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian - River basin. The results by calculating show that the solution based on BP algorithms are consis tent with those based multiple-variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible.

  14. Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control.

    Science.gov (United States)

    Yang, Shiju; Li, Chuandong; Huang, Tingwen

    2016-03-01

    The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results.

  15. Application of simple dynamic recurrent neural networks in solid granule flowrate modeling

    Science.gov (United States)

    Du, Yun; Sun, Huiqin; Tian, Qiang; Ren, Haiping; Zhang, Suying

    2008-10-01

    To build the solid granule flowrate model by the simple dynamic recurrent neural network (SRNN) is presented in this paper. Because of the dynamic recurrent neural network has the characteristic of intricate network structure and slow training algorithm rate, the simple recurrent neural network without the weight values on recursion layer is studied. The recurrent prediction error (RPE) learning algorithm for SRNN by adjustment the weight value and the threshold value is reduced. The modeling result of solid granule flowrate indicates that it has fast convergence rate and the high precision the model. It can be used on real time.

  16. HIV lipodystrophy case definition using artificial neural network modelling

    DEFF Research Database (Denmark)

    Ioannidis, John P A; Trikalinos, Thomas A; Law, Matthew

    2003-01-01

    OBJECTIVE: A case definition of HIV lipodystrophy has recently been developed from a combination of clinical, metabolic and imaging/body composition variables using logistic regression methods. We aimed to evaluate whether artificial neural networks could improve the diagnostic accuracy. METHODS...

  17. Modeling brand choice using boosted and stacked neural networks

    NARCIS (Netherlands)

    R. Potharst (Rob); M. van Rijthoven; M.C. van Wezel (Michiel)

    2005-01-01

    textabstractThe brand choice problem in marketing has recently been addressed with methods from computational intelligence such as neural networks. Another class of methods from computational intelligence, the so-called ensemble methods such as boosting and stacking have never been applied to the

  18. Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    A. El-Shafie

    2012-04-01

    Full Text Available Rainfall is considered as one of the major components of the hydrological process; it takes significant part in evaluating drought and flooding events. Therefore, it is important to have an accurate model for rainfall forecasting. Recently, several data-driven modeling approaches have been investigated to perform such forecasting tasks as multi-layer perceptron neural networks (MLP-NN. In fact, the rainfall time series modeling involves an important temporal dimension. On the other hand, the classical MLP-NN is a static and has a memoryless network architecture that is effective for complex nonlinear static mapping. This research focuses on investigating the potential of introducing a neural network that could address the temporal relationships of the rainfall series.

    Two different static neural networks and one dynamic neural network, namely the multi-layer perceptron neural network (MLP-NN, radial basis function neural network (RBFNN and input delay neural network (IDNN, respectively, have been examined in this study. Those models had been developed for the two time horizons for monthly and weekly rainfall forecasting at Klang River, Malaysia. Data collected over 12 yr (1997–2008 on a weekly basis and 22 yr (1987–2008 on a monthly basis were used to develop and examine the performance of the proposed models. Comprehensive comparison analyses were carried out to evaluate the performance of the proposed static and dynamic neural networks. Results showed that the MLP-NN neural network model is able to follow trends of the actual rainfall, however, not very accurately. RBFNN model achieved better accuracy than the MLP-NN model. Moreover, the forecasting accuracy of the IDNN model was better than that of static network during both training and testing stages, which proves a consistent level of accuracy with seen and unseen data.

  19. Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia

    Science.gov (United States)

    El-Shafie, A.; Noureldin, A.; Taha, M.; Hussain, A.; Mukhlisin, M.

    2012-04-01

    Rainfall is considered as one of the major components of the hydrological process; it takes significant part in evaluating drought and flooding events. Therefore, it is important to have an accurate model for rainfall forecasting. Recently, several data-driven modeling approaches have been investigated to perform such forecasting tasks as multi-layer perceptron neural networks (MLP-NN). In fact, the rainfall time series modeling involves an important temporal dimension. On the other hand, the classical MLP-NN is a static and has a memoryless network architecture that is effective for complex nonlinear static mapping. This research focuses on investigating the potential of introducing a neural network that could address the temporal relationships of the rainfall series. Two different static neural networks and one dynamic neural network, namely the multi-layer perceptron neural network (MLP-NN), radial basis function neural network (RBFNN) and input delay neural network (IDNN), respectively, have been examined in this study. Those models had been developed for the two time horizons for monthly and weekly rainfall forecasting at Klang River, Malaysia. Data collected over 12 yr (1997-2008) on a weekly basis and 22 yr (1987-2008) on a monthly basis were used to develop and examine the performance of the proposed models. Comprehensive comparison analyses were carried out to evaluate the performance of the proposed static and dynamic neural networks. Results showed that the MLP-NN neural network model is able to follow trends of the actual rainfall, however, not very accurately. RBFNN model achieved better accuracy than the MLP-NN model. Moreover, the forecasting accuracy of the IDNN model was better than that of static network during both training and testing stages, which proves a consistent level of accuracy with seen and unseen data.

  20. GLOBAL ATTRACTIVITY AND GLOBAL EXPONENTIAL STABILITY FOR DELAYED HOPFIELD NEURAL NETWORK MODELS

    Institute of Scientific and Technical Information of China (English)

    蒲志林; 徐道义

    2001-01-01

    Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constructing suitable Liapunov function, some simpler criteria for global attractivity and global exponential stability for Hopfield continuous neural networks with time delays are presented.

  1. Synthetical Control of AGC/LPC System Based on Neural Networks Internal Model Control

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neural networks. Simulation results prove that this method is effective.

  2. Robust nonlinear autoregressive moving average model parameter estimation using stochastic recurrent artificial neural networks

    DEFF Research Database (Denmark)

    Chon, K H; Hoyer, D; Armoundas, A A;

    1999-01-01

    part of the stochastic ARMA model are first estimated via a three-layer artificial neural network (deterministic estimation step) and then reestimated using the prediction error as one of the inputs to the artificial neural networks in an iterative algorithm (stochastic estimation step). The prediction...

  3. Neural Network Identification Model for Technology Selection of Fully-Mechanized Top-Coal Caving Mining

    Institute of Scientific and Technical Information of China (English)

    孟宪锐; 徐永勇; 汪进

    2001-01-01

    This paper mainly discusses the selection of the technical parameters of fully-mechanized top-coal caving mining using the neural network technique. The comparison between computing results and experiment data shows that the set-up neural network model has high accuracy and decision-making benefit.

  4. Feed-forward neural network model for hunger and satiety related VAS score prediction

    NARCIS (Netherlands)

    Krishnan, S.; Hendriks, H.F.J.; Hartvigsen, M.L.; Graaf, A.A. de

    2016-01-01

    Background: An artificial neural network approach was chosen to model the outcome of the complex signaling pathways in the gastro-intestinal tract and other peripheral organs that eventually produce the satiety feeling in the brain upon feeding. Methods: A multilayer feed-forward neural network was

  5. Feed-forward neural network model for hunger and satiety related VAS score prediction

    NARCIS (Netherlands)

    Krishnan, S.; Hendriks, H.F.J.; Hartvigsen, M.L.; Graaf, A.A. de

    2016-01-01

    Background: An artificial neural network approach was chosen to model the outcome of the complex signaling pathways in the gastro-intestinal tract and other peripheral organs that eventually produce the satiety feeling in the brain upon feeding. Methods: A multilayer feed-forward neural network was

  6. Building a Tax Predictive Model Based on the Cloud Neural Network

    Institute of Scientific and Technical Information of China (English)

    田永青; 李志; 朱仲英

    2003-01-01

    Tax is very important to the whole country, so a scientific tax predictive model is needed. This paper introduces the theory of the cloud model. On this basis, it presents a cloud neural network, and analyzes the main factors which influence the tax revenue. Then if proposes a tax predictive model based on the cloud neural network. The model combines the strongpoints of the cloud model and the neural network. The experiment and simulation results show the effectiveness of the algorithm in this paper.

  7. A linear model for characterization of synchronization frequencies of neural networks.

    Science.gov (United States)

    Lv, Peili; Hu, Xintao; Lv, Jinglei; Han, Junwei; Guo, Lei; Liu, Tianming

    2014-02-01

    The synchronization frequency of neural networks and its dynamics have important roles in deciphering the working mechanisms of the brain. It has been widely recognized that the properties of functional network synchronization and its dynamics are jointly determined by network topology, network connection strength, i.e., the connection strength of different edges in the network, and external input signals, among other factors. However, mathematical and computational characterization of the relationships between network synchronization frequency and these three important factors are still lacking. This paper presents a novel computational simulation framework to quantitatively characterize the relationships between neural network synchronization frequency and network attributes and input signals. Specifically, we constructed a series of neural networks including simulated small-world networks, real functional working memory network derived from functional magnetic resonance imaging, and real large-scale structural brain networks derived from diffusion tensor imaging, and performed synchronization simulations on these networks via the Izhikevich neuron spiking model. Our experiments demonstrate that both of the network synchronization strength and synchronization frequency change according to the combination of input signal frequency and network self-synchronization frequency. In particular, our extensive experiments show that the network synchronization frequency can be represented via a linear combination of the network self-synchronization frequency and the input signal frequency. This finding could be attributed to an intrinsically-preserved principle in different types of neural systems, offering novel insights into the working mechanism of neural systems.

  8. On permutation symmetries of hopfield model neural network

    Directory of Open Access Journals (Sweden)

    Jiyang Dong

    2001-01-01

    Full Text Available Discrete Hopfield neural network (DHNN is studied by performing permutation operations on the synaptic weight matrix. The storable patterns set stored with Hebbian learning algorithm in a network without losing memories is studied, and a condition which makes sure all the patterns of the storable patterns set have a same basin size of attraction is proposed. Then, the permutation symmetries of the network are studied associating with the stored patterns set. A construction of the storable patterns set satisfying that condition is achieved by consideration of their invariance under a point group.

  9. Comparing Models GRM, Refraction Tomography and Neural Network to Analyze Shallow Landslide

    Directory of Open Access Journals (Sweden)

    Armstrong F. Sompotan

    2011-11-01

    Full Text Available Detailed investigations of landslides are essential to understand fundamental landslide mechanisms. Seismic refraction method has been proven as a useful geophysical tool for investigating shallow landslides. The objective of this study is to introduce a new workflow using neural network in analyzing seismic refraction data and to compare the result with some methods; that are general reciprocal method (GRM and refraction tomography. The GRM is effective when the velocity structure is relatively simple and refractors are gently dipping. Refraction tomography is capable of modeling the complex velocity structures of landslides. Neural network is found to be more potential in application especially in time consuming and complicated numerical methods. Neural network seem to have the ability to establish a relationship between an input and output space for mapping seismic velocity. Therefore, we made a preliminary attempt to evaluate the applicability of neural network to determine velocity and elevation of subsurface synthetic models corresponding to arrival times. The training and testing process of the neural network is successfully accomplished using the synthetic data. Furthermore, we evaluated the neural network using observed data. The result of the evaluation indicates that the neural network can compute velocity and elevation corresponding to arrival times. The similarity of those models shows the success of neural network as a new alternative in seismic refraction data interpretation.

  10. The Chebyshev-polynomials-based unified model neural networks for function approximation.

    Science.gov (United States)

    Lee, T T; Jeng, J T

    1998-01-01

    In this paper, we propose the approximate transformable technique, which includes the direct transformation and indirect transformation, to obtain a Chebyshev-Polynomials-Based (CPB) unified model neural networks for feedforward/recurrent neural networks via Chebyshev polynomials approximation. Based on this approximate transformable technique, we have derived the relationship between the single-layer neural networks and multilayer perceptron neural networks. It is shown that the CPB unified model neural networks can be represented as a functional link networks that are based on Chebyshev polynomials, and those networks use the recursive least square method with forgetting factor as learning algorithm. It turns out that the CPB unified model neural networks not only has the same capability of universal approximator, but also has faster learning speed than conventional feedforward/recurrent neural networks. Furthermore, we have also derived the condition such that the unified model generating by Chebyshev polynomials is optimal in the sense of error least square approximation in the single variable ease. Computer simulations show that the proposed method does have the capability of universal approximator in some functional approximation with considerable reduction in learning time.

  11. Legitimising neural network river forecasting models: a new data-driven mechanistic modelling framework

    Science.gov (United States)

    Mount, N. J.; Dawson, C. W.; Abrahart, R. J.

    2013-01-01

    In this paper we address the difficult problem of gaining an internal, mechanistic understanding of a neural network river forecasting (NNRF) model. Neural network models in hydrology have long been criticised for their black-box character, which prohibits adequate understanding of their modelling mechanisms and has limited their broad acceptance by hydrologists. In response, we here present a new, data-driven mechanistic modelling (DDMM) framework that incorporates an evaluation of the legitimacy of a neural network's internal modelling mechanism as a core element in the model development process. The framework is exemplified for two NNRF modelling scenarios, and uses a novel adaptation of first order, partial derivate, relative sensitivity analysis methods as the means by which each model's mechanistic legitimacy is explored. The results demonstrate the limitations of standard, goodness-of-fit validation procedures applied by NNRF modellers, by highlighting how the internal mechanisms of complex models that produce the best fit scores can have much lower legitimacy than simpler counterparts whose scores are only slightly inferior. The study emphasises the urgent need for better mechanistic understanding of neural network-based hydrological models and the further development of methods for elucidating their mechanisms.

  12. Double Glow Plasma Surface Alloying Process Modeling Using Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    Jiang XU; Xishan XIE; Zhong XU

    2003-01-01

    A model is developed for predicting the correlation between processing parameters and the technical target of double glowby applying artificial neural network (ANN). The input parameters of the neural network (NN) are source voltage, workpiecevoltage, working pressure and distance between source electrode and workpiece. The output of the NN model is three importanttechnical targets, namely the gross element content, the thickness of surface alloying layer and the absorption rate (the ratioof the mass loss of source materials to the increasing mass of workpiece) in the processing of double glow plasma surfacealloying. The processing parameters and technical target are then used as a training set for an artificial neural network. Themodel is based on multiplayer feedforward neural network. A very good performance of the neural network is achieved and thecalculated results are in good agreement with the experimental ones.

  13. Modeling Distillation Column Using ARX Model Structure and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Pirmoradi

    2012-04-01

    Full Text Available Distillation is a complex and highly nonlinear industrial process. In general it is not always possible to obtain accurate first principles models for high-purity distillation columns. On the other hand the development of first principles models is usually time consuming and expensive. To overcome these problems, empirical models such as neural networks can be used. One major drawback of empirical models is that the prediction is valid only inside the data domain that is sufficiently covered by measurement data. Modeling distillation columns by means of neural networks is reported in literature by using recursive networks. The recursive networks are proper for modeling purpose, but such models have the problems of high complexity and high computational cost. The objective of this paper is to propose a simple and reliable model for distillation column. The proposed model uses feed forward neural networks which results in a simple model with less parameters and faster training time. Simulation results demonstrate that predictions of the proposed model in all regions are close to outputs of the dynamic model and the error in negligible. This implies that the model is reliable in all regions.

  14. Monitoring crop cycles by SAR using a neural network trained by a model

    Science.gov (United States)

    del Frate, F.; Ferrazzoli, P.; Guerriero, L.; Strozzi, T.; Wegmüller, U.; Cookmartin, G.; Quegan, S.

    2002-01-01

    An algorithm, based on an electromagnetic model and a neural network, aimed at monitoring the multitemporal evolution of wheat fields, is described. Three different sites are used to validate the model, provide reference ground data, and test the algorithm.

  15. Validation of protein models by a neural network approach

    Directory of Open Access Journals (Sweden)

    Fantucci Piercarlo

    2008-01-01

    Full Text Available Abstract Background The development and improvement of reliable computational methods designed to evaluate the quality of protein models is relevant in the context of protein structure refinement, which has been recently identified as one of the bottlenecks limiting the quality and usefulness of protein structure prediction. Results In this contribution, we present a computational method (Artificial Intelligence Decoys Evaluator: AIDE which is able to consistently discriminate between correct and incorrect protein models. In particular, the method is based on neural networks that use as input 15 structural parameters, which include energy, solvent accessible surface, hydrophobic contacts and secondary structure content. The results obtained with AIDE on a set of decoy structures were evaluated using statistical indicators such as Pearson correlation coefficients, Znat, fraction enrichment, as well as ROC plots. It turned out that AIDE performances are comparable and often complementary to available state-of-the-art learning-based methods. Conclusion In light of the results obtained with AIDE, as well as its comparison with available learning-based methods, it can be concluded that AIDE can be successfully used to evaluate the quality of protein structures. The use of AIDE in combination with other evaluation tools is expected to further enhance protein refinement efforts.

  16. A neural network model for predicting aquifer water level elevations.

    Science.gov (United States)

    Coppola, Emery A; Rana, Anthony J; Poulton, Mary M; Szidarovszky, Ferenc; Uhl, Vincent W

    2005-01-01

    Artificial neural networks (ANNs) were developed for accurately predicting potentiometric surface elevations (monitoring well water level elevations) in a semiconfined glacial sand and gravel aquifer under variable state, pumping extraction, and climate conditions. ANNs "learn" the system behavior of interest by processing representative data patterns through a mathematical structure analogous to the human brain. In this study, the ANNs used the initial water level measurements, production well extractions, and climate conditions to predict the final water level elevations 30 d into the future at two monitoring wells. A sensitivity analysis was conducted with the ANNs that quantified the importance of the various input predictor variables on final water level elevations. Unlike traditional physical-based models, ANNs do not require explicit characterization of the physical system and related physical data. Accordingly, ANN predictions were made on the basis of more easily quantifiable, measured variables, rather than physical model input parameters and conditions. This study demonstrates that ANNs can provide both excellent prediction capability and valuable sensitivity analyses, which can result in more appropriate ground water management strategies.

  17. Neural coordination can be enhanced by occasional interruption of normal firing patterns: a self-optimizing spiking neural network model.

    Science.gov (United States)

    Woodward, Alexander; Froese, Tom; Ikegami, Takashi

    2015-02-01

    The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attraction. However, so far it is not clear to what extent this process of self-optimization is also operative in real brains. Here we demonstrate that it can be transferred to more biologically plausible neural networks by implementing a self-optimizing spiking neural network model. In addition, by using this spiking neural network to emulate a Hopfield network with Hebbian learning, we attempt to make a connection between rate-based and temporal coding based neural systems. Although further work is required to make this model more realistic, it already suggests that the efficacy of the self-optimizing process is independent from the simplifying assumptions of a conventional Hopfield network. We also discuss natural and cultural processes that could be responsible for occasional alteration of neural firing patterns in actual brains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Forecasting macroeconomic variables using neural network models and three automated model selection techniques

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    2016-01-01

    When forecasting with neural network models one faces several problems, all of which influence the accuracy of the forecasts. First, neural networks are often hard to estimate due to their highly nonlinear structure. To alleviate the problem, White (2006) presented a solution (Quick......Net) that converts the specification and nonlinear estimation problem into a linear model selection and estimation problem. We shall compare its performance to that of two other procedures building on the linearization idea: the Marginal Bridge Estimator and Autometrics. Second, one must decide whether forecasting...

  19. Bacterial DNA Sequence Compression Models Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Armando J. Pinho

    2013-08-01

    Full Text Available It is widely accepted that the advances in DNA sequencing techniques have contributed to an unprecedented growth of genomic data. This fact has increased the interest in DNA compression, not only from the information theory and biology points of view, but also from a practical perspective, since such sequences require storage resources. Several compression methods exist, and particularly, those using finite-context models (FCMs have received increasing attention, as they have been proven to effectively compress DNA sequences with low bits-per-base, as well as low encoding/decoding time-per-base. However, the amount of run-time memory required to store high-order finite-context models may become impractical, since a context-order as low as 16 requires a maximum of 17.2 x 109 memory entries. This paper presents a method to reduce such a memory requirement by using a novel application of artificial neural networks (ANN to build such probabilistic models in a compact way and shows how to use them to estimate the probabilities. Such a system was implemented, and its performance compared against state-of-the art compressors, such as XM-DNA (expert model and FCM-Mx (mixture of finite-context models , as well as with general-purpose compressors. Using a combination of order-10 FCM and ANN, similar encoding results to those of FCM, up to order-16, are obtained using only 17 megabytes of memory, whereas the latter, even employing hash-tables, uses several hundreds of megabytes.

  20. Integrative neural networks models for stream assessment in restoration projects

    Science.gov (United States)

    Gazendam, Ed; Gharabaghi, Bahram; Ackerman, Josef D.; Whiteley, Hugh

    2016-05-01

    Stream-habitat assessment for evaluation of restoration projects requires the examination of many parameters, both watershed-scale and reach-scale, to incorporate the complex non-linear effects of geomorphic, riparian, watershed and hydrologic factors on aquatic ecosystems. Rapid geomorphic assessment tools used by many jurisdictions to assess natural channel design projects seldom include watershed-level parameters, which have been shown to have a significant effect on benthic habitat in stream systems. In this study, Artificial Neural Network (ANN) models were developed to integrate complex non-linear relationships between the aquatic ecosystem health indices and key watershed-scale and reach-scale parameters. Physical stream parameters, based on QHEI parameters, and watershed characteristics data were collected at 112 sites on 62 stream systems located in Southern Ontario. Benthic data were collected separately and benthic invertebrate summary indices, specifically Hilsenhoff's Biotic Index (HBI) and Richness, were determined. The ANN models were trained on the randomly selected 3/4 of the dataset of 112 streams in Ontario, Canada and validated on the remaining 1/4. The R2 values for the developed ANN model predictions were 0.86 for HBI and 0.92 for Richness. Sensitivity analysis of the trained ANN models revealed that Richness was directly proportional to Erosion and Riparian Width and inversely proportional to Floodplain Quality and Substrate parameters. HBI was directly proportional to Velocity Types and Erosion and inversely proportional to Substrate, % Treed and 1:2 Year Flood Flow parameters. The ANN models can be useful tools for watershed managers in stream assessment and restoration projects by allowing consideration of watershed properties in the stream assessment.

  1. A new neural network model for solving random interval linear programming problems.

    Science.gov (United States)

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique.

  2. Computational Analysis of Optical Neural Network Models to Weather Forecasting

    OpenAIRE

    A. C. Subhajini; V. Joseph Raj

    2010-01-01

    Neural networks have been in use in numerous meteorological applications including weather forecasting. They are found to be more powerful than any traditional expert system in the classification of meteorological patterns, in performing pattern classification tasks as they learn from examples without explicitly stating the rules and being non linear they solve complex problems more than linear techniques. A weather forecasting problem - rain fall estimation has been experimented using differ...

  3. Modeling of the height control system using artificial neural networks

    Directory of Open Access Journals (Sweden)

    A. R Tahavvor

    2016-09-01

    Full Text Available Introduction Automation of agricultural and machinery construction has generally been enhanced by intelligent control systems due to utility and efficiency rising, ease of use, profitability and upgrading according to market demand. A broad variety of industrial merchandise are now supplied with computerized control systems of earth moving processes to be performed by construction and agriculture field vehicle such as grader, backhoe, tractor and scraper machines. A height control machine which is used in measuring base thickness is consisted of two mechanical and electronic parts. The mechanical part is consisted of conveyor belt, main body, electrical engine and invertors while the electronic part is consisted of ultrasonic, wave transmitter and receiver sensor, electronic board, control set, and microcontroller. The main job of these controlling devices consists of the topographic surveying, cutting and filling of elevated and spotted low area, and these actions fundamentally dependent onthe machine's ability in elevation and thickness measurement and control. In this study, machine was first tested and then some experiments were conducted for data collection. Study of system modeling in artificial neural networks (ANN was done for measuring, controlling the height for bases by input variable input vectors such as sampling time, probe speed, conveyer speed, sound wave speed and speed sensor are finally the maximum and minimum probe output vector on various conditions. The result reveals the capability of this procedure for experimental recognition of sensors' behavior and improvement of field machine control systems. Inspection, calibration and response, diagnosis of the elevation control system in combination with machine function can also be evaluated by some extra development of this system. Materials and Methods Designing and manufacture of the planned apparatus classified in three dissimilar, mechanical and electronic module, courses of

  4. A neural network model for real-time estimation of workpiece thermal expansion

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, A.D.; Smith, R.N.

    1999-07-01

    An artificial neural network model to estimate the workpiece thermal expansion errors in real-time during precision machining is developed. A finite element model of the workpiece thermal expansion has been created to predict expansions in a thin cylinder undergoing a turning process. An experiment has been performed and the results compared with the finite element model results. The finite element model reasonably estimates the thermal expansion of the workpiece at the cutting tool. A neural network has been trained using finite element model solutions over a range of conditions to allow for changing machining parameters. To realize on-line capability, the measurable values of heat flux into the workpiece, temperature at the cutting tool, surface heat transfer coefficient, and tool location are used as inputs and the expansion as the output for the neural network. Figure A-2 shows a comparison of the finite element model results and the neural network model estimations of the workpiece thermal expansion at the cutting tool position for the cutting conditions of the experiment. The two curves are so closely matched, it is difficult to see any difference. The neural network has not been trained at these cutting conditions, and it accurately estimates the finite element model using measurable data. Thus, the neural network model is capable of estimating expansions for real cutting conditions. The speed of the neutral network estimation is much greater than the solution to the finite element model. The finite element model requires over 8 minutes to solve on a Pentium 133 Mhz computer. The neural network calculates the expansions in 0.1 seconds on the same computer. This demonstrates the capability of the neural network to be used in a real-time setting. With real-time estimation using measurable data, compensation can be made in the tool path to correct for these errors. The application of this method to precision machining processes has the capability of greatly

  5. Quantum Neural Networks

    CERN Document Server

    Gupta, S; Gupta, Sanjay

    2002-01-01

    This paper initiates the study of quantum computing within the constraints of using a polylogarithmic ($O(\\log^k n), k\\geq 1$) number of qubits and a polylogarithmic number of computation steps. The current research in the literature has focussed on using a polynomial number of qubits. A new mathematical model of computation called \\emph{Quantum Neural Networks (QNNs)} is defined, building on Deutsch's model of quantum computational network. The model introduces a nonlinear and irreversible gate, similar to the speculative operator defined by Abrams and Lloyd. The precise dynamics of this operator are defined and while giving examples in which nonlinear Schr\\"{o}dinger's equations are applied, we speculate on its possible implementation. The many practical problems associated with the current model of quantum computing are alleviated in the new model. It is shown that QNNs of logarithmic size and constant depth have the same computational power as threshold circuits, which are used for modeling neural network...

  6. Neural Network Hydrological Modelling: Linear Output Activation Functions?

    Science.gov (United States)

    Abrahart, R. J.; Dawson, C. W.

    2005-12-01

    The power to represent non-linear hydrological processes is of paramount importance in neural network hydrological modelling operations. The accepted wisdom requires non-polynomial activation functions to be incorporated in the hidden units such that a single tier of hidden units can thereafter be used to provide a 'universal approximation' to whatever particular hydrological mechanism or function is of interest to the modeller. The user can select from a set of default activation functions, or in certain software packages, is able to define their own function - the most popular options being logistic, sigmoid and hyperbolic tangent. If a unit does not transform its inputs it is said to possess a 'linear activation function' and a combination of linear activation functions will produce a linear solution; whereas the use of non-linear activation functions will produce non-linear solutions in which the principle of superposition does not hold. For hidden units, speed of learning and network complexities are important issues. For the output units, it is desirable to select an activation function that is suited to the distribution of the target values: e.g. binary targets (logistic); categorical targets (softmax); continuous-valued targets with a bounded range (logistic / tanh); positive target values with no known upper bound (exponential; but beware of overflow); continuous-valued targets with no known bounds (linear). It is also standard practice in most hydrological applications to use the default software settings and to insert a set of identical non-linear activation functions in the hidden layer and output layer processing units. Mixed combinations have nevertheless been reported in several hydrological modelling papers and the full ramifications of such activities requires further investigation and assessment i.e. non-linear activation functions in the hidden units connected to linear or clipped-linear activation functions in the output unit. There are two

  7. Identification model of multi-layered neural network parameters and its applications in the petroleum production

    Institute of Scientific and Technical Information of China (English)

    Liu Ranbing; Liu Leiming; Zhang Faqiang; Li Changhua

    2008-01-01

    This paper creates a LM (Levenberg-Marquardt) algorithm model which is appropriate to solve the problem a-bout weights value of feedforward neural network. On the base of this model, we provide two applications in the oilfield production. Firstly, we simulated the functional relationships between the petrophysical and electrical properties of the rock by neural networks model, and studied oil saturation. Under the precision of data is confirmed, this method can re-duce the number of experiments. Secondly, we simulated the relationships between investment and income by the neural networks model, and studied invest saturation point and income growth rate. It is very significant to guide the investment decision. The research result shows that the model is suitable for the modeling and identification of nonlinear systems due to the great fit characteristic of neural network and very fast convergence speed of LM algorithm.

  8. Feed-forward neural network model for hunger and satiety related VAS score prediction

    OpenAIRE

    Krishnan, S.; Hendriks, H. F. J.; Hartvigsen, M.L.; Graaf, A.A. de

    2016-01-01

    Background: An artificial neural network approach was chosen to model the outcome of the complex signaling pathways in the gastro-intestinal tract and other peripheral organs that eventually produce the satiety feeling in the brain upon feeding. Methods: A multilayer feed-forward neural network was trained with sets of experimental data relating concentration-time courses of plasma satiety hormones to Visual Analog Scales (VAS) scores. The network successfully predicted VAS responses from set...

  9. Lukasiewicz-Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamic Models

    CERN Document Server

    Baianu, I C

    2004-01-01

    A categorical and Lukasiewicz-Topos framework for Lukasiewicz Algebraic Logic models of nonlinear dynamics in complex functional systems such as neural networks, genomes and cell interactomes is proposed. Lukasiewicz Algebraic Logic models of genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of variable 'next-state functions' is extended to a Lukasiewicz Topos with an n-valued Lukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis.

  10. Practical approximation method for firing-rate models of coupled neural networks with correlated inputs

    Science.gov (United States)

    Barreiro, Andrea K.; Ly, Cheng

    2017-08-01

    Rapid experimental advances now enable simultaneous electrophysiological recording of neural activity at single-cell resolution across large regions of the nervous system. Models of this neural network activity will necessarily increase in size and complexity, thus increasing the computational cost of simulating them and the challenge of analyzing them. Here we present a method to approximate the activity and firing statistics of a general firing rate network model (of the Wilson-Cowan type) subject to noisy correlated background inputs. The method requires solving a system of transcendental equations and is fast compared to Monte Carlo simulations of coupled stochastic differential equations. We implement the method with several examples of coupled neural networks and show that the results are quantitatively accurate even with moderate coupling strengths and an appreciable amount of heterogeneity in many parameters. This work should be useful for investigating how various neural attributes qualitatively affect the spiking statistics of coupled neural networks.

  11. Investigation of Shannon and PolyWog Wavelet Neural Networks In Monthly River Flow Modeling

    Science.gov (United States)

    Abghari, H.; van de Giesen, N.; Noury, M.

    2009-04-01

    Intelligence models consist of distributed parallel processors that learn to reproduce the relationship between input and output signals and present the best topology of patterns simulation. Due to nonlinearity of hydrological events the learning process has restrictions . In this study, using a combination of Wavelet theory and a Multi Layer Perceptron Network, two Wavelet Neural Network models for monthly flow of Nazloochaei River basin in Iran were developed. Instead of using common sigmoid activation functions in the MLP network a wavelet function was used, The hybrid wavelet neural network (WNNs) employing a nonlinear wavelet basis was developed as an alternative approach to nonlinear fitting. Result of MLP base model show the 86% in training and 79% in model testing. Results of the MLP base model show a goodness of fit of 86% in training and 79% in model testing. Results shows that the Polywog neural network with the best topology has a 94% accuracy in the training phase and 89% in testing of model. The Shannon neural network with the best topology produces 79% accuracy in training phase and 61% in testing of model. Comparison of WNN and MLP shows that Polywog wavelet could have better accuracy in time series modeling. Classic sigmoid activation functions in the MLP network show better results than the Shannon wavelet. Keywords: Shannon and PolyWog Wavelet, Wavelet Neural Networks, Nazloochaei River Basin, River Flow Modeling.

  12. Critical branching neural networks.

    Science.gov (United States)

    Kello, Christopher T

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical branching and, in doing so, simulates observed scaling laws as pervasive to neural and behavioral activity. These scaling laws are related to neural and cognitive functions, in that critical branching is shown to yield spiking activity with maximal memory and encoding capacities when analyzed using reservoir computing techniques. The model is also shown to account for findings of pervasive 1/f scaling in speech and cued response behaviors that are difficult to explain by isolable causes. Issues and questions raised by the model and its results are discussed from the perspectives of physics, neuroscience, computer and information sciences, and psychological and cognitive sciences.

  13. Enhancing Wireless Sensor Network Security using Artificial Neural Network based Trust Model

    Directory of Open Access Journals (Sweden)

    Adwan Yasin

    2016-09-01

    Full Text Available Wireless sensor network (WSN is widely used in environmental conditions where the systems depend on sensing and monitoring approach. Water pollution monitoring system depends on a network of wireless sensing nodes which communicate together depending on a specific topological order. The nodes distributed in a harsh environment to detect the polluted zones within the WSN range based on the sensed data. WSN exposes several malicious attacks as a consequence of its presence in such open environment, so additional techniques are needed alongside with the existing cryptography approach. In this paper an enhanced trust model based on the use of radial base artificial neural network (RBANN is presented to predict the future behavior of each node based on its weighted direct and indirect behaviors, in order to provide a comprehensive trust model that helps to detect and eliminate malicious nodes within the WSN. The proposed model considered the limited power, storage and processing capabilities of the system.

  14. Prediction of a model enzymatic acidolysis system using neural networks

    Directory of Open Access Journals (Sweden)

    Güven, Aytaç

    2008-12-01

    Full Text Available A model for the acidolysis of trinolein and palmitic acid under the catalysis of immobilized sn-1,3 specific lipase was presented in this study. A neural networks (NN based model was developed for the prediction of the concentrations of the major reaction products of this reaction (1-palmitoyl-2,3-oleoyl-glycerol (POO 1,3-dipalmitoyl-2-oleoyl-glycerol (POP and triolein (OOO. Substrate ratio (SR, reaction temperature (T and reaction time (t were used as input parameters. The optimal architecture of the proposed NN model, which consists of one input layer with three inputs, one hidden layer with seven neurons and one output layer with three outputs, wass able to predict the reaction products concentration with a mean square error (MSE of less than 1.5 and R2 of 0.999. and explicit formulation of the proposed NN is presented. Considerable good performance is achieved in modeling the acidolysis reaction using neuronal networks.En este estudio se presenta un modelo para la acidólisis de la trilinoleina y el ácido palmítico mediante la catálisis con una lipasa específica sn-1,3 inmovilizada. Un modelo basado en redes neuronales (NN ha sido desarrollado para la predicción de la concentración de los principales productos de esta reacción (1-palmitoil-2,3-oleoil-glicerol (POO, 1,3-dipalmitoil-2-oleoil-glicerol (POP y trioleina (OOO. Se han usado como parámetros de entrada: la proporción del sustrato (SR, la temperatura de reacción (T y el tiempo de reacción (t. La arquitectura óptima del modelo de NN propuesto, que consiste en una capa de entrada con tres entradas, una capa oculta con siete neuronas y una capa de salida con tres salidas, fue capaz de predecir la concentración de los productos de reacción con un error cuadrático medio (MSE de menos de 1.5 y una R2 de 0.999 . Se presenta una formulación explícita del modelo NN propuesto. Se obtienen muy buenos resultados en la predicción de la reacciones de acidólisis mediante el uso de

  15. Robust recurrent neural network modeling for software fault detection and correction prediction

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q.P. [Quality and Innovation Research Centre, Department of Industrial and Systems Engineering, National University of Singapore, Singapore 119260 (Singapore)]. E-mail: g0305835@nus.edu.sg; Xie, M. [Quality and Innovation Research Centre, Department of Industrial and Systems Engineering, National University of Singapore, Singapore 119260 (Singapore)]. E-mail: mxie@nus.edu.sg; Ng, S.H. [Quality and Innovation Research Centre, Department of Industrial and Systems Engineering, National University of Singapore, Singapore 119260 (Singapore)]. E-mail: isensh@nus.edu.sg; Levitin, G. [Israel Electric Corporation, Reliability and Equipment Department, R and D Division, Aaifa 31000 (Israel)]. E-mail: levitin@iec.co.il

    2007-03-15

    Software fault detection and correction processes are related although different, and they should be studied together. A practical approach is to apply software reliability growth models to model fault detection, and fault correction process is assumed to be a delayed process. On the other hand, the artificial neural networks model, as a data-driven approach, tries to model these two processes together with no assumptions. Specifically, feedforward backpropagation networks have shown their advantages over analytical models in fault number predictions. In this paper, the following approach is explored. First, recurrent neural networks are applied to model these two processes together. Within this framework, a systematic networks configuration approach is developed with genetic algorithm according to the prediction performance. In order to provide robust predictions, an extra factor characterizing the dispersion of prediction repetitions is incorporated into the performance function. Comparisons with feedforward neural networks and analytical models are developed with respect to a real data set.

  16. Constructive neural network learning

    OpenAIRE

    Lin, Shaobo; Zeng, Jinshan; Zhang, Xiaoqin

    2016-01-01

    In this paper, we aim at developing scalable neural network-type learning systems. Motivated by the idea of "constructive neural networks" in approximation theory, we focus on "constructing" rather than "training" feed-forward neural networks (FNNs) for learning, and propose a novel FNNs learning system called the constructive feed-forward neural network (CFN). Theoretically, we prove that the proposed method not only overcomes the classical saturation problem for FNN approximation, but also ...

  17. Living ordered neural networks as model systems for signal processing

    Science.gov (United States)

    Villard, C.; Amblard, P. O.; Becq, G.; Gory-Fauré, S.; Brocard, J.; Roth, S.

    2007-06-01

    Neural circuit architecture is a fundamental characteristic of the brain, and how architecture is bound to biological functions is still an open question. Some neuronal geometries seen in the retina or the cochlea are intriguing: information is processed in parallel by several entities like in "pooling" networks which have recently drawn the attention of signal processing scientists. These systems indeed exhibit the noise-enhanced processing effect, which is also actively discussed in the neuroscience community at the neuron scale. The aim of our project is to use in-vitro ordered neuron networks as living paradigms to test ideas coming from the computational science. The different technological bolts that have to be solved are enumerated and the first results are presented. A neuron is a polarised cell, with an excitatory axon and a receiving dendritic tree. We present how soma confinement and axon differentiation can be induced by surface functionalization techniques. The recording of large neuron networks, ordered or not, is also detailed and biological signals shown. The main difficulty to access neural noise in the case of weakly connected networks grown on micro electrode arrays is explained. This open the door to a new detection technology suitable for sub-cellular analysis and stimulation, whose development will constitute the next step of this project.

  18. Mathematic modelling of the enteric nervous network. 5. Excitation propagation in a planar neural network.

    Science.gov (United States)

    Miftakhov, R N; Wingate, D L

    1995-01-01

    A mathematical model of the enteric nervous system (Auerbach's plexus) as a planar neural network has been developed, based on the actual morphological data of its organization. The network is composed of excitatory (cholinergic) and inhibitory (adrenergic) neurones interconnected by polysynaptic channels, formed of the geometrically non-uniform unmyelinated nerve axons. The synaptic zones are modelled as a three-compartment open pharmacokinetics system, i.e., presynaptic terminal, synaptic cleft and postsynaptic membrane where the pharmacokinetic mechanisms of electrochemical coupling are considered. All the chemical reactions of transformation of acetylcholine and adrenaline within them are described by first order Michaelis-Menten kinetics. The propagation of the electrical impulse along the pathways and in the vicinity of the nerve terminal is described by the modified Hodgkin-Huxley equations. The results of numerical simulation of the propagation of excitation within the neuronal chain, inhibitory feedback circuit, and a planar neuronal network under normal physiological conditions and after treatment with cholinergic/adrenergic agonists and antagonists are presented. The model predicts the dose-dependent influence of pharmacological agents on the neural network function.

  19. Trimaran Resistance Artificial Neural Network

    Science.gov (United States)

    2011-01-01

    11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to

  20. Generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2013-03-01

    In this work a new radial basis function based classification neural network named as generalized classifier neural network, is proposed. The proposed generalized classifier neural network has five layers, unlike other radial basis function based neural networks such as generalized regression neural network and probabilistic neural network. They are input, pattern, summation, normalization and output layers. In addition to topological difference, the proposed neural network has gradient descent based optimization of smoothing parameter approach and diverge effect term added calculation improvements. Diverge effect term is an improvement on summation layer calculation to supply additional separation ability and flexibility. Performance of generalized classifier neural network is compared with that of the probabilistic neural network, multilayer perceptron algorithm and radial basis function neural network on 9 different data sets and with that of generalized regression neural network on 3 different data sets include only two classes in MATLAB environment. Better classification performance up to %89 is observed. Improved classification performances proved the effectivity of the proposed neural network.

  1. Effects of Some Neurobiological Factors in a Self-organized Critical Model Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Ming; ZHANG Ying-Yue; CHEN Tian-Lun

    2005-01-01

    Based on an integrate-and-fire mechanism, we investigate the effect of changing the efficacy of the synapse,the transmitting time-delayed, and the relative refractoryperiod on the self-organized criticality in our neural network model.

  2. Prediction Model of Weekly Retail Price for Eggs Based on Chaotic Neural Network

    Institute of Scientific and Technical Information of China (English)

    LI Zhe-min; CUI Li-guo; XU Shi-wei; WENG Ling-yun; DONG Xiao-xia; LI Gan-qiong; YU Hai-peng

    2013-01-01

    This paper establishes a short-term prediction model of weekly retail prices for eggs based on chaotic neural network with the weekly retail prices of eggs from January 2008 to December 2012 in China. In the process of determining the structure of the chaotic neural network, the number of input layer nodes of the network is calculated by reconstructing phase space and computing its saturated embedding dimension, and then the number of hidden layer nodes is estimated by trial and error. Finally, this model is applied to predict the retail prices of eggs and compared with ARIMA. The result shows that the chaotic neural network has better nonlinear iftting ability and higher precision in the prediction of weekly retail price of eggs. The empirical result also shows that the chaotic neural network can be widely used in the ifeld of short-term prediction of agricultural prices.

  3. Compressing Convolutional Neural Networks

    OpenAIRE

    Chen, Wenlin; Wilson, James T.; Tyree, Stephen; Weinberger, Kilian Q.; Chen, Yixin

    2015-01-01

    Convolutional neural networks (CNN) are increasingly used in many areas of computer vision. They are particularly attractive because of their ability to "absorb" great quantities of labeled data through millions of parameters. However, as model sizes increase, so do the storage and memory requirements of the classifiers. We present a novel network architecture, Frequency-Sensitive Hashed Nets (FreshNets), which exploits inherent redundancy in both convolutional layers and fully-connected laye...

  4. A Neural Network Model of the Visual Short-Term Memory

    DEFF Research Database (Denmark)

    Petersen, Anders; Kyllingsbæk, Søren; Hansen, Lars Kai

    2009-01-01

    In this paper a neural network model of Visual Short-Term Memory (VSTM) is presented. The model links closely with Bundesen’s (1990) well-established mathematical theory of visual attention. We evaluate the model’s ability to fit experimental data from a classical whole and partial report study....... Previous statistic models have successfully assessed the spatial distribution of visual attention; our neural network meets this standard and offers a neural interpretation of how objects are consolidated in VSTM at the same time. We hope that in the future, the model will be able to fit temporally...

  5. Battery Performance Modelling ad Simulation: a Neural Network Based Approach

    Science.gov (United States)

    Ottavianelli, Giuseppe; Donati, Alessandro

    2002-01-01

    This project has developed on the background of ongoing researches within the Control Technology Unit (TOS-OSC) of the Special Projects Division at the European Space Operations Centre (ESOC) of the European Space Agency. The purpose of this research is to develop and validate an Artificial Neural Network tool (ANN) able to model, simulate and predict the Cluster II battery system's performance degradation. (Cluster II mission is made of four spacecraft flying in tetrahedral formation and aimed to observe and study the interaction between sun and earth by passing in and out of our planet's magnetic field). This prototype tool, named BAPER and developed with a commercial neural network toolbox, could be used to support short and medium term mission planning in order to improve and maximise the batteries lifetime, determining which are the future best charge/discharge cycles for the batteries given their present states, in view of a Cluster II mission extension. This study focuses on the five Silver-Cadmium batteries onboard of Tango, the fourth Cluster II satellite, but time restrains have allowed so far to perform an assessment only on the first battery. In their most basic form, ANNs are hyper-dimensional curve fits for non-linear data. With their remarkable ability to derive meaning from complicated or imprecise history data, ANN can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. ANNs learn by example, and this is why they can be described as an inductive, or data-based models for the simulation of input/target mappings. A trained ANN can be thought of as an "expert" in the category of information it has been given to analyse, and this expert can then be used, as in this project, to provide projections given new situations of interest and answer "what if" questions. The most appropriate algorithm, in terms of training speed and memory storage requirements, is clearly the Levenberg

  6. Model of Information Security Risk Assessment based on Improved Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2013-09-01

    Full Text Available This paper concentrates on the information security risk assessment model utilizing the improved wavelet neural network. The structure of wavelet neural network is similar to the multi-layer neural network, which is a feed-forward neural network with one or more inputs. Afterwards, we point out that the training process of wavelet neural networks is made up of four steps until the value of error function can satisfy a pre-defined error criteria. In order to enhance the quality of information security risk assessment, we proposed a modified version of wavelet neural network which can effectively combine all influencing factors in assessing information security risk by linear integrating several weights. Furthermore, the proposed wavelet neural network is trained by the BP algorithm with batch mode, and the weight coefficients of the wavelet are modified with the adopting mode. Finally, a series of experiments are conduct to make performance evaluation. From the experimental results, we can see that the proposed model can assess information security risk accurately and rapidly

  7. A New Modeling Method Based on Genetic Neural Network for Numeral Eddy Current Sensor

    Institute of Scientific and Technical Information of China (English)

    Along Yu; Zheng Li

    2006-01-01

    In this paper, we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method,the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line scaling and high precision. The maximum nonlinearity error can be reduced to 0.037% using GNN. However, the maximum nonlinearity error is 0.075% using least square method (LMS).

  8. An Artificial Neural Network Model for the Wholesale Company Order's Cycle Management

    Directory of Open Access Journals (Sweden)

    Tereza Sustrova

    2016-06-01

    Full Text Available The purpose of this article is to verify the possibility of using artificial neural networks (ANN in business management processes, primarily in the area of supply chain management. The author has designed several neural network models featuring different architectures to optimize the level of the company’s inventory. The results of the research show that ANN can be used for managing a company’s order cycle and lead to reduced levels of goods purchased and storage costs. Optimal neural networks show suitable results for subsequent prediction of the amount of items to be ordered and for achieving reduced inventory purchase and keeping costs down.

  9. Nonlinear Decoupling PID Control Using Neural Networks and Multiple Models

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.

  10. A BP neural network model for sea state recognition using laser altimeter

    Science.gov (United States)

    Shi, Chun-bo; Jia, Xiao-dong; Li, Sheng; Wang, Zhen

    2009-07-01

    A BP neural network method for the recognition of sea state in laser altimeter is presented in this paper. Sea wave is the typical stochastic disturbance factor of laser altimeter effecting on low-altitude defense penetration of the intelligent antiship missiles, the recognition of sea state is studied in order to satisfy the practical needs of flying over the ocean. The BP neural network fed with the feature vector of laser range-measurement presents the analysis of features and outputs the estimation result of sea state. The two most distinguishing features are the mean and the variance of the sea echo, which are extracted from the distance characteristics of sea echo using general theory of statistics. The use of a feedforward network trained with the back-propagation algorithm is also investigated. The BP neural network is trained using sample data set to the neural network, and then the BP neural network trained is tested to recognize the sea state waiting for the classification. The network output shows the recognition accuracy of the model can up to 88%, and the results of tests show that the BP neural network model for the recognition of sea state is feasible and effective.

  11. Modeling and prediction of Turkey's electricity consumption using Artificial Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kavaklioglu, Kadir; Ozturk, Harun Kemal; Canyurt, Olcay Ersel [Pamukkale University, Mechanical Engineering Department, Denizli (Turkey); Ceylan, Halim [Pamukkale University, Civil Engineering Department, Denizli (Turkey)

    2009-11-15

    Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer processing elements, respectively. These input-output network models are a result of relationships that exist among electricity consumption and several other socioeconomic variables. Electricity consumption is modeled as a function of economic indicators such as population, gross national product, imports and exports. It is also modeled using export-import ratio and time input only. Performance comparison among different models is made based on absolute and percentage mean square error. Electricity consumption of Turkey is predicted until 2027 using data from 1975 to 2006 along with other economic indicators. The results show that electricity consumption can be modeled using Artificial Neural Networks, and the models can be used to predict future electricity consumption. (author)

  12. Improved Marquardt Algorithm for Training Neural Networks for Chemical Process Modeling

    Institute of Scientific and Technical Information of China (English)

    吴建昱; 何小荣

    2002-01-01

    Back-propagation (BP) artificial neural networks have been widely used to model chemical processes. BP networks are often trained using the generalized delta-rule (GDR) algorithm but application of such networks is limited because of the low convergent speed of the algorithm. This paper presents a new algorithm incorporating the Marquardt algorithm into the BP algorithm for training feedforward BP neural networks. The new algorithm was tested with several case studies and used to model the Reid vapor pressure (RVP) of stabilizer gasoline. The new algorithm has faster convergence and is much more efficient than the GDR algorithm.

  13. NONLINEAR MODELING AND CONTROLLING OF ARTIFICIAL MUSCLE SYSTEM USING NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Tian Sheping; Ding Guoqing; Yan Detian; Lin Liangming

    2004-01-01

    The pneumatic artificial muscles are widely used in the fields of medical robots,etc.Neural networks are applied to modeling and controlling of artificial muscle system.A single-joint artificial muscle test system is designed.The recursive prediction error (RPE) algorithm which yields faster convergence than back propagation (BP) algorithm is applied to train the neural networks.The realization of RPE algorithm is given.The difference of modeling of artificial muscles using neural networks with different input nodes and different hidden layer nodes is discussed.On this basis the nonlinear control scheme using neural networks for artificial muscle system has been introduced.The experimental results show that the nonlinear control scheme yields faster response and higher control accuracy than the traditional linear control scheme.

  14. Modeling Markov switching ARMA-GARCH neural networks models and an application to forecasting stock returns.

    Science.gov (United States)

    Bildirici, Melike; Ersin, Özgür

    2014-01-01

    The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications.

  15. Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns

    Directory of Open Access Journals (Sweden)

    Melike Bildirici

    2014-01-01

    Full Text Available The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100. Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray’s MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray’s MS-GARCH model. Therefore, the models are promising for various economic applications.

  16. Hybrid Neural Network Model of an Industrial Ethanol Fermentation Process Considering the Effect of Temperature

    Science.gov (United States)

    Mantovanelli, Ivana C. C.; Rivera, Elmer Ccopa; da Costa, Aline C.; Filho, Rubens Maciel

    In this work a procedure for the development of a robust mathematical model for an industrial alcoholic fermentation process was evaluated. The proposed model is a hybrid neural model, which combines mass and energy balance equations with functional link networks to describe the kinetics. These networks have been shown to have a good nonlinear approximation capability, although the estimation of its weights is linear. The proposed model considers the effect of temperature on the kinetics and has the neural network weights reestimated always so that a change in operational conditions occurs. This allow to follow the system behavior when changes in operating conditions occur.

  17. Assimilation of neural network soil moisture in land surface models

    Science.gov (United States)

    Rodriguez-Fernandez, Nemesio; de Rosnay, Patricia; Albergel, Clement; Aires, Filipe; Prigent, Catherine; Kerr, Yann; Richaume, Philippe; Muñoz-Sabater, Joaquin; Drusch, Matthias

    2017-04-01

    In this study a set of land surface data assimilation (DA) experiments making use of satellite derived soil moisture (SM) are presented. These experiments have two objectives: (1) to test the information content of satellite remote sensing of soil moisture for numerical weather prediction (NWP) models, and (2) to test a simplified assimilation of these data through the use of a Neural Network (NN) retrieval. Advanced Scatterometer (ASCAT) and Soil Moisture and Ocean Salinity (SMOS) data were used. The SMOS soil moisture dataset was obtained specifically for this project training a NN using SMOS brightness temperatures as input and using as reference for the training European Centre for Medium-Range Weather Forecasts (ECMWF) H-TESSEL SM fields. In this way, the SMOS NN SM dataset has a similar climatology to that of the model and it does not present a global bias with respect to the model. The DA experiments are computed using a surface-only Land Data Assimilation System (so-LDAS) based on the HTESSEL land surface model. This system is very computationally efficient and allows to perform long surface assimilation experiments (one whole year, 2012). SMOS NN SM DA experiments are compared to ASCAT SM DA experiments. In both cases, experiments with and without 2 m air temperature and relative humidity DA are discussed using different observation errors for the ASCAT and SMOS datasets. Seasonal, geographical and soil-depth-related differences between the results of those experiments are presented and discussed. The different SM analysed fields are evaluated against a large number of in situ measurements of SM. On average, the SM analysis gives in general similar results to the model open loop with no assimilation even if significant differences can be seen for specific sites with in situ measurements. The sensitivity to observation errors to the SM dataset slightly differs depending on the networks of in situ measurements, however it is relatively low for the tests

  18. Behavioral Modeling of a C-Band Ring Hybrid Coupler Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    E. Demircioglu

    2010-12-01

    Full Text Available Artificial Neural Networks (ANNs gained importance on the RF microwave (MW design area and behavioral modeling of MW components in the past few decades. This paper presents a cost effective neural network (NN approach to overcome design, modeling and optimization problems of an 180deg ring hybrid coupler operating in C-Band. The proposed NN model is trained by data sets obtained from electromagnetic (EM simulators and neural test results are compared with simulator findings to determine the network accuracy. Moreover, necessary trade-offs are applied to improve the networks’ performance. Finally correlation factors, which are defined as comparison criteria between EM-simulator and proposed neural models, are calculated for each trade-off case.

  19. Re-Evaluation of the AASHTO-Flexible Pavement Design Equation with Neural Network Modeling

    Science.gov (United States)

    Tiğdemir, Mesut

    2014-01-01

    Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance. PMID:25397962

  20. Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network

    Science.gov (United States)

    Yao, Weigang; Liou, Meng-Sing

    2012-01-01

    The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis

  1. Linear and nonlinear ARMA model parameter estimation using an artificial neural network

    Science.gov (United States)

    Chon, K. H.; Cohen, R. J.

    1997-01-01

    This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.

  2. Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network

    Science.gov (United States)

    Yao, Weigang; Liou, Meng-Sing

    2012-01-01

    The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis

  3. Re-evaluation of the AASHTO-flexible pavement design equation with neural network modeling.

    Science.gov (United States)

    Tiğdemir, Mesut

    2014-01-01

    Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance.

  4. Re-evaluation of the AASHTO-flexible pavement design equation with neural network modeling.

    Directory of Open Access Journals (Sweden)

    Mesut Tiğdemir

    Full Text Available Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO. More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance.

  5. Hopf bifurcation of an (n + 1) -neuron bidirectional associative memory neural network model with delays.

    Science.gov (United States)

    Xiao, Min; Zheng, Wei Xing; Cao, Jinde

    2013-01-01

    Recent studies on Hopf bifurcations of neural networks with delays are confined to simplified neural network models consisting of only two, three, four, five, or six neurons. It is well known that neural networks are complex and large-scale nonlinear dynamical systems, so the dynamics of the delayed neural networks are very rich and complicated. Although discussing the dynamics of networks with a few neurons may help us to understand large-scale networks, there are inevitably some complicated problems that may be overlooked if simplified networks are carried over to large-scale networks. In this paper, a general delayed bidirectional associative memory neural network model with n + 1 neurons is considered. By analyzing the associated characteristic equation, the local stability of the trivial steady state is examined, and then the existence of the Hopf bifurcation at the trivial steady state is established. By applying the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction and stability of the bifurcating periodic solution. Furthermore, the paper highlights situations where the Hopf bifurcations are particularly critical, in the sense that the amplitude and the period of oscillations are very sensitive to errors due to tolerances in the implementation of neuron interconnections. It is shown that the sensitivity is crucially dependent on the delay and also significantly influenced by the feature of the number of neurons. Numerical simulations are carried out to illustrate the main results.

  6. Prediction Model for Fatigue Stiffness Decay of Concrete Beam Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    王海超; 何世钦; 贡金鑫

    2003-01-01

    With the method of neural network, the processes of fatigue stiffness decreasing and deflection increasing of reinforced concrete beams under cyclic loading were simulated. The simulating system was built with the given experimental data. The prediction model of neural network structure and the corresponding parameters were obtained. The precision and results were satisfied and could be used to investigate the fatigue properties of reinforced concrete beams in complex environment and under repeating loads.

  7. Design, Implementation, and Test of a Multi-Model Systolic Neural-Network Accelerator

    Directory of Open Access Journals (Sweden)

    Thierry Cornu

    1996-01-01

    Full Text Available A multi-model neural-network computer has been designed and built. A compute-intensive application in the field of power-system monitoring, using the Kohonen neural network, has then been ported onto this machine. After a short description of the system, this article focuses on the programming paradigm adopted. The performance of the machine is also evaluated and discussed.

  8. A hyperstable neural network for the modelling and control of nonlinear systems

    Indian Academy of Sciences (India)

    K Warwick; Q M Zhu; Z Ma

    2000-04-01

    A multivariable hyperstable robust adaptive decoupling control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure. The Popov theorem is used in the design of the controller. The modelling errors, coupling action and other uncertainties of the system are identified on-line by a neural network. The identified results are taken as compensation signals such that the robust adaptive control of nonlinear systems is realised. Simulation results are given.

  9. A Global Model of $\\beta^-$-Decay Half-Lives Using Neural Networks

    CERN Document Server

    Costiris, N; Gernoth, K A; Mavrommatis, E

    2007-01-01

    Statistical modeling of nuclear data using artificial neural networks (ANNs) and, more recently, support vector machines (SVMs), is providing novel approaches to systematics that are complementary to phenomenological and semi-microscopic theories. We present a global model of $\\beta^-$-decay halflives of the class of nuclei that decay 100% by $\\beta^-$ mode in their ground states. A fully-connected multilayered feed forward network has been trained using the Levenberg-Marquardt algorithm, Bayesian regularization, and cross-validation. The halflife estimates generated by the model are discussed and compared with the available experimental data, with previous results obtained with neural networks, and with estimates coming from traditional global nuclear models. Predictions of the new neural-network model are given for nuclei far from stability, with particular attention to those involved in r-process nucleosynthesis. This study demonstrates that in the framework of the $\\beta^-$-decay problem considered here, ...

  10. Pollutant intrusion modeling in water distribution networks using artificial neural networks.

    Science.gov (United States)

    Singh, Raj Mohan; Rahul, Akhouri Ishan

    2011-07-01

    The development and implementation of water quality models for water distribution systems have been growing interest for both environment and hydraulic researchers. It is imperative that the system is able to distribute disinfectants and/or chemicals efficiently for specified quality standards and recover the actual quality of water in case of intrusion of a pollutant into the distribution network. The present work presents hydraulic and quality analysis in a typical water distribution system to obtain the concentration at the sources (pumping station or tanks) affected by typical pollutants utilizing water quality at monitoring points as inputs to artificial neural network (ANN) model. The universal function approximation property of the ANN architecture is being employed for inverse mapping to predict the water quality at the source using the water quality at arbitrary monitoring locations in the distribution system. The optimal monitoring points are identified by water age analysis. The performance evaluation results are encouraging and demonstrate the potential applicability of the methodology.

  11. Multi-Objective Optimization and Analysis Model of Sintering Process Based on BP Neural Network

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-hong; XIE An-guo; SHEN Feng-man

    2007-01-01

    A multi-objective optimization and analysis model of the sintering process based on BP neural network is presented. Genetic algorithms are combined to simplify the BP neural network, which can reduce the learning time and increase the forecasting accuracy of the network model. This model has been experimented in the sintering process, and the production cost, the energy consumption, the quality (revolving intensity), and the output are considered at the same time. Moreover, the relation between some factors and the multi-objectives has been analyzed, and the results are consistent with the process. Different objectives are emphasized at different practical periods, and this can provide a theoretical basis for the manager.

  12. Radial Basis Function Neural Network-based PID model for functional electrical stimulation system control.

    Science.gov (United States)

    Cheng, Longlong; Zhang, Guangju; Wan, Baikun; Hao, Linlin; Qi, Hongzhi; Ming, Dong

    2009-01-01

    Functional electrical stimulation (FES) has been widely used in the area of neural engineering. It utilizes electrical current to activate nerves innervating extremities affected by paralysis. An effective combination of a traditional PID controller and a neural network, being capable of nonlinear expression and adaptive learning property, supply a more reliable approach to construct FES controller that help the paraplegia complete the action they want. A FES system tuned by Radial Basis Function (RBF) Neural Network-based Proportional-Integral-Derivative (PID) model was designed to control the knee joint according to the desired trajectory through stimulation of lower limbs muscles in this paper. Experiment result shows that the FES system with RBF Neural Network-based PID model get a better performance when tracking the preset trajectory of knee angle comparing with the system adjusted by Ziegler- Nichols tuning PID model.

  13. FRICTION MODELING OF Al-Mg ALLOY SHEETS BASED ON MULTIPLE REGRESSION ANALYSIS AND NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Hirpa G. Lemu

    2017-03-01

    Full Text Available This article reports a proposed approach to a frictional resistance description in sheet metal forming processes that enables determination of the friction coefficient value under a wide range of friction conditions without performing time-consuming experiments. The motivation for this proposal is the fact that there exists a considerable amount of factors affect the friction coefficient value and as a result building analytical friction model for specified process conditions is practically impossible. In this proposed approach, a mathematical model of friction behaviour is created using multiple regression analysis and artificial neural networks. The regression analysis was performed using a subroutine in MATLAB programming code and STATISTICA Neural Networks was utilized to build an artificial neural networks model. The effect of different training strategies on the quality of neural networks was studied. As input variables for regression model and training of radial basis function networks, generalized regression neural networks and multilayer networks the results of strip drawing friction test were utilized. Four kinds of Al-Mg alloy sheets were used as a test material.

  14. A combined gray neural network model of seasonal heating load forecast

    Institute of Scientific and Technical Information of China (English)

    QIAOXiaozhuang; YANGChangzhi

    2003-01-01

    Seasonal heating load time sequence has the double trends of increasing and fluctuating, so it''s difficult to select a model to forecast it. In this paper, a combined model of gray model and artificial neural network model was presented to forecast seasonal heating load. A concrete model was established and was verified through actual examples.

  15. Chaotic diagonal recurrent neural network

    Institute of Scientific and Technical Information of China (English)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos,and its structure andlearning algorithm are designed.The multilayer feedforward neural network,diagonal recurrent neural network,and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map.The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks.

  16. Predicting Model forComplex Production Process Based on Dynamic Neural Network

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the comparison of several methods of time series predicting, this paper points out that it is nec-essary to use dynamic neural network in modeling of complex production process. Because self-feedback and mutu-al-feedback are adopted among nodes at the same layer in Elman network, it has stronger ability of dynamic ap-proximation, and can describe any non-linear dynamic system. After the structure and mathematical description be-ing given, dynamic back-propagation (BP) algorithm of training weights of Elman neural network is deduced. Atlast, the network is used to predict ash content of black amber in jigging production process. The results show thatthis neural network is powerful in predicting and suitable for modeling, predicting, and controling of complex pro-duction process.

  17. Neural Network Model for Prediction of Discharged from the Catchments of Langat River, Malaysia

    Directory of Open Access Journals (Sweden)

    Z. Ahmad

    2010-09-01

    Full Text Available Artificial neural networks have been shown to be able to approximate any continuous non-linear functions and have been used to build data base empirical models for non-linear processes. In this study, neural networks models were used to model the daily river flows or discharged in Langat River, Malaysia. Two possible ways of modelling were implemented which is by time series prediction and by the dynamics function of the system which include the past value of the discharged and also the rainfall in the input. The sum square error (SSE, residue analysis and correlation coefficient based on the observed and prediction output is chosen as the criteria of selection of which models is appropriate. It was found that the developed neural networks models using dynamics function provided satisfactory model discharges.

  18. Artificial Neural Networks Based Modeling and Control of Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    R. S.M.N. Malar

    2009-01-01

    Full Text Available Continuous Stirred Tank Reactor (CSTR is one of the common reactors in chemical plant. Problem statement: Developing a model incorporating the nonlinear dynamics of the system warrants lot of computation. An efficient control of the product concentration can be achieved only through accurate model. Approach: In this study, attempts were made to alleviate the above mentioned problem using “Artificial Intelligence” (AI techniques. One of the AI techniques namely Artificial Neural Networks (ANN was used to model the CSTR incorporating its non-linear characteristics. Two nonlinear models based control strategies namely internal model control and direct inverse control were designed using the neural networks and applied to the control of isothermal CSTR. Results: The simulation results for the above control schemes with set point tracking were presented. Conclusion: Results indicated that neural networks can learn accurate models and give good non-linear control when model equations are not known.

  19. Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols.

    Science.gov (United States)

    Xi, Jun; Xue, Yujing; Xu, Yinxiang; Shen, Yuhong

    2013-11-01

    In this study, the ultrahigh pressure extraction of green tea polyphenols was modeled and optimized by a three-layer artificial neural network. A feed-forward neural network trained with an error back-propagation algorithm was used to evaluate the effects of pressure, liquid/solid ratio and ethanol concentration on the total phenolic content of green tea extracts. The neural network coupled with genetic algorithms was also used to optimize the conditions needed to obtain the highest yield of tea polyphenols. The obtained optimal architecture of artificial neural network model involved a feed-forward neural network with three input neurons, one hidden layer with eight neurons and one output layer including single neuron. The trained network gave the minimum value in the MSE of 0.03 and the maximum value in the R(2) of 0.9571, which implied a good agreement between the predicted value and the actual value, and confirmed a good generalization of the network. Based on the combination of neural network and genetic algorithms, the optimum extraction conditions for the highest yield of green tea polyphenols were determined as follows: 498.8 MPa for pressure, 20.8 mL/g for liquid/solid ratio and 53.6% for ethanol concentration. The total phenolic content of the actual measurement under the optimum predicated extraction conditions was 582.4 ± 0.63 mg/g DW, which was well matched with the predicted value (597.2mg/g DW). This suggests that the artificial neural network model described in this work is an efficient quantitative tool to predict the extraction efficiency of green tea polyphenols. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  20. Synchronized stability in a reaction–diffusion neural network model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ling; Zhao, Hongyong, E-mail: hongyongz@126.com

    2014-11-14

    The reaction–diffusion neural network consisting of a pair of identical tri-neuron loops is considered. We present detailed discussions about the synchronized stability and Hopf bifurcation, deducing the non-trivial role that delay plays in different locations. The corresponding numerical simulations are used to illustrate the effectiveness of the obtained results. In addition, the numerical results about the effects of diffusion reveal that diffusion may speed up the tendency to synchronization and induce the synchronized equilibrium point to be stable. Furthermore, if the parameters are located in appropriate regions, multiple unstability and bistability or unstability and bistability may coexist. - Highlights: • Point to non-trivial role that τ plays in different positions. • Diffusion speeds up the tendency to synchronization. • Diffusion induces the synchronized equilibrium point to be stable. • The coexistence of multiple unstability and bistability or unstability and bistability.

  1. Nonlinear modelling of a SOFC stack by improved neural networks identification

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The solid oxide fuel cell (SOFC) is a nonlinear system that is hard to model by conventional methods. So far, most existing models are based on conversion laws, which are too complicated to be applied to design a control system. To facilitate a valid control strategy design, this paper tries to avoid the internal complexities and presents a modelling study of SOFC performance by using a radial basis function (RBF) neural network based on a genetic algorithm (GA). During the process of modelling, the GA aims to optimize the parameters of RBF neural networks and the optimum values are regarded as the initial values of the RBF neural network parameters. The validity and accuracy of modelling are tested by simulations, whose results reveal that it is feasible to establish the model of SOFC stack by using RBF neural networks identification based on the GA. Furthermore, it is possible to design an online controller of a SOFC stack based on this GA-RBF neural network identification model.

  2. Neural model of gene regulatory network: a survey on supportive meta-heuristics.

    Science.gov (United States)

    Biswas, Surama; Acharyya, Sriyankar

    2016-06-01

    Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here.

  3. Neural Network Emulation of the Integral Equation Model with Multiple Scattering

    Directory of Open Access Journals (Sweden)

    Luca Pulvirenti

    2009-10-01

    Full Text Available The Integral Equation Model with multiple scattering (IEMM represents a well-established method that provides a theoretical framework for the scattering of electromagnetic waves from rough surfaces. A critical aspect is the long computational time required to run such a complex model. To deal with this problem, a neural network technique is proposed in this work. In particular, we have adopted neural networks to reproduce the backscattering coefficients predicted by IEMM at L- and C-bands, thus making reference to presently operative satellite radar sensors, i.e., that aboard ERS-2, ASAR on board ENVISAT (C-band, and PALSAR aboard ALOS (L-band. The neural network-based model has been designed for radar observations of both flat and tilted surfaces, in order to make it applicable for hilly terrains too. The assessment of the proposed approach has been carried out by comparing neural network-derived backscattering coefficients with IEMM-derived ones. Different databases with respect to those employed to train the networks have been used for this purpose. The outcomes seem to prove the feasibility of relying on a neural network approach to efficiently and reliably approximate an electromagnetic model of surface scattering.

  4. Hybrid neural network model for the design of beam subjected to bending and shear

    Indian Academy of Sciences (India)

    H Sudarsana Rao; B Ramesh Babu

    2007-10-01

    There is no direct method for design of beams. In general the dimensions of the beam and reinforcement are initially assumed and then the interaction formula is used to verify the suitability of chosen dimensions. This approach necessitates few trials for coming up with an economical and safe design. This paper demonstrates the applicability of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) for the design of beams subjected to moment and shear. A hybrid neural network model which combines the features of feed forward neural networks and genetic algorithms has been developed for the design of beam subjected to moment and shear. The network has been trained with design data obtained from design experts in the field. The hybrid neural network model learned the design of beam in just 1000 training cycles. After successful learning, the model predicted the depth of the beam, area of steel, spacing of stirrups required for new problems with accuracy satisfying all design constraints. The various stages involved in the development of a genetic algorithm based neural network model are addressed at length in this paper.

  5. Multiobjective training of artificial neural networks for rainfall-runoff modeling

    NARCIS (Netherlands)

    De Vos, N.J.; Rientjes, T.H.M.

    2008-01-01

    This paper presents results on the application of various optimization algorithms for the training of artificial neural network rainfall-runoff models. Multilayered feed-forward networks for forecasting discharge from two mesoscale catchments in different climatic regions have been developed for thi

  6. Multiobjective training of artificial neural networks for rainfall-runoff modeling

    NARCIS (Netherlands)

    De Vos, N.J.; Rientjes, T.H.M.

    2008-01-01

    This paper presents results on the application of various optimization algorithms for the training of artificial neural network rainfall-runoff models. Multilayered feed-forward networks for forecasting discharge from two mesoscale catchments in different climatic regions have been developed for

  7. Oscillatory Behavior on a Three-Node Neural Network Model with Discrete and Distributed Delays

    Directory of Open Access Journals (Sweden)

    Chunhua Feng

    2014-01-01

    Full Text Available This paper investigates the oscillatory behavior of the solutions for a three-node neural network with discrete and distributed delays. Two theorems are provided to determine the conditions for oscillating solutions of the model. The criteria for selecting the parameters in this network are derived. Some simulation examples are presented to illustrate the effectiveness of the results.

  8. STUDY ON THERMODYNAMIC MODEL OF A COMPRESSOR WITH ARTIFICIAL NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A new compressor thermodynamic model is set up. Artificial neural networks(ANN) which have self-adjusting functions are adopted to calculate volumetric efficiency and electrical efficiency of a compressor. The new compressor model composed of the theoretical model and ANN reaches more precise results than traditional ones. Furthermore, the new compressor model is of better flexibility in a large scale.

  9. Model algorithm control using neural networks for input delayed nonlinear control system

    Institute of Scientific and Technical Information of China (English)

    Yuanliang Zhang; Kil To Chong

    2015-01-01

    The performance of the model algorithm control method is partial y based on the accuracy of the system’s model. It is diffi-cult to obtain a good model of a nonlinear system, especial y when the nonlinearity is high. Neural networks have the ability to“learn”the characteristics of a system through nonlinear mapping to rep-resent nonlinear functions as wel as their inverse functions. This paper presents a model algorithm control method using neural net-works for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one pro-duces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to il ustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems.

  10. Artificial neural network models for biomass gasification in fluidized bed gasifiers

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles

    2013-01-01

    bed gasifier can be successfully predicted by applying neural networks. ANNs models use in the input layer the biomass composition and few operating parameters, two neurons in the hidden layer and the backpropagation algorithm. The results obtained by these ANNs show high agreement with published......Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...

  11. Neural Network Model for Prediction of Discharged from the Catchments of Langat River, Malaysia

    OpenAIRE

    2010-01-01

    Artificial neural networks have been shown to be able to approximate any continuous non-linear functions and have been used to build data base empirical models for non-linear processes. In this study, neural networks models were used to model the daily river flows or discharged in Langat River, Malaysia. Two possible ways of modelling were implemented which is by time series prediction and by the dynamics function of the system which include the past value of the discharged and also th...

  12. Identification and testing of an efficient hopfield neural network magnetostriction model

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A. E-mail: amradlya@intouch.com; Abd-El-Hafiz, S.K. E-mail: salwahafiz@link.net

    2003-07-01

    Magnetostriction models are indispensable to different crucial computational activities such as those dealing with active vibration damping devices and optimum clamping stresses for transformer sheets. This paper presents an efficient magnetostriction Preisach-type model based on the effective field approach. According to this approach, the total applied field may be regarded as a super position of the actual magnetic field and a stress-dependent feedback term. Construction and identification of the model is carried out by providing experimental training data to a modular discrete Hopfield neural network-linear neural network combination. Experimental testing suggests that this model can lead to good qualitative and quantitative simulation results.

  13. Preconditioning electromyographic data for an upper extremity model using neural networks

    Science.gov (United States)

    Roberson, D. J.; Fernjallah, M.; Barr, R. E.; Gonzalez, R. V.

    1994-01-01

    A back propagation neural network has been employed to precondition the electromyographic signal (EMG) that drives a computational model of the human upper extremity. This model is used to determine the complex relationship between EMG and muscle activation, and generates an optimal muscle activation scheme that simulates the actual activation. While the experimental and model predicted results of the ballistic muscle movement are very similar, the activation function between the start and the finish is not. This neural network preconditions the signal in an attempt to more closely model the actual activation function over the entire course of the muscle movement.

  14. A Neural Network with Minimal Structure for Maglev System Modeling and Control

    OpenAIRE

    1999-01-01

    6 pages; International audience; The paper is concerned with the determination of a minimal structure of a one hidden layer perceptron for system identification and control. Structural identification is a key issue in neural modeling. Decreasing the size of the neural networks is a way to avoid overfitting and bad generalization and leads moreover to simpler models which are required for real time applications, particularly in control. A learning algorithm and a pruning method both based on a...

  15. Artificial neural network modeling of jatropha oil fueled diesel engine for emission predictions

    Directory of Open Access Journals (Sweden)

    Ganapathy Thirunavukkarasu

    2009-01-01

    Full Text Available This paper deals with artificial neural network modeling of diesel engine fueled with jatropha oil to predict the unburned hydrocarbons, smoke, and NOx emissions. The experimental data from the literature have been used as the data base for the proposed neural network model development. For training the networks, the injection timing, injector opening pressure, plunger diameter, and engine load are used as the input layer. The outputs are hydrocarbons, smoke, and NOx emissions. The feed forward back propagation learning algorithms with two hidden layers are used in the networks. For each output a different network is developed with required topology. The artificial neural network models for hydrocarbons, smoke, and NOx emissions gave R2 values of 0.9976, 0.9976, and 0.9984 and mean percent errors of smaller than 2.7603, 4.9524, and 3.1136, respectively, for training data sets, while the R2 values of 0.9904, 0.9904, and 0.9942, and mean percent errors of smaller than 6.5557, 6.1072, and 4.4682, respectively, for testing data sets. The best linear fit of regression to the artificial neural network models of hydrocarbons, smoke, and NOx emissions gave the correlation coefficient values of 0.98, 0.995, and 0.997, respectively.

  16. [Building artificial neural networks model on portable NIR integrity wheat component measuring apparatus].

    Science.gov (United States)

    Ji, Hai-yan; Wen, Ming; Hao, Bin

    2006-01-01

    The quantitative analysis model of protein in integrity wheat was built by three layers back propagation artificial neural networks for portable near infrared (NIR) integrity wheat component measuring apparatus. The structure diagram of integrity wheat component measuring apparatus, light route structure of apparatus and the spectrum of integrity wheat were given in the present paper. The theory of artificial neural network was briefly introduced and the results of quantitative analysis model of protein were given. For calibration set and prediction set, the correlation coefficient was 0.90 and 0.96 respectively; the relative standard deviation is 3.77% and 4.46% respectively. Because of the influence of light route structure, electrical circuit, and integrity sample forms on the measuring apparatus, some nonlinearity exists between the spectral parameters and chemical values. The results of artificial neural networks nonlinear model were superior to linear model.

  17. Model Integrating Fuzzy Argument with Neural Network Enhancing the Performance of Active Queue Management

    Directory of Open Access Journals (Sweden)

    Nguyen Kim Quoc

    2015-08-01

    Full Text Available The bottleneck control by active queue management mechanisms at network nodes is essential. In recent years, some researchers have used fuzzy argument to improve the active queue management mechanisms to enhance the network performance. However, the projects using the fuzzy controller depend heavily on professionals and their parameters cannot be updated according to changes in the network, so the effectiveness of this mechanism is not high. Therefore, we propose a model combining the fuzzy controller with neural network (FNN to overcome the limitations above. Results of the training of the neural networks will find the optimal parameters for the adaptive fuzzy controller well to changes of the network. This improves the operational efficiency of the active queue management mechanisms at network nodes.

  18. Discrete-time delayed standard neural network model and its application

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel neural network model, termed the discrete-time delayed standard neural network model (DDSNNM), and similar to the nominal model in linear robust control theory, is suggested to facilitate the stability analysis of discrete-time recurrent neural networks (RNNs) and to ease the synthesis of controllers for discrete-time nonlinear systems. The model is composed of a discrete-time linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. By combining various Lyapunov functionals with the S-procedure, sufficient conditions for the global asymptotic stability and global exponential stability of the DDSNNM are derived, which are formulated as linear or nonlinear matrix inequalities. Most discrete-time delayed or non-delayed RNNs, or discrete-time neural-network-based nonlinear control systems can be transformed into the DDSNNMs for stability analysis and controller synthesis in a unified way. Two application examples are given where the DDSNNMs are employed to analyze the stability of the discrete-time cellular neural networks (CNNs) and to synthesize the neuro-controllers for the discrete-time nonlinear systems, respectively. Through these examples, it is demonstrated that the DDSNNM not only makes the stability analysis of the RNNs much easier, but also provides a new approach to the synthesis of the controllers for the nonlinear systems.

  19. New Models for Forecasting Enrollments: Fuzzy Time Series and Neural Network Approaches.

    Science.gov (United States)

    Song, Qiang; Chissom, Brad S.

    Since university enrollment forecasting is very important, many different methods and models have been proposed by researchers. Two new methods for enrollment forecasting are introduced: (1) the fuzzy time series model; and (2) the artificial neural networks model. Fuzzy time series has been proposed to deal with forecasting problems within a…

  20. A Neural Network Model of the Structure and Dynamics of Human Personality

    Science.gov (United States)

    Read, Stephen J.; Monroe, Brian M.; Brownstein, Aaron L.; Yang, Yu; Chopra, Gurveen; Miller, Lynn C.

    2010-01-01

    We present a neural network model that aims to bridge the historical gap between dynamic and structural approaches to personality. The model integrates work on the structure of the trait lexicon, the neurobiology of personality, temperament, goal-based models of personality, and an evolutionary analysis of motives. It is organized in terms of two…

  1. A Model to Predict Rolling Force of Finishing Stands with RBF Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In view of intrinsic imperfection of traditional models of rolling force, in order to improve the prediction accuracy of rolling force, a new method combining radial basis function (RBF) neural networks with traditional models to predict rolling force was proposed. The off-line simulation indicates that the predicted results are much more accurate than that with traditional models.

  2. RBF-Type Artificial Neural Network Model Applied in Alloy Design of Steels

    Institute of Scientific and Technical Information of China (English)

    YOU Wei; LIU Ya-xiu; BAI Bing-zhe; FANG Hong-sheng

    2008-01-01

    RBF model, a new type of artificial neural network model was developed to design the content of carbon in low-alloy engineering steels. The errors of the ANN model are. MSE 0. 052 1, MSRE 17. 85%, and VOF 1. 932 9. The results obtained are satisfactory. The method is a powerful aid for designing new steels.

  3. A Neural Network Model of the Structure and Dynamics of Human Personality

    Science.gov (United States)

    Read, Stephen J.; Monroe, Brian M.; Brownstein, Aaron L.; Yang, Yu; Chopra, Gurveen; Miller, Lynn C.

    2010-01-01

    We present a neural network model that aims to bridge the historical gap between dynamic and structural approaches to personality. The model integrates work on the structure of the trait lexicon, the neurobiology of personality, temperament, goal-based models of personality, and an evolutionary analysis of motives. It is organized in terms of two…

  4. Backpropagation Neural Network Modeling for Fault Location in Transmission Line 150 kV

    Directory of Open Access Journals (Sweden)

    Azriyenni Narwan

    2014-03-01

    Full Text Available In this topic research was provided about the backpropagation neural network to detect fault location in transmission line 150 kV between substation to substation. The distance relay is one of the good protective device and safety devices that often used on transmission line 150 kV. The disturbances in power system are used distance relay protection equipment in the transmission line. However, it needs more increasing large load and network systems are increasing complex. The protection system use the digital control, in order to avoid the error calculation of the distance relay impedance settings and spent time will be more efficient. Then backpropagation neural network is a computational model that uses the training process that can be used to solve the problem of work limitations of distance protection relays. The backpropagation neural network does not have limitations cause of the impedance range setting. If the output gives the wrong result, so the correct of the weights can be minimized and also the response of galat, the backpropagation neural network is expected to be closer to the correct value. In the end, backpropagation neural network modeling is expected to detect the fault location and identify operational output current circuit breaker was tripped it. The tests are performance with interconnected system 150 kV of Riau Region.

  5. Neural Network-Based Model for Landslide Susceptibility and Soil Longitudinal Profile Analyses

    DEFF Research Database (Denmark)

    Farrokhzad, F.; Barari, Amin; Choobbasti, A. J.

    2011-01-01

    The purpose of this study was to create an empirical model for assessing the landslide risk potential at Savadkouh Azad University, which is located in the rural surroundings of Savadkouh, about 5 km from the city of Pol-Sefid in northern Iran. The soil longitudinal profile of the city of Babol......, located 25 km from the Caspian Sea, also was predicted with an artificial neural network (ANN). A multilayer perceptron neural network model was applied to the landslide area and was used to analyze specific elements in the study area that contributed to previous landsliding events. The ANN models were...... studies in landslide susceptibility zonation....

  6. Global Stability, Bifurcation, and Chaos Control in a Delayed Neural Network Model

    Directory of Open Access Journals (Sweden)

    Amitava Kundu

    2014-01-01

    Full Text Available Conditions for the global asymptotic stability of delayed artificial neural network model of n (≥3 neurons have been derived. For bifurcation analysis with respect to delay we have considered the model with three neurons and used suitable transformation on multiple time delays to reduce it to a system with single delay. Bifurcation analysis is discussed with respect to single delay. Numerical simulations are presented to verify the analytical results. Using numerical simulation, the role of delay and neuronal gain parameter in changing the dynamics of the neural network model has been discussed.

  7. Simplified LQG Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...

  8. Validation of artificial neural network models for predicting biochemical markers associated with male infertility.

    Science.gov (United States)

    Vickram, A S; Kamini, A Rao; Das, Raja; Pathy, M Ramesh; Parameswari, R; Archana, K; Sridharan, T B

    2016-08-01

    Seminal fluid is the secretion from many glands comprised of several organic and inorganic compounds including free amino acids, proteins, fructose, glucosidase, zinc, and other scavenging elements like Mg(2+), Ca(2+), K(+), and Na(+). Therefore, in the view of development of novel approaches and proper diagnosis to male infertility, overall understanding of the biochemical and molecular composition and its role in regulation of sperm quality is highly desirable. Perhaps this can be achieved through artificial intelligence. This study was aimed to elucidate and predict various biochemical markers present in human seminal plasma with three different neural network models. A total of 177 semen samples were collected for this research (both fertile and infertile samples) and immediately processed to prepare a semen analysis report, based on the protocol of the World Health Organization (WHO [2010]). The semen samples were then categorized into oligoasthenospermia (n=35), asthenospermia (n=35), azoospermia (n=22), normospermia (n=34), oligospermia (n=34), and control (n=17). The major biochemical parameters like total protein content, fructose, glucosidase, and zinc content were elucidated by standard protocols. All the biochemical markers were predicted by using three different artificial neural network (ANN) models with semen parameters as inputs. Of the three models, the back propagation neural network model (BPNN) yielded the best results with mean absolute error 0.025, -0.080, 0.166, and -0.057 for protein, fructose, glucosidase, and zinc, respectively. This suggests that BPNN can be used to predict biochemical parameters for the proper diagnosis of male infertility in assisted reproductive technology (ART) centres. AAS: absorption spectroscopy; AI: artificial intelligence; ANN: artificial neural networks; ART: assisted reproductive technology; BPNN: back propagation neural network model; DT: decision tress; MLP: multilayer perceptron; PESA: percutaneous

  9. Logic Mining Using Neural Networks

    CERN Document Server

    Sathasivam, Saratha

    2008-01-01

    Knowledge could be gained from experts, specialists in the area of interest, or it can be gained by induction from sets of data. Automatic induction of knowledge from data sets, usually stored in large databases, is called data mining. Data mining methods are important in the management of complex systems. There are many technologies available to data mining practitioners, including Artificial Neural Networks, Regression, and Decision Trees. Neural networks have been successfully applied in wide range of supervised and unsupervised learning applications. Neural network methods are not commonly used for data mining tasks, because they often produce incomprehensible models, and require long training times. One way in which the collective properties of a neural network may be used to implement a computational task is by way of the concept of energy minimization. The Hopfield network is well-known example of such an approach. The Hopfield network is useful as content addressable memory or an analog computer for s...

  10. Applying Neural Network to Dynamic Modeling of Biosurfactant Production Using Soybean Oil Refinery Wastes

    Directory of Open Access Journals (Sweden)

    Shokoufe Tayyebi

    2013-01-01

    Full Text Available Biosurfactants are surface active compounds produced by various microorganisms. Production of biosurfactants via fermentation of immiscible wastes has the dual benefit of creating economic opportunities for manufacturers, while improving environmental health. A predictor system, recommended in such processes, must be scaled-up. Hence, four neural networks were developed for the dynamic modeling of the biosurfactant production kinetics, in presence of soybean oil or refinery wastes including acid oil, deodorizer distillate and soap stock. Each proposed feed forward neural network consists of three layers which are not fully connected. The input and output data for the training and validation of the neural network models were gathered from batch fermentation experiments. The proposed neural network models were evaluated by three statistical criteria (R2, RMSE and SE. The typical regression analysis showed high correlation coefficients greater than 0.971, demonstrating that the neural network is an excellent estimator for prediction of biosurfactant production kinetic data in a two phase liquid-liquid batch fermentation system. In addition, sensitivity analysis indicates that residual oil has the significant effect (i.e. 49% on the biosurfactant in the process.

  11. A Short-Term Climate Prediction Model Based on a Modular Fuzzy Neural Network

    Institute of Scientific and Technical Information of China (English)

    JIN Long; JIN Jian; YAO Cai

    2005-01-01

    In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the MFNN model for short-term climate prediction has advantages of simple structure, no hidden layer and stable network parameters because of the assembling of sound functions of the selfadaptive learning, association and fuzzy information processing of fuzzy mathematics and neural network methods. The case computational results of Guangxi flood season (JJA) rainfall show that the mean absolute error (MAE) and mean relative error (MRE) of the prediction during 1998-2002 are 68.8 mm and 9.78%, and in comparison with the regression method, under the conditions of the same predictors and period they are 97.8 mm and 12.28% respectively. Furthermore, it is also found from the stability analysis of the modular model that the change of the prediction results of independent samples with training times in the stably convergent interval of the model is less than 1.3 mm. The obvious oscillation phenomenon of prediction results with training times, such as in the common back-propagation neural network (BPNN)model, does not occur, indicating a better practical application potential of the MFNN model.

  12. FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model.

    Science.gov (United States)

    Yaghini Bonabi, Safa; Asgharian, Hassan; Safari, Saeed; Nili Ahmadabadi, Majid

    2014-01-01

    A set of techniques for efficient implementation of Hodgkin-Huxley-based (H-H) model of a neural network on FPGA (Field Programmable Gate Array) is presented. The central implementation challenge is H-H model complexity that puts limits on the network size and on the execution speed. However, basics of the original model cannot be compromised when effect of synaptic specifications on the network behavior is the subject of study. To solve the problem, we used computational techniques such as CORDIC (Coordinate Rotation Digital Computer) algorithm and step-by-step integration in the implementation of arithmetic circuits. In addition, we employed different techniques such as sharing resources to preserve the details of model as well as increasing the network size in addition to keeping the network execution speed close to real time while having high precision. Implementation of a two mini-columns network with 120/30 excitatory/inhibitory neurons is provided to investigate the characteristic of our method in practice. The implementation techniques provide an opportunity to construct large FPGA-based network models to investigate the effect of different neurophysiological mechanisms, like voltage-gated channels and synaptic activities, on the behavior of a neural network in an appropriate execution time. Additional to inherent properties of FPGA, like parallelism and re-configurability, our approach makes the FPGA-based system a proper candidate for study on neural control of cognitive robots and systems as well.

  13. Neural node network and model, and method of teaching same

    Science.gov (United States)

    Parlos, Alexander G. (Inventor); Atiya, Amir F. (Inventor); Fernandez, Benito (Inventor); Tsai, Wei K. (Inventor); Chong, Kil T. (Inventor)

    1995-01-01

    The present invention is a fully connected feed forward network that includes at least one hidden layer 16. The hidden layer 16 includes nodes 20 in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device 24 occurring in the feedback path 22 (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit 36 from all the other nodes within the same layer 16. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing.

  14. Neural networks and statistical learning

    CERN Document Server

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  15. Applications of artificial neural networks for microbial water quality modeling

    Energy Technology Data Exchange (ETDEWEB)

    Brion, G.M.; Lingireddy, S. [Univ. of Kentucky, Dept. of Civil Engineering, Lexington, Kentucky (United States)]. E-mail: gbrion@engr.uky.edu

    2002-06-15

    There has been a significant shift in the recent past towards protecting chemical and microbial quality of source waters rather than developing advanced methods to treat heavily polluted water. The key to successful best management practices in protecting the source waters is to identify sources of non-point pollution and their collective impact on the quality of water at the intake. This article presents a few successful applications where artificial neural networks (ANN) have proven to be the useful mathematical tools in correlating the nonlinear relationships between routinely measured parameters (such as rainfall, turbidity, fecal coliforms etc.) and quality of source waters and/or nature of fecal sources. These applications include, prediction of peak concentrations of Giardia and Cryptosporidium, sorting of fecal sources (e.g. agricultural animals vs. urban animals), predicting relative ages of the runoff sources, identifying the potential for sewage contamination. The ability of ANNs to work with complex, inter-related multiparameter databases, and provide superior predictive power in non-linear relationships has been the key for their successful application to microbial water quality studies. (author)

  16. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    examined, and it appears that considering 'normal' neural network models with, say, 500 samples, the problem of over-fitting is neglible, and therefore it is not taken into consideration afterwards. Numerous model types, often met in control applications, are implemented as neural network models....... - Control concepts including parameter estimation - Control concepts including inverse modelling - Control concepts including optimal control For each of the three groups, different control concepts and specific training methods are detailed described.Further, all control concepts are tested on the same......The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...

  17. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.

    Science.gov (United States)

    Tani, Jun; Nishimoto, Ryu; Namikawa, Jun; Ito, Masato

    2008-02-01

    This paper examines characteristics of interactive learning between human tutors and a robot having a dynamic neural-network model, which is inspired by human parietal cortex functions. A humanoid robot, with a recurrent neural network that has a hierarchical structure, learns to manipulate objects. Robots learn tasks in repeated self-trials with the assistance of human interaction, which provides physical guidance until the tasks are mastered and learning is consolidated within the neural networks. Experimental results and the analyses showed the following: 1) codevelopmental shaping of task behaviors stems from interactions between the robot and a tutor; 2) dynamic structures for articulating and sequencing of behavior primitives are self-organized in the hierarchically organized network; and 3) such structures can afford both generalization and context dependency in generating skilled behaviors.

  18. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  19. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  20. Supervised neural network modeling: an empirical investigation into learning from imbalanced data with labeling errors.

    Science.gov (United States)

    Khoshgoftaar, Taghi M; Van Hulse, Jason; Napolitano, Amri

    2010-05-01

    Neural network algorithms such as multilayer perceptrons (MLPs) and radial basis function networks (RBFNets) have been used to construct learners which exhibit strong predictive performance. Two data related issues that can have a detrimental impact on supervised learning initiatives are class imbalance and labeling errors (or class noise). Imbalanced data can make it more difficult for the neural network learning algorithms to distinguish between examples of the various classes, and class noise can lead to the formulation of incorrect hypotheses. Both class imbalance and labeling errors are pervasive problems encountered in a wide variety of application domains. Many studies have been performed to investigate these problems in isolation, but few have focused on their combined effects. This study presents a comprehensive empirical investigation using neural network algorithms to learn from imbalanced data with labeling errors. In particular, the first component of our study investigates the impact of class noise and class imbalance on two common neural network learning algorithms, while the second component considers the ability of data sampling (which is commonly used to address the issue of class imbalance) to improve their performances. Our results, for which over two million models were trained and evaluated, show that conclusions drawn using the more commonly studied C4.5 classifier may not apply when using neural networks.

  1. Hybrid Computation Model for Intelligent System Design by Synergism of Modified EFC with Neural Network

    OpenAIRE

    2015-01-01

    In recent past, it has been seen in many applications that synergism of computational intelligence techniques outperforms over an individual technique. This paper proposes a new hybrid computation model which is a novel synergism of modified evolutionary fuzzy clustering with associated neural networks. It consists of two modules: fuzzy distribution and neural classifier. In first module, mean patterns are distributed into the number of clusters based on the modified evolutionary fuzzy cluste...

  2. Predicting soil sorption coefficients of organic chemicals using a neural network model

    Energy Technology Data Exchange (ETDEWEB)

    Gao, C.; Govind, R. [Univ. of Cincinnati, OH (United States). Dept. of Chemical Engineering; Tabak, H.H. [Environmental Protection Agency, Cincinnati, OH (United States)

    1996-07-01

    The soil/sediment adsorption partition coefficient normalized to organic carbon (K{sub oc}) is extensively used to assess the fate of organic chemicals in hazardous waste sites. Several attempts have been made to estimate the value of K{sub oc} from chemical structure or its parameters. The primary purpose of this study was to develop a nonlinear model for estimating K{sub oc} applicable to polar and nonpolar organics based on artificial neural networks using the octanol/water partition coefficient (K{sub ow}) and water solubility (S). An analytic equation was obtained by starting with a neural network, converging the bias and weight values using the available data on water solubility, octanol/water partition coefficient, and the normalized soil/sediment adsorption partition coefficient, and then combining the equations for each node in the final neural network. For the 119 chemicals in the training set, estimates using the neural network equation lie outside the 2{sigma} region (the standard deviation for the training set, {sigma} = 0.52) for only five chemicals, while all the chemicals in the test set lie within the 2{sigma} region. It was concluded that the neural network equation outperforms the linear models in fitting the K{sub oc} values for the training set and predicting them for the test set.

  3. Biological modelling of a computational spiking neural network with neuronal avalanches

    Science.gov (United States)

    Li, Xiumin; Chen, Qing; Xue, Fangzheng

    2017-05-01

    In recent years, an increasing number of studies have demonstrated that networks in the brain can self-organize into a critical state where dynamics exhibit a mixture of ordered and disordered patterns. This critical branching phenomenon is termed neuronal avalanches. It has been hypothesized that the homeostatic level balanced between stability and plasticity of this critical state may be the optimal state for performing diverse neural computational tasks. However, the critical region for high performance is narrow and sensitive for spiking neural networks (SNNs). In this paper, we investigated the role of the critical state in neural computations based on liquid-state machines, a biologically plausible computational neural network model for real-time computing. The computational performance of an SNN when operating at the critical state and, in particular, with spike-timing-dependent plasticity for updating synaptic weights is investigated. The network is found to show the best computational performance when it is subjected to critical dynamic states. Moreover, the active-neuron-dominant structure refined from synaptic learning can remarkably enhance the robustness of the critical state and further improve computational accuracy. These results may have important implications in the modelling of spiking neural networks with optimal computational performance. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  4. A new grey forecasting model based on BP neural network and Markov chain

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1,1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(1,1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1).

  5. Using genetic algorithm to learn neural network identifier for modeling gyro startup drift rate

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Studies the modeling of gyro startup drift rate from acquired experimental gyro startup drift rate data and the nonlinear dynamic models of gyro startup drift rate related temperature established by time-delay neural network which enables the gyro temperature drift rate to be compensated in the process of startup and the gyro instant startup to be implemented. And introduces an improved genetic algorithm to learn the weights of neural network identifier to avoid stacking into the local minimal value and achieve rapid convergence.

  6. Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition.

    Science.gov (United States)

    Spoerer, Courtney J; McClure, Patrick; Kriegeskorte, Nikolaus

    2017-01-01

    Feedforward neural networks provide the dominant model of how the brain performs visual object recognition. However, these networks lack the lateral and feedback connections, and the resulting recurrent neuronal dynamics, of the ventral visual pathway in the human and non-human primate brain. Here we investigate recurrent convolutional neural networks with bottom-up (B), lateral (L), and top-down (T) connections. Combining these types of connections yields four architectures (B, BT, BL, and BLT), which we systematically test and compare. We hypothesized that recurrent dynamics might improve recognition performance in the challenging scenario of partial occlusion. We introduce two novel occluded object recognition tasks to test the efficacy of the models, digit clutter (where multiple target digits occlude one another) and digit debris (where target digits are occluded by digit fragments). We find that recurrent neural networks outperform feedforward control models (approximately matched in parametric complexity) at recognizing objects, both in the absence of occlusion and in all occlusion conditions. Recurrent networks were also found to be more robust to the inclusion of additive Gaussian noise. Recurrent neural networks are better in two respects: (1) they are more neurobiologically realistic than their feedforward counterparts; (2) they are better in terms of their ability to recognize objects, especially under challenging conditions. This work shows that computer vision can benefit from using recurrent convolutional architectures and suggests that the ubiquitous recurrent connections in biological brains are essential for task performance.

  7. Folk music style modelling by recurrent neural networks with long short term memory units

    OpenAIRE

    Sturm, Bob; Santos, João Felipe; Korshunova, Iryna

    2015-01-01

    We demonstrate two generative models created by training a recurrent neural network (RNN) with three hidden layers of long short-term memory (LSTM) units. This extends past work in numerous directions, including training deeper models with nearly 24,000 high-level transcriptions of folk tunes. We discuss our on-going work.

  8. Comparative nonlinear modeling of renal autoregulation in rats: Volterra approach versus artificial neural networks

    DEFF Research Database (Denmark)

    Chon, K H; Holstein-Rathlou, N H; Marsh, D J

    1998-01-01

    via the Laguerre expansion technique achieve this prediction NMSE with approximately half the number of free parameters relative to either neural-network model. However, both approaches are deemed effective in modeling nonlinear dynamic systems and their cooperative use is recommended in general....

  9. D-FNN Based Modeling and BP Neural Network Decoupling Control of PVC Stripping Process

    Directory of Open Access Journals (Sweden)

    Shu-zhi Gao

    2014-01-01

    Full Text Available PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic fuzzy neural network (D-FNN is adopted to establish the PVC stripping process model based on the actual process operation datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-input-single-output (SISO subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature. Finally, the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the effectiveness of the proposed integrated intelligent control method.

  10. Artificial neural networks for modeling time series of beach litter in the southern North Sea.

    Science.gov (United States)

    Schulz, Marcus; Matthies, Michael

    2014-07-01

    In European marine waters, existing monitoring programs of beach litter need to be improved concerning litter items used as indicators of pollution levels, efficiency, and effectiveness. In order to ease and focus future monitoring of beach litter on few important litter items, feed-forward neural networks consisting of three layers were developed to relate single litter items to general categories of marine litter. The neural networks developed were applied to seven beaches in the southern North Sea and modeled time series of five general categories of marine litter, such as litter from fishing, shipping, and tourism. Results of regression analyses show that general categories were predicted significantly moderately to well. Measured and modeled data were in the same order of magnitude, and minima and maxima overlapped well. Neural networks were found to be eligible tools to deliver reliable predictions of marine litter with low computational effort and little input of information. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Forecasting TRY/USD Exchange Rate with Various Artificial Neural Network Models

    Directory of Open Access Journals (Sweden)

    Cagatay Bal

    2017-02-01

    Full Text Available Exchange rate forecasting is one of the most common subjects among the forecasting problem field. Researchers and academicians from many different disciplines proposed various approaches for better exchange rate forecasting. In recent years, for solving the stated forecasting problem artificial neural networks have become successful tool to obtain solutions. Many different artificial neural networks have been used, developed and still developing for even better and trustable forecasts. In this study, TRY/USD exchange rate forecasting is modeled with different learning algorithms, activations functions and performance measures. Various Artificial Neural Network (ANN models for better forecasting were investigated, compared and the obtained forecasting results interpreted respectively. The results of the application show that Variable Learning Rate Backpropagation learning algorithm with tan-sigmoid activation function has the best performance for TRY/USD exchange rate forecasting.

  12. Macrobenthos habitat potential mapping using GIS-based artificial neural network models.

    Science.gov (United States)

    Lee, Saro; Park, Inhye; Koo, Bon Joo; Ryu, Joo-Hyung; Choi, Jong-Kuk; Woo, Han Jun

    2013-02-15

    This paper proposes and tests a method of producing macrobenthos habitat potential maps in Hwangdo tidal flat, Korea based on an artificial neural network. Samples of macrobenthos were collected during field work, and eight control factors were compiled as a spatial database from remotely sensed data and GIS analysis. The macrobenthos habitat potential maps were produced using an artificial neural network model. Macrobenthos habitat potential maps were made for Macrophthalmus dilatatus, Cerithideopsilla cingulata, and Armandia lanceolata. The maps were validated by compared with the surveyed habitat locations. A strong correlation between the potential maps and species locations was revealed. The validation result showed average accuracies of 74.9%, 78.32%, and 73.27% for M. dilatatus, C. cingulata, and A. lanceolata, respectively. A GIS-based artificial neural network model combined with remote sensing techniques is an effective tool for mapping the areas of macrobenthos habitat potential in tidal flats.

  13. Bayesian Regularization in a Neural Network Model to Estimate Lines of Code Using Function Points

    Directory of Open Access Journals (Sweden)

    K. K. Aggarwal

    2005-01-01

    Full Text Available It is a well known fact that at the beginning of any project, the software industry needs to know, how much will it cost to develop and what would be the time required ? . This paper examines the potential of using a neural network model for estimating the lines of code, once the functional requirements are known. Using the International Software Benchmarking Standards Group (ISBSG Repository Data (release 9 for the experiment, this paper examines the performance of back propagation feed forward neural network to estimate the Source Lines of Code. Multiple training algorithms are used in the experiments. Results demonstrate that the neural network models trained using Bayesian Regularization provide the best results and are suitable for this purpose.

  14. An Inventory Controlled Supply Chain Model Based on Improved BP Neural Network

    Directory of Open Access Journals (Sweden)

    Wei He

    2013-01-01

    Full Text Available Inventory control is a key factor for reducing supply chain cost and increasing customer satisfaction. However, prediction of inventory level is a challenging task for managers. As one of the widely used techniques for inventory control, standard BP neural network has such problems as low convergence rate and poor prediction accuracy. Aiming at these problems, a new fast convergent BP neural network model for predicting inventory level is developed in this paper. By adding an error offset, this paper deduces the new chain propagation rule and the new weight formula. This paper also applies the improved BP neural network model to predict the inventory level of an automotive parts company. The results show that the improved algorithm not only significantly exceeds the standard algorithm but also outperforms some other improved BP algorithms both on convergence rate and prediction accuracy.

  15. A Prediction Model of Peasants’ Income in China Based on BP Neural Network

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    According to the related data affecting the peasants’ income in China in the years 1978-2008,a total of 13 indices are selected,such as agricultural population,output value of primary industry,and rural employees.Based on the standardized method and BP neural network method,the peasants’ income and the artificial neural network model are established and analyzed.Results show that the simulation value agrees well with the real value;the neural network model with improved BP algorithm has high prediction accuracy,rapid convergence rate and good generalization ability.Finally,suggestions are put forward to increase the peasants’ income,such as promoting the process of urbanization,developing small and medium-sized enterprises in rural areas,encouraging intensive operation,and strengthening the rural infrastructure and agricultural science and technology input.

  16. Dynamic Baysesian state-space model with a neural network for an online river flow prediction

    Science.gov (United States)

    Ham, Jonghwa; Hong, Yoon-Seok

    2013-04-01

    The usefulness of artificial neural networks in complex hydrological modeling has been demonstrated by successful applications. Several different types of neural network have been used for the hydrological modeling task but the multi-layer perceptron (MLP) neural network (also known as the feed-forward neural network) has enjoyed a predominant position because of its simplicity and its ability to provide good approximations. In many hydrological applications of MLP neural networks, the gradient descent-based batch learning algorithm such as back-propagation, quasi-Newton, Levenburg-Marquardt, and conjugate gradient algorithms has been used to optimize the cost function (usually by minimizing the error function in the prediction) by updating the parameters and structure in a neural network defined using a set of input-output training examples. Hydrological systems are highly with time-varying inputs and outputs, and are characterized by data that arrive sequentially. The gradient descent-based batch learning approaches that are implemented in MLP neural networks have significant disadvantages for online dynamic hydrological modeling because they could not update the model structure and parameter when a new set of hydrological measurement data becomes available. In addition, a large amount of training data is always required off-line with a long model training time. In this work, a dynamic nonlinear Bayesian state-space model with a multi-layer perceptron (MLP) neural network via a sequential Monte Carlo (SMC) learning algorithm is proposed for an online dynamic hydrological modeling. This proposed new method of modeling is herein known as MLP-SMC. The sequential Monte Carlo learning algorithm in the MLP-SMC is designed to evolve and adapt the weight of a MLP neural network sequentially in time on the arrival of each new item of hydrological data. The weight of a MLP neural network is treated as the unknown dynamic state variable in the dynamic Bayesian state

  17. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.

    Science.gov (United States)

    Ling, Hong; Samarasinghe, Sandhya; Kulasiri, Don

    2013-12-01

    Understanding the control of cellular networks consisting of gene and protein interactions and their emergent properties is a central activity of Systems Biology research. For this, continuous, discrete, hybrid, and stochastic methods have been proposed. Currently, the most common approach to modelling accurate temporal dynamics of networks is ordinary differential equations (ODE). However, critical limitations of ODE models are difficulty in kinetic parameter estimation and numerical solution of a large number of equations, making them more suited to smaller systems. In this article, we introduce a novel recurrent artificial neural network (RNN) that addresses above limitations and produces a continuous model that easily estimates parameters from data, can handle a large number of molecular interactions and quantifies temporal dynamics and emergent systems properties. This RNN is based on a system of ODEs representing molecular interactions in a signalling network. Each neuron represents concentration change of one molecule represented by an ODE. Weights of the RNN correspond to kinetic parameters in the system and can be adjusted incrementally during network training. The method is applied to the p53-Mdm2 oscillation system - a crucial component of the DNA damage response pathways activated by a damage signal. Simulation results indicate that the proposed RNN can successfully represent the behaviour of the p53-Mdm2 oscillation system and solve the parameter estimation problem with high accuracy. Furthermore, we presented a modified form of the RNN that estimates parameters and captures systems dynamics from sparse data collected over relatively large time steps. We also investigate the robustness of the p53-Mdm2 system using the trained RNN under various levels of parameter perturbation to gain a greater understanding of the control of the p53-Mdm2 system. Its outcomes on robustness are consistent with the current biological knowledge of this system. As more

  18. Application of artificial neural network model combined with four biomarkers in auxiliary diagnosis of lung cancer.

    Science.gov (United States)

    Duan, Xiaoran; Yang, Yongli; Tan, Shanjuan; Wang, Sihua; Feng, Xiaolei; Cui, Liuxin; Feng, Feifei; Yu, Songcheng; Wang, Wei; Wu, Yongjun

    2017-08-01

    The purpose of the study was to explore the application of artificial neural network model in the auxiliary diagnosis of lung cancer and compare the effects of back-propagation (BP) neural network with Fisher discrimination model for lung cancer screening by the combined detections of four biomarkers of p16, RASSF1A and FHIT gene promoter methylation levels and the relative telomere length. Real-time quantitative methylation-specific PCR was used to detect the levels of three-gene promoter methylation, and real-time PCR method was applied to determine the relative telomere length. BP neural network and Fisher discrimination analysis were used to establish the discrimination diagnosis model. The levels of three-gene promoter methylation in patients with lung cancer were significantly higher than those of the normal controls. The values of Z(P) in two groups were 2.641 (0.008), 2.075 (0.038) and 3.044 (0.002), respectively. The relative telomere lengths of patients with lung cancer (0.93 ± 0.32) were significantly lower than those of the normal controls (1.16 ± 0.57), t = 4.072, P neural network were 0.670 (0.569-0.761) and 0.760 (0.664-0.840). The AUC of BP neural network was higher than that of Fisher discrimination analysis, and Z(P) was 0.76. Four biomarkers are associated with lung cancer. BP neural network model for the prediction of lung cancer is better than Fisher discrimination analysis, and it can provide an excellent and intelligent diagnosis tool for lung cancer.

  19. via dynamic neural networks

    Directory of Open Access Journals (Sweden)

    J. Reyes-Reyes

    2000-01-01

    Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.

  20. CONTROL OF NONLINEAR PROCESS USING NEURAL NETWORK BASED MODEL PREDICTIVE CONTROL

    Directory of Open Access Journals (Sweden)

    Dr.A.TRIVEDI

    2011-04-01

    Full Text Available This paper presents a Neural Network based Model Predictive Control (NNMPC strategy to control nonlinear process. Multilayer Perceptron Neural Network (MLP is chosen to represent a Nonlinear Auto Regressive with eXogenous signal (NARX model of a nonlinear system. NARX dynamic model is based on feed-forward architecture and offers good approximation capabilities along with robustness and accuracy. Based on the identified neural model, a generalized predictive control (GPC algorithm is implemented to control the composition in acontinuous stirred tank reactor (CSTR, whose parameters are optimally determined by solving quadratic performance index using well known Levenberg-Marquardt and Quasi-Newton algorithm. NNMPC is tuned by selecting few horizon parameters and weighting factor. The tracking performance of the NNMPC is tested using different amplitude function as a reference signal on CSTR application. Also the robustness and performance is tested in the presence of disturbance on random reference signal.

  1. Forward and Reverse Process Models for the Squeeze Casting Process Using Neural Network Based Approaches

    Directory of Open Access Journals (Sweden)

    Manjunath Patel Gowdru Chandrashekarappa

    2014-01-01

    Full Text Available The present research work is focussed to develop an intelligent system to establish the input-output relationship utilizing forward and reverse mappings of artificial neural networks. Forward mapping aims at predicting the density and secondary dendrite arm spacing (SDAS from the known set of squeeze cast process parameters such as time delay, pressure duration, squeezes pressure, pouring temperature, and die temperature. An attempt is also made to meet the industrial requirements of developing the reverse model to predict the recommended squeeze cast parameters for the desired density and SDAS. Two different neural network based approaches have been proposed to carry out the said task, namely, back propagation neural network (BPNN and genetic algorithm neural network (GA-NN. The batch mode of training is employed for both supervised learning networks and requires huge training data. The requirement of huge training data is generated artificially at random using regression equation derived through real experiments carried out earlier by the same authors. The performances of BPNN and GA-NN models are compared among themselves with those of regression for ten test cases. The results show that both models are capable of making better predictions and the models can be effectively used in shop floor in selection of most influential parameters for the desired outputs.

  2. Large-Scale Recurrent Neural Network Based Modelling of Gene Regulatory Network Using Cuckoo Search-Flower Pollination Algorithm.

    Science.gov (United States)

    Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat K

    2016-01-01

    The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process.

  3. Modelling and evaluating customer loyalty using neural networks: Evidence from startup insurance companies

    Directory of Open Access Journals (Sweden)

    Azarnoush Ansari

    2016-06-01

    Full Text Available The purpose of this study is to investigate the customer–service provider relationship in the insurance industry using artificial neural networks and linear regression. Using a sample of 389 customers from 10 different startup insurance companies, it was found that artificial neural networks are an efficient way to evaluate the factors affecting customer loyalty. The results indicated that customer satisfaction and perceived value are significant predictors of customer loyalty. Additionally, it was found that trust, perceived quality, and empathy have a significant impact on both customer satisfaction and perceived value. The results also showed that customer commitment to service provider is positively associated with customer satisfaction and loyalty. After comparing the performance of linear regression models with artificial neural networks, it was found that the use of neural networks is a better approach for analyzing the customer loyalty, satisfaction, and perceived value. The use of new techniques such as artificial neural networks for analyzing the customer behavior can be particularly beneficial for startup companies who aspire to gain competitive advantage over their strong and well-established rivals.

  4. Analysis on evaluation ability of nonlinear safety assessment model of coal mines based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    SHI Shi-liang; LIU Hai-bo; LIU Ai-hua

    2004-01-01

    Based on the integration analysis of goods and shortcomings of various methods used in safety assessment of coal mines, combining nonlinear feature of mine safety sub-system, this paper establishes the neural network assessment model of mine safety, analyzes the ability of artificial neural network to evaluate mine safety state, and lays the theoretical foundation of artificial neural network using in the systematic optimization of mine safety assessment and getting reasonable accurate safety assessment result.

  5. Modelling drying kinetics of thyme (Thymus vulgaris L.): theoretical and empirical models, and neural networks.

    Science.gov (United States)

    Rodríguez, J; Clemente, G; Sanjuán, N; Bon, J

    2014-01-01

    The drying kinetics of thyme was analyzed by considering different conditions: air temperature of between 40°C  and 70°C , and air velocity of 1 m/s. A theoretical diffusion model and eight different empirical models were fitted to the experimental data. From the theoretical model application, the effective diffusivity per unit area of the thyme was estimated (between 3.68 × 10(-5) and 2.12 × 10 (-4) s(-1)). The temperature dependence of the effective diffusivity was described by the Arrhenius relationship with activation energy of 49.42 kJ/mol. Eight different empirical models were fitted to the experimental data. Additionally, the dependence of the parameters of each model on the drying temperature was determined, obtaining equations that allow estimating the evolution of the moisture content at any temperature in the established range. Furthermore, artificial neural networks were developed and compared with the theoretical and empirical models using the percentage of the relative errors and the explained variance. The artificial neural networks were found to be more accurate predictors of moisture evolution with VAR ≥ 99.3% and ER ≤ 8.7%.

  6. Using chaotic artificial neural networks to model memory in the brain

    Science.gov (United States)

    Aram, Zainab; Jafari, Sajad; Ma, Jun; Sprott, Julien C.; Zendehrouh, Sareh; Pham, Viet-Thanh

    2017-03-01

    In the current study, a novel model for human memory is proposed based on the chaotic dynamics of artificial neural networks. This new model explains a biological fact about memory which is not yet explained by any other model: There are theories that the brain normally works in a chaotic mode, while during attention it shows ordered behavior. This model uses the periodic windows observed in a previously proposed model for the brain to store and then recollect the information.

  7. Comparisons of forecasting for hepatitis in Guangxi Province, China by using three neural networks models

    Directory of Open Access Journals (Sweden)

    Ruijing Gan

    2016-11-01

    Full Text Available This study compares and evaluates the prediction of hepatitis in Guangxi Province, China by using back propagation neural networks based genetic algorithm (BPNN-GA, generalized regression neural networks (GRNN, and wavelet neural networks (WNN. In order to compare the results of forecasting, the data obtained from 2004 to 2013 and 2014 were used as modeling and forecasting samples, respectively. The results show that when the small data set of hepatitis has seasonal fluctuation, the prediction result by BPNN-GA will be better than the two other methods. The WNN method is suitable for predicting the large data set of hepatitis that has seasonal fluctuation and the same for the GRNN method when the data increases steadily.

  8. Butterfly Classification by HSI and RGB Color Models Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Jorge E. Grajales-Múnera

    2013-11-01

    Full Text Available This study aims the classification of Butterfly species through the implementation of Neural Networks and Image Processing. A total of 9 species of Morpho genre which has blue as a characteristic color are processed. For Butterfly segmentation we used image processing tools such as: Binarization, edge processing and mathematical morphology. For data processing RGB values are obtained for every image which are converted to HSI color model to identify blue pixels and obtain the data to the proposed Neural Networks: Back-Propagation and Perceptron. For analysis and verification of results confusion matrix are built and analyzed with the results of neural networks with the lowest error levels. We obtain error levels close to 1% in classification of some Butterfly species.

  9. A CFBPN Artificial Neural Network Model for Educational Qualitative Data Analyses: Example of Students' Attitudes Based on Kellerts' Typologies

    Science.gov (United States)

    Yorek, Nurettin; Ugulu, Ilker

    2015-01-01

    In this study, artificial neural networks are suggested as a model that can be "trained" to yield qualitative results out of a huge amount of categorical data. It can be said that this is a new approach applied in educational qualitative data analysis. In this direction, a cascade-forward back-propagation neural network (CFBPN) model was…

  10. Neural-network-based speed controller for induction motors using inverse dynamics model

    Science.gov (United States)

    Ahmed, Hassanein S.; Mohamed, Kamel

    2016-08-01

    Artificial Neural Networks (ANNs) are excellent tools for controller design. ANNs have many advantages compared to traditional control methods. These advantages include simple architecture, training and generalization and distortion insensitivity to nonlinear approximations and nonexact input data. Induction motors have many excellent features, such as simple and rugged construction, high reliability, high robustness, low cost, minimum maintenance, high efficiency, and good self-starting capabilities. In this paper, we propose a neural-network-based inverse model for speed controllers for induction motors. Simulation results show that the ANNs have a high tracing capability.

  11. Fuzzified Data Based Neural Network Modeling for Health Assessment of Multistorey Shear Buildings

    Directory of Open Access Journals (Sweden)

    Deepti Moyi Sahoo

    2013-01-01

    Full Text Available The present study intends to propose identification methodologies for multistorey shear buildings using the powerful technique of Artificial Neural Network (ANN models which can handle fuzzified data. Identification with crisp data is known, and also neural network method has already been used by various researchers for this case. Here, the input and output data may be in fuzzified form. This is because in general we may not get the corresponding input and output values exactly (in crisp form, but we have only the uncertain information of the data. This uncertain data is assumed in terms of fuzzy number, and the corresponding problem of system identification is investigated.

  12. Least square neural network model of the crude oil blending process.

    Science.gov (United States)

    Rubio, José de Jesús

    2016-06-01

    In this paper, the recursive least square algorithm is designed for the big data learning of a feedforward neural network. The proposed method as the combination of the recursive least square and feedforward neural network obtains four advantages over the alone algorithms: it requires less number of regressors, it is fast, it has the learning ability, and it is more compact. Stability, convergence, boundedness of parameters, and local minimum avoidance of the proposed technique are guaranteed. The introduced strategy is applied for the modeling of the crude oil blending process.

  13. Building an Artificial Idiotopic Immune Model Based on Artificial Neural Network Ideology

    Directory of Open Access Journals (Sweden)

    Hossam Meshref

    2013-01-01

    Full Text Available In the literature, there were many research efforts that utilized the artificial immune networks to model their designed applications, but they were considerably complicated, and restricted to a few areas that such as computer security applications. The objective of this research is to introduce a new model for artificial immune networks that adopts features from other biological successful models to overcome its complexity such as the artificial neural networks. Common concepts between the two systems were investigated to design a simple, yet a robust, model of artificial immune networks. Three artificial neural networks learning models were available to choose from in the research design: supervised, unsupervised, and reinforcement learning models. However, it was found that the reinforcement model is the most suitable model. Research results examined network parameters, and appropriate relations between concentration ranges and their dependent parameters as well as the expected reward during network learning. In conclusion, it is recommended the use of the designed model by other researchers in different applications such as controlling robots in hazardous environment to save human lives as well as using it on image retrieval in general to help the police department identify suspects.

  14. Self-organized Criticality in a Model Based on Neural Network

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-Wei; CHEN Tian-Lun

    2001-01-01

    Based on the LISSOM neural network model, we introduce a model to investigate self-organized criticality in the activity of neural populations. The influence of connection (synapse) between neurons has been adequately considered in this model. It is found to exhibit self-organized criticality (SOC) behavior under appropriate conditions.``We also find that the learning process has promotive influence on emergence of SOC behavior. In addition, we analyze the influence of various factors of the model on the SOC behavior, which is characterized by the power-law behavior of the avalanche size distribution.``

  15. Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAOXiao-Wei; ZHOULi-Ming; CHENTian-Lun

    2003-01-01

    Based on the standard self-organizing map neural network model and an integrate-and-fire mechanism, we introduce a kind of coupled map lattice system to investigate scale-invariance behavior in the activity of model neural populations. We let the parameter β, which together with α represents the interactive strength between neurons, have different function forms, and we find the function forms and their parameters are very important to our model''s avalanche dynamical behaviors, especially to the emergence of different avalanche behaviors in different areas of our system.

  16. MODELLING OF SURFACE OZONE USING ARTIFICIAL NEURAL NETWORK IN AN URBAN AREA

    Directory of Open Access Journals (Sweden)

    S.Stephen Rajkumar Inbanathan,

    2011-02-01

    Full Text Available In this paper a novel approach, based on a neural network structure, is introduced in order to face with the problem of pollutant estimation in an urban area. A neural architecture, based essentiallyon suitable number of layers devoted to predict alarm situations and to estimate the value of the pollutant, has been implemented. A new method for short term prediction is presented using the neural network technique. Due to increase in industrial and anthropogenic activity, air pollution is a serious subject of concern today. Surface ozone prediction using the technique of adaptive pattern recognition is developed. The model can predict the mean surface ozone based on the parameters like Nitrogen-dioxide, temperature and % Relative Humidity, wind direction, wind speed. The model can perform well both in training and independent periods. The classical methods of short term modeling are not reliable enough. The method can also be used for short term prediction of other air pollutants.

  17. Vector Symbolic Spiking Neural Network Model of Hippocampal Subarea CA1 Novelty Detection Functionality.

    Science.gov (United States)

    Agerskov, Claus

    2016-04-01

    A neural network model is presented of novelty detection in the CA1 subdomain of the hippocampal formation from the perspective of information flow. This computational model is restricted on several levels by both anatomical information about hippocampal circuitry and behavioral data from studies done in rats. Several studies report that the CA1 area broadcasts a generalized novelty signal in response to changes in the environment. Using the neural engineering framework developed by Eliasmith et al., a spiking neural network architecture is created that is able to compare high-dimensional vectors, symbolizing semantic information, according to the semantic pointer hypothesis. This model then computes the similarity between the vectors, as both direct inputs and a recalled memory from a long-term memory network by performing the dot-product operation in a novelty neural network architecture. The developed CA1 model agrees with available neuroanatomical data, as well as the presented behavioral data, and so it is a biologically realistic model of novelty detection in the hippocampus, which can provide a feasible explanation for experimentally observed dynamics.

  18. Model of Cholera Forecasting Using Artificial Neural Network in Chabahar City, Iran

    Directory of Open Access Journals (Sweden)

    Pezeshki

    2016-02-01

    Full Text Available Background Cholera as an endemic disease remains a health issue in Iran despite decrease in incidence. Since forecasting epidemic diseases provides appropriate preventive actions in disease spread, different forecasting methods including artificial neural networks have been developed to study parameters involved in incidence and spread of epidemic diseases such as cholera. Objectives In this study, cholera in rural area of Chabahar, Iran was investigated to achieve a proper forecasting model. Materials and Methods Data of cholera was gathered from 465 villages, of which 104 reported cholera during ten years period of study. Logistic regression modeling and correlate bivariate were used to determine risk factors and achieve possible predictive model one-hidden-layer perception neural network with backpropagation training algorithm and the sigmoid activation function was trained and tested between the two groups of infected and non-infected villages after preprocessing. For determining validity of prediction, the ROC diagram was used. The study variables included climate conditions and geographical parameters. Results After determining significant variables of cholera incidence, the described artificial neural network model was capable of forecasting cholera event among villages of test group with accuracy up to 80%. The highest accuracy was achieved when model was trained with variables that were significant in statistical analysis describing that the two methods confirm the result of each other. Conclusions Application of artificial neural networking assists forecasting cholera for adopting protective measures. For a more accurate prediction, comprehensive information is required including data on hygienic, social and demographic parameters.

  19. Model of Cholera Forecasting Using Artificial Neural Network in Chabahar City, Iran

    Directory of Open Access Journals (Sweden)

    Zahra Pezeshki

    2016-02-01

    Full Text Available Background: Cholera as an endemic disease remains a health issue in Iran despite decrease in incidence. Since forecasting epidemic diseases provides appropriate preventive actions in disease spread, different forecasting methods including artificial neural networks have been developed to study parameters involved in incidence and spread of epidemic diseases such as cholera. Objectives: In this study, cholera in rural area of Chabahar, Iran was investigated to achieve a proper forecasting model. Materials and Methods: Data of cholera was gathered from 465 villages, of which 104 reported cholera during ten years period of study. Logistic regression modeling and correlate bivariate were used to determine risk factors and achieve possible predictive model one-hidden-layer perception neural network with backpropagation training algorithm and the sigmoid activation function was trained and tested between the two groups of infected and non-infected villages after preprocessing. For determining validity of prediction, the ROC diagram was used. The study variables included climate conditions and geographical parameters. Results: After determining significant variables of cholera incidence, the described artificial neural network model was capable of forecasting cholera event among villages of test group with accuracy up to 80%. The highest accuracy was achieved when model was trained with variables that were significant in statistical analysis describing that the two methods confirm the result of each other. Conclusions: Application of artificial neural networking assists forecasting cholera for adopting protective measures. For a more accurate prediction, comprehensive information is required including data on hygienic, social and demographic parameters.

  20. Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network.

    Science.gov (United States)

    Cinar, Ozer; Hasar, Halil; Kinaci, Cumali

    2006-05-17

    A submerged membrane bioreactor receiving cheese whey was modeled by artificial neural network and its performance over a period of 100 days at different solids retention times was evaluated with this robust tool. A cascade-forward network was used to model the membrane bioreactor and normalization was used as a preprocessing method. The network was fed with two subsets of operational data, with two-thirds being used for training and one-third for testing the performance of the artificial neural network. The training procedure for effluent chemical oxygen demand (COD), ammonia, nitrate and total phosphate concentrations was very successful and a perfect match was obtained between the measured and the calculated concentrations. The results of the confirmation (or testing) procedure for effluent ammonia and nitrate concentrations were very successful; however, the results of the confirmation procedure for effluent COD and total phosphate concentrations were only satisfactory.

  1. Financial Time Series Modelling with Hybrid Model Based on Customized RBF Neural Network Combined With Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Lukas Falat

    2014-01-01

    Full Text Available In this paper, authors apply feed-forward artificial neural network (ANN of RBF type into the process of modelling and forecasting the future value of USD/CAD time series. Authors test the customized version of the RBF and add the evolutionary approach into it. They also combine the standard algorithm for adapting weights in neural network with an unsupervised clustering algorithm called K-means. Finally, authors suggest the new hybrid model as a combination of a standard ANN and a moving average for error modeling that is used to enhance the outputs of the network using the error part of the original RBF. Using high-frequency data, they examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, authors perform the comparative out-of-sample analysis of the suggested hybrid model with statistical models and the standard neural network.

  2. Proton exchange membrane fuel cells modeling based on artificial neural networks

    Institute of Scientific and Technical Information of China (English)

    Yudong Tian; Xinjian Zhu; Guangyi Cao

    2005-01-01

    To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control.

  3. Genetic optimization of neural network and fuzzy logic for oil bubble point pressure modeling

    Energy Technology Data Exchange (ETDEWEB)

    Afshar, Mohammad [Islamic Azad University, Kharg (Iran, Islamic Republic of); Gholami, Amin [Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Asoodeh, Mojtaba [Islamic Azad University, Birjand (Iran, Islamic Republic of)

    2014-03-15

    Bubble point pressure is a critical pressure-volume-temperature (PVT) property of reservoir fluid, which plays an important role in almost all tasks involved in reservoir and production engineering. We developed two sophisticated models to estimate bubble point pressure from gas specific gravity, oil gravity, solution gas oil ratio, and reservoir temperature. Neural network and adaptive neuro-fuzzy inference system are powerful tools for extracting the underlying dependency of a set of input/output data. However, the mentioned tools are in danger of sticking in local minima. The present study went further by optimizing fuzzy logic and neural network models using the genetic algorithm in charge of eliminating the risk of being exposed to local minima. This strategy is capable of significantly improving the accuracy of both neural network and fuzzy logic models. The proposed methodology was successfully applied to a dataset of 153 PVT data points. Results showed that the genetic algorithm can serve the neural network and neuro-fuzzy models from local minima trapping, which might occur through back-propagation algorithm.

  4. Evaluating direction-of-change forecasting: neurofuzzy models vs. neural networks

    NARCIS (Netherlands)

    Bekiros, S.D.; Georgoutsos, D.

    2007-01-01

    This paper investigates the nonlinear predictability of technical trading rules based on a recurrent neural network as well as a neurofuzzy model. The efficiency of the trading strategies was considered upon the prediction of the direction of the market in case of NASDAQ and NIKKEI returns. The samp

  5. Evaluating direction-of-change forecasting: neurofuzzy models vs. neural networks

    NARCIS (Netherlands)

    Bekiros, S.D.; Georgoutsos, D.

    2007-01-01

    This paper investigates the nonlinear predictability of technical trading rules based on a recurrent neural network as well as a neurofuzzy model. The efficiency of the trading strategies was considered upon the prediction of the direction of the market in case of NASDAQ and NIKKEI returns. The samp

  6. Evaluating direction-of-change forecasting: neurofuzzy models vs. neural networks

    NARCIS (Netherlands)

    Bekiros, S.D.; Georgoutsos, D.

    2007-01-01

    This paper investigates the nonlinear predictability of technical trading rules based on a recurrent neural network as well as a neurofuzzy model. The efficiency of the trading strategies was considered upon the prediction of the direction of the market in case of NASDAQ and NIKKEI returns. The

  7. Computer Model of a "Sense of Humour". II. Realization in Neural Networks

    CERN Document Server

    Suslov, I M

    1992-01-01

    The computer realization of a "sense of humour" requires the creation of an algorithm for solving the "linguistic problem", i.e. the problem of recognizing a continuous sequence of polysemantic images. Such algorithm may be realized in the Hopfield model of a neural network after its proper modification.

  8. A Comparison of Neural Networks and Fuzzy Logic Methods for Process Modeling

    Science.gov (United States)

    Cios, Krzysztof J.; Sala, Dorel M.; Berke, Laszlo

    1996-01-01

    The goal of this work was to analyze the potential of neural networks and fuzzy logic methods to develop approximate response surfaces as process modeling, that is for mapping of input into output. Structural response was chosen as an example. Each of the many methods surveyed are explained and the results are presented. Future research directions are also discussed.

  9. Artificial neural network modeling of DDGS flowability with varying process and storage parameters

    Science.gov (United States)

    Neural Network (NN) modeling techniques were used to predict flowability behavior in distillers dried grains with solubles (DDGS) prepared with varying CDS (10, 15, and 20%, wb), drying temperature (100, 200, and 300°C), cooling temperature (-12, 0, and 35°C) and cooling time (0 and 1 month) levels....

  10. Mechanisms of Developmental Regression in Autism and the Broader Phenotype: A Neural Network Modeling Approach

    Science.gov (United States)

    Thomas, Michael S. C.; Knowland, Victoria C. P.; Karmiloff-Smith, Annette

    2011-01-01

    Loss of previously established behaviors in early childhood constitutes a markedly atypical developmental trajectory. It is found almost uniquely in autism and its cause is currently unknown (Baird et al., 2008). We present an artificial neural network model of developmental regression, exploring the hypothesis that regression is caused by…

  11. Using ROC curves to compare neural networks and logistic regression for modeling individual noncatastrophic tree mortality

    Science.gov (United States)

    Susan L. King

    2003-01-01

    The performance of two classifiers, logistic regression and neural networks, are compared for modeling noncatastrophic individual tree mortality for 21 species of trees in West Virginia. The output of the classifier is usually a continuous number between 0 and 1. A threshold is selected between 0 and 1 and all of the trees below the threshold are classified as...

  12. Mechanisms of Developmental Regression in Autism and the Broader Phenotype: A Neural Network Modeling Approach

    Science.gov (United States)

    Thomas, Michael S. C.; Knowland, Victoria C. P.; Karmiloff-Smith, Annette

    2011-01-01

    Loss of previously established behaviors in early childhood constitutes a markedly atypical developmental trajectory. It is found almost uniquely in autism and its cause is currently unknown (Baird et al., 2008). We present an artificial neural network model of developmental regression, exploring the hypothesis that regression is caused by…

  13. Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation.

    Science.gov (United States)

    Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon

    2017-07-03

    Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.

  14. A Deep Neural Network Model for Rainfall Estimation UsingPolarimetric WSR-88DP Radar Observations

    Science.gov (United States)

    Tan, H.; Chandra, C. V.; Chen, H.

    2016-12-01

    Rainfall estimation based on radar measurements has been an important topic for a few decades. Generally, radar rainfall estimation is conducted through parametric algorisms such as reflectivity-rainfall relation (i.e., Z-R relation). On the other hand, neural networks are developed for ground rainfall estimation based on radar measurements. This nonparametric method, which takes into account of both radar observations and rainfall measurements from ground rain gauges, has been demonstrated successfully for rainfall rate estimation. However, the neural network-based rainfall estimation is limited in practice due to the model complexity and structure, data quality, as well as different rainfall microphysics. Recently, the deep learning approach has been introduced in pattern recognition and machine learning areas. Compared to traditional neural networks, the deep learning based methodologies have larger number of hidden layers and more complex structure for data representation. Through a hierarchical learning process, the high level structured information and knowledge can be extracted automatically from low level features of the data. In this paper, we introduce a novel deep neural network model for rainfall estimation based on ground polarimetric radar measurements .The model is designed to capture the complex abstractions of radar measurements at different levels using multiple layers feature identification and extraction. The abstractions at different levels can be used independently or fused with other data resource such as satellite-based rainfall products and/or topographic data to represent the rain characteristics at certain location. In particular, the WSR-88DP radar and rain gauge data collected in Dallas - Fort Worth Metroplex and Florida are used extensively to train the model, and for demonstration purposes. Quantitative evaluation of the deep neural network based rainfall products will also be presented, which is based on an independent rain gauge

  15. Modelling of the Relaxation Least Squares-Based Neural Networks and Its Application

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A relaxation least squares-based learning algorithm for neural networks is proposed. Not only does it have a fast convergence rate, but it involves less computation quantity. Therefore, it is suitable to deal with the case when a network has a large scale but the number of training data is very limited. It has been used in converting furnace process modelling, and impressive result has been obtained.

  16. Nonlinear model identification and adaptive model predictive control using neural networks.

    Science.gov (United States)

    Akpan, Vincent A; Hassapis, George D

    2011-04-01

    This paper presents two new adaptive model predictive control algorithms, both consisting of an on-line process identification part and a predictive control part. Both parts are executed at each sampling instant. The predictive control part of the first algorithm is the Nonlinear Model Predictive Control strategy and the control part of the second algorithm is the Generalized Predictive Control strategy. In the identification parts of both algorithms the process model is approximated by a series-parallel neural network structure which is trained by a recursive least squares (ARLS) method. The two control algorithms have been applied to: 1) the temperature control of a fluidized bed furnace reactor (FBFR) of a pilot plant and 2) the auto-pilot control of an F-16 aircraft. The training and validation data of the neural network are obtained from the open-loop simulation of the FBFR and the nonlinear F-16 aircraft models. The identification and control simulation results show that the first algorithm outperforms the second one at the expense of extra computation time.

  17. Neural networks for modelling and control of a non-linear dynamic system

    OpenAIRE

    Murray-Smith, R.; Neumerkel, D.; Sbarbaro-Hofer, D.

    1992-01-01

    The authors describe the use of neural nets to model and control a nonlinear second-order electromechanical model of a drive system with varying time constants and saturation effects. A model predictive control structure is used. This is compared with a proportional-integral (PI) controller with regard to performance and robustness against disturbances. Two feedforward network types, the multilayer perceptron and radial-basis-function nets, are used to model the system. The problems involved ...

  18. The effect of synchronized area on SOC behavior in a kind of Neural Network Model

    OpenAIRE

    Zhao, Xiao Wei; Chen, Tian Lun

    2000-01-01

    Based on the LISSOM model and the OFC earthquake model, we introduce a self-organized feature map Neural Network model . It displays a "Self Organized Criticality"(SOC) behavior. It can be seen that the feature area (synchronized area) produced by self-organized process brings about some definite effect on SOC behavior and the system evolves into a "partly-synchronized" state. For explaining this phenomena, a quasi-OFC earthquake model is simulated.

  19. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    Science.gov (United States)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  20. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  1. Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-Wei; ZHOU Li-Ming; CHEN Tian-Lun

    2003-01-01

    Based on the standard self-organizing map neural network model and an integrate-and-fire mechanism, we introduce a kind of coupled map lattice system to investigate scale-invariance behavior in the activity of model neural populations. We let the parameter β, which together with α represents the interactive strength between neurons, have different function forms, and we find the function forms and their parameters are very important to our model's avalanche dynamical behaviors, especially to the emergence of different avalanche behaviors in different areas of our system.

  2. Predictive Modeling of Mechanical Properties of Welded Joints Based on Dynamic Fuzzy RBF Neural Network

    Directory of Open Access Journals (Sweden)

    ZHANG Yongzhi

    2016-10-01

    Full Text Available A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the training speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for predicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.

  3. Hybrid Neural Network Approach Based Tool for the Modelling of Photovoltaic Panels

    Directory of Open Access Journals (Sweden)

    Antonino Laudani

    2015-01-01

    Full Text Available A hybrid neural network approach based tool for identifying the photovoltaic one-diode model is presented. The generalization capabilities of neural networks are used together with the robustness of the reduced form of one-diode model. Indeed, from the studies performed by the authors and the works present in the literature, it was found that a direct computation of the five parameters via multiple inputs and multiple outputs neural network is a very difficult task. The reduced form consists in a series of explicit formulae for the support to the neural network that, in our case, is aimed at predicting just two parameters among the five ones identifying the model: the other three parameters are computed by reduced form. The present hybrid approach is efficient from the computational cost point of view and accurate in the estimation of the five parameters. It constitutes a complete and extremely easy tool suitable to be implemented in a microcontroller based architecture. Validations are made on about 10000 PV panels belonging to the California Energy Commission database.

  4. Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.

    Science.gov (United States)

    Han, Hong-Gui; Zhang, Lu; Hou, Ying; Qiao, Jun-Fei

    2016-02-01

    A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.

  5. A Tumor Growth Model with Unmolded Dynamics Based on an Online Feedback Neural Network Model

    Directory of Open Access Journals (Sweden)

    ArashPourhashemi

    2014-01-01

    Full Text Available In this study, we identify tumor growth system by an online feedback neural network model based on back-propagation method. The modeling and identification of nonlinear dynamic systems is the process of developing and improving a mathematical representation of a system using experimental data. So, it is a problem of considerable importance through the use of measured experimental data in biomedical modeling. As is obvious, in biomedical researches it is really difficult and in some cases impossible to implement research on real patient or such a system which is not possible to empirical tests. To deal with, we need sometime a model close to real system in order to forecast dynamic systems so as to perform researches on models and design controller for control of system.

  6. Application of artificial neural networks for response surface modelling in HPLC method development

    Directory of Open Access Journals (Sweden)

    Mohamed A. Korany

    2012-01-01

    Full Text Available This paper discusses the usefulness of artificial neural networks (ANNs for response surface modelling in HPLC method development. In this study, the combined effect of pH and mobile phase composition on the reversed-phase liquid chromatographic behaviour of a mixture of salbutamol (SAL and guaiphenesin (GUA, combination I, and a mixture of ascorbic acid (ASC, paracetamol (PAR and guaiphenesin (GUA, combination II, was investigated. The results were compared with those produced using multiple regression (REG analysis. To examine the respective predictive power of the regression model and the neural network model, experimental and predicted response factor values, mean of squares error (MSE, average error percentage (Er%, and coefficients of correlation (r were compared. It was clear that the best networks were able to predict the experimental responses more accurately than the multiple regression analysis.

  7. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    Science.gov (United States)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  8. Analyzing the scaling of connectivity in neuromorphic hardware and in models of neural networks.

    Science.gov (United States)

    Partzsch, Johannes; Schüffny, René

    2011-06-01

    In recent years, neuromorphic hardware systems have significantly grown in size. With more and more neurons and synapses integrated in such systems, the neural connectivity and its configurability have become crucial design constraints. To tackle this problem, we introduce a generic extended graph description of connection topologies that allows a systematical analysis of connectivity in both neuromorphic hardware and neural network models. The unifying nature of our approach enables a close exchange between hardware and models. For an existing hardware system, the optimally matched network model can be extracted. Inversely, a hardware architecture may be fitted to a particular model network topology with our description method. As a further strength, the extended graph can be used to quantify the amount of configurability for a certain network topology. This is a hardware design variable that has widely been neglected, mainly because of a missing analysis method. To condense our analysis results, we develop a classification for the scaling complexity of network models and neuromorphic hardware, based on the total number of connections and the configurability. We find a gap between several models and existing hardware, making these hardware systems either impossible or inefficient to use for scaled-up network models. In this respect, our analysis results suggest models with locality in their connections as promising approach for tackling this scaling gap.

  9. Evaluating portland cement concrete degradation by sulphate exposure through artificial neural networks modeling

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Douglas Nunes de; Bourguignon, Lucas Gabriel Garcia; Tolentino, Evandro, E-mail: tolentino@timoteo.cefetmg.br [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Timoteo, MG (Brazil); Costa, Rodrigo Moyses, E-mail: rodrigo@moyses.com.br [Universidade de Itauna, Itauna, MG (Brazil); Tello, Cledola Cassia Oliveira de, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nucelar (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    A concrete is durable if it has accomplished the desired service life in the environment in which it is exposed. The durability of concrete materials can be limited as a result of adverse performance of its cement-paste matrix or aggregate constituents under either chemical or physical attack. Among other aggressive chemical exposures, the sulphate attack is an important concern. Water, soils and gases, which contain sulphate, represent a potential threat to the durability of concrete structures. Sulphate attack in concrete leads to the conversion of the hydration products of cement to ettringite, gypsum, and other phases, and also it leads to the destabilization of the primary strength generating calcium silicate hydrate (C-S-H) gel. The formation of ettringite and gypsum is common in cementitious systems exposed to most types of sulphate solutions. The present work presents the application of the neural networks for estimating deterioration of various concrete mixtures due to exposure to sulphate solutions. A neural networks model was constructed, trained and tested using the available database. In general, artificial neural networks could be successfully used in function approximation problems in order to approach the data generation function. Once data generation function is known, artificial neural network structure is tested using data not presented to the network during training. This paper is intent to provide the technical requirements related to the production of a durable concrete to be used in the structures of the Brazilian near-surface repository of radioactive wastes. (author)

  10. COMBINING PCA ANALYSIS AND ARTIFICIAL NEURAL NETWORKS IN MODELLING ENTREPRENEURIAL INTENTIONS OF STUDENTS

    Directory of Open Access Journals (Sweden)

    Marijana Zekić-Sušac

    2013-02-01

    Full Text Available Despite increased interest in the entrepreneurial intentions and career choices of young adults, reliable prediction models are yet to be developed. Two nonparametric methods were used in this paper to model entrepreneurial intentions: principal component analysis (PCA and artificial neural networks (ANNs. PCA was used to perform feature extraction in the first stage of modelling, while artificial neural networks were used to classify students according to their entrepreneurial intentions in the second stage. Four modelling strategies were tested in order to find the most efficient model. Dataset was collected in an international survey on entrepreneurship self-efficacy and identity. Variables describe students’ demographics, education, attitudes, social and cultural norms, self-efficacy and other characteristics. The research reveals benefits from the combination of the PCA and ANNs in modeling entrepreneurial intentions, and provides some ideas for further research.

  11. Study of Fuzzy Neural Networks Model for System Condition Monitoring of AUV

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-jia; ZHANG Ming-jun

    2002-01-01

    A structure equivalent model of fuzzy-neural networks for system condition monitoring is proposed, whose outputs are the condition or the degree of fault occurring in some parts of the system. This network is composed of six layers of neurons,which represent the membership functions, fuzzy rules and outputs respectively. The structure parameters and weights are obtained by processing off-line learning, and the fuzzy rules are derived from the experience. The results of the computer simulation for the autonomous underwater vehicle condition monitoring based on this fuzzy-neural networks show that the network is efficient and feasible in gaining the condition information or the degree of fault of the two main propellers.

  12. neural network based model o work based model of an industrial oil ...

    African Journals Online (AJOL)

    eobe

    Marquardt. Marquardt Back Propagation Algorithm ..... Ioan I. et al “The Optimization of Feed Forward. Neural Networks ... Controller Design of an Industrial Oil-Fired Boiler. Plant” ... Mechanical Engineering Purdue University, 2006. [38].

  13. NARX neural network modeling and robustness analysis of magnetorheological elastomer isolator

    Science.gov (United States)

    Fu, Jie; Liao, Guanyao; Yu, Miao; Li, Peidong; Lai, Junjie

    2016-12-01

    Due to the controllability of the stiffness and damping under the applied magnetic field, magnetorheological elastomer isolator has been proved effective in the field of vibration control. For the realization of vibration control application, an accurate MRE isolator model is a non-trivial task. However, the existing parametric modeling methods are required to identify too many parameters, which are difficult to implement. Moreover, the corresponding inverse dynamic model of the isolator cannot even be obtained by the identified model inversion. Therefore, this paper proposes a nonparametric neural network approach to approximate the dynamic behaviors of magnetorheological elastomer isolator with the characteristics of nonlinearity and hysteresis. Firstly, the dynamic characteristics of the isolator in shear-compression mixed mode are experimentally tested under different loading conditions. Secondly, based on the experimental data, a NARX neural network with three-layer structure is developed to approximate the functional relationship between inputs (displacement, velocity and current) and output (force) of magnetorheological elastomer isolator. Thirdly, the effectiveness of the network model is validated by comparing the predicted force and experimental force. Finally, considering the common occurrence of inputs with noise disturbance in real application, the robustness of the network is also verified for displacement and current inputs with noise disturbance, respectively. The results of the network generalization for experimental data show that the proposed NARX network is more robust and optimal than BP network.

  14. Modeling of mass transfer of Phospholipids in separation process with supercritical CO2 fluid by RBF artificial neural networks

    Science.gov (United States)

    An artificial Radial Basis Function (RBF) neural network model was developed for the prediction of mass transfer of the phospholipids from canola meal in supercritical CO2 fluid. The RBF kind of artificial neural networks (ANN) with orthogonal least squares (OLS) learning algorithm were used for mod...

  15. Programmed cell death during early development of the nervous system, modelled by pruning in a neural network

    NARCIS (Netherlands)

    Vos, JE; vanHeijst, JJ; Greuters, S; Silva, FL; Principe, JC; Almeida, LB

    1997-01-01

    An artificial neural network model is presented in which the development is simulated of a baby's ability to control movement of his forearm around the elbow, until he is capable of goal-directed reaching. The neural network implementation provides the facility to change the number of nodes (or

  16. Application of neural network to humanoid robots-development of co-associative memory model.

    Science.gov (United States)

    Itoh, Kazuko; Miwa, Hiroyasu; Takanobu, Hideaki; Takanishi, Atsuo

    2005-01-01

    We have been studying a system of many harmonic oscillators (neurons) interacting via a chaotic force since 2002. Each harmonic oscillator is driven by chaotic force whose bifurcation parameter is modulated by the position of the harmonic oscillator. Moreover, a system of mutually coupled chaotic neural networks was investigated. Different patterns were stored in each network and the associative memory problem was discussed in these networks. Each network can retrieve the pattern stored in the other network. On the other hand, we have been developing new mechanisms and functions for a humanoid robot with the ability to express emotions and communicate with humans in a human-like manner. We introduced a mental model which consisted of the mental space, the mood, the equations of emotion, the robot personality, the need model, the consciousness model and the behavior model. This type of mental model was implemented in Emotion Expression Humanoid Robot WE-4RII (Waseda Eye No.4 Refined II). In this paper, an associative memory model using mutually coupled chaotic neural networks is proposed for retrieving optimum memory (recognition) in response to a stimulus. We implemented this model in Emotion Expression Humanoid Robot WE-4RII (Waseda Eye No.4 Refined II).

  17. Evaluation model for the implementation results of mine law based on neural network

    Science.gov (United States)

    Gu, Tao; Li, Xu

    2010-04-01

    To evaluate the implementation results of mine safety production law, the evaluation model based on neural network is presented. In this model, 63 indicators which can describe the mine law effectively are proposed. The evaluation system is developed by using the model and the 63 indicators. The evaluation results show that the proposed method has high accuracy. We can effectively estimate the score of one mine for its carrying out the safety law. The estimate results are of scientific credibility and impartiality.

  18. A Comparison of Energy Consumption Prediction Models Based on Neural Networks of a Bioclimatic Building

    Directory of Open Access Journals (Sweden)

    Hamid R. Khosravani

    2016-01-01

    Full Text Available Energy consumption has been increasing steadily due to globalization and industrialization. Studies have shown that buildings are responsible for the biggest proportion of energy consumption; for example in European Union countries, energy consumption in buildings represents around 40% of the total energy consumption. In order to control energy consumption in buildings, different policies have been proposed, from utilizing bioclimatic architectures to the use of predictive models within control approaches. There are mainly three groups of predictive models including engineering, statistical and artificial intelligence models. Nowadays, artificial intelligence models such as neural networks and support vector machines have also been proposed because of their high potential capabilities of performing accurate nonlinear mappings between inputs and outputs in real environments which are not free of noise. The main objective of this paper is to compare a neural network model which was designed utilizing statistical and analytical methods, with a group of neural network models designed benefiting from a multi objective genetic algorithm. Moreover, the neural network models were compared to a naïve autoregressive baseline model. The models are intended to predict electric power demand at the Solar Energy Research Center (Centro de Investigación en Energía SOLar or CIESOL in Spanish bioclimatic building located at the University of Almeria, Spain. Experimental results show that the models obtained from the multi objective genetic algorithm (MOGA perform comparably to the model obtained through a statistical and analytical approach, but they use only 0.8% of data samples and have lower model complexity.

  19. Hybrid Hot Strip Rolling Force Prediction using a Bayesian Trained Artificial Neural Network and Analytical Models

    OpenAIRE

    Abdelkrim Moussaoui; Yacine Selaimia; Hadj A. Abbassi

    2006-01-01

    The authors discuss the combination of an Artificial Neural Network (ANN) with analytical models to improve the performance of the prediction model of finishing rolling force in hot strip rolling mill process. The suggested model was implemented using Bayesian Evidence based training algorithm. It was found that the Bayesian Evidence based approach provided a superior and smoother fit to the real rolling mill data. Completely independent set of real rolling data were used to evaluate the capa...

  20. Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia

    OpenAIRE

    2011-01-01

    Rainfall is considered as one of the major component of the hydrological process, it takes significant part of evaluating drought and flooding events. Therefore, it is important to have accurate model for rainfall forecasting. Recently, several data-driven modeling approaches have been investigated to perform such forecasting task such as Multi-Layer Perceptron Neural Networks (MLP-NN). In fact, the rainfall time series modeling involves an important temporal dimension. On the other ha...

  1. Development of distributed topographical forecasting model for wind resource assessment using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, P.B. [Green Life Energy Solutions LLP, Secunderabad (India); Rao, S.S. [National Institute of Technology. Dept. of Mechanical Engineering, Warangal (India); Reddy, K.H. [JNT Univ.. Dept. of Mechanical Engineering, Anantapur (India)

    2012-07-01

    Economics of wind power projects largely depend on the availability of wind power density. Wind resource assessment is a study estimating wind speeds and wind power densities in the region under consideration. The accuracy and reliability of data sets comprising of wind speeds and wind power densities at different heights per topographic region characterized by elevation or mean sea level, is important for wind power projects. Indian Wind Resource Assessment program conducted in 80's consisted of wind data measured by monitoring stations at different topographies in order to measure wind power density values at 25 and 50 meters above the ground level. In this paper, an attempt has been made to assess wind resource at a given location using artificial neural networks. Existing wind resource data has been used to train the neural networks. Location topography (characterized by longitude, latitude and mean sea level), air density, mean annual wind speed (MAWS) are used as inputs to the neural network. Mean annual wind power density (MAWPD) in watt/m{sup 2} is predicted for a new topographic location. Simple back propagation based neural network has been found to be sufficient for predicting these values with suitable accuracy. This model is closely linked to the problem of wind energy forecasting considering the variations of specific atmospheric variables with time horizons. This model will help the wind farm developers to have an initial estimation of the wind energy potential at a particular topography. (Author)

  2. On the relationship between deterministic and probabilistic directed Graphical models: from Bayesian networks to recursive neural networks.

    Science.gov (United States)

    Baldi, Pierre; Rosen-Zvi, Michal

    2005-10-01

    Machine learning methods that can handle variable-size structured data such as sequences and graphs include Bayesian networks (BNs) and Recursive Neural Networks (RNNs). In both classes of models, the data is modeled using a set of observed and hidden variables associated with the nodes of a directed acyclic graph. In BNs, the conditional relationships between parent and child variables are probabilistic, whereas in RNNs they are deterministic and parameterized by neural networks. Here, we study the formal relationship between both classes of models and show that when the source nodes variables are observed, RNNs can be viewed as limits, both in distribution and probability, of BNs with local conditional distributions that have vanishing covariance matrices and converge to delta functions. Conditions for uniform convergence are also given together with an analysis of the behavior and exactness of Belief Propagation (BP) in 'deterministic' BNs. Implications for the design of mixed architectures and the corresponding inference algorithms are briefly discussed.

  3. Using System Dynamic Model and Neural Network Model to Analyse Water Scarcity in Sudan

    Science.gov (United States)

    Li, Y.; Tang, C.; Xu, L.; Ye, S.

    2017-07-01

    Many parts of the world are facing the problem of Water Scarcity. Analysing Water Scarcity quantitatively is an important step to solve the problem. Water scarcity in a region is gauged by WSI (water scarcity index), which incorporate water supply and water demand. To get the WSI, Neural Network Model and SDM (System Dynamic Model) that depict how environmental and social factors affect water supply and demand are developed to depict how environmental and social factors affect water supply and demand. The uneven distribution of water resource and water demand across a region leads to an uneven distribution of WSI within this region. To predict WSI for the future, logistic model, Grey Prediction, and statistics are applied in predicting variables. Sudan suffers from severe water scarcity problem with WSI of 1 in 2014, water resource unevenly distributed. According to the result of modified model, after the intervention, Sudan’s water situation will become better.

  4. Nonlinear model predictive control with guaraneed stability based on pesudolinear neural networks

    Institute of Scientific and Technical Information of China (English)

    WANG Yongji; WANG Hong

    2004-01-01

    A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor. It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.

  5. Neural networks and graph theory

    Institute of Scientific and Technical Information of China (English)

    许进; 保铮

    2002-01-01

    The relationships between artificial neural networks and graph theory are considered in detail. The applications of artificial neural networks to many difficult problems of graph theory, especially NP-complete problems, and the applications of graph theory to artificial neural networks are discussed. For example graph theory is used to study the pattern classification problem on the discrete type feedforward neural networks, and the stability analysis of feedback artificial neural networks etc.

  6. One Prediction Model Based on BP Neural Network for Newcastle Disease

    Science.gov (United States)

    Wang, Hongbin; Gong, Duqiang; Xiao, Jianhua; Zhang, Ru; Li, Lin

    The purpose of this paper is to investigate the correlation between meteorological factors and Newcastle disease incidence, and to determine the key factors that affect Newcastle disease. Having built BP neural network forecasting model by Matlab 7.0 software, we tested the performance of the model according to the coefficient of determination (R2) and absolute values of the difference between predictive value and practical incidence. The result showed that 6 kinds of meteorological factors determined, and the model's coefficient of determination is 0.760, and the performance of the model is very good. Finally, we build Newcastle disease forecasting model, and apply BP neural network theory in animal disease forecasting research firstly.

  7. Modeling the thermotaxis behavior of C.elegans based on the artificial neural network.

    Science.gov (United States)

    Li, Mingxu; Deng, Xin; Wang, Jin; Chen, Qiaosong; Tang, Yun

    2016-07-03

    ASBTRACT This research aims at modeling the thermotaxis behavior of C.elegans which is a kind of nematode with full clarified neuronal connections. Firstly, this work establishes the motion model which can perform the undulatory locomotion with turning behavior. Secondly, the thermotaxis behavior is modeled by nonlinear functions and the nonlinear functions are learned by artificial neural network. Once the artificial neural networks have been well trained, they can perform the desired thermotaxis behavior. Last, several testing simulations are carried out to verify the effectiveness of the model for thermotaxis behavior. This work also analyzes the different performances of the model under different environments. The testing results reveal the essence of the thermotaxis of C.elegans to some extent, and theoretically support the research on the navigation of the crawling robots.

  8. Neural Network modeling of forward and inverse behavior of rotary MR damper

    DEFF Research Database (Denmark)

    Bhowmik, Subrata; Høgsberg, Jan Becker; Weber, Felix

    2010-01-01

    Magneto-rheological (MR) dampers have received considerable attention within the last decades, mainly because of their design simplicity, low power requirements, large force range and robustness. The most common models to describe the dynamic MR damper behavior are the Bouc-Wen model, the Lu...... of nonlinear problems. The present paper concerns the nonparametric neural network modeling of the dynamic behavior of a rotary MR damper. A rotary type MR damper consists of a rotating disk which is enclosed in a metallic housing filled with the MR fluid which is operated in shear mode. The dissipative torque......Gre friction model and the Dahl friction model. However, these mathematical approaches might be complicated due to the high degree of nonlinearity in the system under consideration. From a computational point of view the nonparametric neural network technique is very versatile in connection with most types...

  9. Modeling the thermotaxis behavior of C.elegans based on the artificial neural network

    Science.gov (United States)

    Li, Mingxu; Deng, Xin; Wang, Jin; Chen, Qiaosong; Tang, Yun

    2016-01-01

    ASBTRACT This research aims at modeling the thermotaxis behavior of C.elegans which is a kind of nematode with full clarified neuronal connections. Firstly, this work establishes the motion model which can perform the undulatory locomotion with turning behavior. Secondly, the thermotaxis behavior is modeled by nonlinear functions and the nonlinear functions are learned by artificial neural network. Once the artificial neural networks have been well trained, they can perform the desired thermotaxis behavior. Last, several testing simulations are carried out to verify the effectiveness of the model for thermotaxis behavior. This work also analyzes the different performances of the model under different environments. The testing results reveal the essence of the thermotaxis of C.elegans to some extent, and theoretically support the research on the navigation of the crawling robots. PMID:27286293

  10. RECURRENT NEURAL NETWORK MODEL BASED ON PROJECTIVE OPERATOR AND ITS APPLICATION TO OPTIMIZATION PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The recurrent neural network (RNN) model based on projective operator was studied. Different from the former study, the value region of projective operator in the neural network in this paper is a general closed convex subset of n-dimensional Euclidean space and it is not a compact convex set in general, that is, the value region of projective operator is probably unbounded. It was proved that the network has a global solution and its solution trajectory converges to some equilibrium set whenever objective function satisfies some conditions. After that, the model was applied to continuously differentiable optimization and nonlinear or implicit complementarity problems. In addition, simulation experiments confirm the efficiency of the RNN.

  11. Two-dimensional magnetic modeling of ferromagnetic materials by using a neural networks based hybrid approach

    Energy Technology Data Exchange (ETDEWEB)

    Cardelli, E.; Faba, A. [Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia (Italy); Laudani, A.; Lozito, G.M.; Riganti Fulginei, F.; Salvini, A. [Department of Engineering, Roma Tre University, Via V. Volterra 62, 00146 Rome (Italy)

    2016-04-01

    This paper presents a hybrid neural network approach to model magnetic hysteresis at macro-magnetic scale. That approach aims to be coupled together with numerical treatments of magnetic hysteresis such as FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, allowing a complete computer simulation with acceptable run times. The proposed Hybrid Neural System consists of four inputs representing the magnetic induction and magnetic field components at each time step and it is trained by 2D and scalar measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the Hybrid Neural System returns the predicted value of the field H at the same time step. Within the Hybrid Neural System, a suitably trained neural network is used for predicting the hysteretic behavior of the material to be modeled. Validations with experimental tests and simulations for symmetric, non-symmetric and minor loops are presented.

  12. Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks

    Directory of Open Access Journals (Sweden)

    J. C. Ochoa-Rivera

    2002-01-01

    Full Text Available A model for multivariate streamflow generation is presented, based on a multilayer feedforward neural network. The structure of the model results from two components, the neural network (NN deterministic component and a random component which is assumed to be normally distributed. It is from this second component that the model achieves the ability to incorporate effectively the uncertainty associated with hydrological processes, making it valuable as a practical tool for synthetic generation of streamflow series. The NN topology and the corresponding analytical explicit formulation of the model are described in detail. The model is calibrated with a series of monthly inflows to two reservoir sites located in the Tagus River basin (Spain, while validation is performed through estimation of a set of statistics that is relevant for water resources systems planning and management. Among others, drought and storage statistics are computed and compared for both the synthetic and historical series. The performance of the NN-based model was compared to that of a standard autoregressive AR(2 model. Results show that NN represents a promising modelling alternative for simulation purposes, with interesting potential in the context of water resources systems management and optimisation. Keywords: neural networks, perceptron multilayer, error backpropagation, hydrological scenario generation, multivariate time-series..

  13. Neural Network and Regression Soft Model Extended for PAX-300 Aircraft Engine

    Science.gov (United States)

    Patnaik, Surya N.; Hopkins, Dale A.

    2002-01-01

    In fiscal year 2001, the neural network and regression capabilities of NASA Glenn Research Center's COMETBOARDS design optimization testbed were extended to generate approximate models for the PAX-300 aircraft engine. The analytical model of the engine is defined through nine variables: the fan efficiency factor, the low pressure of the compressor, the high pressure of the compressor, the high pressure of the turbine, the low pressure of the turbine, the operating pressure, and three critical temperatures (T(sub 4), T(sub vane), and T(sub metal)). Numerical Propulsion System Simulation (NPSS) calculations of the specific fuel consumption (TSFC), as a function of the variables can become time consuming, and numerical instabilities can occur during these design calculations. "Soft" models can alleviate both deficiencies. These approximate models are generated from a set of high-fidelity input-output pairs obtained from the NPSS code and a design of the experiment strategy. A neural network and a regression model with 45 weight factors were trained for the input/output pairs. Then, the trained models were validated through a comparison with the original NPSS code. Comparisons of TSFC versus the operating pressure and of TSFC versus the three temperatures (T(sub 4), T(sub vane), and T(sub metal)) are depicted in the figures. The overall performance was satisfactory for both the regression and the neural network model. The regression model required fewer calculations than the neural network model, and it produced marginally superior results. Training the approximate methods is time consuming. Once trained, the approximate methods generated the solution with only a trivial computational effort, reducing the solution time from hours to less than a minute.

  14. Improved ultrasonic differentiation model for structural coal types based on neural network

    Institute of Scientific and Technical Information of China (English)

    TIAN Zi-jian; WANG Fu-zhong; LI Tao; BAI Shan-shan

    2009-01-01

    In order to solve the difficulty of detailed recognition of subdivisions of structural coal types, a differentiation model that combines BP neural network with an ultrasonic reflection method is proposed. Structural coal types are recognized based on a suit-able consideration of ultrasonic speed, an ultrasonic attenuation coefficient, characteristics of ultrasonic transmission and other parameters relating to structural coal types. We have focused on a computational model of ultrasonic speed, attenuation coefficient in coal and differentiation algorithm of structural coal types based on a BP neural network. Experiments demonstrate that the model can distinguish structural coal types effectively. It is important for the improved ultrasonic differentiation model to predict coal and gas outbursts.

  15. Establishment of constitutive relationship model for 2519 aluminum alloy based on BP artificial neural network

    Institute of Scientific and Technical Information of China (English)

    LIN Qi-quan; PENG Da-shu; ZHU Yuan-zhi

    2005-01-01

    An isothermal compressive experiment using Gleeble 1500 thermal simulator was studied to acquire flow stress at different deformation temperatures, strains and strain rates. The artificial neural networks with the error back propagation(BP) algorithm was used to establish constitutive model of 2519 aluminum alloy based on the experiment data. The model results show that the systematical error is small(δ=3.3%) when the value of objective function is 0.2, the number of nodes in the hidden layer is 5 and the learning rate is 0.1. Flow stresses of the material under various thermodynamic conditions are predicted by the neural network model, and the predicted results correspond with the experimental results. A knowledge-based constitutive relation model is developed.

  16. Modeling, Optimization and simulation of Rotary Furnace using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Dr. R, K. Jain,

    2011-04-01

    Full Text Available This paper deals with modeling and simulation of LDO fired rotary furnace using feed forward modeling method of artificial neural network (ANN.The authors conducted experimental investigations onfuel consumption in a rotary furnace in an industry. It was observed that 6% oxygen enrichment of the air preheated up to 4600C simultaneously with reduction of air volume to 75% of its theoretical requirement lowered the specific fuel consumption to 0.260 lit/kg..The compact heat exchanger with 533 fins was used for preheating the air. Accordingly the emission level was also considerably reduced. The feed forward modeling method of artificial neural network contained in MAT LAB software was used for modeling andoptimization of specific fuel consumption. The percentage variation, between actual experimental data and same data when simulated is +1.730%, and other feasible simulated datas is +6.192%,-3.038%,-5.692%,and+0.115%which is fairly acceptable.

  17. Application of BP Neural Network Algorithm in Traditional Hydrological Model for Flood Forecasting

    Directory of Open Access Journals (Sweden)

    Jianjin Wang

    2017-01-01

    Full Text Available Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters. Current hydrological models are either purely knowledge-based or data-driven. A combination of data-driven method (artificial neural networks in this paper and knowledge-based method (traditional hydrological model may booster simulation accuracy. In this study, we proposed a new back-propagation (BP neural network algorithm and applied it in the semi-distributed Xinanjiang (XAJ model. The improved hydrological model is capable of updating the flow forecasting error without losing the leading time. The proposed method was tested in a real case study for both single period corrections and real-time corrections. The results reveal that the proposed method could significantly increase the accuracy of flood forecasting and indicate that the global correction effect is superior to the second-order autoregressive correction method in real-time correction.

  18. A neural network based wake model for small wind turbine siting near obstacles

    Science.gov (United States)

    Brunskill, Andrew William

    Many potential small wind turbine locations are near obstacles such as buildings and shelterbelts, which can have a significant, detrimental effect on the local wind climate. This thesis describes the creation of a new model which can predict the wind speed, turbulence intensity, and wind power density at any point in an obstacle's region of influence, relative to unsheltered conditions. Artificial neural networks were used to learn the relationship between an obstacle's characteristics and its effects on the local wind. The neural network was trained using measurements collected in the wakes of scale models exposed to a simulated atmospheric boundary layer in a wind tunnel. A field experiment was conducted to validate the wind tunnel measurements. Model predictions are most accurate in the far wake region. The estimated mean uncertainties associated with model predictions of velocity deficit, power density deficit, and turbulence intensity excess are 5.0%, 15%, and 12.8%, respectively.

  19. Modeling and Simulation of Road Traffic Noise Using Artificial Neural Network and Regression.

    Science.gov (United States)

    Honarmand, M; Mousavi, S M

    2014-04-01

    Modeling and simulation of noise pollution has been done in a large city, where the population is over 2 millions. Two models of artificial neural network and regression were developed to predict in-city road traffic noise pollution with using the data of noise measurements and vehicle counts at three points of the city for a period of 12 hours. The MATLAB and DATAFIT softwares were used for simulation. The predicted results of noise level were compared with the measured noise levels in three stations. The values of normalized bias, sum of squared errors, mean of squared errors, root mean of squared errors, and squared correlation coefficient calculated for each model show the results of two models are suitable, and the predictions of artificial neural network are closer to the experimental data.

  20. H∞ output tracking control of discrete-time nonlinear systems via standard neural network models.

    Science.gov (United States)

    Liu, Meiqin; Zhang, Senlin; Chen, Haiyang; Sheng, Weihua

    2014-10-01

    This brief proposes an output tracking control for a class of discrete-time nonlinear systems with disturbances. A standard neural network model is used to represent discrete-time nonlinear systems whose nonlinearity satisfies the sector conditions. H∞ control performance for the closed-loop system including the standard neural network model, the reference model, and state feedback controller is analyzed using Lyapunov-Krasovskii stability theorem and linear matrix inequality (LMI) approach. The H∞ controller, of which the parameters are obtained by solving LMIs, guarantees that the output of the closed-loop system closely tracks the output of a given reference model well, and reduces the influence of disturbances on the tracking error. Three numerical examples are provided to show the effectiveness of the proposed H∞ output tracking design approach.

  1. Multiple Linear Regression Model Based on Neural Network and Its Application in the MBR Simulation

    Directory of Open Access Journals (Sweden)

    Chunqing Li

    2012-01-01

    Full Text Available The computer simulation of the membrane bioreactor MBR has become the research focus of the MBR simulation. In order to compensate for the defects, for example, long test period, high cost, invisible equipment seal, and so forth, on the basis of conducting in-depth study of the mathematical model of the MBR, combining with neural network theory, this paper proposed a three-dimensional simulation system for MBR wastewater treatment, with fast speed, high efficiency, and good visualization. The system is researched and developed with the hybrid programming of VC++ programming language and OpenGL, with a multifactor linear regression model of affecting MBR membrane fluxes based on neural network, applying modeling method of integer instead of float and quad tree recursion. The experiments show that the three-dimensional simulation system, using the above models and methods, has the inspiration and reference for the future research and application of the MBR simulation technology.

  2. Neural Networks Based Modelling of Traffic Accidents in Interurban Rural Highways, Duzce Sampling

    Science.gov (United States)

    Ozgan, Ercan; Demirci, Recep

    this study, alternatively, Artificial Neural Network (ANN) based modelling of traffic accidents on two line interurban rural highways in terms of number of accidents; injuries and dead have been presented. This study was conducted for D100/11 state highway section in Duzce. In this section of the highway, totally 783 traffic accidents occurred and 1396 vehicles involved in these accidents between 2002 and 2006 years. Using traffic accident reports data, ANN was applied for modelling of traffic accidents with respect to distance and months. As a result, it was observed that there was a perfect fit between the simulation results and actual data of accidents and the created neural network model of accidents resembles the actual data. Therefore, the developed model could be an alternative method for predictions of traffic accidents on interurban rural highways.

  3. Comparative analysis of regression and artificial neural network models for wind speed prediction

    Science.gov (United States)

    Bilgili, Mehmet; Sahin, Besir

    2010-11-01

    In this study, wind speed was modeled by linear regression (LR), nonlinear regression (NLR) and artificial neural network (ANN) methods. A three-layer feedforward artificial neural network structure was constructed and a backpropagation algorithm was used for the training of ANNs. To get a successful simulation, firstly, the correlation coefficients between all of the meteorological variables (wind speed, ambient temperature, atmospheric pressure, relative humidity and rainfall) were calculated taking two variables in turn for each calculation. All independent variables were added to the simple regression model. Then, the method of stepwise multiple regression was applied for the selection of the “best” regression equation (model). Thus, the best independent variables were selected for the LR and NLR models and also used in the input layer of the ANN. The results obtained by all methods were compared to each other. Finally, the ANN method was found to provide better performance than the LR and NLR methods.

  4. Evaluation of Feature Selection Methods for Predictive Modeling Using Neural Networks in Credits Scoring

    Directory of Open Access Journals (Sweden)

    Raghavendra B. K

    2010-11-01

    Full Text Available A credit-risk evaluation decision involves processing huge volumes of raw data, and hence requires powerful data mining tools. Several techniques that were developed in machine learning have been used for financial credit-risk evaluation decisions. Data mining is the process of finding patterns and relations in large databases. Neural Networks are one of the popular tools for building predictive models in data mining. The major drawback of neural network is the curse of dimensionality which requires optimal feature subset. Feature selection is an important topic of research in data mining. Feature selection is the problem of choosing a small subset of features that optimally is necessary and sufficient to describe the target concept. In this research an attempt has been made to investigate the preprocessing framework for feature selection in credit scoring using neural network. Feature selection techniques like best first search, info gain etc. methods have been evaluated for the effectiveness of the classification of the risk groups on publicly available data sets. In particular, German, Australian, and Japanese credit rating data sets have been used for evaluation. The results have been conclusive about the effectiveness of feature selection for neural networks and validate the hypothesis of the research.

  5. Models of neural networks temporal aspects of coding and information processing in biological systems

    CERN Document Server

    Hemmen, J; Schulten, Klaus

    1994-01-01

    Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding through coherent firing of the neurons and functional feedback. Information coding through coherent neuronal firing exploits time as a cardinal degree of freedom. This capacity of a neural network rests on the fact that the neuronal action potential is a short, say 1 ms, spike, localized in space and time. Spatial as well as temporal correlations of activity may represent different states of a network. In particular, temporal correlations of activity may express that neurons process the same "object" of, for example, a visual scene by spiking at the very same time. The traditional description of a neural network through a firing rate, the famous S-shaped curve, presupposes a wide time window of, say, at least 100 ms. It thus fails to exploit the capacity to "bind" sets of coherently firing neurons for the purpose of both scene segmentation and figure-ground segregatio...

  6. Modeling the cooling performance of vortex tube using a genetic algorithm-based artificial neural network

    Directory of Open Access Journals (Sweden)

    Pouraria Hassan

    2016-01-01

    Full Text Available In this study, artificial neural networks (ANNs have been used to model the effects of four important parameters consist of the ratio of the length to diameter(L/D, the ratio of the cold outlet diameter to the tube diameter(d/D, inlet pressure(P, and cold mass fraction (Y on the cooling performance of counter flow vortex tube. In this approach, experimental data have been used to train and validate the neural network model with MATLAB software. Also, genetic algorithm (GA has been used to find the optimal network architecture. In this model, temperature drop at the cold outlet has been considered as the cooling performance of the vortex tube. Based on experimental data, cooling performance of the vortex tube has been predicted by four inlet parameters (L/D, d/D, P, Y. The results of this study indicate that the genetic algorithm-based artificial neural network model is capable of predicting the cooling performance of vortex tube in a wide operating range and with satisfactory precision.

  7. Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks

    Science.gov (United States)

    Hargraves, Rosalyn Hobson

    2017-01-01

    Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model. PMID:28250804

  8. Exact computation of the maximum-entropy potential of spiking neural-network models.

    Science.gov (United States)

    Cofré, R; Cessac, B

    2014-05-01

    Understanding how stimuli and synaptic connectivity influence the statistics of spike patterns in neural networks is a central question in computational neuroscience. The maximum-entropy approach has been successfully used to characterize the statistical response of simultaneously recorded spiking neurons responding to stimuli. However, in spite of good performance in terms of prediction, the fitting parameters do not explain the underlying mechanistic causes of the observed correlations. On the other hand, mathematical models of spiking neurons (neuromimetic models) provide a probabilistic mapping between the stimulus, network architecture, and spike patterns in terms of conditional probabilities. In this paper we build an exact analytical mapping between neuromimetic and maximum-entropy models.

  9. Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks.

    Science.gov (United States)

    Chande, Ruchi D; Hargraves, Rosalyn Hobson; Ortiz-Robinson, Norma; Wayne, Jennifer S

    2017-01-01

    Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.

  10. Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ruchi D. Chande

    2017-01-01

    Full Text Available Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.

  11. Spin glasses and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Parga, N. (Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche; Universidad Nacional de Cuyo, San Carlos de Bariloche (Argentina). Inst. Balseiro)

    1989-07-01

    The mean-field theory of spin glass models has been used as a prototype of systems with frustration and disorder. One of the most interesting related systems are models of associative memories. In these lectures we review the main concepts developed to solve the Sherrington-Kirkpatrick model and its application to neural networks. (orig.).

  12. Condition monitoring of oil-impregnated paper bushings using extension neural network, Gaussian mixture and hidden Markov models

    CSIR Research Space (South Africa)

    Miya, WS

    2008-10-01

    Full Text Available In this paper, a comparison between Extension Neural Network (ENN), Gaussian Mixture Model (GMM) and Hidden Markov model (HMM) is conducted for bushing condition monitoring. The monitoring process is a two-stage implementation of a classification...

  13. Improved Calibration of Near-Infrared Spectra by Using Ensembles of Neural Network Models

    OpenAIRE

    Ukil, A.; Bernasconi, J.; Braendle, H.; Buijs, H.; Bonenfant, S.

    2015-01-01

    IR or near-infrared (NIR) spectroscopy is a method used to identify a compound or to analyze the composition of a material. Calibration of NIR spectra refers to the use of the spectra as multivariate descriptors to predict concentrations of the constituents. To build a calibration model, state-of-the-art software predominantly uses linear regression techniques. For nonlinear calibration problems, neural network-based models have proved to be an interesting alternative. In this paper, we propo...

  14. A Wavelet Neural Network Hybrid Model for Monthly Ammonia Forecasting in River Water

    OpenAIRE

    2013-01-01

    Forecasting water quality is always an effective approach for water environmental management. This study presents a combined Wavelet transform (WA) and Artificial Neural Network (ANN) model for monthly ammonia nitrogen series prediction in river water. The WA decomposed original time series into different subseries, in which the most significant one was chosen as the training data instead of the original series. Compared to the traditional ANN, the WA-ANN models were found more accurate and r...

  15. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters

    OpenAIRE

    Wang, Fei; Mi, Zengqiang; Su, Shi; Zhao, Hongshan

    2012-01-01

    Short-term solar irradiance forecasting (STSIF) is of great significance for the optimal operation and power predication of grid-connected photovoltaic (PV) plants. However, STSIF is very complex to handle due to the random and nonlinear characteristics of solar irradiance under changeable weather conditions. Artificial Neural Network (ANN) is suitable for STSIF modeling and many research works on this topic are presented, but the conciseness and robustness of the existing models still need t...

  16. Predicting musically induced emotions from physiological inputs: Linear and neural network models

    Directory of Open Access Journals (Sweden)

    Frank A. Russo

    2013-08-01

    Full Text Available Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of 'felt' emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants – heart rate, respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a nonlinear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The nonlinear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the nonlinear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  17. Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation

    NARCIS (Netherlands)

    Vos, de N.J.; Rientjes, T.H.M.

    2005-01-01

    The application of Artificial Neural Networks (ANNs) in rainfall-runoff modelling needs to be researched more extensively in order to appreciate and fulfil the potential of this modelling approach. This paper reports on the application of multi-layer feedforward ANNs for rainfall-runoff modelling of

  18. Forecasting model for the incidence of hepatitis A based on artificial neural network

    Institute of Scientific and Technical Information of China (English)

    Peng Guan; De-Sheng Huang; Bao-Sen Zhou

    2004-01-01

    AIM: To study the application of artificial neural network (ANN) in forecasting the incidence of hepatitis A, which had an autoregression phenomenon.METHODS: The data of the incidence of hepatitis A in Liaoning Province from 1981 to 2001 were obtained from Liaoning Disease Control and Prevention Center. We used the autoregressive integrated moving average (ARIMA)model of time series analysis to determine whether there was any autoregression phenomenon in the data. Then the data of the incidence were switched into [0,1] intervals as the network theoretical output. The data from 1981 to 1997 were used as the training and verifying sets and the data from 1998 to 2001 were made up into the test set.STATISTICA neural network (ST NN) was used to construct,train and simulate the artificial neural network.RESULTS: Twenty-four networks were tested and seven were retained. The best network we found had excellent performance, its regression ratio was 0.73, and its correlatior, was 0.69. There were 2 input variables in the network, one was AR(1), and the other was time. The number of units in hidden layer was 3. In ARIMA time series analysis results, the best model was first order autoregression without difference and smoothness. The total sum square error of the ANN model was 9 090.21, the sum square error of the training set and testing set was 8 377.52 and 712.69,respectively, they were all less than that of ARIMA model.The corresponding value of ARIMA was 12 291.79, 8 944.95and 3 346.84, respectively. The correlation coefficient of nonlinear regression (RNL) of ANN was 0.71, while the RNL of ARIMA linear autoregression model was 0.66.CONCLUSION: ANN is superior to conventional methods in forecasting the incidence of hepatitis A which has an autoregression phenomenon.

  19. The Physics of Neural Networks

    Science.gov (United States)

    Gutfreund, Hanoch; Toulouse, Gerard

    The following sections are included: * Introduction * Historical Perspective * Why Statistical Physics? * Purpose and Outline of the Paper * Basic Elements of Neural Network Models * The Biological Neuron * From the Biological to the Formal Neuron * The Formal Neuron * Network Architecture * Network Dynamics * Basic Functions of Neural Network Models * Associative Memory * Learning * Categorization * Generalization * Optimization * The Hopfield Model * Solution of the Model * The Merit of the Hopfield Model * Beyond the Standard Model * The Gardner Approach * A Microcanonical Formulation * The Case of Biased Patterns * A Canonical Formulation * Constraints on the Synaptic Weights * Learning with Errors * Learning with Noise * Hierarchically Correlated Data and Categorization * Hierarchical Data Structures * Storage of Hierarchical Data Structures * Categorization * Generalization * Learning a Classification Task * The Reference Perceptron Problem * The Contiguity Problem * Discussion - Issues of Relevance * The Notion of Attractors and Modes of Computation * The Nature of Attractors * Temporal versus Spatial Coding * Acknowledgements * References

  20. Neural networks in seismic discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F.U.

    1995-01-01

    Neural networks are powerful and elegant computational tools that can be used in the analysis of geophysical signals. At Lawrence Livermore National Laboratory, we have developed neural networks to solve problems in seismic discrimination, event classification, and seismic and hydrodynamic yield estimation. Other researchers have used neural networks for seismic phase identification. We are currently developing neural networks to estimate depths of seismic events using regional seismograms. In this paper different types of network architecture and representation techniques are discussed. We address the important problem of designing neural networks with good generalization capabilities. Examples of neural networks for treaty verification applications are also described.

  1. Forecasting Exchange Rate Using Neural Networks

    OpenAIRE

    Raksaseree, Sukhita

    2009-01-01

    The artificial neural network models become increasingly popular among researchers and investors since many studies have shown that it has superior performance over the traditional statistical model. This paper aims to investigate the neural network performance in forecasting foreign exchange rates based on backpropagation algorithm. The forecast of Thai Baht against seven currencies are conducted to observe the performance of the neural network models using the performance criteria for both ...

  2. Feature Weight Tuning for Recursive Neural Networks

    OpenAIRE

    2014-01-01

    This paper addresses how a recursive neural network model can automatically leave out useless information and emphasize important evidence, in other words, to perform "weight tuning" for higher-level representation acquisition. We propose two models, Weighted Neural Network (WNN) and Binary-Expectation Neural Network (BENN), which automatically control how much one specific unit contributes to the higher-level representation. The proposed model can be viewed as incorporating a more powerful c...

  3. Particle swarm optimization of a neural network model in a machining process

    Indian Academy of Sciences (India)

    Saurabh Garg; Karali Patra; Surjya K Pal

    2014-06-01

    This paper presents a particle swarm optimization (PSO) technique to train an artificial neural network (ANN) for prediction of flank wear in drilling, and compares the network performance with that of the back propagation neural network (BPNN). This analysis is carried out following a series of experiments employing high speed steel (HSS) drills for drilling on mild steel workpieces, under different sets of cutting conditions and noting the root mean square (RMS) value of spindle motor current as well as the average flank wear in each case. The results show that the PSO trained ANN not only gives better prediction results and reduced computational times compared to the BPNN, it is also a more robust model, being free of getting trapped in local optimum solutions unlike the latter. Besides, it offers the advantages of a straight-forward logic, simple realization and underlying intelligence.

  4. UNIVERSAL APPROXIMATION WITH NON-SIGMOID HIDDEN LAYER ACTIVATION FUNCTIONS BY USING ARTIFICIAL NEURAL NETWORK MODELING

    Directory of Open Access Journals (Sweden)

    R. Murugadoss

    2014-10-01

    Full Text Available Neural networks are modeled on the way the human brain. They are capable of learning and can automatically recognize by skillfully training and design complex relationships and hidden dependencies based on historical example patterns and use this information for forecasting. The main difference, and at the same time is biggest advantage of the model of neural networks over statistical techniques seen that the forecaster the exact functional structure between input and Output variables need not be specified, but this by the system with certain Learning algorithms is "learned" using a kind of threshold logic. Goal of the learning procedure is to define the training phase while those parameters of the network, with Help the network has one of those adequate for the problem behavior. Mathematically, the training phase is an iterative, converging towards a minimum error value process. They identify the processors of the network, minimize the "total error". The currently the most popular and most widely for business applications algorithm is the backpropagation algorithm. This paper opens the black box of Backpropagation networks and makes the optimization process in the network over time and locally comprehensible.

  5. The prediction of brick wall strengths with artificial neural networks model

    Science.gov (United States)

    Demir, Ali; Kumanlioglu, Ahmet Ali

    2017-01-01

    The aim of this study is to predict with Artificial Neural Networks (ANN) shear strength of brick masonry walls. Shear strength of the walls is determined with diagonal shear tests. It is very difficult to determine strengths of brick masonry walls with experimental procedures. Therefore, an Artificial Neural Networks model is developed with data obtained by investigating many papers from literature and experiments carried out by the authors. Finally, a good degree of coherency is obtained between the experimental and predicted data. The model that is developed makes it possible to easily predict shear strength of the masonry walls. Additionally, this model can be continuously trained with new data and its applicability range can easily be expanded.

  6. ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An artificial neural network(ANN) and a self-adjusting fuzzy logic controller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented. The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and the intelligent control for weld seam tracking with FLC. The proposed neural network can produce highly complex nonlinear multi-variable model of the GTAW process that offers the accurate prediction of welding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts the control parameters on-line automatically according to the tracking errors so that the torch position can be controlled accurately.

  7. Comparison of Mathematical Equation and Neural Network Modeling for Drying Kinetic of Mendong in Microwave Oven

    Science.gov (United States)

    Maulidah, Rifa'atul; Purqon, Acep

    2016-08-01

    Mendong (Fimbristylis globulosa) has a potentially industrial application. We investigate a predictive model for heat and mass transfer in drying kinetics during drying a Mendong. We experimentally dry the Mendong by using a microwave oven. In this study, we analyze three mathematical equations and feed forward neural network (FNN) with back propagation to describe the drying behavior of Mendong. Our results show that the experimental data and the artificial neural network model has a good agreement and better than a mathematical equation approach. The best FNN for the prediction is 3-20-1-1 structure with Levenberg- Marquardt training function. This drying kinetics modeling is potentially applied to determine the optimal parameters during mendong drying and to estimate and control of drying process.

  8. Optimization of magnetically driven directional solidification of silicon using artificial neural networks and Gaussian process models

    Science.gov (United States)

    Dropka, Natasha; Holena, Martin

    2017-08-01

    In directional solidification of silicon, the solid-liquid interface shape plays a crucial role for the quality of crystals. The interface shape can be influenced by forced convection using travelling magnetic fields. Up to now, there is no general and explicit methodology to identify the relation and the optimum combination of magnetic and growth parameters e.g., frequency, phase shift, current magnitude and interface deflection in a buoyancy regime. In the present study, 2D CFD modeling was used to generate data for the design and training of artificial neural networks and for Gaussian process modeling. The aim was to quickly assess the complex nonlinear dependences among the parameters and to optimize them for the interface flattening. The first encouraging results are presented and the pros and cons of artificial neural networks and Gaussian process modeling discussed.

  9. A fuzzy neural network model to forecast the percent cloud coverage and cloud top temperature maps

    Directory of Open Access Journals (Sweden)

    Y. Tulunay

    2008-12-01

    Full Text Available Atmospheric processes are highly nonlinear. A small group at the METU in Ankara has been working on a fuzzy data driven generic model of nonlinear processes. The model developed is called the Middle East Technical University Fuzzy Neural Network Model (METU-FNN-M. The METU-FNN-M consists of a Fuzzy Inference System (METU-FIS, a data driven Neural Network module (METU-FNN of one hidden layer and several neurons, and a mapping module, which employs the Bezier Surface Mapping technique. In this paper, the percent cloud coverage (%CC and cloud top temperatures (CTT are forecast one month ahead of time at 96 grid locations. The probable influence of cosmic rays and sunspot numbers on cloudiness is considered by using the METU-FNN-M.

  10. Neural Network Model Of The PXIE RFQ Cooling System and Resonant Frequency Response

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, Auralee [Fermilab; Biedron, Sandra [Colorado State U., Fort Collins; Bowring, Daniel [Fermilab; Chase, Brian [Fermilab; Edelen, Jonathan [Fermilab; Milton, Stephen [Colorado State U., Fort Collins; Steimel, Jim [Fermilab

    2016-06-01

    As part of the PIP-II Injector Experiment (PXIE) accel-erator, a four-vane radio frequency quadrupole (RFQ) accelerates a 30-keV, 1-mA to 10-mA H' ion beam to 2.1 MeV. It is designed to operate at a frequency of 162.5 MHz with arbitrary duty factor, including continuous wave (CW) mode. The resonant frequency is controlled solely by a water-cooling system. We present an initial neural network model of the RFQ frequency response to changes in the cooling system and RF power conditions during pulsed operation. A neural network model will be used in a model predictive control scheme to regulate the resonant frequency of the RFQ.

  11. Avalanches in self-organized critical neural networks: a minimal model for the neural SOC universality class.

    Science.gov (United States)

    Rybarsch, Matthias; Bornholdt, Stefan

    2014-01-01

    The brain keeps its overall dynamics in a corridor of intermediate activity and it has been a long standing question what possible mechanism could achieve this task. Mechanisms from the field of statistical physics have long been suggesting that this homeostasis of brain activity could occur even without a central regulator, via self-organization on the level of neurons and their interactions, alone. Such physical mechanisms from the class of self-organized criticality exhibit characteristic dynamical signatures, similar to seismic activity related to earthquakes. Measurements of cortex rest activity showed first signs of dynamical signatures potentially pointing to self-organized critical dynamics in the brain. Indeed, recent more accurate measurements allowed for a detailed comparison with scaling theory of non-equilibrium critical phenomena, proving the existence of criticality in cortex dynamics. We here compare this new evaluation of cortex activity data to the predictions of the earliest physics spin model of self-organized critical neural networks. We find that the model matches with the recent experimental data and its interpretation in terms of dynamical signatures for criticality in the brain. The combination of signatures for criticality, power law distributions of avalanche sizes and durations, as well as a specific scaling relationship between anomalous exponents, defines a universality class characteristic of the particular critical phenomenon observed in the neural experiments. Thus the model is a candidate for a minimal model of a self-organized critical adaptive network for the universality class of neural criticality. As a prototype model, it provides the background for models that may include more biological details, yet share the same universality class characteristic of the homeostasis of activity in the brain.

  12. Avalanches in self-organized critical neural networks: a minimal model for the neural SOC universality class.

    Directory of Open Access Journals (Sweden)

    Matthias Rybarsch

    Full Text Available The brain keeps its overall dynamics in a corridor of intermediate activity and it has been a long standing question what possible mechanism could achieve this task. Mechanisms from the field of statistical physics have long been suggesting that this homeostasis of brain activity could occur even without a central regulator, via self-organization on the level of neurons and their interactions, alone. Such physical mechanisms from the class of self-organized criticality exhibit characteristic dynamical signatures, similar to seismic activity related to earthquakes. Measurements of cortex rest activity showed first signs of dynamical signatures potentially pointing to self-organized critical dynamics in the brain. Indeed, recent more accurate measurements allowed for a detailed comparison with scaling theory of non-equilibrium critical phenomena, proving the existence of criticality in cortex dynamics. We here compare this new evaluation of cortex activity data to the predictions of the earliest physics spin model of self-organized critical neural networks. We find that the model matches with the recent experimental data and its interpretation in terms of dynamical signatures for criticality in the brain. The combination of signatures for criticality, power law distributions of avalanche sizes and durations, as well as a specific scaling relationship between anomalous exponents, defines a universality class characteristic of the particular critical phenomenon observed in the neural experiments. Thus the model is a candidate for a minimal model of a self-organized critical adaptive network for the universality class of neural criticality. As a prototype model, it provides the background for models that may include more biological details, yet share the same universality class characteristic of the homeostasis of activity in the brain.

  13. Process Neural Networks Theory and Applications

    CERN Document Server

    He, Xingui

    2010-01-01

    "Process Neural Networks - Theory and Applications" proposes the concept and model of a process neural network for the first time, showing how it expands the mapping relationship between the input and output of traditional neural networks, and enhancing the expression capability for practical problems, with broad applicability to solving problems relating to process in practice. Some theoretical problems such as continuity, functional approximation capability, and computing capability, are strictly proved. The application methods, network construction principles, and optimization alg

  14. An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources.

    Science.gov (United States)

    Doulamis, A D; Doulamis, N D; Kollias, S D

    2003-01-01

    Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.

  15. A comparison of corporate distress prediction models in Brazil: hybrid neural networks, logit models and discriminant analysis

    Directory of Open Access Journals (Sweden)

    Juliana Yim

    2009-06-01

    Full Text Available This paper looks at the ability of a relatively new technique, hybrid ANN’s, to predict corporate distress in Brazil. These models are compared with traditional statistical techniques and conventional ANN models. The results suggest that hybrid neural networks outperform all other models in predicting firms in financial distress one year prior to the event. This suggests that for researchers, policymakers and others interested in early warning systems, hybrid networks may be a useful tool for predicting firm failure.

  16. A comparison of corporate distress prediction models in Brazil: hybrid neural networks, logit models and discriminant analysis

    Directory of Open Access Journals (Sweden)

    Juliana Yim

    2005-01-01

    Full Text Available This paper looks at the ability of a relatively new technique, hybrid ANN's, to predict corporate distress in Brazil. These models are compared with traditional statistical techniques and conventional ANN models. The results suggest that hybrid neural networks outperform all other models in predicting firms in financial distress one year prior to the event. This suggests that for researchers, policymakers and others interested in early warning systems, hybrid networks may be a useful tool for predicting firm failure.

  17. Generalized in vitro-in vivo relationship (IVIVR model based on artificial neural networks

    Directory of Open Access Journals (Sweden)

    Mendyk A

    2013-03-01

    Full Text Available Aleksander Mendyk,1 Pawel Tuszynski,1 Sebastian Polak,2 Renata Jachowicz1 1Department of Pharmaceutical Technology and Biopharmaceutics, 2Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland Background: The aim of this study was to develop a generalized in vitro-in vivo relationship (IVIVR model based on in vitro dissolution profiles together with quantitative and qualitative composition of dosage formulations as covariates. Such a model would be of substantial aid in the early stages of development of a pharmaceutical formulation, when no in vivo results are yet available and it is impossible to create a classical in vitro-in vivo correlation (IVIVC/IVIVR. Methods: Chemoinformatics software was used to compute the molecular descriptors of drug substances (ie, active pharmaceutical ingredients and excipients. The data were collected from the literature. Artificial neural networks were used as the modeling tool. The training process was carried out using the 10-fold cross-validation technique. Results: The database contained 93 formulations with 307 inputs initially, and was later limited to 28 in a course of sensitivity analysis. The four best models were introduced into the artificial neural network ensemble. Complete in vivo profiles were predicted accurately for 37.6% of the formulations. Conclusion: It has been shown that artificial neural networks can be an effective predictive tool for constructing IVIVR in an integrated generalized model for various formulations. Because IVIVC/IVIVR is classically conducted for 2–4 formulations and with a single active pharmaceutical ingredient, the approach described here is unique in that it incorporates various active pharmaceutical ingredients and dosage forms into a single model. Thus, preliminary IVIVC/IVIVR can be available without in vivo data, which is impossible using current IVIVC/IVIVR procedures. Keywords: artificial neural networks

  18. Estimation of State Transition Probabilities: A Neural Network Model

    Science.gov (United States)

    Saito, Hiroshi; Takiyama, Ken; Okada, Masato

    2015-12-01

    Humans and animals can predict future states on the basis of acquired knowledge. This prediction of the state transition is important for choosing the best action, and the prediction is only possible if the state transition probability has already been learned. However, how our brains learn the state transition probability is unknown. Here, we propose a simple algorithm for estimating the state transition probability by utilizing the state prediction error. We analytically and numerically confirmed that our algorithm is able to learn the probability completely with an appropriate learning rate. Furthermore, our learning rule reproduced experimentally reported psychometric functions and neural activities in the lateral intraparietal area in a decision-making task. Thus, our algorithm might describe the manner in which our brains learn state transition probabilities and predict future states.

  19. Implementing color transformation across media based on color appearance model by neural networks

    Science.gov (United States)

    Chai, Binghua; Liao, Ningfang; Zhao, Dazun

    2005-02-01

    Interest in color appearance models (CAM) has been greatly stimulated recently by the need in handling digital images. This article demonstrates that a multi-layers feed-forward artificial neural network with the error back-propagation algorithm was used to approximate color appearance model CIECAM02 with different white points and different media. For the prediction of the forward and inverse model respectively, in order to realize accurate mapping, especially to the inverse model, color spaces conversion between input color space and output color space (that is cylindrical coordinates and rectangular coordinates) was implemented before training the neural networks. Meanwhile we approximated the combination of the forward and inverse CIECAM02 models employing a neural network for different conditions including whites (D65 or D50) and media (booth and CRT) in order to realize the color transformation from one medium to another conveniently. The experimental results indicated that the prediction could satisfy the accuracy requirement. So in practice we can choose these two kinds of different prediction ways to meet our need according to different situations.

  20. One day prediction of nighttime VLF amplitudes using nonlinear autoregression and neural network modeling

    Science.gov (United States)

    Santosa, H.; Hobara, Y.

    2017-01-01

    The electric field amplitude of very low frequency (VLF) transmitter from Hawaii (NPM) has been continuously recorded at Chofu (CHF), Tokyo, Japan. The VLF amplitude variability indicates lower ionospheric perturbation in the D region (60-90 km altitude range) around the NPM-CHF propagation path. We carried out the prediction of daily nighttime mean VLF amplitude by using Nonlinear Autoregressive with Exogenous Input Neural Network (NARX NN). The NARX NN model, which was built based on the daily input variables of various physical parameters such as stratospheric temperature, total column ozone, cosmic rays, Dst, and Kp indices possess good accuracy during the model building. The fitted model was constructed within the training period from 1 January 2011 to 4 February 2013 by using three algorithms, namely, Bayesian Neural Network (BRANN), Levenberg Marquardt Neural Network (LMANN), and Scaled Conjugate Gradient (SCG). The LMANN has the largest Pearson correlation coefficient (r) of 0.94 and smallest root-mean-square error (RMSE) of 1.19 dB. The constructed models by using LMANN were applied to predict the VLF amplitude from 5 February 2013 to 31 December 2013. As a result the one step (1 day) ahead predicted nighttime VLF amplitude has the r of 0.93 and RMSE of 2.25 dB. We conclude that the model built according to the proposed methodology provides good predictions of the electric field amplitude of VLF waves for NPM-CHF (midlatitude) propagation path.

  1. River Flow Forecasting Using Neural Networks and Auto-Calibrated NAM Model with Shuffled Complex Evolution

    Science.gov (United States)

    Zakermoshfegh, M.; Ghodsian, M.; Salehi Neishabouri, S. A. A.; Shakiba, M.

    River flow forecasting is required to provide important information on a wide range of cases related to design and operation of river systems. Since there are a lot of parameters with uncertainties and non-linear relationships, the calibration of conceptual or physically-based models is often a difficult and time consuming procedure. So it is preferred to implement a heuristic black box model to perform a non-linear mapping between the input and output spaces without detailed consideration of the internal structure of the physical process. In this study, the capability of artificial neural networks for stream flow forecasting in Kashkan River in West of Iran is investigated and compared to a NAM model which is a lumped conceptual model with shuffled complex evolution algorithm for auto calibration. Multi Layer Perceptron and Radial Basis Function neural networks are introduced and implemented. The results show that the discharge can be more adequately forecasted by Multi Layer Perceptron neural network, compared to other implemented models, in case of both peak discharge and base flow forecasting.

  2. Optimizing the De-Noise Neural Network Model for GPS Time-Series Monitoring of Structures

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2015-09-01

    Full Text Available The Global Positioning System (GPS is recently used widely in structures and other applications. Notwithstanding, the GPS accuracy still suffers from the errors afflicting the measurements, particularly the short-period displacement of structural components. Previously, the multi filter method is utilized to remove the displacement errors. This paper aims at using a novel application for the neural network prediction models to improve the GPS monitoring time series data. Four prediction models for the learning algorithms are applied and used with neural network solutions: back-propagation, Cascade-forward back-propagation, adaptive filter and extended Kalman filter, to estimate which model can be recommended. The noise simulation and bridge’s short-period GPS of the monitoring displacement component of one Hz sampling frequency are used to validate the four models and the previous method. The results show that the Adaptive neural networks filter is suggested for de-noising the observations, specifically for the GPS displacement components of structures. Also, this model is expected to have significant influence on the design of structures in the low frequency responses and measurements’ contents.

  3. Optimal Hydro-Thermal Generation Scheduling Using an Efficient Feedback Neural Network Optimization Model

    Directory of Open Access Journals (Sweden)

    V. Sharma

    2011-08-01

    Full Text Available This study demonstrates the use of a high-performance feedback neural network optimizer based on a new idea of successive approximation for finding the hourly optimal release schedules of interconnected multi-reservoir power system in such a way to minimize the overall cost of thermal generations spanned over the planning period. The main advantages of the proposed neural network optimizer over the existing neural network optimization models are that no dual variables, penalty parameters or lagrange multipliers are required. This network uses a simple structure with the least number of state variables and has better asymptotic stability. For an arbitrarily chosen initial point, the trajectory of the network converges to an optimal solution of the convex nonlinear programming problem. The proposed optimizer has been tested on a nonlinear practical system consisting of a multi-chain cascade of four linked reservoir type hydro-plants and a number of thermal units represented by a single equivalent thermal power plant and so obtained results have been validated using conventional conjugate gradient method and genetic algorithm based approach.

  4. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor.

    Science.gov (United States)

    Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold

    2016-12-01

    In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHVp) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Theoretical Investigation of Optical Computing Based on Neural Network Models.

    Science.gov (United States)

    1987-09-29

    associated output vectors ym. Alternatively, error driven algorithms such as the perceptron or adaline can be used to iteratively train the memory by...from which the state of the entire network can be calculated). The perceptron [21] and adaline [221 algorithms are examples of error driven learning

  6. Artificial neural network model of constitutive relations for shock-prestrained copper

    Institute of Scientific and Technical Information of China (English)

    杨扬; 朱远志; 李正华; 张新明; 杨立斌; 陈志永

    2001-01-01

    Data from the deformation on Split-Hopkinson Bar were used for constructing an artificial neural network model. When putting the thermodynamic parameters of the metals into the trained network model, the corresponding yielding stress can be predicted. The results show that the systematic error is small when the objective function is 0.5, the number of the nodes in the hidden layer is 6 and the learning rate is about 0.1, and the accuracy of the rate-error is less than 3%.

  7. How deals with discrete data for the reduction of simulation models using neural network

    CERN Document Server

    Thomas, Philippe

    2009-01-01

    Simulation is useful for the evaluation of a Master Production/distribution Schedule (MPS). Also, the goal of this paper is the study of the design of a simulation model by reducing its complexity. According to theory of constraints, we want to build reduced models composed exclusively by bottlenecks and a neural network. Particularly a multilayer perceptron, is used. The structure of the network is determined by using a pruning procedure. This work focuses on the impact of discrete data on the results and compares different approaches to deal with these data. This approach is applied to sawmill internal supply chain

  8. A GPU-accelerated cortical neural network model for visually guided robot navigation.

    Science.gov (United States)

    Beyeler, Michael; Oros, Nicolas; Dutt, Nikil; Krichmar, Jeffrey L

    2015-12-01

    Humans and other terrestrial animals use vision to traverse novel cluttered environments with apparent ease. On one hand, although much is known about the behavioral dynamics of steering in humans, it remains unclear how relevant perceptual variables might be represented in the brain. On the other hand, although a wealth of data exists about the neural circuitry that is concerned with the perception of self-motion variables such as the current direction of travel, little research has been devoted to investigating how this neural circuitry may relate to active steering control. Here we present a cortical neural network model for visually guided navigation that has been embodied on a physical robot exploring a real-world environment. The model includes a rate based motion energy model for area V1, and a spiking neural network model for cortical area MT. The model generates a cortical representation of optic flow, determines the position of objects based on motion discontinuities, and combines these signals with the representation of a goal location to produce motor commands that successfully steer the robot around obstacles toward the goal. The model produces robot trajectories that closely match human behavioral data. This study demonstrates how neural signals in a model of cortical area MT might provide sufficient motion information to steer a physical robot on human-like paths around obstacles in a real-world environment, and exemplifies the importance of embodiment, as behavior is deeply coupled not only with the underlying model of brain function, but also with the anatomical constraints of the physical body it controls.

  9. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  10. Probabilistic Models and Generative Neural Networks: Towards an Unified Framework for Modeling Normal and Impaired Neurocognitive Functions.

    Science.gov (United States)

    Testolin, Alberto; Zorzi, Marco

    2016-01-01

    Connectionist models can be characterized within the more general framework of probabilistic graphical models, which allow to efficiently describe complex statistical distributions involving a large number of interacting variables. This integration allows building more realistic computational models of cognitive functions, which more faithfully reflect the underlying neural mechanisms at the same time providing a useful bridge to higher-level descriptions in terms of Bayesian computations. Here we discuss a powerful class of graphical models that can be implemented as stochastic, generative neural networks. These models overcome many limitations associated with classic connectionist models, for example by exploiting unsupervised learning in hierarchical architectures (deep networks) and by taking into account top-down, predictive processing supported by feedback loops. We review some recent cognitive models based on generative networks, and we point out promising research directions to investigate neuropsychological disorders within this approach. Though further efforts are required in order to fill the gap between structured Bayesian models and more realistic, biophysical models of neuronal dynamics, we argue that generative neural networks have the potential to bridge these levels of analysis, thereby improving our understanding of the neural bases of cognition and of pathologies caused by brain damage.

  11. Modeling of batch processes using explicitly time-dependent artificial neural networks.

    Science.gov (United States)

    Ganesh, Botla; Kumar, Vadlagattu Varun; Rani, Kalipatnapu Yamuna

    2014-05-01

    A neural network architecture incorporating time dependency explicitly, proposed recently, for modeling nonlinear nonstationary dynamic systems is further developed in this paper, and three alternate configurations are proposed to represent the dynamics of batch chemical processes. The first configuration consists of L subnets, each having M inputs representing the past samples of process inputs and output; each subnet has a hidden layer with polynomial activation function; the outputs of the hidden layer are combined and acted upon by an explicitly time-dependent modulation function. The outputs of all the subnets are summed to obtain the output prediction. In the second configuration, additional weights are incorporated to obtain a more generalized model. In the third configuration, the subnets are eliminated by incorporating an additional hidden layer consisting of L nodes. Backpropagation learning algorithm is formulated for each of the proposed neural network configuration to determine the weights, the polynomial coefficients, and the modulation function parameters. The modeling capability of the proposed neural network configuration is evaluated by employing it to represent the dynamics of a batch reactor in which a consecutive reaction takes place. The results show that all the three time-varying neural networks configurations are able to represent the batch reactor dynamics accurately, and it is found that the third configuration is exhibiting comparable or better performance over the other two configurations while requiring much smaller number of parameters. The modeling ability of the third configuration is further validated by applying to modeling a semibatch polymerization reactor challenge problem. This paper illustrates that the proposed approach can be applied to represent dynamics of any batch/semibatch process.

  12. Model for a flexible motor memory based on a self-active recurrent neural network.

    Science.gov (United States)

    Boström, Kim Joris; Wagner, Heiko; Prieske, Markus; de Lussanet, Marc

    2013-10-01

    Using recent recurrent network architecture based on the reservoir computing approach, we propose and numerically simulate a model that is focused on the aspects of a flexible motor memory for the storage of elementary movement patterns into the synaptic weights of a neural network, so that the patterns can be retrieved at any time by simple static commands. The resulting motor memory is flexible in that it is capable to continuously modulate the stored patterns. The modulation consists in an approximately linear inter- and extrapolation, generating a large space of possible movements that have not been learned before. A recurrent network of thousand neurons is trained in a manner that corresponds to a realistic exercising scenario, with experimentally measured muscular activations and with kinetic data representing proprioceptive feedback. The network is "self-active" in that it maintains recurrent flow of activation even in the absence of input, a feature that resembles the "resting-state activity" found in the human and animal brain. The model involves the concept of "neural outsourcing" which amounts to the permanent shifting of computational load from higher to lower-level neural structures, which might help to explain why humans are able to execute learned skills in a fluent and flexible manner without the need for attention to the details of the movement.

  13. A hybrid deep neural network and physically based distributed model for river stage prediction

    Science.gov (United States)

    hitokoto, Masayuki; sakuraba, Masaaki

    2016-04-01

    We developed the real-time river stage prediction model, using the hybrid deep neural network and physically based distributed model. As the basic model, 4 layer feed-forward artificial neural network (ANN) was used. As a network training method, the deep learning technique was applied. To optimize the network weight, the stochastic gradient descent method based on the back propagation method was used. As a pre-training method, the denoising autoencoder was used. Input of the ANN model is hourly change of water level and hourly rainfall, output data is water level of downstream station. In general, the desirable input of the ANN has strong correlation with the output. In conceptual hydrological model such as tank model and storage-function model, river discharge is governed by the catchment storage. Therefore, the change of the catchment storage, downstream discharge subtracted from rainfall, can be the potent input candidate of the ANN model instead of rainfall. From this point of view, the hybrid deep neural network and physically based distributed model was developed. The prediction procedure of the hybrid model is as follows; first, downstream discharge was calculated by the distributed model, and then estimates the hourly change of catchment storage form rainfall and calculated discharge as the input of the ANN model, and finally the ANN model was calculated. In the training phase, hourly change of catchment storage can be calculated by the observed rainfall and discharge data. The developed model was applied to the one catchment of the OOYODO River, one of the first-grade river in Japan. The modeled catchment is 695 square km. For the training data, 5 water level gauging station and 14 rain-gauge station in the catchment was used. The training floods, superior 24 events, were selected during the period of 2005-2014. Prediction was made up to 6 hours, and 6 models were developed for each prediction time. To set the proper learning parameters and network

  14. A spiking neural network model of model-free reinforcement learning with high-dimensional sensory input and perceptual ambiguity.

    Science.gov (United States)

    Nakano, Takashi; Otsuka, Makoto; Yoshimoto, Junichiro; Doya, Kenji

    2015-01-01

    A theoretical framework of reinforcement learning plays an important role in understanding action selection in animals. Spiking neural networks provide a theoretically grounded means to test computational hypotheses on neurally plausible algorithms of reinforcement learning through numerical simulation. However, most of these models cannot handle observations which are noisy, or occurred in the past, even though these are inevitable and constraining features of learning in real environments. This class of problem is formally known as partially observable reinforcement learning (PORL) problems. It provides a generalization of reinforcement learning to partially observable domains. In addition, observations in the real world tend to be rich and high-dimensional. In this work, we use a spiking neural network model to approximate the free energy of a restricted Boltzmann machine and apply it to the solution of PORL problems with high-dimensional observations. Our spiking network model solves maze tasks with perceptually ambiguous high-dimensional observations without knowledge of the true environment. An extended model with working memory also solves history-dependent tasks. The way spiking neural networks handle PORL problems may provide a glimpse into the underlying laws of neural information processing which can only be discovered through such a top-down approach.

  15. A Spiking Neural Network Model of Model-Free Reinforcement Learning with High-Dimensional Sensory Input and Perceptual Ambiguity

    Science.gov (United States)

    Nakano, Takashi; Otsuka, Makoto; Yoshimoto, Junichiro; Doya, Kenji

    2015-01-01

    A theoretical framework of reinforcement learning plays an important role in understanding action selection in animals. Spiking neural networks provide a theoretically grounded means to test computational hypotheses on neurally plausible algorithms of reinforcement learning through numerical simulation. However, most of these models cannot handle observations which are noisy, or occurred in the past, even though these are inevitable and constraining features of learning in real environments. This class of problem is formally known as partially observable reinforcement learning (PORL) problems. It provides a generalization of reinforcement learning to partially observable domains. In addition, observations in the real world tend to be rich and high-dimensional. In this work, we use a spiking neural network model to approximate the free energy of a restricted Boltzmann machine and apply it to the solution of PORL problems with high-dimensional observations. Our spiking network model solves maze tasks with perceptually ambiguous high-dimensional observations without knowledge of the true environment. An extended model with working memory also solves history-dependent tasks. The way spiking neural networks handle PORL problems may provide a glimpse into the underlying laws of neural information processing which can only be discovered through such a top-down approach. PMID:25734662

  16. A new fuzzy regression model based on interval-valued fuzzy neural network and its applications to management

    Directory of Open Access Journals (Sweden)

    Somaye Yeylaghi

    2017-06-01

    Full Text Available In this paper, a novel hybrid method based on interval-valued fuzzy neural network for approximate of interval-valued fuzzy regression models, is presented. The work of this paper is an expansion of the research of real fuzzy regression models. In this paper interval-valued fuzzy neural network (IVFNN can be trained with crisp and interval-valued fuzzy data. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate parameters, a simple algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples and compare this method with existing methods.

  17. Rainfall-runoff modeling at Jinsha River basin by integrated neural network with discrete wavelet transform

    Science.gov (United States)

    Tayyab, Muhammad; Zhou, Jianzhong; Dong, Xiaohua; Ahmad, Ijaz; Sun, Na

    2017-09-01

    Artificial neural network (ANN) models combined with time series decomposition are widely employed to calculate the river flows; however, the influence of the application of diverse decomposing approaches on assessing correctness is inadequately compared and examined. This study investigates the certainty of monthly streamflow by applying ANNs including feed forward back propagation neural network and radial basis function neural network (RBFNN) models integrated with discrete wavelet transform (DWT), at Jinsha River basin in the upper reaches of Yangtze River of China. The effect of the noise factor of the decomposed time series on the prediction correctness has also been argued in this paper. Data have been analyzed by comparing the simulation outputs of the models with the correlation coefficient (R) root mean square errors, mean absolute errors, mean absolute percentage error and Nash-Sutcliffe Efficiency. Results show that time series decomposition technique DWT contributes in improving the accuracy of streamflow prediction, as compared to single ANN's. The detailed comparative analysis showed that the RBFNN integrated with DWT has better forecasting capabilities as compared to other developed models. Moreover, for high-precision streamflow prediction, the high-frequency section of the original time series is very crucial, which is understandable in flood season.

  18. Combining the Performance Strengths of the Logistic Regression and Neural Network Models: A Medical Outcomes Approach

    Directory of Open Access Journals (Sweden)

    Wun Wong

    2003-01-01

    Full Text Available The assessment of medical outcomes is important in the effort to contain costs, streamline patient management, and codify medical practices. As such, it is necessary to develop predictive models that will make accurate predictions of these outcomes. The neural network methodology has often been shown to perform as well, if not better, than the logistic regression methodology in terms of sample predictive performance. However, the logistic regression method is capable of providing an explanation regarding the relationship(s between variables. This explanation is often crucial to understanding the clinical underpinnings of the disease process. Given the respective strengths of the methodologies in question, the combined use of a statistical (i.e., logistic regression and machine learning (i.e., neural network technology in the classification of medical outcomes is warranted under appropriate conditions. The study discusses these conditions and describes an approach for combining the strengths of the models.

  19. Modeling and computing of stock index forecasting based on neural network and Markov chain.

    Science.gov (United States)

    Dai, Yonghui; Han, Dongmei; Dai, Weihui

    2014-01-01

    The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP) neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market.

  20. Neural Network Inverse Model Control Strategy: Discrete-Time Stability Analysis for Relative Order Two Systems

    Directory of Open Access Journals (Sweden)

    M. A. Hussain

    2014-01-01

    Full Text Available This paper discusses the discrete-time stability analysis of a neural network inverse model control strategy for a relative order two nonlinear system. The analysis is done by representing the closed loop system in state space format and then analyzing the time derivative of the state trajectory using Lyapunov’s direct method. The analysis shows that the tracking output error of the states is confined to a ball in the neighborhood of the equilibrium point where the size of the ball is partly dependent on the accuracy of the neural network model acting as the controller. Simulation studies on the two-tank-in-series system were done to complement the stability analysis and to demonstrate some salient results of the study.

  1. Back-Propagation Artificial Neural Networks for Water Supply Pipeline Model

    Institute of Scientific and Technical Information of China (English)

    朱东海; 张土乔; 毛根海

    2002-01-01

    Water supply pipelines are the lifelines of a city. When pipelines burst, the burst site is difficult to locate by traditional methods such as manual tools or only by watching. In this paper, the burst site was identified using back-propagation (BP) artificial neural networks (ANN). The study is based on an indoor urban water supply model experiment. The key to appling BP ANN is to optimize the ANN's topological structure and learning parameters. This paper presents the optimizing method for a 3-layer BP neural network's topological structure and its learning parameters-learning ratio and the momentum factor. The indoor water supply pipeline model experimental results show that BP ANNs can be used to locate the burst point in urban water supply systems. The topological structure and learning parameters were optimized using the experimental results.

  2. MaNN: Multiple Artificial Neural Networks for modelling the Interstellar Medium

    CERN Document Server

    Grassi, T; Piovan, L; Buonomo, U; Chiosi, C

    2011-01-01

    Modelling the complex physics of the Interstellar Medium (ISM) in the context of large-scale numerical simulations is a challenging task. A number of methods have been proposed to embed a description of the ISM into different codes. We propose a new way to achieve this task: Artificial Neural Networks (ANNs). The ANN has been trained on a pre-compiled model database, and its predictions have been compared to the expected theoretical ones, finding good agreement both in static and in dynamical tests run using the Padova Tree-SPH code \\textsc{EvoL}. A neural network can reproduce the details of the interstellar gas evolution, requiring limited computational resources. We suggest that such an algorithm can replace a real-time calculation of mass elements chemical evolution in hydrodynamical codes.

  3. Prediction model of microwave calcining of ammonium diuranate using incremental improved back-propagation neural network

    Institute of Scientific and Technical Information of China (English)

    Yingwei LI; Bingguo LIU; Jinhui PENG; Wei LI; Daifu HUANG; Libo ZHANG

    2011-01-01

    The incremental improved Back-Propagation (BP) neural network prediction model using the Levenberg-Marquardt algorithm based on optimizing theory is put forward,which can solve the problems existing in the process of calcinations for ammonium diuranate (ADU) by microwave heating,such as long testing cycle,high testing quantity,difficulty of optimization for process parameters. Many training data probably were offered by the way of increment batch and the limitation of the system memory could make the training data infeasible when the sample scale was large. The prediction model of the nonlinear system is built,which can effectively predict the experiment of microwave calcining of ADU,and the incremental improved BP neural network is very useful in overcoming the local minimum problem,finding the global optinal solution and accelerating the convergence speed.

  4. Bayesian model selection applied to artificial neural networks used for water resources modeling

    Science.gov (United States)

    Kingston, Greer B.; Maier, Holger R.; Lambert, Martin F.

    2008-04-01

    Artificial neural networks (ANNs) have proven to be extremely valuable tools in the field of water resources engineering. However, one of the most difficult tasks in developing an ANN is determining the optimum level of complexity required to model a given problem, as there is no formal systematic model selection method. This paper presents a Bayesian model selection (BMS) method for ANNs that provides an objective approach for comparing models of varying complexity in order to select the most appropriate ANN structure. The approach uses Markov Chain Monte Carlo posterior simulations to estimate the evidence in favor of competing models and, in this study, three known methods for doing this are compared in terms of their suitability for being incorporated into the proposed BMS framework for ANNs. However, it is acknowledged that it can be particularly difficult to accurately estimate the evidence of ANN models. Therefore, the proposed BMS approach for ANNs incorporates a further check of the evidence results by inspecting the marginal posterior distributions of the hidden-to-output layer weights, which unambiguously indicate any redundancies in the hidden layer nodes. The fact that this check is available is one of the greatest advantages of the proposed approach over conventional model selection methods, which do not provide such a test and instead rely on the modeler's subjective choice of selection criterion. The advantages of a total Bayesian approach to ANN development, including training and model selection, are demonstrated on two synthetic and one real world water resources case study.

  5. A Neural Network Architecture For Rapid Model Indexing In Computer Vision Systems

    Science.gov (United States)

    Pawlicki, Ted

    1988-03-01

    Models of objects stored in memory have been shown to be useful for guiding the processing of computer vision systems. A major consideration in such systems, however, is how stored models are initially accessed and indexed by the system. As the number of stored models increases, the time required to search memory for the correct model becomes high. Parallel distributed, connectionist, neural networks' have been shown to have appealing content addressable memory properties. This paper discusses an architecture for efficient storage and reference of model memories stored as stable patterns of activity in a parallel, distributed, connectionist, neural network. The emergent properties of content addressability and resistance to noise are exploited to perform indexing of the appropriate object centered model from image centered primitives. The system consists of three network modules each of which represent information relative to a different frame of reference. The model memory network is a large state space vector where fields in the vector correspond to ordered component objects and relative, object based spatial relationships between the component objects. The component assertion network represents evidence about the existence of object primitives in the input image. It establishes local frames of reference for object primitives relative to the image based frame of reference. The spatial relationship constraint network is an intermediate representation which enables the association between the object based and the image based frames of reference. This intermediate level represents information about possible object orderings and establishes relative spatial relationships from the image based information in the component assertion network below. It is also constrained by the lawful object orderings in the model memory network above. The system design is consistent with current psychological theories of recognition by component. It also seems to support Marr's notions

  6. Fuzzy Multiresolution Neural Networks

    Science.gov (United States)

    Ying, Li; Qigang, Shang; Na, Lei

    A fuzzy multi-resolution neural network (FMRANN) based on particle swarm algorithm is proposed to approximate arbitrary nonlinear function. The active function of the FMRANN consists of not only the wavelet functions, but also the scaling functions, whose translation parameters and dilation parameters are adjustable. A set of fuzzy rules are involved in the FMRANN. Each rule either corresponding to a subset consists of scaling functions, or corresponding to a sub-wavelet neural network consists of wavelets with same dilation parameters. Incorporating the time-frequency localization and multi-resolution properties of wavelets with the ability of self-learning of fuzzy neural network, the approximation ability of FMRANN can be remarkable improved. A particle swarm algorithm is adopted to learn the translation and dilation parameters of the wavelets and adjusting the shape of membership functions. Simulation examples are presented to validate the effectiveness of FMRANN.

  7. A Comparative Study of Neural Networks and Fuzzy Systems in Modeling of a Nonlinear Dynamic System

    Directory of Open Access Journals (Sweden)

    Metin Demirtas

    2011-07-01

    Full Text Available The aim of this paper is to compare the neural networks and fuzzy modeling approaches on a nonlinear system. We have taken Permanent Magnet Brushless Direct Current (PMBDC motor data and have generated models using both approaches. The predictive performance of both methods was compared on the data set for model configurations. The paper describes the results of these tests and discusses the effects of changing model parameters on predictive and practical performance. Modeling sensitivity was used to compare for two methods.

  8. APPLICATION OF ARCHITECTURE-BASED NEURAL NETWORKS IN MODELING AND PARAMETER OPTIMIZATION OF HYDRAULIC BUMPER

    Institute of Scientific and Technical Information of China (English)

    Yang Haiwei; Zhan Yongqi; Qiao Junwei; Shi Guanglin

    2003-01-01

    The dynamic working process of 52SFZ-140-207B type of hydraulic bumper is analyzed. The modeling method using architecture-based neural networks is introduced. Using this modeling method, the dynamic model of the hydraulic bumper is established; Based on this model the structural parameters of the hydraulic bumper are optimized with Genetic algorithm. The result shows that the performance of the dynamic model is close to that of the hydraulic bumper, and the dynamic performance of the hydraulic bumper is improved through parameter optimization.

  9. Prediction Model of Antibacterial Activities for Inorganic Antibacterial Agents Based on Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    刘雪峰; 张利; 涂铭旌

    2004-01-01

    Quantitatively evaluation of antibacterial activities of inorganic antibacterial agents is an urgent problem to be solved. Using experimental data by an orthogonal design, a prediction model of the relation between conditions of preparing inorganic antibacterial agents and their antibacterial activities has been developed. This is accomplished by introducing BP artificial neural networks in the study of inorganic antibacterial agents..It provides a theoretical support for the development and research on inorganic antibacterial agents.

  10. Butterfly Classification by HSI and RGB Color Models Using Neural Networks

    OpenAIRE

    Jorge E. Grajales-Múnera; Alejandro Restrepo-Martinez

    2013-01-01

    This study aims the classification of Butterfly species through the implementation of Neural Networks and Image Processing. A total of 9 species of Morpho genre which has blue as a characteristic color are processed. For Butterfly segmentation we used image processing tools such as: Binarization, edge processing and mathematical morphology. For data processing RGB values are obtained for every image which are converted to HSI color model to identify blue pixels and obtain the data to the prop...

  11. A modified neural network model of tumor cell interactions and subpopulation dynamics.

    Science.gov (United States)

    Prideaux, J A; Mikulecky, D C; Clarke, A M; Ware, J L

    1993-01-01

    Tumors consist of phenotypically heterogeneous subpopulations of cells which are frequently affected by both autocrine and paracrine factors. Applying concepts from neural network theory, we have developed a computer model of chemical communication among hypothetical tumor cells, which simulates some of the complex epigenetic behavior of real tumors. Deletion of subpopulations often destabilized the whole population. The impact of deletion of specific subpopulations was affected by (a) which subpopulation was deleted, and (b) the timing of the deletion during tumor progression.

  12. NONLINEAR EXTENSION OF ASYMMETRIC GARCH MODEL WITHIN NEURAL NETWORK FRAMEWORK

    Directory of Open Access Journals (Sweden)

    Josip Arnerić

    2016-05-01

    Full Text Available The importance of volatility for all market participants has led to the development and application of various econometric models. The most popular models in modelling volatility are GARCH type models because they can account excess kurtosis and asymmetric effects of financial time series. Since standard GARCH(1,1 model usually indicate high persistence in the conditional variance, the empirical researches turned to GJR-GARCH model and reveal its superiority in fitting the asymmetric heteroscedasticity in the data. In order to capture both asymmetry and nonlinearity in data, the goal of this paper is to develop a parsimonious NN model as an extension to GJR-GARCH model and to determine if GJR-GARCH-NN outperforms the GJR-GARCH model.

  13. A regional GNSS-VTEC model over Nigeria using neural networks: A novel approach

    Directory of Open Access Journals (Sweden)

    Daniel Okoh

    2016-01-01

    Full Text Available A neural network model of the Global Navigation Satellite System – vertical total electron content (GNSS-VTEC over Nigeria is developed. A new approach that has been utilized in this work is the consideration of the International Reference Ionosphere's (IRI's critical plasma frequency (foF2 parameter as an additional neuron for the network's input layer. The work also explores the effects of using various other input layer neurons like disturbance storm time (DST and sunspot number. All available GNSS data from the Nigerian Permanent GNSS Network (NIGNET were used, and these cover the period from 2011 to 2015, for 14 stations. Asides increasing the learning accuracy of the networks, the inclusion of the IRI's foF2 parameter as an input neuron is ideal for making the networks to learn long-term solar cycle variations. This is important especially for regions, like in this work, where the GNSS data is available for less than the period of a solar cycle. The neural network model developed in this work has been tested for time-varying and spatial performances. The latest 10% of the GNSS observations from each of the stations were used to test the forecasting ability of the networks, while data from 2 of the stations were entirely used for spatial performance testing. The results show that root-mean-squared-errors were generally less than 8.5 TEC units for all modes of testing performed using the optimal network. When compared to other models, the model developed in this work was observed to reduce the prediction errors to about half those of the NeQuick and the IRI model.

  14. Application of neural network model coupling with the partial least-squares method for forecasting watre yield of mine

    Institute of Scientific and Technical Information of China (English)

    CHEN Nan-xiang; CAO Lian-hai; HUANG Qiang

    2005-01-01

    Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.

  15. Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm

    Directory of Open Access Journals (Sweden)

    Baoliang Sun

    2016-11-01

    Full Text Available An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN to solve the multi-node target tracking problem of wireless sensor networks (WSNs. Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs.

  16. Uncertainties in neural network model based on carbon dioxide concentration for occupancy estimation

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Azimil Gani; Rahman, Haolia; Kim, Jung-Kyung; Han, Hwataik [Kookmin University, Seoul (Korea, Republic of)

    2017-05-15

    Demand control ventilation is employed to save energy by adjusting airflow rate according to the ventilation load of a building. This paper investigates a method for occupancy estimation by using a dynamic neural network model based on carbon dioxide concentration in an occupied zone. The method can be applied to most commercial and residential buildings where human effluents to be ventilated. An indoor simulation program CONTAMW is used to generate indoor CO{sub 2} data corresponding to various occupancy schedules and airflow patterns to train neural network models. Coefficients of variation are obtained depending on the complexities of the physical parameters as well as the system parameters of neural networks, such as the numbers of hidden neurons and tapped delay lines. We intend to identify the uncertainties caused by the model parameters themselves, by excluding uncertainties in input data inherent in measurement. Our results show estimation accuracy is highly influenced by the frequency of occupancy variation but not significantly influenced by fluctuation in the airflow rate. Furthermore, we discuss the applicability and validity of the present method based on passive environmental conditions for estimating occupancy in a room from the viewpoint of demand control ventilation applications.

  17. Rule Extraction:Using Neural Networks or for Neural Networks?

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Zhou

    2004-01-01

    In the research of rule extraction from neural networks, fidelity describes how well the rules mimic the behavior of a neural network while accuracy describes how well the rules can be generalized. This paper identifies the fidelity-accuracy dilemma. It argues to distinguish rule extraction using neural networks and rule extraction for neural networks according to their different goals, where fidelity and accuracy should be excluded from the rule quality evaluation framework, respectively.

  18. Modeling the motor cortex: Optimality, recurrent neural networks, and spatial dynamics.

    Science.gov (United States)

    Tanaka, Hirokazu

    2016-03-01

    Specialization of motor function in the frontal lobe was first discovered in the seminal experiments by Fritsch and Hitzig and subsequently by Ferrier in the 19th century. It is, however, ironical that the functional and computational role of the motor cortex still remains unresolved. A computational understanding of the motor cortex equals to understanding what movement variables the motor neurons represent (movement representation problem) and how such movement variables are computed through the interaction with anatomically connected areas (neural computation problem). Electrophysiological experiments in the 20th century demonstrated that the neural activities in motor cortex correlated with a number of motor-related and cognitive variables, thereby igniting the controversy over movement representations in motor cortex. Despite substantial experimental efforts, the overwhelming complexity found in neural activities has impeded our understanding of how movements are represented in the motor cortex. Recent progresses in computational modeling have rekindled this controversy in the 21st century. Here, I review the recent developments in computational models of the motor cortex, with a focus on optimality models, recurrent neural network models and spatial dynamics models. Although individual models provide consistent pictures within their domains, our current understanding about functions of the motor cortex is still fragmented.

  19. Practical neural network recipies in C++

    CERN Document Server

    Masters

    2014-01-01

    This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assum

  20. Identification of a Typical CSTR Using Optimal Focused Time Lagged Recurrent Neural Network Model with Gamma Memory Filter

    National Research Council Canada - National Science Library

    Naikwad, S. N; Dudul, S. V

    2009-01-01

    .... It is noticed from literature review that process control of CSTR using neuro-fuzzy systems was attempted by many, but optimal neural network model for identification of CSTR process is not yet available...