WorldWideScience

Sample records for models mimicking microgravity

  1. Creating Simulated Microgravity Patient Models

    Science.gov (United States)

    Hurst, Victor; Doerr, Harold K.; Bacal, Kira

    2004-01-01

    The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).

  2. Validity of microgravity simulation models on earth

    DEFF Research Database (Denmark)

    Regnard, J; Heer, M; Drummer, C

    2001-01-01

    Many studies have used water immersion and head-down bed rest as experimental models to simulate responses to microgravity. However, some data collected during space missions are at variance or in contrast with observations collected from experimental models. These discrepancies could reflect inc...

  3. Stress, and pathogen response gene expression in modeled microgravity

    Science.gov (United States)

    Sundaresan, Alamelu; Pellis, Neal R.

    2006-01-01

    Purpose: Immune suppression in microgravity has been well documented. With the advent of human exploration and long-term space travel, the immune system of the astronaut must be optimally maintained. It is important to investigate the expression patterns of cytokine genes, because they are directly related to immune response. Heat shock proteins (HSPs), also called stress proteins, are a group of proteins that are present in the cells of every life form. These proteins are induced when a cell responds to stressors such as heat, cold and oxygen deprivation. Microgravity is another stressor that may regulate HSPs. Heat shock proteins trigger immune response through activities that occur both inside the cell (intracellular) and outside the cell (extracellular). Knowledge about these two gene groups could lead to establishment of a blueprint of the immune response and adaptation-related genes in the microgravity environment. Methods: Human peripheral blood cells were cultured in 1g (T flask) and modeled microgravity (MMG, rotating-wall vessel) for 24 and 72 hours. Cell samples were collected and subjected to gene array analysis using the Affymetrix HG_U95 array. Data was collected and subjected to a two-way analysis of variance. The genes related to immune and stress responses were analyzed. Results and Conclusions: HSP70 was up-regulated by more than two fold in microgravity culture, while HSP90 was significantly down-regulated. HSP70 is not typically expressed in all kinds of cells, but it is expressed at high levels in stress conditions. HSP70 participates in translation, protein translocation, proteolysis and protein folding, suppressing aggregation and reactivating denatured proteins. Increased serum HSP70 levels correlate with a better outcome for heat-stroke or severe trauma patients. At the same time, elevated serum levels of HSP70 have been detected in patients with peripheral or renal vascular disease. HSP90 has been identified in the cytosol, nucleus and

  4. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zi-xuan [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Rao, Wei [Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Huan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Nan-ding [Department of Cardiology, Xi' an Traditional Chinese Medicine Hospital, Xi' an, 710032 (China); Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Zong-ren, E-mail: zongren@fmmu.edu.cn [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China)

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  5. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    International Nuclear Information System (INIS)

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-01-01

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion

  6. Developing Physiologic Models for Emergency Medical Procedures Under Microgravity

    Science.gov (United States)

    Parker, Nigel; O'Quinn, Veronica

    2012-01-01

    Several technological enhancements have been made to METI's commercial Emergency Care Simulator (ECS) with regard to how microgravity affects human physiology. The ECS uses both a software-only lung simulation, and an integrated mannequin lung that uses a physical lung bag for creating chest excursions, and a digital simulation of lung mechanics and gas exchange. METI s patient simulators incorporate models of human physiology that simulate lung and chest wall mechanics, as well as pulmonary gas exchange. Microgravity affects how O2 and CO2 are exchanged in the lungs. Procedures were also developed to take into affect the Glasgow Coma Scale for determining levels of consciousness by varying the ECS eye-blinking function to partially indicate the level of consciousness of the patient. In addition, the ECS was modified to provide various levels of pulses from weak and thready to hyper-dynamic to assist in assessing patient conditions from the femoral, carotid, brachial, and pedal pulse locations.

  7. Finite Element Modeling of the Posterior Eye in Microgravity

    Science.gov (United States)

    Feola, Andrew; Raykin, Julia; Mulugeta, Lealem; Gleason, Rudolph; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian; Ethier, C. Ross

    2015-01-01

    Microgravity experienced during spaceflight affects astronauts in various ways, including weakened muscles and loss of bone density. Recently, visual impairment and intracranial pressure (VIIP) syndrome has become a major concern for space missions lasting longer than 30 days. Astronauts suffering from VIIP syndrome have changes in ocular anatomical and visual impairment that persist after returning to earth. It is hypothesized that a cephalad fluid shift in microgravity may increase the intracranial pressure (ICP), which leads to an altered biomechanical environment of the posterior globe and optic nerve sheath (ONS).Currently, there is a lack of knowledge of how elevated ICP may lead to vision impairment and connective tissue changes in VIIP. Our goal was to develop a finite element model to simulate the acute effects of elevated ICP on the posterior eye and optic nerve sheath. We used a finite element (FE) analysis approach to understand the response of the lamina cribrosa and optic nerve to the elevations in ICP thought to occur in microgravity and to identify which tissue components have the greatest impact on strain experienced by optic nerve head tissues.

  8. Validity of microgravity simulation models on earth

    DEFF Research Database (Denmark)

    Regnard, J; Heer, M; Drummer, C

    2001-01-01

    incomplete knowledge of the characteristics inherent to each model. During water immersion, the hydrostatic pressure lowers the peripheral vascular capacity and causes increased thoracic blood volume and high vascular perfusion. In turn, these changes lead to high urinary flow, low vasomotor tone, and a high...... a negative pressure around the body. The differences in renal function between space and experimental models appear to be explained by the physical forces affecting tissues and hemodynamics as well as by the changes secondary to these forces. These differences may help in selecting experimental models...

  9. Model of ASTM Flammability Test in Microgravity: Iron Rods

    Science.gov (United States)

    Steinberg, Theodore A; Stoltzfus, Joel M.; Fries, Joseph (Technical Monitor)

    2000-01-01

    There is extensive qualitative results from burning metallic materials in a NASA/ASTM flammability test system in normal gravity. However, this data was shown to be inconclusive for applications involving oxygen-enriched atmospheres under microgravity conditions by conducting tests using the 2.2-second Lewis Research Center (LeRC) Drop Tower. Data from neither type of test has been reduced to fundamental kinetic and dynamic systems parameters. This paper reports the initial model analysis for burning iron rods under microgravity conditions using data obtained at the LERC tower and modeling the burning system after ignition. Under the conditions of the test the burning mass regresses up the rod to be detached upon deceleration at the end of the drop. The model describes the burning system as a semi-batch, well-mixed reactor with product accumulation only. This model is consistent with the 2.0-second duration of the test. Transient temperature and pressure measurements are made on the chamber volume. The rod solid-liquid interface melting rate is obtained from film records. The model consists of a set of 17 non-linear, first-order differential equations which are solved using MATLAB. This analysis confirms that a first-order rate, in oxygen concentration, is consistent for the iron-oxygen kinetic reaction. An apparent activation energy of 246.8 kJ/mol is consistent for this model.

  10. Comparative effectiveness of a clinostat and a slow-turning lateral vessel at mimicking the ultrastructural effects of microgravity in plant cells

    Science.gov (United States)

    Moore, R.

    1990-01-01

    The object of this research was to determine how effectively the actions of a clinostat and a fluid-filled, slow-turning lateral vessel (STLV) mimic the ultrastructural effects of microgravity in plant cells. We accomplished this by qualitatively and quantitatively comparing the ultrastructures of cells grown on clinostats and in an STLV with those of cells grown at 1 g and in microgravity aboard the Space Shuttle Columbia. Columella cells of Brassica perviridis seedlings grown in microgravity and in an STLV have similar structures. Both contain significantly more lipid bodies, less starch, and fewer dictyosomes than columella cells of seedlings grown at 1 g. Cells of seedlings grown on clinostats have significantly different ultrastructures from those grown in microgravity or in an STLV, indicating that clinostats do not mimic microgravity at the ultrastructural level. The similar structures of columella cells of seedlings grown in an STLV and in microgravity suggest that an STLV effectively mimics microgravity at the ultrastructural level.

  11. Crustaceans as a model for microgravity-induced muscle atrophy

    Science.gov (United States)

    Mykles, D. L.

    Atrophy of skeletal muscles is a serious problem in a microgravity environment. It is hypothesized that the unloading of postural muscles, which no longer must resist gravity force, causes an accelerated breakdown of contractile proteins, resulting in a reduction in muscle mass and strength. A crustacean model using the land crab, Gecarcinus lateralis, to assess the effects of spaceflight on protein metabolism is presented. The model is compared to a developmentally-regulated atrophy in which a premolt reduction in muscle mass allows the withdrawal of the large claws at molt. The biochemical mechanisms underlying protein breakdown involves both Ca^2+-dependent and multicatalytic proteolytic enzymes. Crustacean claw muscle can be used to determine the interactions between shortening and unloading at the molecular level.

  12. Modulation of modeled microgravity on radiation-induced bystander effects in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Sun, Qiao [Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); Xu, Wei; Li, Fanghua [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Li, Huasheng; Lu, Jinying [Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); Wu, Lijun; Wu, Yuejin [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Liu, Min [Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); Bian, Po [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China)

    2015-03-15

    Highlights: • The effects of microgravity on the radiation-induced bystander effects (RIBE) were definitely demonstrated. • The effects of microgravity on RIBE might be divergent for different biological events. • The microgravity mainly modified the generation or transport of bystander signals at early stage. - Abstract: Both space radiation and microgravity have been demonstrated to have inevitable impact on living organisms during space flights and should be considered as important factors for estimating the potential health risk for astronauts. Therefore, the question whether radiation effects could be modulated by microgravity is an important aspect in such risk evaluation. Space particles at low dose and fluence rate, directly affect only a fraction of cells in the whole organism, which implement radiation-induced bystander effects (RIBE) in cellular response to space radiation exposure. The fact that all of the RIBE experiments are carried out in a normal gravity condition bring forward the need for evidence regarding the effect of microgravity on RIBE. In the present study, a two-dimensional rotation clinostat was adopted to demonstrate RIBE in microgravity conditions, in which the RIBE was assayed using an experimental system of root-localized irradiation of Arabidopsis thaliana (A. thaliana) plants. The results showed that the modeled microgravity inhibited significantly the RIBE-mediated up-regulation of expression of the AtRAD54 and AtRAD51 genes, generation of reactive oxygen species (ROS) and transcriptional activation of multicopy P35S:GUS, but made no difference to the induction of homologous recombination by RIBE, showing divergent responses of RIBE to the microgravity conditions. The time course of interaction between the modeled microgravity and RIBE was further investigated, and the results showed that the microgravity mainly modulated the processes of the generation or translocation of the bystander signal(s) in roots.

  13. Response of Lactobacillus acidophilus ATCC 4356 to low-shear modeled microgravity

    Science.gov (United States)

    Castro-Wallace, Sarah; Stahl, Sarah; Voorhies, Alexander; Lorenzi, Hernan; Douglas, Grace L.

    2017-10-01

    The introduction of probiotic microbes into the spaceflight food system has the potential for use as a safe, non-invasive, daily countermeasure to crew microbiome and immune dysregulation. However, the microgravity effects on the stress tolerances and gene expression of probiotic bacteria must be investigated to confirm that benefits of selected strains will still be conveyed under microgravity conditions. The goal of this study was to evaluate the characteristics of the probiotic bacteria Lactobacillus acidophilus ATCC 4356 in a microgravity analog environment. L. acidophilus was cultured anaerobically under modeled microgravity conditions and assessed for differences in growth, survival through stress challenge, and gene expression compared to control cultures. No significant differences were observed between the modeled microgravity and control grown L. acidophilus, suggesting that this strain will behave similarly in spaceflight.

  14. Modeling Microgravity Induced Fluid Redistribution Autoregulatory and Hydrostatic Enhancements

    Science.gov (United States)

    Myers, J. G.; Werner, C.; Nelson, E. S.; Feola, A.; Raykin, J.; Samuels, B.; Ethier, C. R.

    2017-01-01

    Space flight induces a marked cephalad (headward) redistribution of blood and interstitial fluid potentially resulting in a loss of venous tone and reduction in heart muscle efficiency upon introduction into the microgravity environment. Using various types of computational models, we are investigating how this fluid redistribution may induce intracranial pressure changes, relevant to reported reductions in astronaut visual acuity, part of the Visual Impairment and Intracranial Pressure (VIIP) syndrome. Methods: We utilize a lumped parameter cardiovascular system (CVS) model, augmented by compartments comprising the cerebral spinal fluid (CSF) space, as the primary tool to describe how microgravity, and the associated lack of hydrostatic gradient, impacts fluid redistribution. Models of ocular fluid pressures and biomechanics then accept the output of the above model as boundary condition input to allow more detailed, local analysis (see IWS Abstract by Ethier et al.). Recently, we enhanced the capabilities our previously reported CVS model through the implementation of robust autoregulatory mechanisms and a more fundamental approach to the implementation of hydrostatic mechanisms. Modifying the approach of Blanco et al., we implemented auto-regulation in a quasi-static manner, as an averaged effect across the span of one heartbeat. This approach reduced the higher frequency perturbations from the regulatory mechanism and was intended to allow longer simulation times (days) than models that implement within-beat regulatory mechanisms (minutes). A more fundamental approach to hydrostatics was implemented by a quasi-1D approach, in which compartment descriptions include compartment length, orientation and relative position, allowed for modeling of body orientation, relative body positioning and, in the future, alternative gravity environments. At this time the inclusion of hydrostatic mechanisms supplies additional capabilities to train and validate the CVS model

  15. Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Deng, Chenguang; Wang, Ting; Wu, Jingjing; Xu, Wei; Li, Huasheng; Liu, Min

    2017-01-01

    Highlights: • The radio-adaptive response (RAR) of A. thaliana root growth is modulated in microgravity. • The DNA damage repairs in RAR are regulated by microgravity. • The phytohormone auxin plays a regulatory role in the modulation of microgravity on RAR of root growth. - Abstract: Space particles have an inevitable impact on organisms during space missions; radio-adaptive response (RAR) is a critical radiation effect due to both low-dose background and sudden high-dose radiation exposure during solar storms. Although it is relevant to consider RAR within the context of microgravity, another major space environmental factor, there is no existing evidence as to its effects on RAR. In the present study, we established an experimental method for detecting the effects of gamma-irradiation on the primary root growth of Arabidopsis thaliana, in which RAR of root growth was significantly induced by several dose combinations. Microgravity was simulated using a two-dimensional rotation clinostat. It was shown that RAR of root growth was significantly inhibited under the modeled microgravity condition, and was absent in pgm-1 plants that had impaired gravity sensing in root tips. These results suggest that RAR could be modulated in microgravity. Time course analysis showed that microgravity affected either the development of radio-resistance induced by priming irradiation, or the responses of plants to challenging irradiation. After treatment with the modeled microgravity, attenuation in priming irradiation-induced expressions of DNA repair genes (AtKu70 and AtRAD54), and reduced DNA repair efficiency in response to challenging irradiation were observed. In plant roots, the polar transportation of the phytohormone auxin is regulated by gravity, and treatment with an exogenous auxin (indole-3-acetic acid) prevented the induction of RAR of root growth, suggesting that auxin might play a regulatory role in the interaction between microgravity and RAR of root growth.

  16. Transcription profiling of S. cerevisiae cultures grown under low shear-modeled microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this study was to assess whether low shear-modeled microgravity (LSMMG) effects yeast ,genomic expression patterns using the powerful tool of whole...

  17. In Vitro Disease Model of Microgravity Conditioning on Human Energy Metabolism

    Science.gov (United States)

    Snyder, Jessica; Culbertson, C.; Zhang, Ye; Emami, K.; Wu, H.; Sun, Wei

    2010-01-01

    NASA and its partners are committed to introducing appropriate new technology to enable learning and living safely beyond the Earth for extended periods of time in a sustainable and possibly indefinite manner. In the responsible acquisition of that goal, life sciences is tasked to tune and advance current medical technology to prepare for human health and wellness in the space environment. The space environment affects the condition and function of biological systems from organ level function to shape of individual organelles. The objective of this paper is to study the effect of microgravity on kinetics of drug metabolism. This fundamental characterization is meaningful to (1) scientific understanding of the response of biology to microgravity and (2) clinical dosing requirements and pharmacological thresholds during long term manned space exploration. Metabolism kinetics of the anti-nausea drug promethazine (PMZ) were determined by an in vitro ground model of 3-dimensional aggregates of human hepatocytes conditioned to weightlessness using a rotating wall bioreactor. The authors observed up-regulated PMZ conversion in model microgravity conditions and attribute this to effect to model microgravity conditioning acting on metabolic mechanisms of the cells. Further work is necessary to determine which particular cellular mechanisms are governing the experimental observations, but the authors conclude kinetics of drug metabolism are responsive to gravitational fields and further study of this sensitivity would improve dosing of pharmaceuticals to persons exposed to a microgravity environment.

  18. A free plate model can predict guided modes propagating in tubular bone-mimicking phantoms.

    Science.gov (United States)

    Minonzio, Jean-Gabriel; Foiret, Josquin; Moilanen, Petro; Pirhonen, Jalmari; Zhao, Zuomin; Talmant, Maryline; Timonen, Jussi; Laugier, Pascal

    2015-01-01

    The goal of this work was to show that a non-absorbing free plate model can predict with a reasonable accuracy guided modes measured in bone-mimicking phantoms that have circular cross-section. Experiments were carried out on uncoated and coated phantoms using a clinical axial transmission setup. Adjustment of the plate model to the experimental data yielded estimates for the waveguide characteristics (thickness, bulk wave velocities). Fair agreement was achieved over a frequency range of 0.4 to 1.6 MHz. A lower accuracy observed for the thinnest bone-mimicking phantoms was caused by limitations in the wave number measurements rather than by the model itself.

  19. Full experimental modelling of a liver tissue mimicking phantom for medical ultrasound studies employing different hydrogels.

    Science.gov (United States)

    Casciaro, Sergio; Conversano, Francesco; Musio, Stefano; Casciaro, Ernesto; Demitri, Christian; Sannino, Alessandro

    2009-04-01

    Tissue mimicking phantoms have been widely reported to be an important tool for development, optimisation and performance testing of ultrasound-based diagnostic techniques. In particular, modern applications of tissue mimicking phantoms often include characterisation of the nonlinear behaviour of experimental ultrasound contrast agents. In such cases, the tissue-mimicking materials should be chosen not only based on the values of their density, speed of sound and attenuation coefficient, but also considering their effect on the appearance of "native harmonics" due to nonlinear distortion of ultrasound signal during propagation. In a previous paper it was demonstrated that a cellulose-based hydrogel is suitable to simulate nonlinear acoustical behaviour of liver tissue for thicknesses up to 8 cm. In this paper we present the experimental characterisation of the nonlinear acoustical behaviour of a different polyethylene glycol diacrylate (PEGDA)-based hydrogel, in order to assess whether and how it can improve the performances and overcome some limitations of the cellulose-based hydrogel as liver tissue-mimicking material. Samples of pig liver tissue, cellulose-based hydrogel and PEGDA-based hydrogel were insonified in a through-transmission set-up, employing 2.25-MHz pulses with different mechanical index (MI) values. Second harmonic and first harmonic amplitudes were extracted from the spectra of received signals and their difference was then used to compare sample behaviours. Obtained results show how a new more accurate and combined experimental model of linear and nonlinear acoustical behaviour of liver tissue is feasible. In fact, a further confirmation of the cellulose-based hydrogel effectiveness to precisely simulate the liver tissue for penetration depths up to 8 cm was provided, and it was also shown that the employment of the PEGDA-based hydrogel can extend the range of useful tissue-mimicking material thicknesses up to 11 cm, moreover allowing a

  20. Modified arctan-gravity model mimicking a cosmological constant

    Science.gov (United States)

    Kruglov, S. I.

    2014-03-01

    A novel theory of F(R) gravity with the Lagrangian density L =[R-(b/β)arctan(βR)]/(2κ2) is analyzed. Constant curvature solutions of the model are found, and the potential of the scalar field and the mass of a scalar degree of freedom in Einstein's frame are derived. The cosmological parameters of the model are calculated, which are in agreement with the PLANCK data. Critical points for the de Sitter phase and the matter dominated epoch of autonomous equations are obtained and studied.

  1. Head-Down Tilt with Balanced Traction as a Model for Simulating Spinal Acclimation to Microgravity

    Science.gov (United States)

    Ballard, R. E.; Styf, J. R.; Watenpaugh, D. E.; Fechner, K.; Haruna, Y.; Kahan, N. J.; Hargens, A. R.

    1994-01-01

    Astronauts experience total body height increases of 4 to 7 cm in microgravity. Thus, stretching of the spinal cord, nerve roots, and muscular and ligamentous tissues may be responsible for the hyperreflexia, back pain, and muscular atrophy associated with exposure to microgravity. Axial compression of the spine makes 6 deg. head-down tilt (HDT) an unsuitable model for spinal acclimation to microgravity. However, this axial compression may be counteracted by balanced traction consisting of 10% body weight (sin 6 deg. = 0.1) applied to the legs. Six healthy male subjects underwent 3 days each of 60 HDT with balanced traction and horizontal bed rest (HBR), with a 2 week recovery period between treatments. Total body and spine length, lumbar disc height, back pain, erector spinae intramuscular pressure, and ankle joint torque were measured before, during and after each treatment. Total body and spine (processes of L5 - C7) lengths increased significantly more during HDT with balanced traction (22 +/- 8 mm and 25 +/- 8 mm, respectively) than during HBR (16 +/- 4 mm and 14 +/- 9 mm, respectively). Back and leg pain were significantly greater during HDT with balanced traction than during HBR. The distance between the lower end plate of L4 and the upper endplate of S1, as measured by sonography, increased significantly in both treatments to the same degree (2.9 +/- 1.9 mm, HDT with balanced traction; 3.3 +/- 1.5 mm, HBR). Intramuscular pressure of the erector spinae muscles and maximal ankle joint torque were unaltered with both models. While neither model increased height to the magnitude observed in microgravity, HDT with balanced traction may be a better model for simulating the body lengthening and back pain experienced in microgravity.

  2. Low-shear modelled microgravity alters expression of virulence determinants of Staphylococcus aureus

    Science.gov (United States)

    Rosado, Helena; Doyle, Marie; Hinds, Jason; Taylor, Peter W.

    2010-02-01

    Microbiological monitoring of air and surfaces within the ISS indicate that bacteria of the genus Staphylococcus are found with high frequency. Staphylococcus aureus, an opportunistic pathogen with the capacity to cause severe debilitating infection, constitutes a significant proportion of these isolates. Experiments conducted during short-term flight suggest that growth in microgravity leads to increases in bacterial antibiotic resistance and to cell wall changes. Growth under low-shear modelled microgravity (LSMMG) indicated that a reduced gravitational field acts as an environmental signal for expression of enhanced bacterial virulence in gram-negative pathogens. We therefore examined the effect of simulated microgravity on parameters of antibiotic susceptibility and virulence in methicillin-susceptible S. aureus isolates RF1, RF6 and RF11; these strains were grown in a high aspect ratio vessel under LSMMG and compared with cells grown under normal gravity (NG). There were no significant differences in antibiotic susceptibility of staphylococci grown under LSMMG compared to NG. LSMMG-induced reductions in synthesis of the pigment staphyloxanthin and the major virulence determinant α-toxin were noted. Significant changes in global gene expression were identified by DNA microarray analysis; with isolate RF6, the expression of hla and genes of the regulatory system saeR/saeS were reduced approximately two-fold. These data provide strong evidence that growth of S. aureus under modelled microgravity leads to a reduction in expression of virulence determinants.

  3. Numerical model of protein crystal growth in a diffusive field such as the microgravity environment

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiroaki, E-mail: tanakah@confsci.co.jp [Confocal Science Inc., Hayakawa 2nd Building 7F, 2-12-2 Iwamoto-cho, Chiyoda-ku, Tokyo 101-0032 (Japan); Sasaki, Susumu [Neo Force, 5-9-14-403 Tsurumaki, Setagaya-ku, Tokyo 154-0016 (Japan); Takahashi, Sachiko [Confocal Science Inc., Hayakawa 2nd Building 7F, 2-12-2 Iwamoto-cho, Chiyoda-ku, Tokyo 101-0032 (Japan); Inaka, Koji [Maruwa Foods and Biosciences Inc., 170-1 Tsutsui-cho, Yamatokoriyama, Nara 639-1123 (Japan); Wada, Yoshio; Yamada, Mitsugu; Ohta, Kazunori; Miyoshi, Hiroshi; Kobayashi, Tomoyuki; Kamigaichi, Shigeki [Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)

    2013-11-01

    Numerical analysis of the concentration depletion zones in a transient state suggested that, in microgravity, protein crystals grow in a lower supersaturation and the impurity ratio decreases in the centre of the crystal. It is said that the microgravity environment positively affects the quality of protein crystal growth. The formation of a protein depletion zone and an impurity depletion zone due to the suppression of convection flow were thought to be the major reasons. In microgravity, the incorporation of molecules into a crystal largely depends on diffusive transport, so the incorporated molecules will be allocated in an orderly manner and the impurity uptake will be suppressed, resulting in highly ordered crystals. Previously, these effects were numerically studied in a steady state using a simplified model and it was determined that the combination of the diffusion coefficient of the protein molecule (D) and the kinetic constant for the protein molecule (β) could be used as an index of the extent of these depletion zones. In this report, numerical analysis of these depletion zones around a growing crystal in a non-steady (i.e. transient) state is introduced, suggesting that this model may be used for the quantitative analysis of these depletion zones in the microgravity environment.

  4. Using a time lapse microgravity model for mapping seawater intrusion around Semarang

    Energy Technology Data Exchange (ETDEWEB)

    Supriyadi,, E-mail: supriyadi@mail.unnes.ac.id; Khumaedi [Physics Department, Semarang State University (UNNES), D7 Building 2nd Floor FMIPA Sekaran Gunungpati (Indonesia); Yusuf, M. [Badan Meteologi Klimatologi Goefisika (BMKG), Jl.Angkasa I No.2 Kemayoran Jakarta Pusat (Indonesia); Agung, W. [Physics Department, Diponegoro University (UNDIP), Jl. Prof. Soedharto, Tembalang, Semarang (Indonesia)

    2016-03-11

    A modeling of time-lapse microgravity anomaly due to sea water intrusion has been conducted. It used field data of aquifer cross section, aquifer thickness and lithology of research area. Those data were then processed using Grav3D and Surfer. Modeling results indicated that the intrusion of sea water resulting in a time-lapse microgravity anomalies of 0.12 to 0.18 mGal, at soil layer density of 0.15 g/cm{sup 3} to 0.3 g/cm{sup 3} and at depth of 30 to 100 m. These imply that the areas experiencing seawater intrusion were Tanjung Mas, SPBE Bandarharjo, Brass, Old Market Boom and Johar as the microgravity measured there were in the range of 0.12 to 0.18 mGal and the density contrast were at 0.15 g/cm{sup 3} to 0.28 g/cm{sup 3}. Areas that experienced fluid reduction were Puri Anjasmoro, Kenconowungu and Puspowarno with microgravity changes from -0.06 mGal to -0.18 mGal.

  5. Development of microgravity, full body functional reach envelope using 3-D computer graphic models and virtual reality technology

    Science.gov (United States)

    Lindsey, Patricia F.

    1994-01-01

    In microgravity conditions mobility is greatly enhanced and body stability is difficult to achieve. Because of these difficulties, optimum placement and accessibility of objects and controls can be critical to required tasks on board shuttle flights or on the proposed space station. Anthropometric measurement of the maximum reach of occupants of a microgravity environment provide knowledge about maximum functional placement for tasking situations. Calculations for a full body, functional reach envelope for microgravity environments are imperative. To this end, three dimensional computer modeled human figures, providing a method of anthropometric measurement, were used to locate the data points that define the full body, functional reach envelope. Virtual reality technology was utilized to enable an occupant of the microgravity environment to experience movement within the reach envelope while immersed in a simulated microgravity environment.

  6. Deriving a blood-mimicking fluid for particle image velocimetry in Sylgard-184 vascular models.

    Science.gov (United States)

    Yousif, Majid Y; Holdsworth, David W; Poepping, Tamie L

    2009-01-01

    A new blood-mimicking fluid (BMF) has been developed for particle image velocimetry (PIV), which enables flow studies in vascular models (phantoms). A major difficulty in PIV that affects measurement accuracy is the refraction and distortion of light passing through the interface between the model and the fluid, due to the difference in refractive index (n) between the two materials. The problem can be eliminated by using a fluid with a refractive index matching that of the model. Such fluids are not commonly available, especially for vascular research where the fluid should also have a viscosity similar to human blood. In this work, a blood-mimicking fluid, composed of water (47.38% by weight), glycerol (36.94% by weight) and sodium iodide salt (15.68% by weight), was developed for compatibility with our silicone (Sylgard 184; n = 1.414) phantoms. The fluid exhibits a dynamic viscosity of 4.31+/-0.03 cP which lies within the range of human blood viscosity (4.4+/-0.6 cP). Both refractive index and viscosity were attained at 22.2+/-0.2 degrees C, which is a feasible room temperature, thus eliminating the need for a temperature-control system. The fluid will be used to study hemodynamics in vascular flow models fabricated from Sylgard 184.

  7. Effect of Low Shear Modeled Microgravity (LSMMG) on the Probiotic Lactobacillus Acidophilus ATCC 4356

    Science.gov (United States)

    Stahl, S.; Voorhies, A.; Lorenzi, H.; Castro-Wallace, S.; Douglas, G.

    2016-01-01

    The introduction of generally recognized as safe (GRAS) probiotic microbes into the spaceflight food system has the potential for use as a safe, non-invasive, daily countermeasure to crew microbiome and immune dysregulation. However, the microgravity effects on the stress tolerances and genetic expression of probiotic bacteria must be determined to confirm translation of strain benefits and to identify potential for optimization of growth, survival, and strain selection for spaceflight. The work presented here demonstrates the translation of characteristics of a GRAS probiotic bacteria to a microgravity analog environment. Lactobacillus acidophilus ATCC 4356 was grown in the low shear modeled microgravity (LSMMG) orientation and the control orientation in the rotating wall vessel (RWV) to determine the effect of LSMMG on the growth, survival through stress challenge, and gene expression of the strain. No differences were observed between the LSMMG and control grown L. acidophilus, suggesting that the strain will behave similarly in spaceflight and may be expected to confer Earth-based benefits.

  8. An Integrated Biomechanical Model for Microgravity-Induced Visual Impairment

    Science.gov (United States)

    Nelson, Emily S.; Best, Lauren M.; Myers, Jerry G.; Mulugeta, Lealem

    2012-01-01

    When gravitational unloading occurs upon entry to space, astronauts experience a major shift in the distribution of their bodily fluids, with a net headward movement. Measurements have shown that intraocular pressure spikes, and there is a strong suspicion that intracranial pressure also rises. Some astronauts in both short- and long-duration spaceflight develop visual acuity changes, which may or may not reverse upon return to earth gravity. To date, of the 36 U.S. astronauts who have participated in long-duration space missions on the International Space Station, 15 crew members have developed minor to severe visual decrements and anatomical changes. These ophthalmic changes include hyperopic shift, optic nerve distension, optic disc edema, globe flattening, choroidal folds, and elevated cerebrospinal fluid pressure. In order to understand the physical mechanisms behind these phenomena, NASA is developing an integrated model that appropriately captures whole-body fluids transport through lumped-parameter models for the cerebrospinal and cardiovascular systems. This data feeds into a finite element model for the ocular globe and retrobulbar subarachnoid space through time-dependent boundary conditions. Although tissue models and finite element representations of the corneo-scleral shell, retina, choroid and optic nerve head have been integrated to study pathological conditions such as glaucoma, the retrobulbar subarachnoid space behind the eye has received much less attention. This presentation will describe the development and scientific foundation of our holistic model.

  9. Modeling of two-phase flow in membranes and porous media in microgravity as applied to plant irrigation in space

    Science.gov (United States)

    Scovazzo, P.; Illangasekare, T. H.; Hoehn, A.; Todd, P.

    2001-01-01

    In traditional applications in soil physics it is convention to scale porous media properties, such as hydraulic conductivity, soil water diffusivity, and capillary head, with the gravitational acceleration. In addition, the Richards equation for water flux in partially saturated porous media also contains a gravity term. With the plans to develop plant habitats in space, such as in the International Space Station, it becomes necessary to evaluate these properties and this equation under conditions of microgravitational acceleration. This article develops models for microgravity steady state two-phase flow, as found in irrigation systems, that addresses critical design issues. Conventional dimensionless groups in two-phase mathematical models are scaled with gravity, which must be assigned a value of zero for microgravity modeling. The use of these conventional solutions in microgravity, therefore, is not possible. This article therefore introduces new dimensionless groups for two-phase models. The microgravity models introduced here determined that in addition to porous media properties, important design factors for microgravity systems include applied water potential and the ratio of inner to outer radii for cylindrical and spherical porous media systems.

  10. Modeling of Slosh Dynamics in Cryogenic Propellant Tanks in Microgravity Environments

    Science.gov (United States)

    2008-01-01

    The slosh dynamics in cryogenic fuel tanks under microgravity is a pressing problem that severely affects the reliability of launching spacecraft. After reaching low Earth orbit, the propellant in a multistage rocket experiences large and cyclic changes in temperature as a result of solar heating. Tank wall heating can induce thermal stratification and propellant boiloff, particularly during slosh-inducing vehicle maneuvers. Precise understanding of the dynamic and thermodynamic effects of propellant slosh caused by these maneuvers is critical to mission performance and success. Computational fluid dynamics (CFD) analysis is used extensively within the space vehicle industry in an attempt to characterize the behavior of liquids in microgravity, yet experimental data to quantify these predictions is very limited and reduces confidence in the analytical predictions. A novel approach designed to produce high-fidelity data for correlation to CFD model predictions is being developed with the assistance of Florida Institute of Technology (FIT) and Sierra Lobo, Inc. With few exceptions, previous work in slosh dynamics was theoretical or treated the mass of fuel as a variable of inertia only; such models did not consider the viscosity, surface tension, or other important fluid effects. The challenges in this research are in the development of instrumentation able to measure the required parameters, the computational ability to quantify the fluid behaviors, and the means to assess both the measurements and predictions. The design of this experiment bridges the understanding of slosh dynamics in microgravity by a comprehensive approach that combines CFD tools, dynamic simulation tools, semianalytical models of the predominant fluid effects, and an experimental framework that includes measurement and characterization of liquid slosh in one-degree-of-freedom (DOF) and two-DOF experiments, and ultimately experiments in a NASA low-gravity aircraft.

  11. Extreme Adiabatic Expansion in Micro-gravity: Modeling for the Cold Atomic Laboratory

    Science.gov (United States)

    Sackett, C. A.; Lam, T. C.; Stickney, J. C.; Burke, J. H.

    2017-12-01

    The upcoming Cold Atom Laboratory mission for the International Space Station will allow the investigation of ultracold gases in a microgravity environment. Cold atomic samples will be produced using evaporative cooling in a magnetic chip trap. We investigate here the possibility to release atoms from the trap via adiabatic expansion. We discuss both general considerations and a detailed model of the planned apparatus. We find that it should be possible to reduce the mean trap confinement frequency to about 0.2 Hz, which will correspond to a three-dimensional sample temperature of about 150 pK and a mean atom velocity of 0.1 mm/s.

  12. Modelled microgravity alters the Na+, K+-ATPase activity in rat heart homogenates

    Science.gov (United States)

    Peana, Alessandra T.; Pippia, Proto; Paci, Silvia; Tognacini, Christina; Assaretti, Anna Rita; Meloni, Antonietta M.; Galleri, Grazia; Bernardini, Federico

    2005-08-01

    This study was aimed at establishing whether modeled microgravity conditions, created in a three-dimensional clinostat (Random Positioning Machine, RPM), influence the membrane-associated Na+, K+- and Mg2+- ATPase activities in heart homogenates from rats (ex- posed to RPM for 48 hours). The experimental data indicate that modeled low g significantly decreased the total ATPase (p<0.01) and Na+, K+ -ATPase activities (p<0.05) with no change of the Mg2+-ATPase activity, compared to the respective rat control groups (ground). This Na+, K+- pump inhibition could cause a digital- like effect in response to several modifications of many physiological processes even if this inhibition might also be causally related to the physiological environment induced by RPM. The exact mechanism by which total A TPase and Na+, K+ -A TPase activities decrease in response to RPM conditions remains to be established. We cannot rule out that a reduced intracellular ATP production, previously demonstrated in other cellular systems submitted to modeled microgravity conditions, could be responsible for the effects reported here.

  13. Leukocyte activity is altered in a ground based murine model of microgravity and proton radiation exposure.

    Directory of Open Access Journals (Sweden)

    Jenine K Sanzari

    Full Text Available Immune system adaptation during spaceflight is a concern in space medicine. Decreased circulating leukocytes observed during and after space flight infer suppressed immune responses and susceptibility to infection. The microgravity aspect of the space environment has been simulated on Earth to study adverse biological effects in astronauts. In this report, the hindlimb unloading (HU model was employed to investigate the combined effects of solar particle event-like proton radiation and simulated microgravity on immune cell parameters including lymphocyte subtype populations and activity. Lymphocytes are a type of white blood cell critical for adaptive immune responses and T lymphocytes are regulators of cell-mediated immunity, controlling the entire immune response. Mice were suspended prior to and after proton radiation exposure (2 Gy dose and total leukocyte numbers and splenic lymphocyte functionality were evaluated on days 4 or 21 after combined HU and radiation exposure. Total white blood cell (WBC, lymphocyte, neutrophil, and monocyte counts are reduced by approximately 65%, 70%, 55%, and 70%, respectively, compared to the non-treated control group at 4 days after combined exposure. Splenic lymphocyte subpopulations are altered at both time points investigated. At 21 days post-exposure to combined HU and proton radiation, T cell activation and proliferation were assessed in isolated lymphocytes. Cell surface expression of the Early Activation Marker, CD69, is decreased by 30% in the combined treatment group, compared to the non-treated control group and cell proliferation was suppressed by approximately 50%, compared to the non-treated control group. These findings reveal that the combined stressors (HU and proton radiation exposure result in decreased leukocyte numbers and function, which could contribute to immune system dysfunction in crew members. This investigation is one of the first to report on combined proton radiation and

  14. Effects of a Simulated Microgravity Model on cell structure and function in mouse testis

    Directory of Open Access Journals (Sweden)

    M.A. Masini

    2010-01-01

    Full Text Available Decreased testicular blood flow shift occurring under microgravity conditions causes impaired spermatogenesis in males. The tail suspended model has been used mainly in studies of muscle atrophy/osteoporosis and of body fluid shift in few studies aimed at spermatogenesis. We examined serum testosterone levels, testis morphology and apoptotic phenomena in tail suspended mice, a model used to reproduce some of the effects of the absence of gravity. Male C57BL mice (6months old were divided into two groups: tail suspended (TS and controls (C. After 14 days of treatment testosterone levels were determined. On fixed sections histological stain (HE was performed; DNA fragmentation was visualized using TUNEL technique. On the frozen samples immunoblotting for BAX, Bcl2, Caspase 39 and p53 was carried out. Testosterone levels were 0.18±0.09 and 3.74±2.2 ng/ml (mean±DS in suspended and control animals, respectively. HE staining showed disturbed cell arrangement and a markedly decreased number of spermatozoa in the testes, TUNEL revealed an increased apoptotic index and immunoblotting provided evidence of apoptotic markers in TS animals. These data support results previously obtained by other groups showing a significant influence of short duration microgravity conditions on testicular function.

  15. Rrhizogenesis in vitro is a convenient model for studying the root graviperceptive apparatus formation in microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Sarnatska, Veresa; Ovcharenko, Yulia

    A root graviperceptive apparatus is known to form in microgravity but does not function in the absence of a gravitational vector, that has been shown in many spaceflight experiments with seedlings of different plant species. In statocytes, which are differentiated in microgravity, a nucleus is localized in the proximal part of a cell as at 1 g. Unlike control, amyloplastsstatoliths do not sedimented in the distal part of a cell in microgravity, they group in the cell center more often, sometimes they localized in the different part of a cell. In all these experiments, the objects of investigations were embryonal roots formed in seeds at 1 g. There is only single report that columella cells in roots, which developed de novo from callus in space flight, did not differentiate in statocytes. Therefore, we call to attention to rhizogenesis in vitro as a convenient model for studying the influence of microgravity on differentiation of a root graviperceptive apparatus. Two methods for obtaining of Arabidopsis thaliana roots in vitro are proposed: the first-from the primary callus of leaf origin and the second - from leaf fragments. Callus initiation and growth are successful on MS medium supplemented with vitamin B5, glycine, inositol, 2,4-D, kinetin, glucose and agar. For induction of rhizogenesis calli were transferred to medium without hormones or medium which contained one to ten of MS mineral salts and microelements, without vitamins and hormones. Rhyzogenesis was obtained without added growth substances, but considerably higher number of calli with roots and number of roots per callus are on MS medium diluted tenfold. Rhizogenesis in A. thaliana leaf segments should present no problem, but the most intensive root formation is obtained when culturing them for three day on diluted MS medium supplemented with salycilic acid and then on diluted MS medium only. The low temperature treatment for three days increases the number of roots formed. A role of both plasticity

  16. Modeling of Blood Lead Levels in Astronauts Exposed to Lead from Microgravity-Accelerated Bone Loss

    Science.gov (United States)

    Garcia, H.; James, J.; Tsuji, J.

    2014-01-01

    Human exposure to lead has been associated with toxicity to multiple organ systems. Studies of various population groups with relatively low blood lead concentrations (bones, the adverse effects of lead correlate with the concentration of lead in the blood better than with that in the bones. NASA has found that prolonged exposure to microgravity during spaceflight results in a significant loss of bone minerals, the extent of which varies from individual to individual and from bone to bone, but generally averages about 0.5% per month. During such bone loss, lead that had been stored in bones would be released along with calcium. The effects on the concentration of lead in the blood (PbB) of various concentrations of lead in drinking water (PbW) and of lead released from bones due to accelerated osteoporosis in microgravity, as well as changes in exposure to environmental lead before, during, and after spaceflight were evaluated using a physiologically based pharmacokinetic (PBPK) model that incorporated exposure to environmental lead both on earth and in flight and included temporarily increased rates of osteoporosis during spaceflight.

  17. Immunogenic multistage recombinant protein vaccine confers partial protection against experimental toxoplasmosis mimicking natural infection in murine model

    Directory of Open Access Journals (Sweden)

    Yaprak Gedik

    2016-01-01

    To generate a protective vaccine against toxoplasmosis, multistage vaccines and usage of challenging models mimicking natural route of infection are critical cornerstones. In this study, we generated a BAG1 and GRA1 multistage vaccine that induced strong immune response in which the protection was not at anticipated level. In addition, the murine model was orally challenged with tissue cysts to mimic natural route of infection.

  18. The Microgravity Vibration Isolation Mount: A Dynamic Model for Optimal Controller Design

    Science.gov (United States)

    Hampton, R. David; Tryggvason, Bjarni V.; DeCarufel, Jean; Townsend, Miles A.; Wagar, William O.

    1997-01-01

    Vibration acceleration levels on large space platforms exceed the requirements of many space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration, relative position, and relative orientation (Euler-parameter) measurements are fed to a state-space controller. The controller, in turn, determines the actuator currents needed for effective experiment isolation. This paper presents the development of an algebraic, state-space model of the MIM, in a form suitable for optimal controller design.

  19. Artificial Klebsiella pneumoniae biofilm model mimicking in vivo system: altered morphological characteristics and antibiotic resistance.

    Science.gov (United States)

    Singla, Saloni; Harjai, Kusum; Chhibber, Sanjay

    2014-04-01

    The purpose of this study was to develop a biofilm model of Klebsiella pneumoniae B5055, mimicking in vivo biofilm system so as to determine susceptibility of different phases of biofilm to antibiotics by three-dimensional analysis. Artificial mature biofilm of K. pneumoniae was made on black, polycarbonate membranes. Biofilm structure was visualized by scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM). Viable count method, CLSM and SEM analysis confirmed that mature, uniform and viable biofilms can be formed on the polycarbonate membranes by this method. The three-dimensional heterogeneity of biofilm was confirmed on the basis of results of CLSM, which is an important characteristics of in vivo biofilm system. Staining with the LIVE/DEAD BacLight viability kit and acridine orange suggested that the center of biofilm had more inactive cells compared with actively dividing cells on the periphery. Amikacin at a concentration of 40 μg ml⁻¹ was effective against younger biofilm whereas ineffective against older biofilm that showed sparsely populated dead cells using the BacLight viability staining kit. Role of altered morphological characteristics toward increased antibiotic susceptibility was also studied for different phases of K. pneumoniae biofilm by CLSM and light microscopy. Thickness of biofilm increased from 0.093 to 0.231 mm with time. So, both heterogeneity and thickness of the biofilm are likely to influence the ineffectiveness of amikacin in older biofilm. The present model holds considerable clinical relevance and may be useful for evaluating the efficacy of antimicrobial agent on bacterial biofilms in vitro.

  20. Effects of Modeled Microgravity on Expression Profiles of Micro RNA in Human Lymphoblastoid Cells

    Science.gov (United States)

    Mangala, Lingegowda S.; Emami, Kamal; Story, Michael; Ramesh, Govindarajan; Rohde, Larry; Wu, Honglu

    2010-01-01

    Among space radiation and other environmental factors, microgravity or an altered gravity is undoubtedly the most significant stress experienced by living organisms during flight. In comparison to the static 1g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. Micro RNA (miRNA) has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. miRNA represents a class of single-stranded noncoding regulatory RNA molecules ( 22 nt) that control gene expressions by inhibiting the translation of mRNA to proteins. However, very little is known on the effect of altered gravity on miRNA expression. We hypothesized that the miRNA expression profile will be altered in zero gravity resulting in regulation of the gene expression and functional changes of the cells. To test this hypothesis, we cultured TK6 human lymphoblastoid cells in Synthecon s Rotary cell culture system (bioreactors) for 72 h either in the rotating (10 rpm) to model the microgravity in space or in the static condition. The cell viability was determined before and after culturing the cells in the bioreactor using both trypan blue and guava via count. Expressions of a panel of 352 human miRNA were analyzed using the miRNA PCRarray. Out of 352 miRNAs, expressions of 75 were significantly altered by a change of greater than 1.5 folds and seven miRNAs were altered by a fold change greater than 2 under the rotating culture condition. Among these seven, miR-545 and miR-517a were down regulated by 2 folds, whereas miR-150, miR-302a, miR-139-3p, miR-515-3p and miR-564 were up regulated by 2 to 8 folds. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA Illumina Microarray Analysis and validated the related genes using q-RT PCR.

  1. Measurements and Modeling of Soot Formation and Radiation in Microgravity Jet Diffusion Flames. Volume 4

    Science.gov (United States)

    Ku, Jerry C.; Tong, Li; Greenberg, Paul S.

    1996-01-01

    This is a computational and experimental study for soot formation and radiative heat transfer in jet diffusion flames under normal gravity (1-g) and microgravity (0-g) conditions. Instantaneous soot volume fraction maps are measured using a full-field imaging absorption technique developed by the authors. A compact, self-contained drop rig is used for microgravity experiments in the 2.2-second drop tower facility at NASA Lewis Research Center. On modeling, we have coupled flame structure and soot formation models with detailed radiation transfer calculations. Favre-averaged boundary layer equations with a k-e-g turbulence model are used to predict the flow field, and a conserved scalar approach with an assumed Beta-pdf are used to predict gaseous species mole fraction. Scalar transport equations are used to describe soot volume fraction and number density distributions, with formation and oxidation terms modeled by one-step rate equations and thermophoretic effects included. An energy equation is included to couple flame structure and radiation analyses through iterations, neglecting turbulence-radiation interactions. The YIX solution for a finite cylindrical enclosure is used for radiative heat transfer calculations. The spectral absorption coefficient for soot aggregates is calculated from the Rayleigh solution using complex refractive index data from a Drude- Lorentz model. The exponential-wide-band model is used to calculate the spectral absorption coefficient for H20 and C02. It is shown that when compared to results from true spectral integration, the Rosseland mean absorption coefficient can provide reasonably accurate predictions for the type of flames studied. The soot formation model proposed by Moss, Syed, and Stewart seems to produce better fits to experimental data and more physically sound than the simpler model by Khan et al. Predicted soot volume fraction and temperature results agree well with published data for a normal gravity co-flow laminar

  2. An Integrated Model of the Cardiovascular and Central Nervous Systems for Analysis of Microgravity Induced Fluid Redistribution

    Science.gov (United States)

    Price, R.; Gady, S.; Heinemann, K.; Nelson, E. S.; Mulugeta, L.; Ethier, C. R.; Samuels, B. C.; Feola, A.; Vera, J.; Myers, J. G.

    2015-01-01

    A recognized side effect of prolonged microgravity exposure is visual impairment and intracranial pressure (VIIP) syndrome. The medical understanding of this phenomenon is at present preliminary, although it is hypothesized that the headward shift of bodily fluids in microgravity may be a contributor. Computational models can be used to provide insight into the origins of VIIP. In order to further investigate this phenomenon, NASAs Digital Astronaut Project (DAP) is developing an integrated computational model of the human body which is divided into the eye, the cerebrovascular system, and the cardiovascular system. This presentation will focus on the development and testing of the computational model of an integrated model of the cardiovascular system (CVS) and central nervous system (CNS) that simulates the behavior of pressures, volumes, and flows within these two physiological systems.

  3. Microarray Profile of Gene Expression during Osteoclast Differentiation in Modeled Microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — Microgravity leads to a 10-15% loss of bone mass in astronauts during space flight. Osteoclast is the multinucleated bone resorbing cell. In this study we used NASA...

  4. microRNA expression profiles in human peripheral blood lymphocytes cultured in modeled microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — In the present study we analyzed miRNA and mRNA expression profiles in human peripheral blood lymphocytes (PBLs) incubated in microgravity condition simulated by a...

  5. Gene expression profiling of human peripheral blood lymphocytes cultured in modeled microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — In the present study we analyzed miRNA and mRNA expression profiles in human peripheral blood lymphocytes (PBLs) incubated in microgravity condition simulated by a...

  6. Constraining volcanic inflation at Three Sisters Volcanic Field in Oregon, USA, through microgravity and deformation modeling

    Science.gov (United States)

    Zurek, Jeffrey; William-Jones, Glyn; Johnson, Dan; Eggers, Al

    2012-10-01

    Microgravity data were collected between 2002 and 2009 at the Three Sisters Volcanic Complex, Oregon, to investigate the causes of an ongoing deformation event west of South Sister volcano. Three different conceptual models have been proposed as the causal mechanism for the deformation event: (1) hydraulic uplift due to continual injection of magma at depth, (2) pressurization of hydrothermal systems and (3) viscoelastic response to an initial pressurization at depth. The gravitational effect of continual magma injection was modeled to be 20 to 33 μGal at the center of the deformation field with volumes based on previous deformation studies. The gravity time series, however, did not detect a mass increase suggesting that a viscoelactic response of the crust is the most likely cause for the deformation from 2002 to 2009. The crust, deeper than 3 km, in the Three Sisters region was modeled as a Maxwell viscoelastic material and the results suggest a dynamic viscosity between 1018 to 5 × 1019 Pa s. This low crustal viscosity suggests that magma emplacement or stall depth is controlled by density and not the brittle ductile transition zone. Furthermore, these crustal properties and the observed geochemical composition gaps at Three Sisters can be best explained by different melt sources and limited magma mixing rather than fractional crystallization. More generally, low intrusion rates, low crustal viscosity, and multiple melt sources could also explain the whole rock compositional gaps observed at other arc volcanoes.

  7. Animal models and their importance to human physiological responses in microgravity

    Science.gov (United States)

    Tipton, C. M.

    1996-01-01

    Two prominent theories to explain the physiological effects of microgravity relate to the cascade of changes associated with the cephalic shifts of fluids and the absence of tissue deformation forces. One-g experiments for humans used bed rest and the head-down tilt (HDT) method, while animal experiments have been conducted using the tail-suspended, head-down, and hindlimbs non-weightbearing model. Because of the success of the HDT approach with rats to simulate the gravitational effects on the musculoskeletal system exhibited by humans, the same model has been used to study the effects of gravity on the cardiopulmonary systems of humans and other vertebrates. Results to date indicate the model is effective in producing comparable changes associated with blood volume, erythropoiesis, cardiac mass, baroreceptor responsiveness, carbohydrate metabolism, post-flight VO2max, and post-flight cardiac output during exercise. Inherent with these results is the potential of the model to be useful in investigating responsible mechanisms. The suspension model has promise in understanding the capillary blood PO2 changes in space as well as the arterial PO2 changes in subjects participating in a HDT experiment. However, whether the model can provide insights on the up-or-down regulation of adrenoreceptors remains to be determined, and many investigators believe the HDT approach should not be followed to study gravitational influences on pulmonary function in either humans or animals. It was concluded that the tail-suspended animal model had sufficient merit to study in-flight and post-flight human physiological responses and mechanisms.

  8. The Microgravity Isolation Mount: A Linearized State-Space Model a la Newton and Kane

    Science.gov (United States)

    Hampton, R. David; Tryggvason, Bjarni V.; DeCarufel, Jean; Townsend, Miles A.; Wagar, William O.

    1999-01-01

    Vibration acceleration levels on large space platforms exceed the requirements of many space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration, relative position, and relative orientation (Euler-parameter) measurements are fed to a state-space controller. The controller, in turn, determines the actuator currents needed for effective experiment isolation. This paper presents the development of an algebraic, state-space model of the MIM, in a form suitable for optimal controller design. The equations are first derived using Newton's Second Law directly; then a second derivation (i.e., validation) of the same equations is provided, using Kane's approach.

  9. Characterization of Escherichia coli MG1655 grown in a low-shear modeled microgravity environment

    Directory of Open Access Journals (Sweden)

    Pierson Duane L

    2007-03-01

    Full Text Available Abstract Background Extra-cellular shear force is an important environmental parameter that is significant both medically and in the space environment. Escherichia coli cells grown in a low-shear modeled microgravity (LSMMG environment produced in a high aspect rotating vessel (HARV were subjected to transcriptional and physiological analysis. Results Aerobic LSMMG cultures were grown in rich (LB and minimal (MOPS + glucose medium with a normal gravity vector HARV control. Reproducible changes in transcription were seen, but no specific LSMMG responsive genes were identified. Instead, absence of shear and a randomized gravity vector appears to cause local extra-cellular environmental changes, which elicit reproducible cellular responses. In minimal media, the majority of the significantly up- or down-regulated genes of known function were associated with the cell envelope. In rich medium, most LSMMG down-regulated genes were involved in translation. No observable changes in post-culture stress responses and antibiotic sensitivity were seen in cells immediately after exposure to LSMMG. Comparison with earlier studies of Salmonella enterica serovar Typhimurium conducted under similar growth conditions, revealed essentially no similarity in the genes that were significantly up- or down-regulated. Conclusion Comparison of these results to previous studies suggests that different organisms may dramatically differ in their responses to medically significant low-shear and space environments. Depending on their specific response, some organisms, such as Salmonella, may become preadapted in a manner that predisposes them to increased virulence.

  10. Computational Models of the Cardiovascular System and Its Response to Microgravity

    Science.gov (United States)

    Kamm, Roger D.

    1999-01-01

    Computational models of the cardiovascular system are powerful adjuncts to ground-based and in-flight experiments. We will provide NSBRI with a model capable of simulating the short-term effects of gravity on cardiovascular function. The model from this project will: (1) provide a rational framework which quantitatively defines interactions among complex cardiovascular parameters and which supports the critical interpretation of experimental results and testing of hypotheses. (2) permit predictions of the impact of specific countermeasures in the context of various hypothetical cardiovascular abnormalities induced by microgravity. Major progress has been made during the first 18 months of the program: (1) We have developed an operational first-order computer model capable of simulating the cardiovascular response to orthostatic stress. The model consists of a lumped parameter hemodynamic model and a complete reflex control system. The latter includes cardiopulmonary and carotid sinus reflex limbs and interactions between the two. (2) We have modeled the physiologic stress of tilt table experiments and lower body negative pressure procedures (LBNP). We have verified our model's predictions by comparing them with experimental findings from the literature. (3) We have established collaborative efforts with leading investigators interested in experimental studies of orthostatic intolerance, cardiovascular control, and physiologic responses to space flight. (4) We have established a standardized method of transferring data to our laboratory from the ongoing NSBRI bedrest studies. We use this data to estimate input parameters to our model and compare our model predictions to actual data to further verify our model. (5) We are in the process of systematically simulating current hypotheses concerning the mechanism underlying orthostatic intolerance by matching our simulations to stand test data from astronauts pre- and post-flight. (6) We are in the process of developing a

  11. Experimental and Modeling Study of the Burning of an Ethanol Droplet in Microgravity

    Science.gov (United States)

    Kazakov, Andrei; Conley, Jordan; Dryer, Frederick L.; Ferkul, Paul (Technical Monitor)

    2000-01-01

    The microgravity ethanol droplet combustion experiments were performed aboard the STS-94/MSL-1 Shuttle mission within the Fiber-Supported Droplet Combustion-2 (FSDC-2) program. The burning histories and flame standoffs for pure ethanol and ethanol/water droplets were obtained from the images recorded with two 8 mm videocameras. The obtained results show that average gasification rate is related to the initial droplet size in a manner similar to n-alkanes and methanol and consistent with the results of Hara and Kumagai and the data taken recently in the NASA-Lewis 2.2 s droptower. A transient, moving finite-element chemically reacting flow model applied previously to sphero-symmetric combustion of methanol, methanol/water, n-alkane, and n-alkane binary mixture droplets was adopted for the problem of ethanol droplet combustion. The model includes detailed description of gas-phase reaction chemistry and transport, a simplified description of liquid phase transport, and non-luminous radiative heat transfer. Gas-phase chemistry was described with the detailed reaction mechanism of Norton and Dryer, which consists of 142 reversible elementary reactions of 33 species. Another recently published reaction mechanism of high-temperature ethanol oxidation was also considered. The model predictions were found to compare favorably with the experimental data. The model analysis also indicates that water condensation in the case of ethanol has smaller effect on average droplet gasification rate as compared with previously studied methanol cases. This effect is explained by non-ideal (azeotropic) behavior of binary ethanol-water mixtures. Further analysis of computational results and ethanol droplet radiative extinction behavior will be discussed.

  12. Solidification under microgravity

    Indian Academy of Sciences (India)

    Unknown

    However, in order to assess the models, experiments able to separate convection from the other mechanisms are still needed. This has led to conducting experiments in microgravity environment on inoculated Al–Cu alloys to minimise convection so that diffusive transport mechanism is dominant and in which density of the.

  13. Computational Modeling of Cephalad Fluid Shift for Application to Microgravity-Induced Visual Impairment

    Science.gov (United States)

    Nelson, Emily S.; Best, Lauren M.; Myers, Jerry G.; Mulugeta, Lealem

    2013-01-01

    An improved understanding of spaceflight-induced ocular pathology, including the loss of visual acuity, globe flattening, optic disk edema and distension of the optic nerve and optic nerve sheath, is of keen interest to space medicine. Cephalad fluid shift causes a profoundly altered distribution of fluid within the compartments of the head and body, and may indirectly generate phenomena that are biomechanically relevant to visual function, such as choroidal engorgement, compromised drainage of blood and cerebrospinal fluid (CSF), and altered translaminar pressure gradient posterior to the eye. The experimental body of evidence with respect to the consequences of fluid shift has not yet been able to provide a definitive picture of the sequence of events. On earth, elevated intracranial pressure (ICP) is associated with idiopathic intracranial hypertension (IIH), which can produce ocular pathologies that look similar to those seen in some astronauts returning from long-duration flight. However, the clinically observable features of the Visual Impairment and Intracranial Pressure (VIIP) syndrome in space and IIH on earth are not entirely consistent. Moreover, there are at present no experimental measurements of ICP in microgravity. By its very nature, physiological measurements in spaceflight are sparse, and the space environment does not lend itself to well-controlled experiments. In the absence of such data, numerical modeling can play a role in the investigation of biomechanical causal pathways that are suspected of involvement in VIIP. In this work, we describe the conceptual framework for modeling the altered compartmental fluid distribution that represents an equilibrium fluid distribution resulting from the loss of hydrostatic pressure gradient.

  14. Terrestrial applications of bone and muscle research in microgravity

    Science.gov (United States)

    Booth, F. W.

    1994-08-01

    Major applications to people on Earth are possible from NASA-sponsored research on bone and muscle which is conducted either in microgravity or on Earth using models mimicking microgravity. In microgravity bone and muscle mass are lost. Humans experience a similar loss under certain conditions on Earth. Bone and muscle loss exist on Earth as humans age from adulthood to senescence, during limb immobilization for healing of orthopedic injuries, during wheelchair confinement because of certain diseases, and during chronic bed rest prescribed for curing of diseases. NASA-sponsored research is dedicated to learning both what cause bone and muscle loss as well as finding out how to prevent this loss. The health ramifications of these discoveries will have major impact. Objective 1.6 of Healthy People 2000, a report from the U.S. Department of Health and Human Services, states that the performance of physical activities that improve muscular strength, muscular endurance, and flexibility is particularly important to maintaining functional independence and social integration in older adults /1/. This objective further states that these types of physical activities are important because they may protect against disability, an event which costs the U.S. economy hugh sums of money. Thus NASA research related to bone and muscle loss has potential major impact on the quality of life in the U.S. Relative to its potential health benefits, NASA and Congressional support of bone and muscle research is funded is a very low level.

  15. Cytomorphometric changes in hippocampal CA1 neurons exposed to simulated microgravity using rats as model

    Directory of Open Access Journals (Sweden)

    Amit eRanjan

    2014-05-01

    Full Text Available Microgravity and sleep loss lead to cognitive and learning deficits. These behavioral alterations are likely to be associated with cytomorphological changes and loss of neurons. To understand the phenomenon, we exposed rats (225-275g to 14 days simulated microgravity (SMg and compared its effects on CA1 hippocampal neuronal plasticity, with that of normal cage control rats. We observed that the mean area, perimeter, synaptic cleft and length of active zone of CA1 hippocampal neurons significantly decreased while dendritic arborization and number of spines significantly increased in SMg group as compared with controls. The mean thickness of the post synaptic density and total dendritic length remained unaltered. The changes may be a compensatory effect induced by exposure to microgravity; however, the effects may be transient or permanent, which need further study. These findings may be useful for designing effective prevention for those, including the astronauts, exposed to microgravity. Further, subject to confirmation we propose that SMg exposure might be useful for recovery of stroke patients.

  16. Transgenic medaka fish as models to analyze bone homeostasis under micro-gravity conditions in vivo

    Science.gov (United States)

    Winkler, C.; Wagner, T.; Renn, J.; Goerlich, R.; Schartl, M.

    Long-term space flight and microgravity results in bone loss that can be explained by reduced activity of bone-forming osteoblast cells and/or an increase in activity of bone resorbing osteoclast cells. Osteoprotegerin (OPG), a secreted protein of 401 amino acids, has been shown to regulate the balance between osteoblast and osteoclast formation and thereby warrants constant bone mass under normal gravitational conditions. Consistent with this, earlier reports using transgenic mice have shown that increased activation of OPG leads to exc essive bone formation (osteopetrosis), while inactivation of OPG leads to bone loss (osteoporosis). Importantly, it has recently been reported that expression of murine OPG is regulated by vector averaged gravity (Kanematsu et al., 2002, Bone 30, p553). The small bony fish medaka (Oryzias latipes ) has attracted increasing attention as genetic model system to study developmental and pathological processes. To analyze the molecular mechanisms of bone formation in this small vertebrate, we have isolated two related genes, opr-1 and opr -2, from medaka. Our phylogenetic analysis revealed that both genes originated from a common ancestor by fish-specific gene duplication and represent the orthologs of the mammalian OPG gene. Both opr genes are differentially expressed during embryonic and larval development, in adult tissues and in cultured primary osteoblast cells. We have characterized their promoter regions and identified consensus binding sites for transcription factors of the bone-morphogenetic-protein (BMP) p thway and for core-binding-factor-1Aa (cbfa1). Cbfa1 has been shown to be the key regulator of OPG expression during several steps of osteoblast differentiation in mammals. This opens the possibility that the mechanisms controlling bone formation in teleost fish and higher vertebrates are regulated by related mechanisms. We are currently generating transgenic medakafish expressing a GFP reporter gene under control of the

  17. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis

    DEFF Research Database (Denmark)

    Moser, Claus; van Gennip, Maria; Bjarnsholt, Thomas

    2009-01-01

    Moser C, van Gennip M, Bjarnsholt T, Jensen PO, Lee B, Hougen HP, Calum H, Ciofu O, Givskov M, Molin S, Hoiby N. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis. APMIS 2009; 117: 95-107. The dominant cause of premature...... death in patients suffering from cystic fibrosis (CF) is chronic lung infection with Pseudomonas aeruginosa. The chronic lung infection often lasts for decades with just one clone. However, as a result of inflammation, antibiotic treatment and different niches in the lungs, the clone undergoes...... and 2003) of the chronic lung infection of one CF patient using the seaweed alginate embedment model. The results showed that the non-mucoid clones reduced their virulence over time, resulting in faster clearing of the bacteria from the lungs, improved pathology and reduced pulmonary production...

  18. Effects of a simulated microgravity model on cell structure and function in rat testis and epididymis

    Science.gov (United States)

    Hadley, Jill A.; Hall, Joseph C.; O'Brien, Ami; Ball, Richard

    1992-01-01

    The effect of simulated microgravity on the structure and function of the testis and epididymis cells was investigated in rats subjected to 7 days of tail suspension. Results of a histological examination revealed presence of disorganized seminiferous tubules and accumulation of large multinucleated cells and spermatids in the lumen of the epididymis. In addition, decreases in the content of testis protein and in testosterone levels in the testis, the interstitial fluid, and the epididymis were observed.

  19. Insulin-mimicking bioactivities of acylated inositol glycans in several mouse models of diabetes with or without obesity.

    Directory of Open Access Journals (Sweden)

    Susumu Suzuki

    Full Text Available Insulin-mimetic species of low molecular weight are speculated to mediate some intracellular insulin actions. These inositol glycans, which are generated upon insulin stimulation from glycosylphosphatidylinositols, might control the activity of a multitude of insulin effector enzymes. Acylated inositol glycans (AIGs are generated by cleavage of protein-free GPI precursors through the action of GPI-specific phospholipase C (GPI-PLC and D (GPI-PLD. We synthesized AIGs (IG-1, IG-2, IG-13, IG-14, and IG-15 and then evaluated their insulin-mimicking bioactivities. IG-1 significantly stimulated glycogen synthesis and lipogenesis in 3T3-L1 adipocytes and rat isolated adipocytes dose-dependently. IG-2 significantly stimulated lipogenesis in rat isolated adipocytes dose-dependently. IG-15 also enhanced glycogen synthesis and lipogenesis in 3T3-L1 adipocytes. The administration of IG-1 decreased plasma glucose, increased glycogen content in liver and skeletal muscles and improved glucose tolerance in C57B6N mice with normal diets. The administration of IG-1 decreased plasma glucose in STZ-diabetic C57B6N mice. The treatment of IG-1 decreased plasma glucose, increased glycogen content in liver and skeletal muscles and improved glucose tolerance in C57B6N mice with high fat-diets and db/db mice. The long-term treatment of IG-1 decreased plasma glucose and reduced food intake and body weight in C57B6N mice with high fat-diets and ob/ob mice. Thus, IG-1 has insulin-mimicking bioactivities and improves glucose tolerance in mice models of diabetes with or without obesity.

  20. Geometric and electronic structures of the synthetic Mn₄CaO₄ model compound mimicking the photosynthetic oxygen-evolving complex.

    Science.gov (United States)

    Shoji, Mitsuo; Isobe, Hiroshi; Shen, Jian-Ren; Yamaguchi, Kizashi

    2016-04-28

    Water oxidation by photosystem II (PSII) converts light energy into chemical energy with the concomitant production of molecular oxygen, both of which are indispensable for sustaining life on Earth. This reaction is catalyzed by an oxygen-evolving complex (OEC) embedded in the huge PSII complex, and its mechanism remains elusive in spite of the extensive studies of the geometric and electronic structures. In order to elucidate the water-splitting mechanism, synthetic approaches have been extensively employed to mimic the native OEC. Very recently, a synthetic complex [Mn4CaO4(Bu(t)COO)8(py)(Bu(t)COOH)2] (1) closely mimicking the structure of the native OEC was obtained. In this study, we extensively examined the geometric, electronic and spin structures of 1 using the density functional theory method. Our results showed that the geometric structure of 1 can be accurately reproduced by theoretical calculations, and revealed many similarities in the ground valence and spin states between 1 and the native OEC. We also revealed two different valence states in the one-electron oxidized state of 1 (corresponding to the S2 state), which lie in the lower and higher ground spin states (S = 1/2 and S = 5/2), respectively. One remarkable difference between 1 and the native OEC is the presence of a non-negligible antiferromagnetic interaction between the Mn1 and Mn4 sites, which slightly influenced their ground spin structures (spin alignments). The major reason causing the difference can be attributed to the short Mn1-O5 and Mn1-Mn4 distances in 1. The introduction of the missing O4 atom and the reorientation of the Ca coordinating ligands improved the Mn1-O5 and Mn1-Mn4 distances comparable to the native OEC. These modifications will therefore be important for the synthesis of further advanced model complexes more closely mimicking the native OEC beyond 1.

  1. Computer modeling of the dynamics of surface tension on rotating fluids in low and microgravity environments

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, Fred W.

    1989-01-01

    Time-dependent evolutions of the profile of the free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low- and microgravity environments, (2) linear functions of increasing and decreasing gravity environments at high- and low-rotating cylinder speeds, and (3) step functions of spin-up and spin-down in a low-gravity environment.

  2. The differentiation directions of the bone marrow stromal cells under modeling microgravity

    Science.gov (United States)

    Nesterenko, Olga; Rodionova, Natalia; Katkova, Olena

    Within experiments on rats simulating microgravity by base load remove from back limbs (duration of the experiment 1,5 months) on marrow stromal cells cultures (ex vivo, in vitro) comprising osteogenic cells-predecessors, extracted from femurs, studied their peculiarities of the colony formation ablity, the cell structure, some cytological and ultra-structural characteristics and differentiation direction. It was found that that under microgravity conditions there is a decline of the stromal cells colony formation intensity, decrease of the colonies size and cells mitotic activity that indicates decrease of their growth potential. Both in control and in experiment the colonies were presented by population of low-differentiated cells, differentiated cells and mature cells. The comparative cytological and morphometric analysis have shown that the studied stromal cells in colonies have the smaller sizes, more elongated shape, and higher nucleocytoplasmic ratio. Cells composition in the experiment colonies is reliably different by the ratio of the low-differentiating to being differentiated cells; a ratio of low-differentiated to already differentiated cells; ratio of differentiated cells to total number of all cells. In comparison with control group, amount of the cells passed trough a differentiation stage and mature cells in colonies is decreased by 3 to 4 times. Among the differentiated stromal cells in colonies increasing amount of adipocytes was revealed. The analysis of electron microscope microphotographs showed that in osteogenic cells differentiated under microgravity conditions, there is a reduction of the specific volume of a granular endoplasmic reticulum, Golgi's complex and quantity of nuclei reduction that indicates depression of the specific biosyntheses process intensity in cells. The increase of lysosomes and myelinic structures quantity is linked to organelles partial reduction. Consolidation of mitochondrias is an evidence of the cells’ energy

  3. Advanced Magnetic Materials Methods and Numerical Models for Fluidization in Microgravity and Hypogravity

    Science.gov (United States)

    Atwater, James; Wheeler, Richard, Jr.; Akse, James; Jovanovic, Goran; Reed, Brian

    2013-01-01

    To support long-duration manned missions in space such as a permanent lunar base, Mars transit, or Mars Surface Mission, improved methods for the treatment of solid wastes, particularly methods that recover valuable resources, are needed. The ability to operate under microgravity and hypogravity conditions is essential to meet this objective. The utilization of magnetic forces to manipulate granular magnetic media has provided the means to treat solid wastes under variable gravity conditions by filtration using a consolidated magnetic media bed followed by thermal processing of the solid wastes in a fluidized bed reactor. Non-uniform magnetic fields will produce a magnetic field gradient in a bed of magnetically susceptible media toward the distributor plate of a fluidized bed reactor. A correctly oriented magnetic field gradient will generate a downward direct force on magnetic media that can substitute for gravitational force in microgravity, or which may augment low levels of gravity, such as on the Moon or Mars. This approach is termed Gradient Magnetically Assisted Fluidization (G-MAFB), in which the magnitude of the force on the fluidized media depends upon the intensity of the magnetic field (H), the intensity of the field gradient (dH/dz), and the magnetic susceptibility of the media. Fluidized beds based on the G-MAFB process can operate in any gravitational environment by tuning the magnetic field appropriately. Magnetic materials and methods have been developed that enable G-MAFB operation under variable gravity conditions.

  4. Blood flow and microgravity

    Science.gov (United States)

    Bureau, Lionel; Coupier, Gwennou; Dubois, Frank; Duperray, Alain; Farutin, Alexander; Minetti, Christophe; Misbah, Chaouqi; Podgorski, Thomas; Tsvirkun, Daria; Vysokikh, Mikhail

    2017-01-01

    The absence of gravity during space flight can alter cardio-vascular functions partially due to reduced physical activity. This affects the overall hemodynamics, and in particular the level of shear stresses to which blood vessels are submitted. Long-term exposure to space environment is thus susceptible to induce vascular remodeling through a mechanotransduction cascade that couples vessel shape and function with the mechanical cues exerted by the circulating cells on the vessel walls. Central to such processes, the glycocalyx - i.e. the micron-thick layer of biomacromolecules that lines the lumen of blood vessels and is directly exposed to blood flow - is a major actor in the regulation of biochemical and mechanical interactions. We discuss in this article several experiments performed under microgravity, such as the determination of lift force and collective motion in blood flow, and some preliminary results obtained in artificial microfluidic circuits functionalized with endothelium that offer interesting perspectives for the study of the interactions between blood and endothelium in healthy condition as well as by mimicking the degradation of glycocalyx caused by long space missions. A direct comparison between experiments and simulations is discussed. xml:lang="fr"

  5. Study of the factors affecting the karst volume assessment in the Dead Sea sinkhole problem using microgravity field analysis and 3-D modeling

    Directory of Open Access Journals (Sweden)

    L. V. Eppelbaum

    2008-11-01

    Full Text Available Thousands of sinkholes have appeared in the Dead Sea (DS coastal area in Israel and Jordan during two last decades. The sinkhole development is recently associated with the buried evaporation karst at the depth of 25–50 m from earth's surface caused by the drop of the DS level at the rate of 0.8–1.0 m/yr. Drop in the Dead Sea level has changed hydrogeological conditions in the subsurface and caused surface to collapse. The pre-existing cavern was detected using microgravity mapping in the Nahal Hever South site where seven sinkholes of 1–2 m diameter had been opened. About 5000 gravity stations were observed in the area of 200×200 m2 by the use of Scintrex CG-3M AutoGrav gravimeter. Besides the conventional set of corrections applied in microgravity investigations, a correction for a strong gravity horizontal gradient (DS Transform Zone negative gravity anomaly influence was inserted. As a result, residual gravity anomaly of –(0.08÷0.14 mGal was revealed. The gravity field analysis was supported by resistivity measurements. We applied the Emigma 7.8 gravity software to create the 3-D physical-geological models of the sinkholes development area. The modeling was confirmed by application of the GSFC program developed especially for 3-D combined gravity-magnetic modeling in complicated environments. Computed numerous gravity models verified an effective applicability of the microgravity technology for detection of karst cavities and estimation of their physical-geological parameters. A volume of the karst was approximately estimated as 35 000 m3. The visual analysis of large sinkhole clusters have been forming at the microgravity anomaly site, confirmed the results of microgravity mapping and 3-D modeling.

  6. Biomechanical Modeling of the Deadlift Exercise on the HULK Device to Improve the Efficacy of Resistive Exercise Microgravity Countermeasures

    Science.gov (United States)

    Jagodnik, K. M.; Thompson, W. K.; Gallo, C. A.; Crentsil, L.; Funk, J. H.; Funk, N. W.; Perusek, G. P.; Sheehan, C. C.; Lewandowski, B. E.

    2016-01-01

    Extended spaceflight typically results in the loss of muscular strength and bone density due to exposure to microgravity. Resistive exercise countermeasures have been developed to maintain musculoskeletal health during spaceflight. The Advanced Resistive Exercise Device (ARED) is the "gold standard" of available devices; however, its footprint and volume are too large for use in space capsules employed in exploration missions. The Hybrid Ultimate Lifting Kit (HULK) device, with its smaller footprint, is a prototype exercise device for exploration missions. This work models the deadlift exercise being performed on the HULK device using biomechanical simulation, with the long-term goal to improve and optimize astronauts' exercise prescriptions, to maximize the benefit of exercise while minimizing time and effort invested.

  7. Altered TNF-Alpha, Glucose, Insulin and Amino Acids in Islets Langerhans Cultured in a Microgravity Model System

    Science.gov (United States)

    Tobin, Brian W.; Leeper-Woodford, Sandra K.; Hashemi, Brian B.; Smith, Scott M.; Sams, Clarence F.

    2001-01-01

    The present studies were designed to determine effects of a microgravity model system upon lipopolysaccharide (LPS) stimulated tumor necrosis factor alpha (TNF-alpha) activity and indices of insulin and fuel homeostasis of pancreatic islets of Langerhans. Islets (1726+/-1 17,150 u IEU) from Wistar Furth rats were treated as: 1) HARV (High Aspect Ratio Vessel cell culture) , 2) HARV plus LPS, 3) static culture, 4) static culture plus LPS. TNF-alpha (L929 cytotoxicity assay) was significantly increased in LPS-induced HARV and static cultures, yet the increase was more pronounced in the static culture group (pinsulin concentration was demonstrated in the LPS stimulated HARV culture (palterations in LPS induced TNF-alpha production of pancreatic islets of Langerhans, favoring a lesser TNF activity in the HARV. These alterations in fuel homeostasis may be promulgated by gravity averaged cell culture methods or by three dimensional cell assembly.

  8. Techniques for studying the effects of microgravity on model particle/cell systems

    Science.gov (United States)

    Young, Ronald B.

    1989-01-01

    In an effort to learn more about the effects of a simulated low gravity environment on skeletal muscle, skeletal muscle cell cultures were grown within the lumen of XM-80 hollow fibers (i.d. = 0.5 mm) in a Clinostat rotating at 100 rpm. Cells were isolated from the thigh muscle tissue of 12 day embryos and were cultured for up to 14 days in the hollow fiber environment. Cells proliferated to confluency within several days, and fusion into multinucleated myotubes was then apparent. Fibers were stretched by a built-in spring mechanism to hold the fiber tightly at the center of rotation, and sections of the fiber were removed at 3, 7 and 14 days for electron microscopic analysis. When the Clinostat is rotated in the horizontal position, the gravity vector approaches zero and the cells are in an environment that simulates microgravity. Control experiments consist of one fiber rotated in the vertical position in the clinostat and another fiber that is held in a horizontal configuration in a comparable sized tube that is not rotated at all. Examination of skeletal muscle cells by electron microscopy revealed that myoblast fusion and myofibril accumulation were extensive. Two general conclusions were apparent. First, muscle cells undergo the normal progression of proliferation, fusion, and myofibril assembly in the presence of simulated microgravity for the first week in culture. After 14 days, however, many muscle fibers undergo degeneration such that myofibrillar structures are not extensive or well organized. Second, although no major abnormalities in myofibril assembly were detected in Clinostat-rotated cultures in comparison to controls that were not rotated in a Clinostat, the myofibrils in non-rotated controls tend to be more highly organized than those in either horizontally or vertically rotated Clinostat samples.

  9. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.

    Science.gov (United States)

    Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S

    2016-05-01

    The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Comparative analysis of colonic gene expression of three experimental colitis models mimicking inflammatory bowel disease

    NARCIS (Netherlands)

    te Velde, Anje A.; de Kort, Floor; Sterrenburg, Ellen; Pronk, Inge; ten Kate, Fiebo J. W.; Hommes, Daniel W.; van Deventer, Sander J. H.

    2007-01-01

    BACKGROUND: Mouse models of inflammatory bowel diseases (IBD) are used to unravel the pathophysiology of IBD and to study new treatment modalities, but their relationship to Crohn's disease (CD) or ulcerative colitis (UC) is speculative. METHODS: Using Agilent mouse TOX oligonucleotide microarrays,

  11. A new model mimicking persistent HBV e antigen-negative infection using covalently closed circular DNA in immunocompetent mice.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Despite the availability of an effective vaccine, hepatitis B virus (HBV infection remains a major health problem. HBV e antigen (HBeAg-negative strains have become prevalent. Previously, no animal model mimicked the clinical course of HBeAg-negative HBV infection. To establish an HBeAg-negative HBV infection model, the 3.2-kb full-length genome of HBeAg-negative HBV was cloned from a clinical sample and then circularized to form covalently closed circular (cccDNA. The resulting cccDNA was introduced into the liver of C57BL/6J mice through hydrodynamic injection. Persistence of the HBeAg-negative infection was monitored at predetermined time points using HBV-specific markers including HBV surface antigen (HBsAg, HBeAg, and HBV core antigen (HBcAg as well as DNA copies. Throughout the study, pAAV-HBV1.2 was used as a control. In mice injected with HBeAg-negative cccDNA, the HBV infection rate was 100% at the initial stage. HBsAg levels increased up to 1 week, at which point levels peaked and dropped quickly thereafter. In 60% of injected mice, HBsAg and HBcAg persisted for more than 10 weeks. High numbers of HBV DNA copies were detected in the serum and liver. Moreover, cccDNA persisted in the liver tissue of HBeAg-negative mice. In contrast to the pAAV-HBV 1.2 injected mice, no HBeAg was found in mice injected with HBeAg-negative HBV throughout the study period. These results demonstrate the first successful establishment of a model of HBeAg-negative HBV-persistent infection in immunocompetent mice. Compared to pAAV-HBV1.2-injected mice, the infection persistence and levels of serum virological and biochemical markers were approximately equal in the model mice. This model will be useful for mechanistic studies on HBeAg-negative HBV infection and will facilitate the evaluation of new antiviral drugs.

  12. Reprodaetion of an animal model of multiple intestinal injuries mimicking "lethal triad" caused by severe penetrating abdominal trauma

    Directory of Open Access Journals (Sweden)

    Peng-fei WANG

    2011-03-01

    Full Text Available Objective To reproduce an animal model of multi-intestinal injuries with "lethal triad" characterized by low body temperature,acidosis and coagulopathy.Methods Six female domestic outbred pigs were anesthetized,and the carotid artery and jugular vein were cannulated for monitoring the blood pressure and heart rate and for infusion of fluid.The animals were shot with a gun to create a severe penetrating abdominal trauma.Immediately after the shooting,50% of total blood volume(35ml/kg hemorrhage was drawn from the carotid artery in 20min.After a 40min shock period,4h of pre-hospital phase was mimicked by normal saline(NS resuscitation to maintain systolic blood pressure(SBP > 80mmHg or mean arterial pressure(MAP > 60mmHg.When SBP > 80mmHg or MAP > 60mmHg,no fluid infusion or additional bleeding was given.Hemodynamic parameters were recorded,and pathology of myocardium,lung,small intestine and liver was observed.Results There were multiple intestinal perforations(8-10 site injuries/pig leading to intra-abdominal contamination,mesenteric injury(1-2 site injuries/pig resulted in partial intestinal ischemia and intra-abdominal hemorrhage,and no large colon and mesenteric vascular injury.One pig died before the completion of the model establishment(at the end of pre-hospital resuscitation.The typical symptoms of trauma-induced hemorrhagic shock were observed in survival animals.Low temperature(33.3±0.5℃,acidosis(pH=7.242±0.064,and coagulopathy(protrombin time and activated partial thromboplasting time prolonged were observed after pre-hospital resuscitation.Pathology showed that myocardium,lung,small intestine and liver were severely injured.Conclusions A new model,simulating three stages of "traumatic hemorrhagic shock,pre-hospital recovery and hospital treatment" and inducing the "lethal triad" accompanied with abdominal pollution,has been successfully established.This model has good stability and high reproducibility.The survival animals can be

  13. The study of simulated microgravity effects on cardiac myocytes using a 3D heart tissue-equivalent model encapsulated in alginate microbeads

    Science.gov (United States)

    Li, Yu; Tian, Weiming; Zheng, Hongxia; Yu, Lei; Zhang, Yao; Han, Fengtong

    Long duration spaceflight may increase the risk and occurrence of potentially life-threatening heart rhythm disturbances associated with alterations of cardiac myocytes, myocyte connec-tivity, and extracellular matrix resulting from prolonged exposure to zero-or low-gravity. For understanding of the effects of microgravity, either traditional 2-dimensional (2D) cell cultures of adherent cell populations or animal models were typically used. The 2D in vitro systems do not allow assessment of the dynamic effects of intercellular interactions within tissues, whereas potentially confounding factors tend to be overlooked in animal models. Therefore novel cell culture model representative of the cellular interactions and with extracellular matrix present in tissues needs to be used. In this study, 3D multi-cellular heart tissue-equivalent model was constructed by culturing neonatal rat myocardial cells in alginate microbeads for one week. With this model we studied the simulated microgravity effects on myocardiocytes by incubat-ing the microbeads in NASA rotary cell culture system with a rate of 15rpm. Cytoskeletal changes, mitochondrial membrane potential and reactive oxygen production were studied after incubating for 24h, 48h and 72h respectively. Compared with 3D ground-culture group, sig-nificant cytoskeleton depolymerization characterized by pseudo-feet disappearance, significant increase of mitochondrial membrane potential, and greater reactive oxygen production were observed in after incubating 24h, 48h, and 72h, in NASA system. The beating rate of 3D heart tissue-equivalent decreased significantly at 24h, and all the samples stopped beating after 48h incubation while the beating rate of control group did not change. This study indicated that mi-crogravity affects both the structure and function of myocardial cells. Our results suggest that a 3D heart tissue-equivalent model maybe better for attempting to elucidate the microgravity effects on myocardiocytes in

  14. Yin-yang of space travel: lessons from the ground-based models of microgravity and their applications to disease and health for life on Earth

    Science.gov (United States)

    Kulkarni, A.; Yamauchi, K.; Hales, N.; Sundaresan, A.; Pellis, N.; Yamamoto, S.; Andrassy, R.

    Space flight environment has numerous clinical effects on human physiology; however, the advances made in physical and biological sciences have benefited humans on Earth. Space flight induces adverse effects on bone, muscle, cardiovascular, neurovestibular, gastrointestinal, and immune function. Similar pathophysiologic changes are also observed in aging with debilitating consequences. Anti-orthostatic tail-suspension (AOS) of rodents is an in vivo model to study many of these effects induced by the microgravity environment of space travel. Over the years AOS has been used by several researchers to study bone demineralization, muscle atrophy, neurovestibular and stress related effects. ecently we employed the AOS model in parallel with in vitro cell culture microgravity analog (Bioreactor) to document the decrease in immune function and its reversal by a nutritional countermeasure. We have modified the rodent model to study nutrient effects and benefits in a short period of time, usually within one to two weeks, in contrast to conventional aging research models which take several weeks to months to get the same results. This model has a potential for further development to study the role of nutrition in other pathophysiologies in an expedited manner. Using this model it is possible to evaluate the response of space travelers of various ages to microgravity stressors for long-term space travel. Hence this modified model will have significant impact on time and financial research budget. For the first time our group has documented a true potential immunonutritional countermeasure for the space flight induced effects on immune system (Clinical Nutrition 2002). Based on our nutritional and immunological studies we propose application of these microgravity analogs and its benefits and utility for nutritional effects on other physiologic parameters especially in aging. (Supported by NASA NCC8-168 grant, ADK)

  15. Pneumatic muscle actuator for resistive exercise in microgravity: test with a leg model.

    Science.gov (United States)

    Serres, Jennifer L; Phillips, Chandler A; Reynolds, David B; Mohler, Stanley R; Rogers, Dana B; Repperger, Daniel W; Gerschutz, Maria J

    2010-02-01

    A proof-of-concept demonstration is described in which a DC servomotor (simulating the quadriceps of a human operator) rotated a pulley 90 degrees (simulating knee extension). A pneumatic muscle actuator (PMA) generated an opposing force (antagonist) to the rotating pulley. One application of such a device is for use in microgravity environments because the PMA is compact, simple, and of relatively small mass (283 g). In addition, the operator can set a computer-controlled force-level range in response to individual user changes in exercise conditioning over time. A PMA was used in this study and interacted with a DC servomotor. For each trial, the PMA contracted in response to internal pressure. An input voltage profile activated the DC servomotor, resulting in the following three phases: an isokinetic counterclockwise pulley rotation of 90 degrees over 5 s (Phase I), the position was held for 5 s (Phase II), and an isokinetic clockwise rotation of 90 degrees over 5 s (Phase III). Root mean square error (RMSE) values were used to evaluate the pulley rotation. For Phase I, when the PMA pressures (in kPa) were 300, 450, and 575, the percent RMSE, respectively, were 5.24, 6.23, and 4.59. For Phase II, the percent RMSE were 2.81, 2.57, and 5.63, respectively. For Phase III, the percent RMSE were 5.69, 2.63, and 3.30, respectively. This study presents a demonstration of a PMA device that can enhance exercise by providing a wide range of resistive loads.

  16. Design and Investigation of PolyFermS In Vitro Continuous Fermentation Models Inoculated with Immobilized Fecal Microbiota Mimicking the Elderly Colon.

    Directory of Open Access Journals (Sweden)

    Sophie Fehlbaum

    Full Text Available In vitro gut modeling is a useful approach to investigate some factors and mechanisms of the gut microbiota independent of the effects of the host. This study tested the use of immobilized fecal microbiota to develop different designs of continuous colonic fermentation models mimicking elderly gut fermentation. Model 1 was a three-stage fermentation mimicking the proximal, transverse and distal colon. Models 2 and 3 were based on the new PolyFermS platform composed of an inoculum reactor seeded with immobilized fecal microbiota and used to continuously inoculate with the same microbiota different second-stage reactors mounted in parallel. The main gut bacterial groups, microbial diversity and metabolite production were monitored in effluents of all reactors using quantitative PCR, 16S rRNA gene 454-pyrosequencing, and HPLC, respectively. In all models, a diverse microbiota resembling the one tested in donor's fecal sample was established. Metabolic stability in inoculum reactors seeded with immobilized fecal microbiota was shown for operation times of up to 80 days. A high microbial and metabolic reproducibility was demonstrated for downstream control and experimental reactors of a PolyFermS model. The PolyFermS models tested here are particularly suited to investigate the effects of environmental factors, such as diet and drugs, in a controlled setting with the same microbiota source.

  17. The role of ultraviolet colour in the assessment of mimetic accuracy between Batesian mimics and their models: a case study using ant-mimicking spiders

    Science.gov (United States)

    Corcobado, Guadalupe; Herberstein, Marie E.; Pekár, Stano

    2016-12-01

    The use of ultraviolet (UV) cues for intra- and inter-specific communication is common in many animal species. Still, the role of UV signals under some predator-prey contexts, such as Batesian mimicry, is not clear. Batesian mimicry is a defensive strategy by which a palatable species (the mimic) resembles an unpalatable or noxious species (the model) to avoid predation. This strategy has evolved independently in many different taxa that are predated by species capable of UV perception. Moreover, there is considerable variation in how accurately Batesian mimics resemble their models across species. Our aim was to investigate how UV colour contributed to mimetic accuracy using several ant-mimicking spider species as a case study. We measured the reflectance spectrum (300-700 nm) for several species of mimics and models, and we tested whether they differ in visible and UV colour. We modelled whether two different predators could discriminate between mimics and models using colour information. We found that generally, ant-mimicking spiders differed significantly from their ant models in UV colour and that information from the visible range of light cannot be extrapolated into the UV. Our modelling suggested that wasps should be able to discriminate between mimics and models combining information from visible and the UV light, whereas birds may not discriminate between them. Thus, we show that UV colour can influence mimic accuracy and we discuss its potential role in Batesian mimicry. We conclude that colour, especially in the UV range, should be taken into account when measuring mimetic accuracy.

  18. Burning in Outer Space: Microgravity

    Science.gov (United States)

    Matkowsky, Bernard; Aldushin, Anatoly

    2000-01-01

    A better understanding of combustion can lead to significant technological advances, such as less polluting, more fuel-efficient vehicles. Unfortunately, gravity can interfere with the study of combustion. Gravity drags down gases that are cooler- and, therefore, denser-than heated gases. This movement mixes the fuel and the oxidizer substance that promotes burning. Because of this mixing, an observer cannot necessarily distinguish what is happening as a result of the natural combustion process and what is caused, by the pull of gravity. To remove this uncertainty, scientists can conduct experiments that simulate the negation of gravity through freefall. This condition is known as a microgravity environment. A micro-gravity experiment may take place in a chamber that is dropped down a hole or from a high-speed drop tower. The experiment also be conducted in an airplane or a rocket during freefall in a parabolic flight path. This method provides less than a minute of microgravity at most. An experiment that requires the prolonged absence of gravity may necessitate the use of an orbiting spacecraft as a venue. However, access to an orbital laboratory is difficult to acquire. High-end computing centers such as the NCCS can provide a practical alternative to operating in microgravity. Scientists can model phenomena such as combustion without gravitys observational interference. The study of microgravity combustion produces important benefits beyond increased observational accuracy. Certain valuable materials that are produced through combustion can be formed with a more uniform crystal structure-and, therefore, improved structural quality-when the pull of gravity is removed. Furthermore, understanding how fires propagate in the absence of gravity can improve fire safety aboard spacecraft.

  19. Low-Shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner

    Science.gov (United States)

    Wilson, James W.; Ott, C. Mark; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Pierson, Duane L.; Nickerson, Cheryl A.

    2002-01-01

    We have previously demonstrated that low-shear modeled microgravity (low-shear MMG) serves to enhance the virulence of a bacterial pathogen, Salmonella enterica serovar Typhimurium. The Salmonella response to low-shear MMG involves a signaling pathway that we have termed the low-shear MMG stimulon, though the identities of the low-shear MMG stimulon genes and regulatory factors are not known. RpoS is the primary sigma factor required for the expression of genes that are induced upon exposure to different environmental-stress signals and is essential for virulence in mice. Since low-shear MMG induces a Salmonella acid stress response and enhances Salmonella virulence, we reasoned that RpoS would be a likely regulator of the Salmonella low-shear MMG response. Our results demonstrate that low-shear MMG provides cross-resistance to several environmental stresses in both wild-type and isogenic rpoS mutant strains. Growth under low-shear MMG decreased the generation time of both strains in minimal medium and increased the ability of both strains to survive in J774 macrophages. Using DNA microarray analysis, we found no evidence of induction of the RpoS regulon by low-shear MMG but did find that other genes were altered in expression under these conditions in both the wild-type and rpoS mutant strains. Our results indicate that, under the conditions of these studies, RpoS is not required for transmission of the signal that induces the low-shear MMG stimulon. Moreover, our studies also indicate that low-shear MMG can be added to a short list of growth conditions that can serve to preadapt an rpoS mutant for resistance to multiple environmental stresses.

  20. The impact of simulated microgravity on purinergic signaling in an endothelial and smooth muscle cell co-culture model

    Science.gov (United States)

    Zhang, Yu; Hemmersbach, Ruth; Lau, Patrick; Pansky, Andreas; Kassack, Matthias; Tobiasch, Edda

    Astronauts suffer from cardiovascular deconditioning when they are exposed to microgravity conditions during space missions. Thus, current research focuses on the identification of the underlying mechanism also with respect to therapy and countermeasures. Endothelial cells (ECs) and smooth muscle cells (SMCs) play a key role in a variety of vascular functions. Gene expression, cytoskeleton morphology and apoptosis in both, ECs and SMCs, have shown alterations under simulated and real microgravity condition. However, all these data were observed during single culturing of either ECs or SMCs under microgravity conditions, which is different from the in vivo situation. Purinergic 2 (P2) receptors bind extracellular nucleotides and can regulate the vascular tone and vascular cell proliferation, migration and apoptosis. In this study primary ECs and SMCs were obtained from bovine aorta and characterized using specific markers. Here we show for the first time that the P2-receptor expressions pattern in ECs and in SMCs is altered after 24h in simulated microgravity. Specific receptors are down- or up-regulated on the gene and protein level. In addition the supernatant of ECs during culture was used as conditioned medium for SMCs and vice visa to investigate the influence of either cell type on the other. ECs and SMCs secret cytokines which induce pathogenic proliferation and an altered migration behavior under simulated microgravity conditions. Interestingly, co-culturing with condition medium could compensate this change. In detail, P2X7 was down-regulated in ECs after 24h clinorotation but recovered to the 1 g level when cultured with conditioned medium from SMCs collected under normal gravity. In conclusion, our data indicate that the paracrine effect between ECs and SMCs is an important regulator of cell behavior, also under altered gravity conditions. P2-receptor gene and protein expression were altered during microgravity. Since several P2-receptor artificial

  1. Actin dynamics in microgravity

    NARCIS (Netherlands)

    Moes, M.J.A.|info:eu-repo/dai/nl/30483128X

    2013-01-01

    Organisms on earth develop in the presence of gravity. A good opportunity to study the effects of gravity on organisms is to expose organisms or cells to conditions of altered gravity, such as microgravity in space. Microgravity has been described to affect numerous processes that take place in

  2. Observations of Confinement of a Paramagnetic Liquid in Model Propellant Tanks in Microgravity by the Kelvin Force

    Science.gov (United States)

    Kuhlman, John; Gray, Donald D.; Barnard, Austin; Hazelton, Jennifer; Lechliter, Matthew; Starn, Andrew; Battleson, Charles; Glaspell, Shannon; Kreitzer, Paul; Leichliter, Michelle

    2002-11-01

    The magnetic Kelvin force has been proposed as an artificial gravity to control the orientation of paramagnetic liquid propellants such as liquid oxygen in a microgravity environment. This paper reports experiments performed in the NASA "Weightless Wonder" KC-135 aircraft, through the Reduced Gravity Student Flight Opportunities Program. The aircraft flies through a series of parabolic arcs providing about 25 s of microgravity in each arc. The experiment was conceived, designed, constructed, and performed by the undergraduate student team and their two faculty advisors. Two types of tanks were tested: square-base prismatic tanks 5 cm x 5 cm x 8.6 cm and circular cylinders 5 cm in diameter and 8.6 cm tall. The paramagnetic liquid was a 3.3 molar solution of MnCl2 in water. Tests were performed with each type of tank filled to depths of 1 cm and 4 cm. Each test compared a pair of tanks that were identical except that the base of one was a pole face of a 0.6 Tesla permanent magnet. The Kelvin force attracts paramagnetic materials toward regions of higher magnetic field. It was hypothesized that the Kelvin force would hold the liquid in the bottom of the tanks during the periods of microgravity. The tanks were installed in a housing that could slide on rails transverse to the flight direction. By manually shoving the housing, an identical impulse could be provided to each tank at the beginning of each period of microgravity. The resulting fluid motions were videotaped for later analysis.

  3. Observations of Confinement of a Paramagnetic Liquid in Model Propellant Tanks in Microgravity by the Kelvin Force

    Science.gov (United States)

    Kuhlman, John; Gray, Donald D.; Barnard, Austin; Hazelton, Jennifer; Lechliter, Matthew; Starn, Andrew; Battleson, Charles; Glaspell, Shannon; Kreitzer, Paul; Leichliter, Michelle

    2002-01-01

    The magnetic Kelvin force has been proposed as an artificial gravity to control the orientation of paramagnetic liquid propellants such as liquid oxygen in a microgravity environment. This paper reports experiments performed in the NASA "Weightless Wonder" KC-135 aircraft, through the Reduced Gravity Student Flight Opportunities Program. The aircraft flies through a series of parabolic arcs providing about 25 s of microgravity in each arc. The experiment was conceived, designed, constructed, and performed by the undergraduate student team and their two faculty advisors. Two types of tanks were tested: square-base prismatic tanks 5 cm x 5 cm x 8.6 cm and circular cylinders 5 cm in diameter and 8.6 cm tall. The paramagnetic liquid was a 3.3 molar solution of MnCl2 in water. Tests were performed with each type of tank filled to depths of 1 cm and 4 cm. Each test compared a pair of tanks that were identical except that the base of one was a pole face of a 0.6 Tesla permanent magnet. The Kelvin force attracts paramagnetic materials toward regions of higher magnetic field. It was hypothesized that the Kelvin force would hold the liquid in the bottom of the tanks during the periods of microgravity. The tanks were installed in a housing that could slide on rails transverse to the flight direction. By manually shoving the housing, an identical impulse could be provided to each tank at the beginning of each period of microgravity. The resulting fluid motions were videotaped for later analysis.

  4. Glycogen synthase kinase-3beta heterozygote knockout mice as a model of findings in postmortem schizophrenia brain or as a model of behaviors mimicking lithium action: negative results.

    Science.gov (United States)

    Bersudsky, Yuly; Shaldubina, Alona; Kozlovsky, Nitzan; Woodgett, James R; Agam, Galila; Belmaker, R H

    2008-05-01

    In mice glycogen synthase kinase (GSK)-3beta heterozygote knockout status was reported to cause reduced immobility in the Porsolt forced swim test and reduced amphetamine-induced hyperactivity, behaviors that mimic the effects of lithium. GSK-3beta protein and mRNA level and activity have been reported to be reduced in the postmortem brain of schizophrenia patients and this could suggest the involvement of GSK-3beta in the etiology of schizophrenia. However, apomorphine-induced stereotyping was reported to be unchanged in GSK-3beta heterozygote (HZ) knockout (KO) mice. As such behaviors are not always robust, study in another laboratory seemed indicated. Motor activity and coordination were assessed in the rotarod test. Behavior was studied in the following tests: pilocarpine-induced seizures model for lithium action, Porsolt forced swim test, tail suspension test, elevated plus-maze, large open field, startle response and prepulse inhibition of acoustic startle response, amphetamine-induced hyperactivity, and apomorphine-induced stereotypic climbing. We could not confirm the report that GSK-3beta HZ KO mice exhibit reduced immobility in the Porsolt forced swim or reduced amphetamine-induced hyperactivity in a manner mimicking the behavioral effects of lithium. We did not find increased apomorphine-induced stereotypic climbing or disruption of prepulse inhibition, suggesting that human postmortem findings regarding GSK-3beta in schizophrenia are not mediated by changes in dopamine receptors and are not the cause of prepulse inhibition deficits in schizophrenia. These data do not support the role of GSK-3beta in schizophrenia or in the mechanism of therapeutic action of lithium. Although differences in the genetic background of the GSK-3beta HZ KOs used in the present study compared with that of the previous study could be responsible, such results could suggest that the previously reported effects of GSK-3beta knockout on behavior are not robust.

  5. A front tracking model of the MAXUS-8 microgravity solidification experiment on a Ti-45.5at.% Al-8at.%Nb alloy

    International Nuclear Information System (INIS)

    Mooney, R P; McFadden, S; Rebow, M; Browne, D J

    2012-01-01

    On 26th March 2010 the MAXUS-8 sounding rocket was launched from the Esrange Space Center in Sweden. As part of the Intermetallic Materials Processing in Relation to Earth and Space Solidification (IMPRESS) project, a solidification experiment was conducted on a Ti-45.5at.%Al-8at.%Nb intermetallic alloy in a module on this rocket. The experiment was designed to investigate columnar and equiaxed microstructures in the alloy. A furnace model of the MAXUS 8 experiment with a Front Tracking Model of solidification has been developed to determine the macrostructure and thermal history of the samples in the experiment. This paper gives details of results of the front tracking model applied to the MAXUS 8 microgravity experiment. A model for columnar growth is presented and compared to experimental results for furnace A of the experiment module.

  6. Meso-scale modelling of directional solidification and comparison with in situ X-ray radiographic observations made during the MASER-12 XRMON microgravity experiment

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, A.G., E-mail: andrew.murphy.1@ucdconnect.ie [School of Mechanical and Materials Engineering, University College Dublin (Ireland); Reinhart, G.; Nguyen-Thi, H.; Salloum Abou Jaoude, G. [Aix-Marseille Univ., Campus Saint-Jérome Case 142, 13397 Marseille Cedex 20 (France); CNRS, IM2NP UMR 7334, Campus Saint-Jérome Case 142, 13397 Marseille Cedex 20 (France); Browne, D.J. [School of Mechanical and Materials Engineering, University College Dublin (Ireland)

    2013-10-05

    Highlights: •Mesoscopic simulation of in situ X-ray monitored solidification in microgravity. •Extent and magnitude of undercooled zone ahead of dendrite front predicted. •Dynamic thermal response of new XRMON-GF Bridgman furnace analysed. -- Abstract: Computational modelling of advanced solidification processes has made considerable advances over the last half century, with ever increasing levels of modelling complexity. There is, therefore, an increasing need for state of the art experimental investigation to provide suitable validation for these model predictions. In situ X-ray radiography has become a powerful tool for solidification experimentation. Using either synchrotron or microfocus X-ray sources, thin samples, encased in X-ray transparent crucibles, can be directionally or isothermally solidified, allowing for direct real time observation of dynamic solidification phenomena. This paper presents the results of a meso-scale Front Tracking simulation of a directional solidification experiment, performed using an Al–20 wt.% Cu alloy, carried out under microgravity conditions on board the MASER 12 sounding rocket. The sample was mounted in a Bridgman type gradient furnace and solidified using a prescribed cooling regime with a constant gradient, thus promoting directional solidification in the field of view. The actual thermal gradient in the sample was found to be lower than the nominal thermal gradient, as set/recorded by thermocouples embedded in the heater elements. The adjusted thermal data were supplied as inputs to the Front Tracking model and good agreement was then observed between the model predictions and the in situ observations. The extent and amplitude of the undercooled zone ahead of the columnar front was predicted based on analytical growth kinetics laws and the results were also compared to analytical models of columnar-to-equiaxed transition (CET) prediction.

  7. Development of the Gecko (Pachydactylus turneri) Animal Model during Foton M-2 to Study Comparative Effects of Microgravity in Terrestrial and Aquatic Organisms

    Science.gov (United States)

    Almeida, E. A.; Roden, C.; Phillips, J. A.; Globus, R. K.; Searby, N.; Vercoutere, W.; Morey-Holton, E.; Gulimova, V.; Saveliev, S.; Tairbekov, M.; hide

    2006-01-01

    Terrestrial organisms exposed to microgravity during spaceflight experience degeneration in bone, muscle, and possibly other tissues that require gravity-mediated mechanical stimulation for normal regenerative growth. In the Gecko experiment aboard Foton M-2, we flew for the first time, five terrestrial Pachydactylus turneri specimens to develop a model of microgravity effects comparable to the newt Pleurodeles waltl, a well-established model organism for spaceflight. These lower vertebrate species have similar body plans and size, are poikilothermic, have tissue regenerative ability, and are adapted to moderate periods of fasting. Furthermore the gecko (Pachydactylus) can also survive prolonged periods without water. In pre-flight control experiments and after a 16-day Foton M-2 spaceflight without food or water, the geckos were recovered and showed no apparent negative health effects. However, detailed analysis of bone mass and architecture by micro Computed Tomography { pCT), showed that both synchronous control and spaceflight animals lost significant amounts of cancellous bone in the distal femur and humerus relative to basal controls. In addition, cell cycle analysis of 30h post-flight liver tissue reveals a shift of DNA content from G2 and S to G1, both in spaceflight and synchronous controls. Together, these results suggest that housing conditions alone induce rapid catabolism of cancellous bone and reduced normal tissue regeneration. Further use of the gecko Puchydactylus turneri as a spaceflight model requires modification of housing conditions, possibly by including water and food, or changing other factors such as eliminating housing stresses to obtain stable bone structure and tissue regeneration during spaceflight experiments.

  8. Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity.

    Directory of Open Access Journals (Sweden)

    Cristina Girardi

    Full Text Available Ionizing radiation (IR can be extremely harmful for human cells since an improper DNA-damage response (DDR to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure.We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL incubated for 4 and 24 h in normal gravity (1 g and in modeled microgravity (MMG during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of "Response to DNA damage" is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses.On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL.

  9. Macromolecular Crystallization in Microgravity

    Science.gov (United States)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural

  10. Macromolecular crystallization in microgravity

    International Nuclear Information System (INIS)

    Snell, Edward H; Helliwell, John R

    2005-01-01

    Density difference fluid flows and sedimentation of growing crystals are greatly reduced when crystallization takes place in a reduced gravity environment. In the case of macromolecular crystallography a crystal of a biological macromolecule is used for diffraction experiments (x-ray or neutron) so as to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal then the greater the molecular structure detail that can be extracted. It is this structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences, with major potential in understanding disease pathologies. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyse the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry and mathematics meet to enable insight to the fundamentals of life. As the reader will see, there is a great deal of physics involved when the microgravity environment is applied to crystallization, some of it known, and undoubtedly much yet to

  11. The effect of sediment mimicking drill cuttings on deep water rhodoliths in a flow-through system: Experimental work and modeling.

    Science.gov (United States)

    Figueiredo, Marcia A O; Eide, Ingvar; Reynier, Marcia; Villas-Bôas, Alexandre B; Tâmega, Frederico T S; Ferreira, Carlos Gustavo; Nilssen, Ingunn; Coutinho, Ricardo; Johnsen, Ståle

    2015-06-15

    The impact of sediment coverage on two rhodolith-forming calcareous algae species collected at 100m water depth off the coast of Brazil was studied in an experimental flow-through system. Natural sediment mimicking drill cuttings with respect to size distribution was used. Sediment coverage and photosynthetic efficiency (maximum quantum yield of charge separation in photosystem II, ϕPSIImax) were measured as functions of light intensity, flow rate and added amount of sediment once a week for nine weeks. Statistical experimental design and multivariate data analysis provided statistically significant regression models which subsequently were used to establish exposure-response relationship for photosynthetic efficiency as function of sediment coverage. For example, at 70% sediment coverage the photosynthetic efficiency was reduced 50% after 1-2weeks of exposure, most likely due to reduced gas exchange. The exposure-response relationship can be used to establish threshold levels and impact categories for environmental monitoring. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Solidification under microgravity

    Indian Academy of Sciences (India)

    The paper outlines the broad areas where studies are being conducted under microgravity conditions worldwide viz., biotechnology, combustion science, materials science and fluid physics. The paper presents in particular a review on the various areas of research being pursued in materials science. These include studies ...

  13. Unit Operations in Microgravity.

    Science.gov (United States)

    Allen, David T.; Pettit, Donald R.

    1987-01-01

    Presents some of the work currently under way in the development of microgravity chemical processes. Highlights some of the opportunities for materials processing in outer space. Emphasizes some of the contributions that chemical engineers can make in this emerging set of technologies. (TW)

  14. Exploration of a physiologically-inspired hearing-aid algorithm using a computer model mimicking impaired hearing.

    Science.gov (United States)

    Jürgens, Tim; Clark, Nicholas R; Lecluyse, Wendy; Meddis, Ray

    2016-01-01

    To use a computer model of impaired hearing to explore the effects of a physiologically-inspired hearing-aid algorithm on a range of psychoacoustic measures. A computer model of a hypothetical impaired listener's hearing was constructed by adjusting parameters of a computer model of normal hearing. Absolute thresholds, estimates of compression, and frequency selectivity (summarized to a hearing profile) were assessed using this model with and without pre-processing the stimuli by a hearing-aid algorithm. The influence of different settings of the algorithm on the impaired profile was investigated. To validate the model predictions, the effect of the algorithm on hearing profiles of human impaired listeners was measured. A computer model simulating impaired hearing (total absence of basilar membrane compression) was used, and three hearing-impaired listeners participated. The hearing profiles of the model and the listeners showed substantial changes when the test stimuli were pre-processed by the hearing-aid algorithm. These changes consisted of lower absolute thresholds, steeper temporal masking curves, and sharper psychophysical tuning curves. The hearing-aid algorithm affected the impaired hearing profile of the model to approximate a normal hearing profile. Qualitatively similar results were found with the impaired listeners' hearing profiles.

  15. Confronting dark energy models mimicking ΛCDM epoch with observational constraints: Future cosmological perturbations decay or future Rip?

    International Nuclear Information System (INIS)

    Astashenok, Artyom V.; Odintsov, Sergei D.

    2013-01-01

    We confront dark energy models which are currently similar to ΛCDM theory with observational data which include the SNe data, matter density perturbations and baryon acoustic oscillations data. DE cosmology under consideration may evolve to Big Rip, type II or type III future singularity, or to Little Rip or Pseudo-Rip universe. It is shown that matter perturbations data define more precisely the possible deviation from ΛCDM model than consideration of SNe data only. The combined data analysis proves that DE models under consideration are as consistent as ΛCDM model. We demonstrate that growth of matter density perturbations may occur at sufficiently small background density but still before the possible disintegration of bound objects (like clusters of galaxies, galaxies, etc.) in Big Rip, type III singularity, Little Rip or Pseudo-Rip universe. This new effect may bring the future universe to chaotic state well before disintegration or Rip.

  16. Confronting dark energy models mimicking {Lambda}CDM epoch with observational constraints: Future cosmological perturbations decay or future Rip?

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V., E-mail: artyom.art@gmail.com [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Odintsov, Sergei D. [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Eurasian International Center for Theor. Physics, Eurasian National University, Astana 010008 (Kazakhstan); Tomsk State Pedagogical University, Tomsk (Russian Federation)

    2013-01-29

    We confront dark energy models which are currently similar to {Lambda}CDM theory with observational data which include the SNe data, matter density perturbations and baryon acoustic oscillations data. DE cosmology under consideration may evolve to Big Rip, type II or type III future singularity, or to Little Rip or Pseudo-Rip universe. It is shown that matter perturbations data define more precisely the possible deviation from {Lambda}CDM model than consideration of SNe data only. The combined data analysis proves that DE models under consideration are as consistent as {Lambda}CDM model. We demonstrate that growth of matter density perturbations may occur at sufficiently small background density but still before the possible disintegration of bound objects (like clusters of galaxies, galaxies, etc.) in Big Rip, type III singularity, Little Rip or Pseudo-Rip universe. This new effect may bring the future universe to chaotic state well before disintegration or Rip.

  17. Characterisation of enterocolitis in the piroxicam-accelerated interleukin-10 knock out mouse--a model mimicking inflammatory bowel disease.

    Science.gov (United States)

    Holgersen, Kristine; Kvist, Peter Helding; Markholst, Helle; Hansen, Axel Kornerup; Holm, Thomas Lindebo

    2014-02-01

    In inflammatory bowel disease a defective mucosal barrier, a dysregulated immune response and an excessive reactivity against the gut microbiota are assumed to cause a breakdown of the intestinal homeostasis and lead to chronic inflammation. Piroxicam treatment is a method for induction of colitis in IL-10 k.o. mice, which integrates a dysfunction of both the intestinal barrier and the immune system. However, the translational value of this model has not been thoroughly clarified. To characterise the piroxicam-accelerated colitis (PAC) IL-10 k.o. model with respect to clinical features, pathogenic mechanisms and its ability to respond to existing therapies. The PAC IL-10k.o. model was established on a C57BL/6J background and the clinical manifestations, immunological mechanisms and efficacy of ampicillin and anti-IL-12/23p40 treatment were assessed. The PAC IL-10 k.o. mice developed weight loss and diarrhoea, and colonoscopy revealed a thickened granulomatous mucosa. Histological evaluation of ileum and colon showed Crohn's disease-like changes with pronounced hyperplasia and focal transmural inflammation. Ileitis was also observed in piroxicam treated wild type mice. The total number of neutrophils, monocytes and natural killer cells was elevated in the blood compared to IL-10 k.o. and wild type mice, indicating a role of the innate immune system in the pathogenesis. These findings were supported by analyses of the intestinal cytokine profile. Ampicillin and anti-IL-12/23p40 treatment significantly suppressed disease in the model. The PAC IL-10 k.o. model resembles several features of Crohn's disease and could be a useful in vivo model in preclinical research. © 2013 Elsevier B.V. All rights reserved.

  18. Longitudinal analysis of osteogenic and angiogenic signaling factors in healing models mimicking atrophic and hypertrophic non-unions in rats.

    Science.gov (United States)

    Minkwitz, Susann; Faßbender, Mirja; Kronbach, Zienab; Wildemann, Britt

    2015-01-01

    Impaired bone healing can have devastating consequences for the patient. Clinically relevant animal models are necessary to understand the pathology of impaired bone healing. In this study, two impaired healing models, a hypertrophic and an atrophic non-union, were compared to physiological bone healing in rats. The aim was to provide detailed information about differences in gene expression, vascularization and histology during the healing process. The change from a closed fracture (healing control group) to an open osteotomy (hypertrophy group) led to prolonged healing with reduced mineralized bridging after 42 days. RT-PCR data revealed higher gene expression of most tested osteogenic and angiogenic factors in the hypertrophy group at day 14. After 42 days a significant reduction of gene expression was seen for Bmp4 and Bambi in this group. The inhibition of angiogenesis by Fumagillin (atrophy group) decreased the formation of new blood vessels and led to a non-healing situation with diminished chondrogenesis. RT-PCR results showed an attempt towards overcoming the early perturbance by significant up regulation of the angiogenic regulators Vegfa, Angiopoietin 2 and Fgf1 at day 7 and a further continuous increase of Fgf1, -2 and Angiopoietin 2 over time. However µCT angiograms showed incomplete recovery after 42 days. Furthermore, lower expression values were detected for the Bmps at day 14 and 21. The Bmp antagonists Dan and Twsg1 tended to be higher expressed in the atrophy group at day 42. In conclusion, the investigated animal models are suitable models to mimic human fracture healing complications and can be used for longitudinal studies. Analyzing osteogenic and angiogenic signaling patterns, clear changes in expression were identified between these three healing models, revealing the importance of a coordinated interplay of different factors to allow successful bone healing.

  19. Longitudinal analysis of osteogenic and angiogenic signaling factors in healing models mimicking atrophic and hypertrophic non-unions in rats.

    Directory of Open Access Journals (Sweden)

    Susann Minkwitz

    Full Text Available Impaired bone healing can have devastating consequences for the patient. Clinically relevant animal models are necessary to understand the pathology of impaired bone healing. In this study, two impaired healing models, a hypertrophic and an atrophic non-union, were compared to physiological bone healing in rats. The aim was to provide detailed information about differences in gene expression, vascularization and histology during the healing process. The change from a closed fracture (healing control group to an open osteotomy (hypertrophy group led to prolonged healing with reduced mineralized bridging after 42 days. RT-PCR data revealed higher gene expression of most tested osteogenic and angiogenic factors in the hypertrophy group at day 14. After 42 days a significant reduction of gene expression was seen for Bmp4 and Bambi in this group. The inhibition of angiogenesis by Fumagillin (atrophy group decreased the formation of new blood vessels and led to a non-healing situation with diminished chondrogenesis. RT-PCR results showed an attempt towards overcoming the early perturbance by significant up regulation of the angiogenic regulators Vegfa, Angiopoietin 2 and Fgf1 at day 7 and a further continuous increase of Fgf1, -2 and Angiopoietin 2 over time. However µCT angiograms showed incomplete recovery after 42 days. Furthermore, lower expression values were detected for the Bmps at day 14 and 21. The Bmp antagonists Dan and Twsg1 tended to be higher expressed in the atrophy group at day 42. In conclusion, the investigated animal models are suitable models to mimic human fracture healing complications and can be used for longitudinal studies. Analyzing osteogenic and angiogenic signaling patterns, clear changes in expression were identified between these three healing models, revealing the importance of a coordinated interplay of different factors to allow successful bone healing.

  20. Sensory nerve degeneration in a mouse model mimicking early manifestations of familial amyloid polyneuropathy due to transthyretin Ala97Ser.

    Science.gov (United States)

    Kan, H-W; Chiang, H; Lin, W-M; Yu, I-S; Lin, S-W; Hsieh, S-T

    2018-02-08

    Sensory nerve degeneration and consequent abnormal sensations are the earliest and most prevalent manifestations of familial amyloid polyneuropathy (FAP) due to amyloidogenic transthyretin (TTR). FAP is a relentlessly progressive degenerative disease of the peripheral nervous system. However, there is a lack of mouse models to replicate the early neuropathic manifestations of FAP. We established human TTR knock-in mice by replacing one allele of the mouse Ttr locus with human wild-type TTR (hTTR wt ) or human TTR with the A97S mutation (hTTR A97S ). Given the late onset of neuropathic manifestations in A97S-FAP, we investigated nerve pathology, physiology, and behavioural tests in these mice at two age points: the adult group (8 - 56 weeks) and the ageing group (> 104 weeks). In the adult group, nerve profiles, neurophysiology and behaviour were similar between hTTR wt and hTTR A97S mice. By contrast, ageing hTTR A97S mice showed small fibre neuropathy with decreased intraepidermal nerve fibre density and behavioural signs of mechanical allodynia. Furthermore, significant reductions in sural nerve myelinated nerve fibre density and sensory nerve action potential amplitudes in these mice indicated degeneration of large sensory fibres. The unaffected motor nerve physiology replicated the early symptoms of FAP patients, that is, sensory nerves were more vulnerable to mutant TTR than motor nerves. These results demonstrate that the hTTR A97S mouse model develops sensory nerve pathology and corresponding physiology mimicking A97S-FAP and provides a platform to develop new therapies for the early stage of A97S-FAP. © 2018 British Neuropathological Society.

  1. A new model of experimental fibrosis in hindlimb skeletal muscle of adult mdx mouse mimicking muscular dystrophy.

    Science.gov (United States)

    Desguerre, Isabelle; Arnold, Ludovic; Vignaud, Alban; Cuvellier, Sylvain; Yacoub-Youssef, Houda; Gherardi, Romain K; Chelly, Jamel; Chretien, Fabrice; Mounier, Rémi; Ferry, Arnaud; Chazaud, Bénédicte

    2012-06-01

    Duchenne Muscular Dystrophy (DMD) is characterized by the lack of dystrophin that leads to severe myofiber degeneration. We have shown that endomysial fibrosis is correlated with age at ambulation loss in DMD patients. However, the dystrophin-deficient mdx mouse does not have fibrotic lesions in adult limb muscles. Here, we describe a model of chronic mechanical muscle injury that triggers chronic lesions in mdx hindlimb muscle. Micromechanical injuries were performed daily in tibialis anterior muscles for 2 weeks. Endomysial fibrosis appeared beginning 1 week post-injury, remained stable for 3 months and was associated with loss of specific maximal force. Fibrosis was associated with an increased expression of factors involved in fibrogenesis including α-smooth muscle actin, connective tissue growth factor, and lysyl oxidase, which colocalized with collagen deposits. This induced fibrotic dystrophic model may be useful to study mechanisms of fibrosis in dystrophinopathies and to evaluate antifibrotic treatments. Copyright © 2012 Wiley Periodicals, Inc.

  2. Microgravity Two-Phase Flow Transition

    Science.gov (United States)

    Parang, M.; Chao, D.

    1999-01-01

    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  3. KRAS (G12D Cooperates with AML1/ETO to Initiate a Mouse Model Mimicking Human Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Shanmin Zhao

    2014-01-01

    Full Text Available Background/Aims: It has been demonstrated that KRAS mutations represent about 90% of cancer-associated mutations, and that KRAS mutations play an essential role in neoplastic transformation. Cancer-associated RAS mutations occur frequently in acute myeloid leukemia (AML, suggesting a functional role for Ras in leukemogenesis. Methods: We successfully established a mouse model of human leukemia by transplanting bone marrow cells co-transfected with the K-ras (G12D mutation and AML1/ETO fusion protein. Results: Mice transplanted with AML/ETO+KRAS co-transduced cells had the highest mortality rate than mice transplanted with AML/ETO- or KRAS-transduced cells (115d vs. 150d. Upon reaching a terminal disease stage, EGFP-positive cells dominated their spleen, lymph nodes, peripheral blood and central nervous system tissue. Immunophenotyping, cytologic analyses revealed that AML/ETO+KRAS leukemias predominantly contained immature myeloid precursors (EGFP+/c-Kit+/Mac-1-/Gr-1-. Histologic analyses revealed that massive leukemic infiltrations were closely packed in dense sheets that effaced the normal architecture of spleen and thymus in mice transplanted with AML1/ETO + KRAS co-transduced cells. K-ras mRNA and protein expression were upregulated in bone marrow cells of the K-ras group and AML1/ETO + Kras group. The phosphorylation of MEK/ERK was significantly enhanced in the AML1/ETO + Kras group. The similar results of the AML1/ETO + Nras group were consistent with those reported previously. Conclusion: Co-transduction of KrasG12D and AML1/ETO induces acute monoblastic leukemia. Since expression of mutant K-ras alone was insufficient to induce leukemia, this model may be useful for investigating the multi-step leukemogenesis model of human leukemia.

  4. Microgravity particle reduction system

    Science.gov (United States)

    Brandon, Vanessa; Joslin, Michelle; Mateo, Lili; Tubbs, Tracey

    1988-01-01

    The Controlled Ecological Life Support System (CELSS) project, sponsored by NASA, is assembling the knowledge required to design, construct, and operate a system which will grow and process higher plants in space for the consumption by crew members of a space station on a long term space mission. The problem of processing dry granular organic materials in microgravity is discussed. For the purpose of research and testing, wheat was chosen as the granular material to be ground into flour. Possible systems which were devised to transport wheat grains into the food processor, mill the wheat into flour, and transport the flour to the food preparation system are described. The systems were analyzed and compared and two satisfactory systems were chosen. Prototypes of the two preferred systems are to be fabricated next semester. They will be tested under simulated microgravity conditions and revised for maximum effectiveness.

  5. Microgravity Acceleration Measurement System

    Science.gov (United States)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  6. Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix.

    Science.gov (United States)

    Damanik, Febriyani F R; Rothuizen, Tonia C; van Blitterswijk, Clemens; Rotmans, Joris I; Moroni, Lorenzo

    2014-09-19

    Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiinflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement.

  7. Randomized clinical trial comparing manual suture and different models of mechanical suture in the mimicking of bariatric surgery in swine

    Directory of Open Access Journals (Sweden)

    Fernandes MA

    2014-02-01

    Full Text Available Marcos AP Fernandes,1 Bruno MT Pereira,2 Sandra M Guimarães,1 Aline Paganelli,3 Carlos Manoel CT Pereira,1 Claudio Sergio Batista4 1Institute of Obesity and Advanced Video Laparoscopic Surgery of Petropolis, Rio de Janeiro, Brazil; 2Division of Trauma, University of Campinas, São Paulo, Brazil; 3Laboratório de Patologia Micron Cell Diagnóstico, Rio de Janeiro, Brazil; 4Department of Gynecology and Obstetrics, Faculty of Medicine of Petropolis, Rio de Janeiro, Brazil Context and objective: Variations in the ability of surgeons served as motivation for the development of devices that, overcoming individual differences, allow the techniques to be properly performed, and of which the end result was the best possible. Every technique must be reproduced reliably by the majority of surgeons for their results to be adopted and recognized as effective. The aim of this study was to compare the results, from the point of view of anatomic pathology, of manual sutures versus mechanical sutures using different models of linear mechanical staplers, in the procedure of gastroenteroanastomosis and enteroanastomosis in swine. Methods: Thirty-six healthy, adult, male Sus scrofa domesticus pigs, weighing between 20.7 and 25.5 kg, were used. The swine were randomly divided into four groups of nine pigs, according to the type of suture employed: group A, manual suture with Polysorb® 3-0 wire; group B, 80-shear linear stapler (Covidien® Gia 8038-S; group C, 75-shear linear stapler (Ethicon® Tlc 75; and group D, 75-shear linear stapler (Resource® Yq 75-3. A temporal study was established on the seventh postoperative day for histopathological analysis, and the degree of inflammation, fibrosis, and newly formed vessels, as well as the presence or absence of granulation tissue, foreign body granuloma, and necrosis were all evaluated qualitatively and semiquantitatively. The results were analyzed statistically. Results: Observations during the histopathological

  8. Advanced Microgravity Compatible, Integrated Laundry System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Microgravity Compatible, Integrated Laundry (AMCIL) is a microgravity compatible liquid / liquid vapor, two-phase laundry system with water jet...

  9. Complex influence of factors of a Space on materials and devices of electronics in the microgravity

    Science.gov (United States)

    Grichshenko, Valentina; Zhantayev, Zhumabek

    In work the new physical model of the processes occurring in materials and devices of electronics by influence of the Cosmic Rays in the conditions of the microgravity is presented. The model describes features of formation of the area of radiation defects (ARD) in electronics materials in the conditions of the microgravity. The mechanism of interaction of ARD with the memory in microgravity conditions reduce to failures of the onboard is considered. Results of failures of memory in Space will be included.

  10. Complex influence of space environment on materials and electronic devices in the conditions of microgravity

    Science.gov (United States)

    Musabayev, T.; Zhantayev, Zh.; Grichshenko, V.

    2016-09-01

    The paper presents a new physical model describing the processes in materials and electronic devices under the influence of cosmic rays in microgravity. The model identifies specific features of formation of the area of radiation defects (ARD) in the electronic materials in microgravity. The mechanism of interaction between the ARD and memory modules in microgravity causing malfunction and failure of onboard electronics is considered. The results of failure of memory modules under real conditions are presented.

  11. Countermeasures to microgravity

    Science.gov (United States)

    Luttges, Marvin W.

    1989-01-01

    Biological systems ranging from the most simple to the most complex generally survive exposure to microgravity. Changes in many characteristics of biological systems are well documented as a consequence of space flight. Attempts to devise countermeasures to microgravity may have direct pragmatic consequences for crew protection and may provide additional insights into the nature of microgravity influences on biological systems. Some of the most well documented changes occur in humans who have experienced space flight. Changes appear to be transient. Space adaption syndrome occurs relatively briefly whereas bone deterioration may require months of postflight time for restoration. It seems critical to recognize that these changes and others may derive from rather passive, active or even reactive changes in the biological systems that are hosts to them. For example, hydrostatic fluid redistributions may be quite passive occurrences that are realized through extensive fluid channels. Changes occur in cell metabolism because of fluid, nutrient and gas redistributions. Equally important are the misconstrued messages likely to be carried by fluid redistributions. These reactive events can trigger, for example, loss of fluids and electrolytes through altered kidney function. Each of these considerations must be evaluated in regard to the biological site affected. Countermeasures to the vast range of biological changes and sites are difficult to envision. The most obvious countermeasure is the restoration of gravity-like influences. Some options are discussed. Recent work has focussed on the use of magnetic fields. Pulsed electromagnetic fields (PEMF) are shown to alleviate bone deterioration produced in rodents exposed to tail suspension. Methods of PEMF exposure are consistent with human use in space. Related methods may provide muscular and neural benefits.

  12. Microgravity and Macromolecular Crystallography

    Science.gov (United States)

    Kundrot, Craig E.; Judge, Russell A.; Pusey, Marc L.; Snell, Edward H.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Macromolecular crystal growth has been seen as an ideal experiment to make use of the reduced acceleration environment provided by an orbiting spacecraft. The experiments are small, simply operated and have a high potential scientific and economic impact. In this review we examine the theoretical reasons why microgravity should be a beneficial environment for crystal growth and survey the history of experiments on the Space Shuttle Orbiter, on unmanned spacecraft, and on the Mir space station. Finally we outline the direction for optimizing the future use of orbiting platforms.

  13. The Influence of Microgravity on Invasive Growth in Saccharomyces cerevisiae

    Science.gov (United States)

    Van Mulders, Sebastiaan E.; Stassen, Catherine; Daenen, Luk; Devreese, Bart; Siewers, Verena; van Eijsden, Rudy G. E.; Nielsen, Jens; Delvaux, Freddy R.; Willaert, Ronnie

    2011-01-01

    This study investigates the effects of microgravity on colony growth and the morphological transition from single cells to short invasive filaments in the model eukaryotic organism Saccharomyces cerevisiae. Two-dimensional spreading of the yeast colonies grown on semi-solid agar medium was reduced under microgravity in the Σ1278b laboratory strain but not in the CMBSESA1 industrial strain. This was supported by the Σ1278b proteome map under microgravity conditions, which revealed upregulation of proteins linked to anaerobic conditions. The Σ1278b strain showed a reduced invasive growth in the center of the yeast colony. Bud scar distribution was slightly affected, with a switch toward more random budding. Together, microgravity conditions disturb spatially programmed budding patterns and generate strain-dependent growth differences in yeast colonies on semi-solid medium.

  14. Straight Ahead in Microgravity

    Science.gov (United States)

    Clement, G.; Wood, S. J.

    2011-01-01

    INTRODUCTION The subjective straight-ahead direction is a very basic perceptual reference for spatial orientation and locomotion. The perceived straight-ahead along the horizontal and vertical meridian is largely determined by both otolith and somatosensory inputs which are altered in microgravity. The Straight Ahead in Microgravity (SAM) experiment will be conducted on the International Space Station (ISS) to examine how this spatial processing changes as a function of spaceflight. METHODS Data will be collected before the flight, at one-month intervals during long-duration stay (180 days) on board ISS, and after return to Earth. Control studies will also be performed during parabolic flights. Three different protocols will be used in each test session: (1) Fixation: The subject will be asked to look at actual targets (normal vision) and then to imagine these same targets (occluded vision) in the straight-ahead direction. Targets will be located at near distance (arm s length, 0.5m), medium distance (1 m), and far distance (beyond 2 m). This task will be successively performed with subject s body aligned with the spacecraft interior, and with subject s body tilted forward and backward by an operator. (2) Saccades: The subject will be asked to make horizontal and vertical saccades, first relative to the spacecraft interior reference system, and then relative to the subject s head reference system. This task will be successively performed with subject s body aligned with the spacecraft interior, and with subject s body tilted in roll or in pitch by an operator. (3) Linear Vestibulo-Ocular Reflex (VOR): The subject will be asked to stare at actual visual targets (normal vision) at various distances (near, medium, far) in the straight-ahead direction. Vision will then be occluded, and the subject will be asked to continue staring at the same imagined targets while he/she is passively translated forward-backward, up-down, or side-to-side. The subject's body motion will

  15. Sleep and Respiration in Microgravity

    Science.gov (United States)

    West, John B.; Elliott, Ann R.; Prisk, G. Kim; Paiva, Manuel

    2003-01-01

    Sleep is often reported to be of poor quality in microgravity, and studies on the ground have shown a strong relationship between sleep-disordered breathing and sleep disruption. During the 16-day Neurolab mission, we studied the influence of possible changes in respiratory function on sleep by performing comprehensive sleep recordings on the payload crew on four nights during the mission. In addition, we measured the changes in the ventilatory response to low oxygen and high carbon dioxide in the same subjects during the day, hypothesizing that changes in ventilatory control might affect respiration during sleep. Microgravity caused a large reduction in the ventilatory response to reduced oxygen. This is likely the result of an increase in blood pressure at the peripheral chemoreceptors in the neck that occurs when the normally present hydrostatic pressure gradient between the heart and upper body is abolished. This reduction was similar to that seen when the subjects were placed acutely in the supine position in one-G. In sharp contrast to low oxygen, the ventilatory response to elevated carbon dioxide was unaltered by microgravity or the supine position. Because of the similarities of the findings in microgravity and the supine position, it is unlikely that changes in ventilatory control alter respiration during sleep in microgravity. During sleep on the ground, there were a small number of apneas (cessation of breathing) and hypopneas (reduced breathing) in these normal subjects. During sleep in microgravity, there was a reduction in the number of apneas and hypopneas per hour compared to preflight. Obstructive apneas virtually disappeared in microgravity, suggesting that the removal of gravity prevents the collapse of upper airways during sleep. Arousals from sleep were reduced in microgravity compared to preflight, and virtually all of this reduction was as a result of a reduction in the number of arousals from apneas and hypopneas. We conclude that any sleep

  16. Xanthogranulomatous cholecystitis mimicking gallbladder cancer.

    Science.gov (United States)

    Ewelukwa, Ofor; Ali, Omair; Akram, Salma

    2014-05-08

    Xanthogranulomatous cholecystitis (XGC) is a benign, uncommon variant of chronic cholecystitis characterised by focal or diffuse destructive inflammatory process of the gallbladder (GB). Macroscopically, it appears like yellowish tumour-like masses in the wall of the GB. This article reports on a 74-year-old woman with XGC mimicking GB cancer.

  17. Proteomic Analysis of Rat Hippocampus under Simulated Microgravity

    Science.gov (United States)

    Wang, Yun; Li, Yujuan; Zhang, Yongqian; Liu, Yahui; Deng, Yulin

    It has been found that microgravity may lead to impairments in cognitive functions performed by CNS. However, the exact mechanism of effects of microgravity on the learning and memory function in animal nervous system is not elucidated yet. Brain function is mainly mediated by membrane proteins and their dysfunction causes degeneration of the learning and memory. To induce simulated microgravity, the rat tail suspension model was established. Comparative O (18) labeling quantitative proteomic strategy was applied to detect the differentially expressed proteins in rat brain hippocampus. The proteins in membrane fraction from rat hippocampus were digested by trypsin and then the peptides were separated by off-gel for the first dimension with 24 wells device encompassing the pH range of 3 - 10. An off-gel fraction was subjected into LC-ESI-QTOF in triplicate. Preliminary results showed that nearly 77% of the peptides identified were specific to one fraction. 676 proteins were identified among which 108 proteins were found differentially expressed under simulated microgravity. Using the KOBAS server, many enriched pathways, such as metabolic pathway, synaptic vesicle cycle, endocytosis, calcium signaling pathway, and SNAREs pathway were identified. Furthermore, it has been found that neurotransmitter released by Ca (2+) -triggered synaptic vesicles fusion may play key role in neural function. Rab 3A might inhibit the membrane fusion and neurotransmitter release. The protein alteration of the synaptic vesicle cycle may further explain the effects of microgravity on learning and memory function in rats. Key words: Microgravity; proteomics; synaptic vesicle; O (18) ({}) -labeling

  18. Straight Ahead in Microgravity

    Science.gov (United States)

    Wood, S. J.; Vanya, R. D.; Clement, G.

    2014-01-01

    This joint ESA-NASA study will address adaptive changes in spatial orientation related to the subjective straight ahead, and the use of a vibrotactile sensory aid to reduce perceptual errors. The study will be conducted before and after long-duration expeditions to the International Space Station (ISS) to examine how spatial processing of target location is altered following exposure to microgravity. This project specifically addresses the sensorimotor research gap "What are the changes in sensorimotor function over the course of a mission?" Six ISS crewmembers will be requested to participate in three preflight sessions (between 120 and 60 days prior to launch) and then three postflight sessions on R+0/1 day, R+4 +/-2 days, and R+8 +/-2 days. The three specific aims include: (a) fixation of actual and imagined target locations at different distances; (b) directed eye and arm movements along different spatial reference frames; and (c) the vestibulo-ocular reflex during translation motion with fixation targets at different distances. These measures will be compared between upright and tilted conditions. Measures will then be compared with and without a vibrotactile sensory aid that indicates how far one has tilted relative to the straight-ahead direction. The flight study was been approved by the medical review boards and will be implemented in the upcoming Informed Crew Briefings to solicit flight subject participation. Preliminary data has been recorded on 6 subjects during parabolic flight to examine the spatial coding of eye movements during roll tilt relative to perceived orientations while free-floating during the microgravity phase of parabolic flight or during head tilt in normal gravity. Binocular videographic recordings obtained in darkness allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the aircraft and head orientations. During some parabolas, a vibrotactile sensory aid provided

  19. Antibody-based Detection of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium Grown in Low-shear Modeled Microgravity

    Science.gov (United States)

    Nyquist-Battie, Cynthia; Freeman, Laura; Leckband, Kristen; Martinez, Stephanie; Ansley, Ariel; Lund, Deanna; Lim, Daniel V.

    2008-06-01

    With the advent of prolonged spaceflights, it is important to determine if antibody-based assays can be used to monitor food and water for bacterial contaminants. In the present work, a ground-based high aspect ratio vessel (HARV) was used to determine if low shear modeled microgravity (LSMMG) alters antibody-binding to E. coli O157:H7 and Salmonella enterica serovar Typhimurium. Antibody-bacteria binding was similar under LSMMG and normal gravity because there was no difference in amount of captured bacteria measured by colony forming units (CFU) between assays conducted in the HARV and a conventional roller flask. The ability of E. coli O157:H7 and Salmonella Typhimurium grown in LSMMG to bind specific antibodies was also studied. After incubations of 4, 18 or 36 h in the HARV or a shaking incubator, bacteria were harvested for enzyme-linked immunosorbent assays (ELISA). In the E. coli O157:H7 ELISA using a goat polyclonal primary antibody, LSMMG did not alter the linear range of detection (105-107 cells/ml) nor the signal to noise ratio at any bacterial concentration. Although insignificant changes in signal to noise ratios were evident, LSMMG did not alter the range of detection (105-107 cells/ml) for Salmonella Typhimurium in ELISAs using either a polyclonal or a monoclonal antibody. These results suggest that immunoassays may be used in spacecrafts because LSMMG does not have significant deleterious effects on antibody-binding to bacteria nor does it significantly alter surface antigens necessary for antibody-based methods.

  20. Liposome formation in microgravity

    Science.gov (United States)

    Claassen, D. E.; Spooner, B. S.

    Liposomes are artificial vesicles with a phospholipid bilayer membrane. The formation of liposomes is a self-assembly process that is driven by the amphipathic nature of phospholipid molecules and can be observed during the removal of detergent from phospholipids dissolved in detergent micelles. As detergent concentration in the mixed micelles decreases, the non-polar tail regions of phospholipids produce a hydrophobic effect that drives the micelles to fuse and form planar bilayers in which phospholipids orient with tail regions to the center of the bilayer and polar head regions to the external surface. Remaining detergent molecules shield exposed edges of the bilayer sheet from the aqueous environment. Further removal of detergent leads to intramembrane folding and membrane vesiculation, forming liposomes. We have observed that the formation of liposomes is altered in microgravity. Liposomes that were formed at 1-g did not exceed 150 nm in diameter, whereas liposomes that were formed during spaceflight exhibited diameters up to 2000 nm. Using detergent-stabilized planar bilayers, we determined that the stage of liposome formation most influenced by gravity is membrane vesiculation. In addition, we found that small, equipment-induced fluid disturbances increased vesiculation and negated the size-enhancing effects of microgravity. However, these small disturbances had no effect on liposome size at 1-g, likely due to the presence of gravity-induced buoyancy-driven fluid flows (e.g., convection currents). Our results indicate that fluid disturbances, induced by gravity, influence the vesiculation of membranes and limit the diameter of forming liposomes.

  1. Experimental investigation and theoretical modelling of the nonlinear acoustical behaviour of a liver tissue and comparison with a tissue mimicking hydrogel.

    Science.gov (United States)

    Casciaro, Sergio; Demitri, Christian; Conversano, Francesco; Casciaro, Ernesto; Distante, Alessandro

    2008-02-01

    Native harmonics generated by nonlinear distortion of ultrasound during propagation in a medium may cause misinterpretations in spectral analysis when studying contrast agents. The aim of this paper is to quantitatively evaluate nonlinear propagation effects of diagnostic ultrasound pulses in biological tissues and to assess whether a cellulose-based hydrogel can be a suitable material for tissue mimicking purposes. Hydrogel and pig liver tissue samples of various thicknesses were insonified in a through-transmission set-up, employing 2.25-MHz pulses with different mechanical index (MI) values (range 0.06-0.60). Second harmonic and first harmonic amplitudes were extracted from spectra of received signals and their ratio was then used to compare hydrogel and liver behaviours. Resulting trends are very similar for sample thicknesses up to 8 cm and highlight a significant increase in nonlinearity for MI > 0.3, for both liver and hydrogel. A numerical procedure was also employed to calculate pressure distribution along the beam axis: these theoretical results showed a very good agreement with experimental data in the low pressure range, though failed in predicting the MI threshold. In conclusion, the hydrogel resulted to be a suitable material for manufacturing tissue mimicking phantoms, in particular to study contrast agent behaviour with a "low power approach".

  2. Multicystic Hepatocarcinoma Mimicking Liver Abscess

    Directory of Open Access Journals (Sweden)

    Evangelos Falidas

    2013-01-01

    Full Text Available The diagnosis of hepatocellular carcinoma (HCC became easier in relation to the improved radiological examinations; however, the neoplasm may occur under atypical presentations mimicking other benign or malignant processes. Multicystic HCC mimicking a liver abscess associated with septic-type fever and leukocytosis is rare, has a poor prognosis, and poses diagnostic and therapeutic dilemmas. We present the case of an 80-year-old patient, who presented with fever, leukocytosis, and large cystic masses involving right and left lobes of the liver initially considered abscesses and finally diagnosed as HCC after open drainage and liver biopsy. Although the patient died on the tenth postoperative day due to pulmonary oedema, the authors emphasize the high index of suspicion needed in the diagnosis of this unusual presentation of HCC.

  3. Hindlimb Suspension as a Model to Study Ophthalmic Complications in Microgravity Status Report: Optimization of Rat Retina Flat Mounts Staining to Study Vascular Remodeling

    Science.gov (United States)

    Theriot, Corey A.; Zanello, Susana B.

    2014-01-01

    Unmixing method and allows us to remove the autofluorescence originating from the photoreceptor layer. In summary, we have an improved method for studying the retinal microvasculature that will provide an increase in the quality of images captured and will be applied throughout the various animal cohorts of the recentlyinitiated study that will evaluate rodent HS as a model to study ophthalmic complications in microgravity.

  4. Fluid mechanics phenomena in microgravity; ASME Winter Annual Meeting, Anaheim, CA, Nov. 8-13, 1992

    Science.gov (United States)

    Siginer, Dennis A. (Editor); Weislogel, Mark M. (Editor)

    1992-01-01

    This paper is the first in a series of symposia presenting research activity in microgravity fluid mechanics. General topics addressed include two-phase flow and transport phenomena, thermo-capillary flow, and interfacial stability. Papers present mathmatical models of fluid dynamics in the microgravity environment. Applications suggested include space manufacturing and storage of liquids in low gravity.

  5. Smoldering Combustion Experiments in Microgravity

    Science.gov (United States)

    Walther, David C.; Fernandez-Pello, A. Carlos; Urban, David L.

    1997-01-01

    The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a microgravity environment. Smoldering is a non-flaming form of combustion that takes place in the interior of porous materials and takes place in a number of processes ranging from smoldering of porous insulation materials to high temperature synthesis of metals. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal-gravity. As with many forms of combustion, gravity affects the availability of oxidizer and transport of heat, and therefore the rate of combustion. Microgravity smolder experiments, in both a quiescent oxidizing environment, and in a forced oxidizing flow have been conducted aboard the NASA Space Shuttle (STS-69 and STS-77 missions) to determine the effect of the ambient oxygen concentration and oxidizer forced flow velocity on smolder combustion in microgravity. The experimental apparatus is contained within the NASA Get Away Special Canister (GAS-CAN) Payload. These two sets of experiments investigate the propagation of smolder along the polyurethane foam sample under both diffusion driven and forced flow driven smoldering. The results of the microgravity experiments are compared with identical ones carried out in normal gravity, and are used to verify present theories of smolder combustion. The results of this study will provide new insights into the smoldering combustion process. Thermocouple histories show that the microgravity smolder reaction temperatures (Ts) and propagation velocities (Us) lie between those of identical normal-gravity upward and downward tests. These observations indicate the effect of buoyancy on the transport of oxidizer to the reaction front.

  6. Active transmembrane drug transport in microgravity: a validation study using an ABC transporter model [v1; ref status: indexed, http://f1000r.es/41n

    Directory of Open Access Journals (Sweden)

    Sergi Vaquer

    2014-08-01

    Full Text Available Abstract Microgravity has been shown to influence the expression of ABC (ATP-Binding Cassette transporters in bacteria, fungi and mammals, but also to modify the activity of certain cellular components with structural and functional similarities to ABC transporters. Changes in activity of ABC transporters could lead to important metabolic disorders and undesired pharmacological effects during spaceflights. However, no current means exist to study the functionality of these transporters in microgravity. To this end, a Vesicular Transport Assay® (Solvo Biotechnology, Hungary was adapted to evaluate multi-drug resistance-associated protein 2 (MRP2 trans-membrane estradiol-17-β-glucuronide (E17βG transport activity, when activated by adenosine-tri-phosphate (ATP during parabolic flights. Simple diffusion, ATP-independent transport and benzbromarone inhibition were also evaluated. A high accuracy engineering system was designed to perform, monitor and synchronize all procedures. Samples were analysed using a validated high sensitivity drug detection protocol. Experiments were performed in microgravity during parabolic flights, and compared to 1g on ground results using identical equipment and procedures in all cases. Our results revealed that sufficient equipment accuracy and analytical sensitivity were reached to detect transport activity in both gravitational conditions. Additionally, transport activity levels of on ground samples were within commercial transport standards, proving the validity of the methods and equipment used. MRP2 net transport activity was significantly reduced in microgravity, so was signal detected in simple diffusion samples. Ultra-structural changes induced by gravitational stress upon vesicle membranes or transporters could explain the current results, although alternative explanations are possible. Further research is needed to provide a conclusive answer in this regard. Nevertheless, the present validated technology

  7. Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling

    Science.gov (United States)

    Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA

  8. The Distinctive Sensitivity to Microgravity of Immune Cell Subpopulations

    Science.gov (United States)

    Chen, Hui; Luo, Haiying; Liu, Jing; Wang, Peng; Dong, Dandan; Shang, Peng; Zhao, Yong

    2015-11-01

    Immune dysfunction in astronauts is well documented after spaceflights. Microgravity is one of the key factors directly suppressing the function of immune system. However, it is unclear which subpopulations of immune cells including innate and adaptive immune cells are more sensitive to microgravity We herein investigated the direct effects of modeled microgravity (MMg) on different immune cells in vitro. Mouse splenocytes, thymocytes and bone marrow cells were exposed to MMg for 16 hrs. The survival and the phenotypes of different subsets of immune cells including CD4+T cells, CD8+T cells, CD4+Foxp3+ regulatory T cells (Treg), B cells, monocytes/macrophages, dendritic cells (DCs), natural killer cells (NK) were determined by flow cytometry. After splenocytes were cultured under MMg for 16h, the cell frequency and total numbers of monocytes, macrophages and CD4+Foxp3+T cells were significantly decreased more than 70 %. MMg significantly decreased the cell numbers of CD8+ T cells, B cells and neutrophils in splenocytes. The cell numbers of CD4+T cells and NK cells were unchanged significantly when splenocytes were cultured under MMg compared with controls. However, MMg significantly increased the ratio of mature neutrophils to immature neutrophils in bone marrow and the cell number of DCs in splenocytes. Based on the cell survival ability, monocytes, macrophages and CD4+Foxp3+Treg cells are most sensitive to microgravity; CD4+T cells and NK cells are resistant to microgravity; CD8+T cells and neutrophils are impacted by short term microgravity exposure. Microgravity promoted the maturation of neutrophils and development of DCs in vitro. The present studies offered new insights on the direct effects of MMg on the survival and homeostasis of immune cell subsets.

  9. Microgravity and the respiratory system.

    Science.gov (United States)

    Prisk, G Kim

    2014-05-01

    The structure of the lung, with its delicate network of airspaces and capillaries, means that gravity has a profound influence on its function. Studies of lung function in the absence of gravity provide valuable insight into how, for we Earth-bound individuals, its unavoidable effects shape our lung function. Gravity causes uneven ventilation in the lung through the deformation of lung tissue (the so-called Slinky effect), and uneven perfusion through a combination of the Slinky effect and the zone model of pulmonary perfusion. Both ventilation and perfusion exhibit persisting heterogeneity in microgravity, indicating important other mechanisms. However, gravity serves to maintain a degree of matching of these two processes, so that the ventilation/perfusion ratio, and thus gas exchange, remains efficient. Therefore, while both ventilation and perfusion are more uniform in spaceflight, gas exchange is seemingly no more efficient than on Earth. Despite the changes in lung function when gravity is removed, the lung continues to function well in weightlessness. Unlike many other organ systems, the lung does not appear to undergo structural adaptive changes when gravity is removed, and so there is no apparent degradation in lung function upon return to earth, even after 6 months in space.

  10. The Spacelab 3 simulation: basis for a model of growth plate response in microgravity in the rat

    Science.gov (United States)

    Montufar-Solis, D.; Duke, P. J.; Morey-Holton, E.

    2001-01-01

    Data from Spacelab 3 (SL3) suggested that spaceflight significantly reduces the activity of the rat tibial growth plate. Animal processing after SL3 began twelve hours post-landing, so data reflect post-flight re-adaptation in addition to spaceflight effects. To determine if a twelve-hour period of weight bearing after seven days of unloading could affect the physes of spaceflown rats, the present study assessed the growth plate response to unloading with or without a reloading period. Rats were subjected to hind-limb suspension for seven days and then euthanized, with or without twelve hours of reloading. Activity of the growth plate was assessed by morphometric analysis. Rats suspended without reloading had reserve zone (RZ) height greater than controls, and shorter hypertrophy/calcification zone (HCZ) with fewer cells. The greater RZ was associated with a larger cell area, indicating a possible mitotic delay or secretion defect. Twelve hours of reloading decreased RZ height and cell number, and restored the number of cells in HCZ to control values, but the number of cells in the proliferative zone and height in HCZ were reduced. These results suggest the rebound response to preserve/restore skeletal function after a period of unloading involves an acceleration of growth associated with a decreased cell cycle time in PZ. Changes during the reloading period in this simulation support our hypothesis that the effects of spaceflight on SL3 growth plates were altered by changes that occurred post-landing. The similarities in response to unloading by suspension or during spaceflight are used to propose a model of growth plate response during spaceflight.

  11. A numerical study of biofilm growth in a microgravity environment

    Science.gov (United States)

    Aristotelous, A. C.; Papanicolaou, N. C.

    2017-10-01

    A mathematical model is proposed to investigate the effect of microgravity on biofilm growth. We examine the case of biofilm suspended in a quiescent aqueous nutrient solution contained in a rectangular tank. The bacterial colony is assumed to follow logistic growth whereas nutrient absorption is assumed to follow Monod kinetics. The problem is modeled by a coupled system of nonlinear partial differential equations in two spatial dimensions solved using the Discontinuous Galerkin Finite Element method. Nutrient and biofilm concentrations are computed in microgravity and normal gravity conditions. A preliminary quantitative relationship between the biofilm concentration and the gravity field intensity is derived.

  12. Finite Element Analysis of Osteocytes Mechanosensitivity Under Simulated Microgravity

    Science.gov (United States)

    Yang, Xiao; Sun, Lian-Wen; Du, Cheng-Fei; Wu, Xin-Tong; Fan, Yu-Bo

    2018-04-01

    It was found that the mechanosensitivity of osteocytes could be altered under simulated microgravity. However, how the mechanical stimuli as the biomechanical origins cause the bioresponse in osteocytes under microgravity is unclear yet. Computational studies may help us to explore the mechanical deformation changes of osteocytes under microgravity. Here in this paper, we intend to use the computational simulation to investigate the mechanical behavior of osteocytes under simulated microgravity. In order to obtain the shape information of osteocytes, the biological experiment was conducted under simulated microgravity prior to the numerical simulation The cells were rotated by a clinostat for 6 hours or 5 days and fixed, the cytoskeleton and the nucleus were immunofluorescence stained and scanned, and the cell shape and the fluorescent intensity were measured from fluorescent images to get the dimension information of osteocytes The 3D finite element (FE) cell models were then established based on the scanned image stacks. Several components such as the actin cortex, the cytoplasm, the nucleus, the cytoskeleton of F-actin and microtubules were considered in the model. The cell models in both 6 hours and 5 days groups were then imposed by three magnitudes (0.5, 10 and 15 Pa) of simulating fluid shear stress, with cell total displacement and the internal discrete components deformation calculated. The results showed that under the simulated microgravity: (1) the nuclear area and height statistically significantly increased, which made the ratio of membrane-cortex height to nucleus height statistically significantly decreased; (2) the fluid shear stress-induced maximum displacements and average displacements in the whole cell decreased, with the deformation decreasing amplitude was largest when exposed to 1.5Pa of fluid shear stress; (3) the fluid shear stress-induced deformation of cell membrane-cortex and cytoskeleton decreased, while the fluid shear stress

  13. A Test of Macromolecular Crystallization in Microgravity: Large, Well-Ordered Insulin Crystals

    Science.gov (United States)

    Borgstahl, Gloria E. O.; Vahedi-Faridi, Ardeschir; Lovelace, Jeff; Bellamy, Henry D.; Snell, Edward H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Crystals of insulin grown in microgravity on space shuttle mission STS-95 were extremely well-ordered and unusually large (many > 2 mm). The physical characteristics of six microgravity and six earth-grown crystals were examined by X-ray analysis employing superfine f slicing and unfocused synchrotron radiation. This experimental setup allowed hundreds of reflections to be precisely examined for each crystal in a short period of time. The microgravity crystals were on average 34 times larger, had 7 times lower mosaicity, had 54 times higher reflection peak heights and diffracted to significantly higher resolution than their earth grown counterparts. A single mosaic domain model could account for reflections in microgravity crystals whereas reflections from earth crystals required a model with multiple mosaic domains. This statistically significant and unbiased characterization indicates that the microgravity environment was useful for the improvement of crystal growth and resultant diffraction quality in insulin crystals and may be similarly useful for macromolecular crystals in general.

  14. Proteomic analysis of zebrafish embryos exposed to simulated-microgravity

    Science.gov (United States)

    Hang, Xiaoming; Ma, Wenwen; Wang, Wei; Liu, Cong; Sun, Yeqing

    Microgravity can induce a serial of physiological and pathological changes in human body, such as cardiovascular functional disorder, bone loss, muscular atrophy and impaired immune system function, etc. In this research, we focus on the influence of microgravity to vertebrate embryo development. As a powerful model for studying vertebrate development, zebrafish embryos at 8 hpf (hour past fertilization) and 24 hpf were placed into a NASA developed bioreac-tor (RCCS) to simulate microgravity for 64 and 48 hours, respectively. The same number of control embryos from the same parents were placed in a tissue culture dish at the same temper-ature of 28° C. Each experiment was repeated 3 times and analyzed by two-dimensional (2-D) gel electrophoresis. Image analysis of silver stained 2-D gels revealed that 64 from total 292 protein spots showed quantitative and qualitative variations that were significantly (Pmuscle B. Other protein spots showed significant expression alteration will be identified successively and the corresponding genes expression will also be measured by Q-PCR method at different development stages. The data presented in this study illustrate that zebrafish embryo can be significantly induced by microgravity on the expression of proteins involved in bone and muscle formation. Key Words: Danio rerio; Simulated-microgravity; Proteomics

  15. Propionic acidemia mimicking diabetic ketoacidosis.

    Science.gov (United States)

    Dweikat, Imad M; Naser, Enas N; Abu Libdeh, Abdulsalam I; Naser, Osama J; Abu Gharbieh, Najwan N; Maraqa, Nizar F; Abu Libdeh, Bassam Y

    2011-05-01

    Propionic acidemia manifesting with hyperglycemia is rare. Few cases have been reported mainly of the neonatal-onset form associated with high mortality. We report a 9-month-old Palestinian boy who manifested with coma, severe hyperglycemia and ketoacidosis mimicking diabetic ketoacidosis. Family history of unexplained infant deaths was helpful in reaching the correct diagnosis. In response to therapy, the patient regained consciousness without neurologic deficits and had normal examination. This is, to our knowledge, the first case report of late-onset propionic acidemia that had this presentation and survived. Copyright © 2010 The Japanese Society of Child Neurology. All rights reserved.

  16. Technology base for microgravity horticulture

    Science.gov (United States)

    Sauer, R. L.; Magnuson, J. W.; Scruby, R. R.; Scheld, H. W.

    1987-01-01

    Advanced microgravity plant biology research and life support system development for the spacecraft environment are critically hampered by the lack of a technology base. This inadequacy stems primarily from the fact that microgravity results in a lack of convective currents and phase separation as compared to the one gravity environment. A program plan is being initiated to develop this technology base. This program will provide an iterative flight development effort that will be closely integrated with both basic science investigations and advanced life support system development efforts incorporating biological processes. The critical considerations include optimum illumination methods, root aeration, root and shoot support, and heat rejection and gas exchange in the plant canopy.

  17. [Characteristics of morphogenesis of the Japanese quail embryos during microgravity

    Science.gov (United States)

    Dadasheva, O. A.; Gur'eva, T. S.; Sychev, V. N.; Jehns, G.; Jahns, G. (Principal Investigator)

    1998-01-01

    Experiments performed in the period of 1995-1996 cooperatively with US investigators within the MIR/SHUTTLE and MIR/NASA space science projects continued exploration of avian embryogenesis in microgravity. Evaluation of Japanese quail embryos incubated in spaceflight microgravity showed that for the most part they were normally developed and compliant with duration of incubation. One of the major morphometric characteristics of embryo are its mass and size. Comparative analysis of body mass values in the space and laboratory and synchronous control groups pointed to a slight retardation. Body length of space embryos mimicked their mass curve. Data on the dynamics of mass and length of Japanese quail embryos support the well-known theory according to which growth and formation are distinguished by equifinality. No differences were revealed by the investigations of individual parts of embryonic bodies in the space and control groups. However, this finding was true only with regard to the embryos that had no developmental abnormalities. A part of embryos had defective eyes (microphtalmia), limbs (twisted fingers), and beaks.

  18. Histoplasmosis mimicking metastatic spinal tumour.

    Science.gov (United States)

    Liu, Bing; Qu, Liyan; Zhu, Jian; Yang, Zhengming; Yan, Shigui

    2017-08-01

    Histoplasmosis is an infection caused by a fungus called Histoplasma. Diagnosis of histoplasmosis is based on the culture of biological samples and detection of fungus in tissues. Histoplasmosis can mimic malignant lesions. We report a 65-year-old, immunocompetent, male patient with back pain. We describe the main clinical and radiological characteristics in our patient who had vertebral histoplasmosis that mimicked cancer. A computed tomography scan showed lytic lesions of the right side of T4, T5, and T6 vertebral bodies. Magnetic resonance imaging displayed abnormal marrow signals in T4, T5, and T6 vertebral bodies (low signal on T1, high on T2 and short time inversion recovery (STIR)). Which was mimicking malignancy, such as haematological malignancy and metastatic bone cancer. Therefore, thoracic spinal surgery using the anterior approach was performed. An intraoperative frozen section examination and routine postoperative pathology showed thoracic histoplasmosis infection. Treatment of histoplasmosis was performed with oral itraconazole. The lesions did not progress and the patient symptomatically improved at a follow-up of 26 months.

  19. The economics of microgravity research.

    Science.gov (United States)

    DiFrancesco, Jeanne M; Olson, John M

    2015-01-01

    In this introduction to the economics of microgravity research, DiFrancesco and Olson explore the existing landscape and begin to define the requirements for a robust, well-funded microgravity research environment. This work chronicles the history, the opportunities, and how the decisions made today will shape the future. The past 60 years have seen tremendous growth in the capabilities and resources available to conduct microgravity science. However, we are now at an inflection point for the future of humanity in space. A confluence of factors including the rise of commercialization, a shifting funding landscape, and a growing international presence in space exploration, and terrestrial research platforms are shaping the conditions for full-scale microgravity research programs. In this first discussion, the authors focus on the concepts of markets, tangible and intangible value, research pathways and their implications for investments in research projects, and the collateral platforms needed. The opportunities and implications for adopting new approaches to funding and market-making illuminate how decisions made today will affect the speed of advances the community will be able to achieve in the future.

  20. Overview of NASA's Microgravity Materials Research Program

    Science.gov (United States)

    Downey, James Patton; Grugel, Richard

    2012-01-01

    The NASA microgravity materials program is dedicated to conducting microgravity experiments and related modeling efforts that will help us understand the processes associated with the formation of materials. This knowledge will help improve ground based industrial production of such materials. The currently funded investigations include research on the distribution of dopants and formation of defects in semiconductors, transitions between columnar and dendritic grain morphology, coarsening of phase boundaries, competition between thermally and kinetically favored phases, and the formation of glassy vs. crystalline material. NASA microgravity materials science investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by participation in a team proposing to a foreign agency research announcement. In the latter case, a US investigator participating in a successful proposal to a foreign agency can then apply to NASA for funding of an unsolicited proposal. The program relies on cooperation with other aerospace partners from around the world. The ISS facilities used for these investigations are provided primarily by partnering with foreign agencies and in most cases the US investigators are working as a part of a larger team studying a specific area of materials science. The following facilities are to be utilized for the initial investigations. The ESA provided Low Gradient Facility and the Solidification and Quench Inserts to the Materials Research Rack/Materials Science Laboratory are to be used primarily for creating bulk samples that are directionally solidified or quenched from a high temperature melt. The CNES provided DECLIC facility is used to observe morphological development in transparent materials. The ESA provided Electro-Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to study nucleation behavior. The facility provides conditions in which nucleation of the solid is

  1. Berberine Improves Intestinal Motility and Visceral Pain in the Mouse Models Mimicking Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D Symptoms in an Opioid-Receptor Dependent Manner.

    Directory of Open Access Journals (Sweden)

    Chunqiu Chen

    Full Text Available Berberine and its derivatives display potent analgesic, anti-inflammatory and anticancer activity. Here we aimed at characterizing the mechanism of action of berberine in the gastrointestinal (GI tract and cortical neurons using animal models and in vitro tests.The effect of berberine was characterized in murine models mimicking diarrhea-predominant irritable bowel syndrome (IBS-D symptoms. Then the opioid antagonists were used to identify the receptors involved. Furthermore, the effect of berberineon opioid receptors expression was established in the mouse intestine and rat fetal cortical neurons.In mouse models, berberine prolonged GI transit and time to diarrhea in a dose-dependent manner, and significantly reduced visceral pain. In physiological conditions the effects of berberine were mediated by mu- (MOR and delta- (DOR opioid receptors; hypermotility, excessive secretion and nociception were reversed by berberine through MOR and DOR-dependent action. We also found that berberine increased the expression of MOR and DOR in the mouse bowel and rat fetal cortical neurons.Berberine significantly improved IBS-D symptoms in animal models, possibly through mu- and delta- opioid receptors. Berberine may become a new drug candidate for the successful treatment of IBS-D in clinical conditions.

  2. Planarians sense simulated microgravity and hypergravity.

    Science.gov (United States)

    Adell, Teresa; Saló, Emili; van Loon, Jack J W A; Auletta, Gennaro

    2014-01-01

    Planarians are flatworms, which belong to the phylum Platyhelminthes. They have been a classical subject of study due to their amazing regenerative ability, which relies on the existence of adult totipotent stem cells. Nowadays they are an emerging model system in the field of developmental, regenerative, and stem cell biology. In this study we analyze the effect of a simulated microgravity and a hypergravity environment during the process of planarian regeneration and embryogenesis. We demonstrate that simulated microgravity by means of the random positioning machine (RPM) set at a speed of 60 °/s but not at 10 °/s produces the dead of planarians. Under hypergravity of 3 g and 4 g in a large diameter centrifuge (LDC) planarians can regenerate missing tissues, although a decrease in the proliferation rate is observed. Under 8 g hypergravity small planarian fragments are not able to regenerate. Moreover, we found an effect of gravity alterations in the rate of planarian scission, which is its asexual mode of reproduction. No apparent effects of altered gravity were found during the embryonic development.

  3. Planarians Sense Simulated Microgravity and Hypergravity

    Directory of Open Access Journals (Sweden)

    Teresa Adell

    2014-01-01

    Full Text Available Planarians are flatworms, which belong to the phylum Platyhelminthes. They have been a classical subject of study due to their amazing regenerative ability, which relies on the existence of adult totipotent stem cells. Nowadays they are an emerging model system in the field of developmental, regenerative, and stem cell biology. In this study we analyze the effect of a simulated microgravity and a hypergravity environment during the process of planarian regeneration and embryogenesis. We demonstrate that simulated microgravity by means of the random positioning machine (RPM set at a speed of 60 °/s but not at 10 °/s produces the dead of planarians. Under hypergravity of 3 g and 4 g in a large diameter centrifuge (LDC planarians can regenerate missing tissues, although a decrease in the proliferation rate is observed. Under 8 g hypergravity small planarian fragments are not able to regenerate. Moreover, we found an effect of gravity alterations in the rate of planarian scission, which is its asexual mode of reproduction. No apparent effects of altered gravity were found during the embryonic development.

  4. Microgravity Flammability Experiments for Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Legros, Guillaume; Minster, Olivier; Tóth, Balazs

    2012-01-01

    As fire behaviour in manned spacecraft still remains poorly understood, an international topical team has been created to design a validation experiment that has an unprecedented large scale for a microgravity flammability experiment. While the validation experiment is being designed for a re-sup...... validation experiment are crucial to the ultimate goal of the project, which is the development of predictive tools that should be capable of selecting an adaptive response to fire spread in any manned spacecraft.......As fire behaviour in manned spacecraft still remains poorly understood, an international topical team has been created to design a validation experiment that has an unprecedented large scale for a microgravity flammability experiment. While the validation experiment is being designed for a re...... spread, and thus also the modeling thereof, in realistic conditions is described. Some of the parameters governing the flame spread are also identified and their scaling against the dimensions of the test specimen is briefly questioned. Then several of the current and scheduled efforts are presented...

  5. Baroreflex Function in Rats after Simulated Microgravity

    Science.gov (United States)

    Hasser, Eileen M.

    1997-01-01

    Prolonged exposure of humans to decreased gravitational forces during spaceflight results in a number of adverse cardiovascular consequences, often referred to as cardiovascular deconditioning. Prominent among these negative cardiovascular effects are orthostatic intolerance and decreased exercise capacity. Rat hindlimb unweighting is an animal model which simulates weightlessness, and results in similar cardiovascular consequences. Cardiovascular reflexes, including arterial and cardiopulmonary baroreflexes, are required for normal adjustment to both orthostatic challenges and exercise. Therefore, the orthostatic intolerance and decreased exercise capacity associated with exposure to microgravity may be due to cardiovascular reflex dysfunction. The proposed studies will test the general hypothesis that hindlimb unweighting in rats results in impaired autonomic reflex control of the sympathetic nervous system. Specifically, we hypothesize that the ability to reflexly increase sympathetic nerve activity in response to decreases in arterial pressure or blood volume will be blunted due to hindlimb unweighting. There are 3 specific aims: (1) To evaluate arterial and cardiopulmonary baroreflex control of renal and lumbar sympathetic nerve activity in conscious rats subjected to 14 days of hindlimb unweighting; (2) To examine the interaction between arterial and cardiopulmonary baroreflex control of sympathetic nerve activity in conscious hindlimb unweighted rats; (3) to evaluate changes in afferent and/or central nervous system mechanisms in baroreflex regulation of the sympathetic nervous system. These experiments will provide information related to potential mechanisms for orthostatic and exercise intolerance due to microgravity.

  6. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  7. Fifth International Microgravity Combustion Workshop

    Science.gov (United States)

    Sacksteder, Kurt (Compiler)

    1999-01-01

    This conference proceedings document is a compilation of 120 papers presented orally or as poster displays to the Fifth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 18-20, 1999. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from at least eight international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for the Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies.

  8. Candle Flames in Microgravity Video

    Science.gov (United States)

    1997-01-01

    This video of a candle flame burning in space was taken by the Candle Flames in Microgravity (CFM) experiment on the Russian Mir space station. It is actually a composite of still photos from a 35mm camera since the video images were too dim. The images show a hemispherically shaped flame, primarily blue in color, with some yellow early int the flame lifetime. The actual flame is quite dim and difficult to see with the naked eye. Nearly 80 candles were burned in this experiment aboard Mir. NASA scientists have also studied how flames spread in space and how to detect fire in microgravity. Researchers hope that what they learn about fire and combustion from the flame ball experiments will help out here on Earth. Their research could help create things such as better engines for cars and airplanes. Since they use very weak flames, flame balls require little fuel. By studying how this works, engineers may be able to design engines that use far less fuel. In addition, microgravity flame research is an important step in creating new safety precautions for astronauts living in space. By understanding how fire works in space, the astronauts can be better prepared to fight it.

  9. Baroreflex dysfunction induced by microgravity: potential relevance to postflight orthostatic intolerance

    Science.gov (United States)

    Ertl, A. C.; Diedrich, A.; Biaggioni, I.; Robertson, D. (Principal Investigator)

    2000-01-01

    Microgravity imposes adaptive changes in the human body. This review focuses on the changes in baroreflex function produced by actual spaceflight, or by experimental models that simulate microgravity, e.g., bed rest. We will analyze separately studies involving baroreflexes arising from carotid sinus and aortic arch afferents ("high-pressure baroreceptors"), and cardiopulmonary afferents ("low-pressure receptors"). Studies from unrelated laboratories using different techniques have concluded that actual or simulated exposure to microgravity reduces baroreflex function arising from carotid sinus afferents ("carotic-cardiac baroreflex"). The techniques used to study the carotid-cardiac baroreflex, using neck suction and compression to simulate changes in blood pressure, have been extensively validated. In contrast, it is more difficult to selectively study aortic arch or cardiopulmonary baroreceptors. Nonetheless, studies that have examined these baroreceptors suggest that microgravity produces the opposite effect, ie, an increase in the gain of aortic arch and cardiopulmonary baroreflexes. Furthermore, most studies have focus on instantaneous changes in heart rate, which almost exclusively examines the vagal limb of the baroreflex. In comparison, there is limited information about the effect of microgravity on sympathetic function. A substantial proportion of subjects exposed to microgravity develop transient orthostatic intolerance. It has been proposed that alterations in baroreflex function play a role in the orthostatic intolerance induced by microgravity. The evidence in favor and against this hypothesis is reviewed.

  10. Powder agglomeration in a microgravity environment

    Science.gov (United States)

    Cawley, James D.

    1994-01-01

    This is the final report for NASA Grant NAG3-755 entitled 'Powder Agglomeration in a Microgravity Environment.' The research program included both two types of numerical models and two types of experiments. The numerical modeling included the use of Monte Carlo type simulations of agglomerate growth including hydrodynamic screening and molecular dynamics type simulations of the rearrangement of particles within an agglomerate under a gravitational field. Experiments included direct observation of the agglomeration of submicron alumina and indirect observation, using small angle light scattering, of the agglomeration of colloidal silica and aluminum monohydroxide. In the former class of experiments, the powders were constrained to move on a two-dimensional surface oriented to minimize the effect of gravity. In the latter, some experiments involved mixture of suspensions containing particles of opposite charge which resulted in agglomeration on a very short time scale relative to settling under gravity.

  11. Hyaluronidase allergy mimicking orbital cellulitis.

    Science.gov (United States)

    Raichura, Nirav D; Alam, Md Shahid; Jaichandran, V V; Mistry, Saurabh; Mukherjee, Bipasha

    2017-10-20

    Hyaluronidase enzyme is a common additive with local anesthetic agent to facilitate faster permeation of the anesthetic in periocular tissues during ophthalmic surgery. We report a series of five subjects presenting with clinical features mimicking orbital cellulitis following peribulbar anesthesia and consequently diagnosed with hyaluronidase hypersensitivity. The study was conducted at a tertiary eye care center in Southern India. It was a retrospective interventional case series. We retrospectively reviewed the case records of patients diagnosed as and treated for hyaluronidase allergy from 2011 to 2015. The presenting features included periocular edema, proptosis, and restriction of ocular movements. The symptoms appeared immediately after the injection to as late as 6 days after the surgery. All patients underwent comprehensive ophthalmic evaluation, relevant investigations, and dermal allergy tests. All five patients tested positive for hyaluronidase. Patients were treated with antihistaminics, systemic steroids, and emergency orbital decompression, when required. In majority of the patients, symptoms resolved in 3-5 days. Clinically, hyaluronidase allergy may mimic orbital cellulitis, which in the context of a recent intraocular surgery may be alarming for both the patient and the surgeon. However, with prompt intervention, the prognosis is extremely favorable in cases of hyaluronidase allergy. It is important for ophthalmic surgeons and anesthetists to recognize and differentiate this entity from the more serious vision threatening conditions.

  12. A New Mouse Model of Limb-Girdle Muscular Dystrophy Type 2I Homozygous for the Common L276I Mutation Mimicking the Mild Phenotype in Humans

    DEFF Research Database (Denmark)

    Krag, Thomas O; Vissing, John

    2015-01-01

    Limb-girdle muscular dystrophy type 2I (LGMD2I) is caused by mutations in the Fukutin-related protein (FKRP) gene, leading to inadequate glycosylation of α-dystroglycan, an important protein linking the extracellular matrix to the cytoskeleton. We created a mouse model of the common FKRP L276I...... mutation and a hemizygous FKRP L276I knockout model. We studied histopathology and protein expression in the models at different ages and found that homozygous FKRP L276I mice developed a mild progressive myopathy with increased muscle regeneration and fibrosis starting from 1 year of age. This was likely...... in maintaining proper glycosylation of α-dystroglycan. The mild progression in the homozygous FKRP L276I model resembles that in patients with LGMD2I who are homozygous for the L276I mutation. This animal model could, therefore, be relevant for understanding the pathophysiology of and developing a treatment...

  13. Turning toys into microgravity machines

    Science.gov (United States)

    Sumners, C.; Reiff, P.

    The Toys in Space program communicates the experience of being in space and ultimately living in space. In space, what would happen to a yo-yo's speed, a top's wobble, or your skill in playing soccer, throwing a boomerang or jumping rope? Discover how these toys and others have performed in microgravity and how these demonstrations can link children to the space program. On April 12, 1985 astronauts carried the first experiment package of miniature mechanical systems called toys into space. Since that time 54 toys have been demonstrated in microgravity. This summer, NASA and the Houston Museum of Natural Science have sponsored the first International Toys in Space project with sixteen toys chosen for their popularity and relevance around the world. This set of toys takes advantage of the larger Space Station by providing toys that take up more room - from two-person games of soccer, lacrosse, marbles, and hockey to a jump rope and several kinds of yoyos. Three earlier Toys in Space missions have shown that toys are ideal machines to demonstrate how gravity affects moving objects on the Earth's surface and how the motions of these objects change in microgravity. In this presentation, participants actually experiment with miniature versions of toys, predict their behavior on orbit, and watch the surprising results. Participants receive toy patterns to share with young people at home, around the world. The Toys in Space program scales for all ages. Young learners can use their observation and comparison skills while older students apply physics concepts to toy behaviors. Concepts demonstrated include all of Newton's Laws of Motion, gyroscopic stability, centripetal force, density, as well as conservation of linear and angular momentum.

  14. A Geology Sampling System for Microgravity Bodies

    Science.gov (United States)

    Hood, Anthony; Naids, Adam

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are been discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a microgravity body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  15. Effect of simulated microgravity on Aspergillus niger

    Science.gov (United States)

    Pratap, Jeffrey J.

    2005-08-01

    A rotating bioreactor was developed to simulate microgravity and its influence was studied on fungal growth. The reactor was designed to simulate microgravity using 'free fall' principle, which creates an apparent weightlessness for a brief period of time. In this experiment, a sealed vertically rotating tube is the reactor in which the cells are grown. For the first time vertically rotating tubes were used to obtain 'free fall' thereby simulating microgravity. Simulated microgravity served significant in the alteration of growth and productivity of Aspergillus niger, a common soil fungi. Two other sets of similar cultures were maintained as still and shake control cultures to compare with the growth and productivity of cells in rotating culture. It was found increased growth and productivity occurred in simulated microgravity. Since this experiment involves growth of cells in a liquid medium, the fluidic effects must also be studied which is a limitation.

  16. Embryogenic plant cells in microgravity

    Science.gov (United States)

    Krikorian, Abraham D.

    1991-01-01

    In view of circumstantial evidence for the role of gravity (g) in shaping the embryo environment, normal embryo development may not occur reliably and efficiently in the microgravity environment of space. Attention must accordingly be given to those aspects of higher plant reproductive biology in space environments required for the production of viable embryos in a 'seed to seed to seed' experiment. It is suggested that cultured cells can be grown to be morphogenetically competent, and can be evaluated as to their ability to simulate embryogenic events usually associated with fertilized eggs in the embryo sac of the ovule in the ovary.

  17. Measurement of guided mode wavenumbers in soft tissue-bone mimicking phantoms using ultrasonic axial transmission.

    Science.gov (United States)

    Chen, Jiangang; Foiret, Josquin; Minonzio, Jean-Gabriel; Talmant, Maryline; Su, Zhongqing; Cheng, Li; Laugier, Pascal

    2012-05-21

    Human soft tissue is an important factor that influences the assessment of human long bones using quantitative ultrasound techniques. To investigate such influence, a series of soft tissue-bone phantoms (a bone-mimicking plate coated with a layer of water, glycerol or silicon rubber) were ultrasonically investigated using a probe with multi-emitter and multi-receiver arrays in an axial transmission configuration. A singular value decomposition signal processing technique was applied to extract the frequency-dependent wavenumbers of several guided modes. The results indicate that the presence of a soft tissue-mimicking layer introduces additional guided modes predicted by a fluid waveguide model. The modes propagating in the bone-mimicking plate covered by the soft-tissue phantom are only slightly modified compared to their counterparts in the free bone-mimicking plate, and they are still predicted by an elastic transverse isotropic two-dimensional waveguide. Altogether these observations suggest that the soft tissue-bone phantoms can be modeled as two independent waveguides. Even in the presence of the overlying soft tissue-mimicking layer, the modes propagating in the bone-mimicking plate can still be extracted and identified. These results suggest that our approach can be applied for the purpose of the characterization of the material and structural properties of cortical bone.

  18. Screening of different stress factors and development of growth/no growth models for Zygosaccharomyces rouxii in modified Sabouraud medium, mimicking intermediate moisture foods (IMF).

    Science.gov (United States)

    Vermeulen, A; Daelman, J; Van Steenkiste, J; Devlieghere, F

    2012-12-01

    The microbial stability of intermediate moisture foods (IMF) is linked with the possible growth of osmophilic yeast and xerophilic moulds. As most of these products have a long shelf life the assessment of the microbial stability is often an important hurdle in product innovation. In this study a screening of several Zygosaccharomyces rouxii strains towards individual stress factors was performed and growth/no growth models were developed, incorporating a(w), pH, acetic acid and ethanol concentrations. These stress factors are important for sweet IMF such as chocolate fillings, ganache, marzipan, etc. A comparison was made between a logistic regression model with and without the incorporation of time as an explanatory variable. Next to the model development, a screening of the effect of chemical preservatives (sorbate and benzoate) was performed, in combination with relevant stress factors within the experimental design of the model. The results of the study showed that the influence of the investigated environmental stress factors on the growth/no growth boundary of Z. rouxii is the most significant in the first 30-40 days of incubation. Incorporating time as an explanatory variable in the model had the advantage that the growth/no growth boundary could be predicted at each time between 0 and 60 days of incubation at 22 °C. However, the growth/no growth boundary enlarged significantly leading to a less accurate prediction on the growth probability of Z. rouxii. The developed models can be a useful tool for product developers of sweet IMF. Screening with chemical preservatives revealed that benzoic acid was much less active towards Z. rouxii than sorbic acid or a mixture of both acids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Establishment of a Human Blood-Brain Barrier Co-culture Model Mimicking the Neurovascular Unit Using Induced Pluri- and Multipotent Stem Cells.

    Science.gov (United States)

    Appelt-Menzel, Antje; Cubukova, Alevtina; Günther, Katharina; Edenhofer, Frank; Piontek, Jörg; Krause, Gerd; Stüber, Tanja; Walles, Heike; Neuhaus, Winfried; Metzger, Marco

    2017-04-11

    In vitro models of the human blood-brain barrier (BBB) are highly desirable for drug development. This study aims to analyze a set of ten different BBB culture models based on primary cells, human induced pluripotent stem cells (hiPSCs), and multipotent fetal neural stem cells (fNSCs). We systematically investigated the impact of astrocytes, pericytes, and NSCs on hiPSC-derived BBB endothelial cell function and gene expression. The quadruple culture models, based on these four cell types, achieved BBB characteristics including transendothelial electrical resistance (TEER) up to 2,500 Ω cm 2 and distinct upregulation of typical BBB genes. A complex in vivo-like tight junction (TJ) network was detected by freeze-fracture and transmission electron microscopy. Treatment with claudin-specific TJ modulators caused TEER decrease, confirming the relevant role of claudin subtypes for paracellular tightness. Drug permeability tests with reference substances were performed and confirmed the suitability of the models for drug transport studies. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Microgravity Turbulent Gas-Jet Diffusion Flames

    Science.gov (United States)

    1996-01-01

    A gas-jet diffusion flame is similar to the flame on a Bunsen burner, where a gaseous fuel (e.g., propane) flows from a nozzle into an oxygen-containing atmosphere (e.g., air). The difference is that a Bunsen burner allows for (partial) premixing of the fuel and the air, whereas a diffusion flame is not premixed and gets its oxygen (principally) by diffusion from the atmosphere around the flame. Simple gas-jet diffusion flames are often used for combustion studies because they embody the mechanisms operating in accidental fires and in practical combustion systems. However, most practical combustion is turbulent (i.e., with random flow vortices), which enhances the fuel/air mixing. These turbulent flames are not well understood because their random and transient nature complicates analysis. Normal gravity studies of turbulence in gas-jet diffusion flames can be impeded by buoyancy-induced instabilities. These gravitycaused instabilities, which are evident in the flickering of a candle flame in normal gravity, interfere with the study of turbulent gas-jet diffusion flames. By conducting experiments in microgravity, where buoyant instabilities are avoided, we at the NASA Lewis Research Center hope to improve our understanding of turbulent combustion. Ultimately, this could lead to improvements in combustor design, yielding higher efficiency and lower pollutant emissions. Gas-jet diffusion flames are often researched as model flames, because they embody mechanisms operating in both accidental fires and practical combustion systems (see the first figure). In normal gravity laboratory research, buoyant air flows, which are often negligible in practical situations, dominate the heat and mass transfer processes. Microgravity research studies, however, are not constrained by buoyant air flows, and new, unique information on the behavior of gas-jet diffusion flames has been obtained.

  1. Integration Analysis of MicroRNA and mRNA Expression Profiles in Human Peripheral Blood Lymphocytes Cultured in Modeled Microgravity

    Directory of Open Access Journals (Sweden)

    C. Girardi

    2014-01-01

    Full Text Available We analyzed miRNA and mRNA expression profiles in human peripheral blood lymphocytes (PBLs incubated in microgravity condition, simulated by a ground-based rotating wall vessel (RWV bioreactor. Our results show that 42 miRNAs were differentially expressed in MMG-incubated PBLs compared with 1 g incubated ones. Among these, miR-9-5p, miR-9-3p, miR-155-5p, miR-150-3p, and miR-378-3p were the most dysregulated. To improve the detection of functional miRNA-mRNA pairs, we performed gene expression profiles on the same samples assayed for miRNA profiling and we integrated miRNA and mRNA expression data. The functional classification of miRNA-correlated genes evidenced significant enrichment in the biological processes of immune/inflammatory response, signal transduction, regulation of response to stress, regulation of programmed cell death, and regulation of cell proliferation. We identified the correlation of miR-9-3p, miR-155-5p, miR-150-3p, and miR-378-3p expression with that of genes involved in immune/inflammatory response (e.g., IFNG and IL17F, apoptosis (e.g., PDCD4 and PTEN, and cell proliferation (e.g., NKX3-1 and GADD45A. Experimental assays of cell viability and apoptosis induction validated the results obtained by bioinformatics analyses demonstrating that in human PBLs the exposure to reduced gravitational force increases the frequency of apoptosis and decreases cell proliferation.

  2. Comparative inhibitory effects of Thymus vulgaris L. essential oil against Staphylococcus aureus, Listeria monocytogenes and mesophilic starter co-culture in cheese-mimicking models.

    Science.gov (United States)

    de Carvalho, Rayssa Julliane; de Souza, Geanny Targino; Honório, Vanessa Gonçalves; de Sousa, Jossana Pereira; da Conceição, Maria Lúcia; Maganani, Marciane; de Souza, Evandro Leite

    2015-12-01

    In the present study, we assessed the effects of Thymus vulgaris L. essential oil (TVEO) on Staphylococcus aureus and Listeria monocytogenes, pathogenic bacteria frequently associated with fresh or low-ripened cheeses (e.g., Brazilian coalho cheese), and on a starter co-culture comprising Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris, which are commonly used for the production of different cheeses. To measure these effects, we determined the minimum inhibitory concentration (MIC) and assessed bacterial cell viability over time in (coalho) cheese-based broth and in a semi-solid (coalho) cheese model at 10 °C. The MIC for TVEO was 2.5 μL/mL against S. aureus and L. monocytogenes, while the MIC was 1.25 μL/mL against the starter co-culture. The TVEO (5 and 2.5 μL/mL) sharply reduced the viable counts of all assayed bacteria in cheese broth over 24 h; although, at 5 μL/mL, TVEO more severely affected the viability of the starter co-culture compared with pathogenic bacteria. The addition of 1.25 μL/g of TVEO in the semi-solid cheese model did not reduce the viable counts of all assayed bacteria. At 2.5 μL/g, TVEO slightly decreased the viable counts of S. aureus, L. monocytogenes and Lactococcus spp. in the semi-solid cheese model over 72 h. The final counts of Lactococcus spp. in a semi-solid cheese model containing 2.5 μL/mL TVEO were lower than those of pathogenic bacteria under the same conditions. These results suggest that the doses of TVEO used to control pathogenic bacteria in fermented dairy products, especially in low-ripened cheeses, should be cautiously considered for potential negative effects on the growth and survival of starter cultures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of Temperature-Sensitive Poloxamer Solution/Gel Material on Pericardial Adhesion Prevention: Supine Rabbit Model Study Mimicking Cardiac Surgery.

    Directory of Open Access Journals (Sweden)

    Hyun Kang

    Full Text Available We investigated the mobility of a temperature-sensitive poloxamer/Alginate/CaCl2 mixture (PACM in relation to gravity and cardiac motion and the efficacy of PACM on the prevention of pericardial adhesion in a supine rabbit model.A total of 50 rabbits were randomly divided into two groups according to materials applied after epicardial abrasion: PACM and dye mixture (group PD; n = 25 and saline as the control group (group CO; n = 25. In group PD, rabbits were maintained in a supine position with appropriate sedation, and location of mixture of PACM and dye was assessed by CT scan at the immediate postoperative period and 12 hours after surgery. The grade of adhesions was evaluated macroscopically and microscopically two weeks after surgery.In group PD, enhancement was localized in the anterior pericardial space, where PACM and dye mixture was applied, on immediate post-surgical CT scans. However, the volume of the enhancement was significantly decreased at the anterior pericardial space 12 hours later (P < .001. Two weeks after surgery, group PD had significantly lower macroscopic adhesion score (P = .002 and fibrosis score (P = .018 than did group CO. Inflammation score and expression of anti-macrophage antibody in group PD were lower than those in group CO, although the differences were not significant.In a supine rabbit model study, the anti-adhesion effect was maintained at the area of PACM application, although PACM shifted with gravity and heart motion. For more potent pericardial adhesion prevention, further research and development on the maintenance of anti-adhesion material position are required.

  4. Interaction of a peptide derived from C-terminus of human TRPA1 channel with model membranes mimicking the inner leaflet of the plasma membrane.

    Science.gov (United States)

    Witschas, Katja; Jobin, Marie-Lise; Korkut, Dursun Nizam; Vladan, Maria Magdalena; Salgado, Gilmar; Lecomte, Sophie; Vlachova, Viktorie; Alves, Isabel D

    2015-05-01

    The transient receptor potential ankyrin 1 channel (TRPA1) belongs to the TRP cation channel superfamily that responds to a panoply of stimuli such as changes in temperature, calcium levels, reactive oxygen and nitrogen species and lipid mediators among others. The TRP superfamily has been implicated in diverse pathological states including neurodegenerative disorders, kidney diseases, inflammation, pain and cancer. The intracellular C-terminus is an important regulator of TRP channel activity. Studies with this and other TRP superfamily members have shown that the C-terminus association with lipid bilayer alters channel sensitivity and activation, especially interactions occurring through basic residues. Nevertheless, it is not yet clear how this process takes place and which regions in the C-terminus would be responsible for such membrane recognition. With that in mind, herein the first putative membrane interacting region of the C-terminus of human TRPA1, (corresponding to a 29 residue peptide, IAEVQKHASLKRIAMQVELHTSLEKKLPL) named H1 due to its potential helical character was chosen for studies of membrane interaction. The affinity of H1 to lipid membranes, H1 structural changes occurring upon this interaction as well as effects of this interaction in lipid organization and integrity were investigated using a biophysical approach. Lipid models systems composed of zwitterionic and anionic lipids, namely those present in the lipid membrane inner leaflet, where H1 is prone to interact, where used. The study reveals a strong interaction and affinity of H1 as well as peptide structuration especially with membranes containing anionic lipids. Moreover, the interactions and peptide structure adoption are headgroup specific. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Low-level red LED light inhibits hyperkeratinization and inflammation induced by unsaturated fatty acid in an in vitro model mimicking acne.

    Science.gov (United States)

    Li, Wen-Hwa; Fassih, Ali; Binner, Curt; Parsa, Ramine; Southall, Michael D

    2018-02-01

    Acne vulgaris is a chronic inflammatory disease of the pilosebaceous units (PSU), associated with increased sebum production, abnormal follicular keratinization (hyperkeratinization), follicular overgrowth of Propionibacterium acnes (P. acnes), and increased inflammatory mediator release. Light therapy has attracted medical interests as a safe alternative treatment for acne. Both blue and red light therapies at high doses >10 J/cm 2 have demonstrated marked effects on inflammatory acne lesions. However, few studies have investigated the effects of lower doses of light. The aim of this study is to investigate the biological effects of lower doses of red light at 0.2-1.2 J/cm 2 for acne using an in vitro model previously developed to mimic the inflammation and hyperkeratinization observed clinically in acne. Human epidermal equivalents were topically exposed to an unsaturated fatty acid, oleic acid (OA), followed by red light-emitting diode (LED) light treatments (light-plus-OA treatments). Endpoints evaluated included the proinflammatory cytokine IL-1α, epidermal barrier integrity, as measured by transepithelial electrical resistance (TEER), and stratum corneum (SC) thickness to monitor hyperkeratinization. OA-induced IL-1α release was significantly (P LED light at 0.2, 0.5, and 1.2 J/cm 2 , from 266 ± 11 pg/ml of no-light-plus-OA-treated (OA treatment without light) controls to 216 ± 9, 231 ± 8, and 212 ± 7 pg/ml, respectively. Histological examination showed that SC thickening following OA treatment was reduced from 43% of total epidermis for no-light-plus-OA treatment to 37% and 38% of total epidermis following 0.5 and 1.1 J/cm 2 red light plus OA treatment, respectively (P light-plus-OA treatment improved OA-induced TEER changes from 29% of baseline for no-light-plus-OA treatment, to 36% of baseline. Low level red LED light therapy could provide beneficial effects of anti-inflammation, normalizing pilosebaceous

  6. Technique for Performing Lumbar Puncture in Microgravity Using Portable Radiography.

    Science.gov (United States)

    Lerner, David J; Parmet, Allen J; Don, Steven; Shimony, Joshua S; Goyal, Manu S

    2016-08-01

    Visual Impairment and Intracranial Pressure Syndrome (VIIP) has caused symptomatology during and after long duration missions on the International Space Station (ISS). Only indirect measurements of intracranial pressure (ICP), such as ultrasound, have been performed on ISS. Discussion and interest has happened at NASA about performing lumbar puncture (LP) in microgravity. Only the "blind" palpation approach and the ultrasound-assisted approach have been discussed. This article, as proof of concept, discusses the possibility of portable radiography to assist lumbar punctures in microgravity. An anthropomorphic radiological phantom of an adult lumbar spine was made containing a fluid-filled space in the spinal canal with a latex membrane which simulated the dural sac and cerebrospinal fluid. A portable direct-digital radiography system with wireless transmitting image receptor and screen was used to perform image-guided lumbar puncture. Using the same equipment and technique, this procedure was then performed on a cadaver for final proof of concept. Technical success was achieved in all approaches on the first try without needle redirection. There was no difference between the cadaver model and the phantom model in terms of difficulty in reaching the fluid space or visually confirming needle location. Portable radiography via proof of concept has the potential to guide lumbar puncture while minimizing volume and mass of equipment. This could be ideal for assisting in performing lumbar puncture in microgravity, as this is the standard of care on Earth for difficult or failed "blind" lumbar punctures. Lerner DJ, Parmet AJ, Don S, Shimony JS, Goyal MS. Technique for performing lumbar puncture in microgravity using portable radiography. Aerosp Med Hum Perform. 2016; 87(8):745-747.

  7. Action of microgravity on root development

    Data.gov (United States)

    National Aeronautics and Space Administration — Arabidopsis were grown on horizontal or vertical clinostat for 4 8 or 12 days. Seedlings on horizontal clinostat were in simulated microgravity and seedlings on...

  8. Microgravity Effects on Yersinia Pestis Virulence

    Science.gov (United States)

    Lawal, A.; Abogunde, O.; Jejelowo, O.; Rosenzweig, J.-A.

    2010-04-01

    Microgravity effects on Yersinia pestis proliferation, cold growth, and type three secretion system function were evaluated in macrophage cell infections, HeLa cell infections, and cold growth plate assays.

  9. Isolated ovarian tuberculosis mimicking ovarian carcinoma: Case ...

    African Journals Online (AJOL)

    Although genitourinary tuberculosis is common, reports of isolated ovarian tuberculosis are rare. However, its presentation can mimick that of an ovarian tumour, leading to diagnostic difficulties. A woman of 17 years presented with chronic pelvic pain, weight loss, a right ovarian mass on ultrasound, and a significantly ...

  10. Uncomplicated bifid Meckle's diverticulum mimicking recurrent ...

    African Journals Online (AJOL)

    It was excised with V shaped ileal wall. Histopathology showed features of Meckel's diverticulum without any Gastric or pancreatic tissue in mucosa. Clinicians should be wary of a bifid meckel's diverticulum as a very rare anomaly that can be symptomatic mimicking appendicitis. Keywords: Bifid, Meckel's, Diverticulitis ...

  11. Right paratesticular abscess mimicking neonatal testicular torsion ...

    African Journals Online (AJOL)

    U.O. Ezomike

    Right paratesticular abscess mimicking neonatal testicular torsion and caused by Proteus mirabilis. U.O. Ezomikea,∗. , M.A. Ituena, S.C. Ekpemoa, S.O. Ekenzeb a Department of Surgery, Federal Medical Centre Umuahia, Abia State, Nigeria b Sub-Department of Pediatric Surgery, University of Nigeria Teaching Hospital, ...

  12. Acute dystonia mimicking angioedema of the tongue

    DEFF Research Database (Denmark)

    Rasmussen, Eva Rye; Pallesen, Kristine A U; Bygum, Anette

    2013-01-01

    We report a case of acute dystonia of the face, jaw and tongue caused by metoclopramide and mimicking angioedema. The patient had attacks for several years before the correct diagnosis was made and we present the first ever published video footage of an attack. This adverse drug reaction is known...

  13. Peripancreatic fat necrosis mimicking pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Thurnher, M.M.; Schima, W.; Turetschek, K.; Thurnher, S.A. [Vienna Univ. (Austria). Inst. fuer Radiologie; Fuegger, R. [Dept. of Surgery, University of Vienna (Austria); Oberhuber, G. [Dept. of Pathology, University of Vienna (Austria)

    2001-06-01

    A case of peripancreatic fat necrosis, after an episode of acute pancreatitis, which mimicked pancreatic cancer with lymph node metastases, is presented. We describe the imaging findings with helical CT scanning and with unenhanced and mangafodipir-enhanced MR imaging, with special emphasis on the differential diagnoses. (orig.)

  14. Iliacus Abscess with Radiculopathy Mimicking Herniated Nucleus ...

    African Journals Online (AJOL)

    2016-05-02

    May 2, 2016 ... radiculopathy mimicking herniated nucleus pulposus: Aadditional diagnostic value of magnetic resonance imaging. Niger J Clin Pract. 2017;20:392-3. This is an open access article distributed under the terms of the Creative Commons. Attribution-Non Commercial-Share Alike 3.0 License, which allows ...

  15. Field experiment for investigation of very shallow basement structure by micro-gravity survey; Microgravity tansa no gokusenbu kiban chosa eno tekiyo jikken

    Energy Technology Data Exchange (ETDEWEB)

    Oshita, K.; Nozaki, K. [OYO Corp., Tokyo (Japan)

    1997-10-22

    This paper illustrates the field experiment results in which micro-gravity survey was applied to investigation of very shallow basement structure between a few m and 10 m. Its applicability was discussed. In principle, the micro-gravity survey was conducted at the measuring points in a grid with 20 m pitch. Measuring points of 174 were used. The gravity system used for the measurements is an automatic gravimeter CG-3M made by the Scintrex. Survey results of P-wave reflection method conducted at the site using a vibrator focus were used as control data of micro-gravity survey. Consequently, change in the thickness of surface layer (earth filling) shallower than the depth of -10 m could be grasped as a plane. It was found that the micro-gravity survey is a useful method for the investigation of very shallow basement structure. Survey results by the reflection method could contribute to the determination of trend face at filtration and construction of density model as well as the geologic interpretation of gravity anomaly. As a result, reliability of micro-gravity survey and reflection method could be enhanced, mutually. 3 refs., 8 figs.

  16. Spacelab J: Microgravity and life sciences

    Science.gov (United States)

    Spacelab J is a joint venture between NASA and the National Space Development Agency of Japan (NASDA). Using a Spacelab pressurized long module, 43 experiments will be performed in the areas of microgravity and life sciences. These experiments benefit from the microgravity environment available on an orbiting Shuttle. Removed from the effects of gravity, scientists will seek to observe processes and phenomena impossible to study on Earth, to develop new and more uniform mixtures, to study the effects of microgravity and the space environment on living organisms, and to explore the suitability of microgravity for certain types of research. Mission planning and an overview of the experiments to be performed are presented. Orbital research appears to hold many advantages for microgravity science investigations, which on this mission include electronic materials, metals and alloys, glasses and ceramics, fluid dynamics and transport phenomena, and biotechnology. Gravity-induced effects are eliminated in microgravity. This allows the investigations on Spacelab J to help scientists develop a better understanding of how these gravity-induced phenomena affect both processing and products on Earth and to observe subtle phenomena that are masked in gravity. The data and samples from these investigations will not only allow scientists to better understand the materials but also will lead to improvements in the methods used in future experiments. Life sciences research will collect data on human adaptation to the microgravity environment, investigate ways of assisting astronauts to readapt to normal gravity, explore the effects of microgravity and radiation on living organisms, and gather data on the fertilization and development of organisms in the absence of gravity. This research will improve crew comfort and safety on future missions while helping scientists to further understand the human body.

  17. Sensorimotor adaptations to microgravity in humans

    Science.gov (United States)

    Edgerton, V. R.; McCall, G. E.; Hodgson, J. A.; Gotto, J.; Goulet, C.; Fleischmann, K.; Roy, R. R.

    2001-01-01

    contractions of agonists and antagonists when attempting to maintain constant torques at a given level of MVC. Also, the chronic levels of EMG activity in selected ankle flexor and extensor muscles during space flight and during routine activities on Earth were recorded. Compared with pre- and post-flight values, there was a marked increase in the total EMG activity of the TA and the Sol and no change in the MG EMG activity in-flight. These data indicate that space flight, as occurs on shuttle missions, is a model of elevated activation of both flexor and extensor muscles, probably reflecting the effects of programmed work schedules in flight rather than a direct effect of microgravity.

  18. The time course of altered brain activity during 7-day simulated microgravity

    Directory of Open Access Journals (Sweden)

    Yang eLiao

    2015-05-01

    Full Text Available Microgravity causes multiple changes in physical and mental levels in humans, which can induce performance deficiency among astronauts. Studying the variations in brain activity that occur during microgravity would help astronauts to deal with these changes. In the current study, resting-state functional magnetic resonance imaging (rs-fMRI was used to observe the variations in brain activity during a 7-day head down tilt (HDT bed rest, which is a common and reliable model for simulated microgravity. The amplitudes of low frequency fluctuation (ALFF of twenty subjects were recorded pre-head down tilt (pre-HDT, during a bed rest period (HDT0, and then each day in the HDT period (HDT1–HDT7. One-way analysis of variance of the ALFF values over these 8 days was used to test the variation across time period (P<0.05, corrected. Compared to HDT0, subjects presented lower ALFF values in the posterior cingulate cortex and higher ALFF values in the anterior cingulate cortex during the HDT period, which may partially account for the lack of cognitive flexibility and alterations in autonomic nervous system seen among astronauts in microgravity. Additionally, the observed improvement in function in CPL during the HDT period may play a compensatory role to the functional decline in the paracentral lobule to sustain normal levels of fine motor control for astronauts in a microgravity environment. Above all, those floating brain activities during 7 days of simulated microgravity may indicate that the brain self-adapts to help astronauts adjust to the multiple negative stressors encountered in a microgravity environment.

  19. Containerless experiments in fluid physics in microgravity

    Science.gov (United States)

    Trinh, E. H.

    1990-01-01

    The physical phenomena associated with the behavior of liquid samples freely suspended in low gravity must be thoroughly understood prior to undertaking detailed scientific studies of the materials under scrutiny. The characteristics of molten specimens under the action of containerless positioning stresses must be identified and separated from the specific phenomena relating to the absence of an overwhelming gravitational field. The strategy designed to optimize the scientific return of reliable experimental data from infrequent microgravity investigations should include the gradual and logical phasing of more sophisticated studies building on the accumulated results from previous flight experiments. Lower temperature fluid physics experiments using model materials can provide a great deal of information that can be useful in analyzing the behavior of high temperature melts. The phasing of the experimental capabilities should, therefore, also include a gradual build-up of more intricate and specialized diagnostic instrumentation and environmental control and monitoring capabilities. Basic physical investigations should also be distinguished from specific materials technology issues. The latter investigations require very specific high temperature (and high vacuum) devices that must be thoroughly mastered on the ground prior to implementing them in space.

  20. A hydroponic system for microgravity plant experiments

    Science.gov (United States)

    Wright, B. D.; Bausch, W. C.; Knott, W. M.

    1988-01-01

    The construction of a permanently manned space station will provide the opportunity to grow plants for weeks or months in orbit for experiments or food production. With this opportunity comes the need for a method to provide plants with a continuous supply of water and nutrients in microgravity. The Capillary Effect Root Environment System (CERES) uses capillary forces to maintain control of circulating plant nutrient solution in the weightless environment of an orbiting spacecraft. The nutrient solution is maintained at a pressure slightly less than the ambient air pressure while it flows on one side of a porous membrane. The root, on the other side of the membrane, is surrounded by a thin film of nutrient solution where it contacts the moist surface of the membrane. The root is provided with water, nutrients and air simultaneously. Air bubbles in the nutrient solution are removed using a hydrophobic/hydrophilic membrane system. A model scaled to the size necessary for flight hardware to test CERES in the space shuttle was constructed.

  1. Intracranial capillary hemangioma mimicking a dissociative disorder

    Directory of Open Access Journals (Sweden)

    Alexander Lacasse

    2012-01-01

    Full Text Available Capillary hemangiomas, hamartomatous proliferation of vascular endothelial cells, are rare in the central nervous system (CNS. Intracranial capillary hemangiomas presenting with reversible behavioral abnormalities and focal neurological deficits have rarely been reported. We report a case of CNS capillary hemangioma presenting with transient focal neurological deficits and behavioral abnormalities mimicking Ganser’s syndrome. Patient underwent total excision of the vascular malformation, resulting in complete resolution of his symptoms.

  2. Giant chondroid syringoma radiologically mimicking malignancy

    Directory of Open Access Journals (Sweden)

    Belkiz Uyar

    2013-01-01

    Full Text Available Chondroid syringoma, or mixed tumor of skin, is a relatively rare, usually benign sweat gland tumor, most often seen in the head-and-neck region. Rare malignant examples have been reported, commonly involving the extremities. We report here a case radiologically mimicking a malignant neoplasm, but histologically-proven benign subcutaneous chondroid syringoma, arising in the anterior aspect of the upper thigh of a 59-year-old male.

  3. Hydroxychloroquine-Associated Hyperpigmentation Mimicking Elder Abuse

    OpenAIRE

    Cohen, Philip R.

    2013-01-01

    Background Hydroxychloroquine may result in cutaneous dyschromia. Older individuals who are the victims of elder abuse can present with bruising and resolving ecchymoses. Purpose The features of hydroxychloroquine-associated hyperpigmentation are described, the mucosal and skin manifestations of elder abuse are reviewed, and the mucocutaneous mimickers of elder abuse are summarized. Case Report An elderly woman being treated with hydroxychloroquine for systemic lupus erythematosus developed d...

  4. Synergistic effects of microgravity and space radiation (Nimblegen)

    Data.gov (United States)

    National Aeronautics and Space Administration — Space radiations and microgravity both could cause DNA damage in cells but the effects of microgravity on DNA damage response to space radiations are still...

  5. Photochromic crystalline systems mimicking bio-functions.

    Science.gov (United States)

    Uchida, Kingo; Nishimura, Ryo; Hatano, Eri; Mayama, Hiroyuki; Yokojima, Satoshi

    2018-01-31

    Photoresponsive crystalline systems mimicking bio-functions are prepared using photochromic diarylethenes. Upon UV irradiation to a diarylethene crystal, the self-aggregated and needle-shaped crystals of photogenerated colored closed-ring isomer were generated on the surface. The rough surface showed the superhydrophobic lotus effect. By controlling the heating procedures, UV irradiation processes, and molecular structural modification, rose-petal effects of wetting, anti-reflective moth eye effect, and double-roughness structure mimicking the surface of lotus leaf were observed. By changing the molecular structure, superhydrophilic surface mimicking snail shell was photogenerated. We also found a derivative to form hollow crystals by sublimation. The crystals showed photosalient effect and the photo-response similar to impatiens was observed after small beads were packed in the hollow. These photoresponsive functions are unique, and they demonstrate a macroscopic response by assembling microscopic molecular movement of light. In the future, such a molecular assembly system will be a promising candidate for fabricating photoresponsive architectures and soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Control of the Onboard Microgravity Environment and Extension of the Service Life of the Long-Term Space Station

    Science.gov (United States)

    Titov, V. A.

    2018-03-01

    The problem of control of the on-board microgravity environment in order to extend the service life of the long-term space station has been discussed. Software developed for the ISS and the results of identifying dynamic models and external impacts based on telemetry data have been presented. Proposals for controlling the onboard microgravity environment for future long-term space stations have been formulated.

  7. Kennedy Educate to Innovate (KETI) Microgravity Powerpoint Presentation

    Science.gov (United States)

    2011-01-01

    The purpose of this presentation is to define and explain microgravity and show how microgravity can help students learn about the phenomena of the world. The presentation is designed to provide teachers of science, technology, engineering, and mathematics at many levels with a foundation in microgravity science and applications.

  8. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    Science.gov (United States)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  9. Actin dynamics in mouse fibroblasts in microgravity

    Science.gov (United States)

    Moes, Maarten J. A.; Bijvelt, Jose J.; Boonstra, Johannes

    2007-09-01

    After stimulating with the growth factor PDGF, cells exhibit abundant membrane ruffling and other morphological changes under normal gravity conditions. These morphological changes are largely determined by the actin microfilament system. Now these actin dynamics were studied under microgravity conditions in mouse fibroblasts during the DELTA mission. The aim of the present study was to describe the actin morphology in detail, to establish the effect of PDGF on actin morphology and to study the role of several actin-interacting proteins involved in introduced actin dynamics in microgravity. Identical experiments were conducted at 1G on earth as a reference. No results in microgravity were obtained due to a combination of malfunctioning hardware and unfulfilled temperature requirements.

  10. Neurology of microgravity and space travel

    Science.gov (United States)

    Fujii, M. D.; Patten, B. M.

    1992-01-01

    Exposure to microgravity and space travel produce several neurologic changes, including SAS, ataxia, postural disturbances, perceptual illusions, neuromuscular weakness, and fatigue. Inflight SAS, perceptual illusions, and ocular changes are of more importance. After landing, however, ataxia, perceptual illusions, neuromuscular weakness, and fatigue play greater roles in astronaut health and readaptation to a terrestrial environment. Cardiovascular adjustments to microgravity, bone demineralization, and possible decompression sickness and excessive radiation exposure contribute further to medical problems of astronauts in space. A better understanding of the mechanisms by which microgravity adversely affects the nervous system and more effective treatments will provide healthier, happier, and longer stays in space on the space station Freedom and during the mission to Mars.

  11. How cells (might) sense microgravity

    Science.gov (United States)

    Ingber, D.

    1999-01-01

    This article is a summary of a lecture presented at an ESA/NASA Workshop on Cell and Molecular Biology Research in Space that convened in Leuven, Belgium, in June 1998. Recent studies are reviewed which suggest that cells may sense mechanical stresses, including those due to gravity, through changes in the balance of forces that are transmitted across transmembrane adhesion receptors that link the cytoskeleton to the extracellular matrix and to other cells (e.g., integrins, cadherins, selectins). The mechanism by which these mechanical signals are transduced and converted into a biochemical response appears to be based, in part, on the finding that living cells use a tension-dependent form of architecture, known as tensegrity, to organize and stabilize their cytoskeleton. Because of tensegrity, the cellular response to stress differs depending on the level of pre-stress (pre-existing tension) in the cytoskeleton and it involves all three cytoskeletal filament systems as well as nuclear scaffolds. Recent studies confirm that alterations in the cellular force balance can influence intracellular biochemistry within focal adhesion complexes that form at the site of integrin binding as well as gene expression in the nucleus. These results suggest that gravity sensation may not result from direct activation of any single gravioreceptor molecule. Instead, gravitational forces may be experienced by individual cells in the living organism as a result of stress-dependent changes in cell, tissue, or organ structure that, in turn, alter extracellular matrix mechanics, cell shape, cytoskeletal organization, or internal pre-stress in the cell-tissue matrix.--Ingber, D. How cells (might) sense microgravity.

  12. The effects of modeled microgravity on growth kinetics, antibiotic susceptibility, cold growth, and the virulence potential of a Yersinia pestis ymoA-deficient mutant and its isogenic parental strain.

    Science.gov (United States)

    Lawal, Abidat; Kirtley, Michelle L; van Lier, Christina J; Erova, Tatiana E; Kozlova, Elena V; Sha, Jian; Chopra, Ashok K; Rosenzweig, Jason A

    2013-09-01

    Previously, we reported that there was no enhancement in the virulence potential (as measured by cell culture infections) of the bacterial pathogen Yersinia pestis (YP) following modeled microgravity/clinorotation growth. We have now further characterized the effects of clinorotation (CR) on YP growth kinetics, antibiotic sensitivity, cold growth, and YP's virulence potential in a murine model of infection. Surprisingly, none of the aforementioned phenotypes were altered. To better understand why CR did not enhance YP's virulence potential as it did for other bacterial pathogens, a YP ΔymoA isogenic mutant in the KIM/D27 background strain that is unable to produce the histone-like YmoA protein and influences DNA topography was used in both cell culture and murine models of infection. YmoA represses type three secretion system (T3SS) virulence gene expression in the yersiniae. Similar to our CR-grown parental YP strain data, the CR-grown ΔymoA mutant induced reduced HeLa cell cytotoxicity with concomitantly decreased Yersinia outer protein E (YopE) and low calcium response V (LcrV) antigen production and secretion. Important, however, were our findings that, although no significant differences were observed in survival of mice infected intraperitoneally with either normal gravity (NG)- or CR-grown parental YP, the ΔymoA mutant induced significantly more mortality in infected mice than did the parental strain following CR growth. Taken together, our data demonstrate that CR did enhance the virulence potential of the YP ΔymoA mutant in a murine infection model (relative to the CR-grown parental strain), despite inducing less HeLa cell rounding in our cell culture infection assay due to reduced T3SS activity. Therefore, CR, which induces a unique type of bacterial stress, might be enhancing YP's virulence potential in vivo through a T3SS-independent mechanism when the histone-like YmoA protein is absent.

  13. The Influence of Microgravity on Plants

    Science.gov (United States)

    Levine, Howard G.

    2010-01-01

    This slide presentation reviews the studies and the use of plants in various space exploration scenarios. The current state of research on plant growth in microgravity is reviewed, with several questions that require research for answers to assist in our fundamental understanding of the influence of microgravity and the space environment on plant growth. These questions are posed to future Principal Investigators and Payload Developers, attending the meeting, in part, to inform them of NASA's interest in proposals for research on the International Space Station.

  14. Technology Thresholds for Microgravity: Status and Prospects

    Science.gov (United States)

    Noever, D. A.

    1996-01-01

    The technological and economic thresholds for microgravity space research are estimated in materials science and biotechnology. In the 1990s, the improvement of materials processing has been identified as a national scientific priority, particularly for stimulating entrepreneurship. The substantial US investment at stake in these critical technologies includes six broad categories: aerospace, transportation, health care, information, energy, and the environment. Microgravity space research addresses key technologies in each area. The viability of selected space-related industries is critically evaluated and a market share philosophy is developed, namely that incremental improvements in a large markets efficiency is a tangible reward from space-based research.

  15. Lab-On-Chip Clinorotation System for Live-Cell Microscopy Under Simulated Microgravity

    Science.gov (United States)

    Yew, Alvin G.; Atencia, Javier; Chinn, Ben; Hsieh, Adam H.

    2013-01-01

    Cells in microgravity are subject to mechanical unloading and changes to the surrounding chemical environment. How these factors jointly influence cellular function is not well understood. We can investigate their role using ground-based analogues to spaceflight, where mechanical unloading is simulated through the time-averaged nullification of gravity. The prevailing method for cellular microgravity simulation is to use fluid-filled containers called clinostats. However, conventional clinostats are not designed for temporally tracking cell response, nor are they able to establish dynamic fluid environments. To address these needs, we developed a Clinorotation Time-lapse Microscopy (CTM) system that accommodates lab-on- chip cell culture devices for visualizing time-dependent alterations to cellular behavior. For the purpose of demonstrating CTM, we present preliminary results showing time-dependent differences in cell area between human mesenchymal stem cells (hMSCs) under modeled microgravity and normal gravity.

  16. Numerical modeling of annular laminar film condensation in circular and non-circular micro-channels under normal and micro-gravity

    International Nuclear Information System (INIS)

    Nebuloni, S.

    2010-03-01

    A theoretical and numerical model to predict film condensation heat transfer in mini, micro and ultra micro-channels of different internal shapes is presented in this thesis. The model is based on a finite volume formulation of the Navier-Stokes and energy equations and it includes the contributions of the unsteady terms, surface tension, axial shear stresses, gravitational forces and wall thermal conduction. Notably, interphase mass transfer and near-to-wall effects (disjoining pressure) are also included. This model has been validated versus various benchmark cases and versus published experimental results from three different laboratories, predicting micro-channel heat transfer data with an average error of 20 % or better. The conjugate heat transfer problem arising from the coupling between the thin film fluid dynamics, the heat transfer in the condensing fluid and the heat conduction in the channel wall has been studied and analyzed. The work has focused on the effects of three external wall boundary conditions: a uniform wall temperature, a non uniform wall heat flux and single-phase convective cooling. The thermal axial and peripheral conduction occurring in the wall of the channel can affect the behavior of the condensate film, not only because it redistributes the heat, but also because the annular laminar film condensation process is dependent on the local saturation to wall temperature difference. When moving from mini to micro and ultra-micro channels, the results shows that the axial conduction effects can become very important in the prediction of the wall temperature profile and they can not be ignored. Under these conditions, the overall performances of the heat exchanger become dependent not only on the fluid properties and the operative conditions but also on the geometry and wall material. Results obtained for steady state conditions are presented for circular, elliptical and flattened shape cross sections for R-134a and ammonia, for hydraulic

  17. Unusual presentation of chondroblastoma mimicking Trevor's disease

    Directory of Open Access Journals (Sweden)

    Y Karkhur

    2017-01-01

    Full Text Available Chondroblastoma is a benign bone tumor, represents 1%–2% of all primary bone tumors, typically seen in patients 10–25-year-old and more common in males. It occurs most frequently in the distal femur, proximal tibia, and proximal humerus. Soft tissue extension is extremely rare. Adjacent joints may develop effusions, but the tumor mass protruding into the joint has never been seen in case of chondroblastoma. We report a rare case of intra-articular chondroblastoma arising from proximal tibia in a 16-year-old boy and growing into the knee joint mimicking an intra-articular osteochondroma.

  18. Acute Myelogenous Leukemia Mimicking Fulminant Periorbital Cellulitis

    Directory of Open Access Journals (Sweden)

    Abbas Bagheri

    2013-01-01

    Full Text Available Purpose: To report a patient who was referred for orbital cellulitis but was finally diagnosed with acute leukemia. Case Report: A 17-year-old boy presented with fever, periorbital erythema and swelling mimicking periorbital cellulitis. He underwent empiric antibiotic therapy. Complete blood counts revealed leukocytosis with a predominance of immature blast cells. Bone marrow aspiration confirmed the diagnosis of acute myelogenous leukemia. Chemotherapy was initiated resulting in resolution of signs and symptoms. Conclusion: Acute leukemia may mimic periorbital cellulitis and must be considered in the differential diagnosis.

  19. Central skeletal sarcoidosis mimicking metastatic disease

    International Nuclear Information System (INIS)

    Talmi, Danit; Smith, Stacy; Mulligan, Michael E.

    2008-01-01

    Sarcoidosis is a systemic disease that histologically typically shows non-caseating granulomas. The most common radiologic finding is hilar and mediastinal adenopathy. Patients with widely disseminated disease may show involvement of the peripheral appendicular skeleton in 1-13% of such cases. A primary skeletal presentation without other manifestations typical of the disease is rare. We present a case of sarcoidosis in a middle-aged Caucasian man in whom the disease presented with widespread lytic lesions in the axial skeleton and long bones, mimicking metastatic disease. There was no involvement of the peripheral skeleton, skin or lungs. (orig.)

  20. Pigmented poroid neoplasm mimicking nodular melanoma.

    Science.gov (United States)

    Mitsuishi, Tsuyoshi; Ansai, Shin-ichi; Ueno, Takashi; Kawana, Seiji

    2010-06-01

    We reported the case of a 92-year-old woman with a pigmented and non-pigmented surface of the pedunculated nodule on her lower leg. Microscopic examination revealed that this nodule consisted of a component of small, dark, homogenous, poroid cells and cuticular cells in the dermis. The histopathological features of the lesion were consistent with poroid neoplasm. Immunohistochemistry showed that HMB-45 and Melan-A were positive in malanocytes and melanophages of the pigmented areas. Unlike most poroid neoplasms, this case showed pigmented lesion mimicked nodular melanoma.

  1. Disseminated peritoneal leiomyomatosis mimicking ovarian torsion

    Directory of Open Access Journals (Sweden)

    Chau-Yang Tyan

    2015-01-01

    Full Text Available The presentation of disseminated peritoneal leiomyomatosis (DPL can be misleading. Herein, we present the case of a 42-year-old nulliparous female who had previously undergone a total hysterectomy and presented with an acute abdomen. A presumptive diagnosis of ovarian torsion was made based on the clinical findings and an ultrasonographic examination. A diagnostic laparoscopy was performed immediately. DPL was subsequently diagnosed based on an intra-operative frozen section during surgical exploration and the final histopathologic examination. This case illustrates an atypical presentation of DPL mimicking ovarian torsion.

  2. Hypertrophic Nonunion Humerus Mimicking an Enchondroma

    Directory of Open Access Journals (Sweden)

    N. K. Magu

    2014-01-01

    Full Text Available Introduction. Although fractures of humeral shaft show excellent results with conservative management, nonunion does occur. Case Report. We bring forth the case of a young male with a 1.5-year-old hypertrophic nonunion of the humerus mimicking an enchondroma. The initial X-ray images of the patient appeared to be an enchondroma, which only on further evaluation and histopathological analysis was diagnosed conclusively to be a hypertrophic nonunion. Discussion. Enchondromas are often incidentally diagnosed benign tumours. It is however not common to misdiagnose a hypertrophic nonunion to be an enchondroma. We present this case to highlight the unique diagnostic dilemma the treating team had to face.

  3. Dural Metastasis Mimicking Meningioma: An Interesting Case

    Directory of Open Access Journals (Sweden)

    Hamzaini Abdul Hamid

    2009-01-01

    Full Text Available Dural metastasis is a rare entity in clinical practice. We report a case of dural metastasis secondary to thyroid carcinoma, which on both preoperative CT and MRI and at surgery had the typical appearance of a meningioma. Histopathological findings confirmed metastatic follicular thyroid carcinoma as a primary site. Although rare, dural metastases can mimic a meningioma. Our experience in this case has led us to consider metastasis as a differential diagnosis even when a meningioma is suspected. We believe that reporting of the case of dural metastasis mimicking a meningioma may help clinicians in future.

  4. Giant Spermatocele Mimicking Hydrocele: A Case Report

    Directory of Open Access Journals (Sweden)

    Hsin-Chih Yeh

    2007-07-01

    Full Text Available Spermatoceles are usually asymptomatic and often found incidentally during physical examination. We report a case of giant spermatocele that mimicked a hydrocele. A 55-year-old man suffered from right scrotal enlargement for several years. As the heavy sensation and scrotal soreness worsened in recent months, he came to our outpatient clinic for help. Hydrocele was suspected due to transilluminating appearance of the scrotal content. Surgical exploration was arranged and a giant spermatocele was found. Total excision of the spermatocele was performed and the patient recovered well. The specimen was sent for pathology and spermatocele with spermatozoa was noted.

  5. PI Microgravity Services Role for International Space Station Operations

    Science.gov (United States)

    DeLombard, Richard

    1998-01-01

    During the ISS era, the NASA Lewis Research Center's Principal Investigator Microgravity Services (PIMS) project will provide to principal investigators (PIs) microgravity environment information and characterization of the accelerations to which their experiments were exposed during on orbit operations. PIMS supports PIs by providing them with microgravity environment information for experiment vehicles, carriers, and locations within the vehicle. This is done to assist the PI with their effort to evaluate the effect of acceleration on their experiments. Furthermore, PIMS responsibilities are to support the investigators in the area of acceleration data analysis and interpretation, and provide the Microgravity science community with a microgravity environment characterization of selected experiment carriers and vehicles. Also, PIMS provides expertise in the areas of microgravity experiment requirements, vibration isolation, and the implementation of requirements for different spacecraft to the microgravity community and other NASA programs.

  6. Imaging of premixed flames in microgravity

    Science.gov (United States)

    Kostiuk, L. W.; Cheng, R. K.

    1994-12-01

    A laser schlieren system which uses video recording and digital images analysis has been developed and applied successfully to microgravity combustion experiments performed in a drop-tower. The optical system and the experiment are installed within a small package which is subjected to free-fall. The images are recorded on video tape and are digitized and analyzed by a computer-controlled image processor. The experimental results include laminar and turbulent premixed conical flames in microgravity, normal positive gravity (upward), and reverse gravity (downward). The procedures to extract frequency information from the digitized images are described. Many gross features of the effects of gravity on premixed conical flames are found. Flames that ignite easily in normal gravity fail to ignite in microgravity. Buoyancy driven instabilities associated with an interface formed between the hot products and the cold surrounding air is the mechanism through which gravity influences premixed laminar and turbulent flames. In normal gravity, this causes the flame to flicker. In reverse gravity, - g, and microgravity, μg, the interface is stable and flame flickering ceases. The flickering frequencies of + g flames vary with changing upstream boundary conditions. The absence of flame flickering in μg suggest that μg flames would be less sensitive to these changes.

  7. Microgravity Flammability Experiments for Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Legros, Guillaume; Minster, Olivier; Tóth, Balazs

    2012-01-01

    As fire behaviour in manned spacecraft still remains poorly understood, an international topical team has been created to design a validation experiment that has an unprecedented large scale for a microgravity flammability experiment. While the validation experiment is being designed for a re...

  8. Evaporation of binary mixtures in microgravity

    Science.gov (United States)

    Girgis, Morris; Matta, Nabil; Kolli, Kiran; Brown, Leon; Chubb, Kevin

    1995-01-01

    The motivation of this research is to obtain a better understanding of phase-change heat transfer within single and binary liquid meniscii, both in 1-g and 0-g environments. During phase 1 and part of phase 2, in a glass test cell with an inclined heated plate, 1-6 experiments on pentane with additions of decane up to 3% were conducted to determine the optimum concentration that will exhibit the maximum heat transfer and stability. During phase 2 emphasis was given to explore fundamental research issues and to ultimately develop a reliable capillary pumped loop (CPL) device for low gravity. In related experimental work, it was found that thermocapillary stresses near the contract line could result in a degraded wettability which ultimately could explain the observed failure of CPL devices in zero-gravity environment. Therefore, the current experimental effort investigates the effect of adding binary constituents in improving the thermocapillary characteristics near the contact line within the loop configuration. Achievements during second phase include: (1) Further enhancement of Central State University's Microgravity Laboratory by adding or improving upon capabilities of photography, video imaging, fluid visualization, and general experimental testing capabilities; (2) Experimental results for the inclined plate cell; (3) Modeling effort with a detailed scaling analysis; (4) Additional testing with a tube loop configuration to extend experimental work by Dickens, et al.; (5) Fabrication of a capillary loop to be tested using binary fluid (pentane/decane). The device that has been recently completed will be set up horizontally so that the effect of gravity on the performance is negligible. Testing will cover a wide range of parameters such as decane/pentane concentration, heat input value, heat input location (below or above meniscus), and loop temperature.

  9. Drop Tower Experiments concerning Fluid Management under Microgravity

    Science.gov (United States)

    Gaulke, Diana; Dreyer, Michael

    2012-07-01

    Transport and positioning of liquid under microgravity is done utilizing capillary forces. Therefore, capillary transport processes have to be understood for a wide variety of space applications, ranging from propellant management in tanks of space transportation systems to eating and drinking devices for astronauts. There are two types of liquid transportation in microgravity using capillary forces. First, the driven liquid flow in open channels where the capillary forces at free surfaces ensure a gas and vapor free flow. Here it is important to know the limiting flow rate through such an open channel before the free surface collapses and gas is sucked into the channel. A number of different experiments at the drop tower Bremen, on sounding rockets and at the ISS have been conducted to analyse this phenomenon within different geometries. As result a geometry dependent theory for calculating the maximum flow rate has been found. On the other hand liquid positioning and transportation requires the capillary pressure of curved surfaces to achieve a liquid flow to a desired area. Especially for space applications the weight of structure has to be taken into account for development. For example liquid positioning in tanks can be achieved via a complicated set of structure filling the whole tank resulting in heavy devices not reasonable in space applications. Astrium developed in cooperation with ZARM a propellant management device much smaller than the tank volume and ensuring a gas and vapour free supply of propellant to the propulsion system. In the drop tower Bremen a model of this device was tested concerning different microgravity scenarios. To further decrease weight and ensure functionality within different scenarios structure elements are designed as perforated geometries. Capillary transport between perforated plates has been analyzed concerning the influence of geometrical pattern of perforations. The conducted experiments at the drop tower Bremen show the

  10. Low-shear-modeled microgravity-grown Penicillium chrysogenum-mediated biosynthesis of silver nanoparticles with enhanced antimicrobial activity and its anticancer effect in human liver cancer and fibroblast cells.

    Science.gov (United States)

    Sheet, Sunirmal; Sathishkumar, Yesupatham; Sivakumar, Allur Subramaniyam; Shim, Kwan Seob; Lee, Yang Soo

    2017-10-01

    Gravitational force and shear forces induce various changes in gene expression and metabolite production of microorganisms. Previous reports have shown that there are differences in the expression of different sets of proteins and enzymes under microgravity conditions compared to normal gravity. The aim of this study is to utilize culture filtrates of Penicillium chrysogenum grown under microgravity and normal conditions to synthesize silver nanoparticles and to examine whether there is any difference between their physiochemical and biological function. Synthesized nanoparticles were characterized using UV-Vis spectroscopy, FTIR, XRD, and TEM. Biological functional studies such as antimicrobial activity, cytotoxic studies, and anticancer activity were carried out. Antimicrobial activity was tested using antibiotic susceptibility testing by Kirby-Bauer method and cytotoxicity tests were carried out using 3T3-L1 normal fibroblasts cells and Hep-G2 cancer cell lines. Interestingly, our results indicated that microgravity-synthesized silver nanoparticles possess enhanced antibacterial activity and cytotoxic effect against cancer cells compared to normal gravity-synthesized silver nanoparticle. This work highlighted the importance of gravitational vector on the fungal enzyme profiles and their role in silver nanoparticle synthesis with enhanced biological activity.

  11. Combustion in microgravity: The French contribution

    Science.gov (United States)

    Prud'homme, Roger; Legros, Guillaume; Torero, José L.

    2017-01-01

    Microgravity (drop towers, parabolic flights, sounding rockets and space stations) are particularly relevant to combustion problems given that they show high-density gradients and in many cases weak forced convection. For some configurations where buoyancy forces result in complex flow fields, microgravity leads to ideal conditions that correspond closely to canonical problems, e.g., combustion of a spherical droplet in a far-field still atmosphere, Emmons' problem for flame spreading over a solid flat plate, deflagration waves, etc. A comprehensive chronological review on the many combustion studies in microgravity was written first by Law and Faeth (1994) and then by F.A. Williams (1995). Later on, new recommendations for research directions have been delivered. In France, research has been managed and supported by CNES and CNRS since the creation of the microgravity research group in 1992. At this time, microgravity research and future activities contemplated the following: Droplets: the "D2 law" has been well verified and high-pressure behavior of droplet combustion has been assessed. The studies must be extended in two main directions: vaporization in mixtures near the critical line and collective effects in dense sprays. Flame spread: experiments observed blue flames governed by diffusion that are in accordance with Emmons' theory. Convection-dominated flames showed significant departures from the theory. Some theoretical assumptions appeared controversial and it was noted that radiation effects must be considered, especially when regarding the role of soot production in quenching. Heterogeneous flames: two studies are in progress, one in Poitiers and the other in Marseilles, about flame/suspension interactions. Premixed and triple flames: the knowledge still needs to be complemented. Triple flames must continue to be studied and understanding of "flame balls" still needs to be addressed.

  12. Proteomic analysis and bioluminescent reporter gene assays to investigate effects of simulated microgravity on Caco-2 cells.

    Science.gov (United States)

    La Barbera, Giorgia; Capriotti, Anna Laura; Michelini, Elisa; Piovesana, Susy; Calabretta, Maria Maddalena; Zenezini Chiozzi, Riccardo; Roda, Aldo; Laganà, Aldo

    2017-08-01

    Microgravity is one of the most important features in spaceflight. Previous evidence from in-vitro studies has shown that significant changes occur under simulated microgravity. For this reason, human colon adenocarcinoma Caco-2 cells were selected as cell model of intestinal epithelial barrier and their response to altered gravity conditions was investigated, especially on the protein level. In this study, we combined label-free shotgun proteomics and bioluminescent reporter gene assays to identify key proteins and pathways involved in the response of Caco-2 cells under reference and microgravity conditions. A two-dimensional clinostat was modified with 3D-printed adaptors to hold conventional T25 culture flasks. The comparative proteome analysis led to identify 38 and 26 proteins differently regulated by simulated microgravity after 48 and 72 h, respectively. Substantial fractions of these proteins are involved in regulation, cellular and metabolic processes and localization. Bioluminescent reporter gene assays were carried out to investigate microgavity-induced alterations on the transcriptional regulation of key targets, such as NF-kB pathway and CYP27A1. While no significant difference was found in the basal transcription, a lower NF-kB basal activation in simulated microgravity conditions was reported, corroborating the hypothesis of reduced immunity in microgravity conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cell Culture in Microgravity: Opening the Door to Space Cell Biology

    Science.gov (United States)

    Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Adaptational response of human cell populations to microgravity is investigated using simulation, short-term Shuttle experiments, and long-term microgravity. Simulation consists of a clinostatically-rotated cell culture system. The system is a horizontally-rotated cylinder completely filled with culture medium. Low speed rotation results in continuous-fall of the cells through the fluid medium. In this setting, cells: 1) aggregate, 2) propagate in three dimensions, 3) synthesize matrix, 4) differentiate, and 5) form sinusoids that facilitate mass transfer. Space cell culture is conducted in flight bioreactors and in static incubators. Cells grown in microgravity are: bovine cartilage, promyelocytic leukemia, kidney proximal tubule cells, adrenal medulla, breast and colon cancer, and endothelium. Cells were cultured in space to test specific hypotheses. Cartilage cells were used to determine structural differences in cartilage grown in space compared to ground-based bioreactors. Results from a 130-day experiment on Mir revealed that cartilage grown in space was substantially more compressible due to insufficient glycosaminoglycan in the matrix. Interestingly, earth-grown cartilage conformed better to the dimensions of the scaffolding material, while the Mir specimens were spherical. The other cell populations are currently being analyzed for cell surface properties, gene expression, and differentiation. Results suggest that some cells spontaneously differentiate in microgravity. Additionally, vast changes in gene expression may occur in response to microgravity. In conclusion, the transition to microgravity may constitute a physical perturbation in cells resulting in unique gene expressions, the consequences of which may be useful in tissue engineering, disease modeling, and space cell biology.

  14. Disrutpted resting-state functional architecture of the brain after 45-day simulated microgravity

    Directory of Open Access Journals (Sweden)

    Yuan eZhou

    2014-06-01

    Full Text Available Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI to study whether the functional architecture of the brain is altered after 45 days of -6° head-down tilt (HDT bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of -6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC, to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC analysis. We found decreased DC in two regions, the left anterior insula (aINS and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies, in the male volunteers after 45 days of -6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function and central neural activity.

  15. Clinical and Histologic Mimickers of Celiac Disease.

    Science.gov (United States)

    Kamboj, Amrit K; Oxentenko, Amy S

    2017-08-17

    Celiac disease is an autoimmune disorder of the small bowel, classically associated with diarrhea, abdominal pain, and malabsorption. The diagnosis of celiac disease is made when there are compatible clinical features, supportive serologic markers, representative histology from the small bowel, and response to a gluten-free diet. Histologic findings associated with celiac disease include intraepithelial lymphocytosis, crypt hyperplasia, villous atrophy, and a chronic inflammatory cell infiltrate in the lamina propria. It is important to recognize and diagnose celiac disease, as strict adherence to a gluten-free diet can lead to resolution of clinical and histologic manifestations of the disease. However, many other entities can present with clinical and/or histologic features of celiac disease. In this review article, we highlight key clinical and histologic mimickers of celiac disease. The evaluation of a patient with serologically negative enteropathy necessitates a carefully elicited history and detailed review by a pathologist. Medications can mimic celiac disease and should be considered in all patients with a serologically negative enteropathy. Many mimickers of celiac disease have clues to the underlying diagnosis, and many have a targeted therapy. It is necessary to provide patients with a correct diagnosis rather than subject them to a lifetime of an unnecessary gluten-free diet.

  16. A classic mimicker of systemic vasculitis.

    Science.gov (United States)

    Moreno-Ariño, Marc; Ortiz-Santamaria, Vera; Deudero Infante, Aída; Ayats Delgado, Montserrat; Novell Teixidó, Francesc

    2016-01-01

    Embolic and constitutional manifestations of intracavitary cardiac tumors are included within the classic mimickers of systemic vasculitis, especially in those in which there are no cardiac manifestations. We present a case report of atrial myxoma in which the patient only presented systemic symptoms and in whom an initial diagnostic approach of systemic vasculitis was made. We also performed a literature search of the cases described. A case report of atrial myxoma with atypical presentation manifested as a systemic disease with no concomitant cardiac symptoms is described. The case report is discussed and 11 cases of atrial myxoma pseudovasculitis described in the literature are reviewed, emphasizing their similarities and differences. Constitutional symptoms and cutaneous manifestations were the most common. Most of the cases showed partial response to glucococorticosteroid treatment, reinforcing the theory of the inflammatory role in its pathogenesis. Mean delayed time to diagnosis was 12.27 months. Atrial myxoma is a systemic vasculitis mimicker, this being difficult to diagnose in the absence of cardiac manifestations. This delay in diagnosis entails serious complications. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  17. Imaging findings of mimickers of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Tae Kyoung Kim

    2015-12-01

    Full Text Available Radiological imaging plays a crucial role in the diagnosis of hepatocellular carcinoma (HCC as the noninvasive diagnosis of HCC in high-risk patients by typical imaging findings alone is widely adopted in major practice guidelines for HCC. While imaging techniques have markedly improved in detecting small liver lesions, they often detect incidental benign liver lesions and non-hepatocellular malignancy that can be misdiagnosed as HCC. The most common mimicker of HCC in cirrhotic liver is nontumorous arterioportal shunts that are seen as focal hypervascular liver lesions on dynamic contrast-enhanced cross-sectional imaging. Rapidly enhancing hemangiomas can be easily misdiagnosed as HCC especially on MR imaging with liver-specific contrast agent. Focal inflammatory liver lesions mimic HCC by demonstrating arterial-phase hypervascularity and subsequent washout on dynamic contrast-enhanced imaging. It is important to recognize the suggestive imaging findings for intrahepatic cholangiocarcinoma (CC as the management of CC is largely different from that of HCC. There are other benign mimickers of HCC such as angiomyolipomas and focal nodular hyperplasia-like nodules. Recognition of their typical imaging findings can reduce false-positive HCC diagnosis.

  18. Ultrasound artifacts mimicking pleural sliding after pneumonectomy.

    Science.gov (United States)

    Cavaliere, Franco; Zamparelli, Roberto; Soave, Maurizio P; Gargaruti, Riccardo; Scapigliati, Andrea; De Paulis, Stefano

    2014-03-01

    To determine the presence of pleural sliding on chest ultrasonography (US) in a series of patients admitted to a surgical intensive care unit (SICU). Prospective, observational study. 16-bed SICU of a University hospital. 8 patients (7 men, 1 woman), aged 64 - 73 years (mean 67.5 yrs). Seven patients underwent pneumonectomy for pulmonary neoplasms; one patient underwent an atypical lung resection after having undergone a pneumonectomy one year before. None. Chest ultrasounds were performed during mechanical ventilation and spontaneous ventilation after endotracheal tube removal. In both examinations, pleural sliding was searched bilaterally in brightness mode (B-mode) and motion mode (M-mode) on the anterior thoracic wall in the least gravitationally dependent areas. During mechanical ventilation, pleural sliding was always absent on the side of the pneumonectomy and present on the other side. During spontaneous ventilation, some artifacts mimicking pleural sliding were noted on the side of the pneumonectomy both in B-mode and M-mode (presence of the seashore sign) in all patients, except for the one patient who had undergone a pneumonectomy one year earlier. Those artifacts became more pronounced during deep breaths. Ultrasound artifacts mimicking pleural sliding may be observed in the absence of the lung and may originate from the activity of intercostal muscles since they become more evident during deep breathing. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Characterizing parameters of Jatropha curcas cell cultures for microgravity studies

    Science.gov (United States)

    Vendrame, Wagner A.; Pinares, Ania

    2013-06-01

    evaluated in this study provide the basic ground work and pre-flight assessment needed to justify a model for microgravity studies with jatropha in vitro cell cultures. Future studies should focus on results of experiments performed with jatropha in vitro cultures in microgravity.

  20. Numerical simulation of gender differences in a long-term microgravity exposure

    Science.gov (United States)

    Perez-Poch, Antoni

    The objective of this work is to analyse and simulate gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairment which may put in jeopardy a long-term mission is also evaluated. Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numerical Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular architecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electricallike model of this control system, using inexpensive software development frameworks, and has been tested and validated with the available experimental data. Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobical exercise, and also thermal stress simulating an extra-vehicular activity. Results show

  1. Plant Cell Adaptive Responses to Microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    Microgravity is an abnormal environmental condition that plays no role in the functioning of biosphere. Nevertheless, the chronic effect of microgravity in space flight as an unfamiliar factor does not prevent the development of adaptive reactions at the cellular level. In real microgravity in space flight under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity in the hardware angiosperm plants perform an “reproductive imperative”, i.e. they flower, fruit and yield viable seeds. It is known that cells of a multicellular organism not only take part on reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of the identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and subcellular level in real and simulated microgravity is considered. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytokinesis, and tissue differentiation of vegetative and generative organs are largely normal. At the same time, under microgravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxidation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained. So, altered gravity caused time-dependent increasing of the HSP70 and HSP90 levels in cells, that may indicate temporary strengthening of their functional loads that is necessary for re-establish a new cellular homeostasis. Relative qPCR results showed that

  2. Mineralization and growth of cultured embryonic skeletal tissue in microgravity

    Science.gov (United States)

    Klement, B. J.; Spooner, B. S.

    1999-01-01

    Microgravity provides a unique environment in which to study normal and pathological phenomenon. Very few studies have been done to examine the effects of microgravity on developing skeletal tissue such as growth plate formation and maintenance, elongation of bone primordia, or the mineralization of growth plate cartilage. Embryonic mouse premetatarsal triads were cultured on three space shuttle flights to study cartilage growth, differentiation, and mineralization, in a microgravity environment. The premetatarsal triads that were cultured in microgravity all formed cartilage rods and grew in length. However, the premetatarsal cartilage rods cultured in microgravity grew less in length than the ground control cartilage rods. Terminal chondrocyte differentiation also occurred during culture in microgravity, as well as in the ground controls, and the matrix around the hypertrophied chondrocytes was capable of mineralizing in both groups. The same percentage of premetatarsals mineralized in the microgravity cultures as mineralized in the ground control cultures. In addition, the sizes of the mineralized areas between the two groups were very similar. However, the amount of 45Ca incorporated into the mineralized areas was significantly lower in the microgravity cultures, suggesting that the composition or density of the mineralized regions was compromised in microgravity. There was no significant difference in the amount of 45Ca liberated from prelabeled explants in microgravity or in the ground controls.

  3. Flame spread over thick polymethylmethacrylate samples in a simulated and actual microgravity environment

    Science.gov (United States)

    Shah, Tirthesh Jayesh

    The NASA Burning and Suppression of Solids-II (BASS II) experiment examines the combustion of different solid materials and material geometries in microgravity. While flames in microgravity are driven by diffusion and weak advection due to crew movements and ventilation, the current NASA spacecraft material selection test method (NASA-STD- 6001 Test 1) is driven by buoyant forces as gravity is present. The overall goal of this project is to understand the burning of intermediate and thick fuels in microgravity, and devise a normal gravity test to apply to future materials. Clear cast polymethylmethacrylate (PMMA) samples 10 cm long by 1 or 2 cm wide with thicknesses ranging from 1-5 mm were investigated. PMMA is the ideal choice since it is widely used and we know its stoichiometric chemistry. Tests included both one sided and two sided burns. Samples are ignited by heating a wire behind the sample. The samples are burned in a flow duct within the Microgravity Science Glovebox (MSG) on the International Space Station (ISS) to ensure true microgravity conditions. The experiment takes place in opposed flow with varying Oxygen concentrations and flow velocities. Flames are recorded on two cameras and later tracked to determine spread rate. Currently we are modeling combustion of PMMA using Fire Dynamics Simulator (FDS 5.5.3) and Smokeview. The entire modelling for BASS-II is done in DNS mode because of the laminar conditions and small domain. In DNS mode the Navier Stokes equations are solved without the Turbulence model. The model employs the same test sample and MSG geometry as the experiment; but in 2D. The experimental data gave upstream velocity at several points using an anemometer. A flow profile for the inlet velocity is obtained using Matlab and input into the model. The flame spread rates obtained after tracking are then compared with the experimental data and the results follow the trends but the spread rates are higher.

  4. Association and dissociation of Feshbach molecules in a microgravity environment

    Science.gov (United States)

    D'Incao, Jose P.; Willians, Jason R.

    2016-05-01

    NASA's Cold Atom Laboratory (CAL) is a multi-user facility scheduled for launch to the ISS in 2017. Our flight experiments with CAL will characterize and mitigate leading-order systematics in dual-atomic-species atom interferometers in microgravity relevant for future fundamental physics missions in space. Here, we study the RF association and dissociation of weakly bound heteronuclear Feshbach molecules for expected parameters relevant for the microgravity environment of CAL. This includes temperatures on the pico-Kelvin range and atomic densities as low as 108/ cm3. We show that under such conditions, thermal and loss effects can be greatly suppressed, resulting in high efficiency in both association and dissociation of extremely weakly bound Feshbach molecules and allowing for high accuracy determination coherent properties of such processes. Our theoretical model for 41 K-87 Rb mixture includes thermal, loss, and density effects in a simple and conceptually clear manner. We derive several conditions in terms of the temperature, density and scattering lengths, determining the regime in which one can achieve efficient association and dissociation. This research is supported by the National Aeronautics and Space Administration.

  5. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2012-03-01

    Full Text Available Introduction: The severe need for constructing replacement tissues in organ transplantation has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV bioreactors initially developed by NASA. Methods: In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Results: Research is now focused on assembly of 3 dimensional (3D tissue fragments from various cell types in human body such as chondrocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of various cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Conclusion: Tissue engineering in (simulated microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth.

  6. Mimicking Seawater For Culturing Marine Bacteria

    DEFF Research Database (Denmark)

    Rygaard, Anita Mac; Sonnenschein, Eva; Gram, Lone

    2015-01-01

    Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum...... 100-fold; from 8.5 x 101 CFU/ml to 5.2 x 103 CFU/ml, whereas addition of AHLs did not improve culturability on any of the media.The substitution of agar with gellan gum shows great promise for increasing culturability of marine bacteria, and further studies are ongoing. The AHLs used in this study...... were selected based on a previous study determining the most common AHLs produced by marine strains of the Vibrionaceae family. However, their effect on culturability could not be fully explained, so also here further studies are being carried out....

  7. Case report. Pityriasis versicolor mimicking Pityriasis rotunda.

    Science.gov (United States)

    Aste, Nicola; Pau, Monica; Aste, Natalia; Biggio, P

    2002-04-01

    Pityriasis versicolor is a common dermatomycosis, occurring throughout the world, characterized by irregular, slightly scaly patches, varying in color from red/light brown to white. Pityriasis rotunda, on the other hand, is an uncommon disease, reported in specific ethnic groups, and characterized by perfectly round or oval patches of varying color, with a scaly surface. The histologic pattern is that of ichthyosis vulgaris. We report here the case of a male patient, aged 31, from Sardinia (Italy), affected by Pityriasis versicolor mimicking Pityriasis rotunda. Mycological examination allowed us to formulate the correct diagnosis, and ensuing treatment with antifungal drugs was entirely successful. The authors, while pointing out the rarity of this case, stress the possibility that Pityriasis versicolor mimics Pityriasis rotunda and vice-versa, especially in those countries in which the two diseases are endemic. More widespread recourse to microscopic examination can help avoid the risk of mistaken diagnosis and consequent incorrect treatment.

  8. Orbital Lymphoma Mimicking Lacrimal Gland Pleomorphic Adenoma

    Directory of Open Access Journals (Sweden)

    Diego Strianese

    2013-09-01

    Full Text Available Purpose: To describe the case of a patient affected by orbital lymphoma mimicking pleomorphic adenoma of the lacrimal gland. Methods: This was a retrospective case report. Results: We present the case of a patient with 15-year history of slowly progressive left proptosis and inferomedial bulbar dislocation who had the presumptive diagnosis of lacrimal gland pleomorphic adenoma based on clinical and radiological features. The patient underwent lateral orbitotomy and lacrimal gland excision. Postoperative histological features were consistent with low-grade B-cell non-Hodgkin lymphoma. Conclusion: The accepted clinico-radiological criteria used for the diagnosis of lacrimal gland fossa lesions might have a certain false-positive rate, even in recent years. The initial surgical approach with the appropriate choice between fine-needle aspiration biopsies, intraoperative biopsies and lacrimal gland excisions might be a challenge.

  9. Orbital roof encephalocele mimicking a destructive neoplasm.

    Science.gov (United States)

    Alsuhaibani, Adel H; Hitchon, Patrick W; Smoker, Wendy R K; Lee, Andrew G; Nerad, Jeffrey A

    2011-01-01

    The purpose of this case report is to report an orbital roof encephalocele mimicking a destructive orbital neoplasm. Orbital roof encephalocele is uncommon but can mimic neoplasm. One potential mechanism for the orbital roof destruction is a post-traumatic "growing orbital roof fracture." The growing fracture has been reported mostly in children but can occur in adults. Alternative potential etiologies for the encephalocele are discussed, including Gorham syndrome. Orbital roof encephalocele is uncommon in adults, and the findings can superficially resemble an orbital neoplasm. Radiographic and clinical features that might suggest the correct diagnosis include a prior history of trauma, overlying frontal lobe encephalomalacia without significant mass effect or edema, and an orbital roof defect. The "growing fracture" mechanism may be a potential explanation for the orbital roof destruction in some cases.

  10. Development of tissue mimicking ultrasound phantom materials

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Sang Chul [Shinheung College, Uijeongbu (Korea, Republic of); Kong, Young Kun [Kyonggi University, Suwon (Korea, Republic of); Park, Ki Jung [Korea Food Drug Administration, Seoul (Korea, Republic of); Lee, Suk [Yonsei Medical Center, Seoul (Korea, Republic of)

    2003-06-15

    We carried out studies on develop of the ultrasound tissue mimicking materials (TMM) by synthesis of polymer urethane (C, CCR, TiO{sub 2}, tungsten, graphite, silver type). The major finding were as follows; (1) C type TMM was shown good homogeneity, penetration, gray scale like as liver tissue and propagated speed 1,540 m/s, attenuation 0.5 {approx} 0.7 dB/cm/MHz. (2) TiO{sub 2} type TMM was shown heterogeneous dot echo pattern. (3) Silver type TMM was appear good homogeneous echo pattern like as echo texture of thyroid gland. Therefor, C type TMM will be useful for ultrasound Q/A phantom materials and previous phantom materials.

  11. Contiguous spinal metastasis mimicking infectious spondylodiscitis

    International Nuclear Information System (INIS)

    Lee, Chul Min; Lee, Seung Hun; Bae, Ji Yoon

    2015-01-01

    Differential diagnosis between spinal metastasis and infectious spondylodiscitis is one of the occasional challenges in daily clinical practice. We encountered an unusual case of spinal metastasis in a 75-year-old female breast cancer patient that mimicked infectious spondylodiscitis. Magnetic resonance imaging (MRI) showed diffuse bone marrow infiltrations with paraspinal soft tissue infiltrative changes in 5 contiguous cervical vertebrae without significant compression fracture or cortical destruction. These MRI findings made it difficult to differentiate between spinal metastasis and infectious spondylodiscitis. Infectious spondylodiscitis such as tuberculous spondylodiscitis was regarded as the more appropriate diagnosis due to the continuous involvement of > 5 cervical vertebrae. The patient's clinical presentation also supported the presumptive diagnosis of infectious spondylodiscitis rather than spinal metastasis. Intravenous antibiotics were administered, but clinical symptoms worsened despite treatment. After pathologic confirmation by computed tomography-guided biopsy, we were able to confirm a final diagnosis of spinal metastasis

  12. Contiguous spinal metastasis mimicking infectious spondylodiscitis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Min; Lee, Seung Hun [Dept. of Radiology, Hanyang University Hospital, Seoul (Korea, Republic of); Bae, Ji Yoon [Dept. of Pathology, National Police Hospital, Seoul (Korea, Republic of)

    2015-12-15

    Differential diagnosis between spinal metastasis and infectious spondylodiscitis is one of the occasional challenges in daily clinical practice. We encountered an unusual case of spinal metastasis in a 75-year-old female breast cancer patient that mimicked infectious spondylodiscitis. Magnetic resonance imaging (MRI) showed diffuse bone marrow infiltrations with paraspinal soft tissue infiltrative changes in 5 contiguous cervical vertebrae without significant compression fracture or cortical destruction. These MRI findings made it difficult to differentiate between spinal metastasis and infectious spondylodiscitis. Infectious spondylodiscitis such as tuberculous spondylodiscitis was regarded as the more appropriate diagnosis due to the continuous involvement of > 5 cervical vertebrae. The patient's clinical presentation also supported the presumptive diagnosis of infectious spondylodiscitis rather than spinal metastasis. Intravenous antibiotics were administered, but clinical symptoms worsened despite treatment. After pathologic confirmation by computed tomography-guided biopsy, we were able to confirm a final diagnosis of spinal metastasis.

  13. Acute perimyocarditis mimicking transmural myocardial infarction

    Directory of Open Access Journals (Sweden)

    Omar Hesham R

    2009-12-01

    Full Text Available Abstract Although acute pericarditis has charachteristic electrocardiographic (ECG findings that differentiate it from acute ST segment elevation myocardial infarction (MI; in certain cases diagnosis is somewhat difficult especially when the ECG reveals focal instead of diffuse changes and moreover when pericarditis is associated with an underlying myocarditis causing elevation of the cardiac biomarkers therefore increasing the difficulty in differentiating between both enteties. This is especially important because adverse lethal side effect can occur if thrombolytic therapy is administered for a patient with acute pericarditis, or if a diagnosis of transmural MI is missed. In this case report we are describing an 18 year old male patient who presented with an acute onset of severe chest pain associated with focal ECG changes and elevated cardiac enzymes mimicking transmural MI. This report aims to sensitize readers to this debate and create awareness among cardiologists and intensivists with both presentations and how to reach an accurate diagnosis.

  14. Pelvic-peritoneal tuberculosis mimicking ovarian cancer

    International Nuclear Information System (INIS)

    Imtiaz, S.; Siddiqui, N.

    2012-01-01

    Pelvic-peritoneal tuberculosis is a common extrapulmonary site in young females mimicking an advanced ovarian malignancy. We present 2 cases with the classical triad of advanced-stage ovarian carcinoma-ascites, abdominopelvic masses and elevated serum CA-125 levels. Laparoscopic examination revealed peritoneal nodules which on biopsy showed granulomatous inflammation and no malignant cells. Patients were started on anti-tuberculous therapy and on follow-up their symptoms as well as CA-125 levels normalized. Medical awareness of peritoneal tuberculosis is lacking and many young women with this disease undergo unnecessary extended surgery. Diagnostic laparoscopy combined with peritoneal biopsy seems to be a sufficient and safe method to provide a definitive diagnosis for this curable infection. If left untreated, the disease may disseminate and result in significant organ dysfunctions particularly infertility. (author)

  15. Glucocorticoid: A potential role in microgravity-induced bone loss

    Science.gov (United States)

    Yang, Jiancheng; Yang, Zhouqi; Li, Wenbin; Xue, Yanru; Xu, Huiyun; Li, Jingbao; Shang, Peng

    2017-11-01

    Exposure of animals and humans to conditions of microgravity, including actual spaceflight and simulated microgravity, results in numerous negative alterations to bone structure and mechanical properties. Although there are abundant researches on bone loss in microgravity, the explicit mechanism is not completely understood. At present, it is widely accepted that the absence of mechanical stimulus plays a predominant role in bone homeostasis disorders in conditions of weightlessness. However, aside from mechanical unloading, nonmechanical factors such as various hormones, cytokines, dietary nutrition, etc. are important as well in microgravity induced bone loss. The stress-induced increase in endogenous glucocorticoid (GC) levels is inevitable in microgravity environments. Moreover, it is well known that GCs have a detrimental effect to bone health at excess concentrations. Therefore, GC plays a potential role in microgravity-induced bone loss. This review summarizeds several studies and their prospective solutions to this hypothesis.

  16. Effects of microgravity on osteoblast growth activation

    Science.gov (United States)

    Hughes-Fulford, M.; Lewis, M. L.

    1996-01-01

    Space flight is an environmental condition where astronauts can lose up to 19% of weight-bearing bone during long duration missions. We used the MC3T3-E1 osteoblast to investigate bone cell growth in microgravity (10(-6) to 10(-9)g). Osteoblasts were launched on the STS-56 shuttle flight in a quiescent state with 0.5% fetal calf serum (FCS) medium and growth activation was initiated by adding fresh medium with 10% FCS during microgravity exposure. Four days after serum activation, the cells were fixed before return to normal Earth gravity. Ground controls were treated in parallel with the flight samples in identical equipment. On landing, cell number, cell cytoskeleton, glucose utilization, and prostaglandin synthesis in flight (n = 4) and ground controls (n = 4) were examined. The flown osteoblasts grew slowly in microgravity with total cell number significantly reduced (55 +/- 6 vs 141 +/- 8 cells per microscopic field). The cytoskeleton of the flight osteoblasts had a reduced number of stress fibers and a unique abnormal morphology. Nuclei in the ground controls were large and round with punctate Hoechst staining of the DNA nucleosomes. The flight nuclei were 30% smaller than the controls (P prostaglandin E2 (PGE2) synthesis when compared to controls (57.3 +/- 17 vs 138.3 +/- 41 pmol/ml). Cell viability was normal since, on a per-cell basis, glucose use and prostaglandin synthesis were comparable for flight and ground samples. Taken together, these data suggest that growth activation in microgravity results in reduced growth, causing reduced glucose utilization and reduced prostaglandin synthesis, with significantly altered actin cytoskeleton in osteoblasts.

  17. Qualitative and quantitative imaging in microgravity combustion

    Science.gov (United States)

    Weiland, Karen J.

    1995-01-01

    An overview of the imaging techniques implemented by researchers in the microgravity combustion program shows that for almost any system, imaging of the flame may be accomplished in a variety of ways. Standard and intensified video, high speed, and infrared cameras and fluorescence, laser schlieren, rainbow schlieren, soot volume fraction, and soot temperature imaging have all been used in the laboratory and many in reduced gravity to make the necessary experimental measurements.

  18. Laser diagnostics for microgravity droplet studies

    Science.gov (United States)

    Winter, Michael

    1993-01-01

    Rapid advances have recently been made in numerical simulation of droplet combustion under microgravity conditions, while experimental capabilities remain relatively primitive. Calculations can now provide detailed information on mass and energy transport, complex gas-phase chemistry, multi-component molecular diffusion, surface evaporation and heterogeneous reaction, which provides a clearer picture of both quasi-steady as well as dynamic behavior of droplet combustion. Experiments concerning these phenomena typically result in pictures of the burning droplets, and the data therefrom describe droplet surface regression along with flame and soot shell position. With much more precise, detailed, experimental diagnostics, significant gains could be made on the dynamics and flame structural changes which occur during droplet combustion. Since microgravity experiments become increasingly more expensive as they progress from drop towers and flights to spaceborne experiments, there is a great need to maximize the information content from these experiments. Sophisticated measurements using laser diagnostics on individual droplets and combustion phenomena are now possible. These include measuring flow patterns and temperature fields within droplets, vaporization rates and vaporization enhancement, radical species profiling in flames and gas-phase flow-tagging velocimetry. Although these measurements are sophisticated, they have undergone maturation to the degree where with some development, they are applicable to studies of microgravity droplet combustion. This program beginning in September of 1992, will include a series of measurements in the NASA Learjet, KC-135 and Drop Tower facilities for investigating the range of applicability of these diagnostics while generating and providing fundamental data to ongoing NASA research programs in this area. This program is being conducted in collaboration with other microgravity investigators and is aimed toward supplementing

  19. An Experimental and Computational Study on Soot Formation in a Coflow Jet Flame Under Microgravity and Normal Gravity

    Science.gov (United States)

    Ma, Bin; Cao, Su; Giassi, Davide; Stocker, Dennis P.; Takahashi, Fumiaki; Bennett, Beth Anne V.; Smooke, Mitchell D.; Long, Marshall B.

    2014-01-01

    Upon the completion of the Structure and Liftoff in Combustion Experiment (SLICE) in March 2012, a comprehensive and unique set of microgravity coflow diffusion flame data was obtained. This data covers a range of conditions from weak flames near extinction to strong, highly sooting flames, and enabled the study of gravitational effects on phenomena such as liftoff, blowout and soot formation. The microgravity experiment was carried out in the Microgravity Science Glovebox (MSG) on board the International Space Station (ISS), while the normal gravity experiment was performed at Yale utilizing a copy of the flight hardware. Computational simulations of microgravity and normal gravity flames were also carried out to facilitate understanding of the experimental observations. This paper focuses on the different sooting behaviors of CH4 coflow jet flames in microgravity and normal gravity. The unique set of data serves as an excellent test case for developing more accurate computational models.Experimentally, the flame shape and size, lift-off height, and soot temperature were determined from line-of-sight flame emission images taken with a color digital camera. Soot volume fraction was determined by performing an absolute light calibration using the incandescence from a flame-heated thermocouple. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the chemically reacting flow, and the soot evolution was modeled by the sectional aerosol equations. The governing equations and boundary conditions were discretized on an axisymmetric computational domain by finite differences, and the resulting system of fully coupled, highly nonlinear equations was solved by a damped, modified Newtons method. The microgravity sooting flames were found to have lower soot temperatures and higher volume fraction than their normal gravity counterparts. The soot distribution tends to shift from the centerline of the flame to the wings from normal gravity to

  20. Bacillus thuringiensis Conjugation in Simulated Microgravity

    Science.gov (United States)

    Beuls, Elise; van Houdt, Rob; Leys, Natalie; Dijkstra, Camelia; Larkin, Oliver; Mahillon, Jacques

    2009-10-01

    Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0-g position (simulated microgravity) were compared to those obtained under 1-g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.

  1. Effect of microgravity on an animal-bacteria symbiosis

    Data.gov (United States)

    National Aeronautics and Space Administration — Spaceflight imposes numerous adaptive challenges for terrestrial life. The reduction in gravity or microgravity represents a novel environment that can disrupt...

  2. Single Electron Transistor Platform for Microgravity Proteomics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Proteomic studies in microgravity are crucial to understanding the health effects of spaceflight on astronauts. Unfortunately, existing tools for measuring protein,...

  3. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.

    Directory of Open Access Journals (Sweden)

    Qingqing Lin

    Full Text Available Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM and/or phosphatidylcholine (PC outside/phosphatidylethanolamine (PE and phosphatidylserine (PS inside, and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes "artificial plasma membrane mimicking" ("PMm" vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.

  4. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.

    Science.gov (United States)

    Lin, Qingqing; London, Erwin

    2014-01-01

    Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM) and/or phosphatidylcholine (PC) outside/phosphatidylethanolamine (PE) and phosphatidylserine (PS) inside), and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes "artificial plasma membrane mimicking" ("PMm") vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.

  5. Selective hypergravity stimulation : Its effects on the human balance and gait functions. A model to assess, in normal gravity conditions, some aspects of the perturbations induced on human body by microgravity conditions

    Science.gov (United States)

    Lazerges, M.

    To assess on Earth some reactions of the muscle mechanoreceptors to transitions from normogravity to microgravity, we studied the effects of transitions from hypergravity to normogravity. Hypergravity was selectively applied to the extensor muscles by increasing their activity during half an hour by means of 2 rubber extensible springs stretched from shoulders to feet. Immediate effects and post effects of such a stimulation were measured on quantifying dynamic balance (angular or linear displacement) and gait functions (spatio-temporal parameters and inferior limb length variations). The main results are : (1) a post effect on the balance function, appearing 3 minutes after the end of the selective hypergravity stimulus and improving the efficiency of balance function compared with the basal one, (2) a post effect on the gait function, appearing immediately after the end of the selective stimulation. It concerns the measures which quantify the gait phases during which flexor muscles are active (swing phases). It decreases the efficiency of the gait function compared with the basal one. It disappears 3 minutes after the end of the selective hypergravity stimulation. According to these results, if the effects on the muscle mechanoreceptors of the transitions from normogravity to microgravity looks like those of transitions from hypergravity to normogravity, post effects could be a mechanism of the motor perturbations at the beginning of the orbital flights.

  6. Fluid Flow and Solidification Under Combined Action of Magnetic Fields and Microgravity

    Science.gov (United States)

    Li, B. Q.; Shu, Y.; Li, K.; deGroh, H. C.

    2002-01-01

    Mathematical models, both 2-D and 3-D, are developed to represent g-jitter induced fluid flows and their effects on solidification under combined action of magnetic fields and microgravity. The numerical model development is based on the finite element solution of governing equations describing the transient g-jitter driven fluid flows, heat transfer and solutal transport during crystal growth with and without an applied magnetic field in space vehicles. To validate the model predictions, a ground-based g-jitter simulator is developed using the oscillating wall temperatures where timely oscillating fluid flows are measured using a laser PIV system. The measurements are compared well with numerical results obtained from the numerical models. Results show that a combined action derived from magnetic damping and microgravity can be an effective means to control the melt flow and solutal transport in space single crystal growth systems.

  7. The Strata-l Experiment on Microgravity Regolith Segregation

    Science.gov (United States)

    Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.; hide

    2016-01-01

    The Strata-1 experiment studies the segregation of small-body regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples from sample return missions, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Due to observation of rocky regions on asteorids such as Eros and Itokawa, it has been hypothesized that grain size distribution with depth on an asteroid may be inhomogeneous: specifically, that large boulders have been mobilized to the surface. In terrestrial environments, this size-dependent sorting to the surface of the sample is called the Brazil Nut Effect. The microgravity and acceleration environment on the ISS is similar that of a small asteroid. Thus, Strata-1 investigates size segregation of regolith in an environment analogous to that of small bodies. Strata-1 consists of four regolith simulants in evacuated tubes, as shown in Figure 1 (Top and Middle). The simulants are (1) a crushed and sieved ordinary chondrite meteorite to simulate an asteroidal surface, (2) a carbonaceous chondrite simulant with a mixture of fine and course particles, and two simplified silicate glass simulants; (3) one with angular and (4) another with spherical particles. These materials were chosen to span a range of granular

  8. Ant-Mimicking Spiders: Strategies for Living with Social Insects

    Directory of Open Access Journals (Sweden)

    Fadia Sara Ceccarelli

    2013-01-01

    Full Text Available Mimicry is a fascinating topic, in particular when viewed in terms of selective forces and evolutionary strategies. Mimicry is a system involving a signaller, a signal receiver, and a model and has evolved independently many times in plants and animals. There are several ways of classifying mimicry based on the interactions and cost-benefit scenarios of the parties involved. In this review, I briefly outline the dynamics of the most common types of mimicry to then apply it to some of the spider-ant associative systems known to date. In addition, this review expands on the strategies that ant-associating (in particular ant-mimicking spiders have developed to minimise the costs of living close to colonies of potentially dangerous models. The main strategy that has been noted to date is either chemical mimicry or actively avoiding contact with ants. If these strategies warrant protection for the spider (living close to potentially dangerous models, then the benefits of ant associations would outweigh the costs, and the association will prevail.

  9. Synchrony and motor mimicking in chimpanzee observational learning.

    Science.gov (United States)

    Fuhrmann, Delia; Ravignani, Andrea; Marshall-Pescini, Sarah; Whiten, Andrew

    2014-06-13

    Cumulative tool-based culture underwrote our species' evolutionary success, and tool-based nut-cracking is one of the strongest candidates for cultural transmission in our closest relatives, chimpanzees. However the social learning processes that may explain both the similarities and differences between the species remain unclear. A previous study of nut-cracking by initially naïve chimpanzees suggested that a learning chimpanzee holding no hammer nevertheless replicated hammering actions it witnessed. This observation has potentially important implications for the nature of the social learning processes and underlying motor coding involved. In the present study, model and observer actions were quantified frame-by-frame and analysed with stringent statistical methods, demonstrating synchrony between the observer's and model's movements, cross-correlation of these movements above chance level and a unidirectional transmission process from model to observer. These results provide the first quantitative evidence for motor mimicking underlain by motor coding in apes, with implications for mirror neuron function.

  10. Synchrony and motor mimicking in chimpanzee observational learning

    Science.gov (United States)

    Fuhrmann, Delia; Ravignani, Andrea; Marshall-Pescini, Sarah; Whiten, Andrew

    2014-01-01

    Cumulative tool-based culture underwrote our species' evolutionary success, and tool-based nut-cracking is one of the strongest candidates for cultural transmission in our closest relatives, chimpanzees. However the social learning processes that may explain both the similarities and differences between the species remain unclear. A previous study of nut-cracking by initially naïve chimpanzees suggested that a learning chimpanzee holding no hammer nevertheless replicated hammering actions it witnessed. This observation has potentially important implications for the nature of the social learning processes and underlying motor coding involved. In the present study, model and observer actions were quantified frame-by-frame and analysed with stringent statistical methods, demonstrating synchrony between the observer's and model's movements, cross-correlation of these movements above chance level and a unidirectional transmission process from model to observer. These results provide the first quantitative evidence for motor mimicking underlain by motor coding in apes, with implications for mirror neuron function. PMID:24923651

  11. [Infestation with Enterobius vermicularis mimicking appendicitis].

    Science.gov (United States)

    Levens, Afra M A; Schurink, Maarten; Koetse, Harma A; van Baren, Robertine

    2014-01-01

    Gastrointestinal infestation with the parasite Enterobius vermicularis is common in humans and is usually harmless. Anal pruritus is the most characteristic symptom, but the parasites can cause severe abdominal pain mimicking appendicitis. Early recognition can prevent an unnecessary appendectomy. A six-year-old girl reported to the accident and emergency department with pain in the lower right abdominal region. She was admitted and treated for suspected perforated appendix, following physical examination supplemented with an abdominal CT scan. After antibiotic treatment the symptoms disappeared as did the abscess, apart from a minor amount of residual infiltrate. She was then readmitted twice with recurrent abdominal pain without radiological evidence of an abdominal focus. We decided to conduct a diagnostic laparoscopy and an elective appendectomy à froid. During this procedure living worms were found in the appendix. Treatment with the anthelminthicum mebendazol was effective. Gastro-intestinal infestation with E. vermicularis is very common, especially in young children. This infestation is usually harmless, but can mimic appendicitis. This infestation is easily treatable with mebendazol.

  12. Hyperdense dots mimicking microcalcifications : Mammographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Hyeon; Park, Jeong Mi; Goo, Hyun Woo; Bang, Sun Woo [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    1996-12-01

    To differentiate fine hyperdense dots mimicking microcalcifications from true microcalcifications on mammography. Mammograms showing hyperdense dots in ten patients (mean age, 59 years) were evaluated. Two radiologists were asked to differentiate with the naked eye the hyperdense dots seen on ten mammograms and proven microcalcifications seen on ten mammograms. Densitometry was also performed for all lesions and the contrast index was calculated. The shape and distribution of the hyperdense dots were evaluated and enquires were made regarding any history of breast disease and corresponding treatment. Biopsies were performed for two patients with hyperdense dots. Two radiologists made correct diagnoses in 19/20 cases(95%). The contrast index was 0.10-0.88 (mean 0.58) for hyperdense dots and 0.02-0.45 (mean 0.17) for true microcalcifications. The hyperdense dots were finer and homogeneously rounder than the microcalcifications. Distribution of the hyperdense dots was more superficial in subcutaneous fat (seven cases) and subareolar area (six cases). All ten patients with hyperdense dots had history of mastitis and abscesses and had been treated by open drainage (six cases) and/or folk remedy (four cases). In eight patients, herb patches had been attached. Biopsies of hyperdense dots did not show any microcalcification or evidence of malignancy. These hyperdense dots were seen mainly in older patients. Their characteristic density, shape, distribution and clinical history makes differential diagnosis from true microcalcifications easy and could reduce unnecessary diagnostic procedures such as surgical biopsy.

  13. Microfabricated adhesive mimicking gecko foot-hair

    Science.gov (United States)

    Geim, A. K.; Dubonos, S. V.; Grigorieva, I. V.; Novoselov, K. S.; Zhukov, A. A.; Shapoval, S. Yu.

    2003-07-01

    The amazing climbing ability of geckos has attracted the interest of philosophers and scientists alike for centuries. However, only in the past few years has progress been made in understanding the mechanism behind this ability, which relies on submicrometre keratin hairs covering the soles of geckos. Each hair produces a miniscule force ~10-7 N (due to van der Waals and/or capillary interactions) but millions of hairs acting together create a formidable adhesion of ~10 N cm-2: sufficient to keep geckos firmly on their feet, even when upside down on a glass ceiling. It is very tempting to create a new type of adhesive by mimicking the gecko mechanism. Here we report on a prototype of such 'gecko tape' made by microfabrication of dense arrays of flexible plastic pillars, the geometry of which is optimized to ensure their collective adhesion. Our approach shows a way to manufacture self-cleaning, re-attachable dry adhesives, although problems related to their durability and mass production are yet to be resolved.

  14. Huge desmoid tumor of the anterior abdominal wall mimicking an ...

    African Journals Online (AJOL)

    Huge desmoid tumor of the anterior abdominal wall mimicking an intraabdominal mass in a postpartum woman: a case report. Khaled Trigui, Mahdi Bouassida, Houda Kilani, Mohamed Mongi Mighri, Selim Sassi, Fathi Chebbi, Hassen Touinsi, Sadok Sassi ...

  15. Development of Active Learning Curriculum for CASPER's Microgravity Drop Tower

    Science.gov (United States)

    Carmona-Reyes, Jorge; Wang, Li; York, Judy; Matthews, Lorin; Laufer, Rene; Cook, Mike; Schmoke, Jimmy; Hyde, Truell

    2016-10-01

    As CASPER's new drop tower comes on line, plans for correlated educational research curricula are underway. CASPER's educational research team is working on developing curricula specific to the CASPER drop tower, modeled on a contest currently in use by (BEST) Robotics Inc. within central Texas independent school districts. The curricula integrates age specific use of computer programming software packages such as ``Scratch'' with industry standard communication protocols and augmented reality applications. Content is constructed around an earth and space science framework, covering subjects such as stars and galaxies, matter and energy, fusion and fission at a middle school level. CASPER faculty are partnering with the Region 12 Service Center; this combination provides a wide range of expertise that includes professional development, pedagogical methods, computational thinking in addition to microgravity and space science research expertise. The details of this work will be presented and samples of the manner in which it is impacting the CASPER research and educational outreach partnership will be discussed.

  16. A hydroponic method for plant growth in microgravity

    Science.gov (United States)

    Wright, B. D.

    1985-01-01

    A hydroponic apparatus under development for long-term microgravity plant growth is described. The capillary effect root environment system (CERES) is designed to keep separate the nutrient and air flows, although both must be simultaneously available to the roots. Water at a pressure slightly under air pressure is allowed to seep into a plastic depression covered by a plastic screen and a porous membrane. A root in the air on the membrane outer surface draws the moisture through it. The laboratory model has a wire-based 1.241 mm mesh polyethylene screen and a filter membrane with 0.45 micron pores, small enough to prohibit root hair penetration. The design eliminates the need to seal-off the plant environment. Problems still needing attention include scaling up of the CERES size, controlling biofouling of the membrane, and extending the applications to plants without fibrous root systems.

  17. Plasticity of mesenchymal stem cells under microgravity: from cytoskeletal reorganization to commitment shift

    Science.gov (United States)

    Buravkova, Ludmila

    Mesenchymal stem cells (MSCs) can be used to examine osteogenesis of uncommitted cells maintaining the bone differentiation potential such as osteogenic gene expression, osteogenic markers, matrix maturation and mineralization. MSCs are therefore a good model for studying osteogenesis in the space environment. Recent investigations have demonstrated that MSCs change in response to microgravity and, consequently, can be involved in the development of osteopenia detected in space travelers. This is a factor that can limit human space missions due to potential risks of osteoporosis and its aftereffects during and after flight. Simulated microgravity inhibited MSC differentiation towards osteoblasts and accelerated adipocyte development due to cytoskeleton modifications, including its structure and regulation associated with signal transduction cascades. We identified transient changes in the actin cytoskeleton of non-committed human bone marrow MSCs in short-term RPM experiments. In addition, we detected transient changes in the expression of genes encoding actin cytoskeleton proteins and associated elements (ACTA1, ACTG, RHOA, CFL1, VCL). When discussing the microgravity effects on MSC osteogenic differentiation, it should be mentioned the inhibition of Runx2 and ALPL and stimulation of PPARg2 in the MSCs induced for osteogenesis. It is probable that the reciprocal regulation of the two transcription factors is a molecular mechanism underlying progenitor cell response to microgravity. It is very likely that these genes are involved in the universal circuits within which mechanical (or gravity ) signals are sensed by MSCs. Recently, the list of osteogenic markers was extended to include several new proteins as microgravity targets (proteoglycans, osteomodulin, osteoglycin). It can be believed that exposure to microgravity produces similar effects on mature bone cells (osteoblasts) and non-committed osteogenic cells (MSCs). This finds a support in the fact that

  18. Determination of Roles of Microgravity and Ionizing Radiation on the Reactivation of Epstein-Barr Virus In Vitro

    Science.gov (United States)

    Mehta, Satish K; Renner, Ashlie; Stowe, Raymond; Bloom, David; Pierson, Duane

    2015-01-01

    Astronauts experience symptomatic and asymptomatic herpes virus reactivation during spaceflight. We have shown increases in reactivation of Epstein-Barr virus (EBV), cytomegalovirus (CMV) and varicella zoster virus (VZV) and shedding in body fluids (saliva and urine) in astronauts during space travel. Alterations in immunity, increased stress hormone levels, microgravity, increased radiation, and other conditions unique to spaceflight may promote reactivation of latent herpes viruses. Unique mechanico-physico forces associated with spaceflight can have profound effects on cellular function, especially immune cells. In space flight analog studies such as Antarctica, bed rest studies, and NASA's undersea habitat (Aquarius), reactivation of these viruses occurred, but to a lesser extent than spaceflight. Spaceflight analogs model some spaceflight factors, but none of the analogs recreates all factors experienced in space. Most notably, microgravity and radiation are not included in many analogs. Stress, processed through the HPA axis and SAM systems, induces viral reactivation. However, the respective roles of microgravity and increased space radiation levels or if any synergy exists are not known. Therefore, we studied the effect of modeled space radiation and/or microgravity, independent of the immune system on the changes in cellular gene expression that results in viral (EBV) reactivation. The effects of modeled microgravity and low shear on EBV replication and cellular and EBV gene expression were studied in human B-lymphocyte cell cultures. Latently infected B-lymphocytes were propagated in the rotating wall bioreactor and irradiated with the various dosages of gamma irradiation. At specific time intervals following exposure to modeled microgravity, the cells and supernatant were harvested and reactivation of EBV were assessed by measuring EBV and gene expression, DNA methylation, and infectious virus production.

  19. Microgravity simulation activates Cdc42 via Rap1GDS1 to promote vascular branch morphogenesis during vasculogenesis

    Directory of Open Access Journals (Sweden)

    Shouli Wang

    2017-12-01

    Full Text Available Gravity plays an important role in normal tissue maintenance. The ability of stem cells to repair tissue loss in space through regeneration and differentiation remains largely unknown. To investigate the impact of microgravity on blood vessel formation from pluripotent stem cells, we employed the embryoid body (EB model for vasculogenesis and simulated microgravity by clinorotation. We first differentiated mouse embryonic stem cells into cystic EBs containing two germ layers and then analyzed vessel formation under clinorotation. We observed that endothelial cell differentiation was slightly reduced under clinorotation, whereas vascular branch morphogenesis was markedly enhanced. EB-derived endothelial cells migrated faster, displayed multiple cellular processes, and had higher Cdc42 and Rac1 activity when subjected to clinorotation. Genetic analysis and rescue experiments demonstrated that Cdc42 but not Rac1 is required for microgravity-induced vascular branch morphogenesis. Furthermore, affinity pull-down assay and mass spectrometry identified Rap1GDS1 to be a Cdc42 guanine nucleotide exchange factor, which was upregulated by clinorotation. shRNA-mediated knockdown of Rap1GDS1 selectively suppressed Cdc42 activation and inhibited both baseline and microgravity-induced vasculogenesis. This was rescued by ectopic expression of constitutively active Cdc42. Taken together, these results support the notion that simulated microgravity activates Cdc42 via Rap1GDS1 to promote vascular branch morphogenesis.

  20. ISS Microgravity Research Payload Training Methodology

    Science.gov (United States)

    Schlagheck, Ronald; Geveden, Rex (Technical Monitor)

    2001-01-01

    The NASA Microgravity Research Discipline has multiple categories of science payloads that are being planned and currently under development to operate on various ISS on-orbit increments. The current program includes six subdisciplines; Materials Science, Fluids Physics, Combustion Science, Fundamental Physics, Cellular Biology and Macromolecular Biotechnology. All of these experiment payloads will require the astronaut various degrees of crew interaction and science observation. With the current programs planning to build various facility class science racks, the crew will need to be trained on basic core operations as well as science background. In addition, many disciplines will use the Express Rack and the Microgravity Science Glovebox (MSG) to utilize the accommodations provided by these facilities for smaller and less complex type hardware. The Microgravity disciplines will be responsible to have a training program designed to maximize the experiment and hardware throughput as well as being prepared for various contingencies both with anomalies as well as unexpected experiment observations. The crewmembers will need various levels of training from simple tasks as power on and activate to extensive training on hardware mode change out to observing the cell growth of various types of tissue cultures. Sample replacement will be required for furnaces and combustion type modules. The Fundamental Physics program will need crew EVA support to provide module change out of experiment. Training will take place various research centers and hardware development locations. It is expected that onboard training through various methods and video/digital technology as well as limited telecommunication interaction. Since hardware will be designed to operate from a few weeks to multiple research increments, flexibility must be planned in the training approach and procedure skills to optimize the output as well as the equipment maintainability. Early increment lessons learned

  1. Stereoscopic measurements of particle dispersion in microgravity turbulent flow

    Science.gov (United States)

    Groszmann, Daniel Eduardo

    2001-08-01

    The presence of particles in turbulent flows adds complexity to an already difficult subject. The work described in this research dissertation was intended to characterize the effects of inertia, isolated from gravity, on the dispersion of solid particles in a turbulent air flow. The experiment consisted of releasing particles of various sizes in an enclosed box of fan- generated, homogenous, isotropic, and stationary turbulent airflow and examining the particle behavior in a microgravity environment. The turbulence box was characterized in ground-based experiments using laser Doppler velocimetry techniques. Microgravity was established by free-floating the experiment apparatus during the parabolic trajectory of NASA's KC-135 reduced gravity aircraft. The microgravity generally lasted about 20 seconds, with about fifty parabolas per flight and one flight per day over a testing period of four days. To cover a broad range of flow regimes of interest, particles with Stokes numbers (St) of 1 to 300 were released in the turbulence box. The three- dimensional measurements of particle motion were made using a three-camera stereo imaging system with a particle-tracking algorithm. Digital photogrammetric techniques were used to determine the particle locations in three-dimensional space from the calibrated camera images. The epipolar geometry constraint was used to identify matching particles from the three different views and a direct spatial intersection scheme determined the coordinates of particles in three-dimensional space. Using velocity and acceleration constraints, particles in a sequence of frames were matched resulting in particle tracks and dispersion measurements. The goal was to compare the dispersion of different Stokes number particles in zero gravity and decouple the effects of inertia and gravity on the dispersion. Results show that higher inertia particles disperse less in zero gravity, in agreement with current models. Particles with St ~ 200

  2. Subjective Straight Ahead Orientation in Microgravity

    Science.gov (United States)

    Clement, G.; Reschke, M. F.; Wood, S. J.

    2015-01-01

    This joint ESA NASA study will address adaptive changes in spatial orientation related to the subjective straight ahead and the use of a vibrotactile sensory aid to reduce perceptual errors. The study will be conducted before and after long-duration expeditions to the International Space Station (ISS) to examine how spatial processing of target location is altered following exposure to microgravity. This study addresses the sensorimotor research gap to "determine the changes in sensorimotor function over the course of a mission and during recovery after landing."

  3. Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and impaired regeneration in murine femoral Quadriceps

    Science.gov (United States)

    Radugina, E. A.; Almeida, E. A. C.; Blaber, E.; Poplinskaya, V. A.; Markitantova, Y. V.; Grigoryan, E. N.

    2018-02-01

    immunolocalization, as well as Myogenin expression analysis. In addition, we have detected positive nuclear immunolocalization of c-Jun and c-Myc proteins indicating their sensitivity to changes in gravitational loading in a given model. In summary, long-term spaceflight in microgravity caused significant atrophy and degeneration of the femoral Quadriceps muscle group, and it may interfere with muscle regenerative processes by inducing apoptosis in newly-formed myofibrils during their differentiation phase.

  4. Toxicology Analysis of Tissue-Mimicking Phantom Made From Gelatin

    Science.gov (United States)

    Dolbashid, A. S.; Hamzah, N.; Zaman, W. S. W. K.; Mokhtar, M. S.

    2017-06-01

    Skin phantom mimics the biological skin tissues as it have the ability to respond to changes in its environment. The development of tissue-mimicking phantom could contributes towards the reduce usage of animal in cosmetics and pharmacokinetics. In this study, the skin phantoms made from gelatin were tested with four different commonly available cosmetic products to determine the toxicity of each substance. The four substances used were; mercury-based whitening face cream, carcinogenic liquid make-up foundation, paraben-based acne cleanser, and organic lip balm. Toxicity test were performed on all of the phantoms. For toxicity testing, topographical and electrophysiological changes of the phantoms were evaluated. The ability of each respective phantom to react with mild toxic substances and its electrical resistance were analysed in to determine the toxicity of all the phantom models. Four-electrode method along with custom made electrical impedance analyser was used to differentiate electrical resistance between intoxicated phantom and non-intoxicated phantom in this study. Electrical resistance values obtained from the phantom models were significantly higher than the control group. The result obtained suggests the phantom as a promising candidate to be used as alternative for toxicology testing in the future.

  5. Bio-Inspired PVDF-Based, Mouse Whisker Mimicking, Tactile Sensor

    Directory of Open Access Journals (Sweden)

    Mohsin Islam Tiwana

    2016-10-01

    Full Text Available The design and fabrication of a Polyvinylidene fluoride (PVDF based, mouse (or rodent whisker mimicking, tactile sensor is presented. Unlike previous designs reported in the literature, this sensor mimics the mouse whisker not only mechanically, but it also makes macro movements just like a real mouse whisker in a natural environment. We have developed a mathematical model and performed finite element analysis using COMSOL, in order to optimise the whisker to have the same natural frequency as that of a biological whisker. Similarly, we have developed a control system that enables the whisker mimicking sensor to vibrate at variable frequencies and conducted practical experiments to validate the response of the sensor. The natural frequency of the whisker can be designed anywhere between 35 and 110 Hz, the same as a biological whisker, by choosing different materials and physical dimensions. The control system of this sensor enables the whisker to vibrate between 5 and 236 Hz.

  6. Ruptured ectopic pregnancy mimicking acute pancreatitis.

    Science.gov (United States)

    Mitura, Kryspin; Romanczuk, Mikolaj

    2009-05-01

    Ectopic pregnancy may lead to massive haemorrhage, infertility or death. Prompt diagnosis and treatment are crucial to save patients who would otherwise die. Serum amylase and lipase measurements are known biochemical markers of pancreatic inflammation and a recognized finding that may help diagnose acute pancreatitis. To the best of our knowledge (Medline, Pubmed, Cochrane Library have been researched) the following study presents the first case of ruptured ectopic pregnancy accompanied by markedly elevated amylase and lipase levels mimicking acute pancreatitis ever reported. A previously healthy, nulliparous 35-year-old woman was admitted to hospital with a 2-day history of abdominal pain and vomiting. Her last menstrual period was 7 weeks before presentation. At the admission, the patient was hemodynamically stable. The abdomen was soft with tenderness in its mesogastric area. Blood tests revealed markedly elevated activities of the pancreatic enzymes. Acute pancreatitis was the early clinical diagnosis and subsequent therapy was initiated. After 12 hours the condition of the patient suddenly worsened. She was clinically shocked with pallor, hypotension and tachycardia. Laboratory tests revealed anaemia and increased activities of pancreatic enzymes. An ultrasound examination demonstrated an accumulation of intraperitoneal fluid in the pelvis. Subsequently, the patient was subjected to immediate laparotomy. The peritoneal cavity contained large amount of blood. A cystic mass was found and extracted from the ruptured and bleeding right fallopian tube. Histological examination confirmed a rupture of an ectopic pregnancy of a 6-week-old foetus with an intact gestational sac. The patient made an uneventful recovery and was discharged from hospital after 8 days. Our case proves that a misdiagnosed ruptured ectopic pregnancy in the event of elevated activities of pancreatic enzymes may lead to delayed diagnosis of haemorrhage to peritoneum, resulting in hemodynamic

  7. CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity

    International Nuclear Information System (INIS)

    Liu, D R; Mangelinck-Noël, N; Thi, H Nguyen; Billia, B; Gandin, Ch-A; Zimmermann, G; Sturz, L

    2016-01-01

    A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement. (paper)

  8. Effect of Simulated Microgravity on the Activity of Regulatory Enzymes of Glycolysis and Gluconeogenesis in Mice Liver

    Science.gov (United States)

    Ramirez, Joaquin; Periyakaruppan, Adaikkappan; Sarkar, Shubhashish; Ramesh, Govindarajan T.; Sharma, S. Chidananda

    2014-02-01

    Gravity supports all the life activities present on earth. Microgravity environments have effect on the biological functions and physiological status of an individual. The present study was undertaken to investigate the effect of simulated microgravity on important regulatory enzymes of carbohydrate metabolism in liver using HLS mice model. Following hind limb unloading of mice for 11 days the animal's average body weights were found to be not different, while the liver weights were decreased and found to be significantly different ( p glycolysis and increased gluconeogenesis in liver and reciprocally regulated.

  9. Functional changes in the snail statocyst system elicited by microgravity.

    Science.gov (United States)

    Balaban, Pavel M; Malyshev, Aleksey Y; Ierusalimsky, Victor N; Aseyev, Nikolay; Korshunova, Tania A; Bravarenko, Natasha I; Lemak, M S; Roshchin, Matvey; Zakharov, Igor S; Popova, Yekaterina; Boyle, Richard

    2011-03-29

    The mollusk statocyst is a mechanosensing organ detecting the animal's orientation with respect to gravity. This system has clear similarities to its vertebrate counterparts: a weight-lending mass, an epithelial layer containing small supporting cells and the large sensory hair cells, and an output eliciting compensatory body reflexes to perturbations. In terrestrial gastropod snail we studied the impact of 16- (Foton M-2) and 12-day (Foton M-3) exposure to microgravity in unmanned orbital missions on: (i) the whole animal behavior (Helix lucorum L.), (ii) the statoreceptor responses to tilt in an isolated neural preparation (Helix lucorum L.), and (iii) the differential expression of the Helix pedal peptide (HPep) and the tetrapeptide FMRFamide genes in neural structures (Helix aspersa L.). Experiments were performed 13-42 hours after return to Earth. Latency of body re-orientation to sudden 90° head-down pitch was significantly reduced in postflight snails indicating an enhanced negative gravitaxis response. Statoreceptor responses to tilt in postflight snails were independent of motion direction, in contrast to a directional preference observed in control animals. Positive relation between tilt velocity and firing rate was observed in both control and postflight snails, but the response magnitude was significantly larger in postflight snails indicating an enhanced sensitivity to acceleration. A significant increase in mRNA expression of the gene encoding HPep, a peptide linked to ciliary beating, in statoreceptors was observed in postflight snails; no differential expression of the gene encoding FMRFamide, a possible neurotransmission modulator, was observed. Upregulation of statocyst function in snails following microgravity exposure parallels that observed in vertebrates suggesting fundamental principles underlie gravi-sensing and the organism's ability to adapt to gravity changes. This simple animal model offers the possibility to describe general

  10. A Study of Nucleate Boiling with Forced Convection in Microgravity

    Science.gov (United States)

    Merte, Herman, Jr.

    1999-01-01

    bubble and the heater surface. The enhancement of the boiling process with low velocities in earth gravity for those orientations producing the formation of a liquid macrolayer described above, accompanied by "sliding" vapor bubbles, has been demonstrated. The enhancement was presented as a function of orientation, subcooling, and heated length, while a criterion for the heat transfer for mixed natural/forced convection nucleate boiling was given previously. A major unknown in the prediction and application of flow boiling heat transfer in microgravity is the upper limit of the heat flux for the onset of dryout (or critical heat flux - CHF), for given conditions of fluid-heater surfaces, including geometry, system pressure and bulk liquid subcooling. It is clearly understood that the behavior in microgravity will be no different than on earth with sufficiently high flow velocities, and would require no space experimentation. However, the boundary at which this takes place is still an unknown. Previous results of CHF measurements were presented for low velocity flow boiling at various orientations in earth gravity as a function of flow velocity and bulk liquid subcooling, along with preliminary measurements of bubble residence times on a flat heater surface. This showed promise as a parameter to be used in modeling the CHF, both in earth gravity and in microgravity. The objective of the work here is to draw attention to and show results of current modeling efforts for the CHF, with low velocities in earth gravity at different orientations and subcoolings. Many geometrical possibilities for a heater surface exist in flowing boiling, with boiling on the inner and outer surfaces of tubes perhaps being the most common. If the vapor bubble residence time on and departure size from the heater surface bear a relationship to the CHF, as results to be given indicate, it is important that visualization of and access to vapor bubble growth be conveniently available for research

  11. Functional changes in the snail statocyst system elicited by microgravity.

    Directory of Open Access Journals (Sweden)

    Pavel M Balaban

    Full Text Available BACKGROUND: The mollusk statocyst is a mechanosensing organ detecting the animal's orientation with respect to gravity. This system has clear similarities to its vertebrate counterparts: a weight-lending mass, an epithelial layer containing small supporting cells and the large sensory hair cells, and an output eliciting compensatory body reflexes to perturbations. METHODOLOGY/PRINCIPAL FINDINGS: In terrestrial gastropod snail we studied the impact of 16- (Foton M-2 and 12-day (Foton M-3 exposure to microgravity in unmanned orbital missions on: (i the whole animal behavior (Helix lucorum L., (ii the statoreceptor responses to tilt in an isolated neural preparation (Helix lucorum L., and (iii the differential expression of the Helix pedal peptide (HPep and the tetrapeptide FMRFamide genes in neural structures (Helix aspersa L.. Experiments were performed 13-42 hours after return to Earth. Latency of body re-orientation to sudden 90° head-down pitch was significantly reduced in postflight snails indicating an enhanced negative gravitaxis response. Statoreceptor responses to tilt in postflight snails were independent of motion direction, in contrast to a directional preference observed in control animals. Positive relation between tilt velocity and firing rate was observed in both control and postflight snails, but the response magnitude was significantly larger in postflight snails indicating an enhanced sensitivity to acceleration. A significant increase in mRNA expression of the gene encoding HPep, a peptide linked to ciliary beating, in statoreceptors was observed in postflight snails; no differential expression of the gene encoding FMRFamide, a possible neurotransmission modulator, was observed. CONCLUSIONS/SIGNIFICANCE: Upregulation of statocyst function in snails following microgravity exposure parallels that observed in vertebrates suggesting fundamental principles underlie gravi-sensing and the organism's ability to adapt to gravity

  12. Media Compositions for Three Dimensional Mammalian Tissue Growth Under Microgravity Culture Conditions

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  13. Media Compositions for Three-Dimensional Mammalian Tissue Growth under Microgravity Culture Conditions

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  14. Resource Management in the Microgravity Science Division

    Science.gov (United States)

    Casselle, Justine

    2004-01-01

    In the Microgravity Science Division, the primary responsibilities of the Business Management Office are resource management and data collection. Resource management involves working with a budget to do a number of specific projects, while data collection involves collecting information such as the status of projects and workforce hours. This summer in the Business Management Office I assisted Margie Allen with resource planning and the implementation of specific microgravity projects. One of the main duties of a Project Control Specialists, such as my mentor, is to monitor and analyze project manager s financial plans. Project managers work from the bottom up to determine how much money their project will cost. They then set up a twelve month operating plan which shows when money will be spent. I assisted my mentor in checking for variances in her data against those of the project managers. In order to successfully check for those variances, we had to understand: where the project is including plans vs. actual performance, why it is in its present condition, and what the future impact will be based on known budgetary parameters. Our objective was to make sure that the plan, or estimated resources input, are a valid reflection of the actual cost. To help with my understanding of the process, over the course of my tenure I had to obtain skills in Microsoft Excel and Microsoft Access.

  15. Collective search by ants in microgravity

    Directory of Open Access Journals (Sweden)

    Stefanie M. Countryman

    2015-03-01

    Full Text Available The problem of collective search is a tradeoff between searching thoroughly and covering as much area as possible. This tradeoff depends on the density of searchers. Solutions to the problem of collective search are currently of much interest in robotics and in the study of distributed algorithms, for example to design ways that without central control robots can use local information to perform search and rescue operations. Ant colonies operate without central control. Because they can perceive only local, mostly chemical and tactile cues, they must search collectively to find resources and to monitor the colony's environment. Examining how ants in diverse environments solve the problem of collective search can elucidate how evolution has led to diverse forms of collective behavior. An experiment on the International Space Station in January 2014 examined how ants (Tetramorium caespitum perform collective search in microgravity. In the ISS experiment, the ants explored a small arena in which a barrier was lowered to increase the area and thus lower ant density. In microgravity, relative to ground controls, ants explored the area less thoroughly and took more convoluted paths. It appears that the difficulty of holding on to the surface interfered with the ants’ ability to search collectively. Ants frequently lost contact with the surface, but showed a remarkable ability to regain contact with the surface.

  16. Congruent Strain Specific Intestinal Persistence of Lactobacillus plantarum in an Intestine-Mimicking In Vitro System and in Human Volunteers.

    NARCIS (Netherlands)

    Bokhorst-van de Veen, H. van; Swam, I. van; Wels, M.W.; Bron, P.A.; Kleerebezem, M

    2012-01-01

    BACKGROUND: An important trait of probiotics is their capability to reach their intestinal target sites alive to optimally exert their beneficial effects. Assessment of this trait in intestine-mimicking in vitro model systems has revealed differential survival of individual strains of a species.

  17. Congruent Strain Specific Intestinal Persistence of Lactobacillus plantarum in an Intestine-Mimicking In Vitro System and in Human Volunteers

    NARCIS (Netherlands)

    Bokhorst-van de Veen, van H.; Swam, van I.; Wels, M.; Bron, P.A.; Kleerebezem, M.

    2012-01-01

    BACKGROUND: An important trait of probiotics is their capability to reach their intestinal target sites alive to optimally exert their beneficial effects. Assessment of this trait in intestine-mimicking in vitro model systems has revealed differential survival of individual strains of a species.

  18. Shear History Extensional Rheology Experiment II (SHERE II) Microgravity Rheology with Non-Newtonian Polymeric Fluids

    Science.gov (United States)

    Jaishankar, Aditya; Haward, Simon; Hall, Nancy Rabel; Magee, Kevin; McKinley, Gareth

    2012-01-01

    The primary objective of SHERE II is to study the effect of torsional preshear on the subsequent extensional behavior of filled viscoelastic suspensions. Microgravity environment eliminates gravitational sagging that makes Earth-based experiments of extensional rheology challenging. Experiments may serve as an idealized model system to study the properties of lunar regolith-polymeric binder based construction materials. Filled polymeric suspensions are ubiquitous in foods, cosmetics, detergents, biomedical materials, etc.

  19. Microgravity-Enhanced Stem Cell Selection

    Science.gov (United States)

    Claudio, Pier Paolo; Valluri, Jagan

    2011-01-01

    Stem cells, both embryonic and adult, promise to revolutionize the practice of medicine in the future. In order to realize this potential, a number of hurdles must be overcome. Most importantly, the signaling mechanisms necessary to control the differentiation of stem cells into tissues of interest remain to be elucidated, and much of the present research on stem cells is focused on this goal. Nevertheless, it will also be essential to achieve large-scale expansion and, in many cases, assemble cells in 3D as transplantable tissues. To this end, microgravity analog bioreactors can play a significant role. Microgravity bioreactors were originally conceived as a tool to study the cellular responses to microgravity. However, the technology can address some of the shortcomings of conventional cell culture systems; namely, the deficiency of mass transport in static culture and high mechanical shear forces in stirred systems. Unexpectedly, the conditions created in the vessel were ideal for 3D cell culture. Recently, investigators have demonstrated the capability of the microgravity bioreactors to expand hematopoietic stem cells compared to static culture, and facilitate the differentiation of umbilical cord stem cells into 3D liver aggregates. Stem cells are capable of differentiating into functional cells. However, there are no reliable methods to induce the stem cells to form specific cells or to gain enough cells for transplantation, which limits their application in clinical therapy. The aim of this study is to select the best experimental setup to reach high proliferation levels by culturing these cells in a microgravity-based bioreactor. In typical cell culture, the cells sediment to the bottom surface of their container and propagate as a one-cell-layer sheet. Prevention of such sedimentation affords the freedom for self-assembly and the propagation of 3D tissue arrays. Suspension of cells is easily achievable using stirred technologies. Unfortunately, in

  20. Categorization of Brazil nut effect and its reverse under less-convective conditions for microgravity geology

    Science.gov (United States)

    Chujo, Toshihiro; Mori, Osamu; Kawaguchi, Junichiro; Yano, Hajime

    2018-03-01

    Due to its important role in the sorting of particles on microgravity bodies by size, Brazil nut effect (BNE) is a major subject of study for understanding the evolution of planetesimals. Recent studies have revealed that the mechanism for the BNE on microgravity bodies is the percolation of particles or void-filling, rather than granular convection. This study also considers the mechanism for the BNE under `less-convective' conditions and introduces three categories of behaviour for particles that mainly depend on the dimensionless acceleration of vibration Γ (ratio of maximum acceleration to gravitational acceleration), using a simplified analytical model. The conditions for Γ proposed by the model for each category are verified by both numerical simulations and laboratory experiments. `Less-convective' conditions are realized by reducing the friction force between particles and the wall. We found three distinct behaviours of the particles when Γ > 1: the (i) `slow BNE', (ii) `fast BNE', and (iii) `fluid motion' (the reverse BNE may be induced), and the thresholds for Γ correspond well with those proposed by the simple model. We also applied this categorization to low-gravity environments and found that the categorization scales with gravity level. These results imply that laboratory experiments can provide knowledge of granular mobility on the surface of microgravity bodies.

  1. Effect of IR Laser on Myoblasts: Prospects of Application for Counteracting Microgravity-Induced Muscle Atrophy

    Science.gov (United States)

    Monici, Monica; Cialdai, Francesca; Romano, Giovanni; Corsetto, Paola Antonia; Rizzo, Angela Maria; Caselli, Anna; Ranaldi, Francesco

    2013-02-01

    Microgravity-induced muscle atrophy is a problem of utmost importance for the impact it may have on the health and performance of astronauts. Therefore, appropriate countermeasures are needed to prevent disuse atrophy and favour muscle recovery. Muscle atrophy is characterized by loss of muscle mass and strength, and a shift in substrate utilization from fat to glucose, that leads to a reduced metabolic efficiency and enhanced fatigability. Laser therapy is already used in physical medicine and rehabilitation to accelerate muscle recovery and in sports medicine to prevent damages produced by metabolic disturbances and inflammatory reactions after heavy exercise. The aim of the research we present was to get insights on possible benefits deriving from the application of an advanced infrared laser system to counteract deficits of muscle energy metabolism and stimulate the recovery of the hypotrophic tissue. The source used was a Multiwave Locked System (MLS) laser, which combines continuous and pulsed emissions at 808 nm and 905 nm, respectively. We studied the effect of MLS treatment on morphology and energy metabolism of C2C12 cells, a widely accepted myoblast model, previously exposed to microgravity conditions modelled by a Random Positioning Machine. The MLS laser treatment was able to restore basal levels of serine/threonine protein phosphatase activity and to counteract cytoskeletal alterations and increase in glycolytic enzymes activity that occurred following the exposure to modelled microgravity. In conclusion, the results provide interesting insights for the application of infrared laser in the treatment of muscle atrophy.

  2. Restless legs syndrome mimicking S1 radiculopathy.

    Science.gov (United States)

    Zambelis, Th; Wolgamuth, B R; Papoutsi, S N; Economou, N T

    2016-01-01

    mimicking several pathological conditions, Restless Legs Syndrome prevalence on general population according to various large epidemiological studies and pathogenic hypotheses on the issue of Restless Legs Syndrome are discussed. Finally, by presenting another possible "RLS-mimic" our aim is to highlight the common misdiagnosis of Restless Legs Syndrome, which can mimic a variety of disorders, some of which are very common, such as an S1 radiculopathy, thus raising concern among doctors of various specialties addressed to by Restless Legs Syndrome sufferers, on the importance of proper diagnosis of the syndrome.

  3. An innovative approach to the development of a portable unit for analytical flame characterization in a microgravity environment

    Science.gov (United States)

    Dubinskiy, Mark A.; Kamal, Mohammed M.; Misra, Prabhaker

    1995-01-01

    The availability of manned laboratory facilities in space offers wonderful opportunities and challenges in microgravity combustion science and technology. In turn, the fundamentals of microgravity combustion science can be studied via spectroscopic characterization of free radicals generated in flames. The laser-induced fluorescence (LIF) technique is a noninvasive method of considerable utility in combustion physics and chemistry suitable for monitoring not only specific species and their kinetics, but it is also important for imaging of flames. This makes LIF one of the most important tools for microgravity combustion science. Flame characterization under microgravity conditions using LIF is expected to be more informative than other methods aimed at searching for effects like pumping phenomenon that can be modeled via ground level experiments. A primary goal of our work consisted in working out an innovative approach to devising an LIF-based analytical unit suitable for in-space flame characterization. It was decided to follow two approaches in tandem: (1) use the existing laboratory (non-portable) equipment and determine the optimal set of parameters for flames that can be used as analytical criteria for flame characterization under microgravity conditions; and (2) use state-of-the-art developments in laser technology and concentrate some effort in devising a layout for the portable analytical equipment. This paper presents an up-to-date summary of the results of our experiments aimed at the creation of the portable device for combustion studies in a microgravity environment, which is based on a portable UV tunable solid-state laser for excitation of free radicals normally present in flames in detectable amounts. A systematic approach has allowed us to make a convenient choice of species under investigation, as well as the proper tunable laser system, and also enabled us to carry out LIF experiments on free radicals using a solid-state laser tunable in the UV.

  4. Changes in multifidus and abdominal muscle size in response to microgravity: possible implications for low back pain research.

    Science.gov (United States)

    Hides, J A; Lambrecht, G; Stanton, W R; Damann, V

    2016-05-01

    In microgravity, muscle atrophy occurs in the intrinsic muscles of the spine, with changes also observed in the abdominal muscles. Exercises are undertaken on the International Space Station and on Earth following space flight to remediate these effects. Similar effects have been seen on Earth in prolonged bed rest studies and in people with low back pain (LBP). The aim of this case report was to examine the effects of microgravity, exercise in microgravity and post-flight rehabilitation on the size of the multifidus and antero-lateral abdominal muscles. Ultrasound imaging was used to assess size of the multifidus, transversus abdominis and internal oblique muscles at four time points: pre-flight and after daily rehabilitation on day one (R + 1), day 8 (R + 8) and day 14 (R + 14) after return to Earth (following 6 months in microgravity). Exercises in microgravity maintained multifidus size at L2-L4, however, after spaceflight, size of the multifidus muscle at L5 was reduced, size of the internal oblique muscle was increased and size of transversus abdominis was reduced. Rehabilitation post-space flight resulted in hypertrophy of the multifidus muscle to pre-mission size at the L5 vertebral level and restoration of antero-lateral abdominal muscle size. Exercise in space can prevent loss of spinal intrinsic muscle size. For the multifidus muscles, effectiveness varied at different levels of the spine. Post-mission rehabilitation targeting specific motor control restored muscle balance between the antero-lateral abdominal and multifidus muscles, similar to results from intervention trials for people with LBP. A limitation of the current investigation is that only one astronaut was studied, however, the microgravity model could be valuable as predictable effects on trunk muscles can be induced and interventions evaluated. Level of Evidence Case series.

  5. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence

    Science.gov (United States)

    Nickerson, C. A.; Ott, C. M.; Mister, S. J.; Morrow, B. J.; Burns-Keliher, L.; Pierson, D. L.

    2000-01-01

    The effects of spaceflight on the infectious disease process have only been studied at the level of the host immune response and indicate a blunting of the immune mechanism in humans and animals. Accordingly, it is necessary to assess potential changes in microbial virulence associated with spaceflight which may impact the probability of in-flight infectious disease. In this study, we investigated the effect of altered gravitational vectors on Salmonella virulence in mice. Salmonella enterica serovar Typhimurium grown under modeled microgravity (MMG) were more virulent and were recovered in higher numbers from the murine spleen and liver following oral infection compared to organisms grown under normal gravity. Furthermore, MMG-grown salmonellae were more resistant to acid stress and macrophage killing and exhibited significant differences in protein synthesis than did normal-gravity-grown cells. Our results indicate that the environment created by simulated microgravity represents a novel environmental regulatory factor of Salmonella virulence.

  6. The Low Temperature Microgravity Physics Experiments Project

    Science.gov (United States)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; hide

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard

  7. SU-F-T-346: Dose Mimicking Inverse Planning Based On Helical Delivery Treatment Plans for Head and Neck Patients

    Energy Technology Data Exchange (ETDEWEB)

    Kumaran Nair, C; Hoffman, D; Wright, C; Yamamoto, T; Rao, S; Benedict, S; Rong, Y [University of California Davis Medical Center, Sacramento, CA (United States); Markham, J [Raysearch Laboratories, Garden City, NY (United States)

    2016-06-15

    Purpose: We aim to evaluate a new commercial dose mimicking inverse-planning application that was designed to provide cross-platform treatment planning, for its dosimetric quality and efficiency. The clinical benefit of this application allows patients treated on O-shaped linac to receive an equivalent plan on conventional L-shaped linac as needed for workflow or machine downtime. Methods: The dose mimicking optimization process seeks to create a similar DVH of an O-shaped linac-based plans with an alternative treatment technique (IMRT or VMAT), by maintaining target conformity, and penalizing dose falloff outside the target. Ten head and neck (HN) helical delivery plans, including simple and complex cases were selected for re-planning with the dose mimicking application. All plans were generated for a 6 MV beam model, using 7-field/ 9-field IMRT and VMAT techniques. PTV coverage (D1, D99 and homogeneity index [HI]), and OARs avoidance (Dmean / Dmax) were compared. Results: The resulting dose mimicked HN plans achieved acceptable PTV coverage for HI (VMAT 7.0±2.3, 7-fld 7.3±2.4, and 9-fld 7.0±2.4), D99 (98.0%±0.7%, 97.8%±0.7%, and 98.0%±0.7%), as well as D1 (106.4%±2.1%, 106.5%±2.2%, and 106.4%±2.1%), respectively. The OAR dose discrepancy varied: brainstem (2% to 4%), cord (3% to 6%), esophagus (−4% to −8%), larynx (−4% to 2%), and parotid (4% to 14%). Mimicked plans would typically be needed for 1–5 fractions of a treatment course, and we estimate <1% variance would be introduced in target coverage while maintaining comparable low dose to OARs. All mimicked plans were approved by independent physician and passed patient specific QA within our established tolerance. Conclusion: Dose mimicked plans provide a practical alternative for responding to clinical workflow issues, and provide reliability for patient treatment. The quality of dose mimicking for HN patients highly depends on the delivery technique, field numbers and angles, as well as user

  8. Effects of microgravity on the crystal quality of a collagen-like polypeptide.

    Science.gov (United States)

    Berisio, R; Vitagliano, L; Sorrentino, G; Carotenuto, L; Piccolo, C; Mazzarella, L; Zagari, A

    2000-01-01

    (Pro-Pro-Gly)(10) is one of the most widely studied collagen polypeptide models. Microgravity crystal growth of (Pro-Pro-Gly)(10) was carried out in the Advanced Protein Crystallization Facility aboard the Space Shuttle Discovery during the STS-95 mission. Crystals were successfully grown in all experiments, using both dialysis and free-interface diffusion methods. The quality of the microgravity-grown crystals and of ground-grown counterparts was assessed by X-ray synchrotron diffraction. Microgravity-grown crystals exhibited a significant improvement in terms of dimensions and resolution limit. As previously reported, crystals were orthorhombic, space group P2(1)2(1)2(1). However, the diffraction pattern showed weak reflections, never previously measured, that were consistent with new unit-cell parameters a = 26.9, b = 26.4, c = 182.5 A. This allowed the derivation of a new model for the arrangement of the triple-helical molecules in the crystals.

  9. Review of Environmental and Geological Microgravity Applications and Feasibility of Its Employment at Archaeological Sites in Israel

    Directory of Open Access Journals (Sweden)

    Lev V. Eppelbaum

    2011-01-01

    Full Text Available Microgravity investigations are widely applied at present for solving various environmental and geological problems. Unfortunately, microgravity survey is comparatively rarely used for searching for hidden ancient targets. It is caused mainly by small geometric size of the desired archaeological objects and various types of noise complicating the observed useful signal. At the same time, development of modern generation of field gravimetric equipment allows to register promptly and digitally microGal (10-8 m/s2 anomalies that offer a new challenge in this direction. An advanced methodology of gravity anomalies analysis and modern 3D modeling, intended for ancient targets delineation, is briefly presented. It is supposed to apply in archaeological microgravity the developed original methods for the surrounding terrain relief computing. Calculating second and third derivatives of gravity potential are useful for revealing some closed peculiarities of the different Physical-Archaeological Models (PAMs. It is underlined that physical measurement of vertical gravity derivatives in archaeological studying has a significant importance and cannot be replaced by any transformation methods. Archaeological targets in Israel have been ranged by their density/geometrical characteristics in several groups. The performed model computations indicate that microgravity investigations might be successfully applied at least in 20–25% of archaeological sites in Israel.

  10. Microgravity sciences application visiting scientist program

    Science.gov (United States)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  11. The Fastrack Suborbital Platform for Microgravity Applications

    Science.gov (United States)

    Levine, H. G.; Ball, J. E.; Shultz, D.; Odyssey, A.; Wells, H. W.; Soler, R. R.; Albino, S.; Meshberger, R. J.; Murdoch, T.

    2009-01-01

    The FASTRACK suborbital experiment platform has been developed to provide a capability for utilizing 2.5-5 minute microgravity flight opportunities anticipated from the commercial suborbital fleet (currently in development) for science investigations, technology development and hardware testing. It also provides "express rack" functionality to deliver payloads to ISS. FASTRACK fits within a 24" x 24" x 36" (61 cm x 61 cm x 91.4 cm) envelope and is capable of supporting either two single Middeck Locker Equivalents (MLE) or one double MLE configuration. Its overall mass is 300 lbs (136 kg), of which 160 lbs (72 kg) is reserved for experiments. FASTRACK operates using 28 VDC power or batteries. A support drawer located at the bottom of the structure contains all ancillary electrical equipment (including batteries, a conditioned power system and a data collection system) as well as a front panel that contains all switches (including remote cut-off), breakers and warning LEDs.

  12. Surfactant-based critical phenomena in microgravity

    Science.gov (United States)

    Kaler, Eric W.; Paulaitis, Michael E.

    1994-01-01

    The objective of this research project is to characterize by experiment and theoretically both the kinetics of phase separation and the metastable structures produced during phase separation in a microgravity environment. The particular systems we are currently studying are mixtures of water, nonionic surfactants, and compressible supercritical fluids at temperatures and pressures where the coexisting liquid phases have equal densities (isopycnic phases). In this report, we describe experiments to locate equilibrium isopycnic phases and to determine the 'local' phase behavior and critical phenomena at nearby conditions of temperature, pressure, and composition. In addition, we report the results of preliminary small angle neutron scattering (SANS) experiments to characterize microstructures that exist in these mixtures at different fluid densities.

  13. Meniscus effect in microgravity materials processing

    Science.gov (United States)

    1998-01-01

    While the microgravity environment of orbit eliminates a number of effects that impede the formation of materials on Earth, the change can also cause new, unwanted effects. A mysterious phenomenon, known as detached solidification, apparently stems from a small hydrostatic force that turns out to be pervasive. The contact of the solid with the ampoule transfers stress to the growing crystal and causing unwanted dislocations and twins. William Wilcox and Liya Regel of Clarkson University theorize that the melt is in contact with the ampoule wall, while the solid is not, and the melt and solid are cornected by a meniscus. Their work is sponsored by NASA's Office of Biological and Physical Researcxh, and builds on earlier work by Dr. David Larson of the State University of New York at Stony Brook.

  14. Ocular surface foreign bodies: novel findings mimicking ocular malignant melanoma.

    Science.gov (United States)

    Maudgil, A; Wagner, B E; Rundle, P; Rennie, I G; Mudhar, H S

    2014-11-01

    Malignant melanoma of the eye is an uncommon condition that is important to recognise. We describe three cases in which ocular foreign bodies have masqueraded as ocular malignant melanoma. Interventional case reports. Case 1 describes diathermy-induced carbon particle implantation, during plaque therapy for the treatment of uveal melanoma, mimicking recurrence with extra-scleral invasion. Case 2 shows a foreign body called 'mullite' mimicking conjunctival melanoma. Case 3 demonstrates a conjunctival foreign body called 'illite' that mimicked a limbal melanocytic lesion, clinically thought to be either melanocytoma or melanoma. This report highlights the importance of careful history taking, examination, and appropriate biopsy in cases of suspected malignant melanoma, to prevent unnecessary and potentially radical treatment.

  15. Cytoplasm-to-myonucleus ratios following microgravity.

    Science.gov (United States)

    Kasper, C E; Xun, L

    1996-10-01

    The cytoplasmic volume-to-myonucleus ratio in the tibialis anterior and gastrocnemius muscles of juvenile rats after 5.4 days of microgravity was studied. Three groups of rats (n = 8 each) were used. The experimental group (space rats) was flown aboard the space shuttle Discovery (NASA, STS-48), while two ground-based groups, one hindlimb suspended (suspended rats), one non-suspended (control), served as controls. Single fibre analysis revealed a significant decrease in cross-sectional area (microns2) in the gastrocnemius for both the space and the suspended rats; in the tibialis anterior only the suspended rats showed a significant decrease. Myonuclei counts (myonuclei per mm) in both the tibialis anterior and gastrocnemius were significantly increased in the space rats but not in the suspended rats. The mean myonuclear volume (individual nuclei: microns3) in tibialis anterior fibres from the space rats, and in gastrocnemius fibres from both the space and the suspended rats, was significantly lower than that in the respective control group. Estimation of the total myonuclear volume (microns3 per.mm), however, revealed no significant differences between the three groups in either the tibialis anterior or gastrocnemius. The described changes in the cross-sectional area and myonuclei numbers resulted in significant decreases in the cytoplasmic volume-to-myonucleus ratio (microns3 x 10(3)) in both muscles and for both space and suspended rats (tibialis anterior; 15.6 +/- 0.6 (space), 17.2 +/- 1.0 (suspended), 20.8 +/- 0.9 (control): gastrocnemius; 13.4 +/- 0.4 (space) and 14.9 +/- 1.1 (suspended) versus 18.1 +/- 1.1 (control)). These results indicate that even short periods of unweighting due to microgravity or limb suspension result in changes in skeletal muscle fibres which lead to significant decreases in the cytoplasmic volume-to-myonucleus ratio.

  16. Locomotion in simulated microgravity: gravity replacement loads

    Science.gov (United States)

    McCrory, Jean L.; Baron, Heidi A.; Balkin, Sandy; Cavanagh, Peter R.

    2002-01-01

    BACKGROUND: When an astronaut walks or runs on a treadmill in microgravity, a subject load device (SLD) is used to return him or her back to the treadmill belt. The gravity replacement load (GRL) in the SLD is transferred, via a harness, to the pelvis and/or the shoulders. This research compared comfort and ground reaction forces during treadmill running in a microgravity locomotion simulator at GRLs of 60%, 80%, and 100% of body weight (BW). Two harness designs (shoulder springs only (SSO) and waist and shoulder springs (WSS)) were used. HYPOTHESES: 1) The 100% BW gravity replacement load conditions would be comfortably tolerated and would result in larger ground reaction forces and loading rates than the lower load conditions, and 2) the WSS harness would be more comfortable than the SSO harness. METHODS: Using the Penn State Zero Gravity Locomotion Simulator (ZLS), 8 subjects ran at 2.0 m x s(-1) (4.5 mph) for 3 min at each GRL setting in each harness. Subjective ratings of harness comfort, ground reaction forces, and GRL data were collected during the final minute of exercise. RESULTS: The 100% BW loading conditions were comfortably tolerated (2.3 on a scale of 0-10), although discomfort increased as the GRL increased. There were no overall differences in perceived comfort between the two harnesses. The loading rates (27.1, 33.8, 39.1 BW x s(-1)) and the magnitudes of the first (1.0, 1.4, 1.6 BW) and second (1.3, 1.7, 1.9 BW) peaks of the ground reaction force increased with increasing levels (60, 80, 100% BW respectively) of GRL. CONCLUSIONS: Subjects were able to tolerate a GRL of 100% BW well. The magnitude of the ground reaction force peaks and the loading rate is directly related to the magnitude of the GRL.

  17. Electrical Microgravity Research in Colloidal Development Platform, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a platform upon which to perform high voltage Electrical microGravity Research In colloidal Development (E-GRID). This platform will...

  18. Genechip analysis of bone marrow osteoprogenitors exposed to microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — In March 2006 murine Bone Marrow Stromal Cells (BMSC) were flown in the Soyuz 12S to the International Space Station to investigate the effects of microgravity on...

  19. Measured Success: The Microgravity Measurement and Analysis Project

    Science.gov (United States)

    DeLombard, Richard; Sedlak, Deborah A.

    1997-01-01

    In microgravity, even minute forces can affect experiments: therefore, investigators need to know the precise strength of the gravitational levels and vibrations affecting their experiments to interpret results correctly and to develop an understanding of the effects caused by these forces. The Microgravity Measurement and Analysis Project (MMAP) at the NASA Lewis Research Center was established to provide a single source for measuring the microgravity environment on various orbiting spacecraft, providing support for scientists, and microgravity environment data. As part of this project, the Space Acceleration Measurement System (SAMS) and the Orbital Acceleration Research Experiment (OARE) have supported 15 shuttle missions. In addition, one SAMS unit has been operated on Russia's Mir Space Station since September 1994.

  20. Hemodynamic effects of microgravity and their ground-based simulations

    Science.gov (United States)

    Lobachik, V. I.; Abrosimov, S. V.; Zhidkov, V. V.; Endeka, D. K.

    Hemodynamic effects of simulated microgravity were investigated, in various experiments, using radioactive isotopes, in which 40 healthy men, aged 35 to 42 years, took part. Blood shifts were evaluated qualitatively and quantitatively. Simulation studies included bedrest, head-down tilt (-5° and -15°), and vertical water immersion, it was found that none of the methods could entirely simulate hemodynamic effects of microgravity. Subjective sensations varied in a wide range. They cannot be used to identify reliably the effects of real and simulated microgravity. Renal fluid excretion in real and simulated microgravity was different in terms of volume and time. The experiments yielded data about the general pattern of circulation with blood displaced to the upper body.

  1. Zero-Energy Ultrafast Water Nanofiltration System in Microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this program is to develop a water nanofiltration system that functions in microgravity for use during a long-duration human space exploration. The...

  2. Visualization of Thin Liquid Crystal Bubbles in Microgravity

    Science.gov (United States)

    Park, C. S.; Clark, N. A.; Maclennan, J. E.; Glaser, M. A.; Tin, P.; Stannarius, R.; Hall, N.; Storck, J.; Sheehan, C.

    2015-01-01

    The Observation and Analysis of Smectic Islands in Space (OASIS) experiment exploits the unique characteristics of freely suspended liquid crystals in a microgravity environment to advance the understanding of fluid state physics.

  3. Macromolecule Crystal Quality Improvement in Microgravity: The Role of Impurities

    Science.gov (United States)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matt; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is; "How do macromolecule impurities effect crystal X-ray quality and diffraction resolution?" In the case of chicken egg white lysozyme, crystals can be grown in the presence of a number of impurities without affecting diffraction resolution. One impurity however, the lysozyme dimer, does negatively impact the X-ray crystal properties. Crystal quality improvement as a result of better partitioning of this impurity during crystallization in microgravity has been reported'. In our recent experimental work dimer partitioning was found to be not significantly different between the two environments. Mosaicity analysis of pure crystals showed a reduced mosaicity and increased signal to noise for the microgravity grown crystals. Dimer incorporation however, did greatly reduce the resolution limit in both ground and microgravity grown crystals. These results indicate that impurity effects in microgravity are complex and may rely on the conditions or techniques employed.

  4. RNA-seq analysis of mycobacteria stress response to microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — The aim of this work is to determine whether mycobacteria have enhanced virulence during space travel and what mechanisms they use to adapt to microgravity. M....

  5. The potential impact of microgravity science and technology on education

    Science.gov (United States)

    Wargo, M. J.

    1992-01-01

    The development of educational support materials by NASA's Microgravity Science and Applications Division is discussed in the light of two programs. Descriptions of the inception and application possibilities are given for the Microgravity-Science Teacher's Guide and the program of Undergraduate Research Opportunities in Microgravity Science and Technology. The guide is intended to introduce students to the principles and research efforts related to microgravity, and the undergraduate program is intended to reinforce interest in the space program. The use of computers and electronic communications is shown to be an important catalyst for the educational efforts. It is suggested that student and teacher access to these programs be enhanced so that they can have a broader impact on the educational development of space-related knowledge.

  6. Exercise training - Blood pressure responses in subjects adapted to microgravity

    Science.gov (United States)

    Convertino, Victor A.

    1991-01-01

    Conventional endurance exercise training that involves daily workouts of 1-2 hr duration during exposure to microgravity has not proven completely effective in ameliorating postexposure orthostatic hypotension. Single bouts of intense exercise have been shown to increase plasma volume and baroreflex sensitivity in ambulatory subjects through 24 hr postexercise and to reverse decrements in maximal oxygen uptake and syncopal episodes following exposure to simulated microgravity. These physiological adaptations to acute intense exercise were opposite to those observed following exposure to microgravity. These results suggest that the 'exercise training' stimulus used to prevent orthostatic hypotension induced by microgravity may be specific and should be redefined to include single bouts of maximal exercise which may provide an acute effective countermeasure against postflight hypotension.

  7. Advanced Microgravity Compatible, Integrated Laundry System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — An Advanced Microgravity Compatible, Integrated laundry System (AMCILS) is proposed that uses a two phase water / water vapor system to allow good agitation of...

  8. Evidence for Increased Cardiac Compliance During Exposure to Simulated Microgravity

    National Research Council Canada - National Science Library

    Koenig, Steven

    1998-01-01

    We measured specific hemodynamic responses during 4 days (96 hours) of head-down tilt (HDT) in invasively- instrumented rhesus monkeys to test the hypothesis that exposure to simulated microgravity causes increased cardiac compliance...

  9. Determining Weight of Stockpiled Ore Using Microgravity Measurements

    National Research Council Canada - National Science Library

    Sjostrom, Keith

    1997-01-01

    ...; and Large, PA. Microgravity measurements were performed over selected ore piles to provide high-resolution surveys of the gravitational field with which to determine the average bulk density of the ore material...

  10. Neonatal appendicitis mimicking intestinal duplication: a case report

    Directory of Open Access Journals (Sweden)

    Saeki Isamu

    2012-09-01

    Full Text Available Abstract Introduction Acute appendicitis is a common disease in older children but rare in neonates. Case presentation We report the case of a 2-day-old Asian baby who suffered from neonatal appendicitis mimicking intestinal duplication. Laparoscopic appendectomy was successfully performed after the trans-umbilical division of adhesions, and the postoperative course was uneventful. Conclusion There are few reports describing abdominal masses caused by appendicitis mimicking intestinal duplication. The laparoscopic approach for neonatal appendicitis is considered to be a safe and useful therapeutic modality with good cosmetic results.

  11. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    Science.gov (United States)

    Helliwell, John R.; Snell, Edward H.; Chayen, Naomi E.; Judge, Russell A.; Boggon, Titus J.; Pusey, M. L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The first protein crystallization experiment in microgravity was launched in April, 1981 and used Germany's Technologische Experimente unter Schwerelosigkeit (TEXUS 3) sounding rocket. The protein P-galactosidase (molecular weight 465Kda) was chosen as the sample with a liquid-liquid diffusion growth method. A sliding device brought the protein, buffer and salt solution into contact when microgravity was reached. The sounding rocket gave six minutes of microgravity time with a cine camera and schlieren optics used to monitor the experiment, a single growth cell. In microgravity a strictly laminar diffusion process was observed in contrast to the turbulent convection seen on the ground. Several single crystals, approx 100micron in length, were formed in the flight which were of inferior but of comparable visual quality to those grown on the ground over several days. A second experiment using the same protocol but with solutions cooled to -8C (kept liquid with glycerol antifreeze) again showed laminar diffusion. The science of macromolecular structural crystallography involves crystallization of the macromolecule followed by use of the crystal for X-ray diffraction experiments to determine the three dimensional structure of the macromolecule. Neutron protein crystallography is employed for elucidation of H/D exchange and for improved definition of the bound solvent (D20). The structural information enables an understanding of how the molecule functions with important potential for rational drug design, improved efficiency of industrial enzymes and agricultural chemical development. The removal of turbulent convection and sedimentation in microgravity, and the assumption that higher quality crystals will be produced, has given rise to the growing number of crystallization experiments now flown. Many experiments can be flown in a small volume with simple, largely automated, equipment - an ideal combination for a microgravity experiment. The term "protein crystal growth

  12. An Alternative Hypothesis for How Microgravity Improves Macromolecular Crystal Quality

    Science.gov (United States)

    Pusey, Marc

    2003-01-01

    There is a substantial body of experimental evidence, from this and other laboratories, that strongly suggests that for many proteins crystal nucleation and growth is by addition of associated species that are preformed by reversible concentration-driven self association processes in the bulk solution. We have developed a self-association model for the crystal nucleation and growth of the protein chicken egg lysozyme. The model accounts for the obtained crystal symmetry, explains the observed surface structures, and shows the importance of the symmetry obtained by self-association in solution to the process as a whole. This model also offers a possible mechanism for fluid flow effects on the growth process and how microgravity may affect it. While a single lysozyme molecule is relatively small an octamer in the 43 helix configuration (the proposed average sized growth unit) would have a M.W. approx. 115,000 and dimensions of 5.6 x 5.6 x 7.6 nm. Direct AFM measurements of growth unit incorporation indicate that units as wide as 11.2 nm and as long as 11.4 nm (a 24-mer) commonly attach to the crystal. AFM results from Weichmann et al. (Ultramicroscopy 86, 159-166, 2001) suggest that associated species of up to 40-mers in size add to the (101) faces. These measurements reflect the sizes of units that both added and desorbed from the crystal surface. The larger and less isotropic the associated species the more likely that it will be oriented to some degree in a flowing boundary layer, even at the low flow velocities measured about macromolecule crystals. On Earth, concentration gradient driven flow will maintain a high interfacial concentration, i.e., a high level (essentially that of the bulk solution) of solute association at the interface and higher growth rate. Higher growth rates mean an increased probability that misaligned growth units are trapped by subsequent growth layers before they can be desorbed and try again, or that the desorbing species is more likely

  13. Numerical Simulations of Liquid-Gas-Solid Three-Phase Flows in Microgravity

    Directory of Open Access Journals (Sweden)

    Xinyu Zhang

    2012-03-01

    Full Text Available Three-phase liquid-gas-solid flows under microgravity condition are studied. An Eulerian-Lagrangian computational model was developed and used in the simulations. In this approach, the liquid flow was modeled by a volume-averaged system of governing equations, whereas motions of particles and bubbles were evaluated using the Lagrangian trajectory analysis procedure. It was assumed that the bubbles remained spherical, and their shape variations were neglected. The bubble-liquid, particle-liquid and bubbl-particle two-way interactions were accounted for in the analysis. The discrete phase equations used included drag, lift, buoyancy, and virtual mass forces. Particle-particle interactions and bubble-bubble interactions were accounted for by the hard sphere model. Bubble coalescence was also included in the model. The transient flow characteristics of the three-phase flow were studied; and the effects of gravity, inlet bubble size and g-jitter acceleration on variation of flow characteristics were discussed. The low gravity simulations showed that most bubbles are aggregated in the inlet region. Also, under microgravity condition, bubble transient time is much longer than that in normal gravity. As a result, the Sauter mean bubble diameter, which is proportional to the transient time of the bubble, becomes rather large, reaching to more than 9 mm. The bubble plume in microgravity exhibits a plug type flow behavior. After the bubble plume reaches the free surface, particle volume fraction increases along the height of the column. The particles are mainly located outside the bubble plume, with very few particles being retained in the plume. In contrast to the normal gravity condition, the three phases in the column are poorly mixed under microgravity conditions. The velocities of the three phases were also found to be of the same order. Bubble size significantly affects the characteristics of the three-phase flows under microgravity conditions. For

  14. Consort and Joust sounding rockets for microgravity research

    Science.gov (United States)

    Wessling, F. C.; Maybee, G. W.

    1992-08-01

    Descriptions are given of the hardware and techniques used for five launches of the Consort and Joust sounding rockets with payloads for short periods of microgravity payload research. The Consort rockets can provide about seven minutes of microgravity conditions for about 300 kg of payload, and the Joust rocket can yield over 14 minutes for 240 kg. These rockets provide effective means for experiments involving foam formation, bioprocessing, polymer processing, and accelerometers.

  15. Microgravity metal processing: from undercooled liquids to bulk metallic glasses

    Science.gov (United States)

    Hofmann, Douglas C; Roberts, Scott N

    2015-01-01

    Bulk metallic glasses (BMGs) are a novel class of metal alloys that are poised for widespread commercialization. Over 30 years of NASA and ESA (as well as other space agency) funding for both ground-based and microgravity experiments has resulted in fundamental science data that have enabled commercial production. This review focuses on the history of microgravity BMG research, which includes experiments on the space shuttle, the ISS, ground-based experiments, commercial fabrication and currently funded efforts. PMID:28725709

  16. Investigations of field instability of ferrofluid in hypergravity and microgravity

    OpenAIRE

    Theng Yee Chong; Kent Loong Ho; Boon Hoong Ong

    2012-01-01

    The field instability of the free surface of ferrofluid was investigated under microgravity and hypergravity environments conducted by parabolic flight. It is observed that the perturbation was suppressed under hypergravity, whereas at the microgravity condition, it appeared to have only slight increase in the amplitude of the perturbation peaks compared to the case of ground condition. Besides, an observation of peak-trough distance showed that not only the peak, but the trough was also very...

  17. A hydroponic design for microgravity and gravity installations

    Science.gov (United States)

    Fielder, Judith; Leggett, Nickolaus

    1990-01-01

    A hydroponic system is presented that is designed for use in microgravity or gravity experiments. The system uses a sponge-like growing medium installed in tubular modules. The modules contain the plant roots and manage the flow of the nutrient solution. The physical design and materials considerations are discussed, as are modifications of the basic design for use in microgravity or gravity experiments. The major external environmental requirements are also presented.

  18. Effect of microgravity on forearm subcutaneous vascular resistance in humans

    DEFF Research Database (Denmark)

    Gabrielsen, A; Norsk, P; Videbæk, R

    1995-01-01

    To test the hypothesis that the subcutaneous vascular constrictor response to an orthostatic stress in humans is augmented after exposure to microgravity, the following experiment was performed. Four male astronauts underwent a standardized stepwise lower body negative pressure (LBNP) profile 5 mo...... after 1-2 days after exposure to 10 days of microgravity and could act as a defense mechanism to alleviate decreased orthostatic tolerance...

  19. Investigation of the Influence of Microgravity on Transport Mechanism in a Virtual Spaceflight Chamber: A Flight Definition Program

    Science.gov (United States)

    Trolinger, James D.; Rangel, Roger; Witherow, William; Rogers, Jan; Lal, Ravindra B.

    1999-01-01

    A need exists for understanding precisely how particles move and interact in a fluid in the absence of gravity. Such understanding is required, for example, for modeling and predicting crystal growth in space where crystals grow from solution around nucleation sites as well as for any study of particles or bubbles in liquids or in experiments where particles are used as tracers for mapping microconvection. We have produced an exact solution to the general equation of motion of particles at extremely low Reynolds number in microgravity that covers a wide range of interesting conditions. We have also developed diagnostic tools and experimental techniques to test the validity of the general equation . This program, which started in May, 1998, will produce the flight definition for an experiment in a microgravity environment of space to validate the theoretical model. We will design an experiment with the help of the theoretical model that is optimized for testing the model, measuring g, g-jitter, and other microgravity phenomena. This paper describes the goals, rational, and approach for the flight definition program. The first objective of this research is to understand the physics of particle interactions with fluids and other particles in low Reynolds number flows in microgravity. Secondary objectives are to (1) observe and quantify g-jitter effects and microconvection on particles in fluids, (2) validate an exact solution to the general equation of motion of a particle in a fluid, and (3) to characterize the ability of isolation tables to isolate experiments containing particle in liquids. The objectives will be achieved by recording a large number of holograms of particle fields in microgravity under controlled conditions, extracting the precise three-dimensional position of all of the particles as a function of time and examining the effects of all parameters on the motion of the particles. The feasibility for achieving these results has already been established

  20. Design and Performance of an Automated Bioreactor for Cell Culture Experiments in a Microgravity Environment

    Directory of Open Access Journals (Sweden)

    Youn-Kyu Kim

    2015-03-01

    Full Text Available In this paper, we describe the development of a bioreactor for a cell-culture experiment on the International Space Station (ISS. The bioreactor is an experimental device for culturing mouse muscle cells in a microgravity environment. The purpose of the experiment was to assess the impact of microgravity on the muscles to address the possibility of longterm human residence in space. After investigation of previously developed bioreactors, and analysis of the requirements for microgravity cell culture experiments, a bioreactor design is herein proposed that is able to automatically culture 32 samples simultaneously. This reactor design is capable of automatic control of temperature, humidity, and culture-medium injection rate; and satisfies the interface requirements of the ISS. Since bioreactors are vulnerable to cell contamination, the medium-circulation modules were designed to be a completely replaceable, in order to reuse the bioreactor after each experiment. The bioreactor control system is designed to circulate culture media to 32 culture chambers at a maximum speed of 1 ml/min, to maintain the temperature of the reactor at 36±1°C, and to keep the relative humidity of the reactor above 70%. Because bubbles in the culture media negatively affect cell culture, a de-bubbler unit was provided to eliminate such bubbles. A working model of the reactor was built according to the new design, to verify its performance, and was used to perform a cell culture experiment that confirmed the feasibility of this device.

  1. Design and Performance of an Automated Bioreactor for Cell Culture Experiments in a Microgravity Environment

    Science.gov (United States)

    Kim, Youn-Kyu; Park, Seul-Hyun; Lee, Joo-Hee; Choi, Gi-Hyuk

    2015-03-01

    In this paper, we describe the development of a bioreactor for a cell-culture experiment on the International Space Station (ISS). The bioreactor is an experimental device for culturing mouse muscle cells in a microgravity environment. The purpose of the experiment was to assess the impact of microgravity on the muscles to address the possibility of longterm human residence in space. After investigation of previously developed bioreactors, and analysis of the requirements for microgravity cell culture experiments, a bioreactor design is herein proposed that is able to automatically culture 32 samples simultaneously. This reactor design is capable of automatic control of temperature, humidity, and culture-medium injection rate; and satisfies the interface requirements of the ISS. Since bioreactors are vulnerable to cell contamination, the medium-circulation modules were designed to be a completely replaceable, in order to reuse the bioreactor after each experiment. The bioreactor control system is designed to circulate culture media to 32 culture chambers at a maximum speed of 1 ml/min, to maintain the temperature of the reactor at 36°C, and to keep the relative humidity of the reactor above 70%. Because bubbles in the culture media negatively affect cell culture, a de-bubbler unit was provided to eliminate such bubbles. A working model of the reactor was built according to the new design, to verify its performance, and was used to perform a cell culture experiment that confirmed the feasibility of this device.

  2. A Novel Microgravity Simulator Applicable for Three-Dimensional Cell Culturing

    Science.gov (United States)

    Wuest, Simon L.; Richard, Stéphane; Walther, Isabelle; Furrer, Reinhard; Anderegg, Roland; Sekler, Jörg; Egli, Marcel

    2014-10-01

    Random Positioning Machines (RPM) were introduced decades ago to simulate microgravity. Since then numerous experiments have been carried out to study its influence on biological samples. The machine is valued by the scientific community involved in space relevant topics as an excellent experimental tool to conduct pre-studies, for example, before sending samples into space. We have developed a novel version of the traditional RPM to broaden its operative range. This novel version has now become interesting to researchers who are working in the field of tissue engineering, particularly those interested in alternative methods for three-dimensional (3D) cell culturing. The main modifications concern the cell culture condition and the algorithm that controls the movement of the frames for the nullification of gravity. An incubator was integrated into the inner frame of the RPM allowing precise control over the cell culture environment. Furthermore, several feed-throughs now allow a permanent supply of gas like CO 2. All these modifications substantially improve conditions to culture cells; furthermore, the rewritten software responsible for controlling the movement of the frames enhances the quality of the generated microgravity. Cell culture experiments were carried out with human lymphocytes on the novel RPM model to compare the obtained response to the results gathered on an older well-established RPM as well as to data from space flights. The overall outcome of the tests validates this novel RPM for cell cultivation under simulated microgravity conditions.

  3. Does the exposure to microgravity affect dendritic cell maturation from monocytes?

    Science.gov (United States)

    Monici, Monica; Basile, Venere; Bellik, Lydia; Fusi, Franco; Marziliano, Nicola; Parenti, Astrid; Romano, Giovanni; Conti, Antonio

    2007-09-01

    The exposure to microgravity conditions results in a significant impairment of the immune function. Many reports describe morphological and functional changes in T-lymphocytes, monocytes and neutrophil granulocytes cultured in microgravity, both real and modeled, but very few studies have been made on the effect of microgravity on dendritic cells (DCs) and DC differentiation. DCs are able to process antigens and are the most efficient cells in presenting them to T-lymphocytes, thus giving a crucial contribution to the rise of an effective immune response. The aim of this study was to investigate whether the maturation of DCs from monocytes of astronauts was altered postflight. Blood samples from a crew-member of the Eneide mission were collected before the flight, soon after the return to earth and one year after the mission. In order to generate DCs, monocytes were used as precursors. They were separated, cultured for 6 days in medium supplemented with granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin 4 (IL-4), then furtherly stimulated for 24 hours with a cocktail of cytokines. Differentiation was assessed by flow cytometry and immunofluorescence, assaying the expression of typical DC markers. Gene expression was analysed by RT-PCR. Morphological and functional characteristics were studied by autofluorescence microscopy. The findings showed that the maturation of DCs from monocytes collected from the astronaut immediately postflight was altered. In comparison with controls, significant differences were found in expression of DC markers, expression of genes involved in DC maturation, morphological and functional characteristics.

  4. Homogeneous SiGe crystal growth in microgravity by the travelling liquidus-zone method

    International Nuclear Information System (INIS)

    Kinoshita, K; Arai, Y; Inatomi, Y; Sakata, K; Takayanagi, M; Yoda, S; Miyata, H; Tanaka, R; Sone, T; Yoshikawa, J; Kihara, T; Shibayama, H; Kubota, Y; Shimaoka, T; Warashina, Y

    2011-01-01

    Homogeneous SiGe crystal growth experiments will be performed on board the ISS 'Kibo' using a gradient heating furnace (GHF). A new crystal growth method invented for growing homogeneous mixed crystals named 'travelling liquidus-zone (TLZ) method' is evaluated by the growth of Si 0.5 Ge 0.5 crystals in space. We have already succeeded in growing homogeneous 2mm diameter Si 0.5 Ge 0.5 crystals on the ground but large diameter homogeneous crystals are difficult to be grown due to convection in a melt. In microgravity, larger diameter crystals can be grown with suppressing convection. Radial concentration profiles as well as axial profiles in microgravity grown crystals will be measured and will be compared with our two-dimensional TLZ growth model equation and compositional variation is analyzed. Results are beneficial for growing large diameter mixed crystals by the TLZ method on the ground. Here, we report on the principle of the TLZ method for homogeneous crystal growth, results of preparatory experiments on the ground and plan for microgravity experiments.

  5. Simulated microgravity allows to demonstrate cell-to-cell communication in bacteria

    Science.gov (United States)

    Mastroleo, Felice; van Houdt, Rob; Mergeay, Max; Hendrickx, Larissa; Wattiez, Ruddy; Leys, Natalie

    Through the MELiSSA project, the European Space Agency aims to develop a closed life support system for oxygen, water and food production to support human life in space in forth-coming long term space exploration missions. This production is based on the recycling of the missions organic waste, including CO2 and minerals. The photosynthetic bacterium Rhodospir-illum rubrum S1H is used in MELiSSA to degrade organics with light energy and is the first MELiSSA organism that has been studied in space related environmental conditions (Mastroleo et al., 2009). It was tested in actual space flight to the International Space Station (ISS) as well as in ground simulations of ISS-like ionizing radiation and microgravity. In the present study, R. rubrum S1H was cultured in liquid medium in 2 devices simulating microgravity conditions, i.e. the Rotating Wall Vessel (RWV) and the Random Positioning Machine (RPM). The re-sponse of the bacterium was evaluated at both the transcriptomic and proteomic levels using respectively a dedicated whole-genome microarray and high-throughput gel-free quantitative proteomics. Both at transcriptomic and proteomic level, the bacterium showed a significant response to cultivation in simulated microgravity. The response to low fluid shear modeled microgravity in RWV was different than to randomized microgravity in RPM. Nevertheless, both tests pointed out a change in and a likely interrelation between cell-to-cell communica-tion (i.e. quorum sensing) and cell pigmentation (i.e. photosynthesis) for R. rubrum S1H in microgravity conditions. A new type of cell-to-cell communication molecule in R. rubrum S1H was discovered and characterized. It is hypothised that the lack of convection currents and the fluid quiescence in (simulated) microgravity limits communications molecules to be spread throughout the medium. Cultivation in this new artificial environment of simulated micro-gravity has showed new properties of this well know bacterium

  6. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    Directory of Open Access Journals (Sweden)

    O. Raz

    2016-05-01

    Full Text Available Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.

  7. Effects of microgravity on bone and calcium homeostasis

    Science.gov (United States)

    Zérath, E.

    Mechanical function is known to be of crucial importance for the maintenance of bone tissue. Gravity on one hand and muscular effort on the other hand are required for normal skeletal structure. It has been shown by numerous experimental studies that loss of total-body calcium, and marked skeletal changes occur in people who have flown in space. However, most of the pertinent investigations have been conducted on animal models, including rats and non-human primates, and a reasonably clear picture of bone response to spaceflight has emerged during the past few years. Osteopenia induced by microgravity was found to be associated with reduction in both cortical and trabecular bone formation, alteration in mineralization patterns, and disorganization of collagen, and non-collagenous protein metabolism. Recently, cell-culture techniques have offered a direct approach of altered gravity effects at the osteoblastic-cell level. But the fundamental mechanisms by which bone and calcium are lost during spaceflight are not yet fully known. Infrequenccy and high financial cost of flights have created the necessity to develop on-Earth models designed to mimic weightlessness effects. Antiorthostatic suspension devices are now commonly used to obtain hindlimb unloading in rats, with skeletal effects similar to those observed after spaceflight. Therefore, actual and ``simulated'' spaceflights, with investigations conducted at whole body and cellular levels, are needed to elucidate pathogeny of bone loss in space, to develop effective countermeasures, and to study recovery processes of bone changes after return to Earth.

  8. Spinal MRI of vincristine neuropathy mimicking Guillain-Barre syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yun Woo; Yoon, Hye-Kyung; Cho, Jae Min [Department of Radiology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Kangnam-gu, Seoul 135-710 (Korea); Sung, Ki Woong [Department of Paediatrics, Samsung Medical Centre, Seoul 135-710 (Korea)

    2003-11-01

    A 4.3-year-old girl with acute leukaemia, who was being treated with chemotherapy (including vincristine), developed paraplegia. Spinal MRI showed diffusely enhancing nerve roots on contrast-enhanced images. Spinal fluid analysis showed a normal protein level. Vincristine neuropathy mimicking Guillain-Barre syndrome is thought to be the cause of the MRI abnormalities. (orig.)

  9. Spinal MRI of vincristine neuropathy mimicking Guillain-Barre syndrome

    International Nuclear Information System (INIS)

    Chang, Yun Woo; Yoon, Hye-Kyung; Cho, Jae Min; Sung, Ki Woong

    2003-01-01

    A 4.3-year-old girl with acute leukaemia, who was being treated with chemotherapy (including vincristine), developed paraplegia. Spinal MRI showed diffusely enhancing nerve roots on contrast-enhanced images. Spinal fluid analysis showed a normal protein level. Vincristine neuropathy mimicking Guillain-Barre syndrome is thought to be the cause of the MRI abnormalities. (orig.)

  10. Large fibroadenoma mimicking malignancy | Smal | SA Journal of ...

    African Journals Online (AJOL)

    SA Journal of Radiology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 8, No 1 (2004) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Large fibroadenoma mimicking malignancy. J Smal. Abstract.

  11. Endometriosis of the meso-appendix mimicking appendicitis: A case ...

    African Journals Online (AJOL)

    Although appendicitis is largely a clinical diagnosis, on occasions diagnostic modalities may be needed to aid with the diagnosis. Despite the use of adjuncts and exploratory surgery, the diagnosis may not be clear until a histological diagnosis is achieved. Endometriosis of the appendix mimicking appendicitis is one of ...

  12. Crystal structure and bio-mimicking of Catecholase activity

    Indian Academy of Sciences (India)

    Unprecedented hetero-geometric discrete copper(II) complexes: Crystal structure and bio-mimicking of Catecholase activity. ABHRANIL DE DHANANJAY DEY HARE RAM YADAV MILAN MAJI VINAYAK RANE R M KADAM ANGSHUMAN ROY CHOUDHURY BHASKAR BISWAS. Regular Article Volume 128 Issue 11 ...

  13. Trichophyton Schoenleinii-induced widespread tinea corporis mimicking parapsoriasis.

    Science.gov (United States)

    Mansouri, P; Farshi, S; Khosravi, A R; Naraghi, Z S; Chalangari, R

    2012-06-01

    We report a case of extensive tinea corporis in an 80-year-old woman on her forearms, thighs, legs, buttocks and trunk, mimicking parapsoriasis due to Trichophyton schoenleinii, without scalp involvement. Diagnosis of Trichophyton schoenleinii was confirmed by microscopy and mycological culture specimens. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Dysplastic bone disease mimicking exostoses of the ear canal ...

    African Journals Online (AJOL)

    We present a case of a 43-year-old man who attended the ENT clinic complaining of bilateral hearing loss. He had multiple bony swellings in both ear canals that mimicked exostoses. An audiogram showed bilateral symmetrical mixed hearing loss. Excision was carried out to facilitate the use of a hearing aid.

  15. African oral histoplasmosis mimicking lip carcinoma: case report ...

    African Journals Online (AJOL)

    A case of Iocalised African histoplasmosis with an unusual presentation in a 56 year old Nigerian farmer is reported. The lesion presented as an ulcer clinically mimicking squamous cell carcinoma of the lower lip. An incisional biopsy and culture studies confirmed African histoplasmosis and the utcer healed spontaneously ...

  16. Intracranial Gossypiboma Mimicking a Recurrent Low Grade Astrocytoma : Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Young; Koo, Joon Bum [Dept. of Radiology, Dongguk University Il-San Hospital, Iksan (Korea, Republic of)

    2011-05-15

    Gossypiboma is an inflammatory pseudomass formed by a retained surgical sponge or gauze with reactive tissue after surgery. Gossypiboma has been reported most frequently after abdominal or thoracic surgery. As such, gossypiboma following brain surgery is very rare. We report a case of gossypiboma mimicking tumor recurrence in the brain after a craniotomy and surgical excision of a low grade astrocytoma.

  17. Changes in the population of perivascular cells in the bone tissue remodeling zones under microgravity

    Science.gov (United States)

    Katkova, Olena; Rodionova, Natalia; Shevel, Ivan

    2016-07-01

    Microgravity and long-term hypokinesia induce reduction both in bone mass and mineral saturation, which can lead to the development of osteoporosis and osteopenia. (Oganov, 2003). Reorganizations and adaptive remodeling processes in the skeleton bones occur in the topographical interconnection with blood capillaries and perivascular cells. Radioautographic studies with 3H- thymidine (Kimmel, Fee, 1980; Rodionova, 1989, 2006) have shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic. Hence the study of populations of perivascular stromal cells in areas of destructive changes is actual. Perivascular cells from metaphysis of the rat femoral bones under conditions of modeling microgravity were studied using electron microscopy and cytochemistry (hindlimb unloading, 28 days duration) and biosatellite «Bion-M1» (duration of flight from April 19 till May 19, 2013 on C57, black mice). It was revealed that both control and test groups populations of the perivascular cells are not homogeneous in remodeling adaptive zones. These populations comprise of adjacent to endothelium poorly differentiated forms and isolated cells with signs of differentiation (specific increased volume of rough endoplasmic reticulum in cytoplasm). Majority of the perivascular cells in the control group (modeling microgravity) reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In poorly differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of experimental animals reaction to the alkaline phosphatase is registered not in all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. Under microgravity some poorly differentiated perivascular

  18. Fiscal 1998 research report on the basic study on the effect of microgravity on living individuals; Bisho juryoku no seibutsu kotai ni taisuru eikyo no kiso kenkyu 1998 nendo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In order to clarify the effect of microgravity on vital functions and organisms at a cell level, this research studies the molecular biological response function of higher animals, the gravity acceptable mechanism of single-cell organisms, the effect of gravity on geotaxis of insects, measurement of monoamine system neurotransmitters of rat hippocampus by dialysis in a brain and the effect of microgravity on it, the effect of microgravity on water and bone metabolism functions and immunity function, and the analysis of BZ reaction as a simple model of vital reaction. The themes of the research are as follows: the effect of microgravity environment on cell fusion, the analysis of gravity acceptable mechanisms of single-cell organisms, the effect of oriental medical treatment on bone metabolism anomaly of mouses under microgravity environment, the effect of oriental medical treatment on change in physiological function under microgravity environment, the effect of microgravity environment on immunity systems, the effect of gravity on cell activities, the effect of a gravity field on chemical oscillation reaction, and the effect of gravity on geotaxis of insects. (NEDO)

  19. Microgravity Spray Cooling Research for High Powered Laser Applications

    Science.gov (United States)

    Zivich, Chad P.

    2004-01-01

    some heat transfer calculations and picked out a heater to order for the rig. I learned QBasic programming language to change the operating code for our drops, allowing us to rapidly cycle the spray nozzle open and closed to study the effects. We have derived an equation for flow rate vs. pressure for our experiment. We have recorded several videos of drops at different pressures, some with heated test plate and some without, and have noticed substantial differences in the liquid behavior. I have also changed the computer program to write a file with temperature vs. time profiles for the test plate, and once the necessary thermocouple comes in (it was ordered last week), we will have temperature profiles to accompany the videos. Once we have these temperature profiles to go with the videos, we will be able to see how the temperature is affected by the spray at different pressures, and how the spray changes its behavior once as the plate changes from hot to cool. With quantitative temperature data, we can then mathematically model the heat transfer from the plate to the cooling spray. Finally, we can look at the differences between trials in microgravity and those in normal earth gravity.

  20. The Stress Response of Escherichia coli under Microgravity.

    Science.gov (United States)

    Lynch, S.; Matin, A.

    At the onset of adverse environmental conditions, bacteria induce a controlled stress response to enable survival. Escherichia coli induces stress-specific reactions in response to a variety of environmental strains. A family of proteins termed sigma (s) factors is pivotal to the regulation of stress responses in bacteria. In particular Sigma S (ss) regulates several stress responses in E. coli and serves as an important global stress regulatory protein. Under optimal growth conditions, levels of ss are maintained at low cellular concentrations primarily via a proteolytic regulatory mechanism. At the onset of stress, ss levels increase due to increased stability of the molecule, facilitating transcriptional initiation and up regulation of specific stress related proteins. Concentrations of ss can therefore be indicative of cellular stress levels. Recent work by Kendrick et al demonstrated that Salmonella species grown under conditions of simulated microgravity display increased virulence - a stress-related phenotype. Using E. coli as a model system we aim to investigate the stress response elicited by the organism under conditions of simulated microgravity (SMG). SMG is generated in specially constructed rotary cell culture systems termed HARVs (High Aspect Ratio Vessels- Synthecon Inc.). By rotating at constant velocity around a vertical axis an environment is produced in which the gravitational vectors are randomized over the surface of the cell, resulting in an overall-time-averaged gravitational vector of 10-2 x g (4). E. coli cultures grown in HARVs under conditions of normal gravity (NG) and SMG repeatedly display slower growth kinetics under SMG. Western analysis of cells at exponential and stationary phase of growth from both cultures reveal similar levels of ss exist in exponential phase under both SMG and NG conditions. However, during stationary phase, levels of ss are at least 2-fold higher under conditions of SMG as compared to NG. Translational fusion

  1. Microgravity-Induced Physiological Fluid Redistribution: Computational Analysis to Assess Influence of Physiological Parameters

    Science.gov (United States)

    Myers, J. G.; Eke, Chika; Werner, C.; Nelson, E. S.; Mulugeta, L.; Feola, A.; Raykin, J.; Samuels, B.; Ethier, C. R.

    2016-01-01

    Space flight impacts human physiology in many ways, the most immediate being the marked cephalad (headward) shift of fluid upon introduction into the microgravity environment. This physiological response to microgravity points to the redistribution of blood and interstitial fluid as a major factor in the loss of venous tone and reduction in heart muscle efficiency which impact astronaut performance. In addition, researchers have hypothesized that a reduction in astronaut visual acuity, part of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, is associated with this redistribution of fluid. VIIP arises within several months of beginning space flight and includes a variety of ophthalmic changes including posterior globe flattening, distension of the optic nerve sheath, and kinking of the optic nerve. We utilize a suite of lumped parameter models to simulate microgravity-induced fluid redistribution in the cardiovascular, central nervous and ocular systems to provide initial and boundary data to a 3D finite element simulation of ocular biomechanics in VIIP. Specifically, the lumped parameter cardiovascular model acts as the primary means of establishing how microgravity, and the associated lack of hydrostatic gradient, impacts fluid redistribution. The cardiovascular model consists of 16 compartments, including three cerebrospinal fluid (CSF) compartments, three cranial blood compartments, and 10 thoracic and lower limb blood compartments. To assess the models capability to address variations in physiological parameters, we completed a formal uncertainty and sensitivity analysis that evaluated the relative importance of 42 input parameters required in the model on relative compartment flows and compartment pressures. Utilizing the model in a pulsatile flow configuration, the sensitivity analysis identified the ten parameters that most influenced each compartment pressure. Generally, each compartment responded appropriately to parameter variations

  2. Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994

    Science.gov (United States)

    Bousman, William Scott

    1995-01-01

    Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a

  3. How to Make a Microgravity Drop Tower for Your Classroom

    Science.gov (United States)

    DeLombard, Richard; Hall, Nancy R.

    2014-01-01

    Microgravity is quite often seen as exotic and special as astronauts float around in the International Space Station, eating MM's in mid-air, and performing science experiments, all done seemingly without gravity being present. Surprisingly enough, up on the ISS there is about 90 of the same gravity that holds you to the floor in your classroom or museum exhibit hall. Participate in this session and you will understand that and more. You can use simple devices to demonstrate microgravity conditions in your classroom or museum exhibit hall. This will be the same microgravity condition that astronauts experience on the ISS, just for a much shorter period of time. Contrary to popular opinion of some people, microgravity is NOT caused by zero gravity up there. Microgravity on the ISS is due to free fall within the Earth's gravitational field. That means you can drop an item in free fall in your classroom and museum exhibit hall and that item will experience microgravity. In this session, a short theory segment will explain and reinforce these concepts so that you may explain to others. The session will concentrate on showing the session participants how to make an effective, but inexpensive, drop tower for use in the classroom. Such a drop tower may be used to reinforce classroom instruction in physics and forces motion as well as serve as a platform for student investigations, classroom competitions, and student science or technology fair entries. Session participants will build their own simple microgravity experiment and operate them in a drop tower, compare results, and modify their experiment based on results. This material is also useful for public demonstrations at school open houses, travelling museum exhibits, fixed museum exhibits, and independent student projects or experiments. These free fall concepts also connect terrestrial demonstrations with planetary moon motion, comet trajectory, and more.

  4. A microgravity boiling and convective condensation experiment

    Science.gov (United States)

    Kachnik, Leo; Lee, Doojeong; Best, Frederick; Faget, Nanette

    1987-12-01

    A boiling and condensing test article consisting of two straight tube boilers, one quartz and one stainless steel, and two 1.5 m long glass-in-glass heat exchangers, on 6 mm ID and one 10 mm ID, was flown on the NASA KC-135 0-G aircraft. Using water as the working fluid, the 5 kw boiler produces two phase mixtures of varying quality for mass flow rates between 0.005 and 0.1 kg/sec. The test section is instrumented at eight locations with absolute and differential pressure transducers and thermocouples. A gamma densitometer is used to measure void fraction, and high speed photography records the flow regimes. A three axis accelerometer provides aircraft acceleration data (+ or - 0.01G). Data are collected via an analog-to-digital conversion and data acquisition system. Bubbly, annular, and slug flow regimes were observed in the test section under microgravity conditions. Flow oscillations were observed for some operating conditions and the effect of the 2-G pullout prior to the 0-G period was observed by continuously recording data throughout the parabolas. A total fo 300 parabolas was flown.

  5. NASA's Microgravity Fluid Physics Strategic Research Roadmap

    Science.gov (United States)

    Motil, Brian J.; Singh, Bhim S.

    2004-01-01

    The Microgravity Fluid Physics Program at NASA has developed a substantial investigator base engaging a broad crosssection of the U.S. scientific community. As a result, it enjoys a rich history of many significant scientific achievements. The research supported by the program has produced many important findings that have been published in prestigious journals such as Science, Nature, Journal of Fluid Mechanics, Physics of Fluids, and many others. The focus of the program so far has primarily been on fundamental scientific studies. However, a recent shift in emphasis at NASA to develop advanced technologies to enable future exploration of space has provided motivation to add a strategic research component to the program. This has set into motion a year of intense planning within NASA including three workshops to solicit inputs from the external scientific community. The planning activities and the workshops have resulted in a prioritized list of strategic research issues along with a corresponding detailed roadmap specific to fluid physics. The results of these activities were provided to NASA s Office of Biological and Physical Research (OBPR) to support the development of the Enterprise Strategy document. This paper summarizes these results while showing how the planned research supports NASA s overall vision through OBPR s organizing questions.

  6. The Microgravity Research Experiments (MICREX) Data Base

    Science.gov (United States)

    Winter, C. A.; Jones, J. C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments) was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigator (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the importance of a low-gravity fluids and materials processing data base, (4) describes thE MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  7. Mechanobiologic Research in a Microgravity Environment Bioreactor

    Science.gov (United States)

    Guidi, A.; Dubini, G.; Tominetti, F.; Raimondi, M.

    mechanical forces. For example, cartilage constructs have been cultured in spinner flasks under mixed or unmixed conditions, in simulated and in real microgravity. In these mixing studies, however, it is difficult to definitively quantify the effects of mixing-induced mechanical forces from those of convection-enhanced transport of nutrients to and of catabolites away from the cells. At the state of the art, the presence of a more controlled mechanical environment may be the condition required in order to study the biochemical and mechanical response of these biological systems. Such a controlled environment could lead to an advanced fluid dynamic design of the culture chamber that could both enhance the local mass transfer phenomena and match the needs of specific macroscopic mechanical effects in tissue development. The bioreactor is an excellent example of how the skills and resources of two distinctly different fields can complement each other. Microgravity can be used to enhance the formation of tissue like aggregates in specially designed bioreactors. Theoretical and experimental projects are under way to improve cell culture techniques using microgravity conditions experienced during space flights. Bioreactors usable under space flight conditions impose constructional principles which are different from those intended solely for ground applications. The Columbus Laboratory as part of the International Space Station (ISS) will be an evolving facility in low Earth orbit. Its mission is to support scientific, technological, and commercial activities in space. A goal of this research is to design a unique bioreactor for use sequentially from ground research to space research. One of the particularities of the simulated microgravity obtained through time averaging of the weight vector is that by varying the rotational velocity the same results can be obtained with a different value of g. One of the first applications of this technique in space biology was in fact the

  8. Signal transduction in cells of the immune system in microgravity

    Directory of Open Access Journals (Sweden)

    Huber Kathrin

    2008-10-01

    Full Text Available Abstract Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.

  9. Low-Back Pain in Microgravity: Causes and Countermeasures

    Science.gov (United States)

    Snijders, C. J.; Richardson, C. A.

    2005-06-01

    Low-back pain (LBP) is common not only on Earth, but also in space.This is remarkable because, on Earth, LBP is ascribed mostly to heavy spinal loading.The Topical Team was established by ESA to answer the question "What is the aetiology of LBP during flight and what countermeasures may be developed?" The starting point for the Team's activities is a biomechanical model developed at the Erasmus Medical Centre in Rotterdam (NL) that describes the function of a deep-muscle corset to stabilise lumbar and pelvic joints. For spaceflight, the hypothesis was formulated that muscle atrophy and neuroplasticity in the absence of gravity loading destabilises the lumbopelvic area. The outcome of the Team activities is the development of a theory for the source of pain in microgravity that identifies in particular the iliolumbar ligaments.To help verify the theory,Team members were involved in the Berlin Bedrest Study and the Dutch Soyuz Mission. Based on the results of these studies, countermeasures can be developed and implemented.

  10. Physiology of a microgravity environment invited review: microgravity and skeletal muscle

    Science.gov (United States)

    Fitts, R. H.; Riley, D. R.; Widrick, J. J.

    2000-01-01

    Spaceflight (SF) has been shown to cause skeletal muscle atrophy; a loss in force and power; and, in the first few weeks, a preferential atrophy of extensors over flexors. The atrophy primarily results from a reduced protein synthesis that is likely triggered by the removal of the antigravity load. Contractile proteins are lost out of proportion to other cellular proteins, and the actin thin filament is lost disproportionately to the myosin thick filament. The decline in contractile protein explains the decrease in force per cross-sectional area, whereas the thin-filament loss may explain the observed postflight increase in the maximal velocity of shortening in the type I and IIa fiber types. Importantly, the microgravity-induced decline in peak power is partially offset by the increased fiber velocity. Muscle velocity is further increased by the microgravity-induced expression of fast-type myosin isozymes in slow fibers (hybrid I/II fibers) and by the increased expression of fast type II fiber types. SF increases the susceptibility of skeletal muscle to damage, with the actual damage elicited during postflight reloading. Evidence in rats indicates that SF increases fatigability and reduces the capacity for fat oxidation in skeletal muscles. Future studies will be required to establish the cellular and molecular mechanisms of the SF-induced muscle atrophy and functional loss and to develop effective exercise countermeasures.

  11. Microgravity and Electrical Resistivity Techniques for Detection of Caves and Clandestine Tunnels

    Science.gov (United States)

    Crawford, N. C.; Croft, L. A.; Cesin, G. L.; Wilson, S.

    2006-05-01

    The Center for Cave and Karst Studies, CCKS, has been using microgravity to locate caves from the ground's surface since 1985. The geophysical subsurface investigations began during a period when explosive and toxic vapors were rising from the karst aquifer under Bowling Green into homes, businesses, and schools. The USEPA provided the funding for this Superfund Emergency, and the CCKS was able to drill numerous wells into low-gravity anomalies to confirm and even map the route of caves in the underlying limestone bedrock. In every case, a low-gravity anomaly indicated a bedrock cave, a cave with a collapsed roof or locations where a bedrock cave had collapsed and filled with alluvium. At numerous locations, several wells were cored into microgravity anomalies and in every case, additional wells were drilled on both sides of the anomalies to confirm that the technique was in fact reliable. The wells cored on both sides of the anomalies did not intersect caves but instead intersected virtually solid limestone. Microgravity also easily detected storm sewers and even sanitary sewers, sometimes six meters (twenty feet) beneath the surface. Microgravity has also been used on many occasions to investigate sinkhole collapses. It identified potential collapse areas by detecting voids in the unconsolidated material above bedrock. The system will soon be tested over known tunnels and then during a blind test along a section of the U.S. border at Nogales, Arizona. The CCKS has experimented with other geophysical techniques, particularly ground penetrating radar, seismic and electrical resistivity. In the late 1990s the CCKS started using the Swift/Sting resistivity meter to perform karst geophysical subsurface investigations. The system provides good depth to bedrock data, but it is often difficult to interpret bedrock caves from the modeled data. The system typically used now by the CCKS to perform karst subsurface investigations is to use electrical resistivity traverses

  12. Synergistic effects of space radiation and microgravity (miRNA WT and ced-1 mutant)

    Data.gov (United States)

    National Aeronautics and Space Administration — Space radiations and microgravity both could cause DNA damage in cells but the effects of microgravity on DNA damage response to space radiations are still...

  13. Synergistic effects of space radiation and microgravity (miRNA WT and dys-mutant)

    Data.gov (United States)

    National Aeronautics and Space Administration — Space radiations and microgravity both could cause DNA damage in cells but the effects of microgravity on DNA damage response to space radiations are still...

  14. Microgravity effect on C. elegans N2/VC (CERISE 4 days)

    Data.gov (United States)

    National Aeronautics and Space Administration — Microgravity effect on C. elegans gene expression was analysed by whole genome microarray. The worms were cultivated under microgravity for 4 days in the Japanese...

  15. Transcriptome Analysis of Oryza sativa Calli Under Microgravity

    Science.gov (United States)

    Jin, Jing; Chen, Haiying; Cai, Weiming

    2015-11-01

    The transcriptome of Oryza sativacalli was analyzed on board the Chinese spaceship "Shenzhou 8" to study the effects of microgravity on plant signal transduction and secondary metabolism (as one of the experiments with SIMBOX on Shenzhou 8). Calli of Oryza sativa were pre-cultured for 4 days on ground and then loaded into the stationary platform or the rotating platform of a biological incubator, called SIMBOX, to grow in space under microgravity conditions or 1g-conditions, respectively. The calli were fixed by RNAlater after grew 324 h under microgravity. After 17 days, Shenzhou 8 returned to Earth carrying SIMBOX. Oryza sativa calli were recovered, and the RNA was extracted for transcriptome analysis. After comparing 1 gspaceflight controls-inflight controls with 1 g-ground controls, 157 probe sets with different expression levels (fold change ≥2, p<0.05) were identified. When comparing spaceflight controls to 1 g-ground controls and to 1 g-inflight controls, 678 probe sets with different expression levels (fold change ≥2, p<0.05) were identified. The fact that the same 678 probe sets were identified in these two comparisons suggests that transcription was affected under microgravity conditions. MapMan analysis was used to classify 627 microgravity responsive (MR) transcripts. The MR transcripts were mainly involved in cell wall structure, the TCA cycle, primary metabolism, transcription, protein modification and degradation, hormone metabolism, calcium regulation, receptor like kinase activity and transport.

  16. Immune events associated with protection in C57BL/6 mice immunized with anti-idiotypic antibodies mimicking protective antigens shared between gamma-irradiated cercariae vaccine and human resistance model of Schistosoma haematobium.

    Science.gov (United States)

    Abdeen, Sherif H

    2010-01-01

    Immunoregulation is central for successful manipulation of schistosomiasis. Unlike schistosome vaccine development strategies that relied on direct selection of antigens from crude responses leading to selection of mildly protective antigens, the present study tested the utility of selection of potentially protective antigens encompassed rounds of immunoregulation via idiotypic network. Anti-idiotypic antibodies (Ab2) were purified from sera of New Zealand white rabbits multiply immunized with gamma-irradiated cercariae of S. haematobium, using adult worm specific idiotypes (Ab1) purified from sera of subjects resistant to reinfection. Ab2 was used for immunization of C57BL/6 mice and consequences of immunization were monitored before and after challenge infection with S. haematobium. Results showed an increase of splenic T cell expression of intercellular adhesion molecule-1 (ICAM-1) and very late antigen-4 (VLA-4) upon immunization (average % stimulated cells 54.9 vs. 20.4, P anti-anti-ids (Ab3) reactivity against antigens of approximate molecular weight 40, 80 and 160 kDa of adult worms, which were also recognized by Ab1. However, in contrast to Ab1, Ab3 showed no surface binding to 3 hr schistosomula. Strikingly, mice immunized with Ab2 showed strong resistance to challenge infection (approximately 82% reduction in worm burden, P vaccine development strategy appears to filter out non-protective antigens. Indeed Ab3 recognizes much fewer numbers of antigens, which passed through two rounds of immune regulation. These antigens appear to represent a significant proportion of the protective response in the gamma-irradiated cercariae vaccine and human resistance model as well, providing the basis for an alternative vaccine for schistosomiasis.

  17. Microgravity effect on endophytic bacteria communities of Triticum aestivum

    Science.gov (United States)

    Qin, Youcai; Fu, Yuming; Chen, Huiwen; Liu, Hong; Sun, Yi

    2018-02-01

    Under normal gravity conditions, endophytic bacteria, one of the key bacterial community that inhabit in plant tissues, are well-known in promoting the plant growth and health, which are essential for long-term and long-distance manned microgravity space exploration. Here, we report how the Triticum aestivum endophytic bacterial communities behave differently under the simulated microgravity conditions. We demonstrate that, under simulated microgravity conditions, the microbial diversity in wheat seedling leaf increases while that in root decreases, compared to that cultivated under normal gravity conditions. We found that the dominant bacteria genus such as Pseudomonas, Paenibacillus and Bacillus significantly changes with gravity. The findings of this study provide important insight for space research, especially in terms of the Triticum aestivum cultivation in space.

  18. Microgravity Experiment for Attitude Control of a Tethered Space Robot

    Science.gov (United States)

    Nohmi, Masahiro

    A tethered space robot, which is connected to a mother spacecraft through a peace of tether, is a new space system proposed in the previous work. The tethered subsystem is envisioned to be a multi-body system for a robot, whose attitude can be controlled under tether tension by its own link motion. This paper discusses about microgravity experiment for a tethered space robot. Design and mechanism of the experimental device, required for the proposed attitude control, were explained. Also, link motion control algorithm was designed for the experimental device. Characteristics of the proposed attitude control were confirmed by microgravity experiment using a drop shaft, which can provide high quality microgravity condition during 4.5s.

  19. The Impact of Microgravity and Hypergravity on Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jeanette A. M. Maier

    2015-01-01

    Full Text Available The endothelial cells (ECs, which line the inner surface of vessels, play a fundamental role in maintaining vascular integrity and tissue homeostasis, since they regulate local blood flow and other physiological processes. ECs are highly sensitive to mechanical stress, including hypergravity and microgravity. Indeed, they undergo morphological and functional changes in response to alterations of gravity. In particular microgravity leads to changes in the production and expression of vasoactive and inflammatory mediators and adhesion molecules, which mainly result from changes in the remodelling of the cytoskeleton and the distribution of caveolae. These molecular modifications finely control cell survival, proliferation, apoptosis, migration, and angiogenesis. This review summarizes the state of the art on how microgravity and hypergravity affect cultured ECs functions and discusses some controversial issues reported in the literature.

  20. Viscosity of Xenon Examined in Microgravity

    Science.gov (United States)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.

    1999-01-01

    Why does water flow faster than honey? The short answer, that honey has a greater viscosity, merely rephrases the question. The fundamental answer is that viscosity originates in the interactions between a fluid s molecules. These interactions are so complicated that, except for low-density gases, the viscosity of a fluid cannot be accurately predicted. Progress in understanding viscosity has been made by studying moderately dense gases and, more recently, fluids near the critical point. Modern theories predict a universal behavior for all pure fluids near the liquid-vapor critical point, and they relate the increase in viscosity to spontaneous fluctuations in density near this point. The Critical Viscosity of Xenon (CVX) experiment tested these theories with unprecedented precision when it flew aboard the Space Shuttle Discovery (STS-85) in August 1997. Near the critical point, xenon is a billion times more compressible than water, yet it has about the same density. Because the fluid is so "soft," it collapses under its own weight when exposed to the force of Earth s gravity - much like a very soft spring. Because the CVX experiment is conducted in microgravity, it achieves a very uniform fluid density even very close to the critical point. At the heart of the CVX experiment is a novel viscometer built around a small nickel screen. An oscillating electric field forces the screen to oscillate between pairs of electrodes. Viscosity, which dampens the oscillations, can be calculated by measuring the screen motion and the force applied to the screen. So that the fluid s delicate state near the critical point will not be disrupted, the screen oscillations are set to be both slow and small.

  1. Mechanics of Granular Materials (MGM) Microgravity Experiment

    Science.gov (United States)

    Alshibli, Khalid A.; Sture, Stein

    1998-01-01

    The second series of MGM experiment was conducted during the STS-89 mission in January 1998. The experiment was previously flow on Atlantis's STS-79 mission in September 1996. Six displacement-controlled, drained triaxial compression experiments were performed at very low effective confining stresses. The confining stresses were in the ranges 0.05, 0.52 and 1.30 kPa. Three experiments were subjected to monotonic loading and unloading cycles while the other three experiments were subjected to cyclic loading. The results show very high peak strength friction angles in the range of 47.6 to 70.0 degrees, which are mainly due to overconsolidation and grain interlocking effects. It was observed that the residual strength levels in the monotonic loading experiments were in the same range as that observed at higher confining stress levels. The dilatancy angles were unusually high in the range of 30 to 31 degrees. All specimens display substantial initial stiffnesses and elastic moduli during unloading and reloading events, which are nearly an order of magnitude higher than conventional theories predict. A periodic instability phenomenon which appears to result from buckling of multiple internal arches and columnar systems, augmented by stick-slips was observed in the experiments. Computed Tomography (CT) measurements revealed valuable data about the internal fabric and the specimens deformation patterns. Uniform diffuse bifurcation with multiple radial shear bands was observed in the specimens tested in a microgravity environment. In the axial direction, two major conical surfaces were developed. Spatial nonsymmetrical deformations were observed in specimens tested in terrestrial laboratory.

  2. An abdominal tuberculosis case mimicking an abdominal mass

    African Journals Online (AJOL)

    An abdominal tuberculosis case mimicking an abdominal mass. Derya Erdog˘ an a. , Yasemin Ta ¸scı Yıldız b. , Esin Cengiz Bodurog˘lu c and Naciye Go¨nu¨l Tanır d. Abdominal tuberculosis is rare in childhood. It may be difficult to diagnose as it mimics various disorders. We present a 12-year-old child with an unusual ...

  3. Degenerated uterine leiomyomas mimicking malignant bilateral ovarian surface epithelial tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yi Boem Ha; Lee, Hae Kyung; Lee, Min Hee; Choi, Seo Youn; Chung, Soo Ho [Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon (Korea, Republic of)

    2017-07-15

    Uterine leiomyomas are the most common benign uterine neoplasms. Undegenerated uterine leiomyomas are easily recognizable by the typical imaging findings on radiologic studies. However, degenerated fibroids can have unusual and variable appearances. The atypical appearances due to degenerative changes may cause confusion in diagnosis of leiomyomas. In this article, we report a case of a patient with extensive cystic and myxoid degeneration of uterine leiomyoma, mimicking malignant bilateral ovarian surface epithelial tumors.

  4. Localized IgG4-related Cholecystitis Mimicking Gallbladder Cancer.

    Science.gov (United States)

    Inoue, Tadahisa; Okumura, Fumihiro; Mizushima, Takashi; Nishie, Hirotada; Iwasaki, Hiroyasu; Anbe, Kaiki; Ozeki, Takanori; Kachi, Kenta; Fukusada, Shigeki; Suzuki, Yuta; Watanabe, Kazuko; Sano, Hitoshi

    2015-01-01

    We encountered a case of localized IgG4-cholecystitis mimicking gallbladder cancer with focal/segmental type1 autoimmune pancreatitis (AIP). In this case, we were unable to exclude a diagnosis of gallbladder cancer and thus performed radical cholecystectomy. Type1 AIP is often associated with gallbladder lesions, accompanied by generally diffuse, circumferential thickening of the gallbladder wall. Although localized IgG4-related cholecystitis is extremely rare, differentiating this condition from gallbladder cancer is often very difficult.

  5. A case of gallbladder mass: Malakoplakia (The tumor mimicker

    Directory of Open Access Journals (Sweden)

    Kanwaljeet Singh

    2017-01-01

    Full Text Available Diagnosis of malakoplakia presenting as gall bladder mass is a diagnostic dilemma faced by pathologists, radiologists, and surgeons. Malakoplakia is a rare inflammatory disorder and tumor mimicker usually occurring in the urinary tract, may occasionally be found in gall bladder. Here, we present a rare case, presenting as gall bladder mass in a known case of gallstone disease, clinically suspected as carcinoma and later turned out to be malakoplakia in gall bladder.

  6. Glioblastoma mimicking a cerebral contusion: A case report

    OpenAIRE

    LI, XINWEI; WANG, KUN; ZHANG, ANLING; SONG, ZHENGFEI; YANG, SHUXU; QIAN, CONG; WANG, YIRONG

    2013-01-01

    A 61-year-old male presented with a rare case of glioblastoma mimicking a cerebral contusion subsequent to collapsing. The patient had been medicated for hypertension for seven years and diabetes for eight years prior to hospitalization. Brain computed tomography (CT) revealed a cerebral contusion and intracerebral hemorrhage (ICH) in the left temporal region. The patient was initially administered intravenous drugs to reduce the intracranial pressure following the diagnosis of a cerebral con...

  7. A Q fever case mimicking crimean-congo haemorrhagic fever

    Directory of Open Access Journals (Sweden)

    O Karabay

    2011-01-01

    Full Text Available Coxiella burnetii is the bacterium that causes Q fever. Human infection is mainly transmitted from cattle, goats and sheep. The disease is usually self-limited. Pneumonia and hepatitis are the most common clinical manifestations. In this study, we present a case of Q fever from the western part of Turkey mimicking Crimean-Congo haemorrhagic fever (CCHF in terms of clinical and laboratory findings.

  8. Sarcoidosis breaching the fascia and mimicking a sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Hajime; Ikeda, Mitsuaki; Shimofusa, Ryouta [Department of Radiology, Numazu City Hospital, 550 Harunoki-aza, Higashishiiji, Numazu, Shizuoka 410-0302 (Japan); Terauchi, Masami [Department of Plastic Surgery, Numazu City Hospital, 550 Harunoki-aza, Higashishiiji, Numazu, Shizuoka 410-0302 (Japan); Eguchi, Masanobu [Department of Pathology, Numazu City Hospital, 550 Harunoki-aza, Higashishiiji, Numazu, Shizuoka 410-0302 (Japan)

    2002-12-01

    A 55-year-old woman complained of a subcutaneous mass in her left buttock. MR images revealed an ill-defined soft tissue mass that crossed the fascia of the gluteus maximus muscle. Some surrounding edema was noted. The lesion showed some contrast uptake after administration of Gd-DTPA. An excisional biopsy revealed sarcoidosis involving both the muscle and subcutaneous tissue across the fascia, mimicking a sarcoma. (orig.)

  9. Simulating Bone Loss in Microgravity Using Mathematical Formulations of Bone Remodeling

    Science.gov (United States)

    Pennline, James A.

    2009-01-01

    Most mathematical models of bone remodeling are used to simulate a specific bone disease, by disrupting the steady state or balance in the normal remodeling process, and to simulate a therapeutic strategy. In this work, the ability of a mathematical model of bone remodeling to simulate bone loss as a function of time under the conditions of microgravity is investigated. The model is formed by combining a previously developed set of biochemical, cellular dynamics, and mechanical stimulus equations in the literature with two newly proposed equations; one governing the rate of change of the area of cortical bone tissue in a cross section of a cylindrical section of bone and one governing the rate of change of calcium in the bone fluid. The mechanical stimulus comes from a simple model of stress due to a compressive force on a cylindrical section of bone which can be reduced to zero to mimic the effects of skeletal unloading in microgravity. The complete set of equations formed is a system of first order ordinary differential equations. The results of selected simulations are displayed and discussed. Limitations and deficiencies of the model are also discussed as well as suggestions for further research.

  10. Dengue fever mimicking acute appendicitis: A case report.

    Science.gov (United States)

    McFarlane, M E C; Plummer, J M; Leake, P A; Powell, L; Chand, V; Chung, S; Tulloch, K

    2013-01-01

    Dengue fever is an acute viral disease, which usually presents as a mild febrile illness. Patients with severe disease present with dengue haemorrhagic fever or dengue toxic shock syndrome. Rarely, it presents with abdominal symptoms mimicking acute appendicitis. We present a case of a male patient presenting with right iliac fossa pain and suspected acute appendicitis that was later diagnosed with dengue fever following a negative appendicectomy. A 13-year old male patient presented with fever, localized right-sided abdominal pain and vomiting. Abdominal ultrasound was not helpful and appendicectomy was performed due to worsening abdominal signs and an elevated temperature. A normal appendix with enlarged mesenteric nodes was found at surgery. Complete blood count showed thrombocytopenia with leucopenia. Dengue fever was now suspected and confirmed by IgM enzyme-linked immunosorbent assay against dengue virus. This unusual presentation of dengue fever mimicking acute appendicitis should be suspected during viral outbreaks and in patients with atypical symptoms and cytopenias on blood evaluation in order to prevent unnecessary surgery. This case highlights the occurrence of abdominal symptoms and complications that may accompany dengue fever. Early recognition of dengue fever mimicking acute appendicitis will avoid non-therapeutic operation and the diagnosis may be aided by blood investigations indicating a leucopenia, which is uncommon in patients with suppurative acute appendicitis. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Robots for manipulation in a micro-gravity environment

    Science.gov (United States)

    Quinn, R. D.; Lawrence, C.

    1988-01-01

    This paper is concerned with the development of control strategies and mechanisms for robots operating in the micro-gravity environment of Space Station. These robots must be capable of conducting experiments and manufacturing processes without disturbing the micro-gravity environment through base reactions/motions. Approaches discussed for controlling the robot base reactions/motions include strategies making use of manipulators with redundant degrees of freedon, actuators at the robot base, and a redundant (balancing) arm. Two degree-of-freedom, traction-drive joints are discussed as well as the conceptual design for a traction-driven manipulator.

  12. Investigations of field instability of ferrofluid in hypergravity and microgravity

    Directory of Open Access Journals (Sweden)

    Theng Yee Chong

    2012-03-01

    Full Text Available The field instability of the free surface of ferrofluid was investigated under microgravity and hypergravity environments conducted by parabolic flight. It is observed that the perturbation was suppressed under hypergravity, whereas at the microgravity condition, it appeared to have only slight increase in the amplitude of the perturbation peaks compared to the case of ground condition. Besides, an observation of peak-trough distance showed that not only the peak, but the trough was also very much dependent on the applied magnetic field. The difference of magnetic pole (north and south had shown to be a factor to the perturbation as well.

  13. Investigations of field instability of ferrofluid in hypergravity and microgravity

    Science.gov (United States)

    Chong, Theng Yee; Ho, Kent Loong; Ong, Boon Hoong

    2012-03-01

    The field instability of the free surface of ferrofluid was investigated under microgravity and hypergravity environments conducted by parabolic flight. It is observed that the perturbation was suppressed under hypergravity, whereas at the microgravity condition, it appeared to have only slight increase in the amplitude of the perturbation peaks compared to the case of ground condition. Besides, an observation of peak-trough distance showed that not only the peak, but the trough was also very much dependent on the applied magnetic field. The difference of magnetic pole (north and south) had shown to be a factor to the perturbation as well.

  14. Electronic states of germanium grown under micro-gravity condition

    Energy Technology Data Exchange (ETDEWEB)

    Sugahara, A. [Department of Physics, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)]. E-mail: sugahara@tsurugi.phys.sci.osaka-u.ac.jp; Ogawa, T. [Department of Physics, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Fujii, K. [Department of Physics, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Ohyama, T. [Liberal Arts, Fukui University of Technology, 3-6-1 Gakuen, Fukui, Fukui 910-8505 (Japan); Nakata, J. [Kyoto Semiconductor Corp. 418-9 Yodo Saime-cho, Fushimi-ku, Kyoto 613-0915 (Japan)

    2006-04-01

    Magneto-optical absorption measurements of Sb-doped germaniums grown under micro-gravity condition were carried out to investigate the influence of the gravity on crystal growth, using far-infrared laser and microwave. For comparison, we prepared two germanium crystals grown in the same conditions except the gravity conditions. In spite of the quite short growth period, the germanium grown under micro-gravity has a quite good quality. The lineshape analysis of Zeeman absorption peaks due to donor electrons indicates the existence of residual thermal acceptors.

  15. Shape Evolution of Detached Bridgman Crystals Grown in Microgravity

    Science.gov (United States)

    Volz, M. P.; Mazuruk, K.

    2015-01-01

    A theory describing the shape evolution of detached Bridgman crystals in microgravity has been developed. A starting crystal of initial radius r0 will evolve to one of the following states: Stable detached gap; Attachment to the crucible wall; Meniscus collapse. Only crystals where alpha plus omega is great than 180 degrees will achieve stable detached growth in microgravity. Results of the crystal shape evolution theory are consistent with predictions of the dynamic stability of crystallization (Tatarchenko, Shaped Crystal Growth, Kluwer, 1993). Tests of transient crystal evolution are planned for ICESAGE, a series of Ge and GeSi crystal growth experiments planned to be conducted on the International Space Station (ISS).

  16. A galactic microquasar mimicking winged radio galaxies.

    Science.gov (United States)

    Martí, Josep; Luque-Escamilla, Pedro L; Bosch-Ramon, Valentí; Paredes, Josep M

    2017-11-24

    A subclass of extragalactic radio sources known as winged radio galaxies has puzzled astronomers for many years. The wing features are detected at radio wavelengths as low-surface-brightness radio lobes that are clearly misaligned with respect to the main lobe axis. Different models compete to account for these peculiar structures. Here, we report observational evidence that the parsec-scale radio jets in the Galactic microquasar GRS 1758-258 give rise to a Z-shaped radio emission strongly reminiscent of the X and Z-shaped morphologies found in winged radio galaxies. This is the first time that such extended emission features are observed in a microquasar, providing a new analogy for its extragalactic relatives. From our observations, we can clearly favour the hydrodynamic backflow interpretation against other possible wing formation scenarios. Assuming that physical processes are similar, we can extrapolate this conclusion and suggest that this mechanism could also be at work in many extragalactic cases.

  17. Fluid Mechanics of Capillary-Elastic Instabilities in Microgravity Environment

    Science.gov (United States)

    Grotberg, James B.

    2002-01-01

    The aim of this project is to investigate the closure and reopening of lung airways due to surface tension forces, coupled with airway elasticity. Airways are liquid-lined, flexible tubes and closure of airways can occur by a Rayleigh instability of the liquid lining, or an instability of the elastic support for the airway as the surface tension of the air-liquid interface pulls the tube shut, or both. Regardless of the mechanism, the airway is closed because the liquid lining has created a plug that prevents axial gas exchange. In the microgravity environment, surface tension forces dominate lung mechanics and would lead to more prevalent, and more uniformly distributed air-way closure, thereby creating a potential for respiratory problems for astronauts. Once closed the primary option for reopening an airway is by deep inspiration. This maneuver will pull the flexible airways open and force the liquid plug to flow distally by the incoming air stream. Airway reopening depends to a large extent on this plug flow and how it may lead to plug rupture to regain the continuity of gas between the environment and the alveoli. In addition to mathematical modeling of plug flows in liquid-lined, flexible tubes, this work has involved benchtop studies of propagating liquid plugs down tube networks that mimic the human airway tree. We have extended the work to involve animal models of liquid plug propagation in rat lungs. The liquid is radio-opaque and x-ray video imaging is used to ascertain the movement and distribution of the liquid plugs so that comparisons to theory may be made. This research has other uses, such as the delivery of liquids or drugs into the lung that may be used for surfactant replacement therapy or for liquid ventilation.

  18. Measurement of hydraulic characteristics of porous media used to grow plants in microgravity

    Science.gov (United States)

    Steinberg, Susan L.; Poritz, Darwin

    2005-01-01

    Understanding the effect of gravity on hydraulic properties of plant growth medium is essential for growing plants in space. The suitability of existing models to simulate hydraulic properties of porous medium is uncertain due to limited understanding of fundamental mechanisms controlling water and air transport in microgravity. The objective of this research was to characterize saturated and unsaturated hydraulic conductivity (K) of two particle-size distributions of baked ceramic aggregate using direct measurement techniques compatible with microgravity. Steady state (Method A) and instantaneous profile measurement (Method B) methods for K were used in a single experimental unit with horizontal flow through thin sections of porous medium providing an earth-based analog to microgravity. Comparison between methods was conducted using a crossover experimental design compatible with limited resources of space flight. Satiated (natural saturation) K ranged from 0.09 to 0.12 cm s-1 and 0.5 to >1 cm s-1 for 0.25- to 1- and 1- to 2-mm media, respectively. The K at the interaggregate/intraaggregate transition was approximately 10(-4) cm s-1 for both particle-size distributions. Significant differences in log(10)K due to method and porous medium were less than one order of magnitude and were attributed to variability in air entrapment. The van Genuchten/Mualem parametric models provided an adequate prediction of K of the interaggregate pore space, using residual water content for that pore space. The instantaneous profile method covers the range of water contents relevant to plant growth using fewer resources than Method A, all advantages for space flight where mass, volume, and astronaut time are limited.

  19. Genetic transformation of Geobacillus kaustophilus HTA426 by conjugative transfer of host-mimicking plasmids.

    Science.gov (United States)

    Suzuki, Hirokazu; Yoshida, Ken-ichi

    2012-09-01

    We established an efficient transformation method for thermophile Geobacillus kaustophilus HTA426 using conjugative transfer from Escherichia coli of host-mimicking plasmids that imitate DNA methylation of strain HTA426 to circumvent its DNA restriction barriers. Two conjugative plasmids, pSTE33T and pUCG18T, capable of shuttling between E. coli and Geobacillus spp., were constructed. The plasmids were first introduced into E. coli BR408, which expressed one inherent DNA methylase gene (dam) and two heterologous methylase genes from strain HTA426 (GK1380-GK1381 and GK0343-GK0344). The plasmids were then directly transferred from E. coli cells to strain HTA426 by conjugative transfer using pUB307 or pRK2013 as a helper plasmid. pUCG18T was introduced very efficiently (transfer efficiency, 10(-5)-10(-3) recipient(-1)). pSTE33T showed lower efficiency (10(-7)-10(-6) recipient(-1)) but had a high copy number and high segregational stability. Methylase genes in the donor substantially affected the transfer efficiency, demonstrating that the host-mimicking strategy contributes to efficient transformation. The transformation method, along with the two distinguishing plasmids, increases the potential of G. kaustophilus HTA426 as a thermophilic host to be used in various applications and as a model for biological studies of this genus. Our results also demonstrate that conjugative transfer is a promising approach for introducing exogenous DNA into thermophiles.

  20. Nanosecond laser pulses for mimicking thermal effects on nanostructured tungsten-based materials

    Science.gov (United States)

    Besozzi, E.; Maffini, A.; Dellasega, D.; Russo, V.; Facibeni, A.; Pazzaglia, A.; Beghi, M. G.; Passoni, M.

    2018-03-01

    In this work, we exploit nanosecond laser irradiation as a compact solution for investigating the thermomechanical behavior of tungsten materials under extreme thermal loads at the laboratory scale. Heat flux factor thresholds for various thermal effects, such as melting, cracking and recrystallization, are determined under both single and multishot experiments. The use of nanosecond lasers for mimicking thermal effects induced on W by fusion-relevant thermal loads is thus validated by direct comparison of the thresholds obtained in this work and the ones reported in the literature for electron beams and millisecond laser irradiation. Numerical simulations of temperature and thermal stress performed on a 2D thermomechanical code are used to predict the heat flux factor thresholds of the different thermal effects. We also investigate the thermal effect thresholds of various nanostructured W coatings. These coatings are produced by pulsed laser deposition, mimicking W coatings in tokamaks and W redeposited layers. All the coatings show lower damage thresholds with respect to bulk W. In general, thresholds decrease as the porosity degree of the materials increases. We thus propose a model to predict these thresholds for coatings with various morphologies, simply based on their porosity degree, which can be directly estimated by measuring the variation of the coating mass density with respect to that of the bulk.

  1. Understanding How Space Travel Affects Blood Vessels: Arterial Remodeling and Functional Adaptations Induced by Microgravity

    Science.gov (United States)

    Delp, Michael; Vasques, Marilyn; Aquilina, Rudy (Technical Monitor)

    2002-01-01

    Ever rise quickly from the couch to get something from the kitchen and suddenly feel dizzy? With a low heart rate and relaxed muscles, the cardiovascular system does not immediately provide the resistance necessary to keep enough blood going to your head. Gravity wins, at least for a short time, before your heart and blood vessels can respond to the sudden change in position and correct the situation. Actually, the human cardiovascular system is quite well adapted to the constant gravitational force of the Earth. When standing, vessels in the legs constrict to prevent blood from collecting in the lower extremities. In the space environment, the usual head-to-foot blood pressure and tissue fluid gradients that exist during the upright posture on Earth are removed. The subsequent shift in fluids from the lower to the upper portions of the body triggers adaptations within the cardiovascular system to accommodate the new pressure and fluid gradients. In animal models that simulate microgravity, the vessels in the head become more robust while those in the lower limbs become thin and lax. Similar changes may also occur in humans during spaceflight and while these adaptations are appropriate for a microgravity environment, they can cause problems when the astronauts return to Earth or perhaps another planet. Astronauts often develop orthostatic intolerance which means they become dizzy or faint when standing upright. This dizziness can persist for a number of days making routine activities difficult. In an effort to understand the physiological details of these cardiovascular adaptations, Dr. Michael Delp at Texas A&M University, uses the rat as a model for his studies. For the experiment flown on STS-107, he will test the hypothesis that blood vessels in the rats' hindlimbs become thinner, weaker, and constrict less in response to pressure changes and to chemical signals when exposed to microgravity. In addition, he will test the hypothesis that arteries in the brain

  2. Micro-gravity Isolation using only Electro-magnetic Actuators

    DEFF Research Database (Denmark)

    Vinther, D.; Alminde, Lars; Bisgaard, Morten

    2004-01-01

    In this paper the design, construction and test of a free floating micro-gravity isolation platform to reduce the acceleration dose on zero gravity experiments on e.g. the International Space Station (ISS) is discussed. During the project a system is specified and constructed whereupon it is test...

  3. Microgravity: A Teacher's Guide with Activities. Secondary Level.

    Science.gov (United States)

    Vogt, Gregory L., Ed.; Wargo, Michael J., Ed.

    A microgravity environment is one that will impart to an object a net acceleration that is small compared with that produced by Earth at its surface. In practice, such acceleration will range from about one percent of Earth's gravitational acceleration to better than one part in a million. this teacher's guide presents an introduction to…

  4. Calcium dependent current recordings in Xenopus laevis oocytes in microgravity

    Science.gov (United States)

    Wuest, Simon L.; Roesch, Christian; Ille, Fabian; Egli, Marcel

    2017-12-01

    Mechanical unloading by microgravity (or weightlessness) conditions triggers profound adaptation processes at the cellular and organ levels. Among other mechanisms, mechanosensitive ion channels are thought to play a key role in allowing cells to transduce mechanical forces. Previous experiments performed under microgravity have shown that gravity affects the gating properties of ion channels. Here, a method is described to record a calcium-dependent current in native Xenopus laevis oocytes under microgravity conditions during a parabolic flight. A 3-voltage-step protocol was applied to provoke a calcium-dependent current. This current increased with extracellular calcium concentration and could be reduced by applying extracellular gadolinium. The custom-made ;OoClamp; hardware was validated by comparing the results of the 3-voltage-step protocol to results obtained with a well-established two-electrode voltage clamp (TEVC). In the context of the 2nd Swiss Parabolic Flight Campaign, we tested the OoClamp and the method. The setup and experiment protocol worked well in parabolic flight. A tendency that the calcium-dependent current was smaller under microgravity than under 1 g condition could be observed. However, a conclusive statement was not possible due to the small size of the data base that could be gathered.

  5. Orbital and Intracranial Effects of Microgravity: 3T MRI Findings

    Science.gov (United States)

    Kramer, L. A.; Sargsyan, A.; Hasan, K. M.; Polk, J. D.; Hamilton, D. R.

    2012-01-01

    Goals and Objectives of this presentation are: 1. To briefly describe a newly discovered clinical entity related to space flight. 2. To describe normal anatomy and pathologic changes of the optic nerve, posterior globe, optic nerve sheath and pituitary gland related to exposure to microgravity. 3. To correlate imaging findings with known signs of intracranial hypertension.

  6. Centrifuges for Microgravity Simulation. The Reduced Gravity Paradigm

    International Nuclear Information System (INIS)

    Loon, Jack J. W. A. van

    2016-01-01

    Due to the cumbersome nature of performing real microgravity—spaceflight research scientists have been searching for alternatives to perform simulated microgravity or partial gravity experiments on Earth. For more than a century one uses the slow rotating clinostat as developed by von Sachs at the end of the nineteenth century. Since then, the fast rotating clinostat, the 3D clinostat or the random positioning machine, the rotating wall vessels, tail suspension and bed rest head down tilt and lately the levitating magnets have been introduced. Several of these simulation systems provide some similarities of the responses and phenotypes as seen in real microgravity experiments. However, one should always realize that we cannot reduce gravity on Earth, other than the relative short duration free fall studies in e.g., drop towers or parabolic aircraft. In this paper we want to explore the possibility to apply centrifuges to simulate microgravity or maybe better to simulate hypo-gravity. This Reduced Gravity Paradigm, RGP is based on the premise that adaptations seen going from a hypergravity level to a lower gravity are similar as changes seen going from unit gravity to microgravity.

  7. The Development of Vestibular Connections in Rat Embryos in Microgravity

    Science.gov (United States)

    Bruce, Laura L.; Fritzsch, Bernd

    1997-01-01

    Existing experimental embryological data suggests that the vestibular system initially develops in a very rigid and genetically controlled manner. Nevertheless, gravity appears to be a critical factor in the normal development of the vestibular system that monitors position with respect to gravity (saccule and utricle). In fact several studies have shown that prenatal exposure to microgravity causes temporary deficits in gravity-dependent righting behaviors, and prolonged exposure to hypergravity from conception to weaning causes permanent deficits in gravity-dependent righting behaviors. Data on hypergravity and microgravity exposure suggest some changes in the otolith formation during development, in particular the size although these changes may actually vary with the species involved. In adults exposed to microgravity there is a change in the synaptic density in the otic sensory epithelia suggesting that some adaptation may occur there. However, effects have also been reported in the brainstem. Several studies have shown synaptic changes in the lateral vestibular nucleus and in the nodulus of the cerebellum after neonatal exposure to hypergravity. We report here that synaptogenesis in the medial vestibular nucleus is retarded in developing rat embryos that were exposed to microgravity from gestation days 9 to 19.

  8. MARANGONI CONVECTION AROUND A VENTILATED AIR BUBBLE UNDER MICROGRAVITY CONDITIONS

    NARCIS (Netherlands)

    HOEFSLOOT, HCJ; JANSSEN, LPBM; HOOGSTRATEN, HW

    Under microgravity conditions in both parabolic and sounding rocket flights, the mass-transfer-induced Marangoni convection around an air bubble was studied. To prevent the bubble from becoming saturated, the bubble was ventilated. It turned out that the flow rate of the air through the bubble

  9. Centrifuges for microgravity simulation. The reduced gravity paradigm

    NARCIS (Netherlands)

    van Loon, J.J.W.A.

    Due to the cumbersome nature of performing real microgravity—spaceflight research scientists have been searching for alternatives to perform simulated microgravity or partial gravity experiments on Earth. For more than a century one uses the slow rotating clinostat as developed by von Sachs at the

  10. Effect of Wind Velocity on Flame Spread in Microgravity

    Science.gov (United States)

    Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)

    2002-01-01

    A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.

  11. Physics of Regolith Impacts in Microgravity Experiment (PRIME)

    Science.gov (United States)

    Motil, Brian (Technical Monitor); Colwell, Joshua; Sture, S.

    2003-01-01

    Collisions between planetary ring particles and in some protoplanetary disk environments occur at low impact velocities (v less than 1 m/s) . In some regions of Saturn s rings, for example, the typical collision velocity inferred from observations by the Voyager spacecraft and dynamical modeling is a fraction of a centimeter per second. Although no direct observations of an individual ring particle exist, the abundance of dust in planetary rings and protoplanetary disks suggests that larger ring and disk particles are coated with a layer of smaller particles and dust - the "regolith". Because the ring particles and proto-planetesimals are small (cm to m-sized), the regolith is only weakly bound to the surface by gravity. Similarly, secondary impacts on asteroids by large blocks of ejecta from high velocity cratering events result in low velocity impacts into the asteroid regolith, which is also weakly bound by the asteroid s gravity. At the current epoch and throughout their history, low velocity collisions have played an important role in sculpting planetary systems. In a one-Earth-gravity environment, it is not possible to experimentally determine the behavior of impact eject from such low velocity collisions. Impacts typically occur at speeds exceeding the mutual escape velocity of the two bodies. Thus, impacts at speeds on the order of 10 m/sec or less involve objects that are tens of meters across, or smaller. This research program is an experimental study of such low velocity collisions in a microgravity environment. The experimental work builds on the Collisions Into Dust Experiment (COLLIDE), which has flown twice on the space shuttle. The PRIME experimental apparatus is a new apparatus designed specifically for the environment provided on the NASA KC- 135 reduced gravity aircraft.

  12. Methanol Droplet Combustion in Oxygen-Inert Environments in Microgravity

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2013-01-01

    The Flame Extinguishment (FLEX) experiment that is currently underway in the Combustion Integrated Rack facility onboard the International Space Station is aimed at understanding the effects of inert diluents on the flammability of condensed phase fuels. To this end, droplets of various fuels, including alkanes and alcohols, are burned in a quiescent microgravity environment with varying amounts of oxygen and inert diluents to determine the limiting oxygen index (LOI) for these fuels. In this study we report experimental observations of methanol droplets burning in oxygen-nitrogen-carbon dioxide and oxygen-nitrogen-helium gas mixtures at 0.7 and 1 atmospheric pressures. The initial droplet size varied between approximately 1.5 mm and 4 mm to capture both diffusive extinction brought about by insufficient residence time at the flame and radiative extinction caused by excessive heat loss from the flame zone. The ambient oxygen concentration varied from a high value of 30% by volume to as low as 12%, approaching the limiting oxygen index for the fuel. The inert dilution by carbon dioxide and helium varied over a range of 0% to 70% by volume. In these experiments, both freely floated and tethered droplets were ignited using symmetrically opposed hot-wire igniters and the burning histories were recorded onboard using digital cameras, downlinked later to the ground for analysis. The digital images yielded droplet and flame diameters as functions of time and subsequently droplet burning rate, flame standoff ratio, and initial and extinction droplet diameters. Simplified theoretical models correlate the measured burning rate constant and the flame standoff ratio reasonably well. An activation energy asymptotic theory accounting for time-dependent water dissolution or evaporation from the droplet is shown to predict the measured diffusive extinction conditions well. The experiments also show that the limiting oxygen index for methanol in these diluent gases is around 12% to

  13. Microgravity induced changes in the control of motor units

    Science.gov (United States)

    de Luca, C.; Roy, S.

    The goal of this project is to understand the effects of microgravity on the control of muscles. It is motivated by the notion that in order to adequately address microgravity-induced deterioration in the force generating capacity of muscles, one needs to understand the changes in the control aspects in addition to histochemical and morphological changes. The investigations into muscle control need to include the regulation of the firing activity of motor units that make up a muscle and the coordination of different muscles responsible for the control of a joint. In order to understand the effects of microgravity on these two aspects of muscle control, we will test astronauts before and after spaceflight. The investigations of the control of motor units will involve intramuscular EMG techniques developed in our laboratory. We will use a quadrifilar electrode to detect simultaneously three differential channels of EMG activity. These data will be decomposed accurately using a sophisticated set of algorithms constructed with artificial intelligence knowledge- based techniques. Particular attention will be paid to the firing rate and recruitment behavior of motor units and we will study the degree of cross-correlation of the firing rates. This approach will enable us to study the firing behavior of several (approx. 10) concurrently active motor units. This analysis will enable us to detect modifications in the control of motor units. We will perform these investigations in a hand muscle, which continues being used in prehensile tasks in space, and a leg muscle whose antigravity role is not needed in space. The comparison of the effects of weightlessness on these muscles will determine if continued use of muscles in space deters the possible deleterious effects of microgravity on the control of motor units, in addition to slowing down atrophy. We are particularly interested in comparing the results of this study to similar data already obtained from elderly subjects

  14. Growing tissues in real and simulated microgravity: new methods for tissue engineering.

    Science.gov (United States)

    Grimm, Daniela; Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Ulbrich, Claudia; Magnusson, Nils E; Infanger, Manfred; Bauer, Johann

    2014-12-01

    Tissue engineering in simulated (s-) and real microgravity (r-μg) is currently a topic in Space medicine contributing to biomedical sciences and their applications on Earth. The principal aim of this review is to highlight the advances and accomplishments in the field of tissue engineering that could be achieved by culturing cells in Space or by devices created to simulate microgravity on Earth. Understanding the biology of three-dimensional (3D) multicellular structures is very important for a more complete appreciation of in vivo tissue function and advancing in vitro tissue engineering efforts. Various cells exposed to r-μg in Space or to s-μg created by a random positioning machine, a 2D-clinostat, or a rotating wall vessel bioreactor grew in the form of 3D tissues. Hence, these methods represent a new strategy for tissue engineering of a variety of tissues, such as regenerated cartilage, artificial vessel constructs, and other organ tissues as well as multicellular cancer spheroids. These aggregates are used to study molecular mechanisms involved in angiogenesis, cancer development, and biology and for pharmacological testing of, for example, chemotherapeutic drugs or inhibitors of neoangiogenesis. Moreover, they are useful for studying multicellular responses in toxicology and radiation biology, or for performing coculture experiments. The future will show whether these tissue-engineered constructs can be used for medical transplantations. Unveiling the mechanisms of microgravity-dependent molecular and cellular changes is an up-to-date requirement for improving Space medicine and developing new treatment strategies that can be translated to in vivo models while reducing the use of laboratory animals.

  15. Conceptual design of a device to measure hand swelling in a micro-gravity environment

    Science.gov (United States)

    Hysinger, Christopher L.

    1993-01-01

    In the design of pressurized suits for use by astronauts in space, proper fit is an important consideration. One particularly difficult aspect of the suit design is the design of the gloves. If the gloves of the suit do not fit properly, the grip strength of the astronaut can be decreased by as much as fifty percent. These gloves are designed using an iterative process and can cost over 1.5 million dollars. Glove design is further complicated by the way the body behaves in a micro-gravity environment. In a micro-gravity setting, fluid from the lower body tends to move into the upper body. Some of this fluid collects in the hands and causes the hands to swell. Therefore, a pair of gloves that fit well on earth may not fit well when they are used in space. The conceptual design process for a device which can measure the swelling that occurs in the hands in a micro-gravity environment is described. This process involves developing a specifications list and function structure for the device and generating solution variants for each of the sub functions. The solution variants are then filtered, with the variants that violate any of the specifications being discarded. After acceptable solution variants are obtained, they are combined to form design concepts. These design concepts are evaluated against a set of criteria and the design concepts are ranked in order of preference. Through this process, the two most plausible design concepts were an ultrasonic imaging technique and a laser mapping technique. Both of these methods create a three dimensional model of the hand, from which the amount of swelling can be determined. In order to determine which of the two solutions will actually work best, a further analysis will need to be performed.

  16. Spaceflight and Simulated Microgravity Increases Virulence of the Known Bacterial Pathogen S. Marcescens

    Science.gov (United States)

    Clemens-Grisham, Rachel Andrea; Bhattacharya, Sharmila; Wade, William

    2016-01-01

    After spaceflight, the number of immune cells is reduced in humans. In other research models, including Drosophila, not only is there a reduction in the number of plasmatocytes, but expression of immune-related genes is also changed after spaceflight. These observations suggest that the immune system is compromised after exposure to microgravity. It has also been reported that there is a change in virulence of some bacterial pathogens after spaceflight. We recently observed that samples of gram-negative S. marcescens retrieved from spaceflight is more virulent than ground controls, as determined by reduced survival and increased bacterial growth in the host. We were able to repeat this finding of increased virulence after exposure to simulated microgravity using the rotating wall vessel, a ground based analog to microgravity. With the ground and spaceflight samples, we looked at involvement of the Toll and Imd pathways in the Drosophila host in fighting infection by ground and spaceflight samples. We observed that Imd-pathway mutants were more susceptible to infection by the ground bacterial samples, which aligns with the known role of this pathway in fighting infections by gram-negative bacteria. When the Imd-pathway mutants were infected with the spaceflight sample, however, they exhibited the same susceptibility as seen with the ground control bacteria. Interestingly, all mutant flies show the same susceptibility to the spaceflight bacterial sample as do wild type flies. This suggests that neither humoral immunity pathway is effectively able to counter the increased pathogenicity of the space-flown S. marcescens bacteria.

  17. Cellular and molecular aspects of plant adaptation to microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla

    2016-07-01

    Elucidation of the range and mechanisms of the biological effects of microgravity is one of the urgent fundamental tasks of space and gravitational biology. The absence of forbidding on plant growth and development in orbital flight allows studying different aspects of plant adaptation to this factor that is directly connected with development of the technologies of bioregenerative life-support systems. Microgravity belongs to the environmental factors which cause adaptive reactions at the cellular and molecular levels in the range of physiological responses in the framework of genetically determined program of ontogenesis. It is known that cells of a multicellular organism not only take part in reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and molecular levels in real and simulated microgravity is considered. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in the cell organelle functional load. The maintenance of the plasmalemma fluidity at the certain level, an activation of both the antioxidant system and expression of HSP genes, especially HSP70, under increasing reactive oxygen species, lipid peroxidation intensity and alteration in protein homeostasis, are a strategic paradigm of rapid (primary) cell adaptation to microgravity. In this sense, biological membranes, especially plasmalemma, and their properties and functions may be considered as the most sensitive indicators of the influence of gravity or altered gravity on a cell. The plasmalemma lipid bilayer is a border between the cell internal content and environment, so it is a mediator

  18. Changes of decartograms under gravitational acceleration and microgravity.

    Science.gov (United States)

    Blinova, E V; Sakhnova, T A; Kozhemyakina, E S; Vaida, P; Capderou, A; Atkov, O Y; Trunov, V G; Aidu, E A I; Titomir, L I

    2002-01-01

    The Decarto technique was used to study the orthogonal ECGs recorded in 23 subjects during parabolic flights (44 records). A parameter of the instantaneous decartograms, namely the activation area (AA), which is the total area of the depolarization front projection on the image sphere, was analyzed. We compared the values of AA during the periods of horizontal flight, upward parts of all parabolas, and the initial 10 s of microgravity of all parabolas. According to the characteristics of the vectorcardiograms and AA, all subjects were subdivided into 3 groups: with increased electric activity of the right ventricle (I), the left ventricle (II) and both ventricles (III). Changes of AA with change of gravitational levels in these groups showed some differences. In groups I and II, the AA of the initial part of the QRS complex increased during microgravity and decreased during hypergravity. In group III it decreased during microgravity and changed variously during hypergravity. The AA of the middle part of the QRS complex decreased during microgravity and increased during hypergravity, and these changes were more pronounced in group III. The changes of AA in groups I and II may be explained by the Brody effect. In group III, AA seems to be influenced by some additional factors, possibly by changes in the intramyocardial or intraventricular blood volume. The AA of the last part of the QRS complex increased during microgravity and decreased during hypergravity in all groups. This may be explained by an effect of mutual neutralization of depolarization fronts related to the changes of the QRS duration.(Fig. 3, Ref. 4)

  19. Neural readaptation to earth s gravity following exposure to microgravity

    Science.gov (United States)

    Boyle, R.; Highstein, S.; Mensinger, A.

    Vertebrates possess hair cell otolith organs of the inner ear, the utricule and saccule, that transduce inertial force due to head translation and head tilt relative to gravitational vertical, and transform the vector sum of the imposing accelerations into a neural code carried by the afferent nerve fibers. This code is combined in the central vestibular pathways with motion signals obtained from the semicircular canals and other sensory modalities to compute a cent ral representation of the body in space called the gravitoinertial vector. Thus the central nervous system resolves the ambiguity of gravity and self-motion and thereby maintains balance and equilibrium under varying conditions. Exposure to microgravity imposes an extreme condition to which the organism must adapt. Space travelers often experience disorientation during the first few days in microgravity, called Space Adaptation Syndrome. From the earliest manned missions it was evident that adjustments to the microgravity environment in-flight and upon return to Earth's 1g occur. We studied the neural readaptation to Earth's 1g using electrophysiological techniques to measure the response characteristics of utricular nerve afferents in fish upon return from an exposure to microgravity. Following a 9 (STS-95) and 15 (STS-90) day exposure to microgravity aboard two NASA shuttle orbital flights, single afferent recording experiments were conducted in four toadfish, Opsanus tau, to characterize the afferent response properties to gravito inertial accelerations and compare them to- afferent responses of control animals similarly tested. Six recording sessions were made sequentially 10-117 hrs postflight. Afferent responses to translational accelerations and head tilts were detected in the earliest sessions. The most striking result is the occurrence of hypersensitive afferents, having extremely high response sensitivity to minor displacements such as vestibular disorientation in astronauts following return

  20. The current state of bone loss research: data from spaceflight and microgravity simulators.

    Science.gov (United States)

    Nagaraja, Mamta Patel; Risin, Diana

    2013-05-01

    Bone loss is a well documented phenomenon occurring in humans both in short- and in long-term spaceflights. This phenomenon can be also reproduced on the ground in human and animals and also modeled in cell-based analogs. Since space flights are infrequent and expensive to study the biomedical effects of microgravity on the human body, much of the known pathology of bone loss comes from experimental studies. The most commonly used in vitro simulators of microgravity are clinostats while in vivo simulators include the bed rest studies in humans and hindlimb unloading experiments in animals. Despite the numerous reports that have documented bone loss in wide ranges in multiple crew members, the pathology remains a key concern and development of effective countermeasures is still a major task. Thus far, the offered modalities have not shown much success in preventing or alleviating bone loss in astronauts and cosmonauts. The objective of this review is to capture the most recent research on bone loss from spaceflights, bed rest and hindlimb unloading, and in vitro studies utilizing cellular models in clinostats. Additionally, this review offers projections on where the research has to focus to ensure the most rapid development of effective countermeasures. Copyright © 2012 Wiley Periodicals, Inc.

  1. Microgravity vertical gradient measurement in the site of VIRGO interferometric antenna (Pisa plain, Italy

    Directory of Open Access Journals (Sweden)

    F. Fidecaro

    2008-06-01

    Full Text Available The site of the European Gravitational Observatory (EGO located in the countryside near Pisa (Tuscany, Italy was investigated by a microgravity vertical gradient (MVG survey. The EGO site houses the VIRGO interferometric antenna for gravitational waves detection. The microgravity survey aims to highlight the gravity anomalies of high-frequency related to more superficial geological sources in order to obtain a detailed model of the lithologic setting of the VIRGO site, that will allow an estimate of the noise induced by seismic waves and by Newtonian interference. This paper presents the results of the gradiometric survey of 2006 in the area of the interferometric antenna. MVG measurements allow us to enhance the high frequency signal strongly associated with the shallow structures. The gradient gravity map shows a main negative pattern that seems related to the trending of the high density layer of gravel that was evidenced in geotechnical drillings executed along the orthogonal arms during the construction of the VIRGO complex. Calibrating the relationship between the vertical gradient and the depth of the gravel interface we have computed a model of gravity gradient for the whole VIRGO site, defining the 3D distribution of the top surface of this layer. This latter shows a NE-SW negative pattern that may represent a palaeo-bed alluvial of the Serchio from the Bientina River system.

  2. Testicular teratoma, mimicking a simple testicular cyst, in an infant.

    Science.gov (United States)

    Di Renzo, Dacia; Persico, Antonello; Sindici, Giulia; Lelli Chiesa, Pierluigi

    2013-09-01

    Prepubertal testicular tumors are rare, and teratoma is the second most frequent histologic type. Its typical features are those of a hard and painless scrotal mass at clinical examination, and nonhomogeneous, echoic, often with calcifications at ultrasonography. Rare but reported is the atypical presentation as a transilluminating scrotal mass, due to the presence of some internal cystic areas, detectable at ultrasonography. We report the case of an infant with a transilluminating scrotal mass, mimicking at ultrasonography and surgery a simple, fully liquid cyst, which the pathologic examination revealed to be mature cystic testicular teratoma. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Report of ischemic stroke mimicking isolated ulnar nerve paralysis

    Directory of Open Access Journals (Sweden)

    Çetin Kürşad Akpınar

    2016-12-01

    Full Text Available The cortical motor hand area is the precentral gyrus. Small cortical infarcts of this area can caused isolated hand weakness. Weakness can consist of either all fingers or ulnar-sided fingers. A 71-year-old man admitted to the emergency department with sudden weakness of the right fourth and fifth fingers Diffusion-weighted brain imaging of a magnetic resonance imaging scan revealed acute infarction of right precentral gyrus. Cardioembolus is the determined ischemic stroke subtype. This report presented a case of ischemic stroke mimicking isolated ulnar nerve paralysis.

  4. Dual anaplastic large cell lymphoma mimicking meningioma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keun Ho; Kim, Ki Hwan; Lee, Ghi Jai; Lee, Hye Kyung; Shim, Jae Chan; Lee, Kyoung Eun; Suh, Jung Ho [Seoul Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of); Lee, Chae Heuck [Dept. of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang (Korea, Republic of)

    2014-01-01

    Anaplastic large cell lymphoma (ALCL) is a rare T cell lymphoma composed of CD30-positive lymphoid cells. Most ALCLs present as nodal disease, with skin, bone, soft tissue, lung, and liver as common extranodal sites. ALCL rarely occurs in the central nervous system and is even more infrequent in the dura of the brain. We report a case of dural-based ALCL secondary to systemic disease in a 17-year-old male that mimicked meningioma on magnetic resonance imaging and angiography.

  5. Pancreatitis with Electrocardiographic Changes Mimicking Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Paul Khairy

    2001-01-01

    Full Text Available A 64-year-old woman with mild acute pancreatitis presented with epigastric pain, nausea and vomiting while undergoing hemodialysis for chronic renal insufficiency. Serial electrocardiograms revealed new onset ST segment elevations in leads V2 to V4 mimicking an anterior myocardial infarction, followed by diffusely inverted deep T waves. No cardiac pathology was demonstrated by echocardiography or coronary angiography. A review of the literature and possible pathophysiological mechanisms of electrocardiographic changes in acute pancreatitis, such as metabolic abnormalities, hemodynamic instability, vasopressors, pericarditis, myocarditis, a cardiobiliary reflex, exacerbation of underlying cardiac pathology, coagulopathy and coronary vasospasm, are discussed.

  6. Paracoccidioidomycosis Mimicking Sarcoidosis: A Review of 8 Cases.

    Science.gov (United States)

    Coelho, Mariana Guimarães; Severo, Cecília Bittencourt; de Mattos Oliveira, Flávio; Hochhegger, Bruno; Severo, Luiz Carlos

    2016-02-01

    Sarcoidosis is a multisystem disorder that is characterized by noncaseous epithelioid cell granulomas, which may affect almost any organ. Thoracic involvement is common and accounts for most of the morbidity and mortality associated with this disease. The diagnosis is based on exhaustive exclusion of differential diagnoses, particularly granulomatous infections. We report data on eight patients with paracoccidioidomycosis mimicking sarcoidosis. Five patients presented with a chronic pulmonary type infection and three had a disseminated form after immunosuppressive treatment. The mycological diagnosis in noncaseating granulomas is emphasized and reviewed.

  7. Epithelioid sarcoma mimicking abscess: review of the MRI appearances

    International Nuclear Information System (INIS)

    Dion, E.; Forest, M.; Brasseur, J.L.; Grenier, P.; Amoura, Z.

    2001-01-01

    A case of epithelioid sarcoma involving the soft tissue of the ankle is presented. The tumor was a hemorrhagic, fluid-filled, multiloculated lesion with inflammatory changes in the surrounding planes. Tuberculous abscess was diagnosed on the basis of the clinical picture, ultrasound and MRI findings. Surgical exploration of the ankle mass was carried out because of lack of local healing while the patient's general and pulmonary status improved on antituberculosis treatment. This was an unusual case of epithelioid sarcoma mimicking a multilocular abscess. (orig.)

  8. Cartilage Delamination Flap Mimicking a Torn Medial Meniscus

    Directory of Open Access Journals (Sweden)

    Gan Zhi-Wei Jonathan

    2016-01-01

    Full Text Available We report a case of a chondral delamination lesion due to medial parapatellar plica friction syndrome involving the medial femoral condyle. This mimicked a torn medial meniscus in clinical and radiological presentation. Arthroscopy revealed a chondral delamination flap, which was debrided. Diagnosis of chondral lesions in the knee can be challenging. Clinical examination and MRI have good accuracy for diagnosis and should be used in tandem. Early diagnosis and treatment of chondral lesions are important to prevent progression to early osteoarthritis.

  9. Hızma Induced Papul of Nose Mimicking Pyogenic Granuloma

    Directory of Open Access Journals (Sweden)

    Mualla Polat

    2014-09-01

    Full Text Available The application of body piercing is popular among young people, who consider it as a sign of marginality, beauty, or group identity. Piercing procedure is observed to cause a large number of complications such as infections, pain, inflammatory reactions, bleeding, dental fractures or fissures, and gingival damage, etc., mostly in young individuals. Hizma is a traditional body ornament worn by Anatolian women via a piercing procedure. Herein, we describe a papule of nose mimicking pyogenic granuloma as an uncommon complication of Hızma.

  10. Subcutaneous phaeohyphomycosis due to Pyrenochaeta romeroi mimicking a synovial cyst

    Directory of Open Access Journals (Sweden)

    Aurelien Dinh

    2016-08-01

    Full Text Available Opportunistic subcutaneous fungal infections are increasing nowadays due to the growing number of medical conditions causing immunosuppression, especially organ transplant. The incidence rate of subcutaneous phaeohyphomycosis is very low. Most studies found are case reports. They showed a wide variation of clinical presentations. Pyrenochaeta romeroi, a fungus from the Dematiaceae group is a saprophyte found in soil and plants and a possible causative agent of phaeohyphomycosis. We present a rare case of subcutaneous phaeohyphomycosis caused by P. romeroi mimicking a synovial cyst in a diabetic patient.

  11. Cystic fibrous dysplasia mimicking giant cell tumor: MRI appearance

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Kyoji; Yoshida, Sumiko [Department of Orthopaedics, Akita University School of Medicine, Akita (Japan); Okane, Kumiko [Department of Radiology, Akita University School of Medicine, Akita (Japan); Sageshima, Masato [Division of Clinical Pathology, Akita University Hospital, Akita (Japan)

    2000-01-01

    We report the case of a 43-year-old man who presented with an osteolytic and expansive lesion in the left distal femur mimicking a giant cell tumor. Magnetic resonance imaging (MRI) showed that most of the lesion was cystic, and histological examination revealed fibrous dysplasia with marked cystic degeneration. Radiographic findings of cystic fibrous dysplasia in the end of a long bone may be similar to those of a giant cell tumor, and a biopsy is essential for the final diagnosis. (orig.)

  12. Mental foramen mimicking as periapical pathology - A case report

    Directory of Open Access Journals (Sweden)

    Anusha Rangare Lakshman

    2014-09-01

    Full Text Available The radiographic recognition of any disease requires a thorough knowledge of the radiographic appearance of normal structure. Intelligent diagnosis mandates an appreciation of the wide range of variation in the appearance of normal anatomical structures. The mental foramen is usually the anterior limit of the inferior dental canal that is apparent on radiographs. It opens on the facial aspect of the mandible in the region of the premolars. It can pose diagnostic dilemma radiographically because of its anatomical variation which can mimic as a periapical pathosis. Hereby we are reporting a rare case of superimposed mental foramen over the apex of right mandibular second premolar mimicking as periapical pathology.

  13. Femoroacetabular impingement mimicking avascular osteonecrosis on bone scintigraphy

    International Nuclear Information System (INIS)

    Suarez, Juan Pablo; Domínguez, María Luz; Nogareda, Zulema; Gómez, María Asunción; Muñoz, Jose

    2016-01-01

    Femoroacetabular impingement (FAI) is a structural abnormality of proximal femur and/or acetabulum. It has been recently described, and there are limited reports in nuclear medicine literature because bone scintigraphy is not listed in its diagnostic protocol, but it should be included on differential diagnosis when evaluating patients, with hip-related symptoms because it may be misinterpreted as degenerative changes or avascular necrosis, and its early treatment avoid progression to osteoarthritis. We describe the case of a male who suffered from hip pain. Bone planar scintigraphic appearance mimicked avascular necrosis, but single photon emission computed tomography (CT) imaging and CT examination confirmed the diagnosis of FAI

  14. Embolized prostatic brachytherapy seeds mimicking acute chest pain syndromes

    Directory of Open Access Journals (Sweden)

    Nirmal Guragai

    2017-01-01

    Full Text Available A 59-year-old male with a history of nonobstructive coronary artery disease, diabetes mellitus, hypertension, and prostate cancer presented to the hospital with 1-day history of pleuritic chest pain. Initial workup for acute coronary event was unremarkable. Chest X-ray revealed multiple small radial densities which were linear and hyperdense, consistent with embolization of metallic seeds to the pulmonary circulation. The patient was noted to have had radioactive metallic seeds implanted for prostate cancer 6 months ago. Diagnosis of pulmonary embolization of prostatic seeds is challenging as they frequently present with chest pain mimicking acute coronary syndromes.

  15. Mondor Disease Of Penis; A Rare Entity Mimicking Peyronie's Disease

    Directory of Open Access Journals (Sweden)

    Türker Acar

    2015-11-01

    Full Text Available Mondor’s disease of the penis is a rare entity characterized by thrombosis in the dorsal penile vein. Unlike anxiety resulting from this condition which is conservatively treated, recognizing this disease is quite easy with Doppler ultrasonography. Peyronie’s disease and sclerosing lymphangitis are considered in the differential diagnosis of Mondor’s disease. In this present case report we aimed to present ultrasonography findings and briefly review the literature in a male patient diagnosed with Mondor's disease who admitted with rope like stiffness on the dorsal side of penis mimicking Peyronie's disease.

  16. Endometriosis mimicking the perianal fistula tract: Case report

    Directory of Open Access Journals (Sweden)

    Gül Türkcü

    2014-09-01

    Full Text Available Endometriosis is the presence of endometrial glands and stroma outside the uterine cavity. Nowadays, in many cases, although routine use of episiotomy perineal endo metriosis is extremely rare. A 36 year old female patient was referred to our hospital with complaints of pain in the perianal region for five months. On physical examination, stiffness was palpated and then magnetic resonance im aging (MRI was performed. MRI is compatible with fistula tract. The lesion was excised and the histopathological appearance correspond to endometriosis. Perianal endo metriosis is rare in the perianal region and in the clinic mimicking perianal fistulas and malignancy should be kept in mind in the differential diagnosis

  17. Induction of hypoxic root metabolism results from physical limitations in O 2 bioavailability in microgravity

    Science.gov (United States)

    Liao, J.; Liu, G.; Monje, O.; Stutte, G. W.; Porterfield, D. M.

    2004-01-01

    enzyme activities, while the control and clinostat treatments showed no response. This work demonstrates: (1) the inhibition of gravity-driven convective transport can reduce the O 2 bioavailability to the root tip, and (2) the perturbation of gravisensing by clinostat rotation does not induce a non-specific stress response involving ADH. Together these experiments support the microgravity convection inhibition model for explaining changes in root metabolism during spaceflight.

  18. Placental Growth Factor Levels in Populations with High Versus Low Risk for Cardiovascular Disease and Stressful Physiological Environments such as Microgravity: A Pilot Study

    Science.gov (United States)

    Sundaresan, Alamelu; Mehta, Satish K.; Schlegel, Todd. T.; Russomano, Thais; Pierson, Duane L.; Mann, Vivek; Mansoor, Elvedina; Olamigoke, Loretta; Okoro, Elvis

    2017-02-01

    This pilot study compared placental growth factor (PIGF) levels in populations with high versus low risk for cardiovascular disease. Previous experiments from our laboratory (Sundaresan et al. 2005, 2009) revealed that the angiogenic factor PIGF was up regulated in modeled microgravity conditions in human lymphocytes leading to possible atherogenesis and pathogenesis in microgravity. Since the findings came from microgravity analog experiments, there is a strong link to its usefulness in the microgravity field as a biomarker. It is important to understand, that these findings came from both studies on expression levels of this cardiovascular marker in human lymphocytes in microgravity ( in vitro microgravity analog), and a follow up gene expression study in hind limb suspended mice ( in vivo microgravity analog). The relevance is enhanced because in life on earth, PIGF is an inflammatory biomarker for cardiovascular disease. Studies on the levels of PIGF would help to reduce the risk and prevention of heart failures in astronauts. If we can use this marker to predict and reduce the risk of cardiac events in astronauts and pilots, it would significantly help aerospace medicine operations. The investigations here confirmed that in a cardiovascular stressed population such as coronary artery disease (CAD) and acute coronary syndrome (ACS) patients, PIGF could be overexpressed. We desired to re-evaluate this marker in patients with cardiovascular disease in our own study. PIGF is a marker of inflammation and a predictor of short-term and long-term adverse outcome in ACS. In addition, elevated PIGF levels may be associated with increased risk for CAD.PIGF levels were determined in thirty-one patients undergoing cardiovascular catheterization for reasons other than ACS and in thirty-three low-risk asymptomatic subjects. Additional data on traditional cardiovascular risk factors for both populations were also compiled and compared. We found that PIGF levels were

  19. The stress response of bacterium Cupriavidus metallidurans CH34 into simulated microgravity

    Science.gov (United States)

    van Houdt, Rob; de Boever, Patrick; Coninx, Ilse; Janssen, Ann; Benotmane, Rafi; Leys, Natalie; Mergeay, Max

    The stress response of bacterium Cupriavidus metallidurans CH34 into simulated microgravity R. Van Houdt, P. De Boever, I. Coninx, A. Janssen, M.A. Benotmane, N. Leys, and M. Mergeay Expertise group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium. We have studied the response of Cupriavidus (formerly Ralstonia) metallidurans CH34 to simulated microgravity by culturing in a Rotating Wall Vessel (RWV) bioreactor. This bioreactor technology generates a unique Low-Shear Modeled Microgravity (LSMMG) environment and is exploited as analogue for in vivo medical and space environments. Cupriavidus and Ralstonia species are relevant model bacteria since they are often isolated from the floor, air and surfaces of spacecraft assembly rooms and not only contaminate the clean rooms but have also been found prior-to-flight on surfaces of space robots such as the Mars Odyssey Orbiter and even in-flight in ISS cooling water and Shuttle drinking water. In addition, C. metallidurans CH34 is also being used in fundamental space flight experiments aimed to gain a better insight in the bacterial adaptation to space. The first objective was to elucidate the stress response of C. metallidurans CH34 grown in LSMMG compared to a normal gravity control. Transcriptomic analysis revealed that a significant part of the heat shock response was induced in LSMMG. Transcription of d naK, encoding the major heat-shock protein and a prokaryotic homologue of the eukaryotic Hsp70 protein, was induced 6.4 fold in LSMMG. DnaK is assisted by partner chaperones DnaJ and GrpE for which transcription respectively were induced 2.0 and 2.6 fold. Transcription of other chaperones known to belong to the heat shock response was also induced in LSMMG: hslV and hsl U, encoding the HslVU protease, were induced respectively 5.5 and 3.4 fold; htpG, encoding a Hsp90 family chaperone, was induced 4.6 fold

  20. Spontaneous motor entrainment to music in multiple vocal mimicking species.

    Science.gov (United States)

    Schachner, Adena; Brady, Timothy F; Pepperberg, Irene M; Hauser, Marc D

    2009-05-26

    The human capacity for music consists of certain core phenomena, including the tendency to entrain, or align movement, to an external auditory pulse [1-3]. This ability, fundamental both for music production and for coordinated dance, has been repeatedly highlighted as uniquely human [4-11]. However, it has recently been hypothesized that entrainment evolved as a by-product of vocal mimicry, generating the strong prediction that only vocal mimicking animals may be able to entrain [12, 13]. Here we provide comparative data demonstrating the existence of two proficient vocal mimicking nonhuman animals (parrots) that entrain to music, spontaneously producing synchronized movements resembling human dance. We also provide an extensive comparative data set from a global video database systematically analyzed for evidence of entrainment in hundreds of species both capable and incapable of vocal mimicry. Despite the higher representation of vocal nonmimics in the database and comparable exposure of mimics and nonmimics to humans and music, only vocal mimics showed evidence of entrainment. We conclude that entrainment is not unique to humans and that the distribution of entrainment across species supports the hypothesis that entrainment evolved as a by-product of selection for vocal mimicry.

  1. Tension pneumocephalus mimicking septic shock: a case report

    Directory of Open Access Journals (Sweden)

    Caroline Miranda, MD

    2018-02-01

    Full Text Available Tension pneumocephalus can lead to rapid neurologic deterioration. We report for the first time its association with aseptic systemic inflammatory response syndrome mimicking septic shock and the efficacy of prompt neurosurgical intervention and critical care support in treating this condition. A 64-year-old man underwent 2-stage olfactory groove meningioma resection. The patient developed altered mental status and gait instability on postoperative day 6. Imaging showed significant pneumocephalus. The patient subsequently developed worsening mental status, respiratory failure, and profound shock requiring multiple vasopressors. Bedside needle decompression, identification and repair of the cranial fossa defect, and critical care support led to improved mental status and reversal of shock and multiorgan dysfunction. Thorough evaluation revealed no evidence of an underlying infection. In this case, tension pneumocephalus incited an aseptic systemic inflammatory response syndrome mimicking septic shock. Prompt neurosurgical correction of pneumocephalus and critical care support not only improved neurologic status, but also reversed shock. Such a complication indicates the importance of close monitoring of patients with progressive pneumocephalus.

  2. Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging

    Science.gov (United States)

    Cook, Jason R.; Bouchard, Richard R.; Emelianov, Stanislav Y.

    2011-01-01

    In both photoacoustic (PA) and ultrasonic (US) imaging, overall image quality is influenced by the optical and acoustical properties of the medium. Consequently, with the increased use of combined PA and US (PAUS) imaging in preclinical and clinical applications, the ability to provide phantoms that are capable of mimicking desired properties of soft tissues is critical. To this end, gelatin-based phantoms were constructed with various additives to provide realistic acoustic and optical properties. Forty-micron, spherical silica particles were used to induce acoustic scattering, Intralipid® 20% IV fat emulsion was employed to enhance optical scattering and ultrasonic attenuation, while India Ink, Direct Red 81, and Evans blue dyes were utilized to achieve optical absorption typical of soft tissues. The following parameters were then measured in each phantom formulation: speed of sound, acoustic attenuation (from 6 to 22 MHz), acoustic backscatter coefficient (from 6 to 22 MHz), optical absorption (from 400 nm to 1300 nm), and optical scattering (from 400 nm to 1300 nm). Results from these measurements were then compared to similar measurements, which are offered by the literature, for various soft tissue types. Based on these comparisons, it was shown that a reasonably accurate tissue-mimicking phantom could be constructed using a gelatin base with the aforementioned additives. Thus, it is possible to construct a phantom that mimics specific tissue acoustical and/or optical properties for the purpose of PAUS imaging studies. PMID:22076278

  3. Psychophysiology in microgravity and the role of exercise

    Science.gov (United States)

    Shaw, J. M.; Hackney, A. C.

    1994-01-01

    The Space Transportation-Shuttle (STS) Program has greatly expanded our capabilities in space by allowing for missions to be flown more frequently, less expensively, and to encompass a greater range of goals than ever before. However, the scope of the United State's role and involvement in space is currently at the edge of a new and exciting era. The National Aeronautics and Space Administration (NASA) has plans for placing an orbiting space station (Space Station Freedom) into operation before the year 2000. Space Station Freedom promises to redefine the extent of our involvement in space even further than the STS program. Space Station crewmembers will be expected to spend extended periods of time (approximately 30 to 180 days) in space exposed to an extremely diverse and adverse environment (e.g., the major adversity being the chronic microgravity condition). Consequently, the detrimental effects of exposure to the microgravity environment is of primary importance to the biomedical community responsible for the health and well-being of the crewmembers. Space flight and microgravity exposure present a unique set of stressors for the crewmember; weightlessness, danger, isolation/confinement, irregular work-rest cycles, separation from family/friends, and mission/ground crew interrelationships. A great deal is beginning to be known about the physiological changes associated with microgravity exposure, however, limited objective psychological findings exist. Examination of this latter area will become of critical concern as NASA prepares to place crewmembers on the longer space missions that will be required on Space Station Freedom. Psychological factors, such as interpersonal relations will become increasingly important issues, especially as crews become more heterogeneous in the way of experience, professional background, and assigned duties. In an attempt to minimize the detrimental physiological effects of prolonged space flight and microgravity exposure, the

  4. Strata-1: An International Space Station Experiment into Fundamental Regolith Processes in Microgravity

    Science.gov (United States)

    Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.; hide

    2016-01-01

    The Strata-1 experiment will study the evolution of asteroidal regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies are subjected to a variety of forces and will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. Our understanding of this dynamical evolution and the inter-particle forces involved would benefit from long-term observations of granular materials exposed to small vibrations in microgravity. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples collected by missions such as OSIRIS-REx and Hayabusa 1 and 2, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Understanding regolith dynamics will inform designs of how to land and set anchors, safely sample/move material on asteroidal surfaces, process large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predict behavior of large and small particles on disturbed asteroid surfaces.

  5. Effect of capillary and marangoni forces on transport phenomena in microgravity.

    Science.gov (United States)

    Kundan, Akshay; Plawsky, Joel L; Wayner, Peter C

    2015-05-19

    The Constrained Vapor Bubble (CVB) experiment concerns a transparent, simple, "wickless" heat pipe operated in the microgravity environment of the International Space Station (ISS). In a microgravity environment, the relative effect of Marangoni flow is amplified because of highly reduced buoyancy driven flows as demonstrated herein. In this work, experimental results obtained using a transparent 30 mm long CVB module, 3 mm × 3 mm in square cross-section, with power inputs of up to 3.125 W are presented and discussed. Due to the extremely low Bond number and the dielectric materials of construction, the CVB system was ideally suited to determining if dry-out as a result of Marangoni forces might contribute to limiting heat pipe performance and exactly how that limitation occurs. Using a combination of visual observations and thermal measurements, we find a more complicated phenomenon in which opposing Marangoni and capillary forces lead to flooding of the device. A simple one-dimensional, thermal-fluid flow model describes the essence of the relative importance of the two stresses. Moreover, even though the heater end of the device is flooded and the liquid is highly superheated, boiling does not occur due to high evaporation rates.

  6. Studies of Hard and Soft Tissue Elemental Compositions in Mice and Rats Subjected to Simulated Microgravity

    Science.gov (United States)

    Mehta, Rahul; Lane, Ryan A.; Fitch, Hannah M.; Ali, Nawab; Soulsby, Michael; Chowdhury, Parimal

    2009-03-01

    Microgravity has profound effects on skeletal as well as other body systems. To investigate the effect of microgravity, we have used a NASA validated Hind-limb suspension (HLS) animal model of simulated weightlessness. Groups of mice and rats were subjected to hind limb suspension between 1 and 14 days while the control groups were maintained without suspension for the same duration. To study the effect of diet, some groups of animals were fed on a special diet with defined composition. At term, the animals were sacrificed and the tibia, femur, and skull bones were collected. In addition, soft tissues from pancreas and muscles were also collected. All of the bones and tissues samples were analyzed for elemental analysis using Energy Dispersive Spectroscopy (EDS) equipped on a Scanning Electron Microscope (SEM). In the EDS, 10-20 keV electrons bombarded the samples and a Si (Li) detector measured K-, L- and M-shell x-rays. Independently, X-Ray Fluorescence (XRF) provided the data for comparison and normalization. Flame software, with Fuzzy Logic, was used to form elemental ratios. Elemental analysis of bone samples indicated a variation in the compositional ratios of calcium, potassium, oxygen and carbon in the leg bones and skulls of the HLS versus control specimens. These variations showed dependence on sample position in the bone.

  7. Investigation of the Influence of Microgravity on Transport Mechanisms in a Virtual Spaceflight Chamber: A Ground Based Program

    Science.gov (United States)

    Trolinger, James D.; Rangel, Roger; Witherow, William; Rogers, Jan; Lal, Ravindra B.

    1999-01-01

    In January 1992, the IML-1 FES experiment produced a set of classic experimental data and a 40 hour holographic "movie" of an ensemble of spheres in a fluid in microgravity. Because the data are in the form of holograms, we can study the three-dimensional distribution of particles with unprecedented detail by a variety of methods and for a wide variety of interests. The possession of the holographic movie is tantamount to having a complex experiment in space while working in an easily accessible laboratory on earth. The movie contains a vast amount of useful data, including residual g, g-jitter, convection and transport data, and particle fluid interaction data. The information content in the movie is so great that we have scarcely begun to tap into the data that is actually available in the more than 1000 holograms, each containing as much as 1000 megabytes of information. This ground-based project is exploiting this data and the concept of holographic storage of spaceflight data to provide an understanding of the effects of microgravity in materials processing. This paper provides the foundation, objectives, and status of the ground based project. The primary objective of this project is to advance the understanding of microgravity effects on crystal growth, convection in materials processing in the space environment, and complex transport phenomena at low Reynolds numbers. This objective is being achieved both experimentally and theoretically. Experiments are making use of existing holographic data recorded during the IML- I spaceflight. A parallel theoretical effort is providing the models for understanding the particle fields and their physics in the microgravity environment.

  8. Concurrent Flame Growth, Spread and Extinction over Composite Fabric Samples in Low Speed Purely Forced Flow in Microgravity

    Science.gov (United States)

    Zhao, Xiaoyang; T'ien, James S.; Ferkul, Paul V.; Olson, Sandra L.

    2015-01-01

    As a part of the NASA BASS and BASS-II experimental projects aboard the International Space Station, flame growth, spread and extinction over a composite cotton-fiberglass fabric blend (referred to as the SIBAL fabric) were studied in low-speed concurrent forced flows. The tests were conducted in a small flow duct within the Microgravity Science Glovebox. The fuel samples measured 1.2 and 2.2 cm wide and 10 cm long. Ambient oxygen was varied from 21% down to 16% and flow speed from 40 cm/s down to 1 cm/s. A small flame resulted at low flow, enabling us to observe the entire history of flame development including ignition, flame growth, steady spread (in some cases) and decay at the end of the sample. In addition, by decreasing flow velocity during some of the tests, low-speed flame quenching extinction limits were found as a function of oxygen percentage. The quenching speeds were found to be between 1 and 5 cm/s with higher speed in lower oxygen atmosphere. The shape of the quenching boundary supports the prediction by earlier theoretical models. These long duration microgravity experiments provide a rare opportunity for solid fuel combustion since microgravity time in ground-based facilities is generally not sufficient. This is the first time that a low-speed quenching boundary in concurrent spread is determined in a clean and unambiguous manner.

  9. Altered baseline brain activity with 72 h of simulated microgravity--initial evidence from resting-state fMRI.

    Directory of Open Access Journals (Sweden)

    Yang Liao

    Full Text Available To provide the basis and reference to further insights into the neural activity of the human brain in a microgravity environment, we discuss the amplitude changes of low-frequency brain activity fluctuations using a simulated microgravity model. Twelve male participants between 24 and 31 years old received resting-state fMRI scans in both a normal condition and after 72 hours in a -6° head down tilt (HDT. A paired sample t-test was used to test the amplitude differences of low-frequency brain activity fluctuations between these two conditions. With 72 hours in a -6° HDT, the participants showed a decreased amplitude of low-frequency fluctuations in the left thalamus compared with the normal condition (a combined threshold of P<0.005 and a minimum cluster size of 351 mm(3 (13 voxels, which corresponded with the corrected threshold of P<0.05 determined by AlphaSim. Our findings indicate that a gravity change-induced redistribution of body fluid may disrupt the function of the left thalamus in the resting state, which may contribute to reduced motor control abilities and multiple executive functions in astronauts in a microgravity environment.

  10. Mimicking cell/extracellular matrix adhesion with lipid membranes and solid substrates: requirements, pitfalls and proposals

    Science.gov (United States)

    Cuvelier, Damien; Vezy, Cyrille; Viallat, Annie; Bassereau, Patricia; Nassoy, Pierre

    2004-07-01

    The interest in physical approaches to the study of cell adhesion has generated numerous recent works on the development of substrates mimicking the extracellular matrix and the use of giant synthetic liposomes, commonly considered as basic models of living cells. The use of well-characterized bioactive substrates and artificial cells should allow us to gain new insight into the cell-extracellular matrix interactions, provided that their biomimetic relevance has been really proved. The aim of this paper is to define some minimal requirements for effective biomimetic features and to propose simple adhesion assays. We show, for instance, that immobilization of specific ligands is sometimes not sufficient to ensure specific adhesion of cells expressing the corresponding receptors. By investigating comparatively the adhesive behaviour of decorated erythrocytes and vesicles, we also discuss the potentialities and limitations of synthetic vesicles as test cells.

  11. Reversible wavefront shaping between Gaussian and Airy beams by mimicking gravitational field

    Science.gov (United States)

    Wang, Xiangyang; Liu, Hui; Sheng, Chong; Zhu, Shining

    2018-02-01

    In this paper, we experimentally demonstrate reversible wavefront shaping through mimicking gravitational field. A gradient-index micro-structured optical waveguide with special refractive index profile was constructed whose effective index satisfying a gravitational field profile. Inside the waveguide, an incident broad Gaussian beam is firstly transformed into an accelerating beam, and the generated accelerating beam is gradually changed back to a Gaussian beam afterwards. To validate our experiment, we performed full-wave continuum simulations that agree with the experimental results. Furthermore, a theoretical model was established to describe the evolution of the laser beam based on Landau’s method, showing that the accelerating beam behaves like the Airy beam in the small range in which the linear potential approaches zero. To our knowledge, such a reversible wavefront shaping technique has not been reported before.

  12. Investigating the Effect of Impurities on Macromolecule Crystal Growth in Microgravity

    Science.gov (United States)

    Snell, Edward H.; Judge, Russell A.; Crawford, Lisa; Forsythe, Elizabeth L.; Pusey, Marc L.; Sportiello, Michael; Todd, Paul; Bellamy, Henry; Lovelace, Jeff; Cassanto, John M.; hide

    2001-01-01

    Chicken egg-white lysozyme (CEWL) crystals were grown in microgravity and on the ground in the presence of various amounts of a naturally occurring lysozyme dimer impurity. No significant favorable differences in impurity incorporation between microgravity and ground crystal samples were observed. At low impurity concentration the microgravity crystals preferentially incorporated the dimer. The presence of the dimer in the crystallization solutions in microgravity reduced crystal size, increased mosaicity and reduced the signal to noise ratio of the X-ray data. Microgravity samples proved more sensitive to impurity. Accurate indexing of the reflections proved critical to the X-ray analysis. The largest crystals with the best X-ray diffraction properties were grown from pure solution in microgravity.

  13. Male fertility is reduced by chronic intermittent hypoxia mimicking sleep apnea in mice.

    Science.gov (United States)

    Torres, Marta; Laguna-Barraza, Ricardo; Dalmases, Mireia; Calle, Alexandra; Pericuesta, Eva; Montserrat, Josep M; Navajas, Daniel; Gutierrez-Adan, Alfonso; Farré, Ramon

    2014-11-01

    Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia and oxidative stress. However, it is unknown whether intermittent hypoxia mimicking OSA modifies male fertility. We tested the hypothesis that male fertility is reduced by chronic intermittent hypoxia mimicking OSA in a mouse model. Case-control comparison in a murine model. University research laboratory. Eighteen F1 (C57BL/6xCBA) male mice. Mice were subjected to a pattern of periodic hypoxia (20 sec at 5% O2 followed by 40 sec of room air) 6 h/day for 60 days or normoxia. After this period, mice performed a mating trial to determine effective fertility by assessing the number of pregnant females and fetuses. After euthanasia, oxidative stress in testes was assessed by measuring the expression of glutathione peroxidase 1 (Gpx1) and superoxide dismutase-1 (Sod1) by reverse-transcription polymerase chain reaction. Sperm motility was determined by Integrated Semen Analysis System (ISAS). Intermittent hypoxia significantly increased testicular oxidative stress, showing a reduction in the expression of Gpx1 and Sod1 by 38.9% and 34.4%, respectively, as compared with normoxia (P hypoxia group (P = 0.04). The proportion of pregnant females and number of fetuses per mating was significantly lower in the intermittent hypoxia group (0.33 ± 0.10 and 2.45 ± 0.73, respectively) than in normoxic controls (0.72 ± 0.16 and 5.80 ± 1.24, respectively). These results suggest that the intermittent hypoxia associated with obstructive sleep apnea (OSA) could induce fertility reduction in male patients with this sleep breathing disorder.

  14. Sixth Microgravity Fluid Physics and Transport Phenomena Conference Abstracts

    Science.gov (United States)

    Singh, Bhim (Compiler)

    2002-01-01

    The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This TM is a compilation of abstracts of the papers and the posters presented at the conference. Web-based proceedings, including the charts used by the presenters, will be posted on the web shortly after the conference.

  15. Microgravity Acceleration Measurement System (MAMS) Flight Configuration Verification and Status

    Science.gov (United States)

    Wagar, William

    2000-01-01

    The Microgravity Acceleration Measurement System (MAMS) is a precision spaceflight instrument designed to measure and characterize the microgravity environment existing in the US Lab Module of the International Space Station. Both vibratory and quasi-steady triaxial acceleration data are acquired and provided to an Ethernet data link. The MAMS Double Mid-Deck Locker (DMDL) EXPRESS Rack payload meets all the ISS IDD and ICD interface requirements as discussed in the paper which also presents flight configuration illustrations. The overall MAMS sensor and data acquisition performance and verification data are presented in addition to a discussion of the Command and Data Handling features implemented via the ISS, downlink and the GRC Telescience Center displays.

  16. Tax mimicking and yardstick competition among local governments in the Netherlands

    NARCIS (Netherlands)

    Allers, MA; Elhorst, JP

    This paper provides a spatial-econometric analysis of the setting of property tax rates by Dutch municipalities. We find evidence of tax mimicking: a ten percent higher property tax rate in neighboring municipalities leads to a 3.5 percent higher tax rate. Mimicking is less pronounced in

  17. Microgravity changes in heart structure and cyclic-AMP metabolism

    Science.gov (United States)

    Philpott, D. E.; Fine, A.; Kato, K.; Egnor, R.; Cheng, L.

    1985-01-01

    The effects of microgravity on cardiac ultrastructure and cyclic AMP metabolism in tissues of rats flown on Spacelab 3 are reported. Light and electron microscope studies of cell structure, measurements of low and high Km phosphodiesterase activity, cyclic AMP-dependent protein kinase activity, and regulatory subunit compartmentation show significant deviations in flight animals when compared to ground controls. The results indicate that some changes have occurred in cellular responses associated with catecholamine receptor interactions and intracellular signal processing.

  18. Microgravity fluid physics research in the Space Station Freedom era

    Science.gov (United States)

    Carpenter, Bradley M.

    1992-01-01

    Microgravity fluid physics covers an exciting range of established and potential fields of scientific research. Areas in which the Microgravity Science and Applications Division of NASA's Office of Space Science and Applications is currently supporting research include: multiphase flow and phase change heat transfer, behavior of granular media and colloids; and interface dynamics, morphological stability, and contact line phenomena. As they contribute to our knowledge of fluid behavior, advances in these areas will enhance our understanding of materials processing on Earth and in space, and will contribute to technologies as diverse as chemical extraction, the prediction of soil behavior in earthquakes, and the production of oil reservoirs. NASA' s primary platform for research in microgravity fluid physics will soon be the Fluid Physics/Dynamics Facility on Space Station Freedom. This facility shares a rack for control and utilities with the Modular Combustion Facility, and has one rack for experiment-unique instruments. It is planned to change out the content of the experiment-unique rack at intervals on the order of one year. In order to obtain a maximum return on the operation of the facility during these intervals, the research community must carefully plan and coordinate an effort that brings the efforts of many investigators to bear on problems of particular importance. NASA is currently working with the community to identify research areas in which microgravity can make a unique and valuable contribution, and to build a balanced program of research around these areas or thrusts. Selections will soon be made from our first solicitation for research in fluid dynamics and transport phenomena. These solicitations will build the research community that will make Space Station Freedom a catalyst for scientific and technological discovery, and offer U.S. scientists in many disciplines a unique opportunity to participate in space science.

  19. Pollination and embryo development in Brassica rapa L. in microgravity

    Science.gov (United States)

    Kuang, A.; Popova, A.; Xiao, Y.; Musgrave, M. E.

    2000-01-01

    Plant reproduction under spaceflight conditions has been problematic in the past. In order to determine what aspect of reproductive development is affected by microgravity, we studied pollination and embryo development in Brassica rapa L. during 16 d in microgravity on the space shuttle (STS-87). Brassica is self-incompatible and requires mechanical transfer of pollen. Short-duration access to microgravity during parabolic flights on the KC-135A aircraft was used initially to confirm that equal numbers of pollen grains could be collected and transferred in the absence of gravity. Brassica was grown in the Plant Growth Facility flight hardware as follows. Three chambers each contained six plants that were 13 d old at launch. As these plants flowered, thin colored tape was used to indicate the date of hand pollination, resulting in silique populations aged 8-15 d postpollination at the end of the 16-d mission. The remaining three chambers contained dry seeds that germinated on orbit to produce 14-d-old plants just beginning to flower at the time of landing. Pollen produced by these plants had comparable viability (93%) with that produced in the 2-d-delayed ground control. Matched-age siliques yielded embryos of equivalent developmental stage in the spaceflight and ground control treatments. Carbohydrate and protein storage reserves in the embryos, assessed by cytochemical localization, were also comparable. In the spaceflight material, growth and development by embryos rescued from siliques 15 d after pollination lagged behind the ground controls by 12 d; however, in the subsequent generation, no differences between the two treatments were found. The results demonstrate that while no stage of reproductive development in Brassica is absolutely dependent upon gravity, lower embryo quality may result following development in microgravity.

  20. Improvement in the quality of hematopoietic prostaglandin D synthase crystals in a microgravity environment

    International Nuclear Information System (INIS)

    Tanaka, Hiroaki; Tsurumura, Toshiharu; Aritake, Kosuke; Furubayashi, Naoki; Takahashi, Sachiko; Yamanaka, Mari; Hirota, Erika; Sano, Satoshi; Sato, Masaru; Kobayashi, Tomoyuki; Tanaka, Tetsuo; Inaka, Koji; Urade, Yoshihiro

    2011-01-01

    Crystals of hematopoietic prostaglandin D synthase grown in microgravity show improved quality. Human hematopoietic prostaglandin synthase, one of the better therapeutic target enzymes for allergy and inflammation, was crystallized with 22 inhibitors and in three inhibitor-free conditions in microgravity. Most of the space-grown crystals showed better X-ray diffraction patterns than the terrestrially grown ones, indicating the advantage of a microgravity environment on protein crystallization, especially in the case of this protein

  1. Problems associated with gene transfer and opportunities for microgravity environments

    Science.gov (United States)

    Tennessen, Daniel J.

    1997-01-01

    The method of crop improvement by gene transfer is becoming increasingly routine with transgenic foods and ornamental crops now being marketed to consumers. However, biological processes of plants, and the physical barriers of current protocols continue to limit the application of gene transfer in many commercial crops. The goal of this paper is to outline the current limitations of gene transfer and to hypothesize possible opportunities for use of microgravity to overcome such limitations. The limitations detailed in this paper include host-range specificity of Agrobacterium mediated transformation, probability of gene insertion, position effects of the inserted genes, gene copy number, stability of foreign gene expression in host plants, and regeneration of recalcitrant plant species. Microgravity offers an opportunity for gene transfer where cell growth kinetics, DNA synthesis, and genetic recombination rates can be altered. Such biological conditions may enhance the ability for recombination of reporter genes and other genes of interest to agriculture. Proposed studies would be useful for understanding instability of foreign gene expression and may lead to stable transformed plants. Other aspects of gene transfer in microgravity are discussed.

  2. Problems in Microgravity Fluid Mechanics: G-Jitter Convection

    Science.gov (United States)

    Homsy, G. M.

    2005-01-01

    This is the final report on our NASA grant, Problems in Microgravity Fluid Mechanics NAG3-2513: 12/14/2000 - 11/30/2003, extended through 11/30/2004. This grant was made to Stanford University and then transferred to the University of California at Santa Barbara when the PI relocated there in January 2001. Our main activity has been to conduct both experimental and theoretical studies of instabilities in fluids that are relevant to the microgravity environment, i.e. those that do not involve the action of buoyancy due to a steady gravitational field. Full details of the work accomplished under this grant are given below. Our work has focused on: (i) Theoretical and computational studies of the effect of g-jitter on instabilities of convective states where the convection is driven by forces other than buoyancy (ii) Experimental studies of instabilities during displacements of miscible fluid pairs in tubes, with a focus on the degree to which these mimic those found in immiscible fluids. (iii) Theoretical and experimental studies of the effect of time dependent electrohydrodynamic forces on chaotic advection in drops immersed in a second dielectric liquid. Our objectives are to acquire insight and understanding into microgravity fluid mechanics problems that bear on either fundamental issues or applications in fluid physics. We are interested in the response of fluids to either a fluctuating acceleration environment or to forces other than gravity that cause fluid mixing and convection. We have been active in several general areas.

  3. International Microgravity Laboratory-1 (IML-1) Onboard Photograph

    Science.gov (United States)

    1992-01-01

    International Microgravity Laboratory-1 (IML-1) was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), the French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Dedicated to the study of life and materials sciences in microgravity, the IML missions explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. Both life and materials sciences benefited from the extended periods of microgravity available inside the Spacelab science module in the cargo bay of the Space Shuttle Orbiter. In this photograph, Astronauts Stephen S. Oswald and Norman E. Thagard handle ampoules used in the Mercuric Iodide Crystal Growth (MICG) experiment. Mercury Iodide crystals have practical uses as sensitive x-ray and gamma-ray detectors. In addition to their exceptional electronic properties, these crystals can operate at room temperature rather than at the extremely low temperatures usually required by other materials. Because a bulky cooling system is urnecessary, these crystals could be useful in portable detector devices for nuclear power plant monitoring, natural resource prospecting, biomedical applications in diagnosis and therapy, and astronomical observation. Managed by the Marshall Space Flight Center, IML-1 was launched on January 22, 1992 aboard the Space Shuttle Orbiter Discovery (STS-42 mission).

  4. Autonomous robot for detecting subsurface voids and tunnels using microgravity

    Science.gov (United States)

    Wilson, Stacy S.; Crawford, Nicholas C.; Croft, Leigh Ann; Howard, Michael; Miller, Stephen; Rippy, Thomas

    2006-05-01

    Tunnels have been used to evade security of defensive positions both during times of war and peace for hundreds of years. Tunnels are presently being built under the Mexican Border by drug smugglers and possibly terrorists. Several have been discovered at the border crossing at Nogales near Tucson, Arizona, along with others at other border towns. During this war on terror, tunnels under the Mexican Border pose a significant threat for the security of the United States. It is also possible that terrorists will attempt to tunnel under strategic buildings and possibly discharge explosives. The Center for Cave and Karst Study (CCKS) at Western Kentucky University has a long and successful history of determining the location of caves and subsurface voids using microgravity technology. Currently, the CCKS is developing a remotely controlled robot which will be used to locate voids underground. The robot will be a remotely controlled vehicle that will use microgravity and GPS to accurately detect and measure voids below the surface. It is hoped that this robot will also be used in military applications to locate other types of voids underground such as tunnels and bunkers. It is anticipated that the robot will be able to function up to a mile from the operator. This paper will describe the construction of the robot and the use of microgravity technology to locate subsurface voids with the robot.

  5. 2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings

    Science.gov (United States)

    Wang, Hui; Li, Xugang; Krause, Lars; Görög, Mark; Schüler, Oliver; Hauslage, Jens; Hemmersbach, Ruth; Kircher, Stefan; Lasok, Hanna; Haser, Thomas; Rapp, Katja; Schmidt, Jürgen; Yu, Xin; Pasternak, Taras; Aubry-Hivet, Dorothée; Tietz, Olaf; Dovzhenko, Alexander; Palme, Klaus; Ditengou, Franck Anicet

    2016-04-01

    Ground-based simulators of microgravity such as fast rotating 2-D clinostats are valuable tools to study gravity related processes. We describe here a versatile g-value-adjustable 2-D clinostat that is suitable for plant analysis. To avoid seedling adaptation to 1 g after clinorotation, we designed chambers that allow rapid fixation. A detailed protocol for fixation, RNA isolation and the analysis of selected genes is described. Using this clinostat we show that mRNA levels of LONG HYPOCOTYL 5 (HY5), MIZU-KUSSEI 1 (MIZ1) and microRNA MIR163 are down-regulated in 5-day-old Arabidopsis thaliana roots after 3 min and 6 min of clinorotation using a maximal reduced g-force of 0.02 g, hence demonstrating that this 2-D clinostat enables the characterization of early transcriptomic events during root response to microgravity. We further show that this 2-D clinostat is able to compensate the action of gravitational force as both gravitropic-dependent statolith sedimentation and subsequent auxin redistribution (monitoring D R5 r e v :: G F P reporter) are abolished when plants are clinorotated. Our results demonstrate that 2-D clinostats equipped with interchangeable growth chambers and tunable rotation velocity are suitable for studying how plants perceive and respond to simulated microgravity.

  6. Mechano-biological Coupling of Cellular Responses to Microgravity

    Science.gov (United States)

    Long, Mian; Wang, Yuren; Zheng, Huiqiong; Shang, Peng; Duan, Enkui; Lü, Dongyuan

    2015-11-01

    Cellular response to microgravity is a basic issue in space biological sciences as well as space physiology and medicine. It is crucial to elucidate the mechano-biological coupling mechanisms of various biological organisms, since, from the principle of adaptability, all species evolved on the earth must possess the structure and function that adapts their living environment. As a basic element of an organism, a cell usually undergoes mechanical and chemical remodeling to sense, transmit, transduce, and respond to the alteration of gravitational signals. In the past decades, new computational platforms and experimental methods/techniques/devices are developed to mimic the biological effects of microgravity environment from the viewpoint of biomechanical approaches. Mechanobiology of plant gravisensing in the responses of statolith movements along the gravity vector and the relevant signal transduction and molecular regulatory mechanisms are investigated at gene, transcription, and protein levels. Mechanotransduction of bone or immune cell responses and stem cell development and tissue histogenesis are elucidated under microgravity. In this review, several important issues are briefly discussed. Future issues on gravisensing and mechanotransducing mechanisms are also proposed for ground-based studies as well as space missions.

  7. Microgravity effects on the legume/Rhizobium symbiosis

    Science.gov (United States)

    Urban, James E.

    1997-01-01

    Symbiotic nitrogen fixation is of critical importance to world agriculture and likely will be a critical part of life support systems developed for prolonged missions in space. Bacteroid formation, an essential step in an effective Dutch White Clover/Rhizobium leguminosarum bv trifolii symbiosis, is induced by succinic acid which is produced by the plant and which is bound and incorporated by the bacterium. Aspirin mimics succinate in its role as a bacteroid inducer and measures of aspirin binding mimiced measurements of succinate binding. In normal gravity (1×g), rhizobium bacteria immediately bound relatively high levels of aspirin (or succinate) in a readily reversible manner. Within a few seconds a portion of this initially bound aspirin became irreversibly bound. In the microgravity environment aboard the NASA 930 aircraft, rhizobia did not display the initial reversible binding of succinate, but did display a similar kinetic pattern of irreversible binding, and ultimately bound 32% more succinate (Acta Astronautica 36:129-133, 1995.) In normal gravity succinate treated cells stop dividing and swell to their maximum size (twice the normal cell volume) within a time equivalent to the time required for two normal cell doublings. Swelling in microgravity was tested in FPA and BPM sample holders aboard the space shuttle (USML-1, and STS-54, 57, and 60.) The behavior of cells in the two sample holders was similar, and swelling behavior of cells in microgravity was identical to behavior in normal gravity.

  8. Sleep and vestibular adaptation: implications for function in microgravity

    Science.gov (United States)

    Hobson, J. A.; Stickgold, R.; Pace-Schott, E. F.; Leslie, K. R.

    1998-01-01

    Optimal human performance depends upon integrated sensorimotor and cognitive functions, both of which are known to be exquisitely sensitive to loss of sleep. Under the microgravity conditions of space flight, adaptation of both sensorimotor (especially vestibular) and cognitive functions (especially orientation) must occur quickly--and be maintained--despite any concurrent disruptions of sleep that may be caused by microgravity itself, or by the uncomfortable sleeping conditions of the spacecraft. It is the three-way interaction between sleep quality, general work efficiency, and sensorimotor integration that is the subject of this paper and the focus of new work in our laboratory. To record sleep under field conditions including microgravity, we utilize a novel system called the Nightcap that we have developed and extensively tested on normal and sleep-disordered subjects. To perturb the vestibular system in ground-based studies, we utilize a variety of experimental conditions including optokinetic stimulation and both minifying and reversing goggle paradigms that have been extensively studied in relation to plasticity of the vestibulo-ocular reflex. Using these techniques we will test the hypothesis that vestibular adaptation both provokes and is enhanced by REM sleep under both ground-based and space conditions. In this paper we describe preliminary results of some of our studies.

  9. Microgravity Flow Regime Data: Buoyancy and Mixing Apparatus Effects

    Science.gov (United States)

    Shephard, Adam; Best, Frederick

    2010-01-01

    Zero-g two-phase flow data set qualification and flight experiment design have not been standardized and as a result, agreement among researchers has not been reached regarding what experimental conditions adequately approximate those of microgravity. The effects of buoyancy forces and mixing apparatus on the flow regime transitions are presented in this study. The gravity conditions onboard zero-g aircraft are at best 10-3 g which is used to approximate the 10-5 g conditions of microgravity, thus the buoyancy forces present on zero-g aircraft can become significantly large and unrepresentative of microgravity. When buoyancy forces approach those of surface tension forces, buoyancy induced coalescence occurs. When discussing flow regime transitions, these large buoyancy forces lead to flow regime transitions which otherwise would not occur. The buoyancy attributes of the two-phase flow data sets available in the literature are evaluated to determine which data sets exhibit buoyancy induced transitions. Upon comparison of the representative data sets, the affects of different mixing apparatus can be seen in the superficial velocity flow regime maps.

  10. The venture space alliance commercial application of microgravity research

    Science.gov (United States)

    Whitton, Dave

    1999-01-01

    The Venture Space Alliance is a Canadian commercial enterprise formed to develop a successful sustainable business, providing industrial and institutional clients with cost effective timely access to space and microgravity facilities for commercial and scientific benefit. The goal is to offer users a comprehensive and reliable set of products and services from the early stages of research, where access to short duration microgravity such as drop towers, aircraft and sub-orbital rockets is required, to more complex missions requiring free flyers, shuttle or Space Station. The service is designed to relieve the researcher from having to be concerned with the special processes associated with space flight, and to assist in the commercial application of their research through the development of business plans and investment strategy. Much of this research could lead to new and better medicines, high disease tolerant and more prolific agricultural products, new materials and alloys, and improvements in fundamental human health. This paper will describe the commercial successes derived from microgravity research, and the anticipated growth of this segment particularly with the completion of the International Space Station.

  11. Altered baroreflex control of forearm vascular resistance during simulated microgravity

    Science.gov (United States)

    Convertino, V. A.; Doerr, D. F.; Vernikos, J.

    1994-01-01

    Reflex peripheral vasoconstriction induced by activation of cardiopulmonary baroreceptors in response to reduced central venous pressure (CVP) is a basic mechanism for elevating systemic vascular resistance and defending arterial blood pressure during orthostatically-induced reductions in cardiac filling and output. The sensitivity of the cardiopulmonary baroreflex response [defined as the slope of the relationship between changes in forearm vascular resistance (FVR) and CVP] and the resultant vasoconstriction are closely and inversely associated with the amount of circulating blood volume. Thus, a high-gain FVR response will be elicited by a hypovolemic state. Exposure to microgravity during spaceflight results in reduced plasma volume. It is therefore reasonable to expect that the FVR response to cardiopulmonary baroreceptor unloading would be accentuated following adaptation to microgravity. Such data could provide better insight about the physiological mechanisms underlying alterations in blood pressure control following spaceflight. We therefore exposed eleven men to 6 degrees head-down bedrest for 7 days and measured specific hemodynamic responses to low levels of the lower body negative pressure to determine if there are alterations in cardiopulmonary baroreceptor stimulus-FVR reflex response relationship during prolonged exposure to an analog of microgravity.

  12. Transcutaneous Noninvasive Device for the Responsive Delivery of Melatonin in Microgravity., Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our goal is develop a smart, transcutaneous device for individualized circadian (sleep) therapy by responsive release of melatonin, in microgravity. Additionally,...

  13. T Cell Activation in Microgravity Compared to 1g (Earth s) Gravity

    Data.gov (United States)

    National Aeronautics and Space Administration — This study tested the hypothesis that transcription of immediate early genes is inhibited in T cells activated in microgravity (mg). Immunosuppression during...

  14. Transcutaneous Noninvasive Device for the Responsive Delivery of Melatonin in Microgravity. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our goal is develop a smart, transcutaneous device for individualized circadian (sleep) therapy by responsive release of melatonin, in microgravity. Additionally,...

  15. NASA supporting studies for microgravity research on eye movements

    Science.gov (United States)

    Cohen, Bernard

    1990-01-01

    The purpose of the work on this project was to provide support for ground-based studies on the effects of gravity on eye movements. The effects of microgravity on the optokinetic eye movements of humans are investigated. OKN was induced by having subjects watch 3.3 deg stripes moving at 35 deg/s for 45 s in a binocular, head-fixed apparatus. The field (hor., 88 deg; vert., 72 deg), was rotated about axes that were upright or tilted 45 deg or 90 deg. The head was upright or tilted 45 deg on the body. Head-horizontal (yaw axis) and head-vertical (pitch axis) components of OKN were recorded with electro-oculography (EOG). Slow phase velocity vectors were determined relative to gravity. With the head upright, the axis of eye rotation during yaw axis OKN was coincident with the stimulus axis and the spatial vertical. With the head tilted 45 deg on the body, a persistent vertical component of eye velocity developed during yaw axis stimulation, and there was an average shift of the axis of eye rotation toward the spatial vertical of approximately 18 deg in six subjects. During oblique optokinetic stimulation with the head upright, the axis of eye rotation shifted 12 deg toward the spatial vertical. When the head was tilted, the axis of eye rotation rotated to the other side of the spatial vertical by 5.4 deg during the same oblique stimulation. This counter-rotation of the axis of eye rotation is similar to the 'Muller (E) effect', in which the perception of the upright counter-rotates to the opposite side of the spatial vertical when subjects are tilted in darkness. The data were simulated by a model of OKN. Despite the short OKAN time constants, strong horizontal to vertical cross-coupling was produced if the horizontal and vertical time constants were in proper ratio, and there was no suppression of nystagmus orthogonal to the stimulus direction. This shows that the spatial orientation of OKN can be due to a restructuring of the system matrix of velocity storage as a

  16. An Adolescent Patient with Scabies Mimicking Gottron Papules

    Directory of Open Access Journals (Sweden)

    Eiji Yoshinaga

    2009-01-01

    Full Text Available Atypical features of scabies occur in infants and children and patients with prolonged use of corticosteroids or immunosuppression. We report a non-immunosuppressed 15-year-old female case of scabies showing scaly reddish papules over the proximal interphalangeal joints mimicking Gottron papules in classic dermatomyositis. Periungal erythema was also seen. Four months’ topical corticosteroids from previous clinics had been used. Dermoscopic findings were consistent with typical pictures of scabies. Scraping of hand crusts demonstrated scabies mites and ova. Skin lesions of the patient were cured with oral ivermectin and topical 10% crotamiton. This case suggests that a lesion resembling Gottron papules may be added to the panel of unusual presentations of scabies.

  17. Nephropathic Cystinosis Mimicking Bartter Syndrome: a Novel Mutation.

    Science.gov (United States)

    Bastug, Funda; Nalcacioglu, Hulya; Ozaltin, Fatih; Korkmaz, Emine; Yel, Sibel

    2018-01-01

    Cystinosis is a rare autosomal recessive disorder resulting from defective lysosomal transport of cystine due to mutations in the cystinosin lysosomal cystine transporter (CTNS) gene. The clinical phenotype of nephropathic cystinosis is characterized by renal tubular Fanconi syndrome and development of end-stage renal disease during the first decade. Although metabolic acidosis is the classically prominent finding of the disease, a few cases may present with hypokalemic metabolic alkalosis mimicking Bartter syndrome. Bartter-like presentation may lead to delay in diagnosis and initiation of specific treatment for cystinosis. We report a case of a 6-year-old girl initially presenting with the features of Bartter syndrome that was diagnosed 2 years later with nephropathic cystinosis and a novel CTNS mutation.

  18. Methicillin-resistant Staphylococcus Aureus Lip Infection Mimicking Angioedema.

    Science.gov (United States)

    Lucerna, Alan R; Espinosa, James; Darlington, Anne M

    2015-07-01

    It is rare for angioedema to be misidentified by the experienced clinician or for it to mimic another disease process. As an Emergency Physician, it is important to recognize and treat angioedema immediately. Of equal importance is the recognition and initiation of treatment of facial cellulitis. A case report follows that illustrates methicillin-resistant Staphylococcus aureus (MRSA) lip infection mimicking angioedema. Here, we describe a case of a 21-year-old man who presented with a swollen lower lip, initially diagnosed as angioedema. Further investigation revealed the cause of his lip swelling was actually a MRSA abscess and surrounding cellulitis, an unusual presentation for lip infection, which we discuss below. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Misidentifying MRSA lip infection for angioedema, with a delay in proper treatment, could result in serious morbidity or mortality. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A case of giant nodular posterior scleritis mimicking choroidal malignancy.

    Science.gov (United States)

    Liu, Andrea T; Luk, Fiona O; Chan, Carmen K

    2015-12-01

    To report a case of giant nodular posterior scleritis mimicking a choroidal tumor. A 42-year-old lady with systemic hypertension presented with a 1-week history of unilateral visual loss, pain and redness in her left eye. Examination showed sectoral anterior episcleritis in her left eye as well as a dome-shaped choroidal mass at the inferior-temporal periphery, associated with retinal hemorrhages and subretinal fluid. Systemic evaluation and imaging of the choroidal mass were performed and could not rule out amelanotic choroidal melanoma. At the same time, she was prescribed a 2-week course of oral nonsteroidal anti-inflammatory drug (NSAID) for her sectoral anterior episcleritis. The choroidal mass was found to have resolved completely right before her scheduled fine needle biopsy. Diagnosis of nodular posterior scleritis and a trial of oral NSAID can be considered in patients presenting with a choroidal mass before any invasive procedure.

  20. Enterobiasis in Ectopic Locations Mimicking Tumor-Like Lesions

    Directory of Open Access Journals (Sweden)

    Silvio Pampiglione

    2009-01-01

    Full Text Available Both the clinical and the histopathological diagnostic difficulties of oxyuriasis in unusual sites and their importance from a clinical point of view are pointed out. The authors report two ectoptic cases of enterobiasis observed in Northern Italy, one located in a fallopian tube of a 57-year-old woman and the other in a perianal subcutaneous tissue of a 59-year-old man, mimicking tumor-like lesions. The authors take advantage of the occasion to focus the attention of the medical world on this subject, lamenting the scarce importance given to this parasitosis in university courses of medical schools and in medical textbooks as it is incorrectly considered “out-of-fashion.”

  1. Myelodysplastic changes mimicking MDS following treatment for osteosarcoma

    DEFF Research Database (Denmark)

    Løhmann, Ditte

    Myelodysplastic changes mimicking MDS following treatment for osteosarcoma Ditte Juel Adolfsen Løhmann, Department of Pediatrics, Aarhus University Hospital, Skejby, Denmark Authors: Ditte Juel Adolfsen Løhmann and Henrik Hasle. Therapy-related myelodysplastic syndrome/acute myeloid leukaemia (t-MDS....../AML) is a feared long-term complication of paediatric cancer including osteosarcoma. Few develop t-MDS/AML, but it is not known how many have significant haematological changes after finishing treatment for osteosarcoma. In this study we reviewed biochemistry from a consecutive series of children for up to two...... MDS (refractory anaemia with excess blasts) with monosomy 7 was found and a hematopoietic stem cell transplant was performed. In the other case MDS without excess of blasts was found and a spontaneous normalization of the biochemistry occurred. In conclusion in our study most patients treated...

  2. A case of giant nodular posterior scleritis mimicking choroidal malignancy

    Directory of Open Access Journals (Sweden)

    Andrea T Liu

    2015-01-01

    Full Text Available To report a case of giant nodular posterior scleritis mimicking a choroidal tumor. A 42-year-old lady with systemic hypertension presented with a 1-week history of unilateral visual loss, pain and redness in her left eye. Examination showed sectoral anterior episcleritis in her left eye as well as a dome-shaped choroidal mass at the inferior-temporal periphery, associated with retinal hemorrhages and subretinal fluid. Systemic evaluation and imaging of the choroidal mass were performed and could not rule out amelanotic choroidal melanoma. At the same time, she was prescribed a 2-week course of oral nonsteroidal anti-inflammatory drug (NSAID for her sectoral anterior episcleritis. The choroidal mass was found to have resolved completely right before her scheduled fine needle biospy. Diagnosis of nodular posterior scleritis and a trial of oral NSAID can be considered in patients presenting with a choroidal mass before any invasive procedure.

  3. Dilated Virchow–Robin spaces mimicking a brainstem arteriovenous malformation

    Directory of Open Access Journals (Sweden)

    Thomas J Buell

    2017-01-01

    Full Text Available Virchow–Robin spaces (VRS are ubiquitous and commonly observed as the resolution of magnetic resonance imaging (MRI continues to improve. The function of VRS and the etiology of their dilation is still a subject of research. Diagnosing dilated VRS (dVRS can be challenging because they may appear similar to other pathologies such as cystic neoplasms, infectious cysts, and even arteriovenous malformations (AVMs on certain MRI pulse sequences. We reported a unique case of brainstem dVRS mimicking an AVM. Furthermore, the extensive pontine involvement of our patient's lesion is rarely described in neurosurgical literature. Understanding the imaging characteristics of dVRS is critical to accurately diagnose these lesions and avoid unnecessary tests and procedures.

  4. Acute dystonic reaction leading to lingual hematoma mimicking angioedema

    Science.gov (United States)

    Sezer, Özgür; Aydin, Ali Attila; Bilge, Sedat; Arslan, Fatih; Arslan, Hasan

    2017-01-01

    Lingual hematoma is a severe situation, which is rare and endangers the airway. It can develop due to trauma, vascular abnormalities, and coagulopathy. Due to its sudden development, it can be clinically confused with angioedema. In patients who applied to the doctor with complaints of a swollen tongue, lingual hematoma can be confused with angioedema, in particular, at the beginning if the symptoms occurred after drug use. It should especially be considered that dystonia in the jaw can present as drug-induced hyperkinetic movement disorder. Early recognition of this rare clinical condition and taking precautions for providing airway patency are essential. In this case report, we will discuss mimicking angioedema and caused by a bite due to dystonia and separation of the tongue from the base of the mouth developing concurrently with lingual hematoma. PMID:29326495

  5. Granulomatous prostatitis after intravesical immunotherapy mimicking prostate cancer

    Directory of Open Access Journals (Sweden)

    Waldemar Białek

    2016-12-01

    Full Text Available Intravesical immunotherapy with attenuated strains of Mycobacterium bovis is a widely used therapeutic option in patients with non-muscle-invasive transitional cell carcinoma of the bladder. A rare complication of intravesical therapy with the Bacillus Calmette-Guérin vaccine is granulomatous prostatitis, which due to increasing levels of prostate-specific antigen and abnormalities found in transrectal examination of the prostate may suggest concomitant prostate cancer. A case of extensive granulomatous prostatitis in a 61-year-old patient which occurred after the first course of a well-tolerated Bacillus Calmette-Guérin therapy is presented. Due to abnormalities found in rectal examination and an abnormal transrectal ultrasound image of the prostate with extensive infiltration mimicking neoplastic hyperplasia a core biopsy of the prostate was performed. Histopathological examination revealed inflammatory infiltration sites of tuberculosis origin.

  6. Basaloid Carcinoma of the Breast Mimicking Cutaneous Basaloid Neoplasms.

    Science.gov (United States)

    Solus, Jason F; Goyal, Amrita; Duncan, Lyn M; Nazarian, Rosalynn M

    2015-09-01

    Basaloid carcinoma of the breast (BCB) is a rare, triple-negative aggressive primary breast tumor that can closely mimic cutaneous basal cell carcinoma (BCC), neuroendocrine tumors, adnexal neoplasms, and other primary breast tumors. Accurate diagnosis of this tumor is critical for appropriate clinical management. We add to the literature 2 female patients with BCB presenting with a nipple mass. Histopathologic findings from both patients showed dermal nests and cords of atypical basaloid cells with epidermal involvement, closely resembling cutaneous BCC. A panel of immunohistochemical stains, including the novel use of CK17, is essential for differentiating BCB from mimickers. BCB is a rare primary breast tumor that follows an aggressive clinical course and closely mimics many basaloid neoplasms, including cutaneous BCC clinicopathologically. Increased awareness of BCB among dermatologists and dermatopathologists is critical for accurate diagnosis and patient care.

  7. Malignant Mesothelioma Mimicking Invasive Mammary Carcinoma in a Male Breast

    Directory of Open Access Journals (Sweden)

    Mohamed Mokhtar Desouki

    2015-01-01

    Full Text Available Malignant mesothelioma is an uncommon tumor with strong association with asbestos exposure. Few cases of malignant pleural mesothelioma metastatic to the female breast have been reported. Herein, we presented, for the first time, a case of locally infiltrating malignant pleural mesothelioma forming a mass in the breast of a male as the first pathologically confirmed manifestation of the disease. Breast ultrasound revealed an irregular mass in the right breast which involves the pectoralis muscle. Breast core biopsy revealed a proliferation of neoplastic epithelioid cells mimicking an infiltrating pleomorphic lobular carcinoma. IHC studies showed the cells to be positive for calretinin, CK5/6, WT1, and CK7. The cells were negative for MOC-31, BerEp4, ER, and PR. A final diagnosis of malignant mesothelioma, epithelioid type, was rendered. This case demonstrates the importance of considering a broad differential diagnosis in the setting of atypical presentation with application of a panel of IHC markers.

  8. Postpartum Unilateral Sacral Stress Fracture Mimicking Lumbar Radiculopathy: Case Report

    Directory of Open Access Journals (Sweden)

    Sinan Bağçacı

    2018-01-01

    Full Text Available Postpartum sacral stress fracture is a very rare clinical entity. Because of the ambiguous clinical and radiological findings, it is often diagnosed late. A case of a postpartal 25-year-old female patient presented with acute onset of low back pain radiating to the right extremity, mimicking lumbar radiculopathy. Magnetic resonance imaging of sacrum revealed a non-displaced stress fracture of the right sacral ala. The 25-hydroxy vitamine D level of the patient was very low; dual energy X-ray absorptiometry measurements were in the normal range. The patient is completely cured as a result of conservative treatment. As a result, sacrum stress fracture should be kept in mind in the presence of back pain during pregnancy and postpartum period.

  9. A Case of Myopericarditis Mimicking Acute Myocardial Infarction in Childhood

    Directory of Open Access Journals (Sweden)

    Rahmi Özdemir

    2015-11-01

    Full Text Available Myopericarditis is an inflammatory disease of the both myocardial and pericardial tissues, and resulting from different etiologies. Viral agents such as coxsackie virus type B, adenovirus, and echovirus are the most common leading cause of this disease and it usually occurs following viral upper respiratory tract infections. Although there are different clinical features according to ages groups, some common findings such as tachycardia incompatible with fever, deeply heared heart sounds, and heart failure can be seen. Clinical findings often mimics a myocardial infarction. Diagnosis of this disease is made by the evaluation of the clinical condition, electrocardiography, echocardiography and elevation of the cardiac enzymes. Because it is mortality, discrimination of myopericarditis from myocardial infarction is very important. Herein, we report a 13 year-old-girl with the diagnosis of myopericarditis presenting with chest pain, electrocardiographic changes mimicking myocardial infarction and elevated cardiac enzymes and also aimed to emphasize the importance of accurate diagnosis of this disease.

  10. Effect of gravity and microgravity on intracranial pressure.

    Science.gov (United States)

    Lawley, Justin S; Petersen, Lonnie G; Howden, Erin J; Sarma, Satyam; Cornwell, William K; Zhang, Rong; Whitworth, Louis A; Williams, Michael A; Levine, Benjamin D

    2017-03-15

    Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure on Earth. Gravity has a profound effect on fluid distribution and pressure within the human circulation. In contrast to prevailing theory, we observed that microgravity reduces central venous and intracranial pressure. This being said, intracranial pressure is not reduced to the levels observed in the 90 deg seated upright posture on Earth. Thus, over 24 h in zero gravity, pressure in the brain is slightly above that observed on Earth, which may explain remodelling of the eye in astronauts. Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure (ICP). This syndrome is considered the most mission-critical medical problem identified in the past decade of manned spaceflight. We recruited five men and three women who had an Ommaya reservoir inserted for the delivery of prophylactic CNS chemotherapy, but were free of their malignant disease for at least 1 year. ICP was assessed by placing a fluid-filled 25 gauge butterfly needle into the Ommaya reservoir. Subjects were studied in the upright and supine position, during acute zero gravity (parabolic flight) and prolonged simulated microgravity (6 deg head-down tilt bedrest). ICP was lower when seated in the 90 deg upright posture compared to lying supine (seated, 4 ± 1 vs. supine, 15 ± 2 mmHg). Whilst lying in the supine posture, central venous pressure (supine, 7 ± 3 vs. microgravity, 4 ± 2 mmHg) and ICP (supine, 17 ± 2 vs. microgravity, 13 ± 2 mmHg) were reduced in acute zero gravity, although not to the levels observed in the 90 deg seated upright posture on Earth. Prolonged periods of simulated microgravity did not cause progressive elevations in ICP (supine, 15 ± 2 vs. 24 h head-down tilt, 15 ± 4 mmHg). Complete removal of gravity does not

  11. Effects of Microgravity on the Formation of Aerogels

    Science.gov (United States)

    Hunt, A. J.; Ayers, M. R.; Sibille, L.; Cronise, R. J.; Noever, D. A.

    1999-01-01

    This paper describes research to investigate fundamental aspects of the effects of microgravity on the formation of the microstructure of metal oxide alcogels and aerogels. We are studying the role of gravity on pore structure and gel uniformity in collaboration with Marshall Space Flight Center (MSFC) on gelling systems under microgravity conditions. While this project was just initiated in May 1998, related research performed earlier is described along with the plans and rationale for the current microgravity investigation to provide background and describe newly developing techniques that should be useful for the current gellation studies. The role of gravity in materials processing must be investigated through the study of well-mastered systems. Sol-gel processed materials are near-perfect candidates to determine the effect of gravity on the formation and growth of random clusters from hierarchies of aggregated units. The processes of hydrolysis, condensation, aggregation and gellation in the formation of alcogels are affected by gravity and therefore provide a rich system to study under microgravity conditions. Supercritical drying of the otherwise unstable wet alcogel preserves the alcogel structure produced during sol-gel processing as aerogel. Supercritically dried aerogel provides for the study of material microstructures without interference from the effects of surface tension, evaporation, and solvent flow. Aerogels are microstructured, low density open-pore solids. They have many unusual properties including: transparency, excellent thermal resistance, high surface area, very low refractive index, a dielectric constant approaching that of air, and extremely low sound velocity. Aerogels are synthesized using sol-gel processing followed by supercritical solvent extraction that leaves the original gel structure virtually intact. These studies will elucidate the effects of microgravity on the homogeneity of the microstructure and porosity of aerogel. The

  12. Long-Term Evolution Studies of E. Coli under Combined Effects of Simulated Microgravity and Antibiotic.

    Science.gov (United States)

    Karouia, Fathi; Tirumalai, Madhan R.; Ott, Mark C.; Pierson, Duane L.; Fox, George E.; Tran, Quyen

    2016-07-01

    Multiple spaceflight and simulated microgravity experiments have shown changes in phenotypic microbial characteristics such as microbial growth, morphology, metabolism, genetic transfer, antibiotic and stress susceptibility, and an increase in virulence factors. However, while these studies have contributed to expand our understanding of the short-term effects of spaceflight or simulated microgravity on biological systems, it remains unclear the type of responses subsequent to long-term exposure to space environment and microgravity in particular. As such, organisms exposed to the space environment for extended periods of time may evolve in unanticipated ways thereby negatively impacting long duration space missions. We report here for the first time, an experimental study of microbial evolution in which the effect of long-term exposure to Low Shear Modeled MicroGravity (LSMMG) on microbial gene expression and physiology in Escherichia coli (E. coli) MG1655 was examined using functional genomics, and molecular techniques with and without simultaneous exposure to broad spectrum antibiotic chloramphenicol. E. coli cells were grown under simulated microgravity for 1000 generations in High Aspect Ratio Vessels (HARVs) that were either heat-sterilized (115 deg C, 15 min) or by using/rinsing the HARVs with a saturated solution of the broad-spectrum antibiotic chloramphenicol. In the case of the cells evolved using the antibiotic sterilized HARVs, the expression levels of 357 genes were significantly changed. In particular, fimbriae encoding genes were significantly up-regulated whereas genes encoding the flagellar motor complex were down-regulated. Re-sequencing of the genome revealed that a number of the flagellar genes were actually deleted. The antibiotic resistance levels of the evolved strains were analyzed using VITEK analyzer. The evolved strain was consistently resistant to the antibiotics used (viz., Ampicillin, Cefalotin, Cefurox-ime, Cefuroxime Axetil

  13. [Disseminated histoplamosis in adolescent mimicking granulomatosis with polyangiitis].

    Science.gov (United States)

    van Weelden, Marlon; Viola, Gabriela R; Kozu, Katia T; Aikawa, Nadia E; Ivo, Claudia M; Silva, Clovis A

    2015-03-04

    Systemic histoplasmosis is an invasive fungal infection that may mimic primary vasculitis, particularly granulomatosis with polyangiitis (GPA), and was rarely described in adult patients. We reported an immunocompetent patient with disseminated histoplasmosis mimicking GPA who fulfilled European League Against Rheumatism (EULAR)/Pediatric Rheumatology International Trials Organisation (PRINTO)/Pediatric Rheumatology European Society (PRES) validated classification criteria. A 6-year old boy presented acute migratory polyarthritis with spontaneous improvement, sinus inflammation, fever, headache and abdominal pain. Serologic test for hepatitis, cytomegalovirus, human immunodeficiency virus, Epstein-Barr virus, toxoplasmosis, dengue virus and antistreptolysin O were all negative. Magnetic resonance imaging (MRI) showed moderate ascites in pelvis and pansinusitis. Antineutrophil cytoplasmic antibodies (c-ANCA) were positive. He had spontaneous remission of the symptoms including fever. At the age of 11 years and 11 months, he had sinusitis, pneumonia and epididymitis. A month later, he was hospitalized and MRI showed left eye proptosis. Cerebrospinal fluid was normal and indirect tests of fungi were negative. Two months later, he had lumbar pain and computer tomography showed a mass in the right kidney and pulmonary nodule in the right lung. He fulfilled EULAR/PRINTO/PRES criteria for GPA, however the renal biopsy showed a focal granulomatous interstitial nephritis with yeast fungal cells compatible with Histoplasma sp. He was treated with liposomal amphotericin B and itraconazole with improvement of signs and symptoms. We reported a progressive disseminated histoplasmosis case mimicking GPA. Histoplasmosis infection should be considered in immunocompetent subjects with uncommon clinical manifestations, such as arthritis, nephritis and epididymitis. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  14. A natural biomimetic porous medium mimicking hypomineralized enamel.

    Science.gov (United States)

    Vennat, E; Denis, M; David, B; Attal, J-P

    2015-03-01

    In order to evaluate the clinical impact of low viscosity resin infiltration in hypomineralized enamel, it is necessary to obtain a biomimetic porous substrate capable of mimicking enamel. The specifications for the biomimetic porous medium are defined using the literature data on hypomineralized enamel. Based on these specifications, we propose to use deproteinized dentin, the latter being deproteinized by heat treatment. Thermogravimetry analysis (TGA), field emission scanning electron microscopy (FESEM) observations, mercury intrusion porosimetry (MIP) tests and nanoindentation are performed on the deproteinized dentin tissue. Heat treatment is shown to be an effective and reproducible method for removing organic fluids and protein residues in dentin. Deproteinizing dentin also enables forming nanovoids by eliminating its organic matrix. The interconnected open nanoporosities (porosities of less than 100 nm) created at 600°C are distributed between 14 nm and 32 nm and the total porosity is 39% (including 36% due to nanoporosities). At 800°C, they are distributed between 60 nm and 100 nm and total porosity is 37% (including 33% arising from the nanoporosities). The hydroxyapatite crystal structure is transformed less at 600°C, so this temperature should be preferred. Besides providing new understanding of the dentin tissue itself, this study led to characterizing a porous medium made of natural apatite, and proposing and validating its use as a porous medium mimicking hypomineralized enamel. The next logical step of this study is the characterization of resin infiltration in this medium and its mechanical reinforcement. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Teflon granulomas mimicking cerebellopontine angle tumors following microvascular decompression.

    Science.gov (United States)

    Deep, Nicholas L; Graffeo, Christopher S; Copeland, William R; Link, Michael J; Atkinson, John L; Neff, Brian A; Raghunathan, Aditya; Carlson, Matthew L

    2017-03-01

    To report two patients with a history of microvascular decompression (MVD) for hemifacial spasm who presented with Teflon granulomas (TG) mimicking cerebellopontine angle (CPA) tumors and to perform a systematic review of the English-language literature. Case series at a single tertiary academic referral center and systematic review. Retrospective chart review with analysis of clinical, radiological, and histopathological findings. Systematic review using PubMed, Embase, MEDLINE, and Web of Science databases. Two patients with large skull base TGs mimicking CPA tumors clinically and radiographically were managed at the authors' institution. The first presented 4 years after MVD with asymmetrical sensorineural hearing loss, multiple progressive cranial neuropathies, and brainstem edema due to a growing TG. Reoperation with resection of the granuloma confirmed a foreign-body reaction consisting of multinucleated giant cells containing intracytoplasmic Teflon particles. The second patient presented 11 years after MVD with asymmetrical sensorineural hearing loss and recurrent hemifacial spasm. No growth was noted over 2 years, and the patient has been managed expectantly. Only one prior case of TG after MVD for hemifacial spasm has been reported in the English literature. TG is a rare complication of MVD for hemifacial spasm. The diagnosis should be suspected in patients presenting with a new-onset enhancing mass of the CPA after MVD, even when performed decades earlier. A thorough clinical and surgical history is critical toward establishing an accurate diagnosis to guide management and prevent unnecessary morbidity. Surgical intervention is not required unless progressive neurologic complications ensue. 4 Laryngoscope, 127:715-719, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  16. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system

    Energy Technology Data Exchange (ETDEWEB)

    Truong, Q T; Nguyen, Q V; Park, H C; Goo, N S [Department of Advanced Technology Fusion, Konkuk University, Seoul 143-701 (Korea, Republic of); Truong, V T; Byun, D Y, E-mail: hcpark@konkuk.ac.kr [National Research Laboratory for Biomimetics and Intelligent Microsystems, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2011-09-15

    We present an unsteady blade element theory (BET) model to estimate the aerodynamic forces produced by a freely flying beetle and a beetle-mimicking flapping wing system. Added mass and rotational forces are included to accommodate the unsteady force. In addition to the aerodynamic forces needed to accurately estimate the time history of the forces, the inertial forces of the wings are also calculated. All of the force components are considered based on the full three-dimensional (3D) motion of the wing. The result obtained by the present BET model is validated with the data which were presented in a reference paper. The difference between the averages of the estimated forces (lift and drag) and the measured forces in the reference is about 5.7%. The BET model is also used to estimate the force produced by a freely flying beetle and a beetle-mimicking flapping wing system. The wing kinematics used in the BET calculation of a real beetle and the flapping wing system are captured using high-speed cameras. The results show that the average estimated vertical force of the beetle is reasonably close to the weight of the beetle, and the average estimated thrust of the beetle-mimicking flapping wing system is in good agreement with the measured value. Our results show that the unsteady lift and drag coefficients measured by Dickinson et al are still useful for relatively higher Reynolds number cases, and the proposed BET can be a good way to estimate the force produced by a flapping wing system.

  17. Transcription profiling of activated human T cells induced by microgravity to identify apoptotic genes and other immune response genes

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this study was to search for microgravity-sensitive genes specifically for apoptotic genes influenced by the microgravity environment and other genes...

  18. An Interactive GIS Procedure for Building and Basement Corrections in Urban Microgravity Surveys

    Science.gov (United States)

    Chasseriau, P.; Olivier, R.

    2007-12-01

    Construction of a new underground railway in Lausanne, a highly-urbanized city in Switzerland, was an opportunity to test the feasibility and reliability of microgravity surveys in urban environments. The goal of our microgravity survey was to determine the depth-to-bedrock along the project corridor. Available drilling information allowed us verify the density model obtained. The geophysical results also provided spatially exhaustive subsurface information that could not be obtained with drilling methods alone. Gravimetry is one of the rare geophysical methods that can be used in noisy urban environments. An inevitable constraint of this method is terrain correction. It is not easy to obtain a simple and accurate digital elevation model (DEM) of an urban environment considering that buildings and basements are not included. However, these structures significantly influence gravity measurements. We calculate, with software that we have developed, the influence of buildings and basements in order to correct our gravity data. Our procedure permits the integration of gravity measurements, cadastral information (building typology and geometry) and basement geometry in an Access database that allows interactive determination of the Bouguer anomaly. A geographic information system (GIS) is used to extract building geometries based on cadastral information and to correct the influence of each building using a simplified architectural style. Basement voids are then introduced in the final DEM using building outlines given by cadastral maps. The depths and altitudes of the basements are measured by visiting them, and then linking the results to a regional topographic map. All of these corrections can be calculated before the gravity acquisition has begun in order to optimize the design of the survey. The surveys are executed late at night so as to minimize the effects of traffic noise. 160 gravity measurements were carried out before and after digging of the underground

  19. Congruent strain specific intestinal persistence of Lactobacillus plantarum in an intestine-mimicking in vitro system and in human volunteers.

    Directory of Open Access Journals (Sweden)

    Hermien van Bokhorst-van de Veen

    Full Text Available BACKGROUND: An important trait of probiotics is their capability to reach their intestinal target sites alive to optimally exert their beneficial effects. Assessment of this trait in intestine-mimicking in vitro model systems has revealed differential survival of individual strains of a species. However, data on the in situ persistence characteristics of individual or mixtures of strains of the same species in the gastrointestinal tract of healthy human volunteers have not been reported to date. METHODOLOGY/PRINCIPAL FINDINGS: The GI-tract survival of individual L. plantarum strains was determined using an intestine mimicking model system, revealing substantial inter-strain differences. The obtained data were correlated to genomic diversity of the strains using comparative genome hybridization (CGH datasets, but this approach failed to discover specific genetic loci that explain the observed differences between the strains. Moreover, we developed a next-generation sequencing-based method that targets a variable intergenic region, and employed this method to assess the in vivo GI-tract persistence of different L. plantarum strains when administered in mixtures to healthy human volunteers. Remarkable consistency of the strain-specific persistence curves were observed between individual volunteers, which also correlated significantly with the GI-tract survival predicted on basis of the in vitro assay. CONCLUSION: The survival of individual L. plantarum strains in the GI-tract could not be correlated to the absence or presence of specific genes compared to the reference strain L. plantarum WCFS1. Nevertheless, in vivo persistence analysis in the human GI-tract confirmed the strain-specific persistence, which appeared to be remarkably similar in different healthy volunteers. Moreover, the relative strain-specific persistence in vivo appeared to be accurately and significantly predicted by their relative survival in the intestine-mimicking in vitro

  20. Development of an Autonomous, Dual Chamber Bioreactor for the Growth of 3-Dimensional Epithelial-Stromal Tissues in Microgravity

    Science.gov (United States)

    Patel, Zarana S.; Wettergreen, Matthew A.; Huff, Janice L.

    2014-01-01

    We are developing a novel, autonomous bioreactor that can provide for the growth and maintenance in microgravity of 3-D organotypic epithelial-stromal cultures that require an air-liquid interface. These complex 3-D tissue models accurately represent the morphological features, differentiation markers, and growth characteristics observed in normal human epithelial tissues, including the skin, esophagus, lung, breast, pancreas, and colon. However, because of their precise and complex culture requirements, including that of an air-liquid interface, these 3-D models have yet to be utilized for life sciences research aboard the International Space Station. The development of a bioreactor for these cultures will provide the capability to perform biological research on the ISS using these realistic, tissue-like human epithelial-stromal cell models and will contribute significantly to advances in fundamental space biology research on questions regarding microgravity effects on normal tissue development, aging, cancer, and other disease processes. It will also allow for the study of how combined stressors, such as microgravity with radiation and nutritional deficiencies, affect multiple biological processes and will provide a platform for conducting countermeasure investigations on the ISS without the use of animal models. The technology will be autonomous and consist of a cell culture chamber that provides for air-liquid, liquid-liquid, and liquid-air exchanges within the chambers while maintaining the growth and development of the biological samples. The bioreactor will support multiple tissue types and its modular design will provide for incorporation of add-on capabilities such as microfluidics drug delivery, media sampling, and in situ biomarker analysis. Preliminary flight testing of the hardware will be conducted on a parabolic platform through NASA's Flight Opportunities Program.

  1. Planarians sense simulated microgravity and hypergravity

    NARCIS (Netherlands)

    Adell, T.; Sálo, E.; van Loon, J.J.W.A.; Auletta, G.

    2014-01-01

    Planarians are flatworms, which belong to the phylum Platyhelminthes. They have been a classical subject of study due to their amazing regenerative ability, which relies on the existence of adult totipotent stem cells. Nowadays they are an emerging model system in the field of developmental,

  2. Theoretical analysis of the particle properties and polarization measurements made in microgravity

    CERN Document Server

    Penttilae, A; Worms, J C; Hadamcik, E; Renard, J B; Levasseur-Regourd, A C

    2003-01-01

    We propose a new model to describe the shapes of stochastic polyhedra used in the microgravity experiment PROGRA sup 2 on board the Airbus A300 aircraft. The polarization measurements of scattering of visible light by boron carbide (B sub 4 C) particles with sizes between 9 and 88 mu m can nicely be explained with the derived shape statistics and the (currently unknown) refractive index obtained. For the latter we derive 2 (-0.15/+0.1)+0.04i(-0.0025/+0.015) at 632.8 nm wavelength. The polarization method is a reliable and sensitive means to estimate various particle properties in various remote sensing applications, including the planetary sciences.

  3. On the origin of dust vortices in complex plasmas under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bockwoldt, Tim, E-mail: bockwoldt@physik.uni-kiel.de; Arp, Oliver; Piel, Alexander [IEAP, Christian-Albrechts-Universität zu Kiel, D–24098 Kiel (Germany); Menzel, Kristoffer Ole [ABB Switzerland Ltd., Corporate Research Center, 5405 Dättwil (Switzerland)

    2014-10-15

    Under microgravity conditions, microparticles in a radio-frequency plasma form an extended dust cloud. In such clouds, self-excited large-scale vortices are observed. New experimental observations are reported, which exhibit a simple double vortex structure or a more complex quadrupole-like topology. Modeling the fields of the main acting forces, namely, the electric field force and the ion drag force, and calculating the curl of these forces reveal their non-conservative character and the possible driving mechanism of the vortices. It is shown that the curl of the ion drag force and of the electric field force has opposite sign and the combination could thus lead to the complex structures, also found in the observations.

  4. Simulation of microgravity by magnetic levitation and random positioning: Effect on human A431 cell morphology

    NARCIS (Netherlands)

    Moes, M.J.A.; Gielen, J.C.; Bleichrodt, R.J.; van Loon, J.J.W.A.; Christianen, P.C.M.; Boonstra, J.

    2011-01-01

    Simulation of weightlessness is a desired replenishment for research in microgravity since access to space flights is limited. In real microgravity conditions, the human epidermoid cell line A431 exhibits specific changes in the actin cytoskeleton resulting ultimately in the rounding-up of cells.

  5. Facilities for simulation of microgravity in the ESA ground-based facility programme

    NARCIS (Netherlands)

    Brungs, S.; Egli, M.; Wuest, S.L.; Christianen, P.C.M.; van Loon, J.J.W.A.; Ahn, T.J.N.; Hemmersbach, R.

    2016-01-01

    Knowledge of the role of gravity in fundamental biological processes and, consequently, the impact of exposure to microgravity conditions provide insight into the basics of the development of life as well as enabling long-term space exploration missions. However, experimentation in real microgravity

  6. Mimicking the Kidney: A Key Role in Organ-on-Chip Development

    Directory of Open Access Journals (Sweden)

    Roberto Paoli

    2016-07-01

    Full Text Available Pharmaceutical drug screening and research into diseases call for significant improvement in the effectiveness of current in vitro models. Better models would reduce the likelihood of costly failures at later drug development stages, while limiting or possibly even avoiding the use of animal models. In this regard, promising advances have recently been made by the so-called “organ-on-chip” (OOC technology. By combining cell culture with microfluidics, biomedical researchers have started to develop microengineered models of the functional units of human organs. With the capacity to mimic physiological microenvironments and vascular perfusion, OOC devices allow the reproduction of tissue- and organ-level functions. When considering drug testing, nephrotoxicity is a major cause of attrition during pre-clinical, clinical, and post-approval stages. Renal toxicity accounts for 19% of total dropouts during phase III drug evaluation—more than half the drugs abandoned because of safety concerns. Mimicking the functional unit of the kidney, namely the nephron, is therefore a crucial objective. Here we provide an extensive review of the studies focused on the development of a nephron-on-chip device.

  7. Results and perspectives of the investigation of traditional and thermal stress induced thermophoresis of particles in gas in microgravity

    Science.gov (United States)

    Vedernikov, Andrei; Balapanov, Daniyar; Beresnev, Sergey; Queeckers, Patrick

    Thermophoretic motion of particles suspended in a gas has been a subject of extensive theoretical and experimental investigations for many years because of its wide spread in nature, significance for fundamental and applied aerosol physic. Negative thermophoresis, i.e. solid particle motion towards hotter region in a gas and not as usually from hotter region, was predicted more than 40 years ago and remains an unsolved problem for a choice between different models treating main driving mechanisms -- thermal slip and thermal stress induced gas motion. For a problem of negative thermophoresis, we present experimental evidences in favor of the latter mechanism based on direct observation of particle motion at microgravity; Knudsen particle number 2\\cdot 10(-3) (Kn being the ratio of the molecular mean free path to the particle size); particle-to-gas heat conductivity ratios 2\\cdot 10(4) for copper solid particles and 1.8 for glass bubbles. For both types of particles the experimental results fit well the gas kinetic model of Beresnev and Chernyak [1]. We present characteristics of a set-up and procedures that are able to provide sufficient accuracy and volume of experimental data for testing any model of particle thermophoresis. High quality microgravity is a necessity for such investigations. The short duration microgravity of drop towers suits well this requirement. The sign and value of the thermophoretic force strongly depends on the Knudsen number, particle-to-gas heat conductivity ratio and accommodation coefficients, all of which vary within several decimal orders of magnitude. In order to make crucial conclusions on the choice of the adequate model, there should be hundreds of short duration microgravity experiments. The European Space Agency scientific project Interaction in Cosmic and Atmospheric Particle Systems (ICAPS) [2] planned for the International Space Station, provides complementary opportunities for the investigation of thermophoresis at large

  8. Simulation of a tethered microgravity robot pair and validation on a planar air bearing

    Science.gov (United States)

    Mantellato, R.; Lorenzini, E. C.; Sternberg, D.; Roascio, D.; Saenz-Otero, A.; Zachrau, H. J.

    2017-09-01

    A software model has been developed to simulate the on-orbit dynamics of a dual-mass tethered system where one or both of the tethered spacecraft are able to produce propulsive thrust. The software simulates translations and rotations of both spacecraft, with the visco-elastic tether being simulated as a lumped-mass model. Thanks to this last feature, tether longitudinal and lateral modes of vibration and tether tension can be accurately assessed. Also, the way the spacecraft motion responds to sudden tether tension spikes can be studied in detail. The code enables the simulation of different scenarios, including space tug missions for deorbit maneuvers in a debris mitigation context and general-purpose tethered formation flight missions. This study aims to validate the software through a representative test campaign performed with the MIT Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) planar air bearing system. Results obtained with the numerical simulator are compared with data from direct measurements in different testing setups. The studied cases take into account different initial conditions of the spacecraft velocities and relative attitudes, and thrust forces. Data analysis is presented comparing the results of the simulations with direct measurements of acceleration and Azimuth rate of the two bodies in the planar air bearing test facility using a Nylon tether. Plans for conducting a microgravity test campaign using the SPHERES satellites aboard the International Space Station are also being scheduled in the near future in order to further validate the simulation using data from the relevant operational environment of extended microgravity with full six degree of freedom (per body) motion.

  9. Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions

    Science.gov (United States)

    Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.

    1999-01-01

    This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.

  10. Emulsion Droplet Combustion in Microgravity: Water/Heptane Emulsions

    Science.gov (United States)

    Avedisian, C. Thomas

    1997-01-01

    This presentation reviews a series of experiments to further examine parametric effects on sooting processes of droplet flames in microgravity. The particular focus is on a fuel droplet emulsified with water, specifically emulsions of n-heptane as the fuel-phase and water as the dispersed phase. Water was selected as the additive because of its anticipated effect on soot formation, and the heptane fuel phase was chosen to theoretically reduce the likelihood of microexplosions because its boiling point is nearly the same as that of water: 100 C for water and 98 C for heptane. The water content was varied while the initial droplet diameter was kept within a small range. The experiments were carried out in microgravity to reduce the effects of buoyancy and to promote spherical symmetry in the burning process. Spherically symmetric droplet burning is a convenient starting point for analysis, but experimental data are difficult to obtain for this situation as evidenced by the fact that no quantitative data have been reported on unsupported emulsion droplet combustion in a convection-free environment. The present study improves upon past work carried out on emulsion droplet combustion in microgravity which employed emulsion droplets suspended from a fiber. The fiber can be instrusive to the emulsion droplet burning process as it can promote coalescence of the dispersed water phase and heterogeneous nucleation on the fiber. Prior work has shown that the presence of water in liquid hydrocarbons can have both beneficial and detrimental effects on the combustion process. Water is known to reduce soot formation and radiation heat transfer to combustor walls Gollahalli (1979) reduce flame temperatures and thereby NOx emissions, and encourage secondary droplet atomization or microexplosion. Water also tends to retard ignition and and promote early extinction. The former effect restricted the range of water volume fractions as discussed below.

  11. Effect of microgravity on sap flow in plant stems

    Science.gov (United States)

    Kitaya, Yoshiaki; Hirai, Hiroaki; Nobol Ikeda, MR..

    2012-07-01

    A fundamental study was conducted to assess the possibility of plant growth suppression caused by poor movement of air in closed plant growth facilities in space farming. Sap water flow in plant stems, which plays an important role to transport fluid and nutrients from roots to leaves, will be suppressed through suppression of transpiration because of little natural convection of air under microgravity conditions. In this study, the sap flow in tomato stems was examined using a heat flow method at 0.01 and 1.0 g for 20 seconds each during parabolic airplane flights in order to clarify the effect of microgravity on the sap flow in stems. Heat generated with a tiny heater installed in the stem was transferred upstream and downstream by conduction and upstream by the sap flow through xylems of the vascular tissue. The internal heat convection corresponding to the sap flow was analyzed with thermal images captured on stems near heated points. In results, the sap flow in stems at 0.01 g was suppressed under a retarded air condition at a wind speed of 0.1 m s-1 compared with that at 1 g. No suppression of the sap flow was observed under a stirred air condition at a wind speed of 0.5 m s-1. Suppressed sap water flow in stems would be caused by suppression of transpiration in leaves and would cause restriction of water and nutrient uptake in roots. The forced air movement is, therefore, essential to culture healthy plants at a high growth rate under microgravity conditions in space.

  12. Quantitative Measurements of Electronically Excited CH Concentration in Normal Gravity and Microgravity Coflow Laminar Diffusion Flames

    Science.gov (United States)

    Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A. V.; Smooke, M. D.; Long, M. B.

    2015-01-01

    With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the electronically excited CH spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of electronically excited CH chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on electronically excited CH concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the electronically excited CH emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the electronically excited CH concentration was possible. Results show that, in microgravity, the maximum flame electronically excited CH concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend

  13. Quantitative Measurements of CH* Concentration in Normal Gravity and Microgravity Coflow Laminar Diffusion Flames

    Science.gov (United States)

    Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A.; Smooke, M. D.; Long, M. B.

    2015-01-01

    With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the CH* spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of CH* chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on CH* concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the CH* emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the CH* concentration was possible. Results show that, in microgravity, the maximum flame CH* concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend, albeit with different peak concentrations. Comparisons with numerical simulations display reasonably good agreement between measured and

  14. Influence of microgravity on cellular differentiation in root caps of Zea mays

    Science.gov (United States)

    Moore, R.; Fondren, W. M.; McClelen, C. E.; Wang, C. L.

    1987-01-01

    We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.

  15. Lung Cancer Stem Cell Lose Their Stemness Default State after Exposure to Microgravity

    Directory of Open Access Journals (Sweden)

    Maria Elena Pisanu

    2014-01-01

    Full Text Available Microgravity influences cell differentiation by modifying the morphogenetic field in which stem cells are embedded. Preliminary data showed indeed that stem cells are committed to selective differentiation when exposed to real or simulated microgravity. Our study provides evidence that a similar event occurs when cancer stem cells (CSCs are cultured in microgravity. In the same time, a significant increase in apoptosis was recorded: those data point out that microgravity rescues CSCs from their relative quiescent state, inducing CSCs to lose their stemness features, as documented by the decrease in ALDH and the downregulation of both Nanog and Oct-4 genes. Those traits were stably acquired and preserved by CSCs when cells were placed again on a 1 g field. Studies conducted in microgravity on CSCs may improve our understanding of the fundamental role exerted by biophysical forces in cancer cell growth and function.

  16. [Human body composition during extended stay in microgravity].

    Science.gov (United States)

    Noskov, V B; Nichiporuk, I A; Vasilieva, G Yu; Smirnov, Yu I

    2015-01-01

    According to the Sprut-2 protocol, bio-impedancemetry of ISS cosmonauts was performed once a month and also before and after mission. Multiple non-invasive body measurements were carried out in 15 cosmonauts in real time. Relocation of extracellular liquid along the body axis led to its reduction in legs and, on the contrary, an increase in the abdomen. Volumes of total body liquid as well as intra- and extracellular liquids decreased in comparison with pre-flight levels. Lean body mass also became less in microgravity, whereas fat mass showed an increase.

  17. Phase transitions in vibrated granular systems in microgravity

    Science.gov (United States)

    Opsomer, E.; Ludewig, F.; Vandewalle, N.

    2011-11-01

    We numerically investigated various dynamical behaviors of a vibrated granular gas in microgravity. Using the parameters of an earlier Mini-Texus 5 experiment, three-dimensional simulations, based on molecular dynamics, efficiently reproduce experimental results. Using Kolmogorov-Smirnov tests, four dynamical regimes have been distinguished: gaseous state, partial clustering, complete clustering, and bouncing aggregates. Different grain radii and densities have been considered in order to describe a complete (r,η)-phase diagram. The latter exhibits rich features such as phase transitions and triple points. Our work emphasizes the complexity of diluted granular systems and opens fundamental perspectives.

  18. Plant cell transformation with Agrobacterium tumefaciens under simulated microgravity

    Science.gov (United States)

    Sarnatska, Veresa; Gladun, Hanna; Padalko, Svetlana

    To investigate simulated microgravity (clinorotation) effect on plant cell transformation with Agrobacterium tumefaciens and crown gall formation, the culture of primary explants of potato and Jerusalem artichoke tubers was used. It is found that the efficiency of tumor formation and development in clinorotated explants are considerably reduced. When using the explants isolated from potato tubers clinorotated for 3, 5 and 19 days, drastic reduction of formation and development of crown gall tumors was observed. Conversely, the tumor number and their development increased when potato tubers were clinorotated for one day. As was estimated by us previously, cells of Jerusalem artichoke explants are the most sensitive to agrobacteria on 4-5 h of in vitro culturing and this time corresponds to the certain period of G1-stage of the cell cycle. We have also estimated that this period is characterized by the increase of binding of acridine orange by nuclear chromatin and increase in activity of RNA-polymerase I and II. Inoculation of explants with agrobacteria in this period was the most optimal for transformation and crown gall induction. We estimated that at four - hour clinorotation of explants the intensity of acridine orange binding to nuclei was considerably lower than on 4h in the control. At one-day clinorotation of potato tubers, a considerable increase in template accessibility of chromatin and in activity of RNA-polymerase I and II occurred. These results may serve as an evidence for the ability of plant dormant tissues to respond to microgravity. Another demonstration of dormant tissue response to changed gravity we obtained when investigating pathogenesis-related proteins (PR-proteins). PR-proteins were subjected to nondenaturing PAGE.and we have not found any effect of microgravity on PR-proteins of potato explants with normal or tumorous growth. We may suggest that such response derives from the common effects of two stress factors - wounding and changed

  19. Micro-gravity Isolation using only Electro-magnetic Actuators

    DEFF Research Database (Denmark)

    Vinther, D.; Alminde, Lars; Bisgaard, Morten

    in the Sixth Student Parabolic Flight Campaign issued by the European Space Agency (ESA). The system consists of six custom made electro magnetic actuators which acts on the isolated platform based on the designed controller and their input from six accelerometers and six infrared position sensors. From......In this paper the design, construction and test of a free floating micro-gravity isolation platform to reduce the acceleration dose on zero gravity experiments on e.g. the International Space Station (ISS) is discussed. During the project a system is specified and constructed whereupon it is tested...

  20. Electronic availability of microgravity experiments safety and integration requirements documents

    Science.gov (United States)

    Hogan, Jean M.

    1995-01-01

    This follow-on to NASA Contractor Report 195447, Microgravity Experiments Safety and Integration Requirements Document Tree, provides the details for accessing the systems that contain the official, electronic versions of the documents initially researched in NASA Contractor Report 195447. The data in this report serves as a valuable information source for the NASA Lewis Research Center Project Documentation Center (PDC), as well as for all developers of space experiments. The PDC has acquired the hardware, software, ID's, and passwords necessary to access most of these systems and is now able to provide customers with current document information as well as immediate delivery of available documents in either electronic or hard copy format.