WorldWideScience

Sample records for models mcf-7 transfected

  1. Exogenous and Endogeneous Disialosyl Ganglioside GD1b Induces Apoptosis of MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sun-Hyung Ha

    2016-04-01

    Full Text Available Gangliosides have been known to play a role in the regulation of apoptosis in cancer cells. This study has employed disialyl-ganglioside GD1b to apoptosis in human breast cancer MCF-7 cells using exogenous treatment of the cells with GD1b and endogenous expression of GD1b in MCF-7 cells. First, apoptosis in MCF-7 cells was observed after treatment of GD1b. Treatment of MCF-7 cells with GD1b reduced cell growth rates in a dose and time dependent manner during GD1b treatment, as determined by XTT assay. Among the various gangliosides, GD1b specifically induced apoptosis of the MCF-7 cells. Flow cytometry and immunofluorescence assays showed that GD1b specifically induces apoptosis in the MCF-7 cells with Annexin V binding for apoptotic actions in early stage and propidium iodide (PI staining the nucleus of the MCF-7 cells. Treatment of MCF-7 cells with GD1b activated apoptotic molecules such as processed forms of caspase-8, -7 and PARP (Poly(ADP-ribose polymerase, without any change in the expression of mitochondria-mediated apoptosis molecules such as Bax and Bcl-2. Second, to investigate the effect of endogenously produced GD1b on the regulation of cell function, UDP-gal: β1,3-galactosyltransferase-2 (GD1b synthase, Gal-T2 gene has been transfected into the MCF-7 cells. Using the GD1b synthase-transfectants, apoptosis-related signal proteins linked to phenotype changes were examined. Similar to the exogenous GD1b treatment, the cell growth of the GD1b synthase gene-transfectants was significantly suppressed compared with the vector-transfectant cell lines and transfection activated the apoptotic molecules such as processed forms of caspase-8, -7 and PARP, but not the levels of expression of Bax and Bcl-2. GD1b-induced apoptosis was blocked by caspase inhibitor, Z-VAD. Therefore, taken together, it was concluded that GD1b could play an important role in the regulation of breast cancer apoptosis.

  2. Growth suppression of MCF-7 cancer cell-derived xenografts in nude mice by caveolin-1

    International Nuclear Information System (INIS)

    Wu Ping; Wang Xiaohui; Li Fei; Qi Baoju; Zhu Hua; Liu Shuang; Cui Yeqing; Chen Jianwen

    2008-01-01

    Caveolin-1 is an essential structural constituent of caveolae membrane domains that has been implicated in mitogenic signaling and oncogenesis. However, the exact functional role of caveolin-1 still remains controversial. In this report, utilizing MCF-7 human breast adenocarcinoma cells stably transfected with caveolin-1 (MCF-7/cav-1 cells), we demonstrate that caveolin-1 expression dramatically inhibits invasion and migration of these cells. Importantly, in vivo experiments employing xenograft tumor models demonstrated that expression of caveolin-1 results in significant growth inhibition of breast tumors. Moreover, a dramatic delay in tumor progression was observed in MCF-7/cav-1 cells as compared with MCF-7 cells. Histological analysis of tumor sections demonstrated a marked decrease in the percentage of proliferating tumor cells (Ki-67 assay) along with an increase in apoptotic tumor cells (TUNEL assay) in MCF-7/cav-1-treated animals. Our current findings provide for the first time in vivo evidence that caveolin-1 can indeed function as a tumor suppressor in human breast adenocarcinoma derived from MCF-7 cells rather than as a tumor promoter

  3. PEA3activates CXCL12transcription in MCF-7breast cancer cells%PEA3 activates CXCL12 transcription in MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CHEN Bo-bin; LI Jun-jie; JIN Wei; SHAO Zhi-min

    2011-01-01

    Objective To explore the activity of PEA3 ( polyomavirus enhancer activator 3 ) on CXCL12 (Chemokine CXC motif ligand 12) transcription and to reveal the role of PEA3 involved in CXCL12-mediated metastasis and angiogenesis in breast cancer. Methods Methods such as cell transfection, ChIP assay (chromatin immunoprecipitation ), and siRNA (small interfering RNA) were applied to demonstrate and confirm the interaction between PEA3 and CXCL12. Results Over-expression of PEA3 could increase the CXCL12 mRNA level and the CXCL12 promoter activity in human MCF-7 breast cancer cells. ChIP assay demonstrated that PEA3 could bind to the CXCL12 promoter in the cells transfected with PEA3 expression vector. PEA3 siRNA decreased CXCL12 promoter activity and the binding of PEA3 to the CXCL12 promoter in MCF-7 cells. Conclusions PEA3 could activate CXCL12 promoter transcription. It may be a potential mechanism of tumor angiogenesis and metastasis regarding of PEA3 and CXCL12.

  4. The role of a new CD44st in increasing the invasion capability of the human breast cancer cell line MCF-7

    International Nuclear Information System (INIS)

    Fang, Xin Jian; Jiang, Hua; Zhao, Xv Peng; Jiang, Wei Mei

    2011-01-01

    CD44, a hyaluronan (HA) receptor, is a multistructural and multifunctional cell surface molecule involved in cell proliferation, cell differentiation, cell migration, angiogenesis, presentation of cytokines, chemokines and growth factors to the corresponding receptors, and docking of proteases at the cell membrane, as well as in signaling for cell survival. The CD44 gene contains 20 exons that are alternatively spliced, giving rise to many CD44 isoforms, perhaps including tumor-specific sequences. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to detect CD44st mRNA and CD44 protein in sensitive MCF-7, Lovo, K562 and HL-60 cell lines as well as their parental counterparts, respectively. The full length cDNA encoding CD44st was obtained from the total RNA isolated from MCF-7/Adr cells by RT-PCR, and subcloned into the pMD19-T vector. The CD44st gene sequence and open reading frame were confirmed by restriction enzyme analysis and nucleotide sequencing, and then inserted into the eukaryotic expression vector pcDNA3.1. The pcDNA3.1-CD44st was transfected into MCF-7 cells using Lipofectamine. After transfection, the positive clones were obtained by G418 screening. The changes of the MMP-2 and MMP-9 genes and protein levels were detected by RT-PCR and gelatin zymography, respectively. The number of the cells penetrating through the artificial matrix membrane in each group (MCF-7, MCF-7+HA, MCF-7/neo, MCF-7/neo+HA, MCF-7/CD44st, MCF-7/CD44st+HA and MCF-7/CD44st+Anti-CD44+HA) was counted to compare the change of the invasion capability regulated by the CD44st. Erk and P-Erk were investigated by Western blotting to approach the molecular mechanisms of MMP-2 and MMP-9 expression regulated by the CD44st. Sensitive MCF-7, Lovo, K562 and HL-60 cells did not contain CD44st mRNA and CD44 protein. In contrast, the multidrug resistance MCF-7/Adr, Lovo/Adr, K562/Adr and HL-60/Adr cells expressed CD44st mRNA and CD44 protein. The CD44st m

  5. Dietary administration of the licorice flavonoid isoliquiritigenin deters the growth of MCF-7 cells overexpressing aromatase.

    Science.gov (United States)

    Ye, Lan; Gho, Wai M; Chan, Franky L; Chen, Shiuan; Leung, Lai K

    2009-03-01

    Licorice is the sweet-tasting rhizomes of a bean plant and is quite commonly used in Western countries for culinary purposes, while it is a medicinal herb in China. Many flavonoids have been isolated from licorice, and their pharmacological properties may be applicable in preventive medicine. Overexposure to estrogen has been implicated in the etiology of breast cancer, and cytochrome P450 (CYP) 19 enzyme, or aromatase, catalyzes the rate-limiting reaction. Phytocompounds that are able to inhibit this enzyme may potentially suppress breast cancer development. In the present study the licorice flavonoid isoliquiritigenin (ILN) was shown to be an aromatase inhibitor in recombinant protein and MCF-7 cells stably transfected with CYP19 (MCF-7aro). ILN displayed a K(i) value of around 3 muM, and it also blocked the MCF-7aro cell growth pertaining to the enzyme activity in vitro. Subsequently, the compound administered in diet was given to ovariectomized athymic mice transplanted with MCF-7aro cells. This mouse model is widely accepted for studying postmenopausal breast cancer. The phytochemical significantly deterred the xenograft growth without affecting the body weight. Subsequently, the flavonoid's effect on CYP19 transcriptional control in vitro was also investigated. At the mRNA level, ILN could also suppress the expression in wild-type MCF-7 cells. Reporter gene assay and real-time PCR verified that the transactivity of CYP19 driven by promoters I.3 and II was suppressed in these cells. Deactivation of C/EBP could be the underlying molecular mechanism. Our study demonstrated that ILN was an inhibitor of aromatase and a potential chemopreventive agent against breast cancer.

  6. Estrogen receptor β inhibits estradiol-induced proliferation and migration of MCF-7 cells through regulation of mitofusin 2.

    Science.gov (United States)

    Ma, Li; Liu, Yueping; Geng, Cuizhi; Qi, Xiaowei; Jiang, Jun

    2013-06-01

    In the present study, we investigated whether estrogen receptor (ER) β affected the proliferation and migration of the human breast cancer cell line MCF-7 through regulation of mitofusin 2 (mfn2). A previous study reported that mfn2 may be regulated by ER through a non-classical pathway; in this pathway, the ER modulates the activities of other transcription factors by stabilizing their binding to DNA and/or recruiting coactivators to the complex. However, the previous study, unlike the study presented here, did not directly explore the interactions between ER and mfn2. Here, RT-PCR and western blot analysis were used to test the expression of mfn2 in MCF-7 cells after exposure to different doses of estradiol (E2). The ability of cells to proliferate and migrate was determined by MTT assay and a monolayer-wounding protocol, respectively. Finally, changes in MCF-7 cell biology after transfection with ERβ or mfn2 expression vectors were investigated, and the role of ERβ in mfn2 expression was also explored. Our results showed that E2 attenuated mfn2 expression in a dose-dependent manner, concomitant with the activation of proliferation and migration of MCF-7 cells. The mfn2 expression vector effectively suppressed E2-induced upregulation of PCNA and migration in MCF-7 cells. ERβ inhibited the E2-induced mfn2 downregulation that accompanied the inhibition of proliferation and migration in MCF-7 cells. Briefly, ERβ may inhibit E2-induced proliferation and migration of MCF-7 cells through regulation of mfn2.

  7. Steroid metabolism in the hormone dependent MCF-7 human breast carcinoma cell line and its two hormone resistant subpopulations MCF-7/LCC1 and MCF-7/LCC2

    DEFF Research Database (Denmark)

    Jørgensen, L; Brünner, N; Spang-Thomsen, M

    1998-01-01

    and 17beta-hydroxysteroid oxidoreductase were investigated isolating the following steroids: estriol (E3), estradiol (E2), estrone (E1), 3alpha/beta-androstanediol (A-diol), testosterone (T), dihydrotestosterone (DHT), androsterone (AND), androstenedion (4-AD) and androstanedione (A-dion). For all......, and preincubation with cortisol had no effect on the enzyme activity. With [14C]T as the substrate, the metabolized level of DHT was very similar in the three cell lines, though MCF-7/LCC1 and MCF-7/LCC2 utilized the substrate to a much lesser extent. The amount of DHT and 4-AD produced were comparable in the two...... to the parent MCF-7. However, since treatment with DHT and T inhibited cell growth equally well in all three tumor cell lines, it is unlikely that the found differences in steroid metabolism was involved in the acquisition of the endocrine resistance of the two MCF-7 sublines....

  8. Screening to Identify Commonly Used Chinese Herbs That Affect ERBB2 and ESR1 Gene Expression Using the Human Breast Cancer MCF-7 Cell Line

    Directory of Open Access Journals (Sweden)

    Jen-Hwey Chiu

    2014-01-01

    Full Text Available Aim. Our aim the was to screen the commonly used Chinese herbs in order to detect changes in ERBB2 and ESR1 gene expression using MCF-7 cells. Methods. Using the MCF-7 human breast cancer cell line, cell cytotoxicity and proliferation were evaluated by MTT and trypan blue exclusion assays, respectively. A luciferase reporter assay was established by transient transfecting MCF-7 cells with plasmids containing either the ERBB2 or the ESR1 promoter region linked to the luciferase gene. Chinese herbal extracts were used to treat the cells at 24 h after transfection, followed by measurement of their luciferase activity. The screening results were verified by Western blotting to measure HER2 and ERα protein expression. Results. At concentrations that induced little cytotoxicity, thirteen single herbal extracts and five compound recipes were found to increase either ERBB2 or ESR1 luciferase activity. By Western blotting, Si-Wu-Tang, Kuan-Shin-Yin, and Suan-Tsao-Ren-Tang were found to increase either HER2 or ERα protein expression. In addition, Ligusticum chuanxiong was shown to have a great effect on ERBB2 gene expression and synergistically with estrogen to stimulate MCF-7 cell growth. Conclusion. Our results provide important information that should affect clinical treatment strategies among breast cancer patients who are receiving hormonal or targeted therapies.

  9. Studies on inhibitory effect of Baicalein on MCF-7 Cells and its mechanism of action

    International Nuclear Information System (INIS)

    Gandhi, N.M.

    2013-01-01

    Acute toxicity to the normal cells from the conventional chemotherapeutic drugs has been one of the stumbling blocks for effective therapy. Further, increased acidity and hypoxia in solid tumour decreases the therapeutic effectiveness of radiotherapy and chemotherapy. The transcriptional response to cellular hypoxia is primarily mediated by the transcription factor hypoxia-inducible factor-1 (HIF-1). Thus, controlling HIF-1 could be an attractive target for cancer therapy. In view of the above considerations studies were undertaken to identify the phytoceutical which can be effective for cancer therapy. One of the phytoceutical being studied is Saicalein (BA), a compound extracted from the root of Scutellaria boicalensis, which is an active flavonoid extensively used in traditional Chinese medicine. In the present study the effects of BA on toxicity to the MCF-7 line was tested. MCF-7 cells when treated with BA exhibited concentration dependent toxicity. MCF-7 cells when treated with BA at the concentration of 50 μM, 50% cells lost viability. Further, it was shown that BA radio-sensitize the MCF-7 cells in vitro, as tested by LDH leakage assay. Radiation (4 Gy) alone did not show marked LDH leakage, however post radiation exposure treatment with BA (50 μM) of MCF-7 cells resulted in increased LDH leakage. In vitro wound healing assay was performed - which is the test for cell migration and cell proliferation. BA inhibited the wound closure by 97%. Overall the results demonstrate the anticancer potential of BA. In order to determine the effect of BA on transcription activation by HIF-1, a cell-based reporter assay for HIF-1 functional antagonist in MCF-7 cells was established. A luciferase reporter gene under the control of HRE from the erythropoietin gene (pTK-HRE3-luc) was employed to monitor HIF-1 activity. MCF-7 cells were transiently transfected with aforementioned plasmid followed by growing them in the presence of CoCl 2 , (hypoxia mimetic agent) and under

  10. Effects of low dose treatment of tributyltin on the regulation of estrogen receptor functions in MCF-7 cells.

    Science.gov (United States)

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2013-06-01

    Endocrine disrupting chemicals are the natural/synthetic compounds which mimic or inhibit the actions of endogenous hormones. Organotin compounds, such as tributyltin (TBT) are typical environmental contaminants and suspected endocrine-disrupting chemical. The present study evaluates the estrogenic potential of this compound in vitro in ER (+) breast adenocarcinoma, MCF-7 cell line. Our data showed that tributyltin chloride (TBTCl) had agonistic activities for estrogen receptor-α (ER-α). Its estrogenic potential was checked using cell proliferation assay, aromatase assay, transactivation assay, and protein expression analysis. Low dose treatment of TBTCl had a proliferative effect on MCF-7 cells and resulted in up-regulation of aromatase enzyme activity and enhanced estradiol production in MCF-7 cells. Immunofluorescence staining showed translocation of ER-α from cytoplasm to nucleus and increased expression of ER-α, 3β-HSD and aromatase on treatment with increasing doses of TBTCl. Further, to decipher the probable signaling pathways involved in its action, the MCF-7 cells were transfected with different pathway dependent luciferase reporter plasmids (CRE, SRE, NF-κB and AP1). A significant increase in CRE and SRE and decrease in NF-κB regulated pathway were observed (ptributyltin genomically and non-genomically augmented estrogen dependent signaling by targeting various pathways. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Genetic variability in MCF-7 sublines: evidence of rapid genomic and RNA expression profile modifications

    International Nuclear Information System (INIS)

    Nugoli, Mélanie; Theillet, Charles; Chuchana, Paul; Vendrell, Julie; Orsetti, Béatrice; Ursule, Lisa; Nguyen, Catherine; Birnbaum, Daniel; Douzery, Emmanuel JP; Cohen, Pascale

    2003-01-01

    Both phenotypic and cytogenetic variability have been reported for clones of breast carcinoma cell lines but have not been comprehensively studied. Despite this, cell lines such as MCF-7 cells are extensively used as model systems. In this work we documented, using CGH and RNA expression profiles, the genetic variability at the genomic and RNA expression levels of MCF-7 cells of different origins. Eight MCF-7 sublines collected from different sources were studied as well as 3 subclones isolated from one of the sublines by limit dilution. MCF-7 sublines showed important differences in copy number alteration (CNA) profiles. Overall numbers of events ranged from 28 to 41. Involved chromosomal regions varied greatly from a subline to another. A total of 62 chromosomal regions were affected by either gains or losses in the 11 sublines studied. We performed a phylogenetic analysis of CGH profiles using maximum parsimony in order to reconstruct the putative filiation of the 11 MCF-7 sublines. The phylogenetic tree obtained showed that the MCF-7 clade was characterized by a restricted set of 8 CNAs and that the most divergent subline occupied the position closest to the common ancestor. Expression profiles of 8 MCF-7 sublines were analyzed along with those of 19 unrelated breast cancer cell lines using home made cDNA arrays comprising 720 genes. Hierarchical clustering analysis of the expression data showed that 7/8 MCF-7 sublines were grouped forming a cluster while the remaining subline clustered with unrelated breast cancer cell lines. These data thus showed that MCF-7 sublines differed at both the genomic and phenotypic levels. The analysis of CGH profiles of the parent subline and its three subclones supported the heteroclonal nature of MCF-7 cells. This strongly suggested that the genetic plasticity of MCF-7 cells was related to their intrinsic capacity to generate clonal heterogeneity. We propose that MCF-7, and possibly the breast tumor it was derived from, evolved

  12. Association of ABCB1, β tubulin I, and III with multidrug resistance of MCF7/DOC subline from breast cancer cell line MCF7.

    Science.gov (United States)

    Li, Wentao; Zhai, Baoping; Zhi, Hui; Li, Yuhong; Jia, Linjiao; Ding, Chao; Zhang, Bin; You, Wei

    2014-09-01

    Docetaxel is a first-line chemotherapeutic agent for treating advanced breast cancer. The development of chemoresistance or multidrug resistance (MDR), however, results in breast cancer chemotherapy failure. This study aims to explore the molecular mechanisms underlying docetaxel-resistance in treatment of breast cancer. The docetaxel-resistant subline MCF7/DOC, derived from the parental sensitive breast cancer cell line MCF7, was established by intermittent exposure to moderate concentrations of docetaxel, followed by examination of its phenotypes. The MCF7/DOC subline showed cross resistance against paclitaxel, doxorubicin, methotrexate, and 5-Fu. Compared to the parental MCF7, MCF7/DOC cells were enlarged with heterogeneous sizes and a cobblestone and polygonal appearance. They were arrested at G2/M phase and proliferated slowly. The colony formation potential of MCF7/DOC in soft agar was significantly increased. MCF7/DOC cells showed reduced intracellular accumulation and increased efflux of rhodamine 123. The mRNA expression level of adenosine triphosphate binding cassette (ABC) transporter family, i.e., ABCB1, ABCC1, ABCC2, ABCG2, and β tubulin isotypes were characterized by quantitative PCR. High-level expression of ABCB1, βI, and βIII tubulin mRNA in MCF7/DOC was detected. Downregulation of ABCB1, βI, and βIII tubulin mediated by three combined siRNAs resulted in stronger growth inhibition of MCF7/DOC than inhibition of the expression of individual genes. ABCB1, βI, and βIII tubulin might contribute to the MDR of MCF7/DOC and be potential therapeutic targets for overcoming MDR of breast cancer.

  13. PEA3 activates CXCR4 transcription in MDA-MB-231 and MCF7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Shengmei Gu; Li Chen; Qi Hong; Tingting Yan; Zhigang Zhuang; Qiaoqiao wang; Wei Jin; Hua Zhu; Jiong Wu

    2011-01-01

    CXC chemokine receptor 4 (CXCR4) is a cell surface receptor that has been shown to mediate the metastasis of many solid tumors including lung,breast,kidney,and prostate tumors.In this study,we found that overexpression of ets variant gene 4 (PEA3) could elevate CXCR4 mRNA level and CXCR4 promoter activity in human MDA-MB-231 and MCF-7 breast cancer cells.PEA3 promoted CXCR4 expression and breast cancer metastasis.Chromatin immunoprecipitation assay demonstrated that PEA3 could bind to the CXCR4 promoter in the cells transfected with PEA3 expression vector.PEA3 siRNA attenuated CXCR4 promoter activity and the binding of PEA3 to the CXCR4 promoter in MDA-MB-231 and MCF-7 cells.These results indicated that PEA3 could activate CXCR4 promoter transcription and promote breast cancer metastasis.

  14. Knockdown of dual specificity phosphatase 4 enhances the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin

    International Nuclear Information System (INIS)

    Liu, Yu; Du, Feiya; Chen, Wei; Yao, Minya; Lv, Kezhen; Fu, Peifen

    2013-01-01

    Background: Breast cancer is the major cause of cancer-related deaths in females world-wide. Doxorubicin-based therapy has limited efficacy in breast cancer due to drug resistance, which has been shown to be associated with the epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms linking the EMT and drug resistance in breast cancer cells remain unclear. Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is associated with cellular proliferation and differentiation; however, its role in breast cancer progression is controversial. Methods: We used cell viability assays, Western blotting and immunofluorescent staining, combined with siRNA interference, to evaluate chemoresistance and the EMT in MCF-7 and adriamycin-resistant MCF-7/ADR breast cancer cells, and investigate the underlying mechanisms. Results: Knockdown of DUSP4 significantly increased the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin, and MCF-7/ADR cells which expressed high levels of DUSP4 had a mesenchymal phenotype. Furthermore, knockdown of DUSP4 reversed the EMT in MCF-7/ADR cells, as demonstrated by upregulation of epithelial biomarkers and downregulation of mesenchymal biomarkers, and also increased the chemosensitivity of MCF-7/ADR cells to doxorubicin. Conclusions: DUSP4 might represent a potential drug target for inhibiting drug resistance and regulating the process of the EMT during the treatment of breast cancer. - Highlights: • We used different technologies to prove our conclusion. • DUSP4 knockdown increased doxorubicin chemosensitivity in breast cancer cells. • DUSP4 is a potential target for combating drug resistance in breast cancer. • DUSP4 is a potential target for regulating the EMT in breast cancer

  15. HIF-1 activation induces doxorubicin resistance in MCF7 3-D spheroids via P-glycoprotein expression: a potential model of the chemo-resistance of invasive micropapillary carcinoma of the breast

    Directory of Open Access Journals (Sweden)

    Doublier Sophie

    2012-01-01

    Full Text Available Abstract Background Invasive micropapillary carcinoma (IMPC of the breast is a distinct and aggressive variant of luminal type B breast cancer that does not respond to neoadjuvant chemotherapy. It is characterized by small pseudopapillary clusters of cancer cells with inverted cell polarity. To investigate whether hypoxia-inducible factor-1 (HIF-1 activation may be related to the drug resistance described in this tumor, we used MCF7 cancer cells cultured as 3-D spheroids, which morphologically simulate IMPC cell clusters. Methods HIF-1 activation was measured by EMSA and ELISA in MCF7 3-D spheroids and MCF7 monolayers. Binding of HIF-1α to MDR-1 gene promoter and modulation of P-glycoprotein (Pgp expression was evaluated by ChIP assay and FACS analysis, respectively. Intracellular doxorubicin retention was measured by spectrofluorimetric assay and drug cytotoxicity by annexin V-FITC measurement and caspase activity assay. Results In MCF7 3-D spheroids HIF-1 was activated and recruited to participate to the transcriptional activity of MDR-1 gene, coding for Pgp. In addition, Pgp expression on the surface of cells obtained from 3-D spheroids was increased. MCF7 3-D spheroids accumulate less doxorubicin and are less sensitive to its cytotoxic effects than MCF7 cells cultured as monolayer. Finally, HIF-1α inhibition either by incubating cells with 3-(5'-hydroxymethyl-2'-furyl-1-benzylindazole (a widely used HIF-1α inhibitor or by transfecting cells with specific siRNA for HIF-1α significantly decreased the expression of Pgp on the surface of cells and increased the intracellular doxorubicin accumulation in MCF7 3-D spheroids. Conclusions MCF7 breast cancer cells cultured as 3-D spheroids are resistant to doxorubicin and this resistance is associated with an increased Pgp expression in the plasma membrane via activation of HIF-1. The same mechanism may be suggested for IMPC drug resistance.

  16. Downregulation of eIF4G by microRNA-503 enhances drug sensitivity of MCF-7/ADR cells through suppressing the expression of ABC transport proteins.

    Science.gov (United States)

    Pan, Xia; Yang, Xiaoyan; Zang, Jinglei; Zhang, Si; Huang, Nan; Guan, Xinxin; Zhang, Jianhua; Wang, Zhihui; Li, Xi; Lei, Xiaoyong

    2017-06-01

    Overexpression of adenosine triphosphate-binding cassette (ABC) transport protein is emerging as a critical contributor to anticancer drug resistance. The eukaryotic translation initiation factor (eIF) 4F complex, the key modulator of mRNA translation, is regulated by the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway in anticancer drug-resistant tumors. The present study demonstrated the roles of ABC translation protein alterations in the acquisition of the Adriamycin (ADM)-resistant phenotype of MCF-7 human breast cells. Quantitative polymerase chain reaction and western blot analysis were applied to examine the differences in mRNA and protein levels, respectively. It was found that the expression of the ABC sub-family B member 1, ABC sub-family C member 1 and ABC sub-family G member 2 transport proteins were upregulated in MCF-7/ADR cells. An MTT assay was used to detect the cell viability, from the results MCF-7/ADR cells were less sensitive to ADM, tamoxifen (TAM) and taxol (TAX) treatment compared with MCF-7 cells. We predicted that the 3'-untranslated region of eukaryotic translation initiation factor 4-γ 1 (eIF4G) contains a potential miRNA binding site for microRNA (miR)-503 through using computational programs. These binding sites were confirmed by luciferase reporter assays. eIF4G mRNA degradation was accelerated in cells transfected with miR-503 mimics. Furthermore, it was demonstrated that eIF4G and ABC translation proteins were significantly downregulated in MCF-7/ADR cells after transfection with miR-503. It was found that miR-503 mimics could sensitize the cells to treatment with ADM, TAM and TAX. These findings demonstrated for the first time that eIF4G acted as a key factor in MCF-7/ADR cells, and may be an efficient agent for preventing and reversing multi-drug resistance in breast cancer.

  17. Effects of low dose treatment of tributyltin on the regulation of estrogen receptor functions in MCF-7 cells

    International Nuclear Information System (INIS)

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2013-01-01

    Endocrine disrupting chemicals are the natural/synthetic compounds which mimic or inhibit the actions of endogenous hormones. Organotin compounds, such as tributyltin (TBT) are typical environmental contaminants and suspected endocrine-disrupting chemical. The present study evaluates the estrogenic potential of this compound in vitro in ER (+) breast adenocarcinoma, MCF-7 cell line. Our data showed that tributyltin chloride (TBTCl) had agonistic activities for estrogen receptor-α (ER-α). Its estrogenic potential was checked using cell proliferation assay, aromatase assay, transactivation assay, and protein expression analysis. Low dose treatment of TBTCl had a proliferative effect on MCF-7 cells and resulted in up-regulation of aromatase enzyme activity and enhanced estradiol production in MCF-7 cells. Immunofluorescence staining showed translocation of ER-α from cytoplasm to nucleus and increased expression of ER-α, 3β-HSD and aromatase on treatment with increasing doses of TBTCl. Further, to decipher the probable signaling pathways involved in its action, the MCF-7 cells were transfected with different pathway dependent luciferase reporter plasmids (CRE, SRE, NF-κB and AP1). A significant increase in CRE and SRE and decrease in NF-κB regulated pathway were observed (p < 0.05). Our results thus showed that the activation of SRE by TBTCl may be due to ligand dependent ER-α activation of the MAPK pathway and increased phosphorylation of ERK. In summary, the present data suggests that low dose of tributyltin genomically and non-genomically augmented estrogen dependent signaling by targeting various pathways. - Highlights: • Tributyltin chloride is agonistic to ER-α in MCF-7 cell line at low doses. • Tributyltin chloride up regulated aromatase activity and estradiol production. • Tributyltin chloride also activates MAPK pathway inducing ERK activation

  18. Effects of low dose treatment of tributyltin on the regulation of estrogen receptor functions in MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha, E-mail: paroyfbs@iitr.ernet.in

    2013-06-01

    Endocrine disrupting chemicals are the natural/synthetic compounds which mimic or inhibit the actions of endogenous hormones. Organotin compounds, such as tributyltin (TBT) are typical environmental contaminants and suspected endocrine-disrupting chemical. The present study evaluates the estrogenic potential of this compound in vitro in ER (+) breast adenocarcinoma, MCF-7 cell line. Our data showed that tributyltin chloride (TBTCl) had agonistic activities for estrogen receptor-α (ER-α). Its estrogenic potential was checked using cell proliferation assay, aromatase assay, transactivation assay, and protein expression analysis. Low dose treatment of TBTCl had a proliferative effect on MCF-7 cells and resulted in up-regulation of aromatase enzyme activity and enhanced estradiol production in MCF-7 cells. Immunofluorescence staining showed translocation of ER-α from cytoplasm to nucleus and increased expression of ER-α, 3β-HSD and aromatase on treatment with increasing doses of TBTCl. Further, to decipher the probable signaling pathways involved in its action, the MCF-7 cells were transfected with different pathway dependent luciferase reporter plasmids (CRE, SRE, NF-κB and AP1). A significant increase in CRE and SRE and decrease in NF-κB regulated pathway were observed (p < 0.05). Our results thus showed that the activation of SRE by TBTCl may be due to ligand dependent ER-α activation of the MAPK pathway and increased phosphorylation of ERK. In summary, the present data suggests that low dose of tributyltin genomically and non-genomically augmented estrogen dependent signaling by targeting various pathways. - Highlights: • Tributyltin chloride is agonistic to ER-α in MCF-7 cell line at low doses. • Tributyltin chloride up regulated aromatase activity and estradiol production. • Tributyltin chloride also activates MAPK pathway inducing ERK activation.

  19. GnRH receptor activation competes at a low level with growth signaling in stably transfected human breast cell lines

    International Nuclear Information System (INIS)

    Morgan, Kevin; Meyer, Colette; Miller, Nicola; Sims, Andrew H; Cagnan, Ilgin; Faratian, Dana; Harrison, David J; Millar, Robert P; Langdon, Simon P

    2011-01-01

    Gonadotrophin releasing hormone (GnRH) analogs lower estrogen levels in pre-menopausal breast cancer patients. GnRH receptor (GnRH-R) activation also directly inhibits the growth of certain cells. The applicability of GnRH anti-proliferation to breast cancer was therefore analyzed. GnRH-R expression in 298 primary breast cancer samples was measured by quantitative immunofluorescence. Levels of functional GnRH-R in breast-derived cell lines were assessed using 125 I-ligand binding and stimulation of 3 H-inositol phosphate production. Elevated levels of GnRH-R were stably expressed in cells by transfection. Effects of receptor activation on in vitro cell growth were investigated in comparison with IGF-I and EGF receptor inhibition, and correlated with intracellular signaling using western blotting. GnRH-R immunoscoring was highest in hormone receptor (triple) negative and grade 3 breast tumors. However prior to transfection, functional endogenous GnRH-R were undetectable in four commonly studied breast cancer cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231). After transfection with GnRH-R, high levels of cell surface GnRH-R were detected in SVCT and MDA-MB-231 clones while low-moderate levels of GnRH-R occurred in MCF-7 clones and ZR-75-1 clones. MCF-7 sub-clones with high levels of GnRH-R were isolated following hygromycin phosphotransferase transfection. High level cell surface GnRH-R enabled induction of high levels of 3 H-inositol phosphate and modest growth-inhibition in SVCT cells. In contrast, growth of MCF-7, ZR-75-1 or MDA-MB-231 clones was unaffected by GnRH-R activation. Cell growth was inhibited by IGF-I or EGF receptor inhibitors. IGF-I receptor inhibitor lowered levels of p-ERK1/2 in MCF-7 clones. Washout of IGF-I receptor inhibitor resulted in transient hyper-elevation of p-ERK1/2, but co-addition of GnRH-R agonist did not alter the dynamics of ERK1/2 re-phosphorylation. Breast cancers exhibit a range of GnRH-R immunostaining, with higher levels of

  20. 20(S-Protopanaxadiol-Induced Apoptosis in MCF-7 Breast Cancer Cell Line through the Inhibition of PI3K/AKT/mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2018-04-01

    Full Text Available 20(S-Protopanaxadiol (PPD is one of the major active metabolites of ginseng. It has been reported that 20(S-PPD shows a broad spectrum of antitumor effects. Our research study aims were to investigate whether apoptosis of human breast cancer MCF-7 cells could be induced by 20(S-PPD by targeting the Phosphatidylinositol 3-kinase/Protein kinase B/Mammalian target of rapamycin (PI3K/AKT/mTOR signal pathway in vitro and in vivo. Cell cycle analysis was performed by Propidium Iodide (PI staining. To overexpress and knock down the expression of mTOR, pcDNA3.1-mTOR and mTOR small interfering RNA (siRNA transient transfection assays were used, respectively. Cell viability and apoptosis were evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT-test and Annexin V /PI double-staining after transfection. The antitumor effect in vivo was determined by the nude mice xenograft assay. After 24 h of incubation, treatment with 20(S-PPD could upregulate phosphorylated-Phosphatase and tensin homologue deleted on chromosome 10 (p-PTEN expression and downregulate PI3K/AKT/mTOR-pathway protein expression. Moreover, G0/G1 cell cycle arrest in MCF-7 cells could be induced by 20(S-PPD treatment at high concentrations. Furthermore, overexpression or knockdown of mTOR could inhibit or promote the apoptotic effects of 20(S-PPD. In addition, tumor volumes were partially reduced by 20(S-PPD at 100 mg/kg in a MCF-7 xenograft model. Immunohistochemical staining indicated a close relationship between the inhibition of tumor growth and the PI3K/AKT/mTOR signal pathway. PI3K/AKT/mTOR pathway-mediated apoptosis may be one of the potential mechanisms of 20(S-PPD treatment.

  1. ANTIPROLIFERATIVE EFFECT ON BREAST CANCER (MCF7) OF MORINGA OLEIFERA SEED EXTRACTS.

    Science.gov (United States)

    Adebayo, Ismail Abiola; Arsad, Hasni; Samian, Mohd Razip

    2017-01-01

    Moringa oleifera belongs to plant family, Moringaceae and popularly called "wonderful tree", for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study evaluated antiproliferative effect on MCF7 of the seed. Seeds of Moringa oleifera were grinded to powder and its phytochemicals were extracted using water and 80% ethanol solvents, part of the ethanolic extract were sequentially partitioned to fractions with four solvents (hexane, dichloromethane, chloroform, and n-butanol). Antiproliferative effects on MCF7 of the samples were determined. Finally, potent samples that significantly inhibited MCF7 growth were tested on MCF 10A. Crude water extract, hexane and dichloromethane fractions of the seeds inhibited the proliferation of MCF7 with the following IC 50 values 280 μg/ml, 130 μg/ml and 26 μg/ml respectively, however, of the 3 samples, only hexane fraction had minimal cytotoxic effect on MCF 10A (IC 50 > 400μg/ml). Moringa oleifera seed has antiproliferative effect on MCF7.

  2. File list: Oth.Brs.50.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.AllAg.MCF-7-LTED hg19 TFs and others Breast MCF-7-LTED SRX180167,SRX0423...42 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.50.AllAg.MCF-7-LTED.bed ...

  3. File list: Oth.Brs.05.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.MCF-7-LTED hg19 TFs and others Breast MCF-7-LTED SRX180167,SRX0423...42 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.05.AllAg.MCF-7-LTED.bed ...

  4. File list: Unc.Brs.10.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.10.AllAg.MCF-7-LTED hg19 Unclassified Breast MCF-7-LTED SRX145566,SRX145565...,SRX145567 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.10.AllAg.MCF-7-LTED.bed ...

  5. File list: Unc.Brs.50.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.50.AllAg.MCF-7-LTED hg19 Unclassified Breast MCF-7-LTED SRX145565,SRX145566...,SRX145567 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.50.AllAg.MCF-7-LTED.bed ...

  6. File list: Unc.Brs.05.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.05.AllAg.MCF-7-LTED hg19 Unclassified Breast MCF-7-LTED SRX145566,SRX145565...,SRX145567 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.05.AllAg.MCF-7-LTED.bed ...

  7. File list: Unc.Brs.20.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.20.AllAg.MCF-7-LTED hg19 Unclassified Breast MCF-7-LTED SRX145566,SRX145565...,SRX145567 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Brs.20.AllAg.MCF-7-LTED.bed ...

  8. File list: Oth.Brs.20.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.AllAg.MCF-7-LTED hg19 TFs and others Breast MCF-7-LTED SRX180167,SRX0423...42 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.20.AllAg.MCF-7-LTED.bed ...

  9. File list: Oth.Brs.10.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.MCF-7-LTED hg19 TFs and others Breast MCF-7-LTED SRX180167,SRX0423...42 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.10.AllAg.MCF-7-LTED.bed ...

  10. [Mechanism research on the lupeol treatment on MCF-7 breast cancer cells based on cell metabonomics].

    Science.gov (United States)

    Shi, Dongdong; Kuang, Yuanyuan; Wang, Guiming; Peng, Zhangxiao; Wang, Yan; Yan, Chao

    2014-03-01

    The objective of this research is to investigate the suppressive effects of lupeol on MCF-7 breast cancer cells, and explore its mechanism on inhibiting the proliferation of MCF-7 cells based on cell metabonomics and cell cycle. Gas chromatography-mass spectrometry (GC-MS) was used in the cell metabonomics assay to identify metabolites of MCF-7 cells and MCF-7 cells treated with lupeol. Then, orthogonal partial least squares discriminant analysis (OPLS-DA) was used to process the metabolic data and model parameters of OPLS-DA were as follows: R2Ycum = 0.988, Q2Ycum = 0.964, which indicated that these two groups could be distinguished clearly. The metabolites (VIP (variable importance in the projection) > 1) were analyzed by t-test, and finally, metabolites (t metabonomics.

  11. Proline oxidase silencing induces proline-dependent pro-survival pathways in MCF-7 cells

    Science.gov (United States)

    Zareba, Ilona; Celinska-Janowicz, Katarzyna; Surazynski, Arkadiusz; Miltyk, Wojciech; Palka, Jerzy

    2018-01-01

    Proline degradation by proline dehydrogenase/proline oxidase (PRODH/POX) contributes to apoptosis or autophagy. The identification of specific pathway of apoptosis/survival regulation is the aim of this study. We generated knocked-down PRODH/POX MCF-7 breast cancer cells (MCF-7shPRODH/POX). PRODH/POX silencing did not affect cell viability. However, it contributed to decrease in DNA and collagen biosynthesis, increase in prolidase activity and intracellular proline concentration as well as increase in the expression of iNOS, NF-κB, mTOR, HIF-1α, COX-2, AMPK, Atg7 and Beclin-1 in MCF-7shPRODH/POX cells. In these cells, glycyl-proline (GlyPro, substrate for prolidase) further inhibited DNA and collagen biosynthesis, maintained high prolidase activity, intracellular concentration of proline and up-regulated HIF-1α, AMPK, Atg7 and Beclin-1, compared to GlyPro-treated MCF-7 cells. In MCF-7 cells, GlyPro increased collagen biosynthesis, concentration of proline and expression of caspase-3, cleaved caspases -3 and -9, iNOS, NF-κB, COX-2 and AMPKβ. PRODH/POX knock-down contributed to pro-survival autophagy pathways in MCF-7 cells and GlyPro-derived proline augmented this process. However, GlyPro induced apoptosis in PRODH/POX-expressing MCF-7 cells as detected by up-regulation of active caspases -3 and -9. The data suggest that PRODH/POX silencing induces autophagy in MCF-7 cells and GlyPro-derived proline supports this process. PMID:29568391

  12. The Signaling Cascades of Ginkgolide B-Induced Apoptosis in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wen-Hsiung Chan

    2007-11-01

    Full Text Available Ginkgolide B, the major active component of Ginkgo biloba extracts, can bothstimulate and inhibit apoptotic signaling. Here, we demonstrate that ginkgolide B caninduce the production of reactive oxygen species in MCF-7 breast cancer cells, leading toan increase in the intracellular concentrations of cytoplasmic free Ca2+ and nitric oxide(NO, loss of mitochondrial membrane potential (MMP, activation of caspase-9 and -3,and increase the mRNA expression levels of p53 and p21, which are known to be involvedin apoptotic signaling. In addition, prevention of ROS generation by pretreatment withN-acetyl cysteine (NAC could effectively block intracellular Ca2+ concentrationsincreases and apoptosis in ginkgolide B-treated MCF-7 cells. Moreover, pretreatment withnitric oxide (NO scavengers could inhibit ginkgolide B-induced MMP change andsequent apoptotic processes. Overall, our results signify that both ROS and NO playedimportant roles in ginkgolide B-induced apoptosis of MCF-7 cells. Based on these studyresults, we propose a model for ginkgolide B-induced cell apoptosis signaling cascades inMCF-7 cells.

  13. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    Energy Technology Data Exchange (ETDEWEB)

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Won, Seong Su [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Kang, Wonku [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-05-15

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.

  14. File list: ALL.Brs.20.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.20.AllAg.MCF-7-LTED hg19 All antigens Breast MCF-7-LTED SRX145566,SRX145565...,SRX142963,SRX180167,SRX145567,SRX142964,SRX142962,SRX042342 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.20.AllAg.MCF-7-LTED.bed ...

  15. File list: ALL.Brs.50.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.50.AllAg.MCF-7-LTED hg19 All antigens Breast MCF-7-LTED SRX145565,SRX180167...,SRX142963,SRX145566,SRX145567,SRX142964,SRX142962,SRX042342 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.50.AllAg.MCF-7-LTED.bed ...

  16. File list: ALL.Brs.10.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.10.AllAg.MCF-7-LTED hg19 All antigens Breast MCF-7-LTED SRX145566,SRX145565...,SRX180167,SRX042342,SRX142963,SRX145567,SRX142964,SRX142962 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.10.AllAg.MCF-7-LTED.bed ...

  17. File list: ALL.Brs.05.AllAg.MCF-7-LTED [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.05.AllAg.MCF-7-LTED hg19 All antigens Breast MCF-7-LTED SRX145566,SRX180167...,SRX145565,SRX042342,SRX142963,SRX142962,SRX145567,SRX142964 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Brs.05.AllAg.MCF-7-LTED.bed ...

  18. Anti-cancer Effect of Xao Tam Phan Paramignya trimera Methanol Root Extract on Human Breast Cancer Cell Line MCF-7 in 3D Model.

    Science.gov (United States)

    Nguyen-Thi, Lam-Huyen; Nguyen, Sinh Truong; Tran, Thao Phuong; Phan-Lu, Chinh-Nhan; The Van, Trung; Van Pham, Phuc

    2018-04-24

    Cancer is one of the leading causes of death in the world. A great deal of effort has been made to discover new agents for cancer treatment. Xao tam phan (Paramignya trimera) is a traditional medicine of Vietnam used in cancer treatment for a long time, yet there is not much scientific evidence proving its anticancer potency. The study aimed to evaluate the toxicity of Paramignya trimera extract (PTE) on multicellular tumor spheres (MCTS) of MCF-7 cells using hanging drop technique. Firstly, MCF-7 cells were seeded on hanging drop plates, spheroid size was tracked, and growth curve was measured by MTT assay and AlamarBlue ® assay. The necrotic core of MCTS was evaluated by propidium iodide (PI) staining. Toxicity of doxorubicin (DOX) and tirapazamine (TPZ) was then tested on 3D model compared to 2D culture condition. The results showed that the IC50 of DOX on 3D MCF-7 cells was nearly 50 times greater than monolayer MCF-7 cells. In contrast, TPZ (an agent which is specifically toxic under hypoxic conditions) had significantly lower IC50 in 3D condition than in 2D. The toxicity tests for PTE showed that PTE strongly inhibited MCF-7 cells in both 2D and 3D conditions. Interestingly, the IC50 of PTE in 3D model was remarkably lower than in 2D (IC50 value was 168.9 ± 11.65 μg/ml compared to 260.8 ± 16.54 μg/ml, respectively). The invasion assay showed that PTE completely inhibited invasion of MCF-7 cells at 250 μg/mL concentration. Also, flow cytometry results indicated that PTE effectively induced apoptosis in MCF-7 spheroids in 3D condition at 250 μg/mL concentration. The results from this study emphasize the promise of PTE in cancer therapy.

  19. The lipid content of cisplatin- and doxorubicin-resistant MCF-7 human breast cancer cells.

    Science.gov (United States)

    Todor, I N; Lukyanova, N Yu; Chekhun, V F

    2012-07-01

    To perform the comparative study both of qualitative and quantitative content of lipids in parental and drug resistant breast cancer cells. Parental (MCF-7/S) and resistant to cisplatin (MCF-7/CP) and doxorubicin (MCF-7/Dox) human breast cancer cells were used in the study. Cholesterol, total lipids and phospholipids content were determined by means of thin-layer chromatography. It was found that cholesterol as well as cholesterol ethers content are significantly higher but diacylglycerols, triacyl-glycerols content are significantly lower in resistant cell strains than in parental (sensitive) cells. Moreover the analysis of individual phospholipids showed the increase of sphingomyelin, phosphatidylserine, cardiolipin, phosphatidic acid and the decrease of phosphatidy-lethanolamine, phosphatidylcholine in MCF-7/CP and MCF-7/Dox cells. Obtained results allow to suggest that the lipid profile changes can mediate the modulation of membrane fluidity in drug resistant MCF-7 breast cancer cells.

  20. Evidence for the Existence of Triple-Negative Variants in the MCF-7 Breast Cancer Cell Population

    Directory of Open Access Journals (Sweden)

    Euphemia Leung

    2014-01-01

    Full Text Available The MCF-7 line, derived in 1973 from a malignant pleural effusion, is one of the most commonly used culture models for human breast cancer. Despite its long history, MCF-7 is a surprisingly heterogeneous line. We previously showed that if MCF-7 cells were cultured for a prolonged period either in the absence of estrogen or in the presence of the antiestrogen tamoxifen, sub-lines were selected that differed from the parental line in ploidy, mean cell volume, signaling pathway usage, and drug sensitivity. This suggests a process of selection of preexisting variants rather than of adaptation of the parental line. All the sublines were estrogen receptor (ER positive, raising the question of whether MCF-7 also contains ER negative variants. Here, we have looked for such variants by culturing for a prolonged period in the presence of fulvestrant, an estrogen antagonist that has no estrogen agonist activity. Three sublines were developed, each of which was ER negative, progesterone receptor (PR negative and expressed only a low level of HER2. Each of the variants differed from the original MCF-7 line in ploidy, modal cell volume, and signaling pathway usage. Control experiments in which cells were cultured for a prolonged period in the absence of estrogen selected for variants that were ER and PR positive. The properties of the triple-negative MCF-7 were compared with those of an existing triple-negative cell line, MDA-MB-231, and human epidermal growth factor receptor 2 (HER2+ SKBr3, as well as from those of the “immortalized” breast epithelial line MCF10A. The results suggest that new variants or phenotypes of MCF-7 might be generated continuously in culture, and by implication this might apply to breast cancer development and even normal breast epithelial development in vivo.

  1. Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT

    Directory of Open Access Journals (Sweden)

    Mejía Salvador

    2006-02-01

    Full Text Available Abstract Background The biochemical bases for hormone dependence in breast cancer have been recognized as an important element in tumor resistance, proliferation and metastasis. On this respect, dexamethasone (Dex dependent protection against TNF-alpha-mediated cell death in the MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer. Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in the Dex-dependent protection against TNF-alpha-mediated cell death. Results Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha, designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and selection and evaluation of several clones overexpressing the mutants were examined. Also, correlation with inhibitor of apoptosis proteins (IAPs expression was examined. Independent inhibition of these two pathways allowed us to test their participation in Dex-dependent protection against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise, clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was remained unaffected. Conclusion NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic protein c-IAP1.

  2. Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT.

    Science.gov (United States)

    Machuca, Catalina; Mendoza-Milla, Criselda; Córdova, Emilio; Mejía, Salvador; Covarrubias, Luis; Ventura, José; Zentella, Alejandro

    2006-02-21

    The biochemical bases for hormone dependence in breast cancer have been recognized as an important element in tumor resistance, proliferation and metastasis. On this respect, dexamethasone (Dex) dependent protection against TNF-alpha-mediated cell death in the MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer. Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in the Dex-dependent protection against TNF-alpha-mediated cell death. Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha, designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and selection and evaluation of several clones overexpressing the mutants were examined. Also, correlation with inhibitor of apoptosis proteins (IAPs) expression was examined. Independent inhibition of these two pathways allowed us to test their participation in Dex-dependent protection against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise, clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was remained unaffected. NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic protein c-IAP1.

  3. The direct effect of Focal Adhesion Kinase (FAK, dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2009-08-01

    Full Text Available Abstract Background Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that plays an important role in survival signaling. FAK has been shown to be overexpressed in breast cancer tumors at early stages of tumorigenesis. Methods To study the direct effect of FAK on breast tumorigenesis, we developed Tet-ON (tetracycline-inducible system of MCF-7 breast cancer cells stably transfected with FAK or dominant-negative, C-terminal domain of FAK (FAK-CD, and also FAKsiRNA with silenced FAK MCF-7 stable cell line. Increased expression of FAK in isogenic Tet-inducible MCF-7 cells caused increased cell growth, adhesion and soft agar colony formation in vitro, while expression of dominant-negative FAK inhibitor caused inhibition of these cellular processes. To study the role of induced FAK and FAK-CD in vivo, we inoculated these Tet-inducible cells in nude mice to generate tumors in the presence or absence of doxycycline in the drinking water. FAKsiRNA-MCF-7 cells were also injected into nude mice to generate xenograft tumors. Results Induction of FAK resulted in significant increased tumorigenesis, while induced FAK-CD resulted in decreased tumorigenesis. Taq Man Low Density Array assay demonstrated specific induction of FAKmRNA in MCF-7-Tet-ON-FAK cells. DMP1, encoding cyclin D binding myb-like protein 1 was one of the genes specifically affected by Tet-inducible FAK or FAK-CD in breast xenograft tumors. In addition, silencing of FAK in MCF-7 cells with FAK siRNA caused increased cell rounding, decreased cell viability in vitro and inhibited tumorigenesis in vivo. Importantly, Affymetrix microarray gene profiling analysis using Human Genome U133A GeneChips revealed >4300 genes, known to be involved in apoptosis, cell cycle, and adhesion that were significantly down- or up-regulated (p Conclusion Thus, these data for the first time demonstrate the direct effect of FAK expression and function on MCF-7 breast cancer tumorigenesis in vivo and reveal

  4. Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan

    Directory of Open Access Journals (Sweden)

    Hiscox Stephen

    2012-10-01

    Full Text Available Abstract Background Acquired resistance to endocrine therapy in breast cancer is a significant problem with relapse being associated with local and/or regional recurrence and frequent distant metastases. Breast cancer cell models reveal that endocrine resistance is accompanied by a gain in aggressive behaviour driven in part through altered growth factor receptor signalling, particularly involving erbB family receptors. Recently we identified that CD44, a transmembrane cell adhesion receptor known to interact with growth factor receptors, is upregulated in tamoxifen-resistant (TamR MCF7 breast cancer cells. The purpose of this study was to explore the consequences of CD44 upregulation in an MCF7 cell model of acquired tamoxifen resistance, specifically with respect to the hypothesis that CD44 may influence erbB activity to promote an adverse phenotype. Methods CD44 expression in MCF7 and TamR cells was assessed by RT-PCR, Western blotting and immunocytochemistry. Immunofluorescence and immunoprecipitation studies revealed CD44-erbB associations. TamR cells (± siRNA-mediated CD44 suppression or MCF7 cells (± transfection with the CD44 gene were treated with the CD44 ligand, hyaluronon (HA, or heregulin and their in vitro growth (MTT, migration (Boyden chamber and wound healing and invasion (Matrigel transwell migration determined. erbB signalling was assessed using Western blotting. The effect of HA on erbB family dimerisation in TamR cells was determined by immunoprecipitation in the presence or absence of CD44 siRNA. Results TamR cells overexpressed CD44 where it was seen to associate with erbB2 at the cell surface. siRNA-mediated suppression of CD44 in TamR cells significantly attenuated their response to heregulin, inhibiting heregulin-induced cell migration and invasion. Furthermore, TamR cells exhibited enhanced sensitivity to HA, with HA treatment resulting in modulation of erbB dimerisation, ligand-independent activation of erbB2

  5. Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan

    International Nuclear Information System (INIS)

    Hiscox, Stephen; Gee, Julia; Baruha, Bedanta; Smith, Chris; Bellerby, Rebecca; Goddard, Lindy; Jordan, Nicola; Poghosyan, Zaruhi; Nicholson, Robert I; Barrett-Lee, Peter

    2012-01-01

    Acquired resistance to endocrine therapy in breast cancer is a significant problem with relapse being associated with local and/or regional recurrence and frequent distant metastases. Breast cancer cell models reveal that endocrine resistance is accompanied by a gain in aggressive behaviour driven in part through altered growth factor receptor signalling, particularly involving erbB family receptors. Recently we identified that CD44, a transmembrane cell adhesion receptor known to interact with growth factor receptors, is upregulated in tamoxifen-resistant (TamR) MCF7 breast cancer cells. The purpose of this study was to explore the consequences of CD44 upregulation in an MCF7 cell model of acquired tamoxifen resistance, specifically with respect to the hypothesis that CD44 may influence erbB activity to promote an adverse phenotype. CD44 expression in MCF7 and TamR cells was assessed by RT-PCR, Western blotting and immunocytochemistry. Immunofluorescence and immunoprecipitation studies revealed CD44-erbB associations. TamR cells (± siRNA-mediated CD44 suppression) or MCF7 cells (± transfection with the CD44 gene) were treated with the CD44 ligand, hyaluronon (HA), or heregulin and their in vitro growth (MTT), migration (Boyden chamber and wound healing) and invasion (Matrigel transwell migration) determined. erbB signalling was assessed using Western blotting. The effect of HA on erbB family dimerisation in TamR cells was determined by immunoprecipitation in the presence or absence of CD44 siRNA. TamR cells overexpressed CD44 where it was seen to associate with erbB2 at the cell surface. siRNA-mediated suppression of CD44 in TamR cells significantly attenuated their response to heregulin, inhibiting heregulin-induced cell migration and invasion. Furthermore, TamR cells exhibited enhanced sensitivity to HA, with HA treatment resulting in modulation of erbB dimerisation, ligand-independent activation of erbB2 and EGFR and induction of cell migration

  6. Modulation of Δ9-tetrahydrocannabinol-induced MCF-7 breast cancer cell growth by cyclooxygenase and aromatase

    International Nuclear Information System (INIS)

    Takeda, Shuso; Yamamoto, Ikuo; Watanabe, Kazuhito

    2009-01-01

    Δ 9 -Tetrahydrocannabinol (Δ 9 -THC), a major constituent of marijuana, has been shown to stimulate the growth of MCF-7 breast cancer cells through cannabinoid receptor-independent signaling [Takeda, S., Yamaori, S., Motoya, E., Matsunaga, T., Kimura, T., Yamamoto, I., Watanabe, K., 2008. Δ 9 -Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling. Toxicology 245, 141-146]. Although the growth of MCF-7 cells is known to be stimulated by 17β-estradiol (E 2 ), the interaction of Δ 9 -THC and E 2 in MCF-7 cell growth is not fully clarified so far. In the present study, by using E 2 -sensitive MCF-7 cells that have expressed cyclooxygenase-2 (COX-2) and cytochrome P450 19 (aromatase), we studied whether or not COX-2 and aromatase are involved in Δ 9 -THC-mediated MCF-7 cell proliferation. It was shown that Δ 9 -THC-induced MCF-7 cell growth was inhibited by COX-2 inhibitors and was stimulated by arachidonic acid (a COX substrate). However, the growth of MCF-7 cells induced by Δ 9 -THC was not stimulated by PGE 2 , and the expression of aromatase was not affected by COX-2 inhibitors, arachidonic acid, and PGE 2 , suggesting that there is a disconnection between COX-2 (PGE 2 ) and aromatase in Δ 9 -THC-mediated MCF-7 cell proliferation. On the other hand, Δ 9 -THC-induced MCF-7 cell growth was elevated by two kinds of aromatase inhibitors. Taken together with the evidence that Δ 9 -THC-induced MCF-7 cell proliferation was interfered with testosterone (an aromatase substrate) and exogenously provided E 2 , it is suggested that (1) the growth stimulatory effects of Δ 9 -THC are mediated by the product(s) of COX-2 except for PGE 2 , (2) the action of Δ 9 -THC is modulated by E 2 , and (3) COX-2 and aromatase are individually engaged in the proliferation of MCF-7 cells induced by Δ 9 -THC.

  7. Design, synthesis and antibreast cancer MCF-7 cells biological evaluation of heterocyclic analogs of resveratrol.

    Science.gov (United States)

    Du, Cheng; Dong, Ming-Hui; Ren, Yu-Jie; Jin, Lu; Xu, Cheng

    2017-09-01

    A new series of resveratrol heterocyclic analogs (4a-m) were designed and synthesized, and their inhibitiory effects on MCF-7 cells were evaluated to investigate structure-activity relationship. The effects of these analogs on human breast cancer MCF-7 cells were also determined. Results showed that MCF-7 cells could be inhibited more potently by these analogs than by resveratrol (IC 50  = 80.0 μM). Among the analogs, compounds 4c, 4e, and 4k showed a significantly higher activity (IC 50  = 42.7, 48.1, and 43.4 μM) than resveratrol. Furthermore, the derivatives without additional heterocyclic structure in the 4'-OH position exhibited a more potent activity than that with addition heterocyclic structure. In addition, docking simulation was performed to adequately position compound 4c in a human F 1 -ATPase active site to determine a probable binding model. These heterocyclic analogs could be effective candidates for the chemoprevention of human breast cancer.

  8. CD24 cross-linking induces apoptosis in, and inhibits migration of, MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Kim, Jong Bin; Bae, Ji-Yeon; Jee, Hyeon-Gun; Noh, Dong-Young; Ko, Eunyoung; Han, Wonshik; Lee, Jeong Eon; Lee, Kyung-Min; Shin, Incheol; Kim, Sangmin; Lee, Jong Won; Cho, Jihyoung

    2008-01-01

    The biological effects of CD24 (FL-80) cross-linking on breast cancer cells have not yet been established. We examined the impact of CD24 cross-linking on human breast cancer cell line MCF-7. MCF-7 and MDA-MB-231 cells were treated with anti-rabbit polyclonal IgG or anti-human CD24 rabbit polyclonal antibodies to induce cross-linking, and then growth was studied. Changes in cell characteristics such as cell cycle modulation, cell death, survival in three-dimensional cultures, adhesion, and migration ability were assayed after CD24 cross-linking in MCF-7. Expression of CD24 was analyzed by flow cytometry in MDA-MB-231 and MCF-7 cells where 2% and 66% expression frequencies were observed, respectively. CD24 cross-linking resulted in time-dependent proliferation reduction in MCF-7 cells, but no reduction in MDA-MB-231 cells. MCF-7 cell survival was reduced by 15% in three-dimensional culture after CD24 cross-linking. Increased MCF-7 cell apoptosis was observed after CD24 cross-linking, but no cell cycle arrest was observed in that condition. The migration capacity of MCF-7 cells was diminished by 30% after CD24 cross-linking. Our results showed that CD24 cross-linking induced apoptosis and inhibited migration in MCF-7 breast cancer cells. We conclude that CD24 may be considered as a novel therapeutic target for breast cancer

  9. Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells.

    Science.gov (United States)

    Yang, Seoyeon; Lee, Ji-Yeon; Hur, Ho; Oh, Ji Hoon; Kim, Myoung Hee

    2018-05-28

    Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.

  10. Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Santhalakshmi Ranganathan

    Full Text Available Quercetin is a dietary flavonoid which exerts anti-oxidant, anti-inflammatory and anti-cancer properties. In this study, we investigated the anti-proliferative effect of quercetin in two breast cancer cell lines (MCF-7 and MDA-MB-231, which differed in hormone receptor. IC50 value (37μM of quercetin showed significant cytotoxicity in MCF-7 cells, which was not observed in MDA-MB-231 cells even at 100μM of quercetin treatment. To study the response of cancer cells to quercetin, with respect to different hormone receptors, both the cell lines were treated with a fixed concentration (40μM of quercetin. MCF-7 cells on quercetin treatment showed more apoptotic cells with G1 phase arrest. In addition, quercetin effectively suppressed the expression of CyclinD1, p21, Twist and phospho p38MAPK, which was not observed in MDA-MB-231 cells. To analyse the molecular mechanism of quercetin in exerting an apoptotic effect in MCF-7 cells, Twist was over-expressed and the molecular changes were observed after quercetin administration. Quercetin effectively regulated the expression of Twist, in turn p16 and p21 which induced apoptosis in MCF-7 cells. In conclusion, quercetin induces apoptosis in breast cancer cells through suppression of Twist via p38MAPK pathway.

  11. Synthesis, characterization, and anticancer activity of new quinazoline derivatives against MCF-7 cells.

    Science.gov (United States)

    Faraj, Fadhil Lafta; Zahedifard, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Abdul Majid, Nazia; Ali, Hapipah Mohd; Ahmad, Noraini; Gwaram, Nura Suleiman; Abdulla, Mahmood Ameen

    2014-01-01

    Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.

  12. Preliminary Investigation of Myo-Inositol Phosphates Produced by ASUIA279 Phytase on MCF-7 Cancer Cells

    Directory of Open Access Journals (Sweden)

    N. Mohd. Yusoff

    2011-12-01

    Full Text Available Phytate or myo-inositol hexakisphosphates (IP6 is widely distributed in plants like rice brans. The production of myo-inositol phosphate intermediates has received much attention due to the remarkable potential health benefits offered by the compounds. In this study, the cytotoxicity of the partially purified myo-inositol phosphate fractions and commercial IP1 and IP6 were investigated against MCF-7 breast cancer cell lines. The study showed that the commercial standard IP1 and IP6 showed good inhibition towards the MCF-7 cell line. The MCF-7 cells growth was inhibited in minimum concentration of myo-inositol phosphates (<1000 µg/ml. However, no inhibition observed on the MCF-7 cell line by the myo-inositol phosphates fractions partially purified from rice bran at concentration <1000 ?g/ml. The inhibition of MCF-7 was only observed at concentration more than 30 mg/ml with more than 40% cells were inhibited. This indicates that the partially purified rice bran myo-inositol phosphates degraded by ASUIA279 phytase on MCF-7 breast cancer cells exhibit positive results towards the inhibition of cancer cells growth at relatively high concentration..KEYWORDS: myo-inositol phosphates, phytase, MCF-7,  cancerABSTRAK: Fitat atau myo-inositol hexakisphosphate (IP6 dikenali umum teragih di dalam tumbuhan seperti dedak padi. Penghasilan perantaraan fosfat myo-inositol mendapat perhatian memandangkan ia berpotensi tinggi dalam kesihatan. Dalam kajian ini, kesitotoksikan sebahagian daripada fosfat myo-inositol separa tulen, IP1 komersil dan IP6 komersil dikaji terhadap produk yang berupa sel kekal (cell lines kanser payu dara MCF-7. Tumbesaran sel MCF-7 direncatkan dalam pekatan minima fosfat myo-inositol (<1000 μg/ml. Tetapi, tidak ada perencatan dilihat terhadap sel kekal MCF-7 oleh sebahagian fosfat myo-inositol separa tulen daripada dedak padi pada kepekatan <1000 mg/ml. Perencatan MCF-7 hanya dilihat pada kepekatan lebih daripada 30 mg/ml dengan lebih

  13. Silencage du gene MDR1 et resensibilisation des cellules MCF-7 MDR a la doxorubicine en utilisant les nanoparticules chitosane/MDR1-siARN

    Science.gov (United States)

    El-Ariss, Mohamad

    ARN_2M are complementary to a sequence shifted slightly downstream in the same gene (583-607 nucleic acids). RNA duplexes siRNA_1 and siARN_2 consist exclusively of DNA while "modifed" siRNA_1M and si RNA_2M consist of RNA overhangs. siRNA duplexes (siRNA_1 and siRNA_2) were chosen from the work published by Hao Wu et al. (2003), Stege et al. (2004) and Miletti-Gonzalez et al. (2005) which showed that these siRNA sequences are effective to silence MDR1 gene in cancer cells (breast cancer cells MCF-7 / AdrR and MCF-7 / BC-19 and stomach cancer cells: EPG85-257RDB).[3-5] Moreover, Strapps et al. (2010) showed that the use of siRNA having overhangs formed of ribonucleotides leads to a similar silencing but lasting longer in vivo and in vitro compared to the use of siRNA containing deoxyribonucleotides overhangs.[6] Thus siARN_1M and siARN_2M sequences correspond to siARN_1 and siARN_2 sequences but whose overhangs are formed of ribonucleotides. These siRNA specific to the MDR1 gene (MDR1-siRNA) were combined to chitosan to form nanoparticles capable of protecting these MDR1-siRNA and delivering it into the MCF-7 MDR cells. Chitosan used here as a delivery system, is a natural and biodegradable polysaccharide whose biological properties are defined by its average molecular weight (MW) and by its degree of deacetylation (DD). When the positively charged chitosan is added with the negatively charged siRNA, there is formation of nanoparticles by electrostatic attraction. In this project, chitosan 92-10 (DDA- MW) was used as a delivery system with a N:P (ratio chitosan amino groups: RNA phosphate) of 5. Analysis by dynamic light scattering (DLS) demonstrated that the nanoparticles have a diameter between 62.56 and 82.72 nm and a zeta potential ranging from 17.4 to 23.5 mV. Analysis by confocal microscopy showed that chitosan (92-10-5)/labeled siRNA are internalized in MCF-7 MDR cells and that siRNAs are released in the cytoplasm. MCF-7 cells resistant MDR were transfected in

  14. Development and characterization of MCF7 mammary carcinoma ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research October 2016; 15 (10): 2085-2091 ... tissues from the thoracic region showed evidence of MCF7 cellular proliferation in both groups B and C. ... Fungizone (PSF) and fetal calf serum (FCS).

  15. Design, synthesis and molecular modeling of new 4-phenylcoumarin derivatives as tubulin polymerization inhibitors targeting MCF-7 breast cancer cells.

    Science.gov (United States)

    Batran, Rasha Z; Kassem, Asmaa F; Abbas, Eman M H; Elseginy, Samia A; Mounier, Marwa M

    2018-07-23

    A new set of 4-phenylcoumarin derivatives was designed and synthesized aiming to introduce new tubulin polymerization inhibitors as anti-breast cancer candidates. All the target compounds were evaluated for their cytotoxic effects against MCF-7 cell line, where compounds 2f, 3a, 3b, 3f, 7a and 7b, showed higher cytotoxic effect (IC 50  = 4.3-21.2 μg/mL) than the reference drug doxorubicin (IC 50  = 26.1 μg/mL), additionally, compounds 1 and 6b exhibited the same potency as doxorubicin (IC 50  = 25.2 and 28.0 μg/mL, respectively). The thiazolidinone derivatives 3a, 3b and 3f with potent and selective anticancer effects towards MCF-7 cells (IC 50  = 11.1, 16.7 and 21.2 μg/mL) were further assessed for tubulin polymerization inhibition effects which showed that the three compounds were potent tubulin polymerization suppressors with IC 50 values of 9.37, 2.89 and 6.13 μM, respectively, compared to the reference drug colchicine (IC 50  = 6.93 μM). The mechanistic effects on cell cycle progression and induction of apoptosis in MCF-7 cells were determined for compound 3a due to its potent and selective cytotoxic effects in addition to its promising tubulin polymerization inhibition potency. The results revealed that compound 3a induced cell cycle cessation at G2/M phase and accumulation of cells in pre-G1 phase and prevented its mitotic cycle, in addition to its activation of caspase-7 mediating apoptosis of MCF-7 cells. Molecular modeling studies for compounds 3a, 3b and 3f were carried out on tubulin crystallography, the results indicated that the compounds showed binding mode similar to the co-crystalized ligand; colchicine. Moreover, pharmacophore constructed models and docking studies revealed that thiazolidinone, acetamide and coumarin moieties are crucial for the activity. Molecular dynamics (MD) studies were carried out for the three compounds over 100 ps. MD results of compound 3a showed that it reached the stable state

  16. Kinetin (N -furfuryladenine): Cytotoxicity against MCF-7 breast ...

    African Journals Online (AJOL)

    Jane

    2011-07-06

    Jul 6, 2011 ... The cytotoxicity effect of kinetin on MCF-7 breast cancer cell lines was ... Medium (DMEM) containing 10% FBS, 2 mM glutamine, 100 units/ml ..... apoptosis of human myeloid leukemia cells by cytokinins and cytokinin ...

  17. Suberoyl bis-hydroxamic acid induces p53-dependent apoptosis of MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-gang ZHUANG; Fei FEI; Ying CHEN; Wei JIN

    2008-01-01

    Aim: To study the effects of suberoyl bis-hydroxamic acid (SBHA), an inhibitor of histone deacetylases, on the apoptosis of MCF-7 breast cancer cells. Meth-ods: Apoptosis in MCF-7 cells induced by SBHA was demonstrated by flow cytometric analysis, morphological observation, and DNA ladder. Mitochondrial membrane potential (△ψm) was measured using the fluorescent probe JC-1. The expressions of p53, p21, Bax, and PUMA were determined using RT-PCR or Western blotting analysis after the MCF-7 cells were treated with SBHA or p53 siRNA. Results: SBHA induced apoptosis in MCF-7 cells. The expressions of p53, p21, Bax, and PUMA were induced, and △ψm collapsed after treatment with SBHA. p53 siRNA abrogated the SBHA-induced apoptosis and the expressions of p53, p21, Bax, and PUMA. Conclusion: The activation of the p53 pathway is involved in SBHA-induced apoptosis in MCF-7 cells.

  18. Δ9-Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling

    International Nuclear Information System (INIS)

    Takeda, Shuso; Yamaori, Satoshi; Motoya, Erina; Matsunaga, Tamihide; Kimura, Toshiyuki; Yamamoto, Ikuo; Watanabe, Kazuhito

    2008-01-01

    We recently reported that Δ 9 -tetrahydrocannabinol (Δ 9 -THC) has the ability to stimulate the proliferation of human breast carcinoma MCF-7 cells. However, the mechanism of action remains to be clarified. The present study focused on the relationship between receptor expression and the effects of Δ 9 -THC on cell proliferation. RT-PCR analysis demonstrated that there was no detectable expression of CB receptors in MCF-7 cells. In accordance with this, no effects of cannabinoid 1/2 (CB1/2) receptor antagonists and pertussis toxin on cell proliferation were observed. Although MCF-7 cell proliferation is suggested to be suppressed by Δ 9 -THC in the presence of CB receptors, it was revealed that Δ 9 -THC could exert upregulation of living cells in the absence of the receptors. Interestingly, Δ 9 -THC upregulated human epithelial growth factor receptor type 2 (HER2) expression, which is known to be a predictive factor of human breast cancer and is able to stimulate cancer cells as well as MCF-7 cells. Actinomycin D-treatment interfered with the upregulation of HER2 and cell proliferation by cannabinoid. Taken together, these studies suggest that, in the absence of CB receptors, Δ 9 -THC can stimulate the proliferation of MCF-7 cells by modulating, at least in part, HER2 transcription

  19. Induction of apoptosis in human breast adenocarcinoma MCF-7 ...

    African Journals Online (AJOL)

    Induction of apoptosis in human breast adenocarcinoma MCF-7 cells by tannic acid and resveratrol. Ahu Soyocak, Didem Turgut Cosan, Ayse Basaran, Hasan Veysi Gunes, Irfan Degirmenci, Fezan Sahin Mutlu ...

  20. Bioactivation of the citrus flavonoid nobiletin by CYP1 enzymes in MCF7 breast adenocarcinoma cells.

    Science.gov (United States)

    Surichan, Somchaiya; Androutsopoulos, Vasilis P; Sifakis, Stavros; Koutala, Eleni; Tsatsakis, Aristidis; Arroo, Randolph R J; Boarder, Michael R

    2012-09-01

    Recent studies have demonstrated cytochrome P450 CYP1-mediated metabolism and CYP1-enzyme induction by naturally occurring flavonoids in cancer cell line models. The arising metabolites often exhibit higher activity than the parent compound. In the present study we investigated the CYP1-mediated metabolism of the citrus polymethoxyflavone nobiletin by recombinant CYP1 enzymes and MCF7 breast adenocarcinoma cells. Incubation of nobiletin in MCF7 cells produced one main metabolite (NM1) resulting from O-demethylation in either A or B rings of the flavone moiety. Among the three CYP1 isoforms, CYP1A1 exhibited the highest rate of metabolism of nobiletin in recombinant CYP microsomal enzymes. The intracellular CYP1-mediated bioconversion of the flavone was reduced in the presence of the CYP1A1 and CYP1B1-selective inhibitors α-napthoflavone and acacetin. In addition nobiletin induced CYP1 enzyme activity, CYP1A1 protein and CYP1B1 mRNA levels in MCF7 cells at a concentration dependent manner. MTT assays in MCF7 cells further revealed that nobiletin exhibited significantly lower IC50 (44 μM) compared to cells treated with nobiletin and CYP1A1 inhibitor (69 μM). FACS analysis demonstrated cell a cycle block at G1 phase that was attenuated in the presence of CYP1A1 inhibitor. Taken together the data suggests that the dietary flavonoid nobiletin induces its own metabolism and in turn enhances its cytostatic effect in MCF7 breast adenocarcinoma cells, via CYP1A1 and CYP1B1 upregulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Identification and Regulation of c-Myb Target Genes in MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    O'Rourke John P

    2011-01-01

    Full Text Available Abstract Background The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. Methods We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. Results By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Conclusions Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer

  2. Identification and Regulation of c-Myb Target Genes in MCF-7 Cells

    International Nuclear Information System (INIS)

    Quintana, Anita M; Liu, Fan; O'Rourke, John P; Ness, Scott A

    2011-01-01

    The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer cells

  3. Epithelial-Mesenchymal Transitions and the Expression of Twist in MCF-7/ADR,Human Multidrug-Resistant Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Fei Zhang; Yurong Shi; Lin Zhang; Bin Zhang; Xiyin Wei; Yi Yang; RUi Wang; Ruifang Niu

    2007-01-01

    OBJECTIVE To study the expression levels of Twist and epithelialmesenchymal transitions in multidrug-resistant MCF-7/ADR breast cancer cells,and to study the relationship between multidrug resistance (MDR) and metastatic potential of the cells.METHODS RT-PCR,immunohislochemical and Western blotting methods were used to examine the changes of expression levels of the transcription factor Twist.E-cadherin and N-cadherin in the MCF-7 breast cancer cell line and its multidrug-resistant variant.MCF-7/ADR.RESULTS In MCF-7 cells,the expression of E-cadherin can be detected,but there is no expression of Twisl or N-cadherin.In MCF-7/ADR cells,E-cadherin expression is lost.bul the expression of two other genes was significantly positive.CONCLUSION Epithelial-mesenchymal transitions induced by Twist,may have a relationship with enhanced invasion and metastatic potential during the development of multidrug-resistant MCF-7/ADR breast cancer cells.

  4. A new MCF-7 breast cancer cell line resistant to the arzoxifene metabolite desmethylarzoxifene

    DEFF Research Database (Denmark)

    Freddie, Cecilie T; Christensen, Gitte Lund; Lykkesfeldt, Anne E

    2004-01-01

    products increased towards parental MCF-7 level upon withdrawal from ARZm, concomitant with an increase in the sensitivity of MCF-7/ARZm(R)-1 cells to ARZm treatment. These data show that ARZm resistant cells remain sensitive to treatment with both tamoxifen and to ICI 182,780. Furthermore, the partial...

  5. The comparison of radiation responses in MCF-7 and HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mi Young; Jang, Eun Yeong; Ryu, Tae Ho; Chung, Dong-Min; Kim, Jin Hong; Kim, Jin Kyu [Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of)

    2014-11-15

    Activation of this pathway temporarily arrests cells at the G1 or G2 checkpoints of cell cycle, or terminates DNA replication and cell division. The present study was carried out to identify the fate of cells to cope with DNA damage stress. Cellular responses following IR treatment were different depending on the characteristics (origin, organism and genes expressed etc.) of cell line used and extent of genomic injury. p53 expression level was increased in a dose-dependent manner in both cells. IR induced a drastic increase in expression of p21 in MCF-7 compared to that in HeLa cells. Cell cycle analysis using flow cytometry showed a significant accumulation in G2/M phase after treatment of MCF-7 with IR. This study identified that IR-induced cell fates were determined through p53-dependent activation of p21, which resulted in senescence of MCF-7 cells and autophagy of HeLa cells.

  6. Cytotoxic effect of achatinin(H) (lectin) from Achatina fulica against a human mammary carcinoma cell line (MCF7).

    Science.gov (United States)

    Dharmu, Indra; Ramamurty, N; Kannan, Ramalingam; Babu, Mary

    2007-01-01

    The hemolymph-derived achatinin(H) (lectin) from Achatina fulica showed a marked cytotoxic effect on MCF7, a human mammary carcinoma cell line. IC(50) values as measured by the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay for achatinin(H) ranged from 6 to 10 microg/ml in the MCF7 cells. MCF7 cells showed significant morphological changes leading to cell death. The above cell death was observed after 48 h of treatment with 8 microg/ml when compared to untreated cells. Alterations in the tumor marker enzymes, as well as in antioxidant enzymes, were observed after achatinin(H) treatment. The specificity and purity of the achatinin(H) was confirmed by the Western blot assay. Achatinin(H) binding to MCF7 cells was detected by anti-achatinin(H), and visualization of the achatinin(H) binding sites on confluent MCF7 cells was confirmed by flourescein isothiocyanate conjugated secondary antibody. MCF7-treated cells fluoresced, indicating the presence of achatinin(H) binding sites. Fluorescence-activated cell sorting analysis of the cell cycle showed a significant increase in S-phase in MCF7 cells after 48 h of achatinin(H) treatment. The cells were arrested in G(2)/M phase of the cell cycle after 48 h with significant changes in cell viability. Cellular damage was confirmed by agarose gel electrophoresis with the characteristic appearance of a DNA streak in treated MCF7 cells indicating the ongoing apoptosis.

  7. Triptolide induces lysosomal-mediated programmed cell death in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Owa C

    2013-09-01

    Full Text Available Chie Owa, Michael E Messina Jr, Reginald HalabyDepartment of Biology, Montclair State University, Montclair, NJ, USABackground: Breast cancer is a major cause of death; in fact, it is the most common type, in order of the number of global deaths, of cancer in women worldwide. This research seeks to investigate how triptolide, an extract from the Chinese herb Tripterygium wilfordii Hook F, induces apoptosis in MCF-7 human breast cancer cells. Accumulating evidence suggests a role for lysosomal proteases in the activation of apoptosis. However, there is also some controversy regarding the direct participation of lysosomal proteases in activation of key apoptosis-related caspases and release of mitochondrial cytochrome c. In the present study, we demonstrate that triptolide induces an atypical, lysosomal-mediated apoptotic cell death in MCF-7 cells because they lack caspase-3.Methods: MCF-7 cell death was characterized via cellular morphology, chromatin condensation, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide colorimetric cell growth inhibition assay and the expression levels of proapoptotic proteins. Acridine orange and LysoTracker® staining were performed to visualize lysosomes. Lysosomal enzymatic activity was monitored using an acid phosphatase assay and western blotting of cathepsin B protein levels in the cytosolic fraction, which showed increased enzymatic activity in drug-treated cells.Results: These experiments suggest that triptolide-treated MCF-7 cells undergo atypical apoptosis and that, during the early stages, lysosomal enzymes leak into the cytosol, indicating lysosomal membrane permeability.Conclusion: Our results suggest that further studies are warranted to investigate triptolide's potential as an anticancer therapeutic agent.Keywords: triptolide, MCF-7 breast cancer cells, apoptosis, lysosomes, lysosomal membrane permeabilization (LMP

  8. Effects of Calophyllum inophyllum fruit extract on the proliferation and morphological characteristics of human breast cancer cells MCF-7

    Directory of Open Access Journals (Sweden)

    Shanmugapriya

    2016-04-01

    Full Text Available Objective: To evaluate the antiproliferative activity of Calophyllum inophyllum (C. inophyllum fruit extract against human breast cancer cells MCF-7. Methods: The cytotoxic effect of C. inophyllum fruit extract against MCF-7 cancer cells was evaluated through MTT and CyQuant assays for 24 h and the morphological investigation of treated MCF-7 cells was observed under optical microscope using Giemsa staining. Results: The cytotoxic effect of C. inophyllum fruit extract against MCF-7 cancer cells was evaluated through MTT and CyQuant assays simultaneously for 24 h after treatment, which demonstrated the inhibition of cell viability with the IC50 values of 19.63 µg/mL and 27.54 µg/mL, respectively. The preliminary time-based morphological investigation of MCF-7 cells treated with the IC 50 value (23.59 µg/mL of C. inophyllum fruit extract was observed under an optical microscopy via Giemsa staining, which exhibited prominent histological characteristics of apoptosis. Conclusions: This study clearly proved that the proliferation of human breast cancer cell MCF-7 was inhibited by C. inophyllum fruit extract resulted from the induction of apoptosis in MCF-7 cells.

  9. Enhanced and Selective Antiproliferative Activity of Methotrexate-Functionalized-Nanocapsules to Human Breast Cancer Cells (MCF-7

    Directory of Open Access Journals (Sweden)

    Catiúscia P. de Oliveira

    2018-01-01

    Full Text Available Methotrexate is a folic acid antagonist and its incorporation into nanoformulations is a promising strategy to increase the drug antiproliferative effect on human breast cancer cells by overexpressing folate receptors. To evaluate the efficiency and selectivity of nanoformulations containing methotrexate and its diethyl ester derivative, using two mechanisms of drug incorporation (encapsulation and surface functionalization in the in vitro cellular uptake and antiproliferative activity in non-tumoral immortalized human keratinocytes (HaCaT and in human breast carcinoma cells (MCF-7. Methotrexate and its diethyl ester derivative were incorporated into multiwall lipid-core nanocapsules with hydrodynamic diameters lower than 160 nm and higher drug incorporation efficiency. The nanoformulations were applied to semiconfluent HaCaT or MCF-7 cells. After 24 h, the nanocapsules were internalized into HaCaT and MCF-7 cells; however, no significant difference was observed between the nanoformulations in HaCaT (low expression of folate receptors, while they showed significantly higher cellular uptakes than the blank-nanoformulation in MCF-7, which was the highest uptakes observed for the drug functionalized-nanocapsules. No antiproliferative activity was observed in HaCaT culture, whereas drug-containing nanoformulations showed antiproliferative activity against MCF-7 cells. The effect was higher for drug-surface functionalized nanocapsules. In conclusion, methotrexate-functionalized-nanocapsules showed enhanced and selective antiproliferative activity to human breast cancer cells (MCF-7 being promising products for further in vivo pre-clinical evaluations.

  10. Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents.

    Directory of Open Access Journals (Sweden)

    Richard C Wang

    Full Text Available One of the main reasons for disease recurrence in the curative breast cancer treatment setting is the development of drug resistance. Microtubule targeted agents (MTAs are among the most commonly used drugs for the treatment of breaset cancer and therefore overcoming taxane resistance is of primary clinical importance. Our group has previously demonstrated that the microtubule dynamics of docetaxel-resistant MCF-7TXT cells are insensitivity to docetaxel due to the distinct expression profiles of β-tubulin isotypes in addition to the high expression of p-glycoprotein (ABCB1. In the present investigation we examined whether taxane-resistant breast cancer cells are more sensitive to microtubule destabilizing agents including vinca alkaloids and colchicine-site binding agents (CSBAs than the non-resistant cells.Two isogenic MCF-7 breast cancer cell lines were selected for resistance to docetaxel (MCF-7TXT and the wild type parental cell line (MCF-7CC to examine if taxane-resistant breast cancer cells are sensitive to microtubule-destabilizing agents including vinca alkaloids and CSBAs. Cytotoxicity assays, immunoblotting, indirect immunofluorescence and live imaging were used to study drug resistance, apoptosis, mitotic arrest, microtubule formation, and microtubule dynamics.MCF-7TXT cells were demonstrated to be cross resistant to vinca alkaloids, but were more sensitive to treatment with colchicine compared to parental non-resistant MCF-7CC cells. Cytotoxicity assays indicated that the IC50 of MCF-7TXT cell to vinorelbine and vinblastine was more than 6 and 3 times higher, respectively, than that of MCF-7CC cells. By contrast, the IC50 of MCF-7TXT cell for colchincine was 4 times lower than that of MCF-7CC cells. Indirect immunofluorescence showed that all MTAs induced the disorganization of microtubules and the chromatin morphology and interestingly each with a unique pattern. In terms of microtubule and chromain morphology, MCF-7TXT cells were

  11. The role of 3D microenvironmental organization in MCF-7 epithelial–mesenchymal transition after 7 culture days

    Energy Technology Data Exchange (ETDEWEB)

    Foroni, Laura [Pathology Unit, Department of Haematology, Oncology and Clinical Pathology, S. Orsola-Malpighi Hospital, Bologna University (Italy); Vasuri, Francesco, E-mail: vasurifrancesco@libero.it [Pathology Unit, Department of Haematology, Oncology and Clinical Pathology, S. Orsola-Malpighi Hospital, Bologna University (Italy); Chair of Vascular Surgery, Department of Specialistic Surgery and Anaesthesiological Sciences, S. Orsola-Malpighi Hospital, Bologna University (Italy); Valente, Sabrina [Pathology Unit, Department of Haematology, Oncology and Clinical Pathology, S. Orsola-Malpighi Hospital, Bologna University (Italy); Gualandi, Chiara [Department of Chemistry “G. Ciamician” and National Consortium of Materials Science and Technology (INSTM, RU Bologna), Bologna University (Italy); Focarete, Maria Letizia [Department of Chemistry “G. Ciamician” and National Consortium of Materials Science and Technology (INSTM, RU Bologna), Bologna University (Italy); Health Science and Technologies–Interdepartmental Center for Industrial Research (HST-ICIR), Bologna University (Italy); Caprara, Giacomo [Pathology Unit, Department of Haematology, Oncology and Clinical Pathology, S. Orsola-Malpighi Hospital, Bologna University (Italy); Scandola, Mariastella [Department of Chemistry “G. Ciamician” and National Consortium of Materials Science and Technology (INSTM, RU Bologna), Bologna University (Italy); D' Errico-Grigioni, Antonia; Pasquinelli, Gianandrea [Pathology Unit, Department of Haematology, Oncology and Clinical Pathology, S. Orsola-Malpighi Hospital, Bologna University (Italy)

    2013-06-10

    We present a multi-technique study on in vitro epithelial–mesenchymal transition (EMT) in human MCF-7 cells cultured on electrospun scaffolds of poly(L-lactic acid) (PLA), with random and aligned fiber orientations. Our aim is to investigate the morphological and genetic characteristics induced by extracellular matrix in tumor cells cultured in different 3D environments, and at different time points. Cell vitality was assessed with AlamarBlue at days 1, 3, 5 and 7. Scanning electron microscopy was performed at culture days 3 and 7. Immunohistochemistry (for E-cadherin, β-catenin, cytokeratins, nucleophosmin, tubulin, Ki-67 and vimentin), immunofluorescence (for F-actin) western blot (for E-cadherin, β-catenin and vimentin) and transmission electron microscopy were carried out at day 7. An EMT gene array followed by PCR analysis confirmed the regulation of selected genes. At day 7, scanning electron microscopy on aligned-PLA revealed spindle-shaped cells gathered in buds and ribbon-like structures, with a higher nucleolar/nuclear ratio and a loss in E-cadherin and β-catenin at immunohistochemistry and western blot. An up-regulation of SMAD2, TGF-β2, TFPI2 and SOX10 was found in aligned-PLA compared to random-PLA cultured cells. The topography of the extracellular matrix has a role in tumor EMT, and a more aggressive phenotype characterizes MCF-7 cells cultured on aligned-PLA scaffold. -- Highlights: • After 7 culture days an aligned-PLA scaffold induces a spindle shape to MCF-7 cells. • Despite these changes, the aligned MCF-7 cells keep an epithelial phenotype. • The extracellular environment alone influences the E-cadherin/β-catenin axis. • The extracellular environment can promote the epithelial–mesenchymal transition.

  12. The role of 3D microenvironmental organization in MCF-7 epithelial–mesenchymal transition after 7 culture days

    International Nuclear Information System (INIS)

    Foroni, Laura; Vasuri, Francesco; Valente, Sabrina; Gualandi, Chiara; Focarete, Maria Letizia; Caprara, Giacomo; Scandola, Mariastella; D'Errico-Grigioni, Antonia; Pasquinelli, Gianandrea

    2013-01-01

    We present a multi-technique study on in vitro epithelial–mesenchymal transition (EMT) in human MCF-7 cells cultured on electrospun scaffolds of poly(L-lactic acid) (PLA), with random and aligned fiber orientations. Our aim is to investigate the morphological and genetic characteristics induced by extracellular matrix in tumor cells cultured in different 3D environments, and at different time points. Cell vitality was assessed with AlamarBlue at days 1, 3, 5 and 7. Scanning electron microscopy was performed at culture days 3 and 7. Immunohistochemistry (for E-cadherin, β-catenin, cytokeratins, nucleophosmin, tubulin, Ki-67 and vimentin), immunofluorescence (for F-actin) western blot (for E-cadherin, β-catenin and vimentin) and transmission electron microscopy were carried out at day 7. An EMT gene array followed by PCR analysis confirmed the regulation of selected genes. At day 7, scanning electron microscopy on aligned-PLA revealed spindle-shaped cells gathered in buds and ribbon-like structures, with a higher nucleolar/nuclear ratio and a loss in E-cadherin and β-catenin at immunohistochemistry and western blot. An up-regulation of SMAD2, TGF-β2, TFPI2 and SOX10 was found in aligned-PLA compared to random-PLA cultured cells. The topography of the extracellular matrix has a role in tumor EMT, and a more aggressive phenotype characterizes MCF-7 cells cultured on aligned-PLA scaffold. -- Highlights: • After 7 culture days an aligned-PLA scaffold induces a spindle shape to MCF-7 cells. • Despite these changes, the aligned MCF-7 cells keep an epithelial phenotype. • The extracellular environment alone influences the E-cadherin/β-catenin axis. • The extracellular environment can promote the epithelial–mesenchymal transition

  13. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Franco-Molina Moisés A

    2010-11-01

    Full Text Available Abstract Background Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. Methods MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Results Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL and LD100 (14 ng/mL (*P Conclusions The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy.

  14. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells.

    Science.gov (United States)

    Franco-Molina, Moisés A; Mendoza-Gamboa, Edgar; Sierra-Rivera, Crystel A; Gómez-Flores, Ricardo A; Zapata-Benavides, Pablo; Castillo-Tello, Paloma; Alcocer-González, Juan Manuel; Miranda-Hernández, Diana F; Tamez-Guerra, Reyes S; Rodríguez-Padilla, Cristina

    2010-11-16

    Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL) for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL) and LD100 (14 ng/mL) (*P colloidal silver. The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy.

  15. The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures

    International Nuclear Information System (INIS)

    Krause, Silva; Maffini, Maricel V; Soto, Ana M; Sonnenschein, Carlos

    2010-01-01

    Stromal-epithelial interactions mediate breast development, and the initiation and progression of breast cancer. In the present study, we developed 3-dimensional (3D) in vitro models to study breast cancer tissue organization and the role of the microenvironment in phenotypic determination. The human breast cancer MCF7 cells were grown alone or co-cultured with primary human breast fibroblasts. Cells were embedded in matrices containing either type I collagen or a combination of reconstituted basement membrane proteins and type I collagen. The cultures were carried out for up to 6 weeks. For every time point (1-6 weeks), the gels were fixed and processed for histology, and whole-mounted for confocal microscopy evaluation. The epithelial structures were characterized utilizing immunohistochemical techniques; their area and proliferation index were measured using computerized morphometric analysis. Statistical differences between groups were analyzed by ANOVA, Dunnett's T3 post-hoc test and chi-square. Most of the MCF7 cells grown alone within a collagen matrix died during the first two weeks; those that survived organized into large, round and solid clusters. The presence of fibroblasts in collagen gels reduced MCF7 cell death, induced cell polarity, and the formation of round and elongated epithelial structures containing a lumen. The addition of reconstituted basement membrane to collagen gels by itself had also survival and organizational effects on the MCF7 cells. Regardless of the presence of fibroblasts, the MCF7 cells both polarized and formed a lumen. The addition of fibroblasts to the gel containing reconstituted basement membrane and collagen induced the formation of elongated structures. Our results indicate that a matrix containing both type I collagen and reconstituted basement membrane, and the presence of normal breast fibroblasts constitute the minimal permissive microenvironment to induce near-complete tumor phenotype reversion. These human

  16. Transcriptional activation of rat creatine kinase B by 17beta-estradiol in MCF-7 cells involves an estrogen responsive element and GC-rich sites.

    Science.gov (United States)

    Wang, F; Samudio, I; Safe, S

    2001-01-01

    The rat creatine kinase B (CKB) gene is induced by estrogen in the uterus, and constructs containing rat CKB gene promoter inserts are highly estrogen-responsive in cell culture. Analysis of the upstream -568 to -523 region of the promoter in HeLa cells has identified an imperfect palindromic estrogen response element (ERE) that is required for hormone inducibility. Analysis of the CKB gene promoter in MCF-7 breast cancer cells confirmed that pCKB7 (containing the -568 to -523 promoter insert) was estrogen-responsive in transient transfection studies. However, mutation and deletion analysis of this region of the promoter showed that two GC-rich sites and the concensus ERE were functional cis-elements that bound estrogen receptor alpha (ERalpha)/Sp1 and ERalpha proteins, respectively. The role of these elements was confirmed in gel mobility shift and chromatin immunoprecipitation assays and transfection studies in MDA-MB-231 and Schneider Drosophila SL-2 cells. These results show that transcriptional activation of CKB by estrogen is dependent, in part, on ERalpha/Sp1 action which is cell context-dependent. Copyright 2001 Wiley-Liss, Inc.

  17. Evaluation of Antiproliferative Activity of Red Sorghum Bran Anthocyanin on a Human Breast Cancer Cell Line (MCF-7)

    International Nuclear Information System (INIS)

    Devi, P.S.; Kumar, M.S.; Das, A.S.M.

    2011-01-01

    Breast cancer is a leading cause of death in women worldwide both in the developed and developing countries. Thus effective treatment of breast cancer with potential antitumour drugs is important. In this paper, human breast cancer cell line MCF-7 has been employed to evaluate the antiproliferative activity of red sorghum bran anthocyanin. The present investigation showed that red sorghum bran anthocyanin induced growth inhibition of MCF-7 cells at significant level. The growth inhibition is dose dependent and irreversible in nature. When MCF-7 cells were treated with red sorghum bran anthocyanins due to activity of anthocyanin morphological changes were observed. The morphological changes were identified through the formation of apoptopic bodies. The fragmentation by these anthocyanins on DNA to oligonuleosomal-sized fragments, is a characteristic of apoptosis, and it was observed as concentration-dependent. Thus, this paper clearly demonstrates that human breast cancer cell MCF-7 is highly responsive by red sorghum bran anthocyanins result from the induction of apoptosis in MCF-7 cells.

  18. The Study of Apoptotic Effect of p-Coumaric Acid on Breast Cancer Cells MCF-7

    Directory of Open Access Journals (Sweden)

    M Kolahi

    2016-06-01

    Full Text Available Introduction: Polyphenolic compounds have anti proliferative and induced apoptotic features on cancer cells. p-Coumaric acid can be abundantly found in fruits, vegetables, plant production and honey. .  Breast cancer is the most frequently diagnosed cancer among women in the world. This study aimed to investigate the effect and mechanism of p- coumaric acid on apoptosis of MCF-7 breast cancer cells. Methods: In order to study appoptic effect of p- coumaric acid, MCF-7 breast cancer cells were treated with different concentrations of p- coumaric acid (10, 37, 70, 150 and 300 mM for 24 h. Cell viability was determined using MTT assay. Apoptosis markers including phosphatidylserine exposure at the outer leaflet of the plasma membrane were measured using flow cytometery for Annexin V affinity. Results: Cell viability of MCF-7 cells was decreased with increasing of p- coumaric acid concentration. Maximal effect of p- coumaric acid was observed in cells that treated with 300 mM for 24h (p< 0.05. Viability assay showed that the IC50 of p- coumaric acid in MCF-7 cells was about 40 mM. p- coumaric acid at dose of 300 mM significantly increased the late apoptotic cells with Annexin V+ and propium iodide (PI+ features after 24 h treatment. Conclusion: The results of this study showed that p- coumaric acid had effective appoptic activity against MCF-7 cells. The results can be helpful in understanding the anticancer mechanism of p- coumaric acid and using it was suggested as an alternative or complementary drug in cancer chemotherapy.

  19. Rottlerin Inhibits ROS Formation and Prevents NFκB Activation in MCF-7 and HT-29 Cells

    Directory of Open Access Journals (Sweden)

    Emanuela Maioli

    2009-01-01

    Full Text Available Rottlerin, a polyphenol isolated from Mallotus Philippinensis, has been recently used as a selective inhibitor of PKC δ, although it can inhibit many kinases and has several biological effects. Among them, we recently found that Rottlerin inhibits the Nuclear Factor κB (NFκB, activated by either phorbol esters or H2O2. Because of the redox sensitivity of NFκB and on the basis of Rottlerin antioxidant property, we hypothesized that Rottlerin could prevent NFκB activation acting as a free radicals scavenger, as other natural polyphenols. The current study confirms the antioxidant property of Rottlerin against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH in vitro and against oxidative stress induced by H2O2 and by menadione in culture cells. We also demonstrate that Rottlerin prevents TNFα-dependent NFκB activation in MCF-7 cells and in HT-29 cells transfected with the NFκB-driven plasmid pBIIX-LUC, suggesting that Rottlerin can inhibit NFκB via several pathways and in several cell types.

  20. In vitro studies of magnetically enhanced transfection in COS-7 cells

    International Nuclear Information System (INIS)

    Ang, D.; Tay, C.Y.; Tan, L.P.; Preiser, P.R.; Ramanujan, R.V.

    2011-01-01

    In the magnetically enhanced gene delivery technique, DNA complexed with polymer coated aggregated magnetic nanoparticles (AMNPs) is used for effecting transfection. The aim of this study is to examine the relationship between transfection efficiency and the physical characteristics of the polymer coated AMNPs. In vitro studies of transfection efficiency in COS-7 cells were carried out using pEGFP-N1 and pMIR-REPORT complexed polyethylenimine (PEI) coated iron oxide magnetic nanoparticles. PEI coated AMNPs (PEI-AMNPs) with average individual particle diameters in the range of 8 nm to 30 nm were studied and characterized by transmission electron microscopy, vibrating sample magnetometry, X-ray diffractometry, thermal gravimetric analysis and photon correlation spectroscopy methods. PEI-A8MNP and PEI-A30MNP yielded higher transfection efficiency compared to commercial polyMAG particles as well as PEI of equivalent molar ratio of nitrogen/phosphorous (N/P ratio). The transfection efficiency was related to the physical characteristics of the PEI-AMNPs and its complexes: transfection efficiency was strongly positively correlated with saturation magnetization (Ms) and susceptibility (χ), strongly negatively correlated with N/P ratio, moderately positively correlated to zeta potential and moderately negatively correlated to hydrodynamic diameter of the complex. PEI-A8MNP and PEI-A30MNP possessing higher Ms, χ, lower N/P ratio and smaller complex size exhibited higher transfection efficiency compared to PEI-A16MNP which have weaker magnetic properties, higher N/P ratio and larger complex size. We have demonstrated that optimization of the physical properties of PEI-AMNPs is needed to maximize transfection efficiency. - Research highlights: →The transfection efficiency in magnetically enhanced gene delivery was studied. →Transfection efficiency was strongly positively correlated to magnetic properties. →Transfection efficiency was strongly negatively correlated with

  1. Xanthohumol, a Prenylated Chalcone from Hops, Inhibits the Viability and Stemness of Doxorubicin-Resistant MCF-7/ADR Cells

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2016-12-01

    Full Text Available Xanthohumol is a unique prenylated flavonoid in hops (Humulus lupulus L. and beer. Xanthohumol has been shown to possess a variety of pharmacological activities. There is little research on its effect on doxorubicin-resistant breast cancer cells (MCF-7/ADR and the cancer stem-like cells exiting in this cell line. In the present study, we investigate the effect of xanthohumol on the viability and stemness of MCF-7/ADR cells. Xanthohumol inhibits viability, induces apoptosis, and arrests the cell cycle of MCF-7/ADR cells in a dose-dependent manner; in addition, xanthohumol sensitizes the inhibition effect of doxorubicin on MCF-7/ADR cells. Interestingly, we also find that xanthohumol can reduce the stemness of MCF-7/ADR cells evidenced by the xanthohumol-induced decrease in the colony formation, the migration, the percentage of side population cells, the sphere formation, and the down-regulation of stemness-related biomarkers. These results demonstrate that xanthohumol is a promising compound targeting the doxorubicin resistant breast cancer cells and regulating their stemness, which, therefore, will be applied as a potential candidate for the development of a doxorubicin-resistant breast cancer agent and combination therapy of breast cancer.

  2. [Effect of Evn-50 on cell growth and apoptosis in tamoxifen-resistance human breast cancer cell line MCF-7/TAM-R].

    Science.gov (United States)

    Hu, Hui-yong; Zhou, Jun; Wan, Fang; Dong, Li-feng; Zhang, Feng; Wang, Yi-ke; Chen, Fang-fang; Chen, Yi-ding

    2012-09-01

    To investigate the effect of Evn-50 extracted from Vitex negundo on human breast cancer cell line MCF-7 and MCF-7/TAM-R cells in vitro. MCF-7 and tamoxifen-resistant MCF-7/TAM-R cells were treated with Evn-50,tamoxifen or combination of Evn-50 and tamoxifen. Cell proliferation inhibition rates were determined by MTT assay. The apoptosis rate and the change of cell cycle were detected by PI staining flow cytometry. Protein expression of phospho-MAPK 44/42 (Thr202/Tyr204),MAPK P44/42, phospho-AKT (Ser473) and AKT were detected with Western blotting. The viability of MCF-7 cells was decreased in combination group [(28.65 ±11.43)%] and Evn-50 group [(53.02 ±15.14)%] compared with TAM group (PTAM-R in combination group [(42.11 ±14.30)%] was significantly lower than that in TAM group [(92.18 ±13.16)%] (PTAM-R cells,the expression of phosphorylation of AKT and MAPK44/42 protein was not changed in Evn-50 or TAM alone group,but significantly inhibited in the combination group at 72 h. Evn-50 can inhibit cell growth and induce apoptosis in MCF-7 and MCF-7/TAM-R cells,it can reverse tamoxifen-resistance of MCF-7/TAM-R cells.The mechanisms may be related to the down-regulation of phosphorylated ERK1/2 in MAPK signal pathway and phosphorylated AKT in AKT signal pathway.

  3. Inhibitory effects and molecular mechanisms of tetrahydrocurcumin against human breast cancer MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Xiao Han

    2016-02-01

    Full Text Available Background: Tetrahydrocurcumin (THC, an active metabolite of curcumin, has been reported to have similar biological effects to curcumin, but the mechanism of the antitumor activity of THC is still unclear. Methods: The present study was to investigate the antitumor effects and mechanism of THC in human breast cancer MCF-7 cells using the methods of MTT assay, LDH assay, flow cytometry analysis, and western blot assay. Results: THC was found to have markedly cytotoxic effect and antiproliferative activity against MCF-7 cells in a dose-dependent manner with the IC50 for 24 h of 107.8 μM. Flow cytometry analysis revealed that THC mediated the cell-cycle arrest at G0/G1 phase, and 32.8% of MCF-7 cells entered the early phase of apoptosis at 100 μM for 24 h. THC also dose-dependently led to apoptosis in MCF-7 cells via the mitochondrial pathway, as evidenced by the activation of caspase-3 and caspase-9, the elevation of intracellular ROS, a decrease in Bcl-2 and PARP expression, and an increase in Bax expression. Meanwhile, cytochrome C was released to cytosol and the loss of mitochondria membrane potential (Δψm was observed after THC treatment. Conclusion: THC is an excellent source of chemopreventive agents in the treatment of breast cancer and has excellent potential to be explored as antitumor precursor compound.

  4. Antiproliferative effect on breast cancer (MCF7) of Moringa oleifera ...

    African Journals Online (AJOL)

    Background: Moringa oleifera belongs to plant family, Moringaceae and popularly called ―wonderful tree‖, for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study ...

  5. Growth of MCF-7 breast cancer cells and efficacy of anti-angiogenic agents in a hydroxyethyl chitosan/glycidyl methacrylate hydrogel.

    Science.gov (United States)

    Wang, Hejing; Qian, Junmin; Zhang, Yaping; Xu, Weijun; Xiao, Juxiang; Suo, Aili

    2017-01-01

    Breast cancer negatively affects women's health worldwide. The tumour microenvironment plays a critical role in tumour initiation, proliferation, and metastasis. Cancer cells are traditionally grown in two-dimensional (2D) cultures as monolayers on a flat solid surface lacking cell-cell and cell-matrix interactions. These experimental conditions deviate from the clinical situation. Improved experimental systems that can mimic the in vivo situation are required to discover new therapies, particularly for anti-angiogenic agents that mainly target intercellular factors and play an essential role in treating some cancers. Chitosan can be modified to construct three-dimensional (3D) tumour models. Here, we report an in vitro 3D tumour model using a hydroxyethyl chitosan/glycidyl methacrylate (HECS-GMA) hydrogel produced by a series of chitosan modifications. Parameters relating to cell morphology, viability, proliferation, and migration were analysed using breast cancer MCF-7 cells. In a xenograft model, secretion of angiogenesis-related growth factors and the anti-angiogenic efficacy of Endostar and Bevacizumab in cells grown in HECS-GMA hydrogels were assessed by immunohistochemistry. Hydroxyethyl chitosan/glycidyl methacrylate hydrogels had a highly porous microstructure, mechanical properties, swelling ratio, and morphology consistent with a 3D tumour model. Compared with a 2D monolayer culture, breast cancer MCF-7 cells residing in the HECS-GMA hydrogels grew as tumour-like clusters in a 3D formation. In a xenograft model, MCF-7 cells cultured in the HECS-GMA hydrogels had increased secretion of angiogenesis-related growth factors. Recombinant human endostatin (Endostar), but not Bevacizumab (Avastin), was an effective anti-angiogenic agent in HECS-GMA hydrogels. The HECS-GMA hydrogel provided a 3D tumour model that mimicked the in vivo cancer microenvironment and supported the growth of MCF7 cells better than traditional tissue culture plates. The HECS

  6. Gadolinium-Hematoporphyrin: new potential MRI contrast agent for detection of breast cancer cell line (MCF-7

    Directory of Open Access Journals (Sweden)

    D Shahbazi Gahrouei

    2005-09-01

    Full Text Available Background: Gadolinium-porphyrins have been synthesized and are currently being investigated as magnetic resonance imaging (MRI contrast agents. This study aimed to synthesize Gd-hematoporphyrin and applicate it for in vitro detection of breast cancer cell line (MCF-7. Methods: The naturally occurring porphyrin (hematoporphyrin was inserted with gadolinium (III nitrate hexahydrate to yield Gd-H. T1 relaxation times and signal enhancement of the contrast agents were presented, and the results were compared. UV spectrophotometer measured the attachment of Gd to the cell membrane of MCF-7. Results: Most of gadolinium chloride (GdCl3 was found in the washing solution, indicate that it didn`t fixed to the breast cell membranes during incubation. Gd-DTPA showed some uptake into the MCF-7 cell membranes with incubation, however, its uptake was significantly lower than Gd-H. Conclusion: Good cell memberan uptake of Gd-porphyrin is comparable to controls, indicating selective delivery it to the breast cell line and considerable potency in diagnostic MR imaging for detection of breast cancer. Key Words: Porphyrin, Contrast agent, MRI, Hematoporphyrin, Breast cancer cell (MCF-7

  7. In vitro evaluation of anticancer potentials of lupeol isolated from Elephantopus scaber L. on MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Daisy Pitchai

    2014-01-01

    Full Text Available Lupeol is a triterpenoid, present in most of the medicinally effective plants and possess a wide range of biological activity against human diseases. The present study aims at evaluating the anticancer potentials of lupeol, isolated from the leaves of Elephantopus scaber L. and thereby explores its action on key cancer marker, Bcl-2. The effect of lupeol on the cell viability of MCF-7 was determined by MTT and lactate dehydrogenase assays at different concentrations. The efficacy of the compound to induce cell death was analyzed using AO/EtBr staining. Phase contrast microscopic analysis provided the changes in cell morphology of the compound treated normal breast cells (MCF-10A and MCF-7 cells. The expression of Bcl-2 and Bcl-xL proteins in the normal, cancer and lupeol treated cancer cell was analyzed by western blotting. Lupeol induced an effective change in the cell viability of MCF-7 cells with IC 50 concentration as 80 μM. Induction of cell death, change in cell morphology and population of the cancer cells was observed in the lupeol treated cells, but the normal cells were not affected. The compound effectively downregulated Bcl-2 and Bcl-xL protein expressions, which directly contribute for the induction of MCF-7 cell apoptosis. Conclusion: Thus, lupeol acts as an anticancer agent against MCF-7 cells and is a potent phytodrug to be explored further for its cytotoxic mechanism.

  8. ROS-induced toxicity: exposure of 3T3, RAW264.7, and MCF7 cells to superparamagnetic iron oxide nanoparticles results in cell death by mitochondria-dependent apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Hui-Chen, E-mail: d93548008@ntu.edu.tw; Chen, Chung-Ming, E-mail: chung@ntu.edu.tw [National Taiwan University, Institute of Biomedical Engineering (China); Hsieh, Wen-Yuan, E-mail: hsiehw@itri.org.tw [Industrial Technology Research Institute, Biomedical Technology and Device Research Labs (China); Chen, Ching-Yun, E-mail: chingyun523@gmail.com; Liu, Chia-Ching, E-mail: d95548005@ntu.edu.tw; Lin, Feng-Huei, E-mail: double@ntu.edu.tw [National Taiwan University, Institute of Biomedical Engineering (China)

    2015-02-15

    Superparamagnetic nanoparticles (Fe{sub 3}O{sub 4}, SPIO) have been used as magnetic resonance imaging enhancers for years. However, bio-safety issues concerning nanoparticles remain largely unexplored. Of particular concern is the possible cellular impact of nanoparticles during SPIO uptake and subsequent oxidative stress. SPIO causes cell death by apoptosis via a little understood mitochondrial pathway. To more closely examine this process, three kinds of cells—3T3, RAW264.7, and MCF7—were treated with SPIO coated with polyethylene glycol (SPIO-PEG) and monitored by transmission electron microscopy (TEM), using cytotoxicity evaluation, mitochondrial activity, reactive oxygen species (ROS) generation, and Annexin V assay. TEM revealed that SPIO-PEG nanoparticles surrounded the cellular endosome membrane, creating a bulge in the endosome. Compared to 3T3 cells, greater numbers of SPIO-PEG nanoparticles infiltrated the mitochondria of RAW264.7 and MCF7 cells. SPIO-PEG residency is associated with boosted ROS, with elevated levels of mitochondrial activity, and advancement of cell apoptosis. Furthermore, correlation analysis showed that a polynomial model demonstrates a better fit than a linear model in MCF7, implying that cytotoxicity may have alternative impacts on cell death at different concentrations. Thus, we believe that MCF7 cell death results from the apoptosis pathway triggered by mitochondria, and we find lower cytotoxicity in 3T3. We propose that optimal levels of SPIO-PEG nanoparticles lead to increased levels of ROS and a resulting oxidative stress environment which will kill only cancer cells while sparing normal cells. This finding has great potential for use in cancer therapies in the future.

  9. Nuclear thioredoxin-1 is required to suppress cisplatin-mediated apoptosis of MCF-7 cells

    International Nuclear Information System (INIS)

    Chen, Xiao-Ping; Liu, Shou; Tang, Wen-Xin; Chen, Zheng-Wang

    2007-01-01

    Different cell line with increased thioredoxin-1 (Trx-1) showed a decreased or increased sensitivity to cell killing by cisplatin. Recently, several studies found that the subcellular localization of Trx-1 is closely associated with its functions. In this study, we explored the association of the nuclear Trx-1 with the cisplatin-mediated apoptosis of breast cancer cells MCF-7. Firstly, we found that higher total Trx-1 accompanied by no change of nuclear Trx-1 can not influence apoptosis induced by cisplatin in MCF-7 cells transferred with Trx-1 cDNA. Secondly, higher nuclear Trx-1 accompanied by no change of total Trx-1 can protect cells from apoptosis induced by cisplatin. Thirdly, high nuclear Trx-1 involves in the cisplatin-resistance in cisplatin-resistive cells. Meanwhile, we found that the mRNA level of p53 is closely correlated with the level of nuclear Trx-1. In summary, we concluded that the nuclear Trx-1 is required to resist apoptosis of MCF-7 cells induced by cisplatin, probably through up-regulating the anti-apoptotic gene, p53

  10. 27-hydroxycholesterol and the expression of three estrogen-sensitive proteins in MCF7 cells.

    Science.gov (United States)

    Cruz, Pamela; Epuñán, María José; Ramírez, María Eugenia; Torres, Cristian G; Valladares, Luis E; Sierralta, Walter D

    2012-09-01

    The principal aim of this study was to analyze in estrogen receptor-positive MCF7 cells the response of three estrogen-dependent proteins to 27-hydroxycholesterol (27OHC), a major circulating cholesterol metabolite. Immunofluorescence, immunoblotting and immunogold labelling analyses of MCF7 cells exposed for up to 72 h to 2 nM estradiol (E2) or to 2 µM 27OHC demonstrated similar responses in the expression of MnSOD and ERβ compared to the non-stimulated cells. Thus, the results confirm 27OHC's function as a novel selective estrogen receptor modulator (SERM). The epithelial to mesenchymal transition (EMT), observed in MCF7 cells stimulated for longer than 48 h with 2 µM 27OHC, was accompanied by lower immunoreactive levels of nuclear FOXM1 in comparison to E2-treated cells. The results presented in this study are discussed taking into consideration the relationship of hypercholesterolemia, 27OHC production, ROS synthesis and macrophage infiltration, potentially occurring in obese patients with ERα-positive, infiltrated mammary tumors.

  11. Cytotoxicity against MCF-7 breast cancer cell line and interaction ...

    African Journals Online (AJOL)

    N6-furfuryladenine (kinetin) is a cytokinin growth factor with several biological effects observed in human cells and fruit flies. Kinetin exists naturally in the DNA of almost all organisms tested so far, including human cells and various plants. The cytotoxicity effect of kinetin on MCF-7 breast cancer cell lines was measured by ...

  12. Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells.

    Science.gov (United States)

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alshamsan, Aws

    2017-04-01

    There are very few studies regarding the biological activity of cobalt-based nanoparticles (NPs) and, therefore, the possible mechanism behind the biological response of cobalt NPs has not been fully explored. The present study was designed to explore the potential mechanisms of the cytotoxicity of cobalt NPs in human breast cancer (MCF-7) cells. The shape and size of cobalt NPs were characterized by scanning and transmission electron microscopy (SEM and TEM). The crystallinity of NPs was determined by X-ray diffraction (XRD). The dissolution of NPs was measured in phosphate-buffered saline (PBS) and culture media by atomic absorption spectroscopy (AAS). Cytotoxicity parameters, such as [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT), neutral red uptake (NRU), and lactate dehydrogenase (LDH) release suggested that cobalt NPs were toxic to MCF-7 cells in a dose-dependent manner (50-200μg/ml). Cobalt NPs also significantly induced reactive oxygen species (ROS) generation, lipid peroxidation (LPO), mitochondrial outer membrane potential loss (MOMP), and activity of caspase-3 enzymes in MCF-7 cells. Moreover, cobalt NPs decreased intracellular antioxidant glutathione (GSH) molecules. The exogenous supply of antioxidant N-acetyl cysteine in cobalt NP-treated cells restored the cellular GSH level and prevented cytotoxicity that was also confirmed by microscopy. Similarly, the addition of buthionine-[S, R]-sulfoximine, which interferes with GSH biosynthesis, potentiated cobalt NP-mediated toxicity. Our data suggested that low solubility cobalt NPs could exert toxicity in MCF-7 cells mainly through cobalt NP dissolution to Co 2+ . Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. SU-F-T-678: Clotrimazole Sensitizes MCF-7 Breast Cancer Cell Line to Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L; Tambasco, M [San Diego State University, San Diego, CA (United States)

    2016-06-15

    Purpose: To study the effects of Clotrimazole (CLT) on radiosensitivity of MCF-7 Cells in correlation to detachment of Hexokinase II from the Voltage Dependent Anion Channel on the outer membrane of the mitochondria. Apoptotic fractions were also analyzed in relation to the detachment of Hexokinase. Methods: This study focused on the mammary adenocarcinoma cell line, MCF-7. Colony forming assays were used to analyze radiosensitization by CLT. Flow cytometry methods were used to analyze apoptotic vs necrotic fractions after treatment with CLT. Spectrophotometery was used to analyze the mitochondrial bound and soluble fraction of Hexokinase by means of relative enzymatic activity. Results: Our preliminary data have shown that CLT sensitizes MCF-7 cells to radiation in a dose and incubation time dependent manner up. We have also demonstrated that there are two radiosensitizing periods in MCF-7 cells with the first corresponding to the cycle arrest after 24 hours observed in other cell lines. The second radiosensitizing period occurs with incubation in CLT after irradiation which reaches maximum effect around 24 hours of incubation time. Preliminary data from our Hexokinase detachment assay show a factor of two increase in the ratio of unbound to bound Hexokinase when comparing incubation for 24 hours in media containing 0 and 20 µM CLT. Conclusion: This study and others indicate CLT as a possible radiosensitizing agent in cancer therapies. While CLT itself shows toxicity to the liver in high doses, this study further demonstrates that disruption of the Warburg Effect and unbinding of mitochondrial bound Hexokinase as a possible pathway for cancer treatment.

  14. SU-F-T-678: Clotrimazole Sensitizes MCF-7 Breast Cancer Cell Line to Radiation

    International Nuclear Information System (INIS)

    Garcia, L; Tambasco, M

    2016-01-01

    Purpose: To study the effects of Clotrimazole (CLT) on radiosensitivity of MCF-7 Cells in correlation to detachment of Hexokinase II from the Voltage Dependent Anion Channel on the outer membrane of the mitochondria. Apoptotic fractions were also analyzed in relation to the detachment of Hexokinase. Methods: This study focused on the mammary adenocarcinoma cell line, MCF-7. Colony forming assays were used to analyze radiosensitization by CLT. Flow cytometry methods were used to analyze apoptotic vs necrotic fractions after treatment with CLT. Spectrophotometery was used to analyze the mitochondrial bound and soluble fraction of Hexokinase by means of relative enzymatic activity. Results: Our preliminary data have shown that CLT sensitizes MCF-7 cells to radiation in a dose and incubation time dependent manner up. We have also demonstrated that there are two radiosensitizing periods in MCF-7 cells with the first corresponding to the cycle arrest after 24 hours observed in other cell lines. The second radiosensitizing period occurs with incubation in CLT after irradiation which reaches maximum effect around 24 hours of incubation time. Preliminary data from our Hexokinase detachment assay show a factor of two increase in the ratio of unbound to bound Hexokinase when comparing incubation for 24 hours in media containing 0 and 20 µM CLT. Conclusion: This study and others indicate CLT as a possible radiosensitizing agent in cancer therapies. While CLT itself shows toxicity to the liver in high doses, this study further demonstrates that disruption of the Warburg Effect and unbinding of mitochondrial bound Hexokinase as a possible pathway for cancer treatment.

  15. BMP7 transfection induces in-vitro osteogenic differentiation of dental pulp mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ka Po John Yau

    2013-01-01

    Full Text Available Objective: To assess whether in-vitro osteogenic differentiation of human dental pulp mesenchymal stem cells can be induced by transient transfection with the gene encoding human bone morphogenic protein 7 (BMP7. Materials and Methods: A mesenchymal stem cell population was isolated from the dental pulp of two extracted permanent premolars, expanded and characterized. The human BMP7 gene, as a recombinant pcDNA3.1/V5-His-TOPO-BMP7 plasmid, was transfected into the cells. Three negative controls were used: No plasmid, empty vector, and an unrelated vector encoding green fluorescent protein. After the interval of 24 and 48 h, mRNA levels of alkaline phosphatase and osteocalcin as markers of in-vitro osteogenic differentiation were measured by real-time polymerase chain reaction and standardized against β-actin mRNA levels. Results: The level of alkaline phosphatase mRNA was significantly higher for the BMP7 group than for all three negative controls 48 h after transfection (706.9 vs. 11.24 for untransfected cells, 78.05 for empty vector, and 73.10 for green fluorescent protein vector. The level of osteocalcin mRNA was significantly higher for the BMP7 group than for all three negative controls 24 h after transfection (1.0, however, decreased after another 24 h. Conclusions: In-vitro osteoblastic differentiation of human dental pulp mesenchymal stem cells, as indicated by expression of alkaline phosphatase and osteocalcin, can be induced by transient transfection with the BMP7 gene.

  16. Partial and weak oestrogenicity of the red wine constituent resveratrol: consideration of its superagonist activity in MCF-7 cells and its suggested cardiovascular protective effects.

    Science.gov (United States)

    Ashby, J; Tinwell, H; Pennie, W; Brooks, A N; Lefevre, P A; Beresford, N; Sumpter, J P

    1999-01-01

    It was recently reported that the red wine phytoestrogen resveratrol (RES) acts as a superagonist to oestrogen-responsive MCF-7 cells. This activity of RES was speculated to be relevant to the 'French paradox' in which moderate red wine consumption is reported to yield cardiovascular health benefits to humans. We report here that RES binds to oestrogen receptors (ER) isolated from rat uterus with an affinity approximately 5 orders of magnitude lower than does either the reference synthetic oestrogen diethylstilboestrol (DES) or oestradiol (E2). In comparison with E2 or DES, RES is only a weak and partial agonist in a yeast hER-alpha transcription assay and in cos-1 cell assays employing transient transfections of ER-alpha or ER-beta associated with two different ER-response elements. Resveratrol was also concluded to be inactive in immature rat uterotrophic assays conducted using three daily administrations of 0.03-120 mgkg(-1)/day(-1) RES (administered by either oral gavage or subcutaneous injection). These data weaken the suggestion that the oestrogenicity of RES may account for the reported cardiovascular protective effects of red wine consumption, and they raise questions regarding the extent to which oestrogenicity data derived for a chemical using MCF-7 cells (or any other single in vitro assay) can be used to predict the hormonal effects likely to occur in animals or humans.

  17. 99mTc-HYNIC-(tricine/EDDA)-FROP peptide for MCF-7 breast tumor targeting and imaging.

    Science.gov (United States)

    Ahmadpour, Sajjad; Noaparast, Zohreh; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal

    2018-02-19

    Breast cancer is the most common malignancy among women in the world. Development of novel tumor-specific radiopharmaceuticals for early breast tumor diagnosis is highly desirable. In this study we developed 99m Tc-HYNIC-(tricine/EDDA)-Lys-FROP peptide with the ability of specific binding to MCF-7 breast tumor. The FROP-1 peptide was conjugated with the bifunctional chelator hydrazinonicotinamide (HYNIC) and labeled with 99m Tc using tricine/EDDA co-ligand. The cellular specific binding of 99m Tc-HYNIC-FROP was evaluated on different cell lines as well as with blocking experiment on MCF-7 (human breast adenocarcinoma). The tumor targeting and imaging of this labeled peptide were performed on MCF-7 tumor bearing mice. Radiochemical purity for 99m Tc-HYNIC-(tricine/EDDA)-FROP was 99% which was determined with ITLC method. This radiolabeled peptide showed high stability in normal saline and serum about 98% which was monitored with HPLC method. In saturation binding experiments, the binding constant (K d ) to MCF-7 cells was determined to be 158 nM. Biodistribution results revealed that the 99m Tc-HYNIC-FROP was mainly exerted from urinary route. The maximum tumor uptake was found after 30 min post injection (p.i.); however maximum tumor/muscle ratio was seen at 15 min p.i. The tumor uptake of this labeled peptide was specific and blocked by co-injection of excess FROP. According to the planar gamma imaging result, tumor was clearly visible due to the tumor uptake of 99m Tc-HYNIC-(tricine/EDDA)-FROP in mouse after 15 min p.i. The 99m Tc-HYNIC-(tricine/EDDA)-FROP is considered a promising probe with high specific binding to MCF-7 breast cancer cells.

  18. Selective apoptosis induction in MCF-7 cell line by truncated minimal functional region of Apoptin

    International Nuclear Information System (INIS)

    Shen Ni, Lim; Allaudin, Zeenathul Nazariah bt; Mohd Lila, Mohd Azmi b; Othman, Abas Mazni b; Othman, Fauziah bt

    2013-01-01

    Chicken Anemia Virus (CAV) VP3 protein (also known as Apoptin), a basic and proline-rich protein has a unique capability in inducing apoptosis in cancer cells but not in normal cells. Five truncated Apoptin proteins were analyzed to determine their selective ability to migrate into the nucleus of human breast adenocarcinoma MCF-7 cells for inducing apoptosis. For identification of the minimal selective domain for apoptosis, the wild-type Apoptin gene had been reconstructed by PCR to generate segmental deletions at the N’ terminal and linked with nuclear localization sites (NLS1 and NLS2). All the constructs were fused with maltose-binding protein gene and individually expressed by in vitro Rapid Translation System. Standardized dose of proteins were delivered into human breast adenocarcinoma MCF-7 cells and control human liver Chang cells by cytoplasmic microinjection, and subsequently observed for selective apoptosis effect. Three of the truncated Apoptin proteins with N-terminal deletions spanning amino acid 32–83 retained the cancer selective nature of wild-type Apoptin. The proteins were successfully translocated to the nucleus of MCF-7 cells initiating apoptosis, whereas non-toxic cytoplasmic retention was observed in normal Chang cells. Whilst these truncated proteins retained the tumour-specific death effector ability, the specificity for MCF-7 cells was lost in two other truncated proteins that harbor deletions at amino acid 1–31. The detection of apoptosing normal Chang cells and MCF-7 cells upon cytoplasmic microinjection of these proteins implicated a loss in Apoptin’s signature targeting activity. Therefore, the critical stretch spanning amino acid 1–31 at the upstream of a known hydrophobic leucine-rich stretch (LRS) was strongly suggested as one of the prerequisite region in Apoptin for cancer targeting. Identification of this selective domain provides a platform for developing small targets to facilitating carrier-mediated-transport across

  19. Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells

    International Nuclear Information System (INIS)

    Sanlioglu, Ahter D; Dirice, Ercument; Aydin, Cigdem; Erin, Nuray; Koksoy, Sadi; Sanlioglu, Salih

    2005-01-01

    Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells. Despite this promising feature, TRAIL resistance observed in cancer cells seriously challenged the use of TRAIL as a death ligand in gene therapy. The current dispute concerns whether or not TRAIL receptor expression pattern is the primary determinant of TRAIL sensitivity in cancer cells. This study investigates TRAIL receptor expression pattern and its connection to TRAIL resistance in breast cancer cells. In addition, a DcR2 siRNA approach and a complementary gene therapy modality involving IKK inhibition (AdIKKβKA) were also tested to verify if these approaches could sensitize MCF7 breast cancer cells to adenovirus delivery of TRAIL (Ad5hTRAIL). TRAIL sensitivity assays were conducted using Molecular Probe's Live/Dead Cellular Viability/Cytotoxicity Kit following the infection of breast cancer cells with Ad5hTRAIL. The molecular mechanism of TRAIL induced cell death under the setting of IKK inhibition was revealed by Annexin V binding. Novel quantitative Real Time RT-PCR and flow cytometry analysis were performed to disclose TRAIL receptor composition in breast cancer cells. MCF7 but not MDA-MB-231 breast cancer cells displayed strong resistance to adenovirus delivery of TRAIL. Only the combinatorial use of Ad5hTRAIL and AdIKKβKA infection sensitized MCF7 breast cancer cells to TRAIL induced cell death. Moreover, novel quantitative Real Time RT-PCR assays suggested that while the level of TRAIL Decoy Receptor-4 (TRAIL-R4) expression was the highest in MCF7 cells, it was the lowest TRAIL receptor expressed in MDA-MB-231 cells. In addition, conventional flow cytometry analysis demonstrated that TRAIL resistant MCF7 cells exhibited substantial levels of TRAIL-R4 expression but not TRAIL decoy receptor-3 (TRAIL-R3) on surface. On the contrary, TRAIL sensitive MDA-MB-231 cells displayed very low levels of surface TRAIL-R4

  20. Flavokawain derivative FLS induced G2/M arrest and apoptosis on breast cancer MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Ali NM

    2016-06-01

    Full Text Available Norlaily Mohd Ali,1 M Nadeem Akhtar,2 Huynh Ky,3 Kian Lam Lim,1 Nadiah Abu,4 Seema Zareen,2 Wan Yong Ho,5 Han Kiat Alan-Ong,1 Sheau Wei Tan,6 Noorjahan Banu Alitheen,4 Jamil bin Ismail,2 Swee Keong Yeap,6 Tunku Kamarul7 1Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 2Department of Industrial Biotechnology, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Pahang, Malaysia; 3Department of Agriculture Genetics and Breeding, College of Agriculture and Applied Biology, Cantho University, CanTho City, Vietnam; 4Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 5School of Biomedical Sciences, The University of Nottingham Malaysia Campus, 6Institute of Bioscience, Universiti Putra Malaysia, Selangor, 7Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia Abstract: Known as naturally occurring biologically active compounds, flavokawain A and B are the leading chalcones that possess anticancer properties. Another flavokawain derivative, (E-1-(2'-Hydroxy-4',6'-dimethoxyphenyl-3-(4-methylthiophenylprop-2-ene-1-one (FLS was characterized with 1H-nuclear magnetic resonance, electron-impact mas spectrometry, infrared spectroscopy, and ultraviolet (1H NMR, EI-MS, IR, and UV spectroscopic techniques. FLS cytotoxic efficacy against human cancer cells (MCF-7, MDA-MB-231, and MCF-10A resulted in the reduction of IC50 values in a time- and dose-dependent mode with high specificity on MCF-7 (IC50 of 36 µM at 48 hours against normal breast cell MCF-10A (no IC50 detected up to 180 µM at 72 hours. Light, scanning electron, and fluorescent microscopic analysis of MCF-7 cell treated with 36 µM of FLS displayed cell shrinkage, apoptotic body, and DNA fragmentation. Additionally, induction of G2/M cell

  1. trans-11 18:1 Vaccenic Acid (TVA Has a Direct Anti-Carcinogenic Effect on MCF-7 Human Mammary Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Ji-Na Lim

    2014-02-01

    Full Text Available Trans vaccenic acid (TVA; trans-11 18:1 is a positional and geometric isomer of oleic acid and it is the predominant trans isomer found in ruminant fats. TVA can be converted into cis-9, trans-11 conjugated linoleic acid (c9, t11-CLA, a CLA isomer that has many beneficial effects, by stearoyl CoA desaturase 1 (SCD1 in the mammary gland. The health benefits associated with CLA are well documented, but it is unclear whether trans fatty acids (TFAs from ruminant products have healthy effects. Therefore, the effects of TVA on the proliferation of MCF-7 human breast adenocarcinoma cells and MCF-10A human breast epithelial cells were investigated in the present study. Results showed that TVA inhibited the proliferation of MCF-7 cells but not MCF-10A cells by down-regulating the expression of Bcl-2 as well as procaspase-9. In addition, the suppressive effect of TVA was confirmed in SCD1-depleted MCF-7 cells. Our results suggested that TVA exerts a direct anti-carcinogenic effect on MCF-7 cells. These findings provided a better understanding of the research on the anti-carcinogenic effects of TVA and this may facilitate the manufacture of TVA/c9, t11-CLA fortified ruminant products.

  2. Modulation of Tamoxifen Cytotoxicity by Caffeic Acid Phenethyl Ester in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Tarek K. Motawi

    2016-01-01

    Full Text Available Although Tamoxifen (TAM is one of the most widely used drugs in managing breast cancer, many women still relapse after long-term therapy. Caffeic acid phenethyl ester (CAPE is a polyphenolic compound present in many medicinal plants and in propolis. The present study examined the effect of CAPE on TAM cytotoxicity in MCF-7 cells. MCF-7 cells were treated with different concentrations of TAM and/or CAPE for 48 h. This novel combination exerted synergistic cytotoxic effects against MCF-7 cells via induction of apoptotic machinery with activation of caspases and DNA fragmentation, along with downregulation of Bcl-2 and Beclin 1 expression levels. However, the mammalian microtubule-associated protein light chain LC 3-II level was unchanged. Vascular endothelial growth factor level was also decreased, whereas levels of glutathione and nitric oxide were increased. In conclusion, CAPE augmented TAM cytotoxicity via multiple mechanisms, providing a novel therapeutic approach for breast cancer treatment that can overcome resistance and lower toxicity. This effect provides a rationale for further investigation of this combination.

  3. Effect of tumor necrosis factor related apoptosis-inducing ligand (TRAIL) combined with ionizing radiation on proliferation and apoptosis of breast cancer MCF-7 cell lines

    International Nuclear Information System (INIS)

    Zhang Yusong; Fu Jinxiang; Zhou Jianying; Zhou Liying; Guo Xiaokui; Zhuang Zhixiang

    2007-01-01

    Objective: To investigate the effect of Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) on breast cancer MCF-7 cell lines and the possibility of TRAIL combined with radiotherapy. Methods: 1 x 10 4 /ml MCF-7 cell suspension were added to each well of 96-well plates, MCF cell were treated with radiotherapy(RT), TRAIL at different concentration or RT combined with TRAIL. MTT working solution was added and calculated the inhibitory rates of MCF-7 cells. MCF-7 cell suspension was added to 6-well plates then treated with TRAIL(1 μg/ml), 8 Gy RT or TRAIL combined with 8 Gy RT. The rates of apoptosis were detected by flow cytometry after incubated 48 h. RT-PCR methods were employed to analyze the expression of apoptosis related gene in different treatment group. Results: MCF-7 cell lines were resistant to TRAIL, but the inhibitory rate was upregulated when MCF-7 cell was treated with TRAIL combined with RT, which had a significant difference compared with RT or TRAIL alone. The expression of Bcl-2 and Bcl-Xl gene were down-regulated when MCF-7 cell lines was treated with 8 Gy RT combined with TRAIL. Conclusions: In vitro, MCF-7 cell lines are resistant to TRAIL, but TRAIL combined with radiotherapy increased the cytotoxic effect. TRAIL has a promising prospect in clinical use. (authors)

  4. Cytotoxic effect of sanguiin H-6 on MCF-7 and MDA-MB-231 human breast carcinoma cells.

    Science.gov (United States)

    Park, Eun-Ji; Lee, Dahae; Baek, Seon-Eun; Kim, Ki Hyun; Kang, Ki Sung; Jang, Tae Su; Lee, Hye Lim; Song, Ji Hoon; Yoo, Jeong-Eun

    2017-09-15

    Sanguiin H-6 is a dimer of casuarictin linked by a bond between the gallic acid residue and one of the hexahydroxydiphenic acid units. It is an effective compound extracted from Rubus coreanus. It has an anticancer effect against several human cancer cells; however, its effect on breast cancer cells has not been clearly demonstrated. Thus, we aimed to investigate the anticancer effect and mechanism of action of sanguiin H-6 against two human breast carcinoma cell lines (MCF-7 and MDA-MB-231). We found that sanguiin H-6 significantly reduced cell viability in a concentration-dependent manner. It also increased the rates at which MCF-7 and MDA-MB-231 cells underwent apoptosis. Furthermore, sanguiin H-6 induced the cleavage of caspase-8, caspase-3, and poly(ADP-ribose) polymerase, which resulted in apoptosis. However, cleavage of caspase-9 was only detectable in MCF-7 cells. In addition, sanguiin H-6 increased the ratio of Bax to Bcl-2 in both MCF-7 and MDA-MB-231 cells. These findings suggest that sanguiin H-6 is a potent therapeutic agent against breast cancer cells. In addition, it exerts its anticancer effect in an estrogen-receptor-independent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Oridonin Loaded Solid Lipid Nanoparticles Enhanced Antitumor Activity in MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2014-01-01

    Full Text Available Oridonin (ORI, a famous diterpenoid from Chinese herbal medicine, has drawn rising attention for its remarkable apoptosis and autophagy-inducing activity in human cancer therapy, while clinical application of ORI is limited by its strong hydrophobicity and rapid plasma clearance. The purpose of this study was to evaluate whether the antitumor activity of ORI could be enhanced by loading into solid lipid nanoparticles (SLNs. ORI-loaded SLNs were prepared by hot high pressure homogenization with narrow size distribution and good entrapment efficacy. MTT assay indicated that ORI-loaded SLNs enhanced the inhibition of proliferation against several human cancer cell lines including breast cancer MCF-7 cells, hepatocellular carcinoma HepG 2 cells, and lung carcinoma A549 cells compared with free ORI, while no significant enhancement of toxicity to human mammary epithelial MCF-10A cells was shown. Meanwhile, flow cytometric analysis demonstrated that ORI-SLNs induced more significant cell cycle arrest at S and decreased cell cycle arrest at G1/G0 phase in MCF-7 cells than bulk ORI solution. Hoechst 33342 staining and Annexin V/PI assay indicated that apoptotic rates of cells treated with ORI-loaded SLNs were higher compared with free ORI. In summary, our data indicated that SLNs may be a potential carrier for enhancing the antitumor effect of hydrophobic drug ORI.

  6. Exogenous coenzyme Q10 modulates MMP-2 activity in MCF-7 cell line as a breast cancer cellular model

    Directory of Open Access Journals (Sweden)

    Mirmiranpour Hossein

    2010-11-01

    Full Text Available Abstract Background/Aims Matrix Metalloproteinases 2 is a key molecule in cellular invasion and metastasis. Mitochondrial ROS has been established as a mediator of MMP activity. Coenzyme Q10 contributes to intracellular ROS regulation. Coenzyme Q10 beneficial effects on cancer are still in controversy but there are indications of Coenzyme Q10 complementing effect on tamoxifen receiving breast cancer patients. Methods In this study we aimed to investigate the correlation of the effects of co-incubation of coenzyme Q10 and N-acetyl-L-cysteine (NAC on intracellular H2O2 content and Matrix Metalloproteinase 2 (MMP-2 activity in MCF-7 cell line. Results and Discussion Our experiment was designed to assess the effect in a time and dose related manner. Gelatin zymography and Flowcytometric measurement of H2O2 by 2'7',-dichlorofluorescin-diacetate probe were employed. The results showed that both coenzyme Q10 and N-acetyl-L-cysteine reduce MMP-2 activity along with the pro-oxidant capacity of the MCF-7 cell in a dose proportionate manner. Conclusions Collectively, the present study highlights the significance of Coenzyme Q10 effect on the cell invasion/metastasis effecter molecules.

  7. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells.

    Science.gov (United States)

    Lee, Geum-A; Choi, Kyung-Chul; Hwang, Kyung-A

    2017-01-01

    As a phytoestrogen, kaempferol is known to play a chemopreventive role inhibiting carcinogenesis and cancer progression. In this study, the influences of triclosan, an anti-bacterial agent recently known for an endocrine disrupting chemical (EDC), and kaempferol on breast cancer progression were examined by measuring their effects on epithelial-mesenchymal transition (EMT) and metastatic-related behaviors of MCF-7 breast cancer cells. Morphological changes of MCF-7 cells were observed, and a wound-healing assay was performed after the treatment of triclosan and kaempferol. The effects of triclosan and kaempferol on protein expression of EMT-related markers such as E-cadherin, N-cadherin, Snail, and Slug and metastasis-related markers such as cathepsin B, D, MMP-2 and -9 were investigated by Western blot assay. In microscopic observations, triclosan (10 -6 M) or E2 (10 -9 M) induced transition to mesenchymal phenotype of MCF-7 cells compared with the control. Co-treatment of ICI 182,780 (10 -8 M), an ER antagonist, or kaempferol (25μM) with E2 or triclosan restored the cellular morphology to an epithelial phenotype. In a wound-healing scratch and a transwell migration assay, triclosan enhanced migration and invasion of MCF-7 cells, but co-treatment of kaempferol or ICI 182,780 reduced the migration and invasion ability of MCF-7 cells to the control level. In addition, kaempferol effectively suppressed E2 or triclosan-induced protein expressions of EMT and metastasis promoting markers. Taken together, triclosan may be a distinct xenoestrogenic EDC to promote EMT, migration, and invasion of MCF-7 breast cancer cells through ER. On the other hand, kaempferol can be an alternative chemopreventive agent to effectively suppress the metastatic behavior of breast cancer induced by an endogenous estrogen as well as exogenous xenoestrogenic compounds including triclosan. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Koenimbin, a natural dietary compound of Murraya koenigii (L Spreng: inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44+/CD24-/low: an in vitro study

    Directory of Open Access Journals (Sweden)

    Ahmadipour F

    2015-02-01

    Full Text Available Fatemeh Ahmadipour,1 Mohamed Ibrahim Noordin,1 Syam Mohan,2 Aditya Arya,1 Mohammadjavad Paydar,3 Chung Yeng Looi,3 Yeap Swee Keong,4 Ebrahimi Nigjeh Siyamak,4 Somayeh Fani,1 Maryam Firoozi,5 Chung Lip Yong,1 Mohamed Aspollah Sukari,6 Behnam Kamalidehghan1 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Medical Research Center, Jazan University, Jazan, Kingdom of Saudi Arabia; 3Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 4UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia; 5Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran; 6Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia Background: Inhibition of breast cancer stem cells has been shown to be an effective therapeutic strategy for cancer prevention. The aims of this work were to evaluate the efficacy of koenimbin, isolated from Murraya koenigii (L Spreng, in the inhibition of MCF7 breast cancer cells and to target MCF7 breast cancer stem cells through apoptosis in vitro. Methods: Koenimbin-induced cell viability was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Nuclear condensation, cell permeability, mitochondrial membrane potential, and cytochrome c release were observed using high-content screening. Cell cycle arrest was examined using flow cytometry, while human apoptosis proteome profiler assays were used to investigate the mechanism of apoptosis. Protein expression levels of Bax, Bcl2, and heat shock protein 70 were confirmed using Western blotting. Caspase-7, caspase-8, and caspase-9 levels were measured, and nuclear factor kappa B (NF-κB activity was assessed using a high-content screening assay. Aldefluor™ and mammosphere formation assays were used to evaluate the effect of koenimbin on MCF7

  9. Bauhinia forficata lectin (BfL) induces cell death and inhibits integrin-mediated adhesion on MCF7 human breast cancer cells.

    Science.gov (United States)

    Silva, Mariana C C; de Paula, Cláudia A A; Ferreira, Joana G; Paredes-Gamero, Edgar J; Vaz, Angela M S F; Sampaio, Misako U; Correia, Maria Tereza S; Oliva, Maria Luiza V

    2014-07-01

    Plant lectins have attracted great interest in cancer studies due to their antitumor activities. These proteins or glycoproteins specifically and reversibly bind to different types of carbohydrates or glycoproteins. Breast cancer, which presents altered glycosylation of cell surface glycoproteins, is one of the most frequent malignant diseases in women. In this work, we describe the effect of the lectin Bauhinia forficata lectin (BfL), which was purified from B. forficata Link subsp. forficata seeds, on the MCF7 human breast cancer cellular line, investigating the mechanisms involved in its antiproliferative activity. MCF7 cells were treated with BfL. Viability and adhesion alterations were evaluated using flow cytometry and western blotting. BfL inhibited the viability of the MCF7 cell line but was ineffective on MDA-MB-231 and MCF 10A cells. It inhibits MCF7 adhesion on laminin, collagen I and fibronectin, decreases α1, α6 and β1 integrin subunit expression, and increases α5 subunit expression. BfL triggers necrosis and secondary necrosis, with caspase-9 inhibition. It also causes deoxyribonucleic acid (DNA) fragmentation, which leads to cell cycle arrest in the G2/M phase and a decrease in the expression of the regulatory proteins pRb and p21. BfL shows selective cytotoxic effect and adhesion inhibition on MCF7 breast cancer cells. Cell death induction and inhibition of cell adhesion may contribute to understanding the action of lectins in breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Synthesis of an anthraquinone derivative (DHAQC) and its effect on induction of G2/M arrest and apoptosis in breast cancer MCF-7 cell line.

    Science.gov (United States)

    Yeap, SweeKeong; Akhtar, Muhammad Nadeem; Lim, Kian Lam; Abu, Nadiah; Ho, Wan Yong; Zareen, Seema; Roohani, Kiarash; Ky, Huynh; Tan, Sheau Wei; Lajis, Nordin; Alitheen, Noorjahan Banu

    2015-01-01

    Anthraquinones are an important class of naturally occurring biologically active compounds. In this study, anthraquinone derivative 1,3-dihydroxy-9,10-anthraquinone-2- carboxylic acid (DHAQC) (2) was synthesized with 32% yield through the Friedel-Crafts condensation reaction. The mechanisms of cytotoxicity of DHAQC (2) in human breast cancer MCF-7 cells were further investigated. Results from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that DHAQC (2) exhibited potential cytotoxicity and selectivity in the MCF-7 cell line, comparable with the naturally occurring anthraquinone damnacanthal. DHAQC (2) showed a slightly higher IC50 (inhibitory concentration with 50% cell viability) value in the MCF-7 cell line compared to damnacanthal, but it is more selective in terms of the ratio of IC50 on MCF-7 cells and normal MCF-10A cells. (selective index for DHAQC (2) was 2.3 and 1.7 for damnacanthal). The flow cytometry cell cycle analysis on the MCF-7 cell line treated with the IC50 dose of DHAQC (2) for 48 hours showed that DHAQC (2) arrested MCF-7 cell line at the G2/M phase in association with an inhibited expression of PLK1 genes. Western blot analysis also indicated that the DHAQC (2) increased BAX, p53, and cytochrome c levels in MCF-7 cells, which subsequently activated apoptosis as observed in annexin V/propidium iodide and cell cycle analyses. These results indicate that DHAQC (2) is a synthetic, cytotoxic, and selective anthraquinone, which is less toxic than the natural product damnacanthal, and which demonstrates potential in the induction of apoptosis in the breast cancer MCF-7 cell line.

  11. [Analysis on clone in vitro and tumorigenic capacity in vivo of different subsets cells from the MCF-7 human breast cancer cell line].

    Science.gov (United States)

    Li, Zhi; Liu, Chun-ping; He, Yan-li; Tian, Yuan; Huang, Tao

    2008-07-01

    To investigate whether there are cancer stem cells in the MCF-7 human breast cancer cell line. Flow cytometry was applied to separate different subpopulation cells from MCF-7 cells, and their ability of clone in vitro and reconstruction tumor in vivo were determined. The ability of clone in vitro and reconstruction tumor in vivo were observed in some MCF-7 cells. Contrast with CD44+ CD24+ cells, the proportion of tumorigenic cancer cells in CD44+ CD24- cells is higher. Breast cancer stem cell exists in MCF-7 and it mainly locates the subpopulation of CD44+ CD24- cells, CD44+ CD24+ cell possibly is breast cancer progenitor cell.

  12. PKCη confers protection against apoptosis by inhibiting the pro-apoptotic JNK activity in MCF-7 cells

    International Nuclear Information System (INIS)

    Rotem-Dai, Noa; Oberkovitz, Galia; Abu-Ghanem, Sara; Livneh, Etta

    2009-01-01

    Apoptosis is frequently regulated by different protein kinases including protein kinase C family enzymes. Both inhibitory and stimulatory effects were demonstrated for several of the different PKC isoforms. Here we show that the novel PKC isoform, PKCη, confers protection against apoptosis induced by the DNA damaging agents, UVC irradiation and the anti-cancer drug - Camptothecin, of the breast epithelial adenocarcinoma MCF-7 cells. The induced expression of PKCη in MCF-7 cells, under the control of the tetracycline-responsive promoter, resulted in increased cell survival and inhibition of cleavage of the apoptotic marker PARP-1. Activation of caspase-7 and 9 and the release of cytochrome c were also inhibited by the inducible expression of PKCη. Furthermore, JNK activity, required for apoptosis in MCF-7, as indicated by the inhibition of both caspase-7 cleavage and cytochrome c release from the mitochondria in the presence of the JNK inhibitor SP600125, was also suppressed by PKCη expression. Hence, in contrast to most PKC isoforms enhancing JNK activation, our studies show that PKCη is an anti-apoptotic protein, acting as a negative regulator of JNK activity. Thus, PKCη could represent a target for intervention aimed to reduce resistance to anti-cancer treatments.

  13. Surface enhanced Raman spectroscopy measurements of MCF7 cells adhesion in confined micro-environments

    KAUST Repository

    De Vitis, Stefania

    2015-05-01

    Undoubtedly cells can perceive the external environment, not only from a biochemical point of view with the related signalling pathways, but also from a physical and topographical perspective. In this sense controlled three dimensional micro-structures as well as patterns at the nano-scale can affect and guide the cell evolution and proliferation, due to the fact that the surrounding environment is no longer isotropic (like the flat surfaces of standard cell culturing) but possesses well defined symmetries and anisotropies. In this work regular arrays of silicon micro-pillars with hexagonal arrangement are used as culturing substrates for MCF-7 breast cancer cells. The characteristic size and spacing of the pillars are tens of microns, comparable with MCF-7 cell dimensions and then well suited to induce acceptable external stimuli. It is shown that these cells strongly modify their morphology for adapting themselves to the micro-structured landscape, by means of protrusions from the main body of the cell. Scanning electron microscopy along with both Raman micro-spectroscopy and surface enhanced Raman spectroscopy are used for topographical and biochemical studies of the new cell arrangement. We have revealed that single MCF-7 cells exploit their capability to produce invadopodia, usually generated to invade the neighboring tissue in metastatic activity, for spanning and growing across separate pillars. © 2015 Elsevier Ltd.

  14. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7)

    International Nuclear Information System (INIS)

    Meena, Ramovatar; Kesari, Kavindra Kumar; Rani, Madhu; Paulraj, R.

    2012-01-01

    The study aimed to correlate cell proliferation inhibition with oxidative stress and p53 protein expression in cancerous cells. Hydroxyapatite (HAP) (Ca 10 (PO 4 ) 6 (OH) 2 ) is the essential component of inorganic composition in human bone. It has been found to have obvious inhibitory function on growth of many kinds of tumor cells and its nanoparticle has stronger anti-cancerous effect than macromolecule microparticles. Human breast cancer cells (MCF-7) were cultured and treated with HAP nanoparticles at various concentrations. Cells viability was detected with MTT colorimetric assay. The morphology of the cancerous cells was performed by transmission electron microscopy and the expression of a cell apoptosis related gene (p53) was determined by ELISA assay and flow cytometry (FCM). The intracellular reactive oxygen species (ROS) level in HAP exposed cells was measured by H 2 DCFDA staining. DNA damage was measured by single-cell gel electrophoresis assay. The statistical analysis was done by one way ANOVA. The cellular proliferation inhibition rate was significantly (p < 0.05) increasing in a dose-dependent manner of HAP nanoparticles. Cell apoptotic characters were observed after MCF-7 cells were treated by HAP nanoparticles for 48 h. Moreover, ELISA assay and FCM shows a dose-dependent activation of p53 in MCF-7 cells treated with nanoHAP. These causative factors of the above results may be justified by an overproduction of ROS. In this study, a significant (p < 0.05) increase in the level of intracellular ROS in HAP-treated cells was observed. This study shows that HAP inhibits the growth of human breast cancer MCF-7 cells as well as induces cell apoptosis. This study shows that HAP NPs Induce the production of intracellular reactive oxygen species and activate p53, which may be responsible for DNA damage and cell apoptosis.

  15. Targeting property and toxicity of a novel ultrasound contrast agent microbubble carrying the targeting and drug-loaded complex FA-CNTs-PTX on MCF7 cells.

    Science.gov (United States)

    Zhang, Jie; Zhang, Yu; Liu, Junxi; Li, Guozhong; Wen, Zhaohui; Zhao, Yue; Zhang, Xiangyu; Liu, Fenghua

    2017-10-01

    The application of ultrasound contrast agents not only is confined to the enhancement of ultrasound imaging but also has started to be used as a drug system for diagnosis and treatment. In this paper, Span60 and PEG1500 were used as membrane materials, and a new targeting and drug-loading multifunctional ultrasound contrast agent microbubble enveloping the FA-CNTs-PTX complex was successfully prepared by acoustic cavitation. With the breast cancer cell line MCF7 as the research target, the effects of the microbubble with FA-CNTs-PTX on the proliferation and toxicity of MCF7 cells were studied using a CCK-8 and AO/EB double-staining method. The influences of the microbubbles with FA-CNTs-PTX on the cellular morphology and apoptosis period of the MCF7 cells were detected using an inverted fluorescence microscope. The apoptosis of MCF7 cells induced by the microbubbles with FA-CNTs-PTX was investigated with flow cytometry and an annexin and PI double staining fluorescence quantitative analysis. The results indicated that the ultrasound contrast agent microbubble with FA-CNTs-PTX remarkably inhibited the proliferation of MCF7 cells, which was mainly controlled by the drug loading rate and the nanometer size of the microbubbles. Moreover, the proliferative inhibition rate of the microbubbles with FA-CNTs-PTX was related to the cell apoptosis period of MCF7 cells. Its inhibition degree on the proliferation of MCF7 cells was higher than that of the hepatoma HepG2 cells. The apoptosis rate of MCF7 cells induced by the microbubbles with FA-CNTs-PTX was higher than that of normal human umbilical vein endothelial cells (HUVECs), and the microbubbles with FA-CNTs-PTX could target the MCF7 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Synthesis, characterization and apoptotic activity of quinazolinone Schiff base derivatives toward MCF-7 cells via intrinsic and extrinsic apoptosis pathways

    Science.gov (United States)

    Zahedifard, Maryam; Lafta Faraj, Fadhil; Paydar, Mohammadjavad; Yeng Looi, Chung; Hajrezaei, Maryam; Hasanpourghadi, Mohadeseh; Kamalidehghan, Behnam; Abdul Majid, Nazia; Mohd Ali, Hapipah; Ameen Abdulla, Mahmood

    2015-01-01

    The current study investigated the cytotoxic effect of 3-(5-chloro-2-hydroxybenzylideneamino)-2-(5-chloro-2-hydroxyphenyl)-2,3-dihydroquinazolin-41(H)-one (A) and 3-(5-nitro-2-hydroxybenzylideneamino)-2-(5-nitro-2-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (B) on MCF-7, MDA-MB-231, MCF-10A and WRL-68 cells. The mechanism involved in apoptosis was assessed to evaluate the possible pathways induced by compound A and B. MTT assay results using A and B showed significant inhibition of MCF-7 cell viability, with IC50 values of 3. 27 ± 0.171 and 4.36 ± 0.219 μg/mL, respectively, after a 72 hour treatment period. Compound A and B did not demonstrate significant cytotoxic effects towards MDA-MB-231, WRL-68 and MCF-10A cells. Acute toxicity tests also revealed an absence of toxic effects on mice. Fluorescent microscopic studies confirmed distinct morphological changes (membrane blebbing and chromosome condensation) corresponding to typical apoptotic features in treated MCF-7 cells. Using Cellomics High Content Screening (HCS), we found that compound A and B could trigger the release of cytochrome c from mitochondria to the cytosol. The release of cytochrome c activated the expression of caspases-9 and then stimulated downstream executioner caspase-3/7. In addition, caspase-8 showed remarkable activity, followed by inhibition of NF-κB activation in A-and B-treated MCF-7 cells. The results indicated that A and B could induce apoptosis via a mechanism that involves either extrinsic or intrinsic pathways. PMID:26108872

  17. THE THIOREDOXIN SYSTEM IN REGULATING MCF-7 CELL PROLIFERATION UNDER REDOX STATUS MODULATION

    Directory of Open Access Journals (Sweden)

    E. A. Stepovaya

    2016-01-01

    Full Text Available Introduction. Despite the available data on tumor cell functioning under the conditions of free radical-mediated oxidation, the mechanisms of redox regulation, cell proliferation management and apoptosis avoidance remain understudied.The objective of the study was to identify the role of the thioredoxin system in regulating MCF-7 breast cancer cell proliferation under redox status modulation with 1.4-dithioerythritol.Material and methods. The studies were conducted on the MCF-7 breast cancer cell line, grown in adherent cell culture. Cell redox status was modulated with5 mM N-ethylmaleimide – an SH group and peptide inhibitor and5 mM 1.4-dithioerythritol – a thiol group protector. The cell cycle was evaluated by flow cytometry, the same technique was used to measure the reactive oxygen species concentration. The levels of reduced and oxidized glutathione and the activity of thioredoxin reductase were identified by spectrophotometry. The intracellular concentrations of thioredoxin, cyclin E and cyclin-dependent kinase 2 were determined by Western blot analysis.Results and discussion. The essential role of the thioredoxin system in regulating MCF-7 breast cancer cell proliferation was exhibited. S-phase arrest under the effect of N-ethylmaleimide and G0/G1-phase arrest under the effect of 1.4-dithioerythritol are associated with the changes in the activity of redox-sensitive protein complexes (cyclins and cyclin-dependent kinases that regulate cell proliferation.Conclusion. Redoxdependent modulation of proliferation regulating intracellular protein activity occurs due to the thioredoxin system. This is a promising research area for seeking molecular targets of breast cell malignization. 

  18. Effect of aluminium on migratory and invasive properties of MCF-7 human breast cancer cells in culture.

    Science.gov (United States)

    Darbre, Philippa D; Bakir, Ayse; Iskakova, Elzira

    2013-11-01

    Aluminium (Al) has been measured in human breast tissue, nipple aspirate fluid and breast cyst fluid, and recent studies have shown that at tissue concentrations, aluminium can induce DNA damage and suspension growth in human breast epithelial cells. This paper demonstrates for the first time that exposure to aluminium can also increase migratory and invasive properties of MCF-7 human breast cancer cells. Long-term (32 weeks) but not short-term (1 week) exposure of MCF-7 cells to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate increased motility of the cells as measured by live cell imaging (cumulative length moved by individual cells), by a wound healing assay and by migration in real time through 8 μm pores of a membrane using xCELLigence technology. Long-term exposure (37 weeks) to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate also increased the ability of MCF-7 cells to invade through a matrigel layer as measured in real time using the xCELLigence system. Although molecular mechanisms remain to be characterized, the ability of aluminium salts to increase migratory and invasive properties of MCF-7 cells suggests that the presence of aluminium in the human breast could influence metastatic processes. This is important because mortality from breast cancer arises mainly from tumour spread rather than from the presence of a primary tumour in the breast. © 2013.

  19. HAP1 gene expression is associated with radiosensitivity in breast cancer cells

    International Nuclear Information System (INIS)

    Wu, Jing; Zhang, Jun-ying; Yin, Li; Wu, Jian-zhong; Guo, Wen-jie; Wu, Jian-feng; Chen, Meng; Xia, You-you; Tang, Jin-hai; Ma, Yong-chao; He, Xia

    2015-01-01

    Highlights: • Overexpression of HAP1 gene promotes apoptosis in MCF-7 cells after irradiation. • HAP1 reduces tumor volume in nude mice xenograft models after irradiation. • HAP1 increases radiosensitivity of breast cancer cells in vitro and vivo. - Abstract: Objectives: The purpose of this study was to investigate the relationship between huntingtin-associated protein1 (HAP1) gene and radiation therapy of breast cancer cells. Methods: HAP1 gene was transfected into breast cancer MCF-7 cells, which was confirmed by quantitative reverse transcription-polymerase chain reaction analysis (qRT-PCR) and Western blot in vitro. The changes of cell radiosensitivity were assessed by colony formation assay. Apoptosis were examined by flow cytometry. The expressions of two radiation-induced genes were evaluated by Western blot. Tumor growth was investigated in nude mice xenograft models in vivo. Results: Our data showed that HAP1 gene expression was significantly increased in HAP1-transfected MCF-7 cells in comparison with the parental cells or negative control cells. The survival rate in MCF-7/HAP1 cells was significantly decreased after irradiation (0, 2, 4, 6, 8 Gy), compared to cells in MCF-7 and MCF-7/Pb groups in vitro. HAP1 gene increased apoptosis in MCF-7 cells after irradiation. Additionally, the tumor volume and weight in MCF-7/HAP1 + RT group were observably lower than in MCF-7/HAP1 group and MCF-7/Pb + RT group. Conclusion: The present study indicated that HAP1 gene expression was related to the radiosensitivity of breast cancer cells and may play an important role in the regulation of cellular radiosensitivity

  20. Aptamer-Based Dual-Functional Probe for Rapid and Specific Counting and Imaging of MCF-7 Cells.

    Science.gov (United States)

    Yang, Bin; Chen, Beibei; He, Man; Yin, Xiao; Xu, Chi; Hu, Bin

    2018-02-06

    Development of multimodal detection technologies for accurate diagnosis of cancer at early stages is in great demand. In this work, we report a novel approach using an aptamer-based dual-functional probe for rapid, sensitive, and specific counting and visualization of MCF-7 cells by inductively coupled plasma-mass spectrometry (ICP-MS) and fluorescence imaging. The probe consists of a recognition unit of aptamer to catch cancer cells specifically, a fluorescent dye (FAM) moiety for fluorescence resonance energy transfer (FRET)-based "off-on" fluorescence imaging as well as gold nanoparticles (Au NPs) tag for both ICP-MS quantification and fluorescence quenching. Due to the signal amplification effect and low spectral interference of Au NPs in ICP-MS, an excellent linearity and sensitivity were achieved. Accordingly, a limit of detection of 81 MCF-7 cells and a relative standard deviation of 5.6% (800 cells, n = 7) were obtained. The dynamic linear range was 2 × 10 2 to 1.2 × 10 4 cells, and the recoveries in human whole blood were in the range of 98-110%. Overall, the established method provides quantitative and visualized information on MCF-7 cells with a simple and rapid process and paves the way for a promising strategy for biomedical research and clinical diagnostics.

  1. Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells

    Directory of Open Access Journals (Sweden)

    Hongzhuan Xuan

    2014-01-01

    Full Text Available Chinese propolis has been reported to possess various biological activities such as antitumor. In present study, anticancer activity of ethanol extract of Chinese propolis (EECP at 25, 50, 100, and 200 μg/mL was explored by testing the cytotoxicity in MCF-7 (human breast cancer ER(+ and MDA-MB-231 (human breast cancer ER(− cells. EECP revealed a dose- and time-dependent cytotoxic effect. Furthermore, annexin A7 (ANXA7, p53, nuclear factor-κB p65 (NF-κB p65, reactive oxygen species (ROS levels, and mitochondrial membrane potential were investigated. Our data indicated that treatment of EECP for 24 and 48 h induced both cells apoptosis obviously. Exposure to EECP significantly increased ANXA7 expression and ROS level, and NF-κB p65 level and mitochondrial membrane potential were depressed by EECP dramatically. The effects of EECP on p53 level were different in MCF-7 and MDA-MB-231 cells, which indicated that EECP exerted its antitumor effects in MCF-7 and MDA-MB-231 cells by inducing apoptosis, regulating the levels of ANXA7, p53, and NF-κB p65, upregulating intracellular ROS, and decreasing mitochondrial membrane potential. Interestingly, EECP had little or small cytotoxicity on normal human umbilical vein endothelial cells (HUVECs. These results suggest that EECP is a potential alternative agent on breast cancer treatment.

  2. The reversal effects of 3-bromopyruvate on multidrug resistance in vitro and in vivo derived from human breast MCF-7/ADR cells.

    Directory of Open Access Journals (Sweden)

    Long Wu

    Full Text Available P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound.The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer's instructions.3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds, paclitaxel (85 folds, daunorubicin (201 folds, and epirubicin (171 folds] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied.We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely, a decrease in the

  3. The reversal effects of 3-bromopyruvate on multidrug resistance in vitro and in vivo derived from human breast MCF-7/ADR cells.

    Science.gov (United States)

    Wu, Long; Xu, Jun; Yuan, Weiqi; Wu, Baojian; Wang, Hao; Liu, Guangquan; Wang, Xiaoxiong; Du, Jun; Cai, Shaohui

    2014-01-01

    P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer's instructions. 3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds), paclitaxel (85 folds), daunorubicin (201 folds), and epirubicin (171 folds)] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates) in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied. We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely, a decrease in the intracellular

  4. Ctotoxic and apoptogenic effects of Perovskia abrotanoides flower extract on MCF-7 and HeLa cell lines

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Geryani

    2016-06-01

    Full Text Available Objective: Perovskia abrotanoides Karel, belongs to the family Lamiaceae and grows wild alongside the mountainous roads inarid and cold climate of Northern Iran. The anti-tumor activity of P. abrotanoides root extract has been shown previously. This study was designed to examine in vitro anti-proliferative and pro-apoptotic effects of flower extract of P. abrotanoides on MCF-7 and Hela cell lines. Materials and Methods: Cells were cultured in DMEM medium with 10% fetal bovine serum, 100 units/ml penicillin and 100 µg/ml streptomycin and incubated with different concentrations of plant extracts. Cell viability was quantified by MTT assay. Apoptotic cells were determined using propidium iodide (PI staining of DNA fragmentation by flow cytometry (sub-G1 peak. Results: P. abrotanoides extract inhibited the growth of malignant cells in a time and dose-dependent manner and 1000 µg/ml of extract following 48h of incubation was the most cytotoxic dose against Hela cell in comparison with other doses; however, in MCF-7 cells,1000 and 500 µg/ml PA induced toxicity at all time points but with different features.. Analysis of flowcytometry histogram of treated cells compared with control cells indicated that the cytotoxic effect is partly due toapoptosis induction. Conclusion: Hydro-alcoholic extract of P. abrotanoides flowers inhibits the growth of MCF-7 and HeLa cell lines, partly via inducing apoptosis. Their inhibitory effect was increased in a time and dose-dependent manner, especially in MCF7 cells. However, further studies are needed to reveal the mechanisms of P. abrotanoides extract-induced cell death.

  5. Intracellular calcium is a target of modulation of apoptosis in MCF-7 cells in the presence of IgA adsorbed to polyethylene glycol

    Science.gov (United States)

    Honorio-França, Adenilda Cristina; Nunes, Gabriel Triches; Fagundes, Danny Laura Gomes; de Marchi, Patrícia Gelli Feres; Fernandes, Rubian Trindade da Silva; França, Juliana Luzia; França-Botelho, Aline do Carmo; Moraes, Lucélia Campelo Albuquerque; Varotti, Fernando de Pilla; França, Eduardo Luzía

    2016-01-01

    Purpose Clinical and epidemiological studies have indicated that breastfeeding has a protective effect on breast cancer risk. Protein-based drugs, including antibodies, are being developed to attain better forms of cancer therapy. Secretory IgA (SIgA) is the antibody class in human breast milk, and its activity can be linked to the protective effect of breastfeeding. The aim of this study was to investigate the effect of polyethylene glycol (PEG) microspheres with adsorbed SIgA on MCF-7 human breast cancer cells. Methods The PEG microspheres were characterized by flow cytometry and fluorescence microscopy. The MCF-7 cells were obtained from American Type Culture Collection. MCF-7 cells were pre-incubated for 24 hours with or without SIgA (100 ng/mL), PEG microspheres or SIgA adsorbed in PEG microspheres (100 ng/mL). Viability, intracellular calcium release, and apoptosis in MCF-7 cells were determined by flow cytometry. Results Fluorescence microscopy and flow cytometry analyses revealed that SIgA was able to adsorb to the PEG microspheres. The MCF-7 cells that were incubated with PEG microspheres with adsorbed SIgA showed decreased viability. MCF-7 cells that were incubated with SIgA or PEG microspheres with adsorbed SIgA had increased intracellular Ca2+ levels. In the presence of SIgA, an increase in the percentage of apoptotic cells was observed. The highest apoptosis index was observed when the cells were treated with PEG microspheres with adsorbed SIgA. Conclusion These data suggest that colostral SIgA adsorbed to PEG microspheres has antitumor effects on human MCF-7 breast cancer cells and that the presence of large amounts of this protein in secreted breast milk may provide protection against breast tumors in women who breastfed. PMID:26893571

  6. Preparation of psoralen polymer-lipid hybrid nanoparticles and their reversal of multidrug resistance in MCF-7/ADR cells.

    Science.gov (United States)

    Huang, Qingqing; Cai, Tiange; Li, Qianwen; Huang, Yinghong; Liu, Qian; Wang, Bingyue; Xia, Xi; Wang, Qi; Whitney, John C C; Cole, Susan P C; Cai, Yu

    2018-11-01

    Multidrug resistance (MDR) is the leading cause of failure for breast cancer in the clinic. Thus far, polymer-lipid hybrid nanoparticles (PLN) loaded chemotherapeutic agents has been used to overcome MDR in breast cancer. In this study, we prepared psoralen polymer-lipid hybrid nanoparticles (PSO-PLN) to reverse drug resistant MCF-7/ADR cells in vitro and in vivo. PSO-PLN was prepared by the emulsification evaporation-low temperature solidification method. The formulation, water solubility and bioavailability, particle size, zeta potential and entrapment efficiency, and in vitro release experiments were optimized in order to improve the activity of PSO to reverse MDR. Optimal formulation: soybean phospholipids 50 mg, poly(lactic-co-glycolic) acid (PLGA) 15 mg, PSO 3 mg, and Tween-80 1%. The PSO-PLN possessed a round appearance, uniform size, exhibited no adhesion. The average particle size was 93.59 ± 2.87 nm, the dispersion co-efficient was 0.249 ± 0.06, the zeta potential was 25.47 ± 2.84 mV. In vitro analyses revealed that PSO resistance index was 3.2, and PSO-PLN resistance index was 5.6, indicating that PSO-PLN versus MCF-7/ADR reversal effect was significant. Moreover, PSO-PLN is somewhat targeted to the liver, and has an antitumor effect in the xenograft model of drug-resistant MCF-7/ADR cells. In conclusion, PSO-PLN not only reverses MDR but also improves therapeutic efficiency by enhancing sustained release of PSO.

  7. Eco-Friendly Formulated Zinc Oxide Nanoparticles: Induction of Cell Cycle Arrest and Apoptosis in the MCF-7 Cancer Cell Line.

    Science.gov (United States)

    Boroumand Moghaddam, Amin; Moniri, Mona; Azizi, Susan; Abdul Rahim, Raha; Bin Ariff, Arbakariya; Navaderi, Mohammad; Mohamad, Rosfarizan

    2017-10-20

    Green products have strong potential in the discovery and development of unique drugs. Zinc oxide nanoparticles (ZnO NPs) have been observed to have powerful cytotoxicity against cells that cause breast cancer. The present study aims to examine the cell cycle profile, status of cell death, and pathways of apoptosis in breast cancer cells (MCF-7) treated with biosynthesized ZnO NPs. The anti-proliferative activity of ZnO NPs was determined using MTT assay. Cell cycle analysis and the mode of cell death were evaluated using a flow cytometry instrument. Quantitative real-time-PCR (qRT-PCR) was employed to investigate the expression of apoptosis in MCF-7 cells. ZnO NPs were cytotoxic to the MCF-7 cells in a dose-dependent manner. The 50% growth inhibition concentration (IC 50 ) of ZnO NPs at 24 h was 121 µg/mL. Cell cycle analysis revealed that ZnO NPs induced sub-G₁ phase (apoptosis), with values of 1.87% at 0 μg/mL (control), 71.49% at IC 25 , 98.91% at IC 50 , and 99.44% at IC 75 . Annexin V/propidium iodide (PI) flow cytometry analysis confirmed that ZnO NPs induce apoptosis in MCF-7 cells. The pro-apoptotic genes p53 , p21 , Bax , and JNK were upregulated, whereas anti-apoptotic genes Bcl-2 , AKT1 , and ERK1/2 were downregulated in a dose-dependent manner. The arrest and apoptosis of MCF-7 cells were induced by ZnO NPs through several signalling pathways.

  8. Metabolic signature of breast cancer cell line MCF-7: profiling of modified nucleosides via LC-IT MS coupling

    Directory of Open Access Journals (Sweden)

    Gleiter Christoph H

    2007-11-01

    Full Text Available Abstract Background Cancer, like other diseases accompanied by strong metabolic disorders, shows characteristic effects on cell turnover rate, activity of modifying enzymes and DNA/RNA modifications, resulting also in elevated amounts of excreted modified nucleosides. For a better understanding of the impaired RNA metabolism in breast cancer cells, we screened these metabolites in the cell culture supernatants of the breast cancer cell line MCF-7 and compared it to the human mammary epithelial cells MCF-10A. The nucleosides were isolated and analyzed via 2D-chromatographic techniques: In the first dimension by cis-diol specific boronate affinity extraction and subsequently by reversed phase chromatography coupled to an ion trap mass spectrometer. Results Besides the determination of ribonucleosides, additional compounds with cis-diol structure, deriving from cross-linked biochemical pathways, like purine-, histidine- and polyamine metabolism were detected. In total, 36 metabolites were identified by comparison of fragmentation patterns and retention time. Relation to the internal standard isoguanosine yielded normalized area ratios for each identified compound and enabled a semi-quantitative metabolic signature of both analyzed cell lines. 13 of the identified 26 modified ribonucleosides were elevated in the cell culture supernatants of MCF-7 cells, with 5-methyluridine, N2,N2,7-trimethylguanosine, N6-methyl-N6-threonylcarbamoyladenosine and 3-(3-aminocarboxypropyl-uridine showing the most significant differences. 1-ribosylimidazole-4-acetic acid, a histamine metabolite, was solely found in the supernatants of MCF-10A cells, whereas 1-ribosyl-4-carboxamido-5-aminoimidazole and S-adenosylmethionine occurred only in supernatants of MCF-7 cells. Conclusion The obtained results are discussed against the background of pathological changes in cell metabolism, resulting in new perspectives for modified nucleosides and related metabolites as possible

  9. Evaluation of chemopreventive and cytotoxic effect of lemon seed extracts on human breast cancer (MCF-7) cells.

    Science.gov (United States)

    Kim, Jinhee; Jayaprakasha, Guddadarangavvanahally K; Uckoo, Ram M; Patil, Bhimanagouda S

    2012-02-01

    Extracts from lemon seed were investigated for the radical scavenging activity and apoptotic effects in human breast adenocarcinoma (MCF-7) cells and non-malignant breast (MCF-12F) cells for the first time. Defatted seed powder was successively extracted with ethyl acetate (EtOAc), acetone, methanol (MeOH), and MeOH:water (80:20). The chemical constituents were identified and quantified by LC-MS and HPLC analysis, respectively. The highest radical scavenging activity of 62.2% and 91.3% was exhibited by MeOH:water (80:20) at 833μg/mL in 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS(+)), respectively. In addition, the MeOH:water (80:20) extract showed the highest (29.1%, Pwater (80:20) extract induced DNA fragmentation and poly(ADP-ribose) polymerase (PARP) cleavage. Increased levels of Bax and cytosolic cytochrome C and decreased levels of Bcl2 were also observed in MeOH:water (80:20) treated MCF-7 cells. In conclusion, the MeOH:water (80:20) extract from lemon seed has potent antioxidant activity and induces apoptosis in MCF-7 cells, leading to the inhibition of proliferation. These results suggest that aglycones and glucosides of the limonoids and flavonoid present in MeOH:water (80:20) extract may potentially serve as a chemopreventive agent for breast cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Efficient propagation of archetype JC polyomavirus in COS-7 cells: evaluation of rearrangements within the NCCR structural organization after transfection.

    Science.gov (United States)

    Prezioso, Carla; Scribano, Daniela; Bellizzi, Anna; Anzivino, Elena; Rodio, Donatella Maria; Trancassini, Maria; Palamara, Anna Teresa; Pietropaolo, Valeria

    2017-12-01

    John Cunningham virus (JCPyV) is an ubiquitous human pathogen that causes disease in immunocompromised patients. The JCPyV genome is composed of an early region and a late region, which are physically separated by the non-coding control region (NCCR). The DNA sequence of the NCCR distinguishes two forms of JCPyV, the designated archetype and the prototype, which resulted from a rearrangement of the archetype sequence. To date, the cell culture systems for propagating JCPyV archetype have been very limited in their availability and robustness. Prior to this study, it was demonstrated that JCPyV archetype DNA replicates in COS-7 simian kidney cells expressing SV40 TAg and COS-7 cells expressing HIV-1 Tat. Based on these observations, the present study was conducted to reproduce an in vitro model in COS-7 cells transfected with the JCPyV archetype strain in order to study JCPyV DNA replication and analyze NCCR rearrangements during the viral life cycle. The efficiency of JCPyV replication was evaluated by quantitative PCR (Q-PCR) and by hemagglutination (HA) assay after transfection. In parallel, sequence analysis of JCPyV NCCR was performed. JCPyV efficiently replicated in kidney-derived COS-7 cells, as demonstrated by a progressive increase in viral load and virion particle production after transfection. The archetypal structure of NCCR was maintained during the viral cycle, but two characteristic point mutations were detected 28 days after transfection. This model is a useful tool for analyzing NCCR rearrangements during in vitro replication in cells that are sites of viral persistence, such as tubular epithelial cells of the kidney.

  11. Polyethylenimine-modified curcumin-loaded mesoporus silica nanoparticle (MCM-41) induces cell death in MCF-7 cell line.

    Science.gov (United States)

    Harini, Lakshminarasimhan; Karthikeyan, Bose; Srivastava, Sweta; Suresh, Srinag Bangalore; Ross, Cecil; Gnanakumar, Georgepeter; Rajagopal, Srinivasan; Sundar, Krishnan; Kathiresan, Thandavarayan

    2017-02-01

    Breast cancer accounts for the first highest mortality rate in India and second in world. Though current treatment strategies are effectively killing cancer cells, they also end in causing severe side effects and drug resistance. Curcumin is a nutraceutical with multipotent activity but its insolubility in water limits its therapeutic potential as an anti-cancer drug. The hydrophilicity of curcumin could be increased by nanoformulation or changing its functional groups. In this study, curcumin is loaded on mesoporous silica nanoparticle and its anti-cancer activity is elucidated with MCF-7 cell death. Structural characteristics of Mobil Composition of Matter - 41(MCM-41) as determined by high-resolution transmission electron microscopy (HR-TEM) shows that MCM-41 size ranges from 100 to 200 nm diameters with pore size 2-10 nm for drug adsorption. The authors found 80-90% of curcumin is loaded on MCM-41 and curcumin is released efficiently at pH 3.0. The 50 µM curcumin-loaded MCM-41 induced 50% mortality of MCF-7 cells. Altogether, their results suggested that increased curcumin loading and sustained release from MCM-41 effectively decreased cell survival of MCF-7 cells in vitro.

  12. In vitro evaluation of antitumor activity of doxorubicin-loaded nanoemulsion in MCF-7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Alkhatib, Mayson H., E-mail: mhalkhatib@kau.edu.sa; AlBishi, Hayat M. [College of Science, King Abdulaziz University, Department of Biochemistry (Saudi Arabia)

    2013-03-15

    Doxorubicin (DOX) is an anticancer drug used to treat several cancer diseases. However, it has several dose limitation aspects because of its poor bioavailability, hydrophobicity, and cytotoxicity. In this study, five nanoemulsion (NE) formulations, containing soya phosphatidylcholine/polyoxyethylenglycerol trihydroxy-stearate 40 (EU)/sodium oleate as surfactant, cholesterol (CHO) as oil phase, and Tris-HCl buffer (pH 7.22), were produced. The NE droplets morphologies of the entire blank and DOX-loaded formulations, revealed by the transmission electron microscope, were spherical. The droplet sizes of blank NEs, obtained between 2.9 and 6.4 nm, decreased significantly with the increase in the ratio of surfactant-to-oil, whereas the droplets sizes of DOX-loaded NE formulations were significantly higher and found in the range of 7.7-15.9 nm. The evaluation for both blank and DOX-loaded NE formulations proved that the NE carrier had improved the DOX efficacy and reduced its cytotoxicity. It showed that the cell growth inhibition of the breast cancer cells (MCF-7) have exceeded the commercial DOX by a factor of 1.7 with increased apoptosis activity and minimal cytotoxicity against the normal human foreskin cells (HFS). In contrast, commercial DOX was found to exhibit a significant non-selective toxicity against both MCF-7 and HFS cells. In conclusion, we have developed DOX-loaded NE formulations which selectively and significantly inhibited cell proliferation of MCF-7 cells and increased apoptosis.

  13. Promotion of breast cancer by β-Hexachlorocyclohexane in MCF10AT1 cells and MMTV-neu mice

    Directory of Open Access Journals (Sweden)

    Matsumura Fumio

    2007-07-01

    Full Text Available Abstract Background Exposure to β-Hexachlorocyclohexane (β-HCH, a contaminant of the hexachlorohexane pesticide lindane, has been implicated as a risk factor in the development of breast cancers in epidemiological studies. Previous studies in our laboratory have demonstrated the ability of β-HCH to elicit its actions via a ligand-independent activation of the estrogen receptor through increased c-Neu (= erbB2 or HER-2 expression and kinase activation in both the BG-1 and MCF-7 cell lines. In addition, long term exposure (33 passages to β-HCH was shown to promote the selection of MCF-7 cells which exhibit a more metastatic phenotype. Methods In this current study, we decided to investigate the long-term effects of β-HCH in both the MCF10AT1 cell line which was derived from a normal epithelial cell line by stably transfecting a mutated c-Ha-ras and a MMTV-Neu mouse model for mammary cancer in vivo. MCF10AT1 cells were exposed for 20 passages with β-HCH, 4-OH-Tamoxifen (Tam, or 17-β-estradiol (E2 after which cells were analyzed for proliferation rates and mRNA expression by RT-PCR. In our in vivo studies, MMTV-Neu mice were injected with β-HCH and observed for tumor formation over a 70 week period. Results β-HCH and Tam selected MCF10AT1 cells demonstrated increased mRNA expression of MMP-13 (collagenase-3 a marker of increased invasiveness. β-HCH treatment was also seen to increase the expression in a number of proto-oncogenes (c-Neu, Cyclin D1, p27, cell status markers (Met-1, CK19, and the inflammatory marker NFκB. Previous studies, have demonstrated the role of these markers as evidence of malignant transformations, and further illustrate the ability of β-HCH to be carcinogenic. To demonstrate β-HCH's tumorigenic properties in an in vivo system, we used an MMTV-Neu mouse model. MMTV-Neu is a c-Neu overexpressing strain which has been shown to spontaneously develop mammary tumors at later stages of aging. In this experiment,

  14. Promotion of breast cancer by β-Hexachlorocyclohexane in MCF10AT1 cells and MMTV-neu mice

    International Nuclear Information System (INIS)

    Wong, Patrick S; Matsumura, Fumio

    2007-01-01

    Exposure to β-Hexachlorocyclohexane (β-HCH), a contaminant of the hexachlorohexane pesticide lindane, has been implicated as a risk factor in the development of breast cancers in epidemiological studies. Previous studies in our laboratory have demonstrated the ability of β-HCH to elicit its actions via a ligand-independent activation of the estrogen receptor through increased c-Neu (= erbB 2 or HER-2) expression and kinase activation in both the BG-1 and MCF-7 cell lines. In addition, long term exposure (33 passages) to β-HCH was shown to promote the selection of MCF-7 cells which exhibit a more metastatic phenotype. In this current study, we decided to investigate the long-term effects of β-HCH in both the MCF10AT1 cell line which was derived from a normal epithelial cell line by stably transfecting a mutated c-Ha-ras and a MMTV-Neu mouse model for mammary cancer in vivo. MCF10AT1 cells were exposed for 20 passages with β-HCH, 4-OH-Tamoxifen (Tam), or 17-β-estradiol (E 2 ) after which cells were analyzed for proliferation rates and mRNA expression by RT-PCR. In our in vivo studies, MMTV-Neu mice were injected with β-HCH and observed for tumor formation over a 70 week period. β-HCH and Tam selected MCF10AT1 cells demonstrated increased mRNA expression of MMP-13 (collagenase-3) a marker of increased invasiveness. β-HCH treatment was also seen to increase the expression in a number of proto-oncogenes (c-Neu, Cyclin D1, p27), cell status markers (Met-1, CK19), and the inflammatory marker NFκB. Previous studies, have demonstrated the role of these markers as evidence of malignant transformations, and further illustrate the ability of β-HCH to be carcinogenic. To demonstrate β-HCH's tumorigenic properties in an in vivo system, we used an MMTV-Neu mouse model. MMTV-Neu is a c-Neu overexpressing strain which has been shown to spontaneously develop mammary tumors at later stages of aging. In this experiment, β-HCH exposure was shown to both accelerate

  15. The Acetone Extract of Sclerocarya birrea (Anacardiaceae) Possesses Antiproliferative and Apoptotic Potential against Human Breast Cancer Cell Lines (MCF-7)

    Science.gov (United States)

    Tanih, Nicoline Fri; Ndip, Roland Ndip

    2013-01-01

    Interesting antimicrobial data from the stem bark of Sclerocarya birrea, which support its use in traditional medicine for the treatment of many diseases, have been delineated. The current study was aimed to further study some pharmacological and toxicological properties of the plant to scientifically justify its use. Anticancer activity of water and acetone extracts of S. birrea was evaluated on three different cell lines, HT-29, HeLa, and MCF-7 using the cell titre blue viability assay in 96-well plates. Apoptosis was evaluated using the acridine orange and propidium iodide staining method, while morphological structure of treated cells was examined using SEM. The acetone extract exhibited remarkable antiproliferative activities on MCF-7 cell lines at dose- and time-dependent manners (24 h and 48 h of incubation). The extract also exerted apoptotic programmed cell death in MCF-7 cells with significant effect on the DNA. Morphological examination also displayed apoptotic characteristics in the treated cells, including clumping, condensation, and culminating to budding of the cells to produce membrane-bound fragmentation, as well as formation of apoptotic bodies. The acetone extract of S. birrea possesses antiproliferative and apoptotic potential against MCF-7-treated cells and could be further exploited as a potential lead in anticancer therapy. PMID:23576913

  16. Ferulago angulata activates intrinsic pathway of apoptosis in MCF-7 cells associated with G1 cell cycle arrest via involvement of p21/p27

    Directory of Open Access Journals (Sweden)

    Karimian H

    2014-09-01

    Full Text Available Hamed Karimian,1 Soheil Zorofchian Moghadamtousi,2 Mehran Fadaeinasab,3 Shahram Golbabapour,2 Mahboubeh Razavi,1 Maryam Hajrezaie,2 Aditya Arya,1 Mahmood Ameen Abdulla,4 Syam Mohan,5 Hapipah Mohd Ali,2 Mohamad Ibrahim Noordin1 1Department of Pharmacy, Faculty of Medicine, 2Institute of Biological Sciences, Faculty of Science, 3Department of Chemistry, 4Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, 5Medical Research Centre, Jazan University, Jazan, Saudi Arabia Abstract: Ferulago angulata is a medicinal plant that is traditionally known for its ­anti-inflammatory and antiulcer properties. The present study was aimed to evaluate its anticancer activity and the possible mechanism of action using MCF-7 as an in vitro model. F. angulata leaf extracts were prepared using solvents in the order of increasing polarity. As determined by MTT assay, F. angulata leaves hexane extract (FALHE revealed the strongest cytotoxicity against MCF-7 cells with the half maximal inhibitory concentration (IC50 value of 5.3±0.82 µg/mL. The acute toxicity study of FALHE provided evidence of the safety of the plant extract. Microscopic and flow cytometric analysis using annexin-V probe showed an induction of apoptosis in MCF-7 by FALHE. Treatment of MCF-7 cells with FALHE encouraged the intrinsic pathway of apoptosis, with cell death transducing signals that reduced the mitochondrial membrane potential with cytochrome c release from mitochondria to cytosol. The released cytochrome c triggered the activation of caspase-9. Meanwhile, the overexpression of caspase-8 suggested the involvement of an extrinsic pathway in the induced apoptosis at the late stage of treatment. Moreover, flow cytometric analysis showed that FALHE treatment significantly arrested MCF-7 cells in the G1 phase, which was associated with upregulation of p21 and p27 assessed by quantitative polymerase chain reaction. Immunofluorescence

  17. Ajwa Date (Phoenix dactylifera L. Extract Inhibits Human Breast Adenocarcinoma (MCF7 Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest.

    Directory of Open Access Journals (Sweden)

    Fazal Khan

    Full Text Available Phoenix dactylifera L (Date palm is a native plant of the Kingdom of Saudi Arabia (KSA and other Middle Eastern countries. Ajwa date has been described in the traditional and alternative medicine to provide several health benefits including anticholesteremic, antioxidant, hepatoprotective and anticancer effects, but most remains to be scientifically validated. Herein, we evaluated the anticancer effects of the Methanolic Extract of Ajwa Date (MEAD on human breast adenocarcinoma (MCF7 cells in vitro.MCF7 cells were treated with various concentrations (5, 10, 15, 20 and 25 mg/ml of MEAD for 24, 48 and 72 h and changes in cell morphology, cell cycle, apoptosis related protein and gene expression were studied.Phase contrast microscopy showed various morphological changes such as cell shrinkage, vacuolation, blebbing and fragmentation. MTT (2-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay demonstrated statistically significant dose-dependent inhibitions of MCF7 cell proliferation from 35% to 95%. Annexin V-FITC and TUNEL assays showed positive staining for apoptosis of MCF7 cells treated with MEAD (15 mg and 25 mg for 48 h. Flow cytometric analyses of MCF7 cells with MEAD (15 mg/ml and 20 mg/ml for 24 h demonstrated cell cycle arrest at 'S' phase; increased p53, Bax protein expression; caspase 3activation and decreased the mitochondrial membrane potential (MMP. Quantitative real time PCR (qRT-PCR analysis showed up-regulation of p53, Bax, Fas, and FasL and down-regulation of Bcl-2.MEAD inhibited MCF7 cells in vitro by the inducing cell cycle arrest and apoptosis. Our results indicate the anticancer effects of Ajwa dates, which therefore may be used as an adjunct therapy with conventional chemotherapeutics to achieve a synergistic effect against breast cancer.

  18. A novel protoapigenone analog RY10-4 induces breast cancer MCF-7 cell death through autophagy via the Akt/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuenong; Wei, Han; Liu, Ziwei; Yuan, Qianying [Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Wei, Anhua [Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Shi, Du; Yang, Xian [Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Ruan, Jinlan, E-mail: jinlan8152@163.com [Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China)

    2013-07-15

    Protoapigenone is a unique flavonoid and enriched in many ferns, showing potent antitumor activity against a broad spectrum of human cancer cell lines. RY10-4, a modified version of protoapigenone, manifested better anti-proliferation activity in human breast cancer cell line MCF-7. The cytotoxicity of RY10-4 against MCF-7 cells is exhibited in both time- and concentration-dependent manners. Here we investigated a novel effect of RY10-4 mediated autophagy in autophagy defect MCF-7 cells. Employing immunofluorescence assay for microtubule-associated protein light-chain 3 (LC3), monodansylcadaverine staining, Western blotting analyses for LC3 and p62 as well as ultrastructural analysis by transmission electron microscopy, we showed that RY10-4 induced autophagy in MCF-7 cells but protoapigenone did not. Meanwhile, inhibition of autophagy by pharmacological and genetic approaches significantly increased the viability of RY10-4 treated cells, suggesting that the autophagy induced by RY10-4 played as a promotion mechanism for cell death. Further studies revealed that RY10-4 suppressed the activation of mTOR and p70S6K via the Akt/mTOR pathway. Our results provided new insights for the mechanism of RY10-4 induced cell death and the cause of RY10-4 showing better antitumor activity than protoapigenone, and supported further evidences for RY10-4 as a lead to design a promising antitumor agent. - Highlights: • We showed that RY10-4 induced autophagy in MCF-7 cells but protoapigenone did not. • Autophagy induced by RY10-4 played as a promotion mechanism for cell death. • RY10-4 induced autophagy in MCF-7 cell through the Akt/mTOR pathway. • We provided new insights for the mechanism of RY10-4 induced cell death.

  19. 200 Gbit/s 16QAM WDM transmission over a fully integrated cladding pumped 7-Core MCF System

    DEFF Research Database (Denmark)

    Castro, C.; Jain, S.; Jung, Y.

    2017-01-01

    A complete, realistic integrated system is investigated, consisting of directly spliced 7-core MCF, cladding-pumped 7-core amplifiers, isolators, and couplers. The system is demonstrated in a 16QAM C-band WDM scenario over 720 km....

  20. The defensin from avocado (Persea americana var. drymifolia) PaDef induces apoptosis in the human breast cancer cell line MCF-7.

    Science.gov (United States)

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2016-08-01

    Antimicrobial peptides (AMPs) are cytotoxic to cancer cells; however, mainly the effects of AMPs from animals have been evaluated. In this work, we assessed the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on the MCF-7 cancer cell line (a breast cancer cell line) and evaluated its mechanism of action. PaDef inhibited the viability of MCF-7 cells in a concentration-dependent manner, with an IC50=141.62μg/ml. The viability of normal peripheral blood mononuclear cells was unaffected by this AMP. Additionally, PaDef induced apoptosis in MCF-7 cells in a time-dependent manner, but did not affect the membrane potential or calcium flow. In addition, PaDef IC50 induced the expression of cytochrome c, Apaf-1, and the caspase 7 and 9 genes. Likewise, this defensin induced the loss of mitochondrial Δψm and increased the phosphorylation of MAPK p38, which may lead to MCF-7 apoptosis by the intrinsic pathway. This is the first report of an avocado defensin inducing intrinsic apoptosis in cancer cells, which suggests that it could be a potential therapeutic molecule in the treatment of cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Inhibitory effects of polyphenol-enriched extract from Ziyang tea against human breast cancer MCF-7 cells through reactive oxygen species-dependent mitochondria molecular mechanism

    Directory of Open Access Journals (Sweden)

    Wenfeng Li

    2016-07-01

    Full Text Available A polyphenol-enriched extract from selenium-enriched Ziyang green tea (ZTP was selected to evaluate its antitumor effects against human breast cancer MCF-7 cells. In ZTP, (−-epigallocatechin gallate (28.2% was identified as the major catechin, followed by (−-epigallocatechin (5.7% and (−-epicatechin gallate (12.6%. ZTP was shown to inhibit MCF-7 cell proliferation (half maximal inhibitory concentration, IC50 = 172.2 μg/mL by blocking cell-cycle progression at the G0/G1 phase and inducing apoptotic death. Western blotting assay indicated that ZTP induced cell-cycle arrest by upregulation of p53 and reduced the expression of CDK2 in MCF-7 cells. ZTP-caused cell apoptosis was associated with an increase in Bax/Bcl-2 ratio, and activation of caspase-3 and -9. MCF-7 cells treated with ZTP also showed an overproduction of reactive oxygen species, suggesting that reactive oxygen species played an important role in the induction of apoptosis in MCF-7 cells. This is the first report showing that ZTP is a potential novel dietary agent for cancer chemoprevention or chemotherapy.

  2. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    International Nuclear Information System (INIS)

    Talhouk, Rabih S.; Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania; El-Sabban, Marwan E.

    2013-01-01

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  3. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    Energy Technology Data Exchange (ETDEWEB)

    Talhouk, Rabih S., E-mail: rtalhouk@aub.edu.lb [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); El-Sabban, Marwan E., E-mail: me00@aub.edu.lb [Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon)

    2013-12-10

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  4. Co-ordinate loss of protein kinase C and multidrug resistance gene expression in revertant MCF-7/Adr breast carcinoma cells.

    Science.gov (United States)

    Budworth, J; Gant, T W; Gescher, A

    1997-01-01

    The aim of this study was to investigate the link between protein kinase C (PKC) and multidrug resistance (mdr) phenotype. The expression of both was studied in doxorubicin-resistant MCF-7/Adr cells as they reverted to the wild-type phenotype when cultured in the absence of drug. The following parameters were measured in cells 4, 10, 15, 20 and 24 weeks after removal of doxorubicin; (1) sensitivity of the cells towards doxorubicin; (2) levels of P-glycoprotein (P-gp) and MDR1 mRNA; (3) levels and cellular localization of PKC isoenzyme proteins alpha, theta and epsilon; and (4) gene copy number of PKC-alpha and MDR1 genes. Cells lost their resistance gradually with time, so that by week 24 they had almost completely regained the drug sensitivity seen in wild-type MCF-7 cells. P-gp levels measured by Western blot mirrored the change in doxorubicin sensitivity. By week 20, P-gp had decreased to 18% of P-gp protein levels at the outset, and P-gp was not detectable at week 24. Similarly, MDR1 mRNA levels had disappeared by week 24. MCF-7/Adr cells expressed more PKCs-alpha and -theta than wild-type cells and possessed a different cellular localization of PKC-epsilon. The expression and distribution pattern of these PKCs did not change for up to 20 weeks, but reverted back to that seen in wild-type cells by week 24. MDR1 gene amplification remained unchanged until week 20, but then was lost precipitously between weeks 20 and 24. The PKC-alpha gene was not amplified in MCF-7/Adr cells. The results suggest that MCF-7/Adr cells lose MDR1 gene expression and PKC activity in a co-ordinate fashion, consistent with the existence of a mechanistic link between MDR1 and certain PKC isoenzymes.

  5. FMSP-Nanoparticles Induced Cell Death on Human Breast Adenocarcinoma Cell Line (MCF-7 Cells: Morphometric Analysis

    Directory of Open Access Journals (Sweden)

    Firdos Alam Khan

    2018-05-01

    Full Text Available Currently, breast cancer treatment mostly revolves around radiation therapy and surgical interventions, but often these treatments do not provide satisfactory relief to the patients and cause unmanageable side-effects. Nanomaterials show promising results in treating cancer cells and have many advantages such as high biocompatibility, bioavailability and effective therapeutic capabilities. Interestingly, fluorescent magnetic nanoparticles have been used in many biological and diagnostic applications, but there is no report of use of fluorescent magnetic submicronic polymer nanoparticles (FMSP-nanoparticles in the treatment of human breast cancer cells. In the present study, we tested the effect of FMSP-nanoparticles on human breast cancer cells (MCF-7. We tested different concentrations (1.25, 12.5 and 50 µg/mL of FMSP-nanoparticles in MCF-7 cells and evaluated the nanoparticles response morphometrically. Our results revealed that FMSP-nanoparticles produced a concentration dependent effect on the cancer cells, a dose of 1.25 µg/mL produced no significant effect on the cancer cell morphology and cell death, whereas dosages of 12.5 and 50 µg/mL resulted in significant nuclear augmentation, disintegration, chromatic condensation followed by dose dependent cell death. Our results demonstrate that FMSP-nanoparticles induce cell death in MCF-7 cells and may be a potential anti-cancer agent for breast cancer treatment.

  6. Gambogic Acid Lysinate Induces Apoptosis in Breast Cancer MCF-7 Cells by Increasing Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Yong-Zhan Zhen

    2015-01-01

    Full Text Available Gambogic acid (GA inhibits the proliferation of various human cancer cells. However, because of its water insolubility, the antitumor efficacy of GA is limited. Objectives. To investigate the antitumor activity of gambogic acid lysinate (GAL and its mechanism. Methods. Inhibition of cell proliferation was determined by MTT assay; intracellular ROS level was detected by staining cells with DCFH-DA; cell apoptosis was determined by flow cytometer and the mechanism of GAL was investigated by Western blot. Results. GAL inhibited the proliferation of MCF-7 cells with IC50 values 1.46 μmol/L comparable with GA (IC50, 1.16 μmol/L. GAL promoted the production of ROS; however NAC could remove ROS and block the effect of GAL. GAL inhibited the expression of SIRT1 but increased the phosphorylation of FOXO3a and the expression of p27Kip1. At knockdown of FOXO3a, cell apoptosis induced by GAL can be partly blocked. In addition it also enhanced the cleavage of caspase-3. Conclusions. GAL inhibited MCF-7 cell proliferation and induced MCF-7 cell apoptosis by increasing ROS level which could induce cell apoptosis by both SIRT1/FOXO3a/p27Kip1 and caspase-3 signal pathway. These results suggested that GAL might be useful as a modulation agent in cancer chemotherapy.

  7. Delta(9)-tetrahydrocannabinol inhibits 17beta-estradiol-induced proliferation and fails to activate androgen and estrogen receptors in MCF7 human breast cancer cells.

    Science.gov (United States)

    von Bueren, A O; Schlumpf, M; Lichtensteiger, W

    2008-01-01

    Delta(9)-tetrahydrocannabinol (THC) exerts palliative effects in cancer patients, but produces adverse effects on the endocrine and reproductive systems. Experimental evidence concerning such effects is controversial. Whether THC exhibits estrogenic or androgenic activity in vitro was investigated. Estrogenic effects of THC were analyzed in vitro by measuring the proliferation of estrogen-sensitive MCF7 cells. Androgenic activity was investigated by the A-Screen assay that measures androgen-dependent inhibition of proliferation of the androgen receptor (AR)-positive human mammary carcinoma cell line, MCF7-AR1. In contrast to 17beta-estradiol, included as positive control with an EC50 value (concentration required for 50% of maximal 17beta-estradiol-induced proliferation) of 1.00 x 10(-12) M, THC failed to induce cell proliferation in the MCF7 cell line at concentrations between 10(-13) and 10(-4) M. THC inhibited 17beta-estradiol-induced proliferation in wild-type MCF7 and MCF7-AR1 cells, with an IC50 value of 2.6 x 10(-5) M and 9 x 10(-6) M, respectively. THC failed to act as an estrogen, but antagonized 17beta-estradiol-induced proliferation. This effect was independent of the AR expression level.

  8. The Induction of Growth Inhibition and Apoptosis in HeLa and MCF-7 Cells by Teucrium sandrasicum, Having Effective Antioxidant Properties.

    Science.gov (United States)

    Tarhan, Leman; Nakipoğlu, Mahmure; Kavakcıoğlu, Berna; Tongul, Burcu; Nalbantsoy, Ayşe

    2016-03-01

    The hidromethanolic (Met/W), ethyl acetate (EA(EA/W)), and water (W(EA/W)) extracts from Teucrium sandrasicum leaves (L) and flowers (F) were investigated for antioxidant properties and antiproliferative effects on HeLa, MCF-7, and L929. The highest DPPH scavenging, metal chelating capacities, and total phenolic and flavonoid contents were observed in Met/WL. The highest hydroxyl scavenging and reducing power capacities were found in EA(EA/W)L. Met/WL, EA(EA/W)L and EA(EA/W)F inhibited cancer cell growths, while they did not show significant cytotoxicity on L929. While the reactive oxygen species (ROS) levels were generally close to controls in HeLa, they were induced in MCF-7 with the treatment of Met/WL, EA(EA/W)L, and EA(EA/W)F and acted as antioxidant for L929. The highest apoptosis inductions were observed in Met/WL-treated HeLa and EA(EA/W)L-treated MCF-7, which were supported with the changes in mitochondrial membrane potentials. The highest caspase-9 activities were found in Met/WL-treated HeLa and EA(EA/W)F-treated MCF-7. Caspase-3 activity was only induced in EA(EA/W)F-treated HeLa.

  9. A Flavone Constituent from Myoporum bontioides Induces M-Phase Cell Cycle Arrest of MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jing-Ru Weng

    2017-03-01

    Full Text Available Abstract: Myoporum bontioides is a traditional medicinal plant in Asia with various biological activities, including anti-inflammatory and anti-bacterial characteristics. To identify the bioactive constituents from M. bontioides, a newly-identified flavone, 3,4′-dimethoxy-3′,5,7-trihydroxyflavone (compound 1, along with eight known compounds, were investigated in human MCF-7 breast cancer, SCC4 oral cancer, and THP-1 monocytic leukemia cells. Among these compounds, compound 1 exhibited the strongest antiproliferative activity with half-maximal inhibitory concentration (IC50 values ranging from 3.3 μM (MCF-7 to 8.6 μM (SCC4. Flow cytometric analysis indicated that compound 1 induced G2/M cell cycle arrest in MCF-7 cells. Mechanistic evidence suggests that the G2/M arrest could be attributable to compound 1’s modulatory effects on the phosphorylation and expression of numerous key signaling effectors, including cell division cycle 2 (CDC2, CDC25C, and p53. Notably, compound 1 downregulated the expression of histone deacetylase 2 (HDAC2 and HDAC4, leading to increased histone H3 acetylation and p21 upregulation. Together, these findings suggest the translational potential of compound 1 as a breast cancer treatment.

  10. Analysis of Protein–Protein Interactions in MCF-7 and MDA-MB-231 Cell Lines Using Phthalic Acid Chemical

    Directory of Open Access Journals (Sweden)

    Shih-Shin Liang

    2014-11-01

    Full Text Available Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein–protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, which were modified using the silanized linker 3-aminopropyl triethoxyslane (APTES. Incubation with cell lysates from breast cancer cell lines revealed interactions between phthalic acid and cellular proteins in MCF-7 and MDA-MB-231 cells. Subsequent proteomics analyses indicated 22 phthalic acid-binding proteins in both cell types, including heat shock cognate 71-kDa protein, ATP synthase subunit beta, and heat shock protein HSP 90-beta. In addition, 21 MCF-7-specific and 32 MDA-MB-231 specific phthalic acid-binding proteins were identified, including related proteasome proteins, heat shock 70-kDa protein, and NADPH dehydrogenase and ribosomal correlated proteins, ras-related proteins, and members of the heat shock protein family, respectively.

  11. IN VITRO CYTOTOXICITY STUDY OF AGAVE AMERICANA, STRYCHNOS NUX-VOMICA AND ARECA CATECHU EXTRACTS USING MCF-7 CELL LINE

    Directory of Open Access Journals (Sweden)

    Anajwala Chetan C.

    2010-06-01

    Full Text Available Research is focusing on the search for new types of natural chemotherapeutic agent that is plant based medicines which are proving to be excellent sources of new compounds. In present research study, an attempt was made to prove cytotoxicity activity of various parts of medicinal plants such as Agave americana, Strychnos nux-vomica and Areca catechu using MCF-7 and Vero cell line. Various parts of the medicinal plants were extracted by soxhlet apparatus using solvents likes methanol and water. By trypan blue dye exclusion method, Viability of MCF-7 and Vero cell lines were 85.50 and 81.13%, respectively. IC50 value of methanol extract of Agave americana leaves and aqueous extract of Areca catechu fruits were found to be 545.9 & 826.1 µg/ml by SRB assay and 775.1 & 1461µg/ml by MTT assay, respectively, against MCF-7 cell line. From cytotoxicity study data by SRB and MTT assay, it revealed that methanol extract of Agave americana and aqueous extract of Areca catechu are potent cytotoxic.

  12. Camel Milk Triggers Apoptotic Signaling Pathways in Human Hepatoma HepG2 and Breast Cancer MCF7 Cell Lines through Transcriptional Mechanism

    Directory of Open Access Journals (Sweden)

    Hesham M. Korashy

    2012-01-01

    Full Text Available Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2 and human breast (MCF7 cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways.

  13. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Tomblin, Justin K.; Salisbury, Travis B.

    2014-01-01

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR

  14. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tomblin, Justin K.; Salisbury, Travis B., E-mail: salisburyt@marshall.edu

    2014-01-17

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.

  15. Enhancement of radiation cytotoxicity by gold nanoparticles in MCF-7 breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Shamsuddin, Shaharum [Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    Therapy combined with metallic nanoparticles is a new way to treat cancer, in which gold nanoparticles (AuNPs) are injected through intravenous administration and bound to tumor sites. Radiotherapy aims to deliver a high therapeutic dose of ionizing radiation to the tumor without exceeding normal tissue tolerance. The use of AuNPs which is a high-atomic-number (Z) material in radiotherapy will provide a high probability for photon interaction by photoelectric effect. These provide advantages in terms of radiation dose enhancement. The high linear energy transfer and short range of photoelectric interaction products (photoelectrons, characteristic x-rays, Auger electrons) produce localized dose enhancement of the tumor. In this work, breast cancer cell lines (MCF-7) are seeded in the 96-well plate and were treated with 13 nm AuNPs before they were irradiated with 6 MV and 10 MV photon beam from a medical linear accelerator at various radiation doses. To validate the enhanced killing effect, both with and without AuNPs MCF-7 cells is irradiated simultaneously. By comparison, the results show that AuNPs significantly enhance cancer killing.

  16. Comparing Apoptosis and Necrosis Effects of Arctium Lappa Root Extract and Doxorubicin on MCF7 and MDA-MB-231 Cell Lines

    Science.gov (United States)

    Ghafari, Fereshteh; Rajabi, Mohammad Reza; Mazoochi, Tahereh; Taghizadeh, Mohsen; Nikzad, Hossein; Atlasi, Mohammad Ali; Taherian, Aliakbar

    2017-03-01

    Objective: Breast cancer is a heterogeneous disease and very common malignancy in women worldwide. The efficacy of chemotherapy as an important part of breast cancer treatment is limited due to its side effects. While pharmaceutical companies are looking for better chemicals, research on traditional medicines that generally have fewer side effects is quite interesting. In this study, apoptosis and necrosis effect of Arctium lappa and doxorubicin was compared in MCF7, and MDA-MB-231 cell lines. Materials and Methods: MCF7 and MDA-MB-231 cells were cultured in RPMI 1640 containing 10% FBS and 100 U/ml penicillin/streptomycin. MTT assay and an annexin V/propidium iodide (AV/PI) kit were used respectively to compare the survival rate and apoptotic effects of different concentrations of doxorubicin and Arctium lappa root extract on MDA-MB-231 and MCF7 cells. Results: Arctium lappa root extract was able to reduce cell viability of the two cell lines in a dose and time dependent manner similar to doxorubicin. Flow cytometry results showed that similar to doxorubicin, Arctium Lappa root extract had a dose and time dependent apoptosis effect on both cell lines. 10μg/mL of Arctium lappa root extract and 5 μM of doxorubicin showed the highest anti-proliferative and apoptosis effect in MCF7 and MDA231 cells. Conclusion: The MCF7 (ER/PR-) and MDA-MB-231 (ER/PR+) cell lines represent two major breast cancer subtypes. The similar anti-proliferative and apoptotic effects of Arctium lappa root extract and doxorubicin (which is a conventional chemotherapy drug) on two different breast cancer cell lines strongly suggests its anticancer effects and further studies. Creative Commons Attribution License

  17. Construction of Egr1-mediated human truncated apoptosis inducing factor expression vector and its expression regularity induced by radiation in breast cancer MCF-7 cells

    International Nuclear Information System (INIS)

    Wang Jianfeng; Gong Shouliang; Wang Zhicheng; Fang Fang; Liu Yang; Wu Jiahui

    2012-01-01

    Objective: To clone human truncated apoptosis inducing factor (AIF) cDNA sequence, and to construct early growth response 1 (Egr1)-mediated recombinant expression vector pcDNA 3.1-Egr1-AIF Δ1-480 (pEgr1-AIFΔ 1-480 ), and to observe its regularity induced by radiation in human breast cancer MCF-7 cells. Methods: The total mRNA extracted from human leukemia Jurkat cells used as template, and the human AIFΔ 1-480 was acquired by RT-PCR, and it was linked to pMD18T vector for sequencing. Egr1 fragment was digested from pMD19T-Egr1 by restrictive enzyme, and the Egr1-mediated expression plasmid pEgr1-AIFΔ 1-480 was constructed by gene recombination. There were control group, pcDNA3.1 group, pAIFΔ 1-480 group and pEgr1-AIFΔ 1-480 group in the experiment. After the plasmids in various groups were transfected into human breast cancer MCF-7 cells, the AIF and AIFΔ 1-480 protein expression time-effect (0, 2, 4, 12, 24 and 48 h after 2.0 Gy irradiation) and dose-effect (24 h after 0, 0.2, 0.5, 1.0, 2.0 and 5.0 Gy irradiation) regularity were measured by Western blotting method. Results: The sequencing results showed that the AIFΔ 1-480 acquired by RT-PCR was consistent with the sequence expected, the pEgr-AIFΔ 1-480 was confirmed by PCR and restrictive enzyme digestion. After 0-48 h the MCF-7 cells were irradiated by 2.0 Gy, and the AIF protein expressed in the cells in each group, and it increased significantly from 4 h and the AIF expressions in 4, 12, 24 and 48 h groups were higher than that in 0 h group (P<0.05), and it reached to maximum value at 48 h. But the AIFΔ 1-480 protein expressed in the cells in pAIFΔ 1-480 and pEgr1-AIFΔ 1-480 groups from 2 h (P<0.05), and it reached to peak value at 24 h. The AIFΔ 1-480 expressions in pEgr1-AIFΔ 1-480 group were higher than those in pAIFΔ 1-480 group at and 48 h (P<0.05). After the MCF-7 cells were irradiated by 0-5 Gy for 24 h, the AIF protein expressed in the cells in each group, but the AIFΔ 1-480 protein

  18. Proliferative endocrine effects of adipose tissue from obese animals on MCF7 cells are ameliorated by resveratrol supplementation.

    Directory of Open Access Journals (Sweden)

    Christopher F Theriau

    Full Text Available Obesity is clearly associated with an increased risk of breast cancer in postmenopausal women. The purpose was to determine if obesity alters the adipocyte adipokine secretion profile, thereby altering the adipose-dependent paracrine/endocrine growth microenvironment surrounding breast cancer cells (MCF7. Additionally, we determined whether resveratrol (RSV supplementation can counteract any obesity-dependent effects on breast cancer tumor growth microenvironment. Obese ZDF rats received standard chow diet or diet supplemented with 200 mg/kg body weight RSV. Chow-fed Zucker rats served as lean controls. After 6 weeks, conditioned media (CM prepared from inguinal subcutaneous adipose tissue (scAT was added to MCF7 cells for 24 hrs. Experiments were also conducted using purified isolated adipocytes to determine whether any endocrine effects could be attributed specifically to the adipocyte component of adipose tissue. scAT from ZDF rats promoted cell cycle entry in MCF7 cells which was counteracted by RSV supplementation. RSV-CM had a higher ratio of ADIPO:LEP compared to ZDF-CM. This altered composition of the CM led to increased levels of pAMPKT172, p27, p27T198 and AdipoR1 while decreasing pAktT308 in MCF7 cells grown in RSV-CM compared to ZDF-CM. RSV-CM increased number of cells in G0/G1 and decreased cells in S-phase compared to ZDF-CM. Co-culture experiments revealed that these obesity-dependent effects were driven by the adipocyte component of the adipose tissue. Obesity decreased the ratio of adiponectin:leptin secreted by adipocytes, altering the adipose-dependent growth microenvironment resulting in increased breast cancer cell proliferation. Supplementation with RSV reversed these adipose-dependent effects suggesting a potential for RSV as a nutritional supplementation to improve breast cancer treatment in obese patients.

  19. Proliferative endocrine effects of adipose tissue from obese animals on MCF7 cells are ameliorated by resveratrol supplementation.

    Science.gov (United States)

    Theriau, Christopher F; Sauvé, O'Llenecia S; Beaudoin, Marie-Soleil; Wright, David C; Connor, Michael K

    2017-01-01

    Obesity is clearly associated with an increased risk of breast cancer in postmenopausal women. The purpose was to determine if obesity alters the adipocyte adipokine secretion profile, thereby altering the adipose-dependent paracrine/endocrine growth microenvironment surrounding breast cancer cells (MCF7). Additionally, we determined whether resveratrol (RSV) supplementation can counteract any obesity-dependent effects on breast cancer tumor growth microenvironment. Obese ZDF rats received standard chow diet or diet supplemented with 200 mg/kg body weight RSV. Chow-fed Zucker rats served as lean controls. After 6 weeks, conditioned media (CM) prepared from inguinal subcutaneous adipose tissue (scAT) was added to MCF7 cells for 24 hrs. Experiments were also conducted using purified isolated adipocytes to determine whether any endocrine effects could be attributed specifically to the adipocyte component of adipose tissue. scAT from ZDF rats promoted cell cycle entry in MCF7 cells which was counteracted by RSV supplementation. RSV-CM had a higher ratio of ADIPO:LEP compared to ZDF-CM. This altered composition of the CM led to increased levels of pAMPKT172, p27, p27T198 and AdipoR1 while decreasing pAktT308 in MCF7 cells grown in RSV-CM compared to ZDF-CM. RSV-CM increased number of cells in G0/G1 and decreased cells in S-phase compared to ZDF-CM. Co-culture experiments revealed that these obesity-dependent effects were driven by the adipocyte component of the adipose tissue. Obesity decreased the ratio of adiponectin:leptin secreted by adipocytes, altering the adipose-dependent growth microenvironment resulting in increased breast cancer cell proliferation. Supplementation with RSV reversed these adipose-dependent effects suggesting a potential for RSV as a nutritional supplementation to improve breast cancer treatment in obese patients.

  20. Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Kwiatkowska, Ewa; Wojtala, Martyna; Gajewska, Agnieszka; Soszyński, Mirosław; Bartosz, Grzegorz; Sadowska-Bartosz, Izabela

    2016-02-01

    Novel approaches to cancer chemotherapy employ metabolic differences between normal and tumor cells, including the high dependence of cancer cells on glycolysis ("Warburg effect"). 3-Bromopyruvate (3-BP), inhibitor of glycolysis, belongs to anticancer drugs basing on this principle. 3-BP was tested for its capacity to kill human non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. We found that 3-BP was more toxic for MDA-MB-231 cells than for MCF-7 cells. In both cell lines, a statistically significant decrease of ATP and glutathione was observed in a time- and 3-BP concentration-dependent manner. Transient increases in the level of reactive oxygen species and reactive oxygen species was observed, more pronounced in MCF-7 cells, followed by a decreasing tendency. Activities of glutathione peroxidase, glutathione reductase (GR) and glutathione S-transferase (GST) decreased in 3-BP treated MDA-MB-231 cells. For MCF-7 cells decreases of GR and GST activities were noted only at the highest concentration of 3-BP.These results point to induction of oxidative stress by 3-BP via depletion of antioxidants and inactivation of antioxidant enzymes, more pronounced in MDA-MB-231 cells, more sensitive to 3-BP.

  1. Non-homologous end joining pathway is the major route of protection against 4β-hydroxywithanolide E-induced DNA damage in MCF-7 cells.

    Science.gov (United States)

    You, B-J; Wu, Y-C; Lee, C-L; Lee, H-Z

    2014-03-01

    4β-Hydroxywithanolide E is a bioactive withanolide extracted from Physalis peruviana. 4β-Hydroxywithanolide E caused reactive oxygen species production and cell apoptosis in human breast cancer MCF-7 cells. We further found that 4β-hydroxywithanolide E induced DNA damage and regulated the DNA damage signaling in MCF-7 cells. The DNA damage sensors and repair proteins act promptly to remove DNA lesions by 4β-hydroxywithanolide E. The ataxia-telangiectasia mutated protein (ATM)-dependent DNA damage signaling pathway is involved in 4β-hydroxywithanolide E-induced apoptosis of MCF-7 cells. Non-homologous end joining pathway, but not homologous recombination, is the major route of protection of MCF-7 cells against 4β-hydroxywithanolide E-induced DNA damage. 4β-Hydroxywithanolide E had no significant impact on the base excision repair pathway. In this study, we examined the 4β-hydroxywithanolide E-induced DNA damage as a research tool in project investigating the DNA repair signaling in breast cancer cells. We also suggest that 4β-hydroxywithanolide E assert its anti-tumor activity in carcinogenic progression and develop into a dietary chemopreventive agent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Peptide Hydrogelation and Cell Encapsulation for 3D Culture of MCF-7 Breast Cancer Cells

    Science.gov (United States)

    Sun, Xiuzhi S.; Nguyen, Thu A.

    2013-01-01

    Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing. PMID:23527204

  3. Selection of a MCF-7 Breast Cancer Cell Subpopulation with High Sensitivity to IL-1β: Characterization of and Correlation between Morphological and Molecular Changes Leading to Increased Invasiveness

    Directory of Open Access Journals (Sweden)

    Eloy Andres Pérez-Yépez

    2012-01-01

    Full Text Available Cancer and inflammation are closely related in tumor malignancy prognosis. Breast cancer MCF-7 cells have a poor invasive phenotype, although, under IL-1β stimulus, acquire invasive features. Cell response heterogeneity has precluded precise evaluation of the malignant transition. MCF-7A3 cells were selected for high sensitivity to IL-1β stimulus, uniform expression of CXCR4, and stability of IL1-RI. Structural changes, colony formation ability, proliferation rate, chemotaxis, Matrigel invasion, E-cadherin mRNA expression and protein localization were determined in these cells and in MCF-7 parental cells under the stimulus of IL-1β. Selected MCF-7A3 cells showed a uniform response to IL-1β stimulation increasing features of invasive cells such as scattering, colony formation, proliferation, chemokinesis and invasion. Basal expression of E-cadherin mRNA was higher, and IL-1β stimulus had no further effect at early times of cytokine exposure. Total E-cadherin levels remained unchanged in parental cells, whereas levels decreased, as MCF-7A3 cells became fibroblastoid or scattered. Triton X-100 soluble/insoluble E-cadherin ratios were highly increased in these cells, while, in MCF-7pl cells, ratios could not be correlated with morphology changes. MCF-7A3 cells uniform response to IL-1β allowed characterization of changes induced by the cytokine that had not been assessed when using heterogeneous cell lines.

  4. Effect of specific silencing of EMMPRIN on the growth and cell cycle distribution of MCF-7 breast cancer cells.

    Science.gov (United States)

    Yang, X Q; Yang, J; Wang, R; Zhang, S; Tan, Q W; Lv, Q; Meng, W T; Mo, X M; Li, H J

    2015-12-02

    The extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a member of the immunoglobulin family and shows increased expression in tumor cells. We examined the effect of RNAi-mediated EMMPRIN gene silencing induced by lentiviral on the growth and cycle distribution of MCF-7 breast cancer cells. Lentiviral expressing EMMPRIN-short hairpin RNA were packaged to infect MCF-7 cells. The inhibition efficiency of EMMPRIN was validated by real-time fluorescent quantitation polymerase chain reaction and western blotting. The effect of EMMPRIN on cell proliferation ability was detected using the MTT assay and clone formation experiments. Changes in cell cycle were detected by flow cytometry. EMMPRIN-short hairpin RNA-packaged lentiviral significantly down-regulated EMMPRIN mRNA and protein expression, significantly inhibited cell proliferation and in vitro tumorigenicity, and induced cell cycle abnormalities. Cells in the G0/G1 and G2/M phases were increased, while cells in the S phase were decreased after infection of MCF-7 cells for 3 days. The EMMPRIN gene facilitates breast cancer cell malignant proliferation by regulating cell cycle distribution and may be a molecular target for breast cancer gene therapy.

  5. Protein kinase D1 stimulates proliferation and enhances tumorigenesis of MCF-7 human breast cancer cells through a MEK/ERK-dependent signaling pathway

    International Nuclear Information System (INIS)

    Karam, Manale; Legay, Christine; Auclair, Christian; Ricort, Jean-Marc

    2012-01-01

    Protein kinase D1, PKD1, is a novel serine/threonine kinase whose altered expression and dysregulation in many tumors as well as its activation by several mitogens suggest that this protein could regulate proliferation and tumorigenesis. Nevertheless, the precise signaling pathways used are still unclear and the potential direct role of PKD1 in tumor development and progression has not been yet investigated. In order to clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the effects of PKD1 overexpression in a human adenocarcinoma breast cancer cell line, MCF-7 cells. We demonstrated that overexpression of PKD1 specifically promotes MCF-7 cell proliferation through accelerating G0/G1 to S phase transition of the cell cycle. Moreover, inhibition of endogenous PKD1 significantly reduced cell proliferation. Taken together, these results clearly strengthen the regulatory role of PKD1 in cell growth. We also demonstrated that overexpression of PKD1 specifically diminished serum- and anchorage-dependence for proliferation and survival in vitro and allowed MCF-7 cells to form tumors in vivo. Thus, all these data highlight the central role of PKD1 in biological processes which are hallmarks of malignant transformation. Analysis of two major signaling pathways implicated in MCF-7 cell proliferation showed that PKD1 overexpression significantly increased ERK1/2 phosphorylation state without affecting Akt phosphorylation. Moreover, PKD1 overexpression-stimulated cell proliferation and anchorage-independent growth were totally impaired by inhibition of the MEK/ERK kinase cascade. However, neither of these effects was affected by blocking the PI 3-kinase/Akt signaling pathway. Thus, the MEK/ERK signaling appears to be a determining pathway mediating the biological effects of PKD1 in MCF-7 cells. Taken together, all these data demonstrate that PKD1 overexpression increases the aggressiveness of MCF-7 breast cancer cells through enhancing their oncogenic

  6. Dendrobium candidum inhibits MCF-7 cells proliferation by inducing cell cycle arrest at G2/M phase and regulating key biomarkers

    Directory of Open Access Journals (Sweden)

    Sun J

    2015-12-01

    Full Text Available Jing Sun,1 Yidi Guo,1 Xueqi Fu,1–3 Yongsen Wang,1 Ye Liu,1 Bo Huo,1 Jun Sheng,4 Xin Hu1–3 1School of Life Sciences, 2Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, 3National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 4Yunnan Research Centre for Advance Tea Processing, Yunnan Agricultural University, Kunming, People’s Republic of China Background: Breast cancer is one of the most frequently occurring cancers in women. In recent years, Dendrobium candidum has played a part in antihyperthyroidism and anticancer drugs. This study aims to examine the antitumor effect of D. candidum on breast cancer. Methods: Human breast cancer cell line MCF-7 and normal breast epithelial cell line MCF10A were used to observe the effects of D. candidum treatment on human breast cancer. 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was employed to examine the cell proliferation of the MCF-7 and MCF10A cells. Western blot analysis and reverse transcription polymerase chain reaction were used to detect the key molecules and biomarkers in breast cancer pathology. Cell cycle was analyzed by using Becton Dickinson FACScan cytofluorometer. Results: The results indicated that D. candidum significantly decreased cell viability at different concentrations compared to the control group (P<0.05. D. candidum-treated MCF-7 cells in the G2/M phase was significantly increased compared to the control group (P<0.05. The messenger RNA levels of estrogen receptor alpha, IGFBP2, IGFBP4, and GATA3 were significantly decreased, and the messenger RNA and protein levels of ELF5, p53, p21, p18, CDH1, CDH2, and p12 were significantly increased, compared to the control group (P<0.05. The protein levels of estrogen receptor alpha, PGR, GATA3, and Ki67 were significantly decreased and the protein levels of p53 and ELF5 were significantly increased compared to the control group (P

  7. The Activity of Sirtuin 1 in MCF-7 Breast Cancer Cell Line: The Effects of Visfatin

    Directory of Open Access Journals (Sweden)

    kiarash behrouzfar

    2015-11-01

    Full Text Available Background & Objectives: Breast cancer is the most common cancer and the second leading cause of cancer deaths among women. Obesity, hormones, and growth factors are the risk factors for this kind of cancer. One of the changes observed in patients suffering from breast cancer is the elevated Visfatin or nicotinamide phosphoribosyl transferase (NAMPT in their tumor tissues and blood. The increased activity of Visfatin and SIRT1 (Sirtuin 1 in breast cancer and many other cancers has been determined, and its value is correlated with cancer prognosis. The aim of the present study is to investigate the effects of Visfatin on SIRT1 activity in MCF-7 breast cancer cell line. Materials & Methods: In this study, in order to investigate the effects of Visfatin on SIRT1 activity in MCF-7 cells, cells were treated after cell culture by Visfatin for 12, 24, and 48 hours. Subsequently, the cells were lysed by nuclear extraction kit, and their total protein concentrations were measured by Bradford assay. Finally, we estimated the general activity of SIRT1 by measuring the SIRT1 activity with the assay kit via spectrofluorometric device. Results: The findings of this research show that SIRT1 activity is not significantly changed following Visfatin treatments for 12 and 24 hours. However, after 48 hour, Visfatin increases SIRT1 activity about 2 times more than control group. Conclusion: The antiapoptotic effects of Visfatin are exerted by increasing SIRT1 activity in MCF-7 cells, and these effects happen after 24 hours. 

  8. Effect of administration route on FES uptake into MCF-7 tumors

    International Nuclear Information System (INIS)

    Downer, Joanna B.; Jones, Lynne A.; Katzenellenbogen, John A.; Welch, Michael J.

    2001-01-01

    We have observed that intraperitoneal administration of [ 18 F]fluoroestradiol (FES), a radiolabeled estrogen receptor ligand, results in higher abdominal organ uptake and slower blood clearance than intravenous administration in female mice. In SCID mice bearing MCF-7 human tumors SC, IP administration resulted in tumor uptake that was only about one third that obtained with IV administration. Thus, the route of administration of a radiopharmaceutical for imaging or radiotherapy of a tumor in the abdomen, an ovarian tumor, for example, could have a profound effect on the efficiency and selectivity of delivery of the agent to the tumor

  9. Antibodies to Placental Immunoregulatory Ferritin with Transfer of Polyclonal Lymphocytes Arrest MCF-7 Human Breast Cancer Growth in a Nude Mouse Model

    Directory of Open Access Journals (Sweden)

    Marisa Halpern

    2007-06-01

    Full Text Available The recently cloned human gene named “placental immunoregulatory ferritin” (PLIF is a pregnancyrelated immunomodulator. Recombinant PLIF and its bioactive domain C48 are immune-suppressive and induce pronounced IL-10 production by immune cells. PLIF is expressed in the placenta and breast cancer cells. Blocking PLIF in pregnant mice by anti-C48 antibodies inhibited placental and fetal growth and modulated the cytokine network. It has been revealed that anti-C48 treatment inhibited MCF-7 tumor growth in nude mice. However, this significant effect was observed only in those transfused with human peripheral blood mononuclear cells. Blocking PLIF in tumor-engrafted human immune cell transfused mice resulted in massive infiltration of human CD45+ cells (mainly CD8+ T cells, both intratumorally and in the tumor periphery, and a significant number of caspase-3+ cells. In vitro, antiC48 treatment of MCF-7 tumor cells cocultured with human lymphocytes induced a significant increase in interferon-γ secretion. We conclude that blocking PLIF inhibits breast cancer growth, possibly by an effect on the cytokine network in immune cells and on breakdown of immunosuppression.

  10. Role of Zn doping in oxidative stress mediated cytotoxicity of TiO2 nanoparticles in human breast cancer MCF-7 cells

    Science.gov (United States)

    Ahamed, Maqusood; Khan, M. A. Majeed; Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws

    2016-07-01

    We investigated the effect of Zn-doping on structural and optical properties as well as cellular response of TiO2 nanoparticles (NPs) in human breast cancer MCF-7 cells. A library of Zn-doped (1-10 at wt%) TiO2 NPs was prepared. Characterization data indicated that dopant Zn was incorporated into the lattice of host TiO2. The average particle size of TiO2 NPs was decreases (38 to 28 nm) while the band gap energy was increases (3.35 eV-3.85 eV) with increasing the amount of Zn-doping. Cellular data demonstrated that Zn-doped TiO2 NPs induced cytotoxicity (cell viability reduction, membrane damage and cell cycle arrest) and oxidative stress (reactive oxygen species generation & glutathione depletion) in MCF-7 cells and toxic intensity was increases with increasing the concentration of Zn-doping. Molecular data revealed that Zn-doped TiO2 NPs induced the down-regulation of super oxide dismutase gene while the up-regulation of heme oxygenase-1 gene in MCF-7 cells. Cytotoxicity induced by Zn-doped TiO2 NPs was efficiently prevented by N-acetyl-cysteine suggesting that oxidative stress might be the primarily cause of toxicity. In conclusion, our data indicated that Zn-doping decreases the particle size and increases the band gap energy as well the oxidative stress-mediated toxicity of TiO2 NPs in MCF-7 cells.

  11. In silico analysis of the potential mechanism of telocinobufagin on breast cancer MCF-7 cells.

    Science.gov (United States)

    Dang, Yi-Wu; Lin, Peng; Liu, Li-Min; He, Rong-Quan; Zhang, Li-Jie; Peng, Zhi-Gang; Li, Xiao-Jiao; Chen, Gang

    2018-05-01

    The extractives from a ChanSu, traditional Chinese medicine, have been discovered to possess anti-inflammatory and tumor-suppressing abilities. However, the molecular mechanism of telocinobufagin, a compound extracted from ChanSu, on breast cancer cells has not been clarified. The aim of this study is to investigate the underlying mechanism of telocinobufagin on breast cancer cells. The differentially expressed genes after telocinobufagin treatment on breast cancer cells were searched and downloaded from Gene Expression Omnibus (GEO), ArrayExpress and literatures. Bioinformatics tools were applied to further explore the potential mechanism of telocinobufagin in breast cancer using the Kyoto Encyclopedia of genes and genomes (KEGG) pathway, Gene ontology (GO) enrichment, panther, and protein-protein interaction analyses. To better comprehend the role of telocinobufagin in breast cancer, we also queried the Connectivity Map using the gene expression profiles of telocinobufagin treatment. One GEO accession (GSE85871) provided 1251 differentially expressed genes after telocinobufagin treatment on MCF-7 cells. The pathway of neuroactive ligand-receptor interaction, cell adhesion molecules (CAMs), intestinal immune network for IgA production, hematopoietic cell lineage and calcium signaling pathway were the key pathways from KEGG analysis. IGF1 and KSR1, owning to higher protein levels in breast cancer tissues, IGF1 and KSR1 could be the hub genes related to telocinobufagin treatment. It was indicated that the molecular mechanism of telocinobufagin resembled that of fenspiride. Telocinobufagin might regulate neuroactive ligand-receptor interaction pathway to exert its influences in breast cancer MCF-7 cells, and its molecular mechanism might share some similarities with fenspiride. This study only presented a comprehensive picture of the role of telocinobufagin in breast cancer MCF-7 cells using big data. However, more thorough and deeper researches are required to add

  12. Inhibition of UBE2D3 expression attenuates radiosensitivity of MCF-7 human breast cancer cells by increasing hTERT expression and activity.

    Directory of Open Access Journals (Sweden)

    Wenbo Wang

    Full Text Available The known functions of telomerase in tumor cells include replenishing telomeric DNA and maintaining cell immortality. We have previously shown the existence of a negative correlation between human telomerase reverse transcriptase (hTERT and radiosensitivity in tumor cells. Here we set out to elucidate the molecular mechanisms underlying regulation by telomerase of radiosensitivity in MCF-7 cells. Toward this aim, yeast two-hybrid (Y2H screening of a human laryngeal squamous cell carcinoma radioresistant (Hep2R cDNA library was first performed to search for potential hTERT interacting proteins. We identified ubiquitin-conjugating enzyme E2D3 (UBE2D3 as a principle hTERT-interacting protein and validated this association biochemically. ShRNA-mediated inhibition of UBE2D3 expression attenuated MCF-7 radiosensitivity, and induced the accumulation of hTERT and cyclin D1 in these cells. Moreover, down-regulation of UBE2D3 increased hTERT activity and cell proliferation, accelerating G1 to S phase transition in MCF-7 cells. Collectively these findings suggest that UBE2D3 participates in the process of hTERT-mediated radiosensitivity in human breast cancer MCF-7 cells by regulating hTERT and cyclin D1.

  13. Cytotoxic activity of erypogein d from erythrina poeppigiana (leguminosae) against cervical cancer (HeLa), breast cancer (MCF-7) and ovarian cancer (SKOV-3) cells

    Science.gov (United States)

    Herlina, T.; Gaffar, S.; Widowati, W.

    2018-05-01

    Cancer is the uncontrolled growth of abnormal cells and continues to divide rapidly in the body. Current anticancer treatment usually causes many side effects. Natural products are then explored to be new alternatives for cancer treatment. Flavonoids have been known to possess medicinal properties, including anticancer. This study was performed to observe the cytotoxic activity of isoflavanone compound, erypogein D from Erythrina poeppigiana, toward cervical cancer (HeLa), breast cancer (MCF-7) and ovarian cancer (SKOV-3) cells. The cytotoxic activity of erypogein D was tested using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3- carboxyme-thoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. The percentage of cell mortality was calculated and the IC50 was analyzed using probit analysis. The result showed that cytotoxic activity of the erypogein D against HeLa, SKOV-3, and MCF-7 cells had an IC50 value 225, 70.74, and 30.12 μM, respectively. Based on IC50 value can be concluded that erypogein D is the most cytotoxic to breast cancer MCF-7 cell. However the cytotoxic activity of erypogein D toward MCF7 is moderate.

  14. Snail-induced epithelial-to-mesenchymal transition of MCF-7 breast cancer cells: systems analysis of molecular changes and their effect on radiation and drug sensitivity

    International Nuclear Information System (INIS)

    Mezencev, Roman; Matyunina, Lilya V.; Jabbari, Neda; McDonald, John F.

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) has been associated with the acquisition of metastatic potential and the resistance of cancer cells to therapeutic treatments. MCF-7 breast cancer cells engineered to constitutively express the zinc-finger transcriptional repressor gene Snail (MCF-7-Snail cells) have been previously shown to display morphological and molecular changes characteristic of EMT. We report here the results of a comprehensive systems level molecular analysis of changes in global patterns of gene expression and levels of glutathione and reactive oxygen species (ROS) in MCF-7-Snail cells and the consequence of these changes on the sensitivity of cells to radiation treatment and therapeutic drugs. Snail-induced changes in global patterns of gene expression were identified by microarray profiling using the Affymetrix platform (U133 Plus 2.0). The resulting data were processed and analyzed by a variety of system level analytical methods. Levels of ROS and glutathione (GSH) were determined by fluorescent and luminescence assays, and nuclear levels of NF-κB protein were determined by an ELISA based method. The sensitivity of cells to ionizing radiation and anticancer drugs was determined using a resazurin-based cell cytotoxicity assay. Constitutive ectopic expression of Snail in epithelial-like, luminal A-type MCF-7 cells induced significant changes in the expression of >7600 genes including gene and miRNA regulators of EMT. Mesenchymal-like MCF-7-Snail cells acquired molecular profiles characteristic of triple-negative, claudin-low breast cancer cells, and displayed increased sensitivity to radiation treatment, and increased, decreased or no change in sensitivity to a variety of anticancer drugs. Elevated ROS levels in MCF-7-Snail cells were unexpectedly not positively correlated with NF-κB activity. Ectopic expression of Snail in MCF-7 cells resulted in morphological and molecular changes previously associated with EMT. The results underscore the

  15. Self-assembled monolayers with different chemical group substrates for the study of MCF-7 breast cancer cell line behavior

    International Nuclear Information System (INIS)

    Yan, Hongji; Yin, Yanbin; Li, Yu; Tian, Weiming; Zhang, Song; Nie, Yongzhan; He, Jin; Wang, Xiumei; Cui, Fuzhai; Chen, Xiongbiao

    2013-01-01

    The interactions between cancer cells and the extracellular matrix (ECM) are important with respect to a number of cell behavoirs, yet remain unclear. In this study, self-assembled monolayers with different terminal chemical groups (hydroxyl (-OH), carboxyl (-COOH), animo (-NH 2 ), mercapto (-SH), and methyl (-CH 3 )) were employed as substrates for the culture of MCF-7 cells to examine effects on cell behavior. Cell spreading was investigated by scanning electron microscopy, tallin expression by immunofluorescence, proliferation rate by counting cell numbers, cell cycle by flow cytometry, metabolism by high-performance liquid chromatography and cell migration by live cell imaging. Annexin V-FITC (fluorescein isothiocyanate) and JC-1 assays were performed to determine cell apoptosis and mitochondrial membrane potential, respectively. Our results demonstrate the varied behaviors of MCF-7 cells in response to different chemical groups. Specifically, NH 2 and COOH terminal functional groups promote proliferation, the production of lactic acid and mobility of MCF-7 cells; SH and OH terminal groups enhance the expression and distribution of tallin but result in weak cell proliferation, metabolism, spreading and mobility. These results are meaningful for uncovering the interactions between the ECM and cancer cells; they are potentially useful for designing novel cancer treatment strategies. (paper)

  16. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    Abrahim Noor

    2012-11-01

    Full Text Available Abstract Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml. Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide

  17. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase.

    Science.gov (United States)

    Abrahim, Noor Nazirahanie; Kanthimathi, M S; Abdul-Aziz, Azlina

    2012-11-15

    Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense

  18. Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine

    International Nuclear Information System (INIS)

    Rathinasamy, Krishnan; Jindal, Bhavya; Asthana, Jayant; Singh, Parminder; Balaji, Petety V; Panda, Dulal

    2010-01-01

    Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug. The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied in vitro by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1. Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the αβ intra-dimer interface. In combination studies, griseofulvin and vinblastine were found to exert synergistic

  19. JNK1/2 Activation by an Extract from the Roots of Morus alba L. Reduces the Viability of Multidrug-Resistant MCF-7/Dox Cells by Inhibiting YB-1-Dependent MDR1 Expression

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2013-01-01

    Full Text Available Cancer cells acquire anticancer drug resistance during chemotherapy, which aggravates cancer disease. MDR1 encoded from multidrug resistance gene 1 mainly causes multidrug resistance phenotypes of different cancer cells. In this study, we demonstrate that JNK1/2 activation by an extract from the root of Morus alba L. (White mulberry reduces doxorubicin-resistant MCF-7/Dox cell viability by inhibiting YB-1 regulation of MDR1 gene expression. When MCF-7 or MCF-7/Dox cells, where MDR1 is highly expressed were treated with an extract from roots or leaves of Morus alba L., respectively, the root extract from the mulberry (REM but not the leaf extract (LEM reduced cell viabilities of both MCF-7 and MCF-7/Dox cells, which was enhanced by cotreatment with doxorubicin. REM but not LEM further inhibited YB-1 nuclear translocation and its regulation of MDR1 gene expression. Moreover, REM promoted phosphorylation of c-Jun NH2-terminal kinase 1/2 (JNK1/2 and JNK1/2 inhibitor, SP600125 and rescued REM inhibition of both MDR1 expression and viabilities in MCF-7/Dox cells. Consistently, overexpression of JNK1, c-Jun, or c-Fos inhibited YB-1-dependent MDR1 expression and reduced viabilities in MCF-7/Dox cells. In conclusion, our data indicate that REM-activated JNK-cJun/c-Fos pathway decreases the viability of MCF-7/Dox cells by inhibiting YB-1-dependent MDR1 gene expression. Thus, we suggest that REM may be useful for treating multidrug-resistant cancer cells.

  20. Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines.

    Science.gov (United States)

    Sarvmeili, Najmeh; Jafarian-Dehkordi, Abbas; Zolfaghari, Behzad

    2016-12-01

    Several attempts have so far been made in the search of new anticancer agents of plant origin. Some studies have reported that different species of Pine genus possess cytotoxic activities against various cancer cell lines. In the present study, we evaluated the cytotoxic effects of Pinus eldarica bark and leaf extracts or leaf essential oil on HeLa and MCF-7 tumor cell lines. Hydroalcoholic and phenolic extracts and the essential oil of plant were prepared. Total phenolic contents of the extracts were measured using Folin-Ciocalteu reagent. Essential oil components were determined by gas chromatography-mass spectroscopy (GC-MS). Cytotoxic activity of the extracts and essential oil against HeLa and MCF-7 tumor cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The polyphenolic content of hydroalcoholic and phenolic extracts of the bark and hydroalcoholic extract of the leaf were 48.31%, 47.2%, and 8.47%, respectively. According to the GC-MS analysis, the major components of the leaf oil of P. eldarica were: β -caryophyllene (14.8%), germacrene D (12.9%), α-terpinenyl acetate (8.15%), α -pinene (5.7%), and -α humulene (5.9%). Bark extracts and leaf essential oil of P. eldarica significantly reduced the viability of both HeLa and MCF-7 cells in a concentration dependent manner. However, leaf extract showed less inhibitory effects against both cell lines. The essential oil of P. eldarica was more cytotoxic than its hydroalcoholic and phenolic extracts. The terpenes and phenolic compounds were probably responsible for cytotoxicity of P. eldarica . Therefore, P. eldarica might have a good potential for active anticancer agents.

  1. LW-214, a newly synthesized flavonoid, induces intrinsic apoptosis pathway by down-regulating Trx-1 in MCF-7 human breast cells.

    Science.gov (United States)

    Pan, Di; Li, Wei; Miao, Hanchi; Yao, Jing; Li, Zhiyu; Wei, Libin; Zhao, Li; Guo, Qinglong

    2014-02-15

    In this study, the anticancer effect of LW-214, a newly synthesized flavonoid, against MCF-7 human breast cancer cells and the underlying mechanisms were investigated. LW-214 triggered the mitochondrial apoptotic pathway by increasing Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (ΔΨm) and caspase-9 activation, degradation of poly (ADP-ribose) polymerase (PARP), cytochrome c (Cyt c) release and apoptosis-inducing factor (AIF) transposition. Further research revealed that both the reactive oxygen species (ROS) generation and the apoptosis signal regulating kinase 1 (ASK1) activation by LW-214 were induced by down-regulating the thioredoxin-1 (Trx-1) expression. The ROS elevation and ASK1 activation induced a sustained phosphorylation of c-Jun N-terminal kinase (JNK), while SP600125, as known as JNK inhibitor, almost reversed LW-214-induced apoptosis in MCF-7 cells. Overexpression of Trx-1 in MCF-7 cells attenuated LW-214-mediated apoptosis as well as the JNK activation and reversed the expression of mitochondrial apoptosis-related protein. Accordingly, the in vivo study showed that LW-214 exhibited a potential antitumor effect in BALB/c species mice inoculated MCF-7 tumor with low systemic toxicity, and the mechanism was the same as in vitro study. Taken together, these findings indicated that LW-214 may down-regulated Trx-1 function, causing intracellular ROS generation and releasing the ASK1, and lead to JNK activation, which consequently induced the mitochondrial apoptosis in vitro and in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. MCF-7 human mammary adenocarcinoma cells exhibit augmented responses to human insulin on a collagen IV surface

    DEFF Research Database (Denmark)

    Listov-Saabye, Nicolai; Jensen, Marianne Blirup; Kiehr, Benedicte

    2009-01-01

    Human mammary cell lines are extensively used for preclinical safety assessment of insulin analogs. However, it is essentially unknown how mitogenic responses can be optimized in mammary cell-based systems. We developed an insulin mitogenicity assay in MCF-7 human mammary adenocarcinoma cells......, under low serum (0.1% FCS) and phenol red-free conditions, with 3H thymidine incorporation as endpoint. Based on EC50 values determined from 10-fold dilution series, beta-estradiol was the most potent mitogen, followed by human IGF-1, human AspB10 insulin and native human insulin. AspB10 insulin...... was significantly more mitogenic than native insulin, validating the ability of the assay to identify hypermitogenic human insulin analogs. With MCF-7 cells on a collagen IV surface, the ranking of mitogens was maintained, but fold mitogenic responses and dynamic range and steepness of dose-response curves were...

  3. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    Science.gov (United States)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  4. Mentha arvensis (Linn.-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells

    Directory of Open Access Journals (Sweden)

    Banerjee PP

    2017-04-01

    Full Text Available Prajna Paramita Banerjee,1 Arindam Bandyopadhyay,1 Singapura Nagesh Harsha,2 Rudragoud S Policegoudra,3 Shelley Bhattacharya,4 Niranjan Karak,2 Ansuman Chattopadhyay1 1Molecular Genetics Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, 2Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Center for Polymer Science and Technology, Tezpur University, Napaam, 3Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, 4Environmental Toxicology Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India Introduction: Leaf extract of Mentha arvensis or mint plant was used as reducing agent for the synthesis of green silver nanoparticles (GSNPs as a cost-effective, eco-friendly process compared to that of chemical synthesis. The existence of nanoparticles was characterized by ultraviolet–visible spectrophotometry, dynamic light scattering, Fourier transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray analysis, atomic-force microscopy and transmission electron microscopy analyses, which ascertained the formation of spherical GSNPs with a size range of 3–9 nm. Anticancer activities against breast cancer cell lines (MCF7 and MDA-MB-231 were studied and compared with those of chemically synthesized (sodium borohydride [NaBH4]-mediated silver nanoparticles (CSNPs. Materials and methods: Cell survival of nanoparticle-treated and untreated cells was studied by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assay. Cell-cycle analyses were carried out using fluorescence-activated cell sorting. Cell morphology was observed by fluorescence microscopy. Expression patterns of PARP1, P53, P21, Bcl2, Bax and cleaved caspase 9 as well as caspase 3 proteins in treated and untreated MCF7 and MDA-MB-231 cells were studied by Western blot method. Results: MTT assay results showed that Mentha arvensis-mediated GSNPs

  5. H19 lncRNA mediates 17β-estradiol-induced cell proliferation in MCF-7 breast cancer cells.

    Science.gov (United States)

    Sun, Hong; Wang, Guo; Peng, Yan; Zeng, Ying; Zhu, Qiong-Ni; Li, Tai-Lin; Cai, Jia-Qin; Zhou, Hong-Hao; Zhu, Yuan-Shan

    2015-06-01

    Estrogen plays a critical role in breast cancer development and progression. However, the mechanism involved in the promotion of breast cancer development and progression by estrogen remains unclear although it has been intensively studied. In the present study, we investigated the estrogen inducibility and functional significance of H19 lncRNA in breast cancer cells and tumor tissues. The screening of 83 disease-related long non-coding RNAs (lncRNAs) revealed that H19 lncRNA was much higher in estrogen receptor (ER)-positive MCF-7 breast cancer cells than in ER-negative MDA-MB-231 cells. 17β-estradiol produced a dose- and time-dependent induction of H19 expression in MCF-7 cells, which was mediated via ERα as evident by the blockade of this 17β-estradiol effect with ICI 182780, a specific ER antagonist and knockdown of ERα using specific RNAi. Moreover, knockdown of H19 lncRNA decreased cell survival and blocked estrogen-induced cell growth while overexpression of H19 lncRNA stimulated cell proliferation. Quantitation of H19 lncRNA in human breast cancer tissues showed that the level of H19 lncRNA was >10-fold higher in ER-positive than in ER-negative tumor tissues. These results suggest that H19 is an estrogen-inducible gene and plays a key role in cell survival and in estrogen-induced cell proliferation in MCF-7 cells, indicating that H19 lncRNA may serve as a biomarker for breast cancer diagnosis and progression, and as a valuable target for breast cancer therapy.

  6. An Îto stochastic differential equations model for the dynamics of the MCF-7 breast cancer cell line treated by radiotherapy.

    Science.gov (United States)

    Oroji, Amin; Omar, Mohd; Yarahmadian, Shantia

    2016-10-21

    In this paper, a new mathematical model is proposed for studying the population dynamics of breast cancer cells treated by radiotherapy by using a system of stochastic differential equations. The novelty of the model is essentially in capturing the concept of the cell cycle in the modeling to be able to evaluate the tumor lifespan. According to the cell cycle, each cell belongs to one of three subpopulations G, S, or M, representing gap, synthesis and mitosis subpopulations. Cells in the M subpopulation are highly radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant. Therefore, in the process of radiotherapy, cell death rates of different subpopulations are not equal. In addition, since flow cytometry is unable to detect apoptotic cells accurately, the small changes in cell death rate in each subpopulation during treatment are considered. Subsequently, the proposed model is calibrated using experimental data from previous experiments involving the MCF-7 breast cancer cell line. Consequently, the proposed model is able to predict tumor lifespan based on the number of initial carcinoma cells. The results show the effectiveness of the radiation under the condition of stability, which describes the decreasing trend of the tumor cells population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Roles of p53 and caspases in induction of apoptosis in MCF- 7 breast cancer cells treated with a methanolic extract of Nigella sativa seeds.

    Science.gov (United States)

    Alhazmi, Mohammed I; Hasan, Tarique N; Shafi, Gowhar; Al-Assaf, Abdullah H; Alfawaz, Mohammed A; Alshatwi, Ali A

    2014-01-01

    Nigella Sativa (NS) is an herb from the Ranunculaceae family that exhibits numerous medicinal properties and has been used as important constituent of many complementary and alternative medicines (CAMs). The ability of NS to kill cancer cells such as PC3, HeLa and hepatoma cells is well established. However, our understanding of the mode of death caused by NS remains nebulous. The objective of this study was to gain further insight into the mode and mechanism of death caused by NS in breast cancer MCF-7 cells. Human breast cancer cells (MCF-7) were treated with a methanolic extract of NS, and a dose- and time-dependent study was performed. The IC50 was calculated using a Cell Titer Blue® viability assay assay, and evidence for DNA fragmentation was obtained by fluorescence microscopy TUNEL assay. Gene expression was also profiled for a number of apoptosis-related genes (Caspase-3, -8, -9 and p53 genes) through qPCR. The IC50 of MCF-7 cells was 62.8 μL/mL. When MCF-7 cells were exposed to 50 μL/mL and 100 μL/mL NS for 24 h, 48 h and 72 h, microscopic examination (TUNEL assay) revealed a dose- and time-dependent increase in apoptosis. Similarly, the expression of the Caspase-3, -8, -9 and p53 genes increased significantly according to the dose and time. NS induced apoptosis in MCF-7 cells through both the p53 and caspase pathways. NS could potentially represent an alternative source of medicine for breast cancer therapy.

  8. LncRNA Taurine-Upregulated Gene 1 Promotes Cell Proliferation by Inhibiting MicroRNA-9 in MCF-7 Cells.

    Science.gov (United States)

    Zhao, Xiao-Bo; Ren, Guo-Sheng

    2016-12-01

    This study was designed to investigate the role of taurine-upregulated gene 1 ( TUG1 ) in MCF-7 breast cancer cells and the molecular mechanism involved in the regulation of microRNA-9 (miR-9). The expression of TUG1 in breast cancer tissues and cells was evaluated using quantitative reverse transcription polymerase chain reaction. Cell viability was examined using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay; cell cycle progression and apoptosis were analyzed using flow cytometry. A dual luciferase reporter assay was used to detect the relationship between TUG1 and miR-9. The expression of methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) was measured by western blot. Higher expression of TUG1 was observed in breast cancer tissues and cell lines than in the corresponding controls. TUG1 knockdown reduced proliferation, suppressed cell cycle progression, and promoted apoptosis of MCF-7 cells. The dual luciferase reporter assay showed that TUG1 could negatively regulate the expression of miR-9. MiR-9 inhibition abrogated the effect of TUG1 knockdown on the proliferation, cell cycle progression, and apoptosis of MCF-7 cells. TUG1 positively regulated the expression of MTHFD2 in breast cancer cells. TUG1 knockdown was significantly associated with decreased cell proliferation and it promoted apoptosis of breast cancer cells through the regulation of miR-9.

  9. Estrogenic activity of lambda-cyhalothrin in the MCF-7 human breast carcinoma cell line.

    Science.gov (United States)

    Zhao, Meirong; Zhang, Ying; Liu, Weiping; Xu, Chao; Wang, Lumei; Gan, Jianying

    2008-05-01

    Synthetic pyrethroids are widely used in both agricultural and urban environments for insect control. Lambda-cyhalothrin (LCT) is one of the most common pyrethroids and is used mainly for controlling mosquitoes, fleas, cockroaches, flies, and ants around households. Previous studies have addressed the environmental behaviors and acute toxicities of LCT, but little is known about its chronic toxicity, such as estrogen-like activity. In the present study, the estrogenic potential of LCT was evaluated using the MCF-7 human breast carcinoma cell line. The in vitro E-screen assay showed that 10(-7) M LCT could significantly promote MCF-7 cell proliferation, with a relative proliferative effect ratio of 45%. The cell proliferation induced by LCT could be blocked completely, however, by the addition of 10(-9) M of the estrogen receptor (ER)-antagonist ICI 182,780. The semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) results showed that the Trefoil factor 1 (pS2) and progesterone receptor gene expression were up-regulated by 10(-7) M LCT for 2- and 1.5-fold, respectively. On the other hand, RT-PCR, Western blot analysis, and immunofluorescent assay demonstrated that LCT significantly repressed the mRNA and protein expression levels of ERalpha and ERbeta. These observations indicate that LCT possesses estrogenic properties and may function as a xenoestrogen, likely via a mechanism similar to that of 17beta-estradiol. The endocrine-disruption potential of LCT should be considered when assessing the safety of this compound in sensitive environmental compartments.

  10. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation

    International Nuclear Information System (INIS)

    Murooka, Thomas T.; Rahbar, Ramtin; Fish, Eleanor N.

    2009-01-01

    The proliferative capacity of cancer cells is regulated by factors intrinsic to cancer cells and by secreted factors in the microenvironment. Here, we investigated the proto-oncogenic potential of the chemokine receptor, CCR5, in MCF-7 breast cancer cell lines. At physiological levels, CCL5, a ligand for CCR5, enhanced MCF-7.CCR5 proliferation. Treatment with the mTOR inhibitor, rapamycin, inhibited this CCL5-inducible proliferation. Because mTOR directly modulates mRNA translation, we investigated whether CCL5 activation of CCR5 leads to increased translation. CCL5 induced the formation of the eIF4F translation initiation complex through an mTOR-dependent process. Indeed, CCL5 initiated mRNA translation, shown by an increase in high-molecular-weight polysomes. Specifically, we show that CCL5 mediated a rapid up-regulation of protein expression for cyclin D1, c-Myc and Dad-1, without affecting their mRNA levels. Taken together, we describe a mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs, thereby providing CCR5-positive breast cancer cells with a proliferative advantage.

  11. Gold nanoparticles tethered cinnamic acid: preparation, characterization, and cytotoxic effects on MCF-7 breast cancer cell lines

    Science.gov (United States)

    Subramanian, Karthika; Ponnuchamy, Kumar

    2018-04-01

    The main objective of the study is to tether citrate-stabilized gold nanoparticles (CS©GNPs) with cinnamic acid (CA) and evaluating them against MCF-7 breast cancer cells. To achieve CA CS©GNPs, CS©GNPs prepared were blended with CA under controlled experimental conditions followed by high-throughput characterization. The result from the study demonstrates that positively charged hydrogen moiety present in O-H group of CA provides an opportunity for binding of CS©GNPs via hydrogen bonding evidenced by color change (ruby to light purple) and spectroscopic analysis (UV-visible and FT-IR spectroscopy). The size and shape of CA CS©GNPs were not the same as CS©GNPs substantiated by transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements. At the end, cytotoxic and morphological assessment against MCF-7 breast cancer cells shows effective suppression of tumor cells and thereby promoting them as promising nanoscale drug delivery system in near future.

  12. Assessing oestrogenic effects of brominated flame retardants Hexabromocyclododecane and Tetrabromobisphenol A on MCF-7 cells

    Czech Academy of Sciences Publication Activity Database

    Dorosh, Andriy; Děd, Lukáš; Elzeinová, Fatima; Pěknicová, Jana

    2010-01-01

    Roč. 56, - (2010), s. 35-39 ISSN 0015-5500 R&D Projects: GA MŠk(CZ) 1M06011; GA MŠk(CZ) 2B06151 Institutional research plan: CEZ:AV0Z50520701 Keywords : endocrine disruptors * BRF - brominated flame retardant * MCF-7 cells * TFF1 - trefoil factor Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 0.729, year: 2010

  13. Evaluation of estrogenic potential of flavonoids using a recombinant yeast strain and MCF7/BUS cell proliferation assay.

    Directory of Open Access Journals (Sweden)

    Flávia A Resende

    Full Text Available Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. Furthermore, there is a search for compounds with estrogenic activity that can replace estrogen in hormone replacement therapy during menopause, without the undesirable effects of estrogen, such as the elevation of breast cancer occurrence. Thus, the principal objective of this study was to assess the estrogenic activity of flavonoids with different hydroxylation patterns: quercetin, kaempferol, luteolin, fisetin, chrysin, galangin, flavone, 3-hydroxyflavone, 5-hydroxyflavone and 7-hydroxyflavone via two different in vitro assays, the recombinant yeast assay (RYA and the MCF-7 proliferation assay (E-screen, since the most potent phytoestrogens are members of the flavonoid family. In these assays, kaempferol was the only compound that showed ERα-dependent transcriptional activation activity by RYA, showing 6.74±1.7 nM EEQ, besides acting as a full agonist for the stimulation of proliferation of MCF-7/BUS cells. The other compounds did not show detectable levels of interaction with ER under the conditions used in the RYA. However, in the E-screen assay, compounds such as galangin, luteolin and fisetin also stimulated the proliferation of MCF-7/BUS cells, acting as partial agonists. In the evaluation of antiestrogenicity, the compounds quercetin, chrysin and 3-hydroxyflavone significantly inhibited the cell proliferation induced by 17-β-estradiol in the E-screen assay, indicating that these compounds may act as estrogen receptor antagonists. Overall, it became clear in the assay results that the estrogenic activity of flavonoids was affected by small structural differences such as the number of hydroxyl groups, especially those on the B ring of the flavonoid.

  14. Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Giddings Ian

    2011-06-01

    Full Text Available Abstract Background Benzo[a]pyrene (BaP is a widespread environmental genotoxic carcinogen that damages DNA by forming adducts. This damage along with activation of the aryl hydrocarbon receptor (AHR induces complex transcriptional responses in cells. To investigate whether human cells are more susceptible to BaP in a particular phase of the cell cycle, synchronised breast carcinoma MCF-7 cells were exposed to BaP. Cell cycle progression was analysed by flow cytometry, DNA adduct formation was assessed by 32P-postlabeling analysis, microarrays of 44K human genome-wide oligos and RT-PCR were used to detect gene expression (mRNA changes and Western blotting was performed to determine the expression of some proteins, including cytochrome P450 (CYP 1A1 and CYP1B1, which are involved in BaP metabolism. Results Following BaP exposure, cells evaded G1 arrest and accumulated in S-phase. Higher levels of DNA damage occurred in S- and G2/M- compared with G0/G1-enriched cultures. Genes that were found to have altered expression included those involved in xenobiotic metabolism, apoptosis, cell cycle regulation and DNA repair. Gene ontology and pathway analysis showed the involvement of various signalling pathways in response to BaP exposure, such as the Catenin/Wnt pathway in G1, the ERK pathway in G1 and S, the Nrf2 pathway in S and G2/M and the Akt pathway in G2/M. An important finding was that higher levels of DNA damage in S- and G2/M-enriched cultures correlated with higher levels of CYP1A1 and CYP1B1 mRNA and proteins. Moreover, exposure of synchronised MCF-7 cells to BaP-7,8-diol-9,10-epoxide (BPDE, the ultimate carcinogenic metabolite of BaP, did not result in significant changes in DNA adduct levels at different phases of the cell cycle. Conclusions This study characterised the complex gene response to BaP in MCF-7 cells and revealed a strong correlation between the varying efficiency of BaP metabolism and DNA damage in different phases of the cell

  15. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee-Jung [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Chung, Tae-Wook; Kim, Cheorl-Ho [Department of Molecular and Cellular Glycobiology, College of Natural Science, Sungkyunkwan University, Suwon, Kyungki-do (Korea, Republic of); Jeong, Han-Sol; Joo, Myungsoo [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Youn, BuHyun, E-mail: bhyoun72@pusan.ac.kr [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Ha, Ki-Tae, E-mail: hagis@pusan.ac.kr [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. Black-Right-Pointing-Pointer Estrogen-induced B4GALT1 expression through the direct binding of ER-{alpha} to ERE in MCF-7 cells. Black-Right-Pointing-Pointer B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. Black-Right-Pointing-Pointer Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose {beta}-1,4-N-acetylglucosamine (Gal{beta}1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Gal{beta}1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-{alpha}-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering

  16. Estrogen induced β-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    International Nuclear Information System (INIS)

    Choi, Hee-Jung; Chung, Tae-Wook; Kim, Cheorl-Ho; Jeong, Han-Sol; Joo, Myungsoo; Youn, BuHyun; Ha, Ki-Tae

    2012-01-01

    Highlights: ► We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. ► Estrogen-induced B4GALT1 expression through the direct binding of ER-α to ERE in MCF-7 cells. ► B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. ► Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose β-1,4-N-acetylglucosamine (Galβ1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Galβ1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-α-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering these results, we propose that estrogen regulates the expression of B4GALT1 through the direct binding of ER-α to ERE and

  17. Equol enhances tamoxifen’s anti-tumor activity by induction of caspase-mediated apoptosis in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Charalambous, Christiana; Pitta, Chara A; Constantinou, Andreas I

    2013-01-01

    Soy phytoestrogens, such as daidzein and its metabolite equol, have been proposed to be responsible for the low breast cancer rate in Asian women. Since the majority of estrogen receptor positive breast cancer patients are treated with tamoxifen, the basic objective of this study is to determine whether equol enhances tamoxifen’s anti-tumor effect, and to identify the molecular mechanisms involved. For this purpose, we examined the individual and combined effects of equol and tamoxifen on the estrogen-dependent MCF-7 breast cancer cells using viability assays, annexin-V/PI staining, cell cycle and western blot analysis. We found that equol (>50 μM) and 4-hydroxy-tamoxifen (4-OHT; >100 nM) significantly reduced the MCF-7 cell viability. Furthermore, the combination of equol (100 μM) and 4-OHT (10 μM) induced apoptosis more effectively than each compound alone. Subsequent treatment of MCF-7 cells with the pan-caspase inhibitor Z-VAD-FMK inhibited equol- and 4-OHT-mediated apoptosis, which was accompanied by PARP and α-fodrin cleavage, indicating that apoptosis is mainly caspase-mediated. These compounds also induced a marked reduction in the bcl-2:bax ratio, which was accompanied by caspase-9 and caspase-7 activation and cytochrome-c release to the cytosol. Taken together, these data support the notion that the combination of equol and tamoxifen activates the intrinsic apoptotic pathway more efficiently than each compound alone. Consequently, equol may be used therapeutically in combination treatments and clinical studies to enhance tamoxifen’s effect by providing additional protection against estrogen-responsive breast cancers

  18. Pleurotus eous polysaccharides suppress angiogenesis and induce apoptosis via ROS-dependent JNK activation and mitochondrial mediated mechanisms in MCF-7 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Jin-Kai Xu

    2015-03-01

    Full Text Available Breast cancer is one of the most prevalent cancers among women worldwide. Chemotherapy generally leads to drug resistance and severe side effects thus making it crucial to identify and develop highly efficient chemotherapeutic agents. Recently, edible mushrooms have been strongly investigated owing to their nutritional values and bioactive compounds with health benefits. The present study investigates the effects of polysaccharides isolated from the fruiting bodies of oyster mushroom, Pleutorus eous on MCF-7 human breast cancer cells. Viability of MCF-7 following exposure to P. eous polysaccharides (PEP (50 - 250 µg/mL were markedly decreased. A raise in the levels of Reactive Oxygen Species (ROS and apoptotic cell counts were observed following PEP treatment. Futhermore, PEP down-regulated VEGF and Bcl-2 and raised caspase-3, caspase-9, Bax, phospho-JNK expressions and as well caused a significant decrease in mitochondrial membrane potential of MCF-7 cells. Thus, PEP effectively suppressed angiogenesis by down-regulating VEGF, and induced apoptosis.

  19. ETS transcription factor ELF5 induces lumen formation in a 3D model of mammary morphogenesis and its expression is inhibited by Jak2 inhibitor TG101348.

    Science.gov (United States)

    Chean, Jennifer; Chen, Charng-Jui; Shively, John E

    2017-10-01

    The loss of expression of a single gene can revert normal tissue to a malignant phenotype. For example, while normal breast has high lumenal expression of CEACAM1, the majority of breast cancers exhibit the early loss of this gene with the concurrent loss of their lumenal phenotype. MCF7 cells that lack CEACAM1 expression and fail to form lumena in 3D culture, regain the normal phenotype when transfected with CEACAM1. In order to probe the mechanism of this gain of function, we treated these cells with the clinically relevant Jak2 inhibitor TG101348 (TG), expecting that disruption of the prolactin receptor signaling pathway would interfere with the positive effects of transfection of MCF7 cells with CEACAM1. Indeed, lumen formation was inhibited, resulting in the down regulation of a set of genes, likely involved in the complex process of lumen formation. As expected, inhibition of the expression of many of these genes also inhibited lumen formation, confirming their involvement in a single pathway. Among the genes identified by the inhibition assay, ETS transcription factor ELF5 stood out, since it has been identified as a master regulator of mammary morphogenesis, and is associated with prolactin receptor signaling. When ELF5 was transfected into the parental MCF7 cells that lack CEACAM1, lumen formation was restored, indicating that ELF5 can replace CEACAM1 in this model system of lumenogenesis. We conclude that the event(s) that led to the loss of expression of CEACAM1 is epistatic in that multiple genes associated with a critical pathway were affected, but that restoration of the normal phenotype can be achieved with reactivation of certain genes at various nodal points in tissue morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Evaluation of the Cytotoxic and Autophagic Effects of Atorvastatin on MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Tuğba Alarcon Martinez

    2018-05-01

    Full Text Available Background: Recently, cytotoxic effects of statins on breast cancer cells have been reported. However, the mechanism of anti-proliferative effects is currently unknown. Autophagy is non-apoptotic programmed cell death, which is characterized by degradation of cytoplasmic components and as having a role in cancer pathogenesis. Aims: To investigate the anti-proliferative effects of atorvastatin on MCF-7 human breast adenocarcinoma cells with respect to both autophagy and apoptosis. Study Design: Cell culture study. Methods: Cell viability was analyzed using WST-1 cell proliferation assay. Apoptosis was determined by the TUNEL method, whereas autophagy was assessed by Beclin-1 and LC3B immunofluorescence staining. Ultrastructural analysis of cells was performed by electron microscopy. Results: Atorvastatin reduced MCF-7 cell proliferation in a dose- and time-dependent manner inducing TUNEL-, Beclin-1-, and LC3B-positive cells. Moreover, ultrastructural analysis showed apoptotic, autophagic, and necrotic morphological changes in treatment groups. A statistically significant increase in the apoptotic index was detected with higher concentrations of atorvastatin at 24 h and 48 h (p<0.05. Conclusion: The anti-proliferative effects of atorvastatin on breast cancer cells is mediated by the induction of both apoptosis and autophagy which shows statins as a potential treatment option for breast cancer.

  1. Induction of apoptosis through ER stress and TP53 in MCF-7 cells by the nanoparticle [Gd@C82(OH)22]n: A systems biology study.

    Science.gov (United States)

    Wang, Lin; Meng, Jie; Cao, Weipeng; Li, Qizhai; Qiu, Yuqing; Sun, Baoyun; Li, Lei M

    2014-06-01

    The nanoparticle gadolinium endohedral metallofullerenol [Gd@C82(OH)22]n is a new candidate for cancer treatment with low toxicity. However, its anti-cancer mechanisms remain mostly unknown. In this study, we took a systems biology view of the gene expression profiles of human breast cancer cells (MCF-7) and human umbilical vein endothelial cells (ECV304) treated with and without [Gd@C82(OH)22]n, respectively, measured by the Agilent Gene Chip G4112F. To properly analyze these data, we modified a suit of statistical methods we developed. For the first time we applied the sub-sub normalization to Agilent two-color microarrays. Instead of a simple linear regression, we proposed to use a one-knot SPLINE model in the sub-sub normalization to account for nonlinear spatial effects. The parameters estimated by least trimmed squares- and S-estimators show similar normalization results. We made several kinds of inferences by integrating the expression profiles with the bioinformatic knowledge in KEGG pathways, Gene Ontology, JASPAR, and TRANSFAC. In the transcriptional inference, we proposed the BASE2.0 method to infer a transcription factor's up-regulation and down-regulation activities separately. Overall, [Gd@C82(OH)22]n induces more differentiation in MCF-7 cells than in ECV304 cells, particularly in the reduction of protein processing such as protein glucosylation, folding, targeting, exporting, and transporting. Among the KEGG pathways, the ErbB signaling pathway is up-regulated, whereas protein processing in endoplasmic reticulum (ER) is down-regulated. CHOP, a key pro-apoptotic gene downstream of the ER stress pathway, increases to nine folds in MCF-7 cells after treatment. These findings indicate that ER stress may be one important factor that induces apoptosis in MCF-7 cells after [Gd@C82(OH)22]n treatment. The expression profiles of genes associated with ER stress and apoptosis are statistically consistent with other profiles reported in the literature, such as

  2. The anti-cancer effect of octagon and spherical silver nanoparticles on MCF-7 breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Mehrdad Khatami

    2017-04-01

    Full Text Available Background: The modern science of nanotechnology is an interdisciplinary science that has contributed to advances in cancer treatment. This study was performed to evaluate the therapeutic effects of biosynthesized silver nanoparticles on breast cancer cell of line MCF-7 in vitro. Methods: This analytical study was performed in Kerman and Bam University of Medical Sciences, Bam City, Kerman Province, Iran from March 2015 to March 2016. Silver nanoparticles suspension was synthesized using palm kernel extract. The resulting silver nanoparticles were studied and characterized. The ultraviolet-visible spectroscopy and transmission electron microscopy used for screening of physicochemical properties. The average particle size of the biosynthesized silver nanoparticles was determined by transmission electron microscopy. The properties of different concentrations of synthesized silver nanoparticles (1 to 3 μg/ml and palm kernel extract (containing the same concentration of the extract was used for the synthesis of silver nanoparticles against MCF-7 human breast cancer cells were determined by MTT assay. MTT is used to assess cell viability as a function of redox potential. Actively respiring cells convert the water-soluble MTT to an insoluble purple formazan. Results: The ultraviolet-visible spectroscopy showed strong absorption peak at 429 nm. The X-ray diffraction (XRD and transmission electron microscopy (TEM images revealed the formation of silver nanoparticles with spherical and octagon shape and sizes in the range between 1-40 nm, with an average size approximately 17 nm. The anti-cancer effect of silver nanoparticles on cell viability was strongly depends on the concentration of silver nanoparticles and greatly decrease with increasing the concentration of silver nanoparticles. The IC50 amount of silver nanoparticle was 2 μg/ml. Conclusion: The biosynthesized silver nanoparticles showed a dose-dependent toxicity against MCF-7 human breast

  3. Docosahexaenoic acid induces apoptosis in MCF-7 cells in vitro and in vivo via reactive oxygen species formation and caspase 8 activation.

    Directory of Open Access Journals (Sweden)

    Ki Sung Kang

    Full Text Available BACKGROUND: The present study sought to further investigate the in vitro and in vivo anticancer effects of a representative omega-3 fatty acid, docosahexaenoic acid (DHA, with a focus on assessing the induction of oxidative stress and apoptosis as an important mechanism for its anticancer actions. METHODOLOGY/PRINCIPAL FINDINGS: In vitro studies showed that DHA strongly reduces the viability and DNA synthesis of MCF-7 human breast cancer cells in culture, and also promotes cell death via apoptosis. Mechanistically, accumulation of reactive oxygen species and activation of caspase 8 contribute critically to the induction of apoptotic cell death. Co-presence of antioxidants or selective inhibition or knockdown of caspase 8 each effectively abrogates the cytotoxic effect of DHA. Using athymic nude mice as an in vivo model, we found that feeding animals the 5% fish oil-supplemented diet for 6 weeks significantly reduces the growth of MCF-7 human breast cancer cells in vivo through inhibition of cancer cell proliferation as well as promotion of cell death. Using 3-nitrotyrosine as a parameter, we confirmed that the fish oil-supplemented diet significantly increases oxidative stress in tumor cells in vivo. Analysis of fatty acid content in plasma and tissues showed that feeding animals a 5% fish oil diet increases the levels of DHA and eicosapentaenoic acid in both normal and tumorous mammary tissues by 329% and 300%, respectively. CONCLUSIONS/SIGNIFICANCE: DHA can strongly induce apoptosis in human MCF-7 breast cancer cells both in vitro and in vivo. The induction of apoptosis in these cells is selectively mediated via caspase 8 activation. These observations call for further studies to assess the effectiveness of fish oil as a dietary supplement in the prevention and treatment of human breast cancer.

  4. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells.

    Science.gov (United States)

    Chen, Ying-Jung; Lin, Ku-Nan; Jhang, Li-Mei; Huang, Chia-Hui; Lee, Yuan-Chin; Chang, Long-Sen

    2016-05-25

    Several studies have revealed that natural compounds are valuable resources to develop novel agents against dysregulation of the EGF/EGFR-mediated matrix metalloproteinase-9 (MMP-9) expression in cancer cells. In view of the findings that EGF/EGFR-mediated MMP-9 expression is closely related to invasion and metastasis of breast cancer. To determine the beneficial effects of gallic acid on the suppression of breast cancer metastasis, we explored the effect of gallic acid on MMP-9 expression in EGF-treated MCF-7 breast cancer cells. Treatment with EGF up-regulated MMP-9 mRNA and protein levels in MCF-7 cells. EGF treatment induced phosphorylation of EGFR and elicited Src activation, subsequently promoting Akt/NFκB (p65) and ERK/c-Jun phosphorylation in MCF-7 cells. Activation of Akt/p65 and ERK/c-Jun was responsible for the MMP-9 up-regulation in EGF-treated cells. Gallic acid repressed the EGF-induced activation of EGFR and Src; furthermore, inactivation of Akt/p65 and ERK/c-Jun was a result of the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. Over-expression of constitutively active Akt and MEK1 or over-expression of constitutively active Src eradicated the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. A chromosome conformation capture assay showed that EGF induced a chromosomal loop formation in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun activation. Treatment with gallic acid, EGFR inhibitor, or Src inhibitor reduced DNA looping. Taken together, our data suggest that gallic acid inhibits the activation of EGFR/Src-mediated Akt and ERK, leading to reduced levels of p65/c-Jun-mediated DNA looping and thus inhibiting MMP-9 expression in EGF-treated MCF-7 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Biochemical effects and growth inhibition in MCF-7 cells caused by novel sulphonamido oxa-polyamine derivatives.

    Science.gov (United States)

    Pavlov, V; Lin, P Kong Thoo; Rodilla, V

    2002-04-01

    The novel polyamine derivatives sulphonamido oxa-spermine (oxa-Spm) and sulphonamido oxa-spermidine (oxa-Spd) exhibited rapid cytotoxic action towards MCF-7 human breast cancer cells with IC50 values of 4.35 and 6.47 pM, respectively, after 24-h drug exposure. Neither compound is a substrate of serum amine oxidase. Both oxa-Spm and oxa-Spd caused cell shrinkage, as determined by phase-contrast microscopy. After incubation with 10 microM of either compound for 8 h, the cells underwent chromatin condensation and nuclear fragmentation. However, no clear DNA ladder was obtained by electrophoresis. The sulphonamido oxa-polyamine derivatives and especially oxa-Spd enhanced the activity of polyamine oxidase (PAO), an enzyme capable of oxidising N1-acetylated spermine and spermidine to spermidine and putrescine, respectively, generating cytotoxic H2O2 and 3-acetamidopropanal as by-products. The intracellular polyamine content was only marginally reduced in response to drug treatment. In conclusion, our data show that these novel sulphonamido oxa-polyamine derivatives possess high cytotoxic activity against MCF-7 cells and indicate that induction of PAO may mediate their cytotoxicity via apoptosis.

  6. Enhanced radiation response in radioresistant MCF-7 cells by targeting peroxiredoxin II

    Directory of Open Access Journals (Sweden)

    Diaz AJG

    2013-10-01

    Full Text Available Anthony Joseph Gomez Diaz,1 Daniel Tamae,2 Yun Yen,3 JianJian Li,4 Tieli Wang1 1Department of Chemistry and Biochemistry, California State University at Dominguez Hills, Carson, CA, 2Center of Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 3Department of Clinical and Molecular Pharmacology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, 4Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA Abstract: In our previous study, we identified that a protein target, peroxiredoxin II (PrxII, is overexpressed in radioresistant MCF+FIR3 breast-cancer cells and found that its expression and function is associated with breast-cancer radiation sensitivity or resistance. Small interference RNA (siRNA targeting PrxII gene expression was able to sensitize MCF+FIR3 radioresistant breast-cancer cells to ionizing radiation. The major focus of this work was to investigate how the radiation response of MCF+FIR3 radioresistant cells was affected by the siRNA that inhibits PrxII gene expression. Our results, presented here, show that silencing PrxII gene expression increased cellular toxicity by altering cellular thiol status, inhibiting Ca2+ efflux from the cells, and perturbing the intracellular Ca2+ homeostasis. By combining radiotherapy and siRNA technology, we hope to develop new therapeutic strategies that may have potential to enhance the efficacy of chemotherapeutic agents due to this technology's property of targeting to specific cancer-related genes. Keywords: siRNA, PrxII, radiation resistance, Ca2+, MCF+FIR3

  7. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    International Nuclear Information System (INIS)

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra; Galadari, Sehamuddin

    2010-01-01

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3β (GSK3β), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3β. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  8. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates); Galadari, Sehamuddin, E-mail: sehamuddin@uaeu.ac.ae [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates)

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  9. Effect on growth and cell cycle kinetics of estradiol and tamoxifen on MCF-7 human breast cancer cells grown in vitro and in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Bronzert, D; Vindeløv, L L

    1989-01-01

    The effects of estradiol and tamoxifen (TAM) on the estrogen-dependent human breast cancer cell line MCF-7 grown in vitro and in nude mice were compared. The effect on growth was determined by cell number in vitro and by tumor growth curves in nude mice. The effects on the cell cycle kinetics were...... determined by repeated flow cytometric DNA analyses in vitro and in vivo and by the technique of labeled mitosis in nude mouse-grown tumors. Under in vitro conditions, estradiol induced a pronounced increase in S-phase fraction and cell number. TAM inhibited growth of MCF-7 cells with a concomitant increase...... in the G1 phase from 60% to 75%. In nude mice, MCF-7 only formed tumors in estradiol-supplemented mice. No differences were observed in growth and cell kinetics between 0.1 and 1.0 mg of estradiol. Daily i.p. injections of TAM resulted in tumor growth inhibition with shrinkage of tumors. The flow...

  10. Statistical modeling of road contribution as emission sources to total suspended particles (TSP) under MCF model downtown Medellin - Antioquia - Colombia, 2004

    International Nuclear Information System (INIS)

    Gomez, Miryam; Saldarriaga, Julio; Correa, Mauricio; Posada, Enrique; Castrillon M, Francisco Javier

    2007-01-01

    Sand fields, constructions, carbon boilers, roads, and biologic sources are air-contaminant-constituent factors in down town Valle de Aburra, among others. the distribution of road contribution data to total suspended particles according to the source receptor model MCF, source correlation modeling, is nearly a gamma distribution. Chi-square goodness of fit is used to model statistically. This test for goodness of fit also allows estimating the parameters of the distribution utilizing maximum likelihood method. As convergence criteria, the estimation maximization algorithm is used. The mean of road contribution data to total suspended particles according to the source receptor model MCF, is straightforward and validates the road contribution factor to the atmospheric pollution of the zone under study

  11. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-10-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  12. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M.

    2014-01-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  13. Cytotoxic Effects and Anti-Angiogenesis Potential of Pistachio (Pistacia vera L.) Hulls against MCF-7 Human Breast Cancer Cells.

    Science.gov (United States)

    Seifaddinipour, Maryam; Farghadani, Reyhaneh; Namvar, Farideh; Mohamad, Jamaludin; Abdul Kadir, Habsah

    2018-01-05

    Pistachio ( Pistacia vera L.) hulls (PVLH) represents a significant by-product of industrial pistachio processing that contains high amounta of phenolic and flavonoid compounds known to act as antioxidants. The current study was designed to evaluate the anti-tumor and anti-angiogenic potentials of PVLH extracts. The cytotoxic effects of hexane, ethyl acetate, methanol, and water PVLH extracts toward human colon cancer (HT-29 and HCT-116), breast adenocarcinoma (MCF-7), lung adenocarcinoma (H23), liver hepatocellular carcinoma (HepG2), cervical cancer (Ca Ski), and normal fibroblast (BJ-5ta) cells were assessed using a MTT cell viability assay. Apoptosis induction was evaluated through the different nuclear staining assays and confirmed by flow cytometry analysis. Anti-angiogenic activities were also determined using chorioallantoic membrane (CAM) assay. PVLH ethyl acetate extracts (PVLH-EAE) demonstrated a suppressive effect with an IC 50 value of 21.20 ± 1.35, 23.00 ± 1.2 and 25.15 ± 1.85 µg/mL against MCF-7, HT-29 and HCT-116, respectively, after 72 h of treatment. Morphological assessment and flow cytometry analysis showed the potential of PVLH-EAE to induce apoptosis. PVLH-EAE at the highest concentration demonstrated significant inhibition of angiogenesis as comparing with control group. Also the expression of Bax increased and the expression of Bcl-2 decreased in treated MCF-7 cells. Thus, the apoptosis induction and angiogenesis potential of PVLH-EAE make it to be the most suitable for further cancer research study to deal with selective antitumor active substances to human cancers especially breast cancer.

  14. In vitro study of tumor seeking radiopharmaceutical uptake by human breast cancer cell line MCF-7 after paclitaxel treatment

    International Nuclear Information System (INIS)

    Choi, Joon Young; Choi, Yong; Choe, Yearn Seong; Lee, Kyung Han; Kim, Byung Tae

    2007-01-01

    This study was designed to investigate the cellular uptake of various tumor imaging radiopharmaceuticals in human breast cancer cells before and after paclitaxel exposure considering viable cell number. F-18-fluorodeoxyglucose, C-11-methionine. TI-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin were used to evaluate the cellular uptake in MCF-7 cells. MCF-7 cells were cultured in multi-well plates. Wells were divided into DMSO exposure control group, and paclitaxel exposure group. The exposure durations of paclitaxel with 10 nM or 100 nM were 2 h, 6 h, 12 h, 24 h, and 48 h. Viable cell fraction was reduced as the concentration and exposure time of paclitaxel increased. After 10 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was not reduced significantly, irrespective of exposure time and viable cell fraction. After 100 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was enhanced significantly irrespective of viable cell fraction. The peak uptake was observed in experimental groups with paclitaxel exposure for 6 to 48 h according the type of radiopharmaceutical. When the cellular uptake was adjusted for the viable cell fraction and cell count, the peak cellular uptake was observed in experimental groups with paclitaxel exposure for 48 h, irrespective of the type of radiopharmaceutical. The cellular uptake of F-18-fluorodeoxyglucose, C-11-methionine, TI-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin did not reflect viable cell number in MCF-7 cells after paclitaxel exposure for up to 48 h

  15. UJI AKTIVITAS EKSTRAK ETANOL 50°/o UMBI KELADI TIKUS (TYPHONIUM FLAGELLIFORME (LOOD Bl TERHADAP SEL KANKER PAYUDARA MCF-7 IN VITRO

    Directory of Open Access Journals (Sweden)

    Lucie Widowati

    2012-09-01

    Full Text Available  Keladi tikus root (Typhonium flagelliforme (Lodd BI is one of plants that is used for cancer healing. The plant contents flavonoid, tannin, terpenoid and steroid. Flavonoid and terpenoid compound groups are known for anti cancer activities. The investigation  is conducted to test cytotoxic effect of ethanol free dry extract of keladi tikuroot (Typhonium jlagelliforme (LoodBI against brest cancer cell MCF-7. Maceration extraction  method used 50% ethanol solvent and vaporized until ethanol.free dry extract of keladi tikus root was obtained. The test used 5 level of concentration, those were 50, 75, I 00, 125 and 150 µg/ml with 3 times iteration. DMSO was used as negative control and Cisplatin with concentration of 4, 6, 8, 19, 12 µg/ml were used as positive control. Test result showed ethanol free dry extract of keladi tikus root has value of LC50 = 89,15 and Cisplatin  has value of LC50 = 7,84  µg/ml. Further investigation of advance sitotoxic test value LC50 and value LC50 against  fraction of 50% ethanol extract is necessary to obtain active compound against brest cancer cell MCF-7. Ethanol Extract 50%  of  keladi  tikus  root (Typhonium flagelliforme (Lood BI, Breast Cancer, MCF-7 Cell, LC50.

  16. Rapid bioreduction of trivalent aurum using banana stem powder and its cytotoxicity against MCF-7 and HEK-293 cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Arunkumar, Pichaimani [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India); Vedagiri, Hemamalini [Bharathidasan University, Department of Biotechnology (India); Premkumar, Kumpati, E-mail: pkumpati@hotmail.com [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India)

    2013-03-15

    Bioreduction of metal ions for the synthesis of nanoparticles of well-defined shape and size has been a great challenge in the field of nanotechnology. In this study, we explored the reduction potential of banana stem powder (BSP) for the synthesis of gold nanoparticles (GNP). The kinetics of GNP synthesis was monitored using UV-Vis spectroscopy. The synthesized GNP was characterized using dynamic light scattering (DLS), transmission electron microscopy, and fourier transform infrared spectroscopy. In addition, the cytotoxic potential of the synthesized GNP was investigated using human breast cancer (MCF-7) and normal human embryonic kidney (HEK-293) cell lines, as evaluated by changes in cell morphology, cell viability (MTT), and metabolic activity. BSP exhibited a strong reduction of Au(III) to Au (0) at room temperature within 5 min of reaction time. The synthesized GNP was found to be spherical with an average diameter of 30 nm by DLS analysis. The cytotoxicity analysis reveals a direct dose-response relationship, indicating that the cytotoxicity increases with increasing concentrations of the GNP. Significant cytotoxicity was observed in cancer cells (MCF-7) compared to normal cells (HEK-293). Also the cellular uptake of GNP was more pronounced in MCF-7 cells than HEK-293 cells as evidenced by zeta potential, implicating the possible reason for differential cytotoxicity. Thus the present study demonstrates the importance of these unique, less time-consuming, and stable BSP-mediated GNP as potential drug delivery vehicles in the application of anticancer therapy.

  17. Antiproliferative activity of flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the MCF7, KB, and NIH/3T3 cell lines.

    Science.gov (United States)

    Nedel, Fernanda; Begnini, Karine; Carvalho, Pedro Henrique de Azambuja; Lund, Rafael Guerra; Beira, Fátima T A; Del Pino, Francisco Augusto B

    2012-11-01

    This study assessed the antiproliferative effect in vitro of the flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the human breast adenocarcinoma (MCF-7), human mouth epidermal carcinoma (KB), and mouse embryonic fibroblast (NIH 3T3) cell lines, using sulforhodamine B (SRB) assay. A cell density of 2×10(4)/well was seeded in 96-well plates, and samples at different concentrations ranging from 10 to 500 mg/mL were tested. The optical density was determined in an ELISA multiplate reader (Thermo Plate TP-Reader). Results demonstrated that the hexane extract presented antiproliferative activity against both the tumor cell lines KB and MCF-7, presenting a GI(50) (MCF-7=13.09 mg/mL), TGI (KB=37.76 mg/mL), and IL(50) (KB=291.07 mg/mL). Also, the hexane extract presented antiproliferative activity toward NIH 3T3 cells GI(50) (183.65 mg/mL), TGI (280.54 mg/mL), and IL(50) (384.59 mg/mL). The results indicate that the flower hexane extract obtained from M. spicata associated with M. rotundifolia presents an antineoplastic activity against KB and MCF-7, although an antiproliferative effect at a high concentration of the extract was observed toward NIH 3T3.

  18. Two estrogen response element sequences near the PCNA gene are not responsible for its estrogen-enhanced expression in MCF7 cells.

    Science.gov (United States)

    Wang, Cheng; Yu, Jie; Kallen, Caleb B

    2008-01-01

    The proliferating cell nuclear antigen (PCNA) is an essential component of DNA replication, cell cycle regulation, and epigenetic inheritance. High expression of PCNA is associated with poor prognosis in patients with breast cancer. The 5'-region of the PCNA gene contains two computationally-detected estrogen response element (ERE) sequences, one of which is evolutionarily conserved. Both of these sequences are of undocumented cis-regulatory function. We recently demonstrated that estradiol (E2) enhances PCNA mRNA expression in MCF7 breast cancer cells. MCF7 cells proliferate in response to E2. Here, we demonstrate that E2 rapidly enhanced PCNA mRNA and protein expression in a process that requires ERalpha as well as de novo protein synthesis. One of the two upstream ERE sequences was specifically bound by ERalpha-containing protein complexes, in vitro, in gel shift analysis. Yet, each ERE sequence, when cloned as a single copy, or when engineered as two tandem copies of the ERE-containing sequence, was not capable of activating a luciferase reporter construct in response to E2. In MCF7 cells, neither ERE-containing genomic region demonstrated E2-dependent recruitment of ERalpha by sensitive ChIP-PCR assays. We conclude that E2 enhances PCNA gene expression by an indirect process and that computational detection of EREs, even when evolutionarily conserved and when near E2-responsive genes, requires biochemical validation.

  19. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments

    International Nuclear Information System (INIS)

    Patheja, Pooja; Sahu, Khageswar

    2017-01-01

    Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MφCM) not only enhanced TNT formation between cells but also stimulated the release of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MφCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation.

  20. Effects of OK-432 (picibanil) on the estrogen receptors of MCF-7 cells and potentiation of antiproliferative effects of tamoxifen in combination with OK-432.

    Science.gov (United States)

    Aoyagi, H; Iino, Y; Takeo, T; Horii, Y; Morishita, Y; Horiuchi, R

    1997-01-01

    OK-432 (picibanil), a streptococcal preparation, has a strong biological response modifier (BRM) function and is expected to produce clinical improvement and prolongation of survival in treated cancer patients in Japan. We were interested in whether OK-432 augments estrogen receptor (ER) levels in breast cancer. To investigate the effect of the BRMs on cellular growth and the characteristics of ER and progesterone receptors (PgR) in the human breast cancer cell line MCF-7, we used OK-432, Krestin (PSK), a protein-bound polysaccharide extracted from Coriolus versicolor, and lentinan, a fungal branched (1...3)-beta-D-glycan. OK432 and PSK dose dependently inhibited DNA synthesis of MCF-7 cells, and the 50% inhibitory concentrations of OK-432 and PSK were 1.2 KE (klinische Einheit, clinical unit)/ml and 200 micrograms/ml, respectively. Lentinan showed no direct anticancer effect in vitro. We found that OK-432 induced a 2-fold increase in ER levels in MCF-7 cells at 0.005 KE/ml, but not in PgR. Lentinan and low-dose PSK did not change ER or PgR levels, but high-dose PSK decreased ER and PgR. We also studied the combined effect of OK-432 and antiestrogens, tamoxifen (TAM) and DP-TAT-59. The combined treatment with OK-432 and TAM showed an additive inhibitory effect on MCF-7 cells. These results suggest that OK-432 may augment the therapeutic effect of TAM in breast cancer.

  1. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments

    Energy Technology Data Exchange (ETDEWEB)

    Patheja, Pooja, E-mail: pooja.patheja8@gmail.com [Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra (India); Sahu, Khageswar [Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh (India)

    2017-06-15

    Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MφCM) not only enhanced TNT formation between cells but also stimulated the release of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MφCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation.

  2. Rottlerin inhibits the nuclear factor kappaB/cyclin-D1 cascade in MCF-7 breast cancer cells

    Czech Academy of Sciences Publication Activity Database

    Torricelli, C.; Fortino, V.; Capurro, E.; Valacchi, G.; Pacini, A.; Muscettola, M.; Souček, Karel; Maioli, E.

    2008-01-01

    Roč. 82, 11-12 (2008), s. 638-643 ISSN 0024-3205 R&D Projects: GA ČR(CZ) GA310/07/0961; GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : Rottlerin * MCF-7 cells * cyclin-D1 Subject RIV: BO - Biophysics Impact factor: 2.583, year: 2008

  3. An antioxidant extract of tropical lichen, Parmotrema reticulatum, induces cell cycle arrest and apoptosis in breast carcinoma cell line MCF-7.

    Directory of Open Access Journals (Sweden)

    Nikhil Baban Ghate

    Full Text Available This report highlights the phytochemical analysis, antioxidant potential and anticancer activity against breast carcinoma of 70% methanolic extract of lichen, Parmotrema reticulatum (PRME. Phytochemical analysis of PRME confirms the presence of various phytoconstituents like alkaloids, carbohydrates, flavonoids, glycosides, phenols, saponins, tannins, anthraquinones, and ascorbic acid; among which alkaloids, phenols and flavonoids are found in abundant amount. High performance liquid chromatography (HPLC analysis of PRME revealed the presence of catechin, purpurin, tannic acid and reserpine. Antioxidant activity was evaluated by nine separate methods. PRME showed excellent hydroxyl and hypochlorous radical scavenging as well as moderate DPPH, superoxide, singlet oxygen, nitric oxide and peroxynitrite scavenging activity. Cytotoxicity of PRME was tested against breast carcinoma (MCF-7, lung carcinoma (A549 and normal lung fibroblast (WI-38 using WST-1 method. PRME was found cytotoxic against MCF-7 cells with an IC50 value 130.03 ± 3.11 µg/ml while negligible cytotoxicity was observed on A549 and WI-38 cells. Further flow cytometric study showed that PRME halted the MCF-7 cells in S and G2/M phases and induces apoptosis in dose as well as time dependent manner. Cell cycle arrest was associated with downregulation of cyclin B1, Cdk-2 and Cdc25C as well as slight decrease in the expression of Cdk-1 and cyclin A1 with subsequent upregulation of p53 and p21. Moreover PRME induced Bax and inhibited Bcl-2 expression, which results in increasing Bax/Bcl-2 ratio and activation of caspase cascade. This ultimately leads to PARP degradation and induces apoptosis in MCF-7 cells. It can be hypothesised from the current study that the antioxidant and anticancer potential of the PRME may reside in the phytoconstitutents present in it and therefore, PRME may be used as a possible source of natural antioxidant that may be developed to an anticancer agent.

  4. Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids

    Directory of Open Access Journals (Sweden)

    Kai Ling

    2015-06-01

    Full Text Available Cellular spheroids serving as three-dimensional (3D in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular, have been developed for engineering cellular spheroids. However, these methods usually suffer from either destructive molding operations or cell loss and non-uniform cell distribution among the wells due to two-step molding and cell seeding. We have developed a facile method that utilizes cell-embedded hydrogel arrays as templates for concave well fabrication and in situ MCF-7 cellular spheroid formation on a chip. A custom-built bioprinting system was applied for the fabrication of sacrificial gelatin arrays and sequentially concave wells in a high-throughput, flexible, and controlled manner. The ability to achieve in situ cell seeding for cellular spheroid construction was demonstrated with the advantage of uniform cell seeding and the potential for programmed fabrication of tissue models on chips. The developed method holds great potential for applications in tissue engineering, regenerative medicine, and drug screening.

  5. Toxicity of trastuzumab labeled {sup 177}Lu on MCF7 and SKBr3 cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Rasaneh, Samira [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran (Iran, Islamic Republic of); Rajabi, Hossein, E-mail: hrajabi@modares.ac.i [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran (Iran, Islamic Republic of); Hossein Babaei, Mohammad; Johari Daha, Fariba [Department of Radioisotope, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2010-10-15

    In this study, we labeled trastuzumab with {sup 177}Lu to synthesize a new radiopharmaceutical for therapy of breast cancer and at the first stage investigated its therapeutic effects on SKBr3 and MCF7 breast cancer cell lines. Trastuzumab-{sup 177}Lu showed very good in-vitro characteristics such as high radiochemical purity (91{+-}0.9%), good stability in PBS buffer (86{+-}2.3%) and blood serum (81{+-}2.7%) up to 96 h, appropriate immunoreactivity (85.4{+-}1.1%) and high cytotoxicity in HER2 expression cells. 5 fold increase in toxicity of trastuzumab-{sup 177}Lu was observed when compared with unlabeled trastuzumab on SKBr3 cells.

  6. Withaferin A Induces ROS-Mediated Paraptosis in Human Breast Cancer Cell-Lines MCF-7 and MDA-MB-231.

    Directory of Open Access Journals (Sweden)

    Kamalini Ghosh

    Full Text Available Advancement in cancer therapy requires a better understanding of the detailed mechanisms that induce death in cancer cells. Besides apoptosis, themode of other types of cell death has been increasingly recognized in response to therapy. Paraptosis is a non-apoptotic alternative form of programmed cell death, morphologically distinct from apoptosis and autophagy. In the present study, Withaferin-A (WA induced hyperpolarization of mitochondrial membrane potential and formation of many cytoplasmic vesicles. This was due to progressive swelling and fusion of mitochondria and dilation of endoplasmic reticulum (ER, forming large vacuolar structures that eventually filled the cytoplasm in human breast cancer cell-lines MCF-7 and MDA-MB-231. The level of indigenous paraptosis inhibitor, Alix/AIP-1 (Actin Interacting Protein-1 was down-regulated by WA treatment. Additionally, prevention of WA-induced cell death and vacuolation on co-treatment with protein-synthesis inhibitor indicated requirement of de-novo protein synthesis. Co-treatment with apoptosis inhibitor resulted in significant augmentation of WA-induced death in MCF-7 cells, while partial inhibition in MDA-MB-231 cells; implyingthat apoptosis was not solely responsible for the process.WA-mediated cytoplasmic vacuolationcould not be prevented by autophagy inhibitor wortmanninas well, claiming this process to be a non-autophagic one. Early induction of ROS (Reactive Oxygen Speciesby WA in both the cell-lines was observed. ROS inhibitorabrogated the effect of WA on: cell-death, expression of proliferation-associated factor andER-stress related proteins,splicing of XBP-1 (X Box Binding Protein-1 mRNA and formation of paraptotic vacuoles.All these results conclusively indicate thatWA induces deathin bothMCF-7 and MDA-MB-231 cell lines byROS-mediated paraptosis.

  7. Histone deacetylase inhibitor, Trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Charles Coombes R

    2006-02-01

    Full Text Available Abstract Background Cyclin D1 is an important regulator of G1-S phase cell cycle transition and has been shown to be important for breast cancer development. GSK3β phosphorylates cyclin D1 on Thr-286, resulting in enhanced ubiquitylation, nuclear export and degradation of the cyclin in the cytoplasm. Recent findings suggest that the development of small-molecule cyclin D1 ablative agents is of clinical relevance. We have previously shown that the histone deacetylase inhibitor trichostatin A (TSA induces the rapid ubiquitin-dependent degradation of cyclin D1 in MCF-7 breast cancer cells prior to repression of cyclin D1 gene (CCND1 transcription. TSA treatment also resulted in accumulation of polyubiquitylated GFP-cyclin D1 species and reduced levels of the recombinant protein within the nucleus. Results Here we provide further evidence for TSA-induced ubiquitin-dependent degradation of cyclin D1 and demonstrate that GSK3β-mediated nuclear export facilitates this activity. Our observations suggest that TSA treatment results in enhanced cyclin D1 degradation via the GSK3β/CRM1-dependent nuclear export/26S proteasomal degradation pathway in MCF-7 cells. Conclusion We have demonstrated that rapid TSA-induced cyclin D1 degradation in MCF-7 cells requires GSK3β-mediated Thr-286 phosphorylation and the ubiquitin-dependent 26S proteasome pathway. Drug induced cyclin D1 repression contributes to the inhibition of breast cancer cell proliferation and can sensitize cells to CDK and Akt inhibitors. In addition, anti-cyclin D1 therapy may be highly specific for treating human breast cancer. The development of potent and effective cyclin D1 ablative agents is therefore of clinical relevance. Our findings suggest that HDAC inhibitors may have therapeutic potential as small-molecule cyclin D1 ablative agents.

  8. Implication of protein tyrosine phosphatase 1B in MCF-7 cell proliferation and resistance to 4-OH tamoxifen

    International Nuclear Information System (INIS)

    Blanquart, Christophe; Karouri, Salah-Eddine; Issad, Tarik

    2009-01-01

    The protein tyrosine phosphatase 1B (PTP1B) and the T-cell protein tyrosine phosphatase (TC-PTP) were initially thought to be mainly anti-oncogenic. However, overexpression of PTP1B and TC-PTP has been observed in human tumors, and recent studies have demonstrated that PTP1B contributes to the appearance of breast tumors by modulating ERK pathway. In the present work, we observed that decreasing the expression of TC-PTP or PTP1B in MCF-7 cells using siRNA reduced cell proliferation without affecting cell death. This reduction in proliferation was associated with decreased ERK phosphorylation. Moreover, selection of tamoxifen-resistant MCF-7 cells, by long-term culture in presence of 4-OH tamoxifen, resulted in cells that display overexpression of PTP1B and TC-PTP, and concomitant increase in ERK and STAT3 phosphorylation. siRNA experiments showed that PTP1B, but not TC-PTP, is necessary for resistance to 4-OH tamoxifen. Therefore, our work indicates that PTP1B could be a relevant therapeutic target for treatment of tamoxifen-resistant breast cancers.

  9. Modulation of RIZ gene expression is associated to estradiol control of MCF-7 breast cancer cell proliferation

    International Nuclear Information System (INIS)

    Gazzerro, Patrizia; Abbondanza, Ciro; D'Arcangelo, Andrea; Rossi, Mariangela; Medici, Nicola; Moncharmont, Bruno; Puca, Giovanni Alfredo

    2006-01-01

    The retinoblastoma protein-interacting zinc-finger (RIZ) gene, a member of the nuclear protein methyltransferase superfamily, is characterized by the presence of the N-terminal PR domain. The RIZ gene encodes for two proteins, RIZ1 and RIZ2. While RIZ1 contains the PR (PRDI-BF1 and RIZ homologous) domain, RIZ2 lacks it. RIZ gene expression is altered in a variety of human cancers and RIZ1 is now considered to be a candidate tumor suppressor. Estradiol treatment of MCF-7 cells produced a selective decrease of RIZ1 transcript and an increase of total RIZ mRNA. Experiments of chromatin immunoprecipitation indicated that RIZ2 protein expression was controlled by estrogen receptor and RIZ1 had a direct repressor function on c-myc gene expression. To investigate the role of RIZ gene products as regulators of the proliferation/differentiation transition, we analyzed the effects of forced suppression of RIZ1 induced in MCF-7 cells by siRNA of the PR domain-containing form. Silencing of RIZ1 expression stimulated cell proliferation, similar to the effect of estradiol on these cells, associated with a transient increase of c-myc expression

  10. Escin Ia suppresses the metastasis of triple-negative breast cancer by inhibiting epithelial-mesenchymal transition via down-regulating LOXL2 expression.

    Science.gov (United States)

    Wang, Yuhui; Xu, Xiaotian; Zhao, Peng; Tong, Bei; Wei, Zhifeng; Dai, Yue

    2016-04-26

    The saponin fraction of Aesculus chinensis Bunge fruits (SFAC) could inhibit the invasion and migration of MDA-MB-231 cells. Among which, escin Ia showed more potent inhibition of the invasion than other five main saponin constituents. It selectively reduced the expression of LOXL2 mRNA and promoted the expression of E-cadherin mRNA, and prevented the EMT process of MDA-MB-231 cells and TNF-α/TGF-β-stimulated MCF-7 cells. Moreover, it reduced the LOXL2 level in MDA-MB-231 cells but not in MCF-7 cells. When MCF-7 cells were stimulated with TNF-α/TGF-β, transfected with LOXL2 or treated with hypoxia, escin Ia down-regulated the level of LOXL2 in MCF-7 cells. Meanwhile, escin Ia suppressed the EMT process in LOXL2-transfected or hypoxia-treated MCF-7 cells. Of interest, escin Ia did not alter the level of HIF-1α in hypoxia-induced MCF-7 cells. In TNBC xenograft mice, the metastasis and EMT of MDA-MB-231 cells were suppressed by escin Ia. In conclusion, escin Ia was the main active ingredient of SFAC for the anti-TNBC metastasis activity, and its action mechanisms involved inhibition of EMT process by down-regulating LOXL2 expression.

  11. Lipid raft-mediated miR-3908 inhibition of migration of breast cancer cell line MCF-7 by regulating the interactions between AdipoR1 and Flotillin-1.

    Science.gov (United States)

    Li, Yuan; Shan, Fei; Chen, Jinglong

    2017-03-21

    The mechanisms of lipid raft regulation by microRNAs in breast cancer are not fully understood. This work focused on the evaluation and identification of miR-3908, which may be a potential biomarker related to the migration of breast cancer cells, and elucidates lipid-raft-regulating cell migration in breast cancer. To confirm the prediction that miR-3908 is matched with AdipoR1, we used 3'-UTR luciferase activity of AdipoR1 to assess this. Then, human breast cancer cell line MCF-7 was cultured in the absence or presence of the mimics or inhibitors of miR-3908, after which the biological functions of MCF-7 cells were analyzed. The protein expression of AdipoR1, AMPK, and SIRT-1 were examined. The interaction between AdipoR1 and Flotillin-1, or its effects on lipid rafts on regulating cell migration of MCF-7, was also investigated. AdipoR1 is a direct target of miR-3908. miR-3908 suppresses the expression of AdipoR1 and its downstream pathway genes, including AMPK, p-AMPK, and SIRT-1. miR-3908 enhances the process of breast cancer cell clonogenicity. miR-3908 exerts its effects on the proliferation and migration of MCF-7 cells, which are mediated by lipid rafts regulating AdipoR1's ability to bind Flotillin-1. miR-3908 is a crucial mediator of the migration process in breast cancer cells. Lipid rafts regulate the interactions between AdipoR1 and Flotillin-1 and then the migration process associated with miR-3908 in MCF-7 cells. Our findings suggest that targeting miR-3908 and the lipid raft, may be a promising strategy for the treatment and prevention of breast cancer.

  12. Antiproliferative effects of TSA, PXD‑101 and MS‑275 in A2780 and MCF7 cells: Acetylated histone H4 and acetylated tubulin as markers for HDACi potency and selectivity.

    Science.gov (United States)

    Androutsopoulos, Vasilis P; Spandidos, Demetrios A

    2017-12-01

    Inhibition of histone deacetylase enzymes (HDACs) has been well documented as an attractive target for the development of chemotherapeutic drugs. The present study investigated the effects of two prototype hydroxamic acid HDAC inhibitors, namely Trichostatin A (TSA) and Belinostat (PXD‑101) and the benzamide Entinostat (MS‑275) in A2780 ovarian carcinoma and MCF7 breast adenocarcinoma cells. The three HDACi inhibited the proliferation of A2780 and MCF7 cells at comparable levels, below the µM range. Enzyme inhibition assays in a cell‑free system showed that TSA was the most potent inhibitor of total HDAC enzyme activity followed by PXD‑101 and MS‑275. Incubation of A2780 and MCF7 cells with the hydroxamates TSA and PXD‑101 for 24 h resulted in a dramatic increase of acetylated tubulin induction (up to 30‑fold for TSA). In contrast to acetylated tubulin, western blot analysis and flow cytometry indicated that the induction of acetylated histone H4 was considerably smaller. The benzamide MS‑275 exhibited nearly a 2‑fold induction of acetylated histone H4 and an even smaller induction of acetylated tubulin in A2780 and MCF7 cells. Taken together, these data suggest that although the three HDACi were equipotent in inhibiting proliferation of MCF7 and A2780 cells, only the benzamide MS‑275 did not induce acetylated tubulin expression, a marker of class IIb HDACs.

  13. Aptamer-Based electrochemiluminescent detection of MCF-7 cancer cells based on carbon quantum dots coated mesoporous silica nanoparticles

    International Nuclear Information System (INIS)

    Su, Min; Liu, Heng; Ge, Lei; Wang, Yanhu; Ge, Shenguang; Yu, Jinghua; Yan, Mei

    2014-01-01

    Graphical abstract: - Highlights: • Aptamers have many advantages over antibodies, such as low molecular weight, easy but reproducible production and low cost. • Mesoporous silica nanoparticles (MSNs) were prepared to load more CQDs for signal amplification which has a large surface area and high pore volume, ordered porous channels, a uniform and tunable pore structure, and a great diversity in surface functionalization • 3D-GR@AuNPs was prepared as biointerface for the immobilization of cancer cells due to their good biological compatibility, excellent conductivity and large surface area. • This new aptasensor may be quite promising, with potential broad applications in cancer early diagnosis due to the excellent analytical performance. - Abstract: In this work, we developed a novel electrochemiluminescence (ECL) platform for ultrasensitive and selective detection of MCF-7 cancer cells. To construct the platform, three-dimensional macroporous AuNPs@graphene complex was prepared through freeze drying process to modify glassy carbon electrode, which provided an effective matrix for concanavalin A to capture cancer cells due to its high surface area-to-weight ratio and excellent mechanical properties. The carbon quantum dots (CQDs) coated mesoporous silica nanoparticles were used as excellent ECL tracers due to their low cytotoxicity and good biocompatibility. Then, the prepared tracers were conjugated with mucin1 aptamer to specifically bind mucin1 on cancer cells with high stability and bioactivity. Structure characterization was obtained by means of transmission electron microscopy and scanning electron microscopy images. The proposed method showed a good analytical performance for the detection of MCF-7 cancer cells ranging from 500 to 2 × 10 7 cells·mL −1 with a detection limit of 230 cells mL −1 . The as-proposed device has the advantages of high sensitivity, nice specificity, and good stability and could offer great promise for sensitive

  14. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-04-04

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.

  15. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Jeong, Kwang Won

    2014-01-01

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators

  16. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments.

    Science.gov (United States)

    Patheja, Pooja; Sahu, Khageswar

    2017-06-15

    Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MɸCM) not only enhanced TNT formation between cells but also stimulated the release of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MɸCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway

    Directory of Open Access Journals (Sweden)

    Mennerich Detlev

    2007-01-01

    Full Text Available Abstract Background Stromelysin-3 (ST-3 is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. Methods The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. Results Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. Conclusion These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated "early stage" breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour

  18. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway

    International Nuclear Information System (INIS)

    Kasper, Grit; Lehmann, Kerstin E; Reule, Matthias; Tschirschmann, Miriam; Dankert, Niels; Stout-Weider, Karen; Lauster, Roland; Schrock, Evelin; Mennerich, Detlev; Duda, Georg N

    2007-01-01

    Stromelysin-3 (ST-3) is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated 'early stage' breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour fibroblasts leads to the stimulation of the IGF-1R pathway in

  19. Two estrogen response element sequences near the PCNA gene are not responsible for its estrogen-enhanced expression in MCF7 cells.

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    Full Text Available The proliferating cell nuclear antigen (PCNA is an essential component of DNA replication, cell cycle regulation, and epigenetic inheritance. High expression of PCNA is associated with poor prognosis in patients with breast cancer. The 5'-region of the PCNA gene contains two computationally-detected estrogen response element (ERE sequences, one of which is evolutionarily conserved. Both of these sequences are of undocumented cis-regulatory function. We recently demonstrated that estradiol (E2 enhances PCNA mRNA expression in MCF7 breast cancer cells. MCF7 cells proliferate in response to E2.Here, we demonstrate that E2 rapidly enhanced PCNA mRNA and protein expression in a process that requires ERalpha as well as de novo protein synthesis. One of the two upstream ERE sequences was specifically bound by ERalpha-containing protein complexes, in vitro, in gel shift analysis. Yet, each ERE sequence, when cloned as a single copy, or when engineered as two tandem copies of the ERE-containing sequence, was not capable of activating a luciferase reporter construct in response to E2. In MCF7 cells, neither ERE-containing genomic region demonstrated E2-dependent recruitment of ERalpha by sensitive ChIP-PCR assays.We conclude that E2 enhances PCNA gene expression by an indirect process and that computational detection of EREs, even when evolutionarily conserved and when near E2-responsive genes, requires biochemical validation.

  20. The effect of CTB on P53 protein acetylation and consequence apoptosis on MCF-7 and MRC-5 cell lines

    Directory of Open Access Journals (Sweden)

    Mehdi Nikbakht Dastjerdi

    2013-01-01

    Conclusion: CTB could induce acetylation of P53 protein through increasing expression of P300 and consequently induce the significant cell death in MCF-7 but it could be well tolerated in MRC-5. Therefore, CTB could be used as an anti-cancer agent.

  1. Selectivity of Very High Dose Methotrexate in Mcf-7 and Normal Cells Using a Priming and Non-Toxic 5-Fluorouracil Dose

    National Research Council Canada - National Science Library

    Brown, Donnell

    1997-01-01

    ...) in MCF-7 breast cancer cells versus normal tissues and (b) provide one clear basis for intracellular rescue of only host cells from MTX toxicity when high dose MTX is used in combination with 5-fluorouracil (5-FU...

  2. Ganoderma lucidum total triterpenes induce apoptosis in MCF-7 cells and attenuate DMBA induced mammary and skin carcinomas in experimental animals.

    Science.gov (United States)

    Smina, T P; Nitha, B; Devasagayam, T P A; Janardhanan, K K

    2017-01-01

    Ganoderma lucidum total triterpenes were evaluated for its apoptosis-inducing and anti-cancer activities. Cytotoxicity and pro-apoptotic effect of total triterpenes were evaluated in human breast adenocarcinoma (MCF-7) cell line using MTT assay and DNA fragmentation analysis. Total triterpenes induced apoptosis in MCF-7 cells by down-regulating the levels of cyclin D1, Bcl-2, Bcl-xL and also by up-regulating the levels of Bax and caspase-9. Anti-carcinogenicity of total triterpenes was analysed using dimethyl benz [a] anthracene (DMBA) induced skin papilloma and mammary adenocarcinoma in Swiss albino mice and Wistar rats respectively. Topical application of 5mg, 10mg and 20mg total triterpenes reduced the incidence of skin papilloma by 62.5, 37.5 and 12.5% respectively. Incidence of the mammary tumour was also reduced significantly by 33.33, 66.67 and 16.67% in 10, 50 and 100mg/kg b.wt. total triterpenes treated animals respectively. Total triterpenes were also found to reduce the average number of tumours per animal and extended the tumour latency period in both the models. The results indicate the potential cytotoxicity and anti-cancerous activity of total triterpenes, there by opens up a path to the development of a safe and successive chemo preventive agent of natural origin. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222.

    Science.gov (United States)

    Yu, Dan-Dan; Wu, Ying; Zhang, Xiao-Hui; Lv, Meng-Meng; Chen, Wei-Xian; Chen, Xiu; Yang, Su-Jin; Shen, Hongyu; Zhong, Shan-Liang; Tang, Jin-Hai; Zhao, Jian-Hua

    2016-03-01

    Breast cancer (BCa) is one of the major deadly cancers in women. However, treatment of BCa is still hindered by the acquired-drug resistance. It is increasingly reported that exosomes take part in the development, metastasis, and drug resistance of BCa. However, the specific role of exosomes in drug resistance of BCa is poorly understood. In this study, we investigate whether exosomes transmit drug resistance through delivering miR-222. We established an adriamycin-resistant variant of Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line (MCF-7/Adr) from a drug-sensitive variant (MCF-7/S). Exosomes were isolated from cell supernatant by ultracentrifugation. Cell viability was assessed by MTT assay and apoptosis assay. Individual miR-222 molecules in BCa cells were detected by fluorescence in situ hybridization (FISH). Then, FISH was combined with locked nucleic acid probes and enzyme-labeled fluorescence (LNA-ELF-FISH). Individual miR-222 could be detected as bright photostable fluorescent spots and then the quantity of miR-222 per cell could be counted. Stained exosomes were taken in by the receipt cells. MCF-7/S acquired drug resistance after co-culture with exosomes from MCF-7/Adr (A/exo) but did not after co-culture with exosomes from MCF-7/S (S/exo). The quantity of miR-222 in A/exo-treated MCF-7/S was significantly greater than in S/exo-treated MCF-7/S. MCF-7/S transfected with miR-222 mimics acquired adriamycin resistance while MCF-7/S transfected with miR-222 inhibitors lost resistance. In conclusion, exosomes are effective in transmitting drug resistance and the delivery of miR-222 via exosomes may be a mechanism.

  4. Insulin-induced enhancement of MCF-7 breast cancer cell response to 5-fluorouracil and cyclophosphamide.

    Science.gov (United States)

    Agrawal, Siddarth; Łuc, Mateusz; Ziółkowski, Piotr; Agrawal, Anil Kumar; Pielka, Ewa; Walaszek, Kinga; Zduniak, Krzysztof; Woźniak, Marta

    2017-06-01

    The study was designed to evaluate the potential use of insulin for cancer-specific treatment. Insulin-induced sensitivity of MCF-7 breast cancer cells to chemotherapeutic agents 5-fluorouracil and cyclophosphamide was evaluated. To investigate and establish the possible mechanisms of this phenomenon, we assessed cell proliferation, induction of apoptosis, activation of apoptotic and autophagic pathways, expression of glucose transporters 1 and 3, formation of reactive oxygen species, and wound-healing assay. Additionally, we reviewed the literature regarding theuse of insulin in cancer-specific treatment. We found that insulin increases the cytotoxic effect of 5-fluorouracil and cyclophosphamide in vitro up to two-fold. The effect was linked to enhancement of apoptosis, activation of apoptotic and autophagic pathways, and overexpression of glucose transporters 1 and 3 as well as inhibition of cell proliferation and motility. We propose a model for insulin-induced sensitization process. Insulin acts as a sensitizer of cancer cells to cytotoxic therapy through various mechanisms opening a possibility for metronomic insulin-based treatments.

  5. Metformin Induces Apoptosis and Cell Cycle Arrest Mediated by Oxidative Stress, AMPK and FOXO3a in MCF-7 Breast Cancer Cells

    Science.gov (United States)

    Queiroz, Eveline A. I. F.; Puukila, Stephanie; Eichler, Rosangela; Sampaio, Sandra C.; Forsyth, Heidi L.; Lees, Simon J.; Barbosa, Aneli M.; Dekker, Robert F. H.; Fortes, Zuleica B.; Khaper, Neelam

    2014-01-01

    Recent studies have demonstrated that the anti-diabetic drug, metformin, can exhibit direct antitumoral effects, or can indirectly decrease tumor proliferation by improving insulin sensitivity. Despite these recent advances, the underlying molecular mechanisms involved in decreasing tumor formation are not well understood. In this study, we examined the antiproliferative role and mechanism of action of metformin in MCF-7 cancer cells treated with 10 mM of metformin for 24, 48, and 72 hours. Using BrdU and the MTT assay, it was found that metformin demonstrated an antiproliferative effect in MCF-7 cells that occurred in a time- and concentration- dependent manner. Flow cytometry was used to analyze markers of cell cycle, apoptosis, necrosis and oxidative stress. Exposure to metformin induced cell cycle arrest in G0-G1 phase and increased cell apoptosis and necrosis, which were associated with increased oxidative stress. Gene and protein expression were determined in MCF-7 cells by real time RT-PCR and western blotting, respectively. In MCF-7 cells metformin decreased the activation of IRβ, Akt and ERK1/2, increased p-AMPK, FOXO3a, p27, Bax and cleaved caspase-3, and decreased phosphorylation of p70S6K and Bcl-2 protein expression. Co-treatment with metformin and H2O2 increased oxidative stress which was associated with reduced cell number. In the presence of metformin, treating with SOD and catalase improved cell viability. Treatment with metformin resulted in an increase in p-p38 MAPK, catalase, MnSOD and Cu/Zn SOD protein expression. These results show that metformin has an antiproliferative effect associated with cell cycle arrest and apoptosis, which is mediated by oxidative stress, as well as AMPK and FOXO3a activation. Our study further reinforces the potential benefit of metformin in cancer treatment and provides novel mechanistic insight into its antiproliferative role. PMID:24858012

  6. The Chemopreventive Effect of Tanacetum Polycephalum Against LA7-Induced Breast Cancer in Rats and the Apoptotic Effect of a Cytotoxic Sesquiterpene Lactone in MCF7 Cells: A Bioassay-Guided Approach

    Directory of Open Access Journals (Sweden)

    Hamed Karimian

    2015-06-01

    Full Text Available Background: Tanacetum polycephalum L. Schultz-Bip is a member of the Asteraceae family. This study evaluated the chemopreventive effect of a T. polycephalum hexane extract (TPHE using in in vivo and in vitro models. Methods and Results: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8β- hydroxyl- 4β, 15- dihydrozaluzanin C (HDZC. Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels. Conclusion: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis.

  7. Furanodiene Induces Extrinsic and Intrinsic Apoptosis in Doxorubicin-Resistant MCF-7 Breast Cancer Cells via NF-κB-Independent Mechanism.

    Science.gov (United States)

    Zhong, Zhang-Feng; Yu, Hai-Bing; Wang, Chun-Ming; Qiang, Wen-An; Wang, Sheng-Peng; Zhang, Jin-Ming; Yu, Hua; Cui, Liao; Wu, Tie; Li, De-Qiang; Wang, Yi-Tao

    2017-01-01

    Chemotherapy is used as a primary approach in cancer treatment after routine surgery. However, chemo-resistance tends to occur when chemotherapy is used clinically, resulting in poor prognosis and recurrence. Currently, Chinese medicine may provide insight into the design of new therapies to overcome chemo-resistance. Furanodiene, as a heat-sensitive sesquiterpene, is isolated from the essential oil of Rhizoma Curcumae . Even though mounting evidence claiming that furanodiene possesses anti-cancer activities in various types of cancers, the underlying mechanisms against chemo-resistant cancer are not fully clear. Our study found that furanodiene could display anti-cancer effects by inhibiting cell viability, inducing cell cytotoxicity, and suppressing cell proliferation in doxorubicin-resistant MCF-7 breast cancer cells. Furthermore, furanodiene preferentially causes apoptosis by interfering with intrinsic/extrinsic-dependent and NF-κB-independent pathways in doxorubicin-resistant MCF-7 cells. These observations also prompt that furanodiene may be developed as a promising natural product for multidrug-resistant cancer therapy in the future.

  8. No impact on P-gp level in radio-resistant Mcf-7 cells

    International Nuclear Information System (INIS)

    Madhu, L.N.; Rao, Shama; Sarojini, B.K.

    2016-01-01

    Cancer has become the leading cause of human death worldwide. One possible cause for therapeutic failure is that residual tumor cells are reminiscent of stem cells, which ultimately give rise to secondary tumors or distant metastasis. The property of resistance to radiation therapy or chemotherapy might be the major clinical criterion to characterize 'cancer stem cells (CSCs)'. In the process of radiotherapy, the radiosensitive cancer will become a radioresistant one. Such radio-resistance cells might also show the characters of multi drug resistance (MRD) properties which may affect the chemotherapy process. The present study was carried out to know the expression level of P-gp, a MRD protein in radioresistance breast cancer cells. The study conducted by exposing the MCF-7 cells to 4Gy of gamma radiation

  9. Improved photodynamic action of nanoparticles loaded with indium (III) phthalocyanine on MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Souto, Carlos Augusto Zanoni; Madeira, Klésia Pirola; Rettori, Daniel; Baratti, Mariana Ozello; Rangel, Letícia Batista Azevedo; Razzo, Daniel; Silva, André Romero da

    2013-01-01

    Indium (III) phthalocyanine (InPc) was encapsulated into nanoparticles of PEGylated poly(d,l-lactide-co-glycolide) (PLGA-PEG) to improve the photobiological activity of the photosensitizer. The efficacy of nanoparticles loaded with InPc and their cellular uptake was investigated with MCF-7 breast tumor cells, and compared with the free InPc. The influence of photosensitizer (PS) concentration (1.8–7.5 μmol/L), incubation time (1–2 h), and laser power (10–100 mW) were studied on the photodynamic effect caused by the encapsulated and the free InPc. Nanoparticles with a size distribution ranging from 61 to 243 nm and with InPc entrapment efficiency of 72 ± 6 % were used in the experiments. Only the photodynamic effect of encapsulated InPc was dependent on PS concentration and laser power. The InPc-loaded nanoparticles were more efficient in reducing MCF-7 cell viability than the free PS. For a light dose of 7.5 J/cm 2 and laser power of 100 mW, the effectiveness of encapsulated InPc to reduce the viability was 34 ± 3 % while for free InPc was 60 ± 7 %. Confocal microscopy showed that InPc-loaded nanoparticles, as well as free InPc, were found throughout the cytosol. However, the nanoparticle aggregates and the aggregates of free PS were found in the cell periphery and outside of the cell. The nanoparticles aggregates were generated due to the particles concentration used in the experiment because of the small loading of the InPc while the low solubility of InPc caused the formation of aggregates of free PS in the culture medium. The participation of singlet oxygen in the photocytotoxic effect of InPc-loaded nanoparticles was corroborated by electron paramagnetic resonance experiments, and the encapsulation of photosensitizers reduced the photobleaching of InPc

  10. Improved photodynamic action of nanoparticles loaded with indium (III) phthalocyanine on MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Souto, Carlos Augusto Zanoni [Federal Institute of Espirito Santo (Brazil); Madeira, Klesia Pirola [Federal University of Espirito Santo, Biotechnology Program/RENORBIO, Health Sciences Center (Brazil); Rettori, Daniel [Federal University of Sao Paulo, Department of Exact Sciences and Earth (Brazil); Baratti, Mariana Ozello [University of Campinas, Department of Cellular Biology (Brazil); Rangel, Leticia Batista Azevedo [Federal University of Espirito Santo, Department of Pharmaceutical Sciences (Brazil); Razzo, Daniel [University of Campinas, Department of Physical Chemistry, Institute of Chemistry (Brazil); Silva, Andre Romero da, E-mail: aromero@ifes.edu.br [Federal Institute of Espirito Santo (Brazil)

    2013-09-15

    Indium (III) phthalocyanine (InPc) was encapsulated into nanoparticles of PEGylated poly(d,l-lactide-co-glycolide) (PLGA-PEG) to improve the photobiological activity of the photosensitizer. The efficacy of nanoparticles loaded with InPc and their cellular uptake was investigated with MCF-7 breast tumor cells, and compared with the free InPc. The influence of photosensitizer (PS) concentration (1.8-7.5 {mu}mol/L), incubation time (1-2 h), and laser power (10-100 mW) were studied on the photodynamic effect caused by the encapsulated and the free InPc. Nanoparticles with a size distribution ranging from 61 to 243 nm and with InPc entrapment efficiency of 72 {+-} 6 % were used in the experiments. Only the photodynamic effect of encapsulated InPc was dependent on PS concentration and laser power. The InPc-loaded nanoparticles were more efficient in reducing MCF-7 cell viability than the free PS. For a light dose of 7.5 J/cm{sup 2} and laser power of 100 mW, the effectiveness of encapsulated InPc to reduce the viability was 34 {+-} 3 % while for free InPc was 60 {+-} 7 %. Confocal microscopy showed that InPc-loaded nanoparticles, as well as free InPc, were found throughout the cytosol. However, the nanoparticle aggregates and the aggregates of free PS were found in the cell periphery and outside of the cell. The nanoparticles aggregates were generated due to the particles concentration used in the experiment because of the small loading of the InPc while the low solubility of InPc caused the formation of aggregates of free PS in the culture medium. The participation of singlet oxygen in the photocytotoxic effect of InPc-loaded nanoparticles was corroborated by electron paramagnetic resonance experiments, and the encapsulation of photosensitizers reduced the photobleaching of InPc.

  11. Optimization of the formation of embedded multicellular spheroids of MCF-7 cells: How to reliably produce a biomimetic 3D model.

    Science.gov (United States)

    Zhang, Wenli; Li, Caibin; Baguley, Bruce C; Zhou, Fang; Zhou, Weisai; Shaw, John P; Wang, Zhen; Wu, Zimei; Liu, Jianping

    2016-12-15

    To obtain a multicellular MCF-7 spheroid model to mimic the three-dimensional (3D) of tumors, the microwell liquid overlay (A) and hanging-drop/agar (B) methods were first compared for their technical parameters. Then a method for embedding spheroids within collagen was optimized. For method A, centrifugation assisted cells form irregular aggregates but not spheroids. For method B, an extended sedimentation period of over 24 h for cell suspensions and increased viscosity of the culture medium using methylcellulose were necessary to harvest a dense and regular cell spheroid. When the number was less than 5000 cells/drop, embedded spheroids showed no tight cores and higher viability than the unembedded. However, above 5000 cells/drop, cellular viability of embedded spheroids was not significantly different from unembedded spheroids and cells invading through the collagen were in a sun-burst pattern with tight cores. Propidium Iodide staining indicated that spheroids had necrotic cores. The doxorubicin cytotoxicity demonstrated that spheroids were less susceptible to DOX than their monolayer cells. A reliable and reproducible method for embedding spheroids using the hanging-drop/agarose method within collagen is described herein. The cell culture model can be used to guide experimental manipulation of 3D cell cultures and to evaluate anticancer drug efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Inhibitory growth evaluation and apoptosis induction in MCF-7 cancer cells by new 5-aryl-2-butylthio-1,3,4-oxadiazole derivatives.

    Science.gov (United States)

    Khanam, Rashmin; Ahmad, Kamal; Hejazi, Iram I; Siddique, Ibrar A; Kumar, Vikash; Bhat, Abdul Roouf; Azam, Amir; Athar, Fareeda

    2017-11-01

    Cancer has become one of the global health issues and it is the life-threatening disease characterized by unrestrained growth of cells. Despite various advances being adopted by chemotherapeutic management, the use of the current anticancer drugs such as Doxorubicin, Asparginase, Methotrexate, Vincristine remains limited due to high toxicity, side effects and developing drug resistance. Apoptosis is a crucial cellular process and improper regulation of apoptotic signaling pathways may lead to cancer formation. Subsequently, the synthesis of effective chemotherapeutic agents that can induce apoptosis in tumor cell has emerged as a significant approach in cancer drug discovery. The goal of this work is to develop a potential antitumor agent exerting significant inhibitory effects on cancer cell and low cytotoxicity, for which we focused on the structural features of 1,3,4-oxadiazoles as it a privileged scaffold in modern medicinal chemistry and have the ability to inhibit growth factors, enzymes and kinases potentially involved in the attainment of cellular immortality and carcinogenesis. In vitro MTT screening assay showed the compound 5-aminophenyl-2-butylthio-1,3,4-oxadiazole (5e) showing the highest inhibitory effect against MCF-7 cancer cell with IC 50 value 10.05 ± 1.08 µM while it is much safer and less toxic on normal cell line (HEK-293). The dose-dependent treatment of MCF-7 cells with 5e resulted in inhibition of cell migration in the wound healing assay. The flow-cytometry analysis showed the cells arrested in G0/G1 phase of the cell cycle. Compound 5e induced apoptosis of MCF-7 cells was characterized using DAPI staining and Annexin V-PE/7-AAD dual binding assay. Reduction of NBT by compound 5e showed a reduced generation of ROS. Western blotting studies showed high activation of apoptotic protein Caspase3 and decrease in expression of anti-apoptotic protein BCL-2. Based on the results of in vitro studies, it could be concluded that compound 5e

  13. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    Energy Technology Data Exchange (ETDEWEB)

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Bodipati, Naganjaneyulu; Krishna Peddinti, Rama [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Roy, Partha, E-mail: paroyfbs@iitr.ernet.in [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India)

    2014-01-15

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC{sub 50}=25±0.38) when compared to reference compound PTER (IC{sub 50}=65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene.

  14. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    International Nuclear Information System (INIS)

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta; Bodipati, Naganjaneyulu; Krishna Peddinti, Rama; Roy, Partha

    2014-01-01

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC 50 =25±0.38) when compared to reference compound PTER (IC 50 =65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene

  15. Flavokawain A induces apoptosis in MCF-7 and MDA-MB231 and inhibits the metastatic process in vitro.

    Directory of Open Access Journals (Sweden)

    Nadiah Abu

    Full Text Available The kava-kava plant (Piper methsyticum is traditionally known as the pacific elixir by the pacific islanders for its role in a wide range of biological activities. The extract of the roots of this plant contains a variety of interesting molecules including Flavokawain A and this molecule is known to have anti-cancer properties. Breast cancer is still one of the leading diagnosed cancers in women today. The metastatic process is also very pertinent in the progression of tumorigenesis.MCF-7 and MDA-MB231 cells were treated with several concentrations of FKA. The apoptotic analysis was done through the MTT assay, BrdU assay, Annexin V analysis, cell cycle analysis, JC-1 mitochondrial dye, AO/PI dual staining, caspase 8/9 fluorometric assay, quantitative real time PCR and western blot. For the metastatic assays, the in vitro scratch assay, trans-well migration/invasion assay, HUVEC tube formation assay, ex vivo rat aortic ring assay, quantitative real time PCR and western blot were employed.We have investigated the effects of FKA on the apoptotic and metastatic process in two breast cancer cell lines. FKA induces apoptosis in both MCF-7 and MDA-MB231 in a dose dependent manner through the intrinsic mitochondrial pathway. Additionally, FKA selectively induces a G2/M arrest in the cell cycle machinery of MDA-MB231 and G1 arrest in MCF-7. This suggests that FKA's anti-cancer activity is dependent on the p53 status. Moreover, FKA also halted the migration and invasion process in MDA-MB231. The similar effects can be seen in the inhibition of the angiogenesis process as well.FKA managed to induce apoptosis and inhibit the metastatic process in two breast cancer cell lines, in vitro. Overall, FKA may serve as a promising candidate in the search of a new anti-cancer drug especially in halting the metastatic process but further in vivo evidence is needed.

  16. Differentially expressed proteins in ER+ MCF7 and ER- MDA- MB-231 human breast cancer cells by RhoGDI-α silencing and overexpression.

    Science.gov (United States)

    Hooshmand, Somayeh; Ghaderi, Abbas; Yusoff, Khatijah; Thilakavathy, Karuppiah; Rosli, Rozita; Mojtahedi, Zahra

    2014-01-01

    The consequence of Rho GDP dissociation inhibitor alpha (RhoGDIα) activity on migration and invasion of estrogen receptor positive (ER+) and negative (ER-) breast cancer cells has not been studied using the proteomic approach. Changes in expression of RhoGDIα and other proteins interacting directly or indirectly with RhoGDIα in MCF7 and MDA-MB-231, with different metastatic potentials is of particular interest. ER+ MCF7 and ER- MDA-MB-231 cell lines were subjected to two-dimensional electrophoresis (2-DE) and spots of interest were identified by matrix-assisted laser desorption/ionization time of- flight/time- of-flight (MALDI-TOF/TOF) mass spectrometry (MS) analysis after downregulation of RhoGDIα using short interfering RNA (siRNA) and upregulated using GFP-tagged ORF clone of RhoGDIα. The results showed a total of 35 proteins that were either up- or down-regulated in these cells. Here we identifed 9 and 15 proteins differentially expressed with silencing of RhoGDIα in MCF-7 and the MDA-MB-231 cells, respectively. In addition, 10 proteins were differentially expressed in the upregulation of RhoGDIα in MCF7, while only one protein was identified in the upregulation of RhoGDIα in MDA-MB-231. Based on the biological functions of these proteins, the results revealed that proteins involved in cell migration are more strongly altered with RhoGDI-α activity. Although several of these proteins have been previously indicated in tumorigenesis and invasiveness of breast cancer cells, some ohave not been previously reported to be involved in breast cancer migration. Hence, these proteins may serve as useful candidate biomarkers for tumorigenesis and invasiveness of breast cancer cells. Future studies are needed to determine the mechanisms by which these proteins regulate cell migration. The combination of RhoGDIα with other potential biomarkers may be a more promising approach in the inhibition of breast cancer cell migration.

  17. Toward establishing model organisms for marine protists: Successful transfection protocols for Parabodo caudatus (Kinetoplastida: Excavata).

    Science.gov (United States)

    Gomaa, Fatma; Garcia, Paulo A; Delaney, Jennifer; Girguis, Peter R; Buie, Cullen R; Edgcomb, Virginia P

    2017-09-01

    We developed protocols for, and demonstrated successful transfection of, the free-living kinetoplastid flagellate Parabodo caudatus with three plasmids carrying a fluorescence reporter gene (pEF-GFP with the EF1 alpha promoter, pUB-GFP with Ubiquitin C promoter, and pEYFP-Mitotrap with CMV promoter). We evaluated three electroporation approaches: (1) a square-wave electroporator designed for eukaryotes, (2) a novel microfluidic transfection system employing hydrodynamically-controlled electric field waveforms, and (3) a traditional exponential decay electroporator. We found the microfluidic device provides a simple and efficient platform to quickly test a wide range of electric field parameters to find the optimal set of conditions for electroporation of target species. It also allows for processing large sample volumes (>10 ml) within minutes, increasing throughput 100 times over cuvettes. Fluorescence signal from the reporter gene was detected a few hours after transfection and persisted for 3 days in cells transfected by pEF-GFP and pUB-GFP plasmids and for at least 5 days post-transfection for cells transfected with pEYFP-Mitotrap. Expression of the reporter genes (GFP and YFP) was also confirmed using reverse transcription-PCR (RT-PCR). This work opens the door for further efforts with this taxon and close relatives toward establishing model systems for genome editing. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Synthesis of Hydroxyapatite/Ag/TiO2 Nanotubes and Evaluation of Their Anticancer Activity on Breast Cancer Cell Line MCF-7

    Directory of Open Access Journals (Sweden)

    Sara Rahimnejad

    2016-06-01

    Full Text Available In this research, TiO2 nanotubes were synthesized by anodized oxidation method and were covered with a hydroxyapatite-silver nanoparticles using photodeposition and dip coating for loading silver nanoparticles and coated hydroxyapatite (HA. The morphological texture of TiO2 nanotube and Ag-HA nanoparticles on TiO2 nanotubes surface were studied by field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDAX analysis and X-ray diffraction (XRD. The MCF-7 cell lines were treated with concentrations 1, 10 and 100 µg/ml of TiO2 nanotubes and HA/Ag/TiO2 nanotube for 24 and 48h. Finally, the cell viability and IC50% were evaluated using MTT assay. The results show that the HA/Ag/TiO2 has more positive effect on enhancing the cell death compare to TiO2 nanotubes and also exerts a time and concentration-dependent inhibition effect on viability of MCF-7 cells

  19. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnik, Milica, E-mail: milica.putnik@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Zhao, Chunyan, E-mail: chunyan.zhao@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Gustafsson, Jan-Ake, E-mail: jan-ake.gustafsson@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Department of Biology and Biochemistry, Science and Engineering Research Center Bldg, University of Houston, Houston, TX 77204-5056 (United States); Dahlman-Wright, Karin, E-mail: karin.dahlman-wright@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  20. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Putnik, Milica; Zhao, Chunyan; Gustafsson, Jan-Åke; Dahlman-Wright, Karin

    2012-01-01

    Highlights: ► Estrogen signaling and demethylation can both control gene expression in breast cancers. ► Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. ► 137 genes are influenced by both 17β-estradiol and demethylating agent 5-aza-2′-deoxycytidine. ► A set of genes is identified as targets of both estrogen signaling and demethylation. ► There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17β-estradiol (E2) and a demethylating agent 5-aza-2′-deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of these genes in MCF-7 cells. In a further analysis of the potential interplay between estrogen signaling and DNA methylation, E2 treatment

  1. Short-term effects of ultrahigh concentration cationic silica nanoparticles on cell internalization, cytotoxicity, and cell integrity with human breast cancer cell line (MCF-7)

    Energy Technology Data Exchange (ETDEWEB)

    Seog, Ji Hyun [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of); Kong, Bokyung [Corning Precision Materials (Korea, Republic of); Kim, Dongheun [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of); Graham, Lauren M. [University of Maryland, Department of Chemistry and Biochemistry (United States); Choi, Joon Sig [Chungnam National University, Department of Biochemistry (Korea, Republic of); Lee, Sang Bok, E-mail: slee@umd.edu [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of)

    2015-01-15

    High concentrations of cationic colloidal silica nanoparticles (CCS-NPs) have been widely used for the enrichment of plasma membrane proteins. However, the interaction between the CCS-NPs and cells under the required concentration for the isolation of plasma membrane are rarely investigated. We evaluated the internalization and toxicity of the 15 nm CCS-NPs which were exposed at high concentrations with short time in human breast cancer cells (MCF-7) with transmission electron microscopy, energy dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, and colorimetric assays. The NPs were observed throughout the cells, particularly in the cytoplasm and the nucleus, after short incubation periods. Additionally, the NPs significantly influenced the membrane integrity of the MCF-7 cells.

  2. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao [Department of Chemistry, Jinan University, Guangzhou (China); Zhang, Yikai [Institute of Hematology, Jinan University, Guangzhou (China); Zheng, Shanyuan [School of Life Sciences, The Chinese University of Hong Kong, Hong Kong (China); Weng, Zeping; Ma, Jun [First Affiliated Hospital, Jinan University, Guangzhou (China); Li, Yangqiu [Institute of Hematology, Jinan University, Guangzhou (China); First Affiliated Hospital, Jinan University, Guangzhou (China); Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632 (China); Xie, Xinyuan [Department of Chemistry, Jinan University, Guangzhou (China); Zheng, Wenjie, E-mail: tzhwj@jnu.edu.cn [Department of Chemistry, Jinan University, Guangzhou (China)

    2016-09-02

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to “copper” cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. - Highlights: • Nano-S selectively inhibited the mitosis of A375 and MCF-7 cells by depleting copper. • Nano-S inactivated MEK/ERK pathway through the detention of copper. • Nano-S improved the cellular uptake and anticancer activities

  3. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Liu, Hao; Zhang, Yikai; Zheng, Shanyuan; Weng, Zeping; Ma, Jun; Li, Yangqiu; Xie, Xinyuan; Zheng, Wenjie

    2016-01-01

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to “copper” cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. - Highlights: • Nano-S selectively inhibited the mitosis of A375 and MCF-7 cells by depleting copper. • Nano-S inactivated MEK/ERK pathway through the detention of copper. • Nano-S improved the cellular uptake and anticancer activities

  4. Comparison of influence of carmustine and new proline analog of nitrosourea on antioxidant system in breast carcinoma cells (MCF-7).

    Science.gov (United States)

    Stankiewicz-Kranc, Anna; Miltyk, Wojciech; Skrzydlewska, Elzbieta

    2010-01-01

    The high toxicity and low selectivity of carmustine restrict its application in anticancer therapy. Therefore, proline analogs of nitrosourea have been synthesized to obtain compounds whose action on neoplastic cells is characterized by higher selectivity. The present studies have aimed at examining the influence of carmustine and a new proline analog of nitrosourea on the redox system of fibroblasts and breast cancer cells (MCF-7). Carmustine and the proline analog of nitrosourea caused an increase in hydrogen peroxide concentration both in fibroblasts and MCF-7 cells. Moreover, administration of carmustine and the new analog of nitrosourea caused a decrease in the activity of antioxidant enzymes. Observed changes in the antioxidant system correlated with an increase in concentration of dityrosine, as well as a decrease in tryptophan concentration. Changes in the antioxidant system were also accompanied by intensification of the lipid peroxidation process. In conclusion, carmustine and proline analog of nitrosourea produce similar changes in the antioxidant system in normal and cancer cells and are responsible for oxidative stress.

  5. Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model

    International Nuclear Information System (INIS)

    Zhang, Yan; Hu, Meiru; Shen, Beifen; Guo, Ning; Pu, Xiaoyun; Shi, Ming; Chen, Liyong; Song, Yuhua; Qian, Lu; Yuan, Guogang; Zhang, Hao; Yu, Ming

    2007-01-01

    c-Jun/AP-1 has been linked to invasive properties of aggressive breast cancer. Recently, it has been reported that overexpression of c-Jun in breast cancer cell line MCF-7 resulted in increased AP-1 activity, motility and invasiveness of the cells in vitro and tumor formation in nude mice. However, the role of c-Jun in metastasis of human breast cancer in vivo is currently unknown. To further investigate the direct involvement of c-Jun in tumorigenesis and metastasis, in the present study, the effects of c-Jun overexpression were studied in both in vitro and in nude mice. Ectopic overexpression of c-Jun promoted the growth of MCF-7 cells and resulted in a significant increase in the percentage of cells in S phase and increased motility and invasiveness. Introduction of c-Jun gene alone into weakly invasive MCF-7 cells resulted in the transfected cells capable of metastasizing to the nude mouse liver following tail vein injection. The present study confirms that overexpression of c-Jun contributes to a more invasive phenotype in MCF-7 cells. It indicates an interesting relationship between c-Jun expression and increased property of adhesion, migration and in vivo liver metastasis of MCF-7/c-Jun cells. The results provide further evidence that c-Jun is involved in the metastasis of breast cancer. The finding also opens an opportunity for development of anti-c-Jun strategies in breast cancer therapy

  6. Activity of Saponins from Medicago species Against HeLa and MCF-7 Cell Lines and their Capacity to Potentiate Cisplatin Effect.

    Science.gov (United States)

    Avato, Pinarosa; Migoni, Danilo; Argentieri, Mariapia; Fanizzi, Francesco P; Tava, Aldo

    2017-11-24

    Saponins from Medicago species display several biological activities, among them apoptotic effects against plant cells have been evidenced. In contrast, their cytotoxic and antitumor activity against animal cells have not been studied in great details. To explore the cytotoxic properties of saponin from Medicago species against animal cells and their effect in combination with the antitumoral drug cisplatin. Cytotoxic activity of saponin mixtures from M. arabica (tops and roots), M. arborea (tops) and M. sativa (tops, roots and seeds) and related prosapogenins from M. arborea and M. sativa (tops) against HeLa and MCF-7 cell lines is described. In addition, cytotoxicity of soyasaponin I and purified saponins (1-8) of hederagenin, medicagenic and zanhic acid is also presented. Combination experiments with cisplatin have been also conducted. Saponins from M. arabica tops and roots (mainly monodesmosides of hederagenin and bayogenin) were the most effective to reduce proliferation of HeLa and MCF-7 cell lines. Among the purified saponins, the most cytotoxic was saponin 1, 3-O-ß-D-glucopyranosyl(1→2)-α-L-arabinopyranosyl hederagenin. When saponins, derived prosapogenins and pure saponins were used in combination with cisplatin, they all, to different extent, were able to potentiate cisplatin activity against HeLa cells but not against MCF-7 cell lines. Moreover uptake of cisplatin in these cell lines was significantly reduced. Overall results showed that specific molecular types of saponins (hederagenin glycosides) have potential as anti-cancer agents or as leads for anti-cancer agents. Moreover saponins from Medicago species have evidenced interesting properties to mediate cisplatin effects in tumor cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Polycyclic aromatic hydrocarbon-induced CYP1B1 activity is suppressed by perillyl alcohol in MCF-7 cells

    International Nuclear Information System (INIS)

    Chan, Nelson L.S.; Wang Huan; Wang Yun; Leung, H.Y.; Leung, Lai K.

    2006-01-01

    Perillyl alcohol (POH) is a dietary monoterpene with potential applications in chemoprevention and chemotherapy. Although clinical trials are under way, POH's physiological and pharmacological properties are still unclear. In the present study, the effect of POH on polycyclic aromatic hydrocarbon (PAH)-induced genotoxicity, and the related expression were examined in MCF-7 cells. Exposure to environmental toxicant increases the risk of cancer. Many of these compounds are pro-carcinogens and are biotransformed into their ultimate genotoxic structures by xenobiotic metabolizing enzymes. CYP1A1 and 1B1 are enzymes that catalyze the biotransformation of dimethylbenz[a]anthracene (DMBA). Our data revealed that 0.5 μM of POH was effective in blocking DMBA-DNA binding. Ethoxyresorufin-O-deethylase (EROD) assay indicated that the administration of POH inhibited the DMBA-induced enzyme activity in MCF-7 cells. Enzyme kinetic analysis revealed that POH inhibited CYP1B1 but not CYP1A1 activity. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay also demonstrated that the monoterpene reduced CYP1B1 mRNA abundance induced by DMBA. The present study illustrated that POH might inhibit and downregulate CYP1B1, which could protect against PAH-induced carcinogenesis

  8. Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines

    OpenAIRE

    Najmeh Sarvmeili; Abbas Jafarian-Dehkordi; Behzad Zolfaghari

    2016-01-01

    Several attempts have so far been made in the search of new anticancer agents of plant origin. Some studies have reported that different species of Pine genus possess cytotoxic activities against various cancer cell lines. In the present study, we evaluated the cytotoxic effects of Pinus eldarica bark and leaf extracts or leaf essential oil on HeLa and MCF-7 tumor cell lines. Hydroalcoholic and phenolic extracts and the essential oil of plant were prepared. Total phenolic contents of the extr...

  9. A pH and Redox Dual Responsive 4-Arm Poly(ethylene glycol-block-poly(disulfide histamine Copolymer for Non-Viral Gene Transfection in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Kangkang An

    2014-05-01

    Full Text Available A novel 4-arm poly(ethylene glycol-b-poly(disulfide histamine copolymer was synthesized by Michael addition reaction of poly(ethylene glycol (PEG vinyl sulfone and amine-capped poly(disulfide histamine oligomer, being denoted as 4-arm PEG-SSPHIS. This copolymer was able to condense DNA into nanoscale polyplexes (<200 nm in average diameter with almost neutral surface charge (+(5–10 mV. Besides, these polyplexes were colloidal stable within 4 h in HEPES buffer saline at pH 7.4 (physiological environment, but rapidly dissociated to liberate DNA in the presence of 10 mM glutathione (intracellular reducing environment. The polyplexes also revealed pH-responsive surface charges which markedly increased with reducing pH values from 7.4–6.3 (tumor microenvironment. In vitro transfection experiments showed that polyplexes of 4-arm PEG-SSPHIS were capable of exerting enhanced transfection efficacy in MCF-7 and HepG2 cancer cells under acidic conditions (pH 6.3–7.0. Moreover, intravenous administration of the polyplexes to nude mice bearing HepG2-tumor yielded high transgene expression largely in tumor rather other normal organs. Importantly, this copolymer and its polyplexes had low cytotoxicity against the cells in vitro and caused no death of the mice. The results of this study indicate that 4-arm PEG-SSPHIS has high potential as a dual responsive gene delivery vector for cancer gene therapy.

  10. Antiproliferative Action of Conjugated Linoleic Acid on Human MCF-7 Breast Cancer Cells Mediated by Enhancement of Gap Junctional Intercellular Communication through Inactivation of NF-κB

    Directory of Open Access Journals (Sweden)

    Md. Abdur Rakib

    2013-01-01

    Full Text Available The major conjugated linoleic acid (CLA isomers, c9,t11-CLA and t10,c12-CLA, have anticancer effects; however, the exact mechanisms underlying these effects are unknown. Evidence suggests that reversal of reduced gap junctional intercellular communication (GJIC in cancer cells inhibits cell growth and induces cell death. Hence, we determined that CLA isomers enhance GJIC in human MCF-7 breast cancer cells and investigated the underlying molecular mechanisms. The CLA isomers significantly enhanced GJIC of MCF-7 cells at 40 μM concentration, whereas CLA inhibited cell growth and induced caspase-dependent apoptosis. CLA increased connexin43 (Cx43 expression both at the transcriptional and translational levels. CLA inhibited nuclear factor-κB (NF-κB activity and enhanced reactive oxygen species (ROS generation. No significant difference was observed in the efficacy of c9,t11-CLA and t10,c12-CLA. These results suggest that the anticancer effect of CLA is associated with upregulation of GJIC mediated by enhanced Cx43 expression through inactivation of NF-κB and generation of ROS in MCF-7 cells.

  11. Protective Effects of Moringa oleifera on HBV Genotypes C and H Transiently Transfected Huh7 Cells

    Science.gov (United States)

    Feustel, Sina; Ayón-Pérez, Fabiola; Sandoval-Rodriguez, Ana; Rodríguez-Echevarría, Roberto; Contreras-Salinas, Homero

    2017-01-01

    Chronic hepatitis B infection treatment implicates a long-lasting treatment. M. oleifera extracts contain compounds with antiviral, antioxidant, and antifibrotic properties. In this study, the effect of M. oleifera was evaluated in Huh7 cells expressing either HBV genotypes C or H for the antiviral, antifibrotic, anti-inflammatory, and antioxidative responses. Huh7 cells were treated with an aqueous extract of M. oleifera (leaves) at doses of 0, 30, 45, or 60 μg/mL. The replicative virus and TGF-β1, CTGF, CAT, IFN-β1, and pgRNA expressions were measured by real time. HBsAg and IL-6 titers were determined by ELISA. CTGF, TGF-β1, IFN-β1, and pgRNA expressions decreased with M. oleifera treatment irrespective of the HBV genotype. HBsAg secretion in the supernatant of transfected Huh7 cells with both HBV genotypes was decreased regardless of the dose of M. oleifera. Similar effect was observed in proinflammatory cytokine IL-6, which had a tendency to decrease at 24 hours of treatment. Transfection with both HBV genotypes strongly decreased CAT expression, which is retrieved with M. oleifera treatment. M. oleifera treatment reduced fibrosis markers, IL-6, and HBsAg secretion in HBV genotypes C and H. However, at the level of replication, only HBV-DNA genotype C was slightly reduced with this treatment. PMID:29214184

  12. Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways.

    Directory of Open Access Journals (Sweden)

    Zhongyuan Zhang

    Full Text Available BACKGROUND: Fucoidan extract (FE, an enzymatically digested compound with a low molecular weight, is extracted from brown seaweed. As a natural compound with various actions, FE is attractive, especially in Asian countries, for improving the therapeutic efficacy and safety of cancer treatment. The present study was carried out to investigate the anti-tumor properties of FE in human carcinoma cells and further examine the underlying mechanisms of its activities. METHODOLOGY/PRINCIPAL FINDING: FE inhibits the growth of MCF-7, MDA-MB-231, HeLa, and HT1080 cells. FE-mediated apoptosis in MCF-7 cancer cells is accompanied by DNA fragmentation, nuclear condensation, and phosphatidylserine exposure. FE induces mitochondrial membrane permeabilization (MMP through loss of mitochondrial membrane potential (ΔΨm and regulation of the expression of Bcl-2 family members. Release of apoptosis-inducing factor (AIF and cytochrome c precedes MMP. AIF release causes DNA fragmentation, the final stage of apoptosis, via a caspase-independent mitochondrial pathway. Additionally, FE was found to induce phosphorylation of c-Jun N-terminal kinase (JNK, p38, and extracellular signal-regulated kinase (ERK 1/2, and apoptosis was found to be attenuated by inhibition of JNK. Furthermore, FE-mediated apoptosis was found to involve the generation of reactive oxygen species (ROS, which are responsible for the decrease of ΔΨm and phosphorylation of JNK, p38, and ERK1/2 kinases. CONCLUSIONS/SIGNIFICANCE: These data suggest that FE activates a caspase-independent apoptotic pathway in MCF-7 cancer cells through activation of ROS-mediated MAP kinases and regulation of the Bcl-2 family protein-mediated mitochondrial pathway. They also provide evidence that FE deserves further investigation as a natural anticancer and cancer preventive agent.

  13. Lipid-based Transfection Reagents Exhibit Cryo-induced Increase in Transfection Efficiency

    Directory of Open Access Journals (Sweden)

    Helena Sork

    2016-01-01

    Full Text Available The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents.

  14. The combination effect of sodium butyrate and 5-Aza-2'-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Oh Seong

    2009-05-01

    Full Text Available Abstract Background The overall level of chromatin compaction is an important mechanism of radiosensitivity, and modification of DNA methylation and histone deacetylation may increase radiosensitivity by altering chromatin compaction. In this study, we investigated the effect of a demethylating agent, a histone deacetylase(HDAC inhibitor, and the two agents combined on radiosensitivity in human colon and breast cancer cell lines. Methods In this study, we used RKO colorectal cancer cell line and MCF-7 breast cancer cell lines and normal colon cell lines. On each of the cell lines, we used three different agents: the HDAC inhibitor sodium butyrate(SB, the demethylating agent 5-Aza-2'-deoxycytidine(5-aza-DC, and radiation. We then estimated the percentage of the cell survival using the XTT method and experimented to determine if there was an augmentation in the therapeutic effect by using different combinations of the two or three of the treatment methods. Results After treatment of each cell lines with 5-aza-DC, SB and 6 grays of radiation, we observed that the survival fraction was lower after the treatment with 5-aza-DC or SB than with radiation alone in RKO and MCF-7 cell lines(p Conclusion In conclusion, 5-aza-DC and SB can enhance radiosensitivity in both MCF-7 and RKO cell lines. The combination effect of a demethylating agent and an HDAC inhibitor is more effective than that of single agent treatment in both breast and colon cancer cell lines.

  15. Different Expression of Extracellular Signal-Regulated Kinases (ERK) 1/2 and Phospho-Erk Proteins in MBA-MB-231 and MCF-7 Cells after Chemotherapy with Doxorubicin or Docetaxel.

    Science.gov (United States)

    Taherian, Aliakbar; Mazoochi, Tahereh

    2012-01-01

    Curative treatment of breast cancer patients using chemotherapy often fails as a result of intrinsic or acquired resistance of the tumor to the drug. ERK is one of the main components of the Ras/Raf/MEK/ERK cascade, which mediates signal from cell surface receptors to transcription factors to regulate different gene expression. In this study, cytotoxicity and the expression of Erk1/2 and phospho-ERK was compared in MDA-MB-231 (ER-) and MCF-7 (ER+) cell lines after treatment with doxorubicin (DOX) or docetaxel (DOCT). Cell cytotoxicity of DOX or DOCT was calculated using MTT assay. Immonofluorescent technique was used to show MDR-1 protein in MDA-MB-231 and MCF-7 cells after treatment with DOX or DOCT. The expression of ERK1/2 and phpspho-ERK was assayed with immunoblotting. Comparing IC50 values showed that MDA-MB-231 cells are more sensitive than MCF-7 cells to DOX or DOCT. Immonofluorescent results confirmed the expression of MDR-1 in these two cell lines after DOX or DOCT treatment. In MDA-MB-231 cells the expression of ERK1/2 and phospho-ERK was decreased after DOX treatment in a dose-dependent manner. In contrast in MCF-7 cells the expression of ERK1/2 and phospho-ERK was increased after DOX treatment. DOCT treatment demonstrated the same result with less significant differences than DOX. The heterogeneity seen in cell lines actually reflects the heterogeneity of breast cancers. That is why, patients categorized in one group respond differently to a single treatment. These results emphasize the importance of a more accurate classification and a more specific treatment of breast cancer subtypes.

  16. Apoptotic potential of two Caryophyllaceae species in MCF-7 and MDA-MB-468 cell lines

    Directory of Open Access Journals (Sweden)

    M. Mosaddegh

    2018-01-01

    Full Text Available Background and objectives: Plants have been used to treat diseases like cancer for many years and today the trend towards their use is increasing. One of the most effective mechanisms of plants against cancer is inducing apoptosis. Apoptosis is a programmed cell death which acts opposite to cell division. It starts in response to some stimuli. Despite the effectiveness of apoptosis inducing agents, their use has been limited due to side effects and resistance to these treatments; so, applying medicinal herbs due to their lower cost and toxicity has drawn attentions. Recent research at the Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences on two medicinal plants Acanthophyllum bracteatum and A. microcephalum has shown cytotoxic effects of these two species, but the mechanism of their toxicity has remained unknown; thus, the present study was designed to evaluate the apoptotic potential of Acanthophyllum bracteatum and A. microcephalum. Methods: In the present study, the cytotoxic effects of the methanol extract of Acanthophyllum bracteatum and A. microcephalum was evaluated against MCF-7 and MDA-MB-468 cells by MTT assay; furthermore, their apoptosis potential has been evaluated by annexin-V/propidium iodide assay and Hoechst 33258 staining in the same cell lines. Results: The methanol extract of A. microcephalum and A. bracteatum showed cytotoxic effects against MCF-7 and MDA-MB-468 cell lines with IC50 values of 64, 159 and 102, 250 μg/mL, respectively. The results of the apoptosis assays confirmed the potential of the two plants extracts to induce apoptosis in both cell lines while A. microcephalum demonstrated more considerable results. Conclusion: A. microcephalum could be a suitable choice for further breast cancer studies.

  17. ROS-dependent mitochondria molecular mechanisms underlying antitumor activity of Pleurotus abalonus acidic polysaccharides in human breast cancer MCF-7 cells.

    Directory of Open Access Journals (Sweden)

    Xiaolong Shi

    Full Text Available BACKGROUND: A greater reduction in cancer risk associated with mushroom diet rich in fungus polysaccharides is generally accepted. Meanwhile, edible Pleurotus abalonus as a member of Abalone mushroom family is a popular nutritional supplement that purportedly prevents cancer occurrence. However, these anecdotal claims are supported by limited studies describing tumor-inhibitory responses to the promising polysaccharides, and the molecular mechanisms underlying these properties have not yet been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: We here fractionated the crude polysaccharide preparation from the fruiting bodies of P. abalonus into three fractions, namely PAP-1, PAP-2 and PAP-3, and tested these fractions for antiproliferative activity in human breast cancer MCF-7 cells. The largest PAP-3, an acidic polysaccharide fraction with a molecular mass of 3.68×10(5 Da, was the most active in inhibiting MCF-7 cancer cells with an IC50 of 193 µg/mL. The changes in cell normal morphology were observed by DAPI staining and the PAP-3-induced apoptosis was confirmed by annexin V/propidium iodide staining. The apoptosis was involved in mitochondria-mediated pathway including the loss of mitochondrial membrane potential (Δψm, the increase of Bax/Bcl-2 ratio, caspase-9/3 activation, and poly(ADP-ribose polymerase (PARP degradation, as well as intracellular ROS production. PAP-3 also induced up-regulation of p53, and cell cycle arrest at the S phase. The incubation of MCF-7 cells with antioxidant superoxide dismutase (SOD and N-acetylcysteine (NAC significantly attenuated the ROS generation and apoptosis caused by PAP-3, indicating that intracellular ROS plays a pivotal role in cell death. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the polysaccharides, especially acidic PAP-3, are very important nutritional ingredients responsible for, at least in part, the anticancer health benefits of P. abalonus via ROS-mediated mitochondrial apoptotic

  18. The efficacy of 9-cis retinoic acid in experimental models of cancer.

    Science.gov (United States)

    Gottardis, M M; Lamph, W W; Shalinsky, D R; Wellstein, A; Heyman, R A

    1996-01-01

    9-cis retinoic acid (9-cis RA) is a retinoid receptor pan-agonist that binds with high affinity to both retinoic acid receptors (RARs) and retinoid X receptors (RXRs). Using a variety of in vivo and in vitro cancer models, we present experimental data that 9-cis RA has activity as a potential chemotherapeutic agent. Treatment of the human promyelocytic leukemia cell line HL-60 with 9-cis RA decreases cell proliferation, increases cell differentiation, and increases apoptosis. Induction of apoptosis correlates with an increase in tissue transglutaminase (type II) activity. In vivo, 9-cis RA induces complete tumor regression of an early passage human lip squamous cell carcinoma xenograft. Finally, 9-cis RA inhibits the anchorage-independent growth of the human breast cancer cell lines MCF-7 and LY2 (an antiestrogen-resistant MCF-7 variant). Transient co-transfection assays indicate that 9-cis RA inhibits estrogen receptor transcription of an ERE-tk-LUC reporter through RAR or RXR receptors. These data suggest that retinoid receptors can antagonize estrogen-dependent transcription and provides one possible mechanism for the inhibition of cell growth by 9-cis RA in breast cancer cell lines. In summary, these findings present evidence that 9-cis RA has a wide range of activities in human cancer models.

  19. Antioxidant and Cytotoxic Effect of Barringtonia racemosa and Hibiscus sabdariffa Fruit Extracts in MCF-7 Human Breast Cancer Cell Line.

    Science.gov (United States)

    Amran, Norliyana; Rani, Anis Najwa Abdul; Mahmud, Roziahanim; Yin, Khoo Boon

    2016-01-01

    The fruits of Barringtonia racemosa and Hibiscus sabdariffa have been used in the treatment of abscess, ulcer, cough, asthma, and diarrhea as traditional remedy. This study aims to evaluate cytotoxic effect of B. racemosa and H. sabdariffa methanol fruit extracts toward human breast cancer cell lines (MCF-7) and its antioxidant activities. Total antioxidant activities of extracts were assayed using 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) and β-carotene bleaching assay. Content of phytochemicals, total flavonoid content (TFC), and total phenolic content (TPC) were determined using aluminum chloride colorimetric method and Folin-Ciocalteu's reagent, respectively. Cytotoxic activity in vitro was investigated through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. B. racemosa extract exhibited high antioxidant activities compared to H. sabdariffa methanol fruit extracts in DPPH radical scavenging assay (inhibitory concentration [IC50] 15.26 ± 1.25 μg/mL) and ί-carotene bleaching assay (I% 98.13 ± 1.83%). B. racemosa also showed higher TPC (14.70 ± 1.05 mg gallic acid equivalents [GAE]/g) and TFC (130 ± 1.18 mg quercetin equivalents [QE]/g) compared to H. sabdariffa (3.80 ± 2.13 mg GAE/g and 40.75 ± 1.15 mg QE/g, respectively). In MTT assay, B. racemosa extract also showed a higher cytotoxic activity (IC50 57.61 ± 2.24 μg/mL) compared to H. sabdariffa. The present study indicated that phenolic and flavonoid compounds known for oxidizing activities indicated an important role among the contents of these plants extract. B. racemosa methanol extract have shown potent cytotoxic activity toward MCF-7. Following these promising results, further fractionation of the plant extract is underway to identify important phytochemical bioactives for the development of potential nutraceutical and pharmaceutical use. The phenolic and flavonoid compounds were present in B. racemosa and H. sabdariffa methanol extractsB. racemosa methanol

  20. Assessment of cellular responses to oxidative stress using MCF-7 breast cancer cells, black seed (N. Sativa L.) extracts and H2O2.

    Science.gov (United States)

    Farah, Ibrahim O

    2005-12-01

    Black seed (N. Sativa L) is an oriental spice of the family Ranunculaceae that has long been rationally used as a natural medicine for treatment of many acute as well as chronic conditions including cardiovascular disease and immunological disorders. It has been used in the treatment of diabetes, hypertension, and dermatological conditions. There have been very few studies on the effects of N. Sativa as a chemoprevention of chronic diseases as well as in cancer prevention and/or therapy. Oxidative stress is a condition that underlies many acute as well as chronic conditions. The combination and role of oxidative stress and antioxidants in vivo is still a matter of conjecture. Our objective for the present study was to expose MCF-7 breast cancer cells in vitro (as a chronic disease example) to aqueous and alcohol extracts and in combination with H[2]O[2] as an oxidative stressor. Measurement of cell survival under various concentrations and mixtures was conducted using standard cell culture techniques, exposure protocols in 96 well plates and Fluorospectrosphotometry. Following cellular growth to 90% confluencey, exposure to water (WE) and ethanol (AE) extracts of N. sativa and H[2]O[2] was performed. Cell survival indices were calculated from percent survival using regression analysis. Results showed that the alcohol extract and its mixtures were able to influence the survival of MCF-7 cells (indices ranged from 357.15- 809.50 mug/ml in descending potency for H[2]O[2]+AE to the mix of 3). In contrast, H[2]O[2] alone reduced effectively the survival of MCF-7 cells and the least effective combinations in descending potency were AE+H[2]O[2], WE+H[2]O[2], AE+WE, and WE+AE+H[2]O[2]. Mixtures other than AE+H[2]O[2] showed possible interactions and loss of potency. In conclusion, N. Sativa alone or in combination with oxidative stress was found to be effective (in vitro) in influencing the survival of MCF-7 breast cancer cells, unveiling promising opportunities in the

  1. Assessment of Cellular Responses to Oxidative Stress using MCF-7 Breast Cancer Cells, Black Seed (N. Sativa L. Extracts and H2O2

    Directory of Open Access Journals (Sweden)

    Ibrahim O. Farah

    2005-12-01

    Full Text Available Black seed (N. Sativa L is an oriental spice of the family Ranunculaceae that has long been rationally used as a natural medicine for treatment of many acute as well as chronic conditions including cardiovascular disease and immunological disorders. It has been used in the treatment of diabetes, hypertension, and dermatological conditions. There have been very few studies on the effects of N. Sativa as a chemoprevention of chronic diseases as well as in cancer prevention and/or therapy. Oxidative stress is a condition that underlies many acute as well as chronic conditions. The combination and role of oxidative stress and antioxidants in vivo is still a matter of conjecture. Our objective for the present study was to expose MCF-7 breast cancer cells in vitro (as a chronic disease example to aqueous and alcohol extracts and in combination with H2O2 as an oxidative stressor. Measurement of cell survival under various concentrations and mixtures was conducted using standard cell culture techniques, exposure protocols in 96 well plates and Fluorospectrosphotometry. Following cellular growth to 90% confluencey, exposure to water (WE and ethanol (AE extracts of N. sativa and H2O2 was performed. Cell survival indices were calculated from percent survival using regression analysis. Results showed that the alcohol extract and its mixtures were able to influence the survival of MCF-7 cells (indices ranged from 357.15- 809.50 Bg/ml in descending potency for H2O2+AE to the mix of 3. In contrast, H2O2 alone reduced effectively the survival of MCF-7 cells and the least effective combinations in descending potency were AE+H2O2, WE+H2O2, AE+WE, and WE+AE+H2O2. Mixtures other than AE+H2O2 showed possible interactions and loss of potency. In conclusion, N. Sativa alone or in combination with oxidative stress was found to be effective (in vitro in influencing the survival of MCF-7 breast cancer cells, unveiling promising opportunities in the field of cancer

  2. 27-hydroxycholesterol induces the transition of MCF7 cells into a mesenchymal phenotype.

    Science.gov (United States)

    Torres, Cristian G; Ramírez, María E; Cruz, Pamela; Epuñan, María J; Valladares, Luis E; Sierralta, Walter D

    2011-08-01

    A decrease in the expression of E-cadherin and β-catenin, paralleling the loss of adherens junction complex, was observed in MCF7 cells exposed for longer than 48 h to 2 µM 27-hydroxycholesterol (27OHC), indicating an epithelial-mesenchymal transition (EMT). Upon removal of 27OHC from the culture medium, the cells released by the exposure of 72 h to the oxysterol grew as loosely packed cell groups. In these cells, accumulation of E-cadherin and β-catenin in the cytoplasm and the prolonged expression of epidermal growth factor receptor 2 (EGFR2/neu) in the plasma membrane were observed, suggesting that the acquired phenotype was related to the expression of this tyrosine kinase-growth factor receptor. The results presented here are discussed on the basis of the claimed relationship between 27OHC, hypercholesterolemia, macrophage infiltration and therapy-resistant ERα+ breast cancer incidence.

  3. Involvement of Cox-2 in the metastatic potential of chemotherapy-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Kang, Ju-Hee; Song, Ki-Hoon; Jeong, Kyung-Chae; Kim, Sunshin; Choi, Changsun; Lee, Chang Hoon; Oh, Seung Hyun

    2011-01-01

    A major problem with the use of current chemotherapy regimens for several cancers, including breast cancer, is development of intrinsic or acquired drug resistance, which results in disease recurrence and metastasis. However, the mechanisms underlying this drug resistance are unknown. To study the molecular mechanisms underlying the invasive and metastatic activities of drug-resistant cancer cells, we generated a doxorubicin-resistant MCF-7 breast cancer cell line (MCF-7/DOX). We used MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, flow cytometry assays, DNA fragmentation assays, Western blot analysis, cell invasion assays, small interfering RNA (siRNA) transfection, reverse transcription-polymerase chain reaction, experimental lung metastasis models, and gelatin and fibrinogen/plasminogen zymography to study the molecular mechanism of metastatic activities in MCF-7/DOX cells. We found that MCF-7/DOX acquired invasive activities. In addition, Western blot analysis showed increased expression of epidermal growth factor receptor (EGFR) and Cox-2 in MCF-7/DOX cells. Inhibition of Cox-2, phosphoinositide 3-kinase (PI3K)/Akt, or mitogen-activated protein kinase (MAPK) pathways effectively inhibited the invasive activities of MCF-7/DOX cells. Gelatin and fibrinogen/plasminogen zymography analysis showed that the enzymatic activities of matrix metalloproteinase-2 (MMP-2), MMP-9, and urokinase-type plasminogen activator were markedly higher in MCF-7/DOX cells than in the MCF-7 cells. In vitro invasion assays and mouse models of lung metastasis demonstrated that MCF-7/DOX cells acquired invasive abilities. Using siRNAs and agonists specific for prostaglandin E (EP) receptors, we found that EP1 and EP3 played important roles in the invasiveness of MCF-7/DOX cells. We found that the invasive activity of MCF-7/DOX cells is mediated by Cox-2, which is induced by the EGFR-activated PI3K/Akt and MAPK pathways. In addition, EP1 and EP3 are important in

  4. Radiation dose rate affects the radiosensitization of MCF-7 and HeLa cell lines to X-rays induced by dextran-coated iron oxide nanoparticles.

    Science.gov (United States)

    Khoshgard, Karim; Kiani, Parvaneh; Haghparast, Abbas; Hosseinzadeh, Leila; Eivazi, Mohammad Taghi

    2017-08-01

    The aim of radiotherapy is to deliver lethal damage to cancerous tissue while preserving adjacent normal tissues. Radiation absorbed dose of the tumoral cells can increase when high atomic nanoparticles are present in them during irradiation. Also, the dose rate is an important aspect in radiation effects that determines the biological results of a given dose. This in vitro study investigated the dose-rate effect on the induced radiosensitivity by dextran-coated iron oxide in cancer cells. HeLa and MCF-7 cells were cultured in vitro and incubated with different concentrations of dextran-coated iron oxide nanoparticles. They were then irradiated with 6 MV photons at dose rates of 43, 185 and 370 cGy/min. The MTT test was used to obtain the cells' survival after 48 h of irradiations. Incubating the cells with the nanoparticles at concentrations of 10, 40 and 80 μg/ml showed no significant cytotoxicity effect. Dextran-coated iron oxide nanoparticles showed more radiosensitivity effect by increasing the dose rate and nanoparticles concentration. Radiosensitization enhancement factors of MCF-7 and HeLa cells at a dose-rate of 370 cGy/min and nanoparticles' concentration of 80 μg/ml were 1.21 ± 0.06 and 1.19 ± 0.04, respectively. Increasing the dose rate of 6 MV photons irradiation in MCF-7 and HeLa cells increases the radiosensitization induced by the dextran-coated iron nanoparticles in these cells.

  5. The p85α regulatory subunit of PI3K mediates cAMP-PKA and retinoic acid biological effects on MCF7 cell growth and migration.

    Science.gov (United States)

    Donini, Caterina F; Di Zazzo, Erika; Zuchegna, Candida; Di Domenico, Marina; D'Inzeo, Sonia; Nicolussi, Arianna; Avvedimento, Enrico V; Coppa, Anna; Porcellini, Antonio

    2012-05-01

    Phosphoinositide-3-OH kinase (PI3K) signalling regulates various cellular processes, including cell survival, growth, proliferation and motility, and is among the most frequently mutated pathways in cancer. Although the involvement of p85αPI3K SH2 domain in signal transduction has been extensively studied, the function of the SH3 domain at the N-terminus remains elusive. A serine (at codon 83) adjacent to the N-terminal SH3 domain in the PI3K regulatory subunit p85αPI3K that is phosphorylated by protein kinase A (PKA) in vivo and in vitro has been identified. Virtually all receptors binding p85αPI3K can cooperate with cAMP-PKA signals via phosphorylation of p85αPI3KSer83. To analyse the role of p85αPI3KSer83 in retinoic acid (RA) and cAMP signalling, in MCF7 cells, we used p85αPI3K mutated forms, in which Ser83 has been substituted with alanine (p85A) to prevent phosphorylation or with aspartic acid (p85D) to mimic the phosphorylated residue. We demonstrated that p85αPI3KSer83 is crucial for the synergistic enhancement of RARα/p85αPI3K binding induced by cAMP/RA co-treatment in MCF7 cells. Growth curves, colorimetric MTT assay and cell cycle analysis demonstrated that phosphorylation of p85αPI3KSer83 plays an important role in the control of MCF7 cell proliferation and in RA-induced inhibition of proliferation. Wound healing and transwell experiments demonstrated that p85αPI3KSer83 was also essential both for the control of migratory behaviour and for the reduction of motility induced by RA. This study points to p85αPI3KSer83 as the physical link between different pathways (cAMP-PKA, RA and FAK), and as an important regulator of MCF7 cell proliferation and migration.

  6. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    International Nuclear Information System (INIS)

    Park, Choa; Lee, YoungJoo

    2014-01-01

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression

  7. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choa; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.

  8. Synthesis and Biological Activity of Diastereomeric and Geometric Analogs of Calcipotriol, PRI-2202 and PRI-2205, Against Human HL-60 Leukemia and MCF-7 Breast Cancer Cells.

    Science.gov (United States)

    Milczarek, Magdalena; Chodyński, Michał; Filip-Psurska, Beata; Martowicz, Agnieszka; Krupa, Małgorzata; Krajewski, Krzysztof; Kutner, Andrzej; Wietrzyk, Joanna

    2013-10-31

    Diastereomeric and geometric analogs of calcipotriol, PRI-2202 and PRI-2205, were synthesized as advanced intermediates from vitamin D C-22 benzothiazoyl sulfones and side-chain aldehydes using our convergent strategy. Calcitriol, calcipotriol (PRI-2201) and tacalcitol (PRI-2191) were used as the reference compounds. Among a series of tested analogs the diastereomeric analog PRI-2202 showed the strongest antiproliferative activity on the human breast cancer cell line MCF-7, whereas the geometric analog PRI-2205 was the weakest. Both analogs were less potent in antiproliferative activity against HL-60 cells compared to the reference compounds. The ability to potentiate antiproliferative effect of cisplatin or doxorubicin against HL-60 cells or that of tamoxifen against the MCF-7 cell line was observed at higher doses of PRI-2202 or PRI-2205 than those of the reference compounds. The proapoptotic activity of tamoxifen, expressed as the diminished mitochondrial membrane potential, as well as the increased phosphatidylserine expression, was partially attenuated by calcitriol, PRI-2191, PRI-2201 and PRI-2205. The treatment of the MCF-7 cells with tamoxifen alone resulted in an increase in VDR expression. Moreover, a further increase in VDR expression was observed when the analogs PRI-2201 or PRI-2205, but not PRI-2191, were used in combination with tamoxifen. This observation could partially explain the potentiation of the antiproliferative effect of tamoxifen by vitamin D analogs.

  9. [VEGF165 transfected endothelial progenitor cells mediated by lentivirus alleviated ALI in rats].

    Science.gov (United States)

    He, Zhaohui; He, Huiwei; Lu, Yuanhua; Chen, Zhi; Xu, Fanghua; Wang, Rongsheng; Yang, Chunli

    2017-11-01

    treatment group were more significant [4 hours: PaO 2 (mmHg, 1 mmHg = 0.133 kPa) was 82.84±10.69 vs. 72.34±9.36, lung W/D ratio was 4.83±0.23 vs. 5.55±0.37, iNOS (ng/mg) was 8.77±1.10 vs. 14.84±1.34, ET-1 (ng/mg) was 103.41±5.66 vs. 153.08±5.12, VEGF165 (ng/mg) was 130.56±12.16 vs. 83.03±5.95; 12 hours: PaO 2 (mmHg) was 91.67±6.81 vs. 78.5±8.81, lung W/D ratio was 4.44±0.35 vs. 5.32±0.25, iNOS (ng/mg) was 7.23±0.24 vs. 14.04±1.18, ET-1 (ng/mg) was 91.98±3.52 vs. 125.99±7.55, VEGF165 (ng/mg) was 164.49±5.71 vs. 96.61±6.12]; individual parameters reached valley value or peak value at 48 hours [lung W/D ratio was 4.26±0.30 vs. 4.89±0.15, iNOS (ng/mg) was 5.79±0.85 vs. 12.72±1.10, ET-1 (ng/mg) was 74.53±7.10 vs. 108.33±5.84, VEGF165 (ng/mg) was 237.43±10.79 vs. 134.24±11.99, all P ALI model group. Compared with the EPCs treatment group, the VEGF165 transfected EPCs treatment group had a lower score at 48 hours (8.50±1.05 vs. 10.50±1.05, P ALI.

  10. The adaptor SASH1 acts through NOTCH1 and its inhibitor DLK1 in a 3D model of lumenogenesis involving CEACAM1.

    Science.gov (United States)

    Stubblefield, Kandis; Chean, Jennifer; Nguyen, Tung; Chen, Charng-Jui; Shively, John E

    2017-10-15

    CEACAM1 transfection into breast cancer cells restores lumen formation in a 3D culture model. Among the top up-regulated genes that were associated with restoration of lumen formation, the adaptor protein SASH1 was identified. Furthermore, SASH1 was shown to be critical for lumen formation by RNAi inhibition. Upon analyzing the gene array from CEACAM1/MCF7 cells treated with SASH1 RNAi, DLK1, an inhibitor of NOTCH1 signaling, was found to be down-regulated to the same extent as SASH1. Subsequent treatment of CEACAM1/MCF7 cells with RNAi to DLK1 also inhibited lumen formation, supporting its association with SASH1. In agreement with the role of DLK1 as a NOTCH1 inhibitor, NOTCH1, as well as its regulated genes HES1 and HEY1, were down-regulated in CEACAM1/MCF7 cells by the action of DLK1 RNAi, and up-regulated by SASH1 RNAi. When CEACAM1/MCF7 cells were treated with a γ-secretase inhibitor known to inhibit NOTCH signaling, lumen formation was inhibited. We conclude that restoration of lumen formation by CEACAM1 regulates the NOTCH1 signaling pathway via the adaptor protein SASH1 and the NOTCH1 inhibitor DLK1. These data suggest that the putative involvement of NOTCH1 as a tumor-promoting gene in breast cancer may depend on its lack of regulation in cancer, whereas its involvement in normal lumen formation requires activation of its expression, and subsequently, inhibition of its signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    International Nuclear Information System (INIS)

    Uma Suganya, K.S.; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D.; Arulvasu, C.; Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan

    2016-01-01

    Highlights: • Biosynthesis of stable and well dispersed predominantly spherical gold nanoparticles of size around ∼12.5 nm. • Anticancer assessment of gold nanoparticles on MDA-MB-231 and MCF-7 cell lines. • AuNPs were found non toxic to normal HMEC cells. • Flow cytometry results revealed significant arrest in cell proliferation in early G0/G1 to S phase. - Abstract: Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G_0/G_1 to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  12. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    Energy Technology Data Exchange (ETDEWEB)

    Uma Suganya, K.S. [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Govindaraju, K., E-mail: govindtu@gmail.com [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Ganesh Kumar, V. [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Prabhu, D.; Arulvasu, C. [Department of Zoology, University of Madras, Guindy campus, Chennai 600 025 (India); Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India)

    2016-05-15

    Highlights: • Biosynthesis of stable and well dispersed predominantly spherical gold nanoparticles of size around ∼12.5 nm. • Anticancer assessment of gold nanoparticles on MDA-MB-231 and MCF-7 cell lines. • AuNPs were found non toxic to normal HMEC cells. • Flow cytometry results revealed significant arrest in cell proliferation in early G0/G1 to S phase. - Abstract: Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G{sub 0}/G{sub 1} to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  13. Apoptotic and antiproliferative properties of 3β-hydroxy-Δ5-steroidal congeners from a partially purified column fraction of Dendronephthya gigantea against HL-60 and MCF-7 cancer cells.

    Science.gov (United States)

    Fernando, I P Shanura; Sanjeewa, K K Asanka; Kim, Hyun-Soo; Wang, Lei; Lee, Won Woo; Jeon, You-Jin

    2018-04-01

    Organisms belonging to the genus Dendronephthya are among a group of marine invertebrates that produce a variety of terpenoids with biofunctional properties. Many of these terpenoids have been proven effective as anticancer drugs. Here, we report the antiproliferative effect of 3β-hydroxy-Δ5-steroidal congeners against the proliferation of HL-60 human leukemia cells and MCF-7 human breast cancer cells. The sterol-rich fraction (DGEHF2-1) inhibited the growth of HL-60 and MCF-7 cells with IC 50 values of 13.59 ± 1.40 and 29.41 ± 0.87 μg ml -1 respectively. Treatment with DGEHF2-1 caused a dose-dependent increase in apoptotic body formation, DNA damage and the sub-G 1 apoptotic cell population. Moreover, DGEHF2-1 downregulated the expression of Bcl-xL while upregulating Bax, caspase-9, and PARP cleavage in both HL-60 and MCF-7 cells. The steroid fraction was found to act via the mitochondria-mediated apoptosis pathway. Identification of the sterols was performed via gas chromatography-tandem mass spectrometry analysis. Studying the mechanism of the anticancer effect caused by these sterol derivatives could lead to the identification of other natural products with anticancer properties. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Subcellular localization of estradiol receptor in MCF7 cells studied with nanogold-labelled antibody fragments.

    Science.gov (United States)

    Kessels, M M; Qualmann, B; Thole, H H; Sierralta, W D

    1998-01-01

    Ultrastructural localization studies of estradiol receptor in hormone-deprived and hormone-stimulated MCF7 cells were done using F(ab') fragments of three different antibodies (#402, 13H2, HT277) covalently linked to nanogold. These ultra-small, non-charged immunoreagents, combined with a size-enlargement by silver enhancement, localized estradiol receptor in both nuclear and cytoplasmic areas of non-stimulated target cells; stimulation with the steroid induced a predominantly nuclear labelling. In the cytoplasm of resting cells, tagging was often observed at or in the proximity of stress fibers. In the nucleus a large proportion of receptor was found inside the nucleolus, specially with the reagent derived from antibody 13H2. We postulate that different accessibilities of receptor epitopes account for the different labelling densities observed at cytoskeletal elements and the nucleoli.

  15. [Pt(O,O'-acac)(gamma-acac)(DMS)], a new Pt compound exerting fast cytotoxicity in MCF-7 breast cancer cells via the mitochondrial apoptotic pathway.

    Science.gov (United States)

    Muscella, A; Calabriso, N; Fanizzi, F P; De Pascali, S A; Urso, L; Ciccarese, A; Migoni, D; Marsigliante, S

    2008-01-01

    We showed previously that a new Pt complex containing an O,O'-chelated acetylacetonate ligand (acac) and a dimethylsulphide in the Pt coordination sphere, [Pt(O,O'-acac)(gamma-acac)(DMS)], induces apoptosis in HeLa cells. The objective of this study was to investigate the hypothesis that [Pt(O,O'-acac)(gamma-acac)(DMS)] is also cytotoxic in a MCF-7 breast cancer cell line relatively insensitive to cisplatin, and to gain a more detailed analysis of the cell death pathways. Cells were treated with Pt compounds and cytotoxicity tests were performed, together with Western blotting of various proteins involved in apoptosis. The mitochondrial membrane potential was assessed by fluorescence microscopy and spectrofluorometry and the Pt bound to cell fractions was measured by atomic absorption spectrometry. In contrast to cisplatin, the cytotoxicity of [Pt(O,O'-acac)(gamma-acac)(DMS)] correlated with cellular accumulation but not with DNA binding. Also, the Pt content in DNA bases was considerably higher for cisplatin than for [Pt(O,O'-acac)(gamma-acac)(DMS)], thus excluding DNA as a target of [Pt(O,O'-acac)(gamma-acac)(DMS)]. [Pt(O,O'-acac)(gamma-acac)(DMS)] exerted high and fast apoptotic processes in MCF-7 cells since it provoked: (a) mitochondria depolarization; (b) cytochrome c accumulation in the cytosol; (c) translocation of Bax and truncated-Bid from cytosol to mitochondria and decreased expression of Bcl-2; (d) cleavage of caspases -7 and -9, and PARP degradation; (e) chromatin condensation and DNA fragmentation. [Pt(O,O'-acac)(gamma-acac)(DMS)] is highly cytotoxic for MCF-7 cells, cells relatively resistant to many chemotherapeutic agents, as it activates the mitochondrial apoptotic pathway. Hence, [Pt(O,O'-acac)(gamma-acac)(DMS)] has the potential to provide us with new opportunities for therapeutic intervention.

  16. FDG uptake in cold and heat treated MCF-7 cells, comparison with cell viability, apoptosis, and tumor marker changes

    International Nuclear Information System (INIS)

    Zhang, C.; Sun, X.; Huang, G.; Liu, J.

    2007-01-01

    Full text: Objectives-To investigate the FDG uptake changes in cold and hyperthermia therapy and its correlation with cell viability, apoptosis and tumor marker changes. Methods: An in vitro cultured breast adenocarcinoma cell line, MCF- 7, was divided into 5 groups. Hyperthermia group: cell was treated in 43 degree centigrade 30 min. Hypothermia group: cell was treated in 0 degree centigrade 30 min. Hypo- and hyperthermia group: cell was treated in 0 degree centigrade 30 min and 43 degree centigrade 30 min. chemotherapy group: cell was treated with 21 microgram Cisplatin for 6 hours. And Control group: cell was untreated. The levels 18F-labelled FDG uptake, a 3-(4, 5-dimethylthiazol-2-yl)- 2, 5-diphenyltetrazoliumbromide viability assay, flow cytometry assay and tumor markers (CA153, CA125) were detected at 24 hour and 48 hour. Results: The change of 18F- FDG uptake (which came out at the 24h) is early than tumor marker (which came out at the 48h) under our study conditions. In treated MCF-7 cells, the levels of 18F-labelled FDG uptake were significantly lower than control group. The levels of 18F-FDG uptake depression were well correlated with cell viability and apoptosis data. Conclusion: FDG uptake is sensitive and well correlated with cell viability and apoptosis assay, and can be used for early response monitoring in hypo- and hyperthermia therapy. (author)

  17. Dimethoxycurcumin-induced cell death in human breast carcinoma MCF7 cells: evidence for pro-oxidant activity, mitochondrial dysfunction, and apoptosis.

    Science.gov (United States)

    Kunwar, A; Jayakumar, S; Srivastava, A K; Priyadarsini, K I

    2012-04-01

    The factors responsible for the induction of cell death by dimethoxycurcumin (Dimc), a synthetic analog of curcumin, were assessed in human breast carcinoma MCF7 cells. Initial cytotoxic studies with both curcumin and Dimc using MTT assay indicated their comparable effects. Further, the mechanism of action was explored in terms of oxidative stress, mitochondrial dysfunction, and modulation in the expression of proteins involved in cell cycle regulation and apoptosis. Dimc (5-50 μM) caused generation of reactive oxygen species, reduction in glutathione level, and induction of DNA damage. The mitochondrial dysfunction induced by Dimc was evidenced by the reduction in mitochondrial membrane potential and decrease in cellular energy status (ATP/ADP) monitored by HPLC analysis. The observed decrease in ATP was also supported by the significant suppression of different (α, β, γ, and ε) subunits of ATP synthase. The cytotoxic effect of Dimc was further characterized in terms of induction of S-phase cell cycle arrest and apoptosis, and their relative contribution was found to vary with the treatment concentration of Dimc. The S-phase arrest and apoptosis could also be correlated with the changes in the expressions of cell cycle proteins like p53, p21, CDK4, and cyclin-D1 and apoptotic markers like Bax and Bcl-2. Overall, the results demonstrated that Dimc induced cell death in MCF7 cells through S-phase arrest and apoptosis.

  18. Synthesis and Biological Activity of Diastereomeric and Geometric Analogs of Calcipotriol, PRI-2202 and PRI-2205, Against Human HL-60 Leukemia and MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Andrzej Kutner

    2013-10-01

    Full Text Available Diastereomeric and geometric analogs of calcipotriol, PRI-2202 and PRI-2205, were synthesized as advanced intermediates from vitamin D C-22 benzothiazoyl sulfones and side-chain aldehydes using our convergent strategy. Calcitriol, calcipotriol (PRI-2201 and tacalcitol (PRI-2191 were used as the reference compounds. Among a series of tested analogs the diastereomeric analog PRI-2202 showed the strongest antiproliferative activity on the human breast cancer cell line MCF-7, whereas the geometric analog PRI-2205 was the weakest. Both analogs were less potent in antiproliferative activity against HL-60 cells compared to the reference compounds. The ability to potentiate antiproliferative effect of cisplatin or doxorubicin against HL-60 cells or that of tamoxifen against the MCF-7 cell line was observed at higher doses of PRI-2202 or PRI-2205 than those of the reference compounds. The proapoptotic activity of tamoxifen, expressed as the diminished mitochondrial membrane potential, as well as the increased phosphatidylserine expression, was partially attenuated by calcitriol, PRI-2191, PRI-2201 and PRI-2205. The treatment of the MCF-7 cells with tamoxifen alone resulted in an increase in VDR expression. Moreover, a further increase in VDR expression was observed when the analogs PRI-2201 or PRI-2205, but not PRI-2191, were used in combination with tamoxifen. This observation could partially explain the potentiation of the antiproliferative effect of tamoxifen by vitamin D analogs.

  19. Evaluation of heterocyclic steroids and curcumin derivatives as anti-breast cancer agents: Studying the effect on apoptosis in MCF-7 breast cancer cells.

    Science.gov (United States)

    Elmegeed, Gamal A; Yahya, Shaymaa M M; Abd-Elhalim, Mervat M; Mohamed, Mervat S; Mohareb, Rafat M; Elsayed, Ghada H

    2016-11-01

    Anticancer agents consisting of hybrid molecules are used to improve effectiveness and diminish drug resistance. The current study aimed to introduce newly synthesized hetero-steroids of promising anticancer effects. Besides, the pro-apoptotic effects of new compounds were investigated extensively. Several pyrimidino-, triazolopyrimidino-, pyridazino-, and curcumin-steroid derivatives were synthesized, elucidated and confirmed using the spectral and analytical data. The synthesized hetero-steroids, compounds 9, 10, 11, 12, 13, 14, 15, 18, 20, 21, 22 and 24, were tested for their cytotoxic effects versus human breast cancer cells (MCF-7) using neutral red supravital dye uptake assay. Compound 24 (IC50=18μM) showed more inhibitory influence on MCF-7 growth. Using QRT-PCR (Quantitative real time-polymerase chain reaction), CCND1, Survivin, BCL-2, CDC2, P21 and P53, genes expression levels were investigated. The study results disclose that compounds 4, 7, 18, 24 knocked down the expression levels of CCND1, Survivin, BCL-2 and CDC2. However, P21 and P53 were up-regulated by compounds 21, 22. This study introduced promising pro-apoptotic anticancer agents acting through the modulation of key regulators of apoptosis and cell cycle genes. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Selenized milk casein in the diet of BALB/c nude mice reduces growth of intramammary MCF-7 tumors

    International Nuclear Information System (INIS)

    Warrington, Jenny M; Kim, Julie JM; Stahel, Priska; Cieslar, Scott RL; Moorehead, Roger A; Coomber, Brenda L; Corredig, Milena; Cant, John P

    2013-01-01

    Dietary selenium has the potential to reduce growth of mammary tumors. Increasing the Se content of cows’ milk proteins is a potentially effective means to increase Se intake in humans. We investigate the effects of selenized milk protein on human mammary tumor progression in immunodeficient BALB/c nude mice. Four isonitrogenous diets with selenium levels of 0.16, 0.51, 0.85 and 1.15 ppm were formulated by mixing low- and high-selenium milk casein isolates with a rodent premix. MCF-7 cells were inoculated into the mammary fat pad of female BALB/c nude mice implanted with slow-release 17 β-estradiol pellets. Mice with palpable tumors were randomly assigned to one of the four diets for 10 weeks, during which time weekly tumor caliper measurements were conducted. Individual growth curves were fit with the Gompertz equation. Apoptotic cells and Bcl-2, Bax, and Cyclin D1 protein levels in tumors were determined. There was a linear decrease in mean tumor volume at 70 days with increasing Se intake (P < 0.05), where final tumor volume decreased 35% between 0.16 and 1.15 ppm Se. There was a linear decrease in mean predicted tumor volume at 56, 63 and 70 days, and the number of tumors with a final volume above 500 mm 3 , with increasing Se intake (P < 0.05). This tumor volume effect was associated with a decrease in the proportion of tumors with a maximum growth rate above 0.03 day -1 . The predicted maximum volume of tumors (V max ) and the number of tumors with a large V max , were not affected by Se-casein. Final tumor mass, Bcl-2, Bax, and Cyclin D1 protein levels in tumors were not significantly affected by Se-casein. There was a significantly higher number of apoptotic cells in high-Se tumors as compared to low-Se tumors. Taken together, these results suggest that turnover of cells in the tumor, but not its nutrient supply, were affected by dairy Se. We have shown that 1.1 ppm dietary Se from selenized casein can effectively reduce tumor progression in an MCF-7

  1. Efficient transfection of DNA into primarily cultured rat sertoli cells by electroporation.

    Science.gov (United States)

    Li, Fuping; Yamaguchi, Kohei; Okada, Keisuke; Matsushita, Kei; Enatsu, Noritoshi; Chiba, Koji; Yue, Huanxun; Fujisawa, Masato

    2013-03-01

    The expression of exogenous DNA in Sertoli cells is essential for studying its functional genomics, pathway analysis, and medical applications. Electroporation is a valuable tool for nucleic acid delivery, even in primarily cultured cells, which are considered difficult to transfect. In this study, we developed an optimized protocol for electroporation-based transfection of Sertoli cells and compared its efficiency with conventional lipofection. Sertoli cells were transfected with pCMV-GFP plasmid by square-wave electroporation under different conditions. After transfection of plasmid into Sertoli cells, enhanced green fluorescent protein (EGFP) expression could be easily detected by fluorescent microscopy, and cell survival was evaluated by dye exclusion assay using Trypan blue. In terms of both cell survival and the percentage expressing EGFP, 250 V was determined to produce the greatest number of transiently transfected cells. Keeping the voltage constant (250 V), relatively high cell survival (76.5% ± 3.4%) and transfection efficiency (30.6% ± 5.6%) were observed with a pulse length of 20 μm. The number of pulses significantly affected cell survival and EGFP expression (P transfection methods, the transfection efficiency of electroporation (21.5% ± 5.7%) was significantly higher than those of Lipofectamine 2000 (2.9% ± 1.0%) and Effectene (1.9% ± 0.8%) in this experiment (P transfection of Sertoli cells.

  2. Evaluation of the radioinduced damage, repair capacity and cell death on human tumorigenic (T-47D and MCF-7) and nontumorigenic (MCF-10) cell lines of breast

    International Nuclear Information System (INIS)

    Valdoge, Flavia Gomes Silva

    2008-01-01

    Breast cancer is one of the most common malignancies that account women, representing about one in three of all female neoplasm. Approximately, 90% of cases are considered sporadic, attributed to somatic events and about 10% have a family history and this only 4 - 5 % is due to hereditary factors. In the clinic, ionizing radiation is a major tool utilized in the control of tumour growth, besides surgery and chemotherapy. There is, however, little information concerning cellular response to the action of ionizing radiation in the target cells, i.e., cell lines originating from breast cancer. The present study proposed to analyze the radiosensitivity of the human tumorigenic (T-47D and MCF-7) and non tumorigenic (MCF-10) cell lines, originating from breast and submitted to various doses (0.5 to 30 Gy) of 60 Co rays (0.72 - 1.50 Gy/min). For this purpose, DNA radioinduced damage, repair capacity and cell death were utilized as parameters of radiosensitivity by micronucleus, single cell gel electrophoresis (Comet assay) and cell viability techniques. The data obtained showed that tumorigenic cell lines were more radiosensitive than non tumorigenic breast cells in all assays here utilized. The T-47D cell line was presenting the highest amount of radioinduced damage, a more accelerated proliferation rate and a higher rate of cell death. The three cell lines presented a relatively efficient repair capacity, since one hour after the irradiation all of them showed a considerable reduction of radioinduced damage. The techniques employed showed to be secure, sensitive and reproducible, allowing to quantify and evaluate DNA damage, repair capacity and cell death in the three human breast cell lines. (author)

  3. THE CYTOTOXIC EFFECTS OF LOW INTENSITY VISIBLE AND INFRARED LIGHT ON HUMAN BREAST CANCER (MCF7 CELLS

    Directory of Open Access Journals (Sweden)

    P Peidaee

    2013-03-01

    Full Text Available A concept of using low intensity light therapy (LILT as an alternative approach to cancer treatment is at early stages of development; while the therapeutic effects of LILT as a non-invasive treatment modality for localized joint and soft tissue wound healing are widely corroborated. The LEDs-based exposure system was designed and constructed to irradiate the selected cancer and normal cells and evaluate the biological effects induced by light exposures in visible and infrared light range. In this study, human breast cancer (MCF7 cells and human epidermal melanocytes (HEM cells (control were exposed to selected far infrared light (3400nm, 3600nm, 3800nm, 3900nm, 4100nm and 4300nm and visible and near infrared wavelengths (466nm, 585nm, 626nm, 810nm, 850nm and 950nm. The optical intensities of LEDs used for exposures were in the range of 15µW to 30µW. Cellular morphological changes of exposed and sham-exposed cells were evaluated using light microscopy. The cytotoxic effects of these low intensity light exposures on human cancer and normal cell lines were quantitatively determined by Lactate dehydrogenase (LDH cytotoxic activity and PrestoBlueTM cell viability assays. Findings reveal that far-infrared exposures were able to reduce cell viability of MCF7 cells as measured by increased LDH release activity and PrestoBlueTM assays. Further investigation of the effects of light irradiation on different types of cancer cells, study of possible signaling pathways affected by electromagnetic radiation (EMR and in vivo experimentation are required in order to draw a firm conclusion about the efficacy of low intensity light as an alternative non-invasive cancer treatment.

  4. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231.

    Directory of Open Access Journals (Sweden)

    Prakash P Mansara

    Full Text Available Omega 3 (n3 and Omega 6 (n6 polyunsaturated fatty acids (PUFAs have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10 FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A. Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1 decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer.

  5. Reverse Transfection Using Gold Nanoparticles

    Science.gov (United States)

    Yamada, Shigeru; Fujita, Satoshi; Uchimura, Eiichiro; Miyake, Masato; Miyake, Jun

    Reverse transfection from a solid surface has the potential to deliver genes into various types of cell and tissue more effectively than conventional methods of transfection. We present a method for reverse transfection using a gold colloid (GC) as a nanoscaffold by generating nanoclusters of the DNA/reagentcomplex on a glass surface, which could then be used for the regulation of the particle size of the complex and delivery of DNA into nuclei. With this method, we have found that the conjugation of gold nanoparticles (20 nm in particle size) to the pEGFP-N1/Jet-PEI complex resulted in an increase in the intensity of fluorescence of enhanced green fluorescent protein (EGFP) (based on the efficiency of transfection) from human mesenchymal stem cells (hMSCs), as compared with the control without GC. In this manner, we constructed a method for reverse transfection using GC to deliver genes into the cells effectively.

  6. Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Suo, Aili, E-mail: ailisuo@mail.xjtu.edu.cn [Department of Oncology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710061 (China); Qian, Junmin, E-mail: jmqian@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Yaping; Liu, Rongrong; Xu, Weijun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Hejing [Department of Oncology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710061 (China)

    2016-05-01

    A comb-like amphiphilic copolymer methoxypolyethylene glycol-graft-poly(L-lysine)-block-poly(L-phenylalanine) (mPEG-g-PLL-b-Phe) was successfully synthesized. To synthesize mPEG-g-PLL-b-Phe, diblock copolymer PLL-b-Phe was first synthesized by successive ring-opening polymerization of α-amino acid N-carboxyanhydrides followed by the removal of benzyloxycarbonyl protecting groups, and then mPEG was grafted onto PLL-b-Phe by reductive amination via Schiff's base formation. The chemical structures of the copolymers were identified by {sup 1}H NMR. mPEG-g-PLL-b-Phe copolymer had a critical micelle concentration of 6.0 mg/L and could self-assemble in an aqueous solution into multicompartment nanomicelles with a mean diameter of approximately 78 nm. The nanomicelles could encapsulate doxorubicin (DOX) through hydrophobic and π–π stacking interactions between DOX molecules and Phe blocks and simultaneously complex P-gp siRNA with cationic PLL blocks via electrostatic interactions. The DOX/P-gp siRNA-loaded nanomicelles showed spherical morphology, possessed narrow particle size distribution and had a mean particle size of 120 nm. The DOX/P-gp siRNA-loaded nanomicelles exhibited pH-responsive release behaviors and displayed accelerated release under acidic conditions. The DOX/P-gp siRNA-loaded nanomicelles were efficiently internalized into MCF-7 cells, and DOX released could successfully reach nuclei. In vitro cytotoxicity assay demonstrated that the DOX/P-gp siRNA-loaded nanomicelles showed a much higher cytotoxicity in MCF-7 cells than DOX-loaded nanomicelles due to their synergistic killing effect and that the blank nanomicelles had good biocompatibility. Thus, the novel comb-like mPEG-g-PLL-b-Phe nanomicelles could be a promising vehicle for co-delivery of chemotherapeutic drug and genetic material. - Highlights: • Comb-like amphiphilic copolymer mPEG-g-PLL-b-Phe was successfully synthesized. • Polypeptide-based copolymer could self-assemble into

  7. Leptin upregulates telomerase activity and transcription of human telomerase reverse transcriptase in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, He, E-mail: herenrh@yahoo.com.cn [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Zhao, Tiansuo; Wang, Xiuchao; Gao, Chuntao; Wang, Jian; Yu, Ming [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Hao, Jihui, E-mail: jihuihao@yahoo.com [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China)

    2010-03-26

    The aim was to analyze the mechanism of leptin-induced activity of telomerase in MCF-7 breast cancer cells. We found that leptin activated telomerase in a dose-dependent manner; leptin upregulated the expression of Human Telomerase Reverse Transcriptase (hTERT) at mRNA and protein levels; blockade of signal transducer and activator of transcription 3 (STAT3) phosphorylation significantly counteracted leptin-induced hTERT transcription and protein expression; chromatin immunoprecipitation analysis showed that leptin enhanced the binding of STAT3 to the hTERT promoter. This study uncovers a new mechanism of the proliferative effect of leptin on breast cancer cells and provides a new explanation of obesity-related breast cancer.

  8. Comparing Apoptosis and Necrosis Effects of Arctium Lappa Root Extract and Doxorubicin on MCF7 and MDA-MB-231 Cell Lines

    OpenAIRE

    Ghafari, Fereshteh; Rajabi, Mohammad Reza; Mazoochi, Tahereh; Taghizadeh, Mohsen; Nikzad, Hossein; Atlasi, Mohammad Ali; Taherian, Aliakbar

    2017-01-01

    Objective: Breast cancer is a heterogeneous disease and very common malignancy in women worldwide. The efficacy of chemotherapy as an important part of breast cancer treatment is limited due to its side effects. While pharmaceutical companies are looking for better chemicals, research on traditional medicines that generally have fewer side effects is quite interesting. In this study, apoptosis and necrosis effect of Arctium lappa and doxorubicin was compared in MCF7, and MDA-MB-231 cell lines...

  9. Persea declinata (Bl. Kosterm Bark Crude Extract Induces Apoptosis in MCF-7 Cells via G0/G1 Cell Cycle Arrest, Bcl-2/Bax/Bcl-xl Signaling Pathways, and ROS Generation

    Directory of Open Access Journals (Sweden)

    Putri Narrima

    2014-01-01

    Full Text Available Persea declinata (Bl. Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill, which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl. Kosterm bark methanolic crude extract (PDM. PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48 h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development.

  10. Ethanolic Neem (Azadirachta indica Leaf Extract Prevents Growth of MCF-7 and HeLa Cells and Potentiates the Therapeutic Index of Cisplatin

    Directory of Open Access Journals (Sweden)

    Chhavi Sharma

    2014-01-01

    Full Text Available The present study was designed to gain insight into the antiproliferative activity of ethanolic neem leaves extract (ENLE alone or in combination with cisplatin by cell viability assay on human breast (MCF-7 and cervical (HeLa cancer cells. Nuclear morphological examination and cell cycle analysis were performed to determine the mode of cell death. Further, to identify its molecular targets, the expression of genes involved in apoptosis, cell cycle progression, and drug metabolism was analyzed by RT-PCR. Treatment of MCF-7, HeLa, and normal cells with ENLE differentially suppressed the growth of cancer cells in a dose- and time-dependent manner through apoptosis. Additionally, lower dose combinations of ENLE with cisplatin resulted in synergistic growth inhibition of these cells compared to the individual drugs (combination index <1. ENLE significantly modulated the expression of bax, cyclin D1, and cytochrome P450 monooxygenases (CYP 1A1 and CYP 1A2 in a time-dependent manner in these cells. Conclusively, these results emphasize the chemopreventive ability of neem alone or in combination with chemotherapeutic treatment to reduce the cytotoxic effects on normal cells, while potentiating their efficacy at lower doses. Thus, neem may be a prospective therapeutic agent to combat gynecological cancers.

  11. Overexpression of KCNJ3 gene splice variants affects vital parameters of the malignant breast cancer cell line MCF-7 in an opposing manner.

    Science.gov (United States)

    Rezania, S; Kammerer, S; Li, C; Steinecker-Frohnwieser, B; Gorischek, A; DeVaney, T T J; Verheyen, S; Passegger, C A; Tabrizi-Wizsy, N Ghaffari; Hackl, H; Platzer, D; Zarnani, A H; Malle, E; Jahn, S W; Bauernhofer, T; Schreibmayer, W

    2016-08-12

    Overexpression the KCNJ3, a gene that encodes subunit 1 of G-protein activated inwardly rectifying K(+) channel (GIRK1) in the primary tumor has been found to be associated with reduced survival times and increased lymph node metastasis in breast cancer patients. In order to survey possible tumorigenic properties of GIRK1 overexpression, a range of malignant mammary epithelial cells, based on the MCF-7 cell line that permanently overexpress different splice variants of the KCNJ3 gene (GIRK1a, GIRK1c, GIRK1d and as a control, eYFP) were produced. Subsequently, selected cardinal neoplasia associated cellular parameters were assessed and compared. Adhesion to fibronectin coated surface as well as cell proliferation remained unaffected. Other vital parameters intimately linked to malignancy, i.e. wound healing, chemoinvasion, cellular velocities / motilities and angiogenesis were massively affected by GIRK1 overexpression. Overexpression of different GIRK1 splice variants exerted differential actions. While GIRK1a and GIRK1c overexpression reinforced the affected parameters towards malignancy, overexpression of GIRK1d resulted in the opposite. Single channel recording using the patch clamp technique revealed functional GIRK channels in the plasma membrane of MCF-7 cells albeit at very low frequency. We conclude that GIRK1d acts as a dominant negative constituent of functional GIRK complexes present in the plasma membrane of MCF-7 cells, while overexpression of GIRK1a and GIRK1c augmented their activity. The core component responsible for the cancerogenic action of GIRK1 is apparently presented by a segment comprising aminoacids 235-402, that is present exclusively in GIRK1a and GIRK1c, but not GIRK1d (positions according to GIRK1a primary structure). The current study provides insight into the cellular and molecular consequences of KCNJ3 overexpression in breast cancer cells and the mechanism upon clinical outcome in patients suffering from breast cancer.

  12. Overexpression of KCNJ3 gene splice variants affects vital parameters of the malignant breast cancer cell line MCF-7 in an opposing manner

    International Nuclear Information System (INIS)

    Rezania, S.; Kammerer, S.; Li, C.; Steinecker-Frohnwieser, B.; Gorischek, A.; DeVaney, T. T. J.; Verheyen, S.; Passegger, C. A.; Tabrizi-Wizsy, N. Ghaffari; Hackl, H.; Platzer, D.; Zarnani, A. H.; Malle, E.; Jahn, S. W.; Bauernhofer, T.; Schreibmayer, W.

    2016-01-01

    Overexpression the KCNJ3, a gene that encodes subunit 1 of G-protein activated inwardly rectifying K + channel (GIRK1) in the primary tumor has been found to be associated with reduced survival times and increased lymph node metastasis in breast cancer patients. In order to survey possible tumorigenic properties of GIRK1 overexpression, a range of malignant mammary epithelial cells, based on the MCF-7 cell line that permanently overexpress different splice variants of the KCNJ3 gene (GIRK1a, GIRK1c, GIRK1d and as a control, eYFP) were produced. Subsequently, selected cardinal neoplasia associated cellular parameters were assessed and compared. Adhesion to fibronectin coated surface as well as cell proliferation remained unaffected. Other vital parameters intimately linked to malignancy, i.e. wound healing, chemoinvasion, cellular velocities / motilities and angiogenesis were massively affected by GIRK1 overexpression. Overexpression of different GIRK1 splice variants exerted differential actions. While GIRK1a and GIRK1c overexpression reinforced the affected parameters towards malignancy, overexpression of GIRK1d resulted in the opposite. Single channel recording using the patch clamp technique revealed functional GIRK channels in the plasma membrane of MCF-7 cells albeit at very low frequency. We conclude that GIRK1d acts as a dominant negative constituent of functional GIRK complexes present in the plasma membrane of MCF-7 cells, while overexpression of GIRK1a and GIRK1c augmented their activity. The core component responsible for the cancerogenic action of GIRK1 is apparently presented by a segment comprising aminoacids 235–402, that is present exclusively in GIRK1a and GIRK1c, but not GIRK1d (positions according to GIRK1a primary structure). The current study provides insight into the cellular and molecular consequences of KCNJ3 overexpression in breast cancer cells and the mechanism upon clinical outcome in patients suffering from breast cancer. The online

  13. Repeated Gene Transfection Impairs the Engraftment of Transplanted Porcine Neonatal Pancreatic Cells

    Directory of Open Access Journals (Sweden)

    Min Koo Seo

    2011-02-01

    Full Text Available BackgroundPreviously, we reported that neonatal porcine pancreatic cells transfected with hepatocyte growth factor (HGF gene in an Epstein-Barr virus (EBV-based plasmid (pEBVHGF showed improved proliferation and differentiation compared to those of the control. In this study, we examined if pancreatic cells transfected repeatedly with pEBVHGF can be successfully grafted to control blood glucose in a diabetes mouse model.MethodsNeonatal porcine pancreatic cells were cultured as a monolayer and were transfected with pEBVHGF every other day for a total of three transfections. The transfected pancreatic cells were re-aggregated and transplanted into kidney capsules of diabetic nude mice or normal nude mice. Blood glucose level and body weight were measured every other day after transplantation. The engraftment of the transplanted cells and differentiation into beta cells were assessed using immunohistochemistry.ResultsRe-aggregation of the pancreatic cells before transplantation improved engraftment of the cells and facilitated neovascularization of the graft. Right before transplantation, pancreatic cells that were transfected with pEBVHGF and then re-aggregated showed ductal cell marker expression. However, ductal cells disappeared and the cells underwent fibrosis in a diabetes mouse model two to five weeks after transplantation; these mice also did not show controlled blood glucose levels. Furthermore, pancreatic cells transplanted into nude mice with normal blood glucose showed poor graft survival regardless of the type of transfected plasmid (pCEP4, pHGF, or pEBVHGF.ConclusionFor clinical application of transfected neonatal porcine pancreatic cells, further studies are required to develop methods of overcoming the damage for the cells caused by repeated transfection and to re-aggregate them into islet-like structures.

  14. Factors influencing transfection efficiency of pIDUA/nanoemulsion complexes in a mucopolysaccharidosis type I murine model

    Directory of Open Access Journals (Sweden)

    Fraga M

    2017-03-01

    Full Text Available Michelle Fraga,1,2 Talita Giacomet de Carvalho,2,3 Juliana Bidone,1 Roselena Silvestri Schuh,1,2 Ursula Matte,2,3 Helder Ferreira Teixeira1 1Pharmaceutical Sciences Graduate Program, Universidade Federal do Rio Grande do Sul, 2Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, 3Genetics and Molecular Biology Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil Abstract: Mucopolysaccharidosis type I (MPS I is an autosomal disease caused by alpha-L-iduronidase (IDUA deficiency. This study used IDUA knockout mice as a model to evaluate whether parameters such as dose of plasmid and time of treatment could influence the transfection efficiency of complexes formed with PEGylated cationic nanoemulsions and plasmid (pIDUA, which contains the gene that encodes for IDUA. Formulations were composed of medium chain triglycerides, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(amino[polyethylene glycol]-2000, 1,2-dioleoyl-sn-glycero-3-trimethylammonium propane (DOTAP, glycerol, and water and were prepared by the adsorption or encapsulation of preformed pIDUA–DOTAP complexes by high-pressure homogenization. A progressive increase in IDUA expression was observed with an increase in the dose and time of transfection for mice treated with both complexes (adsorbed and encapsulated, especially in the liver. Regardless of the complex administered, a significant increase in IDUA activity was detected in lungs and liver compared with nontreated MPS I when a dose of 60 µg was administered and IDUA activity was measured 7 days postadministration. Tissue sections of major organs showed no presence of cell necrosis, inflammatory infiltrate, or an increase in apoptosis. Furthermore, immunohistochemistry for CD68 showed no difference in the number of macrophage cells in treated and nontreated animals, indicating the absence of inflammatory reaction

  15. Morus alba Leaf Lectin (MLL) Sensitizes MCF-7 Cells to Anoikis by Inhibiting Fibronectin Mediated Integrin-FAK Signaling through Ras and Activation of P38 MAPK

    Science.gov (United States)

    Saranya, Jayaram; Shilpa, Ganesan; Raghu, Kozhiparambil G.; Priya, Sulochana

    2017-01-01

    Lectins are a unique class of carbohydrate binding proteins/glycoproteins, and many of them possess anticancer properties. They can induce cell cycle arrest and apoptosis, inhibit protein synthesis, telomerase activity and angiogenesis in cancer cells. In the present study, we have demonstrated the effect of Morus alba leaf lectin (MLL) on anoikis induction in MCF-7 cells. Anoikis induction in cancer cells has a significant role in preventing early stage metastasis. MLL treatment in monolayers of MCF-7 cells caused significant detachment of cells in a time and concentration dependent manner. The detached cells failed to re-adhere and grew even to culture plates coated with different matrix proteins. DNA fragmentation, membrane integrity studies, annexin V staining, caspase 9 activation and upregulation of Bax/Bad confirmed that the detached cells underwent apoptosis. Upregulation of matrix metalloproteinase 9 (MMP-9) caused a decrease in fibronectin (FN) production which facilitated the cells to detach by blocking the FN mediated downstream signaling. On treatment with MLL, we have observed downregulation of integrin expression, decreased phosphorylation of focal adhesion kinase (FAK), loss in FAK-integrin interaction and active Ras. MLL treatment downregulated the levels of phosphorylated Akt and PI3K. Also, we have studied the effect of MLL on two stress activated protein kinases p38 MAPK and JNK. p38 MAPK activation was found to be elevated, but there was no change in the level of JNK. Thus our study substantiated the possible antimetastatic effect of MLL by inducing anoikis in MCF-7 cells by activation of caspase 9 and proapoptotic Bax/Bad by blockage of FN mediated integrin/FAK signaling and partly by activation of p38 MAPK. PMID:28223935

  16. Proliferative effect of whey from cow's milk obtained at two different stages of pregnancy measured in MCF-7 cells

    DEFF Research Database (Denmark)

    Nielsen, Tina S; Andersen, Charlotte; Sejrsen, Kristen

    2012-01-01

    Dietary estrogens may play a role in the etiology of hormone-dependent cancers like breast cancer. Cow's milk contains various endogenous estrogens and feed derived phytoestrogens that potentially contribute to an estrogenic effect of milk in consumers, and therefore we evaluated the effect of milk...... (whey) in a proliferation assay with estrogen-sensitive MCF-7 human breast cancer cells. Milk samples were obtained from 22 cows representing different stages of pregnancy (first and second half) and whey was produced from the milk. 0·1, 0·25 or 0·5% whey was included in the cell culture medium...

  17. Can vitamin A modify the activity of docetaxel in MCF-7 breast cancer cells?

    Directory of Open Access Journals (Sweden)

    Dorota Lemancewicz

    2008-04-01

    Full Text Available Docetaxel is one of the most effective chemotherapeutic agents in the treatment of breast cancer. On the other hand, the vitamin A family compounds play the essential roles in many biological processes in mammary gland. The aim of our study was to investigate the effect of all-trans retinol, carotenoids (beta-carotene, lycopene and retinoids (9-cis, 13-cis and all-trans retinoic acid on the activity of docetaxel and to compare these effects with the estradiol and tamoxifen actions on human ER(+ MCF-7 breast cancer cell line. The evaluation was based on [3H] thymidine incorporation and the proliferative activity of PCNA and Ki 67 positive cells. In our study, the incorporation of [3H] thymidine into cancer cells was inhibited to 50% by 0.2, 0.5 and 1 microM of docetaxel in the 24-hour culture and addition of estradiol (0.001 microM didn't influence the results. However, addition of tamoxifen caused a statistically significant decrease of the percentage of the proliferating cells in the culture medium with 0.2 and 0.5 microM of docetaxel (38.99 +/- 2.84%, p<0.01 and 40.67 +/- 5.62%, p<0.01 in comparison to the docetaxel only group. The above-mentioned observations were also confirmed with the use of the immunohistochemical investigations. Among the examined vitamin A family compounds, the simultaneous application of beta-carotene (0.1 microM and docetaxel (0.2 microM resulted in a statistically significant reduction in the percentage of proliferating cells (40.25 +/- 14.62%, p<0.01. Lycopene (0.1 microM, which stimulates the growth of breast cancer cells in a 24-hour culture, had an inhibitory effect (42.97 +/- 9.58%, p<0.01 when combined with docetaxel (0.2 microM. Although, beta-carotene and lycopene belong to the different chemical groups, they surprisingly had a similar inhibitory influence on both growth and proliferation of MCF-7 breast cancer cells when combined with docetaxel. The application of docetaxel either with beta-carotene or

  18. Research on a haptic sensor made using MCF conductive rubber

    International Nuclear Information System (INIS)

    Zheng Yaoyang; Shimada, Kunio

    2008-01-01

    To provide a new composite material having a high electrical sensitivity in the fields of robotics and sensing, a magnetic rubber having network-like magnetic clusters was developed by utilizing a magnetic compound fluid (MCF). MCF rubber with small deformations can provide an effective sensor. In this paper, we report many experiments in which changes of the MCF rubber's resistance were observed when the rubber was compressed and a deformation was generated; we then made a trial haptic sensor using the MCF conductive rubber and performed many experiments to observe changes of the electrical resistance of the sensor. The results of experiments showed that the proposed sensor made with MCF conductive rubber is useful for sensing small amounts of pressure or small deformations

  19. Research on a haptic sensor made using MCF conductive rubber

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yaoyang; Shimada, Kunio [Faculty of Symbiotic Systems Science Fukushima University, 1 Kanayakawa, Fukushima 960-1296 (Japan)], E-mail: tei@sss.fukushima-u.ac.jp, E-mail: shimadakun@sss.fukushima-u.ac.jp

    2008-05-21

    To provide a new composite material having a high electrical sensitivity in the fields of robotics and sensing, a magnetic rubber having network-like magnetic clusters was developed by utilizing a magnetic compound fluid (MCF). MCF rubber with small deformations can provide an effective sensor. In this paper, we report many experiments in which changes of the MCF rubber's resistance were observed when the rubber was compressed and a deformation was generated; we then made a trial haptic sensor using the MCF conductive rubber and performed many experiments to observe changes of the electrical resistance of the sensor. The results of experiments showed that the proposed sensor made with MCF conductive rubber is useful for sensing small amounts of pressure or small deformations.

  20. Research on a haptic sensor made using MCF conductive rubber

    Science.gov (United States)

    Zheng, Yaoyang; Shimada, Kunio

    2008-05-01

    To provide a new composite material having a high electrical sensitivity in the fields of robotics and sensing, a magnetic rubber having network-like magnetic clusters was developed by utilizing a magnetic compound fluid (MCF). MCF rubber with small deformations can provide an effective sensor. In this paper, we report many experiments in which changes of the MCF rubber's resistance were observed when the rubber was compressed and a deformation was generated; we then made a trial haptic sensor using the MCF conductive rubber and performed many experiments to observe changes of the electrical resistance of the sensor. The results of experiments showed that the proposed sensor made with MCF conductive rubber is useful for sensing small amounts of pressure or small deformations.

  1. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis.

    Science.gov (United States)

    Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth

    2002-09-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.

  2. Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7).

    Science.gov (United States)

    Murugan, Kadarkarai; Dinesh, Devakumar; Kavithaa, Krishnamoorthy; Paulpandi, Manickam; Ponraj, Thondhi; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Wei, Hui; Kumar, Suresh; Nicoletti, Marcello; Benelli, Giovanni

    2016-03-01

    Mosquito vectors (Diptera: Culicidae) are responsible for transmission of serious diseases worldwide. Mosquito control is being enhanced in many areas, but there are significant challenges, including increasing resistance to insecticides and lack of alternative, cost-effective, and eco-friendly products. To deal with these crucial issues, recent emphasis has been placed on plant materials with mosquitocidal properties. Furthermore, cancers figure among the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2012 to 22 million within the next two decades. Nanotechnology is a promising field of research and is expected to give major innovation impulses in a variety of industrial sectors. In this study, we synthesized titanium dioxide (TiO2) nanoparticles using the hydrothermal method. Nanoparticles were subjected to different analysis including UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential, and energy-dispersive spectrometric (EDX). The synthesized TiO2 nanoparticles exhibited dose-dependent cytotoxicity against human breast cancer cells (MCF-7) and normal breast epithelial cells (HBL-100). After 24-h incubation, the inhibitory concentrations (IC50) were found to be 60 and 80 μg/mL on MCF-7 and normal HBL-100 cells, respectively. Induction of apoptosis was evidenced by Acridine Orange (AO)/ethidium bromide (EtBr) and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) staining. In larvicidal and pupicidal experiments conducted against the primary dengue mosquito Aedes aegypti, LC50 values of nanoparticles were 4.02 ppm (larva I), 4.962 ppm (larva II), 5.671 ppm (larva III), 6.485 ppm (larva IV), and 7.527 ppm (pupa). Overall, our results suggested that TiO2 nanoparticles may be considered as

  3. Liposome-based vascular endothelial growth factor-165 transfection with skeletal myoblast for treatment of ischaemic limb disease.

    Science.gov (United States)

    Ye, Lei; Haider, Husnain Kh; Esa, Wahidah Bte; Su, Liping; Law, Peter K; Zhang, Wei; Lim, Yeanteng; Poh, Kian Keong; Sim, Eugene K W

    2010-01-01

    The study aims to use cholesterol (Chol) + DOTAP liposome (CD liposome) based human vascular endothelial growth factor-165 (VEGF(165)) gene transfer into skeletal myoblasts (SkMs) for treatment of acute hind limb ischaemia in a rabbit model. The feasibility and efficacy of CD liposome mediated gene transfer with rabbit SkMs were characterized using plasmid carrying enhanced green fluorescent protein (pEGFP) and assessed by flow cytometry. After optimization, SkMs were transfected with CD lipoplexes carrying plasmid-VEGF(165) (CD-pVEGF(165)) and transplanted into rabbit ischaemic limb. Animals were randomized to receive intramuscular injection of Medium199 (M199; group 1), non-transfected SkM (group 2) or CD-pVEGF(165) transfected SkM (group 3). Flow cytometry revealed that up to 16% rabbit SkMs were successfully transfected with pEGFP. Based on the optimized transfection condition, transfected rabbit SkM expressed VEGF(165) up to day 18 with peak at day 2. SkMs were observed in all cell-transplanted groups, as visualized with 6-diamidino-2-phenylindole and bromodeoxyuridine. Angiographic blood vessel score revealed increased collateral vessel development in group 3 (39.7 +/- 2.0) compared with group 2 (21.6 +/- 1.1%, P limb and may serve as a safe and new therapeutic modality for the repair of acute ischaemic limb disease.

  4. Combined Treatment of MCF-7 Cells with AICAR and Methotrexate, Arrests Cell Cycle and Reverses Warburg Metabolism through AMP-Activated Protein Kinase (AMPK and FOXO1.

    Directory of Open Access Journals (Sweden)

    Tamás Fodor

    Full Text Available Cancer cells are characterized by metabolic alterations, namely, depressed mitochondrial oxidation, enhanced glycolysis and pentose phosphate shunt flux to support rapid cell growth, which is called the Warburg effect. In our study we assessed the metabolic consequences of a joint treatment of MCF-7 breast cancer cells with AICAR, an inducer of AMP-activated kinase (AMPK jointly with methotrexate (MTX, a folate-analog antimetabolite that blunts de novo nucleotide synthesis. MCF7 cells, a model of breast cancer cells, were resistant to the individual application of AICAR or MTX, however combined treatment of AICAR and MTX reduced cell proliferation. Prolonged joint application of AICAR and MTX induced AMPK and consequently enhanced mitochondrial oxidation and reduced the rate of glycolysis. These metabolic changes suggest an anti-Warburg rearrangement of metabolism that led to the block of the G1/S and the G2/M transition slowing down cell cycle. The slowdown of cell proliferation was abolished when mitotropic transcription factors, PGC-1α, PGC-1β or FOXO1 were silenced. In human breast cancers higher expression of AMPKα and FOXO1 extended survival. AICAR and MTX exerts similar additive antiproliferative effect on other breast cancer cell lines, such as SKBR and 4T1 cells, too. Our data not only underline the importance of Warburg metabolism in breast cancer cells but nominate the AICAR+MTX combination as a potential cytostatic regime blunting Warburg metabolism. Furthermore, we suggest the targeting of AMPK and FOXO1 to combat breast cancer.

  5. C-KIT AND Stem Cell Factor Expression in Breast Cancer

    National Research Council Canada - National Science Library

    Hines, Susan

    1998-01-01

    ...) is seen frequently in breast cancer. The MCF7 cell line (which only expresses SCF) transfected with a c-kit expression vector, shows enhanced growth in serum/free medium supplemented with EGF or lGF1...

  6. Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract.

    Science.gov (United States)

    Abdullah, Al-Shwyeh Hussah; Mohammed, Abdulkarim Sabo; Abdullah, Rasedee; Mirghani, Mohamed Elwathig Saeed; Al-Qubaisi, Mothanna

    2014-06-25

    Waterlily Mango (Mangifera indica L.) is thought to be antioxidant-rich, conferred by its functional phytochemicals. The potential anticancer effects of the ethanolic kernel extract on breast cancer cells (MDA-MB-231 and MCF-7) using MTT, anti-proliferation, neutral red (NR) uptake and lactate dehydrogenase (LDH) release assays were evaluated. Cytological studies on the breast cancer cells were also conducted, and phytochemical analyses of the extract were carried out to determine the likely bioactive compounds responsible for such effects. Results showed the extract induced cytotoxicity in MDA-MB-231 cells and MCF-7 cells with IC50 values of 30 and 15 μg/mL, respectively. The extract showed significant toxicity towards both cell lines, with low toxicity to normal breast cells (MCF-10A). The cytotoxic effects on the cells were further confirmed by the NR uptake, antiproliferative and LDH release assays. Bioactive analyses revealed that many bioactives were present in the extract although butylated hydroxytoluene, a potent antioxidant, was the most abundant with 44.65%. M. indica extract appears to be more cytoxic to both estrogen positive and negative breast cancer cell lines than to normal breast cells. Synergistic effects of its antioxidant bioactives could have contributed to the cytotoxic effects of the extract. The extract of M. indica, therefore, has potential anticancer activity against breast cancer cells. This potential is worth studying further, and could have implications on future studies and eventually management of human breast cancers.

  7. Estrogen receptor alpha and nuclear factor Y coordinately regulate the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast cancer cells.

    Science.gov (United States)

    Ying, Shibo; Dünnebier, Thomas; Si, Jing; Hamann, Ute

    2013-01-01

    UBC9 encodes a protein that conjugates small ubiquitin-related modifier (SUMO) to target proteins thereby changing their functions. Recently, it was noted that UBC9 expression and activity play a role in breast tumorigenesis and response to anticancer drugs. However, the underlying mechanism is poorly understood. To investigate the transcriptional regulation of the UBC9 gene, we identified and characterized its promoter and cis-elements. Promoter activity was tested using luciferase reporter assays. The binding of transcription factors to the promoter was detected by chromatin immunoprecipitation (ChIP), and their functional role was confirmed by siRNA knockdown. UBC9 mRNA and protein levels were measured by quantitative reverse transcription PCR and Western blot analysis, respectively. An increased expression of UBC9 mRNA and protein was found in MCF-7 breast cancer cells treated with 17β-estradiol (E2). Analysis of various deletion mutants revealed a 137 bp fragment upstream of the transcription initiation site to be sufficient for reporter gene transcription. Mutations of putative estrogen receptor α (ER-α) (one imperfect estrogen response element, ERE) and/or nuclear factor Y (NF-Y) binding sites (two CCAAT boxes) markedly reduced promoter activity. Similar results were obtained in ER-negative MDA-MB-231 cells except that the ERE mutation did not affect promoter activity. Additionally, promoter activity was stimulated upon E2 treatment and overexpression of ER-α or NF-YA in MCF-7 cells. ChIP confirmed direct binding of both transcription factors to the UBC9 promoter in vivo. Furthermore, UBC9 expression was diminished by ER-α and NF-Y siRNAs on the mRNA and protein levels. In conclusion, we identified the proximal UBC9 promoter and provided evidence that ER-α and NF-Y regulate UBC9 expression on the transcriptional level in response to E2 in MCF-7 cells. These findings may contribute to a better understanding of the regulation of UBC9 in ER

  8. ERK/CANP rapid signaling mediates 17β-estradiol-induced proliferation of human breast cancer cell line MCF-7 cells.

    Science.gov (United States)

    Wang, Guo-Sheng; Huang, Yan-Gang; Li, Huan; Bi, Shi-Jie; Zhao, Jin-Long

    2014-01-01

    17β-estradiol (E2) exerts its functions through both genomic and non-genomic signaling pathways. Because E2 is important in breast cancer development, we investigated whether its actions in promoting breast cancer cell proliferation occur through the non-genomic signaling pathway via extracellular signal-regulated kinase 1/2 (ERK1/2)/calcium-activated neutral protease (CANP). MCF-7 breast cancer cells were treated with ERKl/2 inhibitor (PD98059) or CANP inhibitor (calpeptin) before exposure to 1×10(-8) M E2. MTT colorimetry and flow cytometry were used to analyze effects on cell proliferation and cell cycle progression, respectively. Expression of phosphorylated-ERK (p-ERK), total ERK, and Capn4 proteins were assessed by Western blotting. Cell proliferation increased in cells treated with E2 for 24 h (P<0.05), and the proportion of cells in G0/G1 was decreased, accompanied by accelerated G1/S. Calpeptin pre-treatment significantly inhibited the E2-induced proliferation of MCF-7 cells (P<0.05), while also ameliorating the effects of E2 on cell cycle progression. Further, expression of p-ERK was rapidly up-regulated (after 10 min) by E2 (P<0.05), an effect that persisted 16 h after E2 exposure but which was significantly inhibited by PD98059 (P<0.05). Finally, expression of Capn4 protein was rapidly up-regulated in E2-exposed cells (P<0.05), but this change was significantly inhibited by PD98059 or calpeptin (P<0.05) pre-treatment. Thus, the rapid, non-genomic ERK/CANP signaling pathway mediates E2-induced proliferation of human breast cancer cells.

  9. Chemical Constituents from Cimicifuga dahurica and Their Anti-Proliferative Effects on MCF-7 Breast Cancer Cells.

    Science.gov (United States)

    Huyen, Chu Thi Thanh; Luyen, Bui Thi Thuy; Khan, Ghulam Jilany; Oanh, Ha Van; Hung, Ta Manh; Li, Hui-Jun; Li, Ping

    2018-05-04

    This study was designed to search for novel anti-cancer compounds from natural plants. The 70% ethanolic extract from the rizhomes of Cimicifuga dahurica (Turcz.) Maxim. (Ranunculaceae) was found to possess significant in vitro anti-proliferative effects on MCF-7 breast cancer cells. A phytochemical investigation using assay-guided fractionation of the ethanolic extract of C. dahurica resulted in the isolation of one new phenolic amide glycoside 3 , two new lignan glycosides 4 and 7 , one new 9,19-cycloartane triterpenoid glycoside 6 , and thirteen known constituents 1 , 2 , 5 , and 8 ⁻ 17 . The structures of 3 , 4 , 6 , and 7 were established using contemporary NMR methods and from their HRESIMS data. The anti-proliferative effects of isolated compounds were evaluated using the BrdU-proliferation kit. Five among the 17 isolated compounds showed significant anti-proliferative effects ( p ≤ 0.05), wherein compound 7 showed the most significant anti-proliferative and cell cycle arresting effect ( p ≤ 0.05) which followed a dose dependent manner. Western blot protein expression analysis showed a down expression of c-Myc and cyclin D1 which further elucidated the anti-proliferation mechanism of compound 7 while apoptotic effects were found in association with Bcl-2 family protein expression variations. Conclusively this study reports the isolation and identification of 17 compounds from C. dahurica , including four novel molecules, in addition to the fact that compound 7 possesses significant anti-proliferative and apoptotic effects in vitro that may require further exploration.

  10. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    Andrade, F.O.; Nagamine, M.K.; De Conti, A.; Chaible, L.M.; Fontelles, C.C.; Jordão Junior, A.A.; Vannucchi, H.; Dagli, M.L.Z.; Bassoli, B.K.; Moreno, F.S.; Ong, T.P.

    2012-01-01

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10 4 cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21 WAF1 by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered

  11. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, F.O. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Nagamine, M.K. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); De Conti, A. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Chaible, L.M. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Fontelles, C.C. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Jordão Junior, A.A.; Vannucchi, H. [Divisão de Nutrição, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Dagli, M.L.Z. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Bassoli, B.K.; Moreno, F.S.; Ong, T.P. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-22

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10{sup 4} cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21{sup WAF1} by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

  12. The Reversal Effects of 3-Bromopyruvate on Multidrug Resistance In Vitro and In Vivo Derived from Human Breast MCF-7/ADR Cells

    OpenAIRE

    Wu, Long; Xu, Jun; Yuan, Weiqi; Wu, Baojian; Wang, Hao; Liu, Guangquan; Wang, Xiaoxiong; Du, Jun; Cai, Shaohui

    2014-01-01

    Purpose P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. Methods The in vitro and in vivo activity wa...

  13. Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Chen DZ

    2012-09-01

    in mouse fibroblast (L-929 cell lines was between Grade 0 to Grade 1, and that the material lacked hemolysis activity. The acute toxicity (LD50 was 8.39 g/kg. Micronucleus testing showed no genotoxic effects. Pathomorphology and blood biochemistry testing demonstrated that the Fe3O4 nanoparticles had no effect on the main organs and blood biochemistry in a rabbit model. MTT and flow cytometry assays revealed that Fe3O4 nano magnetofluid thermotherapy inhibited MCF-7 cell proliferation, and its inhibitory effect was dose-dependent according to the Fe3O4 nano magnetofluid concentration.Conclusion: The Fe3O4 nanoparticles prepared in this study have good biocompatibility and are suitable for further application in tumor hyperthermia.Keywords: characterization, biocompatibility, Fe3O4, magnetic nanoparticles, hyperthermia

  14. Study of the G2/M cell cycle checkpoint in irradiated mammary epithelial cells overexpressing Cul-4A gene

    International Nuclear Information System (INIS)

    Gupta, Anu; Yang, L.-X.; Chen, L.-C.

    2002-01-01

    Purpose: Members of the cullin gene family are known to be involved in cell cycle control. One of the cullin genes, Cul-4A, is amplified and overexpressed in breast cancer cells. This study investigates the effect of Cul-4A overexpression upon G2/M cell cycle checkpoint after DNA damage induced by either ionizing or nonionizing radiation. Methods and Materials: The normal mammary epithelial cell line MCF10A was stably transfected with full-length Cul-4A cDNA. Independent clones of MCF10A cells that overexpress Cul-4A proteins were selected and treated with either 8 Gy of ionizing radiation or 7 J/M 2 of UV radiation. The profile of cell cycle progression and the accumulation of several cell cycle proteins were analyzed. Results: We found that overexpression of Cul-4A in MCF10A cells abrogated the G2/M cell cycle checkpoint in response to DNA damage induced by ionizing irradiation, but not to DNA damage induced by nonionizing radiation. Analysis of cell cycle proteins showed that after ionizing irradiation, p53 accumulated in the mock-transfected MCF10A cells, but not in the Cul-4A transfectants. Conclusion: Our results suggest a role for Cul-4A in tumorigenesis and/or tumor progression, possibly through disruption of cell cycle control

  15. Salvia miltiorrhiza extract inhibits TPA-induced MMP-9 expression and invasion through the MAPK/AP-1 signaling pathway in human breast cancer MCF-7 cells.

    Science.gov (United States)

    Kim, Jeong-Mi; Noh, Eun-Mi; Song, Hyun-Kyung; Lee, Minok; Lee, Soo Ho; Park, Sueng Hyuk; Ahn, Chan-Keun; Lee, Guem-San; Byun, Eui-Baek; Jang, Beom-Su; Kwon, Kang-Beom; Lee, Young-Rae

    2017-09-01

    Cancer cell invasion is crucial for metastasis. A major factor in the capacity of cancer cell invasion is the activation of matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix. Salvia miltiorrhiza has been used as a promotion for blood circulation to remove blood stasis. Numerous previous studies have demonstrated that S. miltiorrhiza extracts (SME) decrease lipid levels and inhibit inflammation. However, the mechanism behind the effect of SME on breast cancer invasion has not been identified. The inhibitory effects of SME on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression were assessed using western blotting, reverse transcription-quantitative polymerase chain reaction and zymography assays. MMP-9 upstream signal proteins, including mitogen-activated protein kinases and activator protein 1 (AP-1) were also investigated. Cell invasion was assessed using a matrigel invasion assay. The present study demonstrated the inhibitory effects of the SME ethanol solution on MMP-9 expression and cell invasion in TPA-treated MCF-7 breast cancer cells. SME suppressed TPA-induced MMP-9 expression and MCF-7 cell invasion by blocking the transcriptional activation of AP-1. SME may possess therapeutic potential for inhibiting breast cancer cell invasiveness.

  16. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles

    Science.gov (United States)

    Fan, Z.; Chen, D.; Deng, C.X.

    2013-01-01

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. We conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmid coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9% ± 2.2% (n = 9), comparable with lipofection (7.5% ± 0.8%, n = 9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. PMID:23770009

  17. Stereoselective toxicity of etoxazole to MCF-7 cells and its dissipation behavior in citrus and soil.

    Science.gov (United States)

    Sun, Dali; Pang, Junxiao; Fang, Qi; Zhou, Zhiqin; Jiao, Bining

    2016-12-01

    The stereoselective cytotoxicity of new chiral acaricide etoxazole and its dissipation in citrus and soil were investigated for the first time. Enantioselective toxicity and oxidative stress of etoxazole toward MCF-7 cells was conducted. The phenomenon of dose- and form-dependent cytotoxicity was demonstrated by MTT and LDH assays, ROS generation, and SOD and CAT activity alternation. Cytotoxicity ranks were found to be consistent with oxidative damage as (R)- > Rac- > (S)-etoxazole. Moreover, the results of enantioselective degradation showed that (S)-etoxazole degraded faster than its antipode (R)-etoxazole. The gradual raise of EF values indicated the achievement of enantioselective degradation in citrus and soil, leaving the enrichment of (R)-etoxazole isomer. Significant differences of environmental behavior and cytotoxicity of etoxazole enantiomers were found in this study which provided valuable insight into the mechanism of potential toxicity and warranted more careful assessment of this pesticide before its agricultural application.

  18. Synergistic effect of apple extracts and quercetin 3-beta-d-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro.

    Science.gov (United States)

    Yang, Jun; Liu, Rui Hai

    2009-09-23

    Breast cancer is the most frequently diagnosed cancer in women. An alternative strategy to reduce the risk of cancer is through dietary modification. Although phytochemicals naturally occur as complex mixtures, little information is available regarding possible additive, synergistic, or antagonistic interactions among compounds. The antiproliferative activity of apple extracts and quercetin 3-beta-d-glucoside (Q3G) was assessed by measurement of the inhibition of MCF-7 human breast cancer cell proliferation. Cell cytotoxicity was determined by the methylene blue assay. The two-way combination of apple plus Q3G was conducted. In this two-way combination, the EC(50) values of apple extracts and Q3G were 2- and 4-fold lower, respectively, than those of apple extracts and Q3G alone. The combination index (CI) values at 50 and 95% inhibition rates were 0.76 +/- 0.16 and 0.42 +/- 0.10, respectively. The dose-reduction index (DRI) values of the apple extracts and Q3G to achieve a 50% inhibition effect were reduced by 2.03 +/- 0.55 and 4.28 +/- 0.39-fold, respectively. The results suggest that the apple extracts plus Q3G combination possesses a synergistic effect in MCF-7 cell proliferation.

  19. Inhibition of MAP kinase promotes the recruitment of corepressor SMRT by tamoxifen-bound estrogen receptor alpha and potentiates tamoxifen action in MCF-7 cells

    International Nuclear Information System (INIS)

    Hong, Wei; Chen, Linfeng; Li, Juan; Yao, Zhi

    2010-01-01

    Estrogen receptor alpha (ERα), a ligand controlled transcription factor, plays an important role in breast cancer growth and endocrine therapy. Tamoxifen (TAM) antagonizes ERα activity and has been applied in breast cancer treatment. TAM-bound ERα associates with nuclear receptor-corepressors. Mitogen-activated protein kinase (MAPK) has been elucidated to result in cross-talk between growth factor and ERα mediated signaling. We show that activated MAPK represses interaction of TAM-bound ERα with silencing mediator for retinoid and thyroid hormone receptors (SMRT) and inhibits the recruitment of SMRT by ERα to certain estrogen target genes. Blockade of MAPK signaling cascade with MEK inhibitor U0126 promotes the interaction and subsequently inhibits ERα activity via enhanced recruitment of SMRT, leading to reduced expression of ERα target genes. The growth rate of MCF-7 cells was decelerated when treated with both TAM and U0126. Moreover, the growth of MCF-7 cells stably expressing SMRT showed a robust repression in the presence of TAM and U0126. These results suggest that activated MAPK signaling cascade attenuates antagonist-induced recruitment of SMRT to ERα, suggesting corepressor mediates inhibition of ERα transactivation and breast cancer cell growth by antagonist. Taken together, our finding indicates combination of antagonist and MAPK inhibitor could be a helpful approach for breast cancer therapy.

  20. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions.

    Science.gov (United States)

    E-Kobon, Teerasak; Thongararm, Pennapa; Roytrakul, Sittiruk; Meesuk, Ladda; Chumnanpuen, Pramote

    2016-01-01

    Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5) showed in vitro cytotoxicity against the breast cancer cell line (MCF-7) and normal epithelium cell line (Vero). According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development.

  1. Chemical Constituents from Cimicifuga dahurica and Their Anti-Proliferative Effects on MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chu Thi Thanh Huyen

    2018-05-01

    Full Text Available This study was designed to search for novel anti-cancer compounds from natural plants. The 70% ethanolic extract from the rizhomes of Cimicifuga dahurica (Turcz. Maxim. (Ranunculaceae was found to possess significant in vitro anti-proliferative effects on MCF-7 breast cancer cells. A phytochemical investigation using assay-guided fractionation of the ethanolic extract of C. dahurica resulted in the isolation of one new phenolic amide glycoside 3, two new lignan glycosides 4 and 7, one new 9,19-cycloartane triterpenoid glycoside 6, and thirteen known constituents 1, 2, 5, and 8–17. The structures of 3, 4, 6, and 7 were established using contemporary NMR methods and from their HRESIMS data. The anti-proliferative effects of isolated compounds were evaluated using the BrdU-proliferation kit. Five among the 17 isolated compounds showed significant anti-proliferative effects (p ≤ 0.05, wherein compound 7 showed the most significant anti-proliferative and cell cycle arresting effect (p ≤ 0.05 which followed a dose dependent manner. Western blot protein expression analysis showed a down expression of c-Myc and cyclin D1 which further elucidated the anti-proliferation mechanism of compound 7 while apoptotic effects were found in association with Bcl-2 family protein expression variations. Conclusively this study reports the isolation and identification of 17 compounds from C. dahurica, including four novel molecules, in addition to the fact that compound 7 possesses significant anti-proliferative and apoptotic effects in vitro that may require further exploration.

  2. Improved biolistic transfection of hair cells.

    Directory of Open Access Journals (Sweden)

    Hongyu Zhao

    Full Text Available Transient transfection of hair cells has proven challenging. Here we describe modifications to the Bio-Rad Helios Gene Gun that, along with an optimized protocol, improve transfection of bullfrog, chick, and mouse hair cells. The increased penetrating power afforded by our method allowed us to transfect mouse hair cells from the basal side, through the basilar membrane; this configuration protects hair bundles from damage during the procedure. We characterized the efficiency of transfection of mouse hair cells with fluorescently-tagged actin fusion protein using both the optimized procedure and a published procedure; while the efficiency of the two methods was similar, the morphology of transfected hair cells was improved with the new procedure. In addition, using the improved method, we were able to transfect hair cells in the bullfrog sacculus and chick cochlea for the first time. We used fluorescent-protein fusions of harmonin b (USH1C and PMCA2 (ATP2B2; plasma-membrane Ca(2+-ATPase isoform 2 to examine protein distribution in hair cells. While PMCA2-EGFP localization was similar to endogenous PMCA2 detected with antibodies, high levels of harmonin-EGFP were found at stereocilia tapers in bullfrog and chick, but not mouse; by contrast, harmonin-EGFP was concentrated in stereocilia tips in mouse hair cells.

  3. Investigation of transfection efficacy with transcatheter arterial transporting transferring to enhance p53 gene

    International Nuclear Information System (INIS)

    Lu Qin; Niu Huanzhang; Zhu Guangyu; An Yanli; Qiu Dinghong; Teng Gaojun

    2007-01-01

    Objective: To investigate the function of transferrin-DNA complex, transported by transferrin(Tf) and trans-arterial injection via interventional approach be the duel-target-orientated delivery and the transferring into malignant cells to get more effective therapy. Methods: p53-LipofectAMINE ligand with different concentrations of Tf (0, 10, 25, 50, 100 μg)transfected the 4 strains including LM6,Hep3B,YY and L02 in vitro to evaluate the gene transfection efficiency through western blot. Then, after setting up the VX2 hepatocarcinoma models, we delivered the Tf-p53-LipofectAMlNE complex into the hepatic arteries via interventional techniques to analyse the transfection efficiency in vivo. Results: Tf, within the range of l0 100 μg, could increase gene transfection efficiency mediated by liposome, and the efficiency increases with the raise of Tf concentration. Combination with interventional technique to inject Tf-DNA complex into tumor arteries, gene transfection efficiency was enhanced in rabbit models. Conclusion: Tf can enhance gene-liposome transfection efficiency, furthermore with combination of interventional catheter technique, there would be a potential duel-target-orientated gene therapy method. (authors)

  4. Investigation of transfection efficacy with transcatheter arterial transporting transferring to enhance p53 gene

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Lu; Huanzhang, Niu; Guangyu, Zhu; Yanli, An; Dinghong, Qiu; Gaojun, Teng [Radiologic Department, Zhongda Hospital, Southeast Univ., Nanjing (China)

    2007-02-15

    Objective: To investigate the function of transferrin-DNA complex, transported by transferrin(Tf) and trans-arterial injection via interventional approach be the duel-target-orientated delivery and the transferring into malignant cells to get more effective therapy. Methods: p53-LipofectAMINE ligand with different concentrations of Tf (0, 10, 25, 50, 100 {mu}g)transfected the 4 strains including LM6,Hep3B,YY and L02 in vitro to evaluate the gene transfection efficiency through western blot. Then, after setting up the VX2 hepatocarcinoma models, we delivered the Tf-p53-LipofectAMlNE complex into the hepatic arteries via interventional techniques to analyse the transfection efficiency in vivo. Results: Tf, within the range of l0 100 {mu}g, could increase gene transfection efficiency mediated by liposome, and the efficiency increases with the raise of Tf concentration. Combination with interventional technique to inject Tf-DNA complex into tumor arteries, gene transfection efficiency was enhanced in rabbit models. Conclusion: Tf can enhance gene-liposome transfection efficiency, furthermore with combination of interventional catheter technique, there would be a potential duel-target-orientated gene therapy method. (authors)

  5. Antioxidant and apoptotic effects of an aqueous extract of Urtica dioica on the MCF-7 human breast cancer cell line.

    Science.gov (United States)

    Fattahi, Sadegh; Ardekani, Ali Motevalizadeh; Zabihi, Ebrahim; Abedian, Zeinab; Mostafazadeh, Amrollah; Pourbagher, Roghayeh; Akhavan-Niaki, Haleh

    2013-01-01

    Breast cancer is the most prevalent cancer and one of the leading causes of death among women in the world. Plants and herbs may play an important role in complementary or alternative treatment. The aim of this study was to evaluate the antioxidant and anti-proliferative potential of Urtica dioica. The anti oxidant activity of an aqueous extract of Urtica dioica leaf was measured by MTT assay and the FRAP method while its anti-proliferative activity on the human breast cancer cell line (MCF-7) and fibroblasts isolated from foreskin tissue was evaluated using MTT assay. Mechanisms leading to apoptosis were also investigated at the molecular level by measuring the amount of anti and pro-apoptotic proteins and at the cellular level by studying DNA fragmentation and annexin V staining by flow cytometry. The aqueous extract of Urtica dioica showed antioxidant effects with a correlation coefficient of r(2)=0.997. Dose-dependent and anti-proliferative effects of the extract were observed only on MCF-7 cells after 72 hrs with an IC50 value of 2 mg/ml. This anti proliferative activity was associated with an increase of apoptosis as demonstrated by DNA fragmentation, the appearance of apoptotic cells in flow cytometry analysis and an increase of the amount of calpain 1, calpastatin, caspase 3, caspase 9, Bax and Bcl-2, all proteins involved in the apoptotic pathway. This is the first time such in vitro antiproliferative effect of aqueous extract of Urtica dioica leaf has been described for a breast cancer cell line. Our findings warrant further research on Urtica dioica as a potential chemotherapeutic agent for breast cancer.

  6. Intratumoral Heterogeneity of Breast Cancer Xenograft Models: Texture Analysis of Diffusion-Weighted MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Bo La; Cho, Nariya; Li, Mulun; Song, In Chan; Moon, Woo Kyung [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Jang, Min Hye; Park, So Yeon; Kim, Bo Young [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Kang, Ho Chul [Dept. of Computer Science and Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-10-15

    To investigate whether there is a relationship between texture analysis parameters of apparent diffusion coefficient (ADC) maps and histopathologic features of MCF-7 and MDA-MB-231 xenograft models. MCF-7 estradiol (+), MCF-7 estradiol (-), and MDA-MB-231 xenograft models were made with approval of the animal care committee. Twelve tumors of MCF-7 estradiol (+), 9 tumors of MCF-7 estradiol (-), and 6 tumors in MDA-MB-231 were included. Diffusion-weighted MR images were obtained on a 9.4-T system. An analysis of the first and second order texture analysis of ADC maps was performed. The texture analysis parameters and histopathologic features were compared among these groups by the analysis of variance test. Correlations between texture parameters and histopathologic features were analyzed. We also evaluated the intraobserver agreement in assessing the texture parameters. MCF-7 estradiol (+) showed a higher standard deviation, maximum, skewness, and kurtosis of ADC values than MCF-7 estradiol (-) and MDA-MB-231 (p < 0.01 for all). The contrast of the MCF-7 groups was higher than that of the MDA-MB-231 (p 0.004). The correlation (COR) of the texture analysis of MCF-7 groups was lower than that of MDA-MB-231 (p < 0.001). The histopathologic analysis showed that Ki-67mean and Ki-67diff of MCF-7 estradiol (+) were higher than that of MCF-7 estradiol (-) or MDA-MB-231 (p < 0.05). The microvessel density (MVD)mean and MVDdiff of MDA-MB-231 were higher than those of MCF-7 groups (p < 0.001). A diffuse-multifocal necrosis was more frequently found in MDA-MB-231 (p < 0.001). The proportion of necrosis moderately correlated with the contrast (r = -0.438, p = 0.022) and strongly with COR (r = 0.540, p 0.004). Standard deviation (r = 0.622, r = 0.437), skewness (r = 0.404, r 0.484), and kurtosis (r = 0.408, r = 0.452) correlated with Ki-67 mean and Ki-67diff (p < 0.05 for all). COR moderately correlated with Ki-67diff (r -0.388, p = 0.045). Skewness (r = -0.643, r = -0

  7. Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines

    International Nuclear Information System (INIS)

    Girroir, Elizabeth E.; Hollingshead, Holly E.; Billin, Andrew N.; Willson, Timothy M.; Robertson, Gavin P.; Sharma, Arun K.; Amin, Shantu; Gonzalez, Frank J.; Peters, Jeffrey M.

    2008-01-01

    The development of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands for the treatment of diseases including metabolic syndrome, diabetes and obesity has been hampered due to contradictory findings on their potential safety. For example, while some reports show that ligand activation of PPARβ/δ promotes the induction of terminal differentiation and inhibition of cell growth, other reports suggest that PPARβ/δ ligands potentiate tumorigenesis by increasing cell proliferation. Some of the contradictory findings could be due in part to differences in the ligand examined, the presence or absence of serum in cell cultures, differences in cell lines or differences in the method used to quantify cell growth. For these reasons, this study examined the effect of ligand activation of PPARβ/δ on cell growth of two human cancer cell lines, MCF7 (breast cancer) and UACC903 (melanoma) in the presence or absence of serum using two highly specific PPARβ/δ ligands, GW0742 or GW501516. Culturing cells in the presence of either GW0742 or GW501516 caused upregulation of the known PPARβ/δ target gene angiopoietin-like protein 4 (ANGPTL4). Inhibition of cell growth was observed in both cell lines cultured in the presence of either GW0742 or GW501516, and the presence or absence of serum had little influence on this inhibition. Results from the present studies demonstrate that ligand activation of PPARβ/δ inhibits the growth of both MCF7 and UACC903 cell lines and provide further evidence that PPARβ/δ ligands are not mitogenic in human cancer cell lines

  8. Artemisinic acid exhibits antitumor activity in MCF-7 breast cancer cells through the inhibition of angiogenesis, VEGF, m-TOR and AKT signalling pathways

    Directory of Open Access Journals (Sweden)

    Yan Cui

    2016-09-01

    Full Text Available The aim of the present study was to evaluate the antitumor and anti-angiogenic effects of artemisinic acid in MCF-7 human breast cancer cells. Various cell signalling pathways (VEGF, m-TOR and AKT signalling pathways and MTT assay were used. The in vivo antitumor activity of artemisinic acid was evaluated by means of tumor xenograft mouse model. Transwell cell migration assay was used to examine the chemotactic motility of the human umbilical vascular endothelial cells (HUVECs, while as endothelial cell capillary-like tube formation assay was used to evaluate the effect of artemisinic acid on the tube formation in HUVECs. We found that artemisinic acid considerably reduced both the volume and weight of concrete tumors and reduced angiogenesis in a xenograft mouse tumor model in vivo. Further, artemisinic acid suppressed the VEGF-induced cell migration and capillary-like tube formation of HUVECs in a dose-dependent manner. Artemisinic acid was found to suppress the VEGF-induced phosphorylation of VEGFR2 and also the activity of AKT and m-TOR.

  9. DRF 3188 a novel semi-synthetic analog of andrographolide: cellular response to MCF 7 breast cancer cells

    International Nuclear Information System (INIS)

    Satyanarayana, Chitkala; Deevi, Dhanavanthri S; Rajagopalan, R; Srinivas, Nanduri; Rajagopal, Sriram

    2004-01-01

    We determined the effect of andrographolide and one of its novel semi-synthetic analog, DRF 3188, on the cell cycle of MCF 7 breast cancer cells. The effect of the compounds on cell cycle was determined using FACS and western blot analysis of cell cycle proteins. Hollow fibre assay was used to determine if the compounds had the same effect on the cell cycle in vitro and in vivo. Our results from the in vitro and in vivo experiments show that both the compounds block the cell cycle at the G0-G1 phase through the induction of the cell cycle inhibitor, p27, and the concomitant decrease in the levels of Cdk4. The results show that the novel semi-synthetic analog, DRF3188, and andrographolide bring about the anti cancer activity by a similar mechanism

  10. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles.

    Science.gov (United States)

    Fan, Z; Chen, D; Deng, C X

    2013-09-28

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. In this study, we conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome, and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmids coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9%±2.2% (n=9), comparable with lipofection (7.5%±0.8%, n=9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Estrogen receptor alpha and nuclear factor Y coordinately regulate the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Shibo Ying

    Full Text Available UBC9 encodes a protein that conjugates small ubiquitin-related modifier (SUMO to target proteins thereby changing their functions. Recently, it was noted that UBC9 expression and activity play a role in breast tumorigenesis and response to anticancer drugs. However, the underlying mechanism is poorly understood. To investigate the transcriptional regulation of the UBC9 gene, we identified and characterized its promoter and cis-elements. Promoter activity was tested using luciferase reporter assays. The binding of transcription factors to the promoter was detected by chromatin immunoprecipitation (ChIP, and their functional role was confirmed by siRNA knockdown. UBC9 mRNA and protein levels were measured by quantitative reverse transcription PCR and Western blot analysis, respectively. An increased expression of UBC9 mRNA and protein was found in MCF-7 breast cancer cells treated with 17β-estradiol (E2. Analysis of various deletion mutants revealed a 137 bp fragment upstream of the transcription initiation site to be sufficient for reporter gene transcription. Mutations of putative estrogen receptor α (ER-α (one imperfect estrogen response element, ERE and/or nuclear factor Y (NF-Y binding sites (two CCAAT boxes markedly reduced promoter activity. Similar results were obtained in ER-negative MDA-MB-231 cells except that the ERE mutation did not affect promoter activity. Additionally, promoter activity was stimulated upon E2 treatment and overexpression of ER-α or NF-YA in MCF-7 cells. ChIP confirmed direct binding of both transcription factors to the UBC9 promoter in vivo. Furthermore, UBC9 expression was diminished by ER-α and NF-Y siRNAs on the mRNA and protein levels. In conclusion, we identified the proximal UBC9 promoter and provided evidence that ER-α and NF-Y regulate UBC9 expression on the transcriptional level in response to E2 in MCF-7 cells. These findings may contribute to a better understanding of the regulation of UBC9 in ER

  12. Shikonin, vitamin K3 and vitamin K5 inhibit multiple glycolytic enzymes in MCF-7 cells.

    Science.gov (United States)

    Chen, Jing; Hu, Xun; Cui, Jingjie

    2018-05-01

    Glycolysis is the most important source of energy for the production of anabolic building blocks in cancer cells. Therefore, glycolytic enzymes are regarded as potential targets for cancer treatment. Previously, naphthaquinones, including shikonin, vitamin K 3 and vitamin K 5 , have been proven to decrease the rate of glycolysis in cancer cells, which is partly due to suppressed pyruvate kinase activity. In the present study, enzymatic assays were performed using MCF-7 cell lysate in order to screen the profile of glycolytic enzymes in cancer cells inhibited by shikonin, vitamin K 3 and vitamin K 5 , in addition to pyruvate kinase. Results revealed that hexokinase, phosphofructokinase-1, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase produced in the process of glycolysis were inhibited by shikonin, vitamin K 3 and vitamin K 5 . The results indicated that shikonin, vitamin K 3 and vitamin K 5 are chemical inhibitors of glycolytic enzymes in cancer cells and have potential uses in translational medical applications.

  13. Identification of Secreted Proteins from Ionizing Radiation-Induced Senescent MCF7 Cells Using Comparative Proteomics

    International Nuclear Information System (INIS)

    Han, Na Kyung; Kim, Han Na; Hong, Mi Na; Park, Su Min; Lee, Jae Seon; Chi, Seong Gil

    2010-01-01

    Cellular senescence was first described by Hayflick and Moorhead in 1961 who observed that cultures of normal human fibroblasts had a limited replicative potential and eventually became irreversibly arrest. The majority of senescent cells assume a characteristic flattened and enlarged morphological change, senescence associated β-galactosidase positivity and over the years a large number of molecular phenotypes have been described, such as changes in gene expression, protein processing and chromatin organization. In contrast to apoptosis, senescence does not destroy the cells but leaves them metabolically and synthetically active and therefore able to affect their microenvironment. In particular, senescent fibroblasts and some cancer cells were found to secrete proteins with known or putative tumor-promoting functions such as growth factors or proteolytic enzymes. However, the knowledge about secreted proteins from senescent tumor cells and their functions to surrounding cells is still lacking. In this study, changes of senescence-associated secretory protein expression profile were observed in MCF7 human breast cancer cells exposed to gamma-ray radiation using two dimensional electrophoresis. Also, we identified up-regulated secretory proteins during ionizing radiation-induced cellular senescence

  14. Coumarin-gold nanoparticle bioconjugates: preparation, antioxidant, and cytotoxic effects against MCF-7 breast cancer cells

    Science.gov (United States)

    Mahendran, Gokila; Ponnuchamy, Kumar

    2018-05-01

    In recent, the conjugation of gold nanoparticles (AuNPs) with biomolecules has shown great potential especially in disease diagnostics and treatment. Taking this in account, we report the methodology involved in the conjugation of coumarin onto the surface of citrate-capped AuNPs by a simple in situ method. Herein, we systematically performed UV-Vis spectroscopy, transmission electron microscopy, dynamic light scattering, and zeta potential measurements to characterize citrate-capped AuNPs and bioconjugates. Our results demonstrate in-depth surface chemistry of bioconjugates with improved surface plasmon resonance (529 nm), morphology (near spherical shape), hydrodynamic diameter (25.3 nm) as well as surface charge (- 35 mV). Furthermore, the bioconjugates displayed dose-dependent response in scavenging free radicals and exhibited cytotoxicity against MCF-7 breast cancer cell lines. In addition, phase-contrast microscopic analysis revealed that bioconjugates promote apoptosis in cancer cells in a time-dependent manner. Overall, we ascertain the fact that this kind of bioconjugation of AuNPs with coumarin further enhances the efficacy of inorganic nanomaterials and thus make them a better bio-therapeutic candidate.

  15. Identification of Secreted Proteins from Ionizing Radiation-Induced Senescent MCF7 Cells Using Comparative Proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Han, Na Kyung; Kim, Han Na; Hong, Mi Na; Park, Su Min; Lee, Jae Seon [Korea Institue of Radiological and Medical Sciences, Seoul (Korea, Republic of); Chi, Seong Gil [Korea University, Seoul (Korea, Republic of)

    2010-05-15

    Cellular senescence was first described by Hayflick and Moorhead in 1961 who observed that cultures of normal human fibroblasts had a limited replicative potential and eventually became irreversibly arrest. The majority of senescent cells assume a characteristic flattened and enlarged morphological change, senescence associated beta-galactosidase positivity and over the years a large number of molecular phenotypes have been described, such as changes in gene expression, protein processing and chromatin organization. In contrast to apoptosis, senescence does not destroy the cells but leaves them metabolically and synthetically active and therefore able to affect their microenvironment. In particular, senescent fibroblasts and some cancer cells were found to secrete proteins with known or putative tumor-promoting functions such as growth factors or proteolytic enzymes. However, the knowledge about secreted proteins from senescent tumor cells and their functions to surrounding cells is still lacking. In this study, changes of senescence-associated secretory protein expression profile were observed in MCF7 human breast cancer cells exposed to gamma-ray radiation using two dimensional electrophoresis. Also, we identified up-regulated secretory proteins during ionizing radiation-induced cellular senescence

  16. B1-induced caspase-independent apoptosis in MCF-7 cells is mediated by down-regulation of Bcl-2 via p53 binding to P2 promoter TATA box

    International Nuclear Information System (INIS)

    Liang Xin; Xu Ke; Xu Yufang; Liu Jianwen; Qian Xuhong

    2011-01-01

    The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with naphthalimide-based DNA intercalators, including M2-A and R16, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl-2 expression remains poorly understood. We report here that p53 contributes to Bcl-2 down-regulation induced by B1, a novel naphthalimide-based DNA intercalating agent. Indeed, the decrease in Bcl-2 protein levels observed during B1-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We found a significant increase of p53 binding to P 2 promoter TATA box in MCF7 cells by chromatin immunoprecipitation. These data suggest that B1-induced caspase-independent apoptosis in MCF-7 cells is associated with the activation of p53 and the down-regulation of Bcl-2. Our study strengthens the links between p53 and Bcl-2 at a transcriptional level, upon naphthalimide-based DNA intercalator treatment. - Research highlights: → B1 induced apoptosis in MCF-7 cells, following a transcriptional decrease in Bcl-2. → B1 treatment triggered p53 activation and leads to a p53-dependent down-regulation of Bcl-2. → B1 induced significant increase of p53 binding to Bcl-2 P 2 promoter TATA box.

  17. Feedback regulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 via ATM/Chk2 pathway contributes to the resistance of MCF-7 breast cancer cells to cisplatin.

    Science.gov (United States)

    Lv, Juan; Qian, Ying; Ni, Xiaoyan; Xu, Xiuping; Dong, Xuejun

    2017-03-01

    The methyl methanesulfonate and ultraviolet-sensitive gene clone 81 protein is a structure-specific nuclease that plays important roles in DNA replication and repair. Knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 has been found to sensitize cancer cells to chemotherapy. However, the underlying molecular mechanism is not well understood. We found that methyl methanesulfonate and ultraviolet-sensitive gene clone 81 was upregulated and the ATM/Chk2 pathway was activated at the same time when MCF-7 cells were treated with cisplatin. By using lentivirus targeting methyl methanesulfonate and ultraviolet-sensitive gene clone 81 gene, we showed that knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 enhanced cell apoptosis and inhibited cell proliferation in MCF-7 cells under cisplatin treatment. Abrogation of ATM/Chk2 pathway inhibited cell viability in MCF-7 cells in response to cisplatin. Importantly, we revealed that ATM/Chk2 was required for the upregulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 resulted in inactivation of ATM/Chk2 pathway in response to cisplatin. Meanwhile, knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 activated the p53/Bcl-2 pathway in response to cisplatin. These data suggest that the ATM/Chk2 may promote the repair of DNA damage caused by cisplatin by sustaining methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and the double-strand breaks generated by methyl methanesulfonate and ultraviolet-sensitive gene clone 81 may activate the ATM/Chk2 pathway in turn, which provide a novel mechanism of how methyl methanesulfonate and ultraviolet-sensitive gene clone 81 modulates DNA damage response and repair.

  18. Potential effect of Olea europea leaves, Sonchus oleraceus leaves and Mangifera indica peel extracts on aromatase activity in human placental microsomes and CYP19A1 expression in MCF-7 cell line: Comparative study.

    Science.gov (United States)

    Shaban, N Z; Hegazy, W A; Abdel-Rahman, S M; Awed, O M; Khalil, S A

    2016-08-29

    Aromatase inhibitors (AIs) provide novel approaches to the adjuvant therapy for postmenopausal women with estrogen-receptor-positive (ER+) breast cancers. In this study, different plant extracts from Olea europaea leaves (OLE), Sonchus oleraceus L. (SOE) and Mangifera indica peels (MPE) were prepared to identify phytoconstituents and measure antioxidant capacities. The effects of these three extracts on aromatase activity in human placental microsomes were evaluated. Additionally, the effects of these extracts on tissue-specific promoter expression of CYP19A1 gene in cell culture model (MCF-7) were assessed using qRT-PCR. Results showed a concentration-dependent decrease in aromatase activity after treatment with OLE and MPE, whereas, SOE showed a biphasic effect. The differential effects of OLE, SOE and MPE on aromatase expression showed that OLE seems to be the most potent suppressor followed by SOE and then MPE. These findings indicate that OLE has effective inhibitory action on aromatase at both the enzymatic and expression levels, in addition to its cytotoxic effect against MCF-7 cells. Also, MPE may be has the potential to be used as a tissue-specific aromatase inhibitor (selective aromatase inhibitor) and it may be promising to develop a new therapeutic agent against ER+ breast cancer.

  19. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions

    Directory of Open Access Journals (Sweden)

    Teerasak E-kobon

    2016-01-01

    Full Text Available Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5 showed in vitro cytotoxicity against the breast cancer cell line (MCF-7 and normal epithelium cell line (Vero. According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development.

  20. Interaction of estradiol and high density lipoproteins on proliferation of the human breast cancer cell line MCF-7 adapted to grow in serum free conditions

    International Nuclear Information System (INIS)

    Jozan, S.; Faye, J.C.; Tournier, J.F.; Tauber, J.P.; David, J.F.; Bayard, F.

    1985-01-01

    The responsiveness of the human mammary carcinoma cell line MCF-7 to estradiol and tamoxifen treatment has been studied in different culture conditions. Cells from exponentially growing cultures were compared with cells in their initial cycles after replating from confluent cultures (''confluent-log'' cells). It has been observed that estradiol stimulation of tritiated thymidine incorporation decreases with cell density and that ''confluent-log'' cells are estrogen unresponsive for a period of four cell cycles in serum-free medium conditions. On the other hand, growth of cells replated from exponentially growing, as well as from confluent cultures, can be inhibited by tamoxifen or a combined treatment with tamoxifen and the progestin levonorgestrel. This growth inhibitory effect can be rescued by estradiol when cells are replated from exponentially growing cultures. The growth inhibitory effect cannot be rescued by estradiol alone (10(-10) to 10(-8) M) when cells are replated from confluent cultures. In this condition, the addition of steroid depleted serum is necessary to reverse the state of estradiol unresponsiveness. Serum can be replaced by high density lipoproteins but not by low density lipoproteins or lipoprotein deficient serum. The present data show that estradiol and HDL interact in the control of MCF-7 cell proliferation

  1. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    Science.gov (United States)

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. © 2015 Wiley Periodicals, Inc.

  2. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents.

    Science.gov (United States)

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.

  3. DRF 3188 a novel semi-synthetic analog of andrographolide: cellular response to MCF 7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Srinivas Nanduri

    2004-06-01

    Full Text Available Abstract Background We determined the effect of andrographolide and one of its novel semi-synthetic analog, DRF 3188, on the cell cycle of MCF 7 breast cancer cells. Methods The effect of the compounds on cell cycle was determined using FACS and western blot analysis of cell cycle proteins. Hollow fibre assay was used to determine if the compounds had the same effect on the cell cycle in vitro and in vivo. Results Our results from the in vitro and in vivo experiments show that both the compounds block the cell cycle at the G0-G1 phase through the induction of the cell cycle inhibitor, p27, and the concomitant decrease in the levels of Cdk4. Conclusion The results show that the novel semi-synthetic analog, DRF3188, and andrographolide bring about the anti cancer activity by a similar mechanism.

  4. DRF 3188 a novel semi-synthetic analog of andrographolide: cellular response to MCF 7 breast cancer cells

    Science.gov (United States)

    Satyanarayana, Chitkala; Deevi, Dhanavanthri S; Rajagopalan, R; Srinivas, Nanduri; Rajagopal, Sriram

    2004-01-01

    Background We determined the effect of andrographolide and one of its novel semi-synthetic analog, DRF 3188, on the cell cycle of MCF 7 breast cancer cells. Methods The effect of the compounds on cell cycle was determined using FACS and western blot analysis of cell cycle proteins. Hollow fibre assay was used to determine if the compounds had the same effect on the cell cycle in vitro and in vivo. Results Our results from the in vitro and in vivo experiments show that both the compounds block the cell cycle at the G0-G1 phase through the induction of the cell cycle inhibitor, p27, and the concomitant decrease in the levels of Cdk4. Conclusion The results show that the novel semi-synthetic analog, DRF3188, and andrographolide bring about the anti cancer activity by a similar mechanism. PMID:15207007

  5. A Novel Submicron Emulsion System Loaded with Doxorubicin Overcome Multi-Drug Resistance in MCF-7/ADR Cells.

    Science.gov (United States)

    Zhou, W P; Hua, H Y; Sun, P C; Zhao, Y X

    2015-01-01

    The purpose of the present study was to develop the Solutol HS15-based doxorubicin submicron emulsion with good stability and overcoming multi-drug resistance. In this study, we prepared doxorubicin submicron emulsion, and examined the stability after autoclaving, the in vitro cytotoxic activity, the intracellular accumulation and apoptpsis of doxorubicin submicron emulsion in MCF-7/ADR cells. The physicochemical properties of doxorubicin submicron emulsion were not significantly affected after autoclaving. The doxorubicin submicron emulsion significantly increased the intracellular accumulation of doxorubicin submicron emulsion and enhanced cytotoxic activity and apoptotic effects of doxorubicin. These results may be correlated to doxorubicin submicron emulsion inhibitory effects on efflux pumps through the progressive release of intracellular free Solutol HS15 from doxorubicin submicron emulsion. Furthermore, these in vitro results suggest that the Solutol HS15-based submicron emulsion may be a potentially useful drug delivery system to circumvent multi-drug resistance of tumor cells.

  6. Transfection in Primary Cultured Neuronal Cells.

    Science.gov (United States)

    Marwick, Katie F M; Hardingham, Giles E

    2017-01-01

    Transfection allows the introduction of foreign nucleic acid into eukaryotic cells. It is an important tool in understanding the roles of NMDARs in neurons. Here, we describe using lipofection-mediated transfection to introduce cDNA encoding NMDAR subunits into postmitotic rodent primary cortical neurons maintained in culture.

  7. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents

    Science.gov (United States)

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40–80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles. PMID:26274324

  8. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents.

    Directory of Open Access Journals (Sweden)

    Kamel Chettab

    Full Text Available Sonoporation using low-frequency high-pressure ultrasound (US is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1 in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40-80%, as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.

  9. ROS mediates interferon gamma induced phosphorylation of Src, through the Raf/ERK pathway, in MCF-7 human breast cancer cell line.

    Science.gov (United States)

    Zibara, Kazem; Zeidan, Asad; Bjeije, Hassan; Kassem, Nouhad; Badran, Bassam; El-Zein, Nabil

    2017-03-01

    Interferon gamma (IFN-ɣ) is a pleiotropic cytokine which plays dual contrasting roles in cancer. Although IFN-ɣ has been clinically used to treat various malignancies, it was recently shown to have protumorigenic activities. Reactive oxygen species (ROS) are overproduced in cancer cells, mainly due to NADPH oxidase activity, which results into several changes in signaling pathways. In this study, we examined IFN-ɣ effect on the phosphorylation levels of key signaling proteins, through ROS production, in the human breast cancer cell line MCF-7. After treatment by IFN-ɣ, results showed a significant increase in the phosphorylation of STAT1, Src, raf, AKT, ERK1/2 and p38 signaling molecules, in a time specific manner. Src and Raf were found to be involved in early stages of IFN-ɣ signaling since their phosphorylation increased very rapidly. Selective inhibition of Src-family kinases resulted in an immediate significant decrease in the phosphorylation status of Raf and ERK1/2, but not p38 and AKT. On the other hand, IFN-ɣ resulted in ROS generation, through H 2 O 2 production, whereas pre-treatment with the ROS inhibitor NAC caused ROS inhibition and a significant decrease in the phosphorylation levels of AKT, ERK1/2, p38 and STAT1. Moreover, pretreatment with a selective NOX1 inhibitor resulted in a significant decrease of AKT phosphorylation. Finally, no direct relationship was found between ROS production and calcium mobilization. In summary, IFN-ɣ signaling in MCF-7 cell line is ROS-dependent and follows the Src/Raf/ERK pathway whereas its signaling through the AKT pathway is highly dependent on NOX1.

  10. Functional Consequences of Intracellular Proline Levels Manipulation Affecting PRODH/POX-Dependent Pro-Apoptotic Pathways in a Novel in Vitro Cell Culture Model.

    Science.gov (United States)

    Zareba, Ilona; Surazynski, Arkadiusz; Chrusciel, Marcin; Miltyk, Wojciech; Doroszko, Milena; Rahman, Nafis; Palka, Jerzy

    2017-01-01

    The effect of impaired intracellular proline availability for proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied. We generated a constitutively knocked-down PRODH/POX MCF-7 breast cancer cell line (MCF-7shPRODH/POX) as a model to analyze the functional consequences of impaired intracellular proline levels. We have used inhibitor of proline utilization in collagen biosynthesis, 2-metoxyestradiol (MOE), inhibitor of prolidase that generate proline, rapamycin (Rap) and glycyl-proline (GlyPro), substrate for prolidase. Collagen and DNA biosynthesis were evaluated by radiometric assays. Cell viability was determined using Nucleo-Counter NC-3000. The activity of prolidase was determined by colorimetric assay. Expression of proteins was assessed by Western blot and immunofluorescence bioimaging. Concentration of proline was analyzed by liquid chromatography with mass spectrometry. PRODH/POX knockdown decreased DNA and collagen biosynthesis, whereas increased prolidase activity and intracellular proline level in MCF-7shPRODH/POX cells. All studied compounds decreased cell viability in MCF-7 and MCF-7shPRODH/POX cells. DNA biosynthesis was similarly inhibited by Rap and MOE in both cell lines, but GlyPro inhibited the process only in MCF-7shPRODH/POX and MOE+GlyPro only in MCF-7 cells. All the compounds inhibited collagen biosynthesis, increased prolidase activity and cytoplasmic proline level in MCF-7shPRODH/POX cells and contributed to the induction of pro-survival mode only in MCF-7shPRODH/POX cells. In contrast, all studied compounds upregulated expression of pro-apoptotic protein only in MCF-7 cells. PRODH/POX was confirmed as a driver of apoptosis and proved the eligibility of MCF-7shPRODH/POX cell line as a highly effective model to elucidate the different mechanisms underlying proline utilization or generation in PRODH/POX-dependent pro-apoptotic pathways. © 2017 The Author(s). Published by S. Karger AG, Basel.

  11. Cytotoxicity and apoptosis induced by a plumbagin derivative in estrogen positive MCF-7 breast cancer cells

    KAUST Repository

    Sagar, Sunil; Esau, Luke; Moosa, Basem; Khashab, Niveen M.; Bajic, Vladimir B.; Kaur, Mandeep

    2014-01-01

    Plumbagin [5-hydroxy- 2-methyl-1, 4-naphthaquinone] is a well-known plant derived anticancer lead compound. Several efforts have been made to synthesize its analogs and derivatives in order to increase its anticancer potential. In the present study, plumbagin and its five derivatives have been evaluated for their antiproliferative potential in one normal and four human cancer cell lines. Treatment with derivatives resulted in dose- and time-dependent inhibition of growth of various cancer cell lines. Prescreening of compounds led us to focus our further investigations on acetyl plumbagin, which showed remarkably low toxicity towards normal BJ cells and HepG2 cells. The mechanisms of apoptosis induction were determined by APOPercentage staining, caspase-3/7 activation, reactive oxygen species production and cell cycle analysis. The modulation of apoptotic genes (p53, Mdm2, NF-kB, Bad, Bax, Bcl-2 and Casp-7) was also measured using real time PCR. The positive staining using APOPercentage dye, increased caspase-3/7 activity, increased ROS production and enhanced mRNA expression of proapoptotic genes suggested that acetyl plumbagin exhibits anticancer effects on MCF-7 cells through its apoptosis-inducing property. A key highlighting point of the study is low toxicity of acetyl plumbagin towards normal BJ cells and negligible hepatotoxicity (data based on HepG2 cell line). Overall results showed that acetyl plumbagin with reduced toxicity might have the potential to be a new lead molecule for testing against estrogen positive breast cancer. 2014 Bentham Science Publishers.

  12. Cytotoxicity and apoptosis induced by a plumbagin derivative in estrogen positive MCF-7 breast cancer cells

    KAUST Repository

    Sagar, Sunil

    2014-01-31

    Plumbagin [5-hydroxy- 2-methyl-1, 4-naphthaquinone] is a well-known plant derived anticancer lead compound. Several efforts have been made to synthesize its analogs and derivatives in order to increase its anticancer potential. In the present study, plumbagin and its five derivatives have been evaluated for their antiproliferative potential in one normal and four human cancer cell lines. Treatment with derivatives resulted in dose- and time-dependent inhibition of growth of various cancer cell lines. Prescreening of compounds led us to focus our further investigations on acetyl plumbagin, which showed remarkably low toxicity towards normal BJ cells and HepG2 cells. The mechanisms of apoptosis induction were determined by APOPercentage staining, caspase-3/7 activation, reactive oxygen species production and cell cycle analysis. The modulation of apoptotic genes (p53, Mdm2, NF-kB, Bad, Bax, Bcl-2 and Casp-7) was also measured using real time PCR. The positive staining using APOPercentage dye, increased caspase-3/7 activity, increased ROS production and enhanced mRNA expression of proapoptotic genes suggested that acetyl plumbagin exhibits anticancer effects on MCF-7 cells through its apoptosis-inducing property. A key highlighting point of the study is low toxicity of acetyl plumbagin towards normal BJ cells and negligible hepatotoxicity (data based on HepG2 cell line). Overall results showed that acetyl plumbagin with reduced toxicity might have the potential to be a new lead molecule for testing against estrogen positive breast cancer. 2014 Bentham Science Publishers.

  13. Protein-based nanotoxicology assessment strategy

    DEFF Research Database (Denmark)

    Elnegaard, Marlene Pedersen; List, Markus; Christiansen, Helle

    2017-01-01

    to improve selection of primary hits for subsequent analysis. As nanodrug mimics, we analyzed the effect of transiently transfected siRNAs in MCF7 breast cancer cells and normal MCF12A breast cells, resembling a differential screen. As a measure of cytotoxicity, we determined cell viability as well...... as protein expression of glyceraldehyde-3-phosphate dehydrogenase, transferrin receptor, and the proliferation marker Ki67. The evaluation of cell lethality and protein expression unraveled cellular effects overseen by one method alone....

  14. Enhancement of DNA-transfection frequency by X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Ryota; Fushimi, Kazuo; Hiraki, Yoshio; Namba, Masayoshi [Okayama University Medical School (Japan). Institute of Cellular and Molecular Biology

    1997-02-01

    This study was conducted to evaluate the frequency of DNA transfection into human cells following X-ray irradiation. We transfected plasmid DNA (pSV2neo) into human cells, HeLa and PA-1, by either calcium phosphate precipitation or the lipofection method immediately after irradiating the cells with various doses of X-rays. The transfection frequency was evaluated by counting the number of G418-resistant colonies. When circular plasmid DNA was used, irradiation up to a dose of 2 Gy dose-dependently increased the transfection frequency, which reached a maximum of 5 to 10-fold that of the control unirradiated cells. When linear plasmid DNA was used, the transfection frequency was 2 times higher than that of circular DNA. All five of the clones that were randomly chosen expressed the transfected neo gene. In addition, the pSV2neo gene was randomly integrated into the genomic DNA of each clone. These findings indicate that X-ray treatment can facilitate foreign DNA transfer into human cells and that radiation-induced DNA breaks may promote the insertion of foreign DNA into host DNA. The enhancement of DNA transfection with X-rays may be instrumental in practicing gene therapy. (author)

  15. Enhancement of DNA-transfection frequency by X-rays

    International Nuclear Information System (INIS)

    Iwamoto, Ryota; Fushimi, Kazuo; Hiraki, Yoshio; Namba, Masayoshi

    1997-01-01

    This study was conducted to evaluate the frequency of DNA transfection into human cells following X-ray irradiation. We transfected plasmid DNA (pSV2neo) into human cells, HeLa and PA-1, by either calcium phosphate precipitation or the lipofection method immediately after irradiating the cells with various doses of X-rays. The transfection frequency was evaluated by counting the number of G418-resistant colonies. When circular plasmid DNA was used, irradiation up to a dose of 2 Gy dose-dependently increased the transfection frequency, which reached a maximum of 5 to 10-fold that of the control unirradiated cells. When linear plasmid DNA was used, the transfection frequency was 2 times higher than that of circular DNA. All five of the clones that were randomly chosen expressed the transfected neo gene. In addition, the pSV2neo gene was randomly integrated into the genomic DNA of each clone. These findings indicate that X-ray treatment can facilitate foreign DNA transfer into human cells and that radiation-induced DNA breaks may promote the insertion of foreign DNA into host DNA. The enhancement of DNA transfection with X-rays may be instrumental in practicing gene therapy. (author)

  16. STAT6 Mediates Interleukin-4 Growth Inhibition in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jennifer L. Gooch

    2002-01-01

    Full Text Available In addition to acting as a hematopoietic growth factor, interleukin-4 (IL-4 inhibits growth of some transformed cells in vitro and in vivo. In this study, we show that insulin receptor substrate (IRS-1, IRS-2, and signal transducer and activator of transcription 6 (STAT6 are phosphorylated following IL-4 treatment in MCF-7 breast cancer cells. STAT6 DNA binding is enhanced by IL-4 treatment. STAT6 activation occurs even after IRS-1 depletion, suggesting the two pathways are independent. To examine the role of STAT6 in IL-4-mediated growth inhibition and apoptosis, a fulllength STAT6 cDNA was transfected into MCF-7 cells. Transient overexpression of STAT6 resulted in both cytoplasmic and nuclear expression of the protein, increased DNA binding in response to IL-4, and increased transactivation of an IL-4 responsive promoter. In STAT6-transfected cells, basal proliferation was reduced whereas apoptosis was increased. Finally, stable expression of STAT6 resulted in reduced foci formation compared to vector-transfected cells alone. These results suggest STAT6 is required for IL-4mediated growth inhibition and induction of apoptosis in human breast cancer cells.

  17. Correlation between cationic lipid-based transfection and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael, E-mail: michael@elbaum.ac.il

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24 h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. - Highlights: • Cationic lipid-based transfection supports protein expression without cell division. • Protein expression is unrelated to cell cycle status at the time of transfection. • Time-lapse imaging provides direct evaluation without statistical averaging. • Lipoplex dissociation is a likely target for improvement of transfection efficiency.

  18. Simulation of micro/nano electroporation for cell transfection

    Science.gov (United States)

    Zhang, Guocheng; Fan, Na; Jiang, Hai; Guo, Jian; Peng, Bei

    2018-03-01

    The 3D micro/nano electroporation for transfection has become a powerful biological cell research technique with the development of micro-nano manufacturing technology. The micro channels connected the cells with transfection reagents on the chip were important to the transmemnbrane potentical, which directly influences the electroporation efficiency. In this study, a two-dimensional model for electroporation of cells was designed to address the effects of channels’ sizes and number on transmembrane potential. The simulation results indicated that the transmembrane potential increased with increasing size of channels’ entrances. Moreover, compared with single channel entrance, the transmembrane potential was higher when the cells located at multiple channels entrances. These results suggest that it IS required to develop higher micro manufacturing technology to create channels as we expected size.

  19. Ethanolic Extract Cytotoxic Effect of Zingiber Afficinale in Breast Cancer (MCF7 Cell Line

    Directory of Open Access Journals (Sweden)

    J Tavakkol Afshari

    2010-07-01

    Full Text Available Introduction & Objective: Biological activities of Zingiber afficieale plants have been reported as possessing anticancer, antibacterial, anti ulcer, antifungal, and insecticidal properties. However, its antitumor effects haven't been studied in cancer cell lines. The aim of this study was to investigate the antitumor effect of zingiber afficieale on breast cancer cell lines. Materials & Methods: This experimental study was conducted in 2010 at Mashhad University of medical Sciences. Breast cancer cell line (MCF7 and normal connective tissue cell line (L929 were cultured in DMEM medium. Ethanolic extract of Zingiber afficinale was prepared and cell lines were treated with different concentration of extract (5000 to 78 µg. Cell viability was measured by MTT assay after 24, 48, and 72 hours. The collected data were statistically analyzed by SPSS software. Results: The effects of Zingiber afficinale on cell viability were observed after 48 hours on cell lines. Ginger doses in 2500 µg concentration inhibited 50% of cell growth (IC50 in cell lines after 48 hours. Conclusion: Our study revealed that fresh ginger extract has cytotoxic effects on tumor cells, but it doesn’t have any cytotoxic effect on normal cells. It seems that ginger could be considered as a promising chemotherapeutic agent in cancer treatment.

  20. Experimental Model of Gene Transfection in Healthy Canine Myocardium: Perspectives of Gene Therapy for Ischemic Heart Disease

    Directory of Open Access Journals (Sweden)

    Renato A. K. Kalil

    2002-09-01

    Full Text Available OBJECTIVE: To assess the transfection of the gene that encodes green fluorescent protein (GFP through direct intramyocardial injection. METHODS: The pREGFP plasmid vector was used. The EGFP gene was inserted downstream from the constitutive promoter of the Rous sarcoma virus. Five male dogs were used (mean weight 13.5 kg, in which 0.5 mL of saline solution (n=1 or 0.5 mL of plasmid solution containing 0.5 µg of pREGFP/dog (n=4 were injected into the myocardium of the left ventricular lateral wall. The dogs were euthanized 1 week later, and cardiac biopsies were obtained. RESULTS: Fluorescence microscopy showed differences between the cells transfected and not transfected with pREGFP plasmid. Mild fluorescence was observed in the cardiac fibers that received saline solution; however, the myocardial cells transfected with pREGFP had overt EGFP expression. CONCLUSION: Transfection with the EGFP gene in healthy canine myocardium was effective. The reproduction of this efficacy using vascular endothelial growth factor (VEGF instead of EGFP aims at developing gene therapy for ischemic heart disease.

  1. Optimizing conditions for calcium phosphate mediated transient transfection

    Directory of Open Access Journals (Sweden)

    Ling Guo

    2017-03-01

    Conclusions: Calcium phosphate mediated transfection is the most low-cost approach to introduce recombinant DNA into culture cells. However, the utility of this procedure is limited in highly-differentiated cells. Here we describe the specific HBS-buffered saline, PH, glycerol shock, vortex strength, transfection medium, and particle concentrations conditions necessary to optimize this transfection method in highly differentiated cells.

  2. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  3. St. John’s Wort Regulates Proliferation and Apoptosis in MCF-7 Human Breast Cancer Cells by Inhibiting AMPK/mTOR and Activating the Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Mi-Kyoung You

    2018-03-01

    Full Text Available St. John’s Wort (SJW has been used as an estrogen agonist in the systems affected by menopause. Also, hypericin, a bioactive compound of SJW, has been used as a photosensitizer in photodynamic therapy. In the present study, we investigate the anti-proliferative and pro-apoptotic effects of SJW to demonstrate the chemo-preventive effect in human breast cancer cells. MCF-7 cells were cultured with DMSO or various concentrations of SJW ethanol extract (SJWE. Cell viability, proliferation, apoptosis, the expression of proteins involved in cell growth and apoptosis, and caspase-3/7 activity were examined. SJWE dose-dependently suppressed cell growth and induced apoptosis of MCF-7 cells. Mechanistically, SJWE enhanced the phosphorylation of AMP-activated protein kinase (AMPK and decreased the expression of p-mammalian target of rapamycin (p-mTOR and p-eukaryotic translation initiation factor 4E (eIF4E-binding protein 1 (4E-BP1. Also, SJWE inhibited the phosphorylation of protein kinase B (Akt and showed increases in the expression of pro-apoptotic proteins Bax and Bad with decreases in the expression of anti-apoptotic proteins including B-cell lymphoma 2 (Bcl-2, B-cell lymphoma-extra large (Bcl-xL, and p-Bcl-2-associated death promoter (p-Bad. SJWE at 50 μg/mL showed markedly enhanced caspase-7 activation. Taken together, our results provide evidence that SJWE shows anti-proliferative and pro-apoptotic effects via inhibition of AMPK/mTOR and activation of a mitochondrial pathway. Therefore, SJWE can be used as a chemo-preventive agent without photo-activation.

  4. Knock-down of miR-221 and miR-222 in the radiosensitization of breast cancer cells

    International Nuclear Information System (INIS)

    Zhang Chunzhi; Kang Chunsheng; Cao Yongzhen; Pu Peiyu; Lu Zhonghong; Du Yue

    2009-01-01

    Objective: To investigate the radiosensitizing effect of knock-down of miR-221 miR-222 on MCF-7 human breast cancer cells and explore the possible mechanism. Methods: Antisense oligonucleotides of miR-221 and miR-222 (AS-miR-221 and AS-miR-222), mediated by lipofectamine, were transfected to MCF-7 cells to knock down miR-221 and miR-222, Northern blotting was conducted to detect the expression of miR-221 and miR-222 in transfected cells. The cell apoptosis was detected by flow cytometry and Caspase-3 and Caspase-7 activity assay. Clonogenic assay was used to measure the sensitizing enhancement ratio. Target genes of miR-221 and miR-222 relevant to radio-sensitivity were searched using bioinformatics analysis. The targeted protein expression was determined by Western blot analysis. Results: The expression of miR-221 and miR-222 in the AS-miR-221/222 cells determined by Northern blotting was significantly reduced. Compared with the control group, the cell apoptosis and mitotic cell death after the radiation were significantly higher in AS-miR-221/222 cells. The sensitizing enhancement ratio was 1.87. Based on bioinformatics analysis, PTEN was a target gene of miR-221 and miR-222 which could enhance the radiosensitivity of MCF-7 cells. In AS-miR-221/222 cells, the expression of PTEN was up-regulated while pAkt down-regulated. Conclusions: AS-miR-221 and AS-miR-222 may enhance the radiosensitivity of MCF-7 breast cancer cells by up-regulating the expression of PTEN. (authors)

  5. Beta-elemene blocks epithelial-mesenchymal transition in human breast cancer cell line MCF-7 through Smad3-mediated down-regulation of nuclear transcription factors.

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    Full Text Available Epithelial-mesenchymal transition (EMT is the first step required for breast cancer to initiate metastasis. However, the potential of drugs to block and reverse the EMT process are not well explored. In the present study, we investigated the inhibitory effect of beta-elemene (ELE, an active component of a natural plant-derived anti-neoplastic agent in an established EMT model mediated by transforming growth factor-beta1 (TGF-β1. We found that ELE (40 µg/ml blocked the TGF-β1-induced phenotypic transition in the human breast cancer cell line MCF-7. ELE was able to inhibit TGF-β1-mediated upregulation of mRNA and protein expression of nuclear transcription factors (SNAI1, SNAI2, TWIST and SIP1, potentially through decreasing the expression and phosphorylation of Smad3, a central protein mediating the TGF-β1 signalling pathway. These findings suggest a potential therapeutic benefit of ELE in treating basal-like breast cancer.

  6. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines

    Directory of Open Access Journals (Sweden)

    Acharya Balakrishna

    2015-01-01

    Full Text Available Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562. All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 104 cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1, Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL. The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells, and blank (only medium. The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models.

  7. Transfection of bone marrow derived cells with immunoregulatory proteins.

    Science.gov (United States)

    Khantakova, Julia N; Silkov, Alexander N; Tereshchenko, Valeriy P; Gavrilova, Elena V; Maksyutov, Rinat A; Sennikov, Sergey V

    2018-03-23

    In vitro electroporation gene transfer was first performed in 1982. Today, this technology has become one of the major vehicles for non-viral transfection of cells. All non-viral transfections, such as calcium phosphate precipitation, lipofection, and magnetic transfection, have been shown to achieve a transfection efficiency of up to 70% in commonly used cell lines, but not in primary cells. Here we describe the use of electroporation to transfect primary mouse bone marrow-derived cells, such as macrophages (Mφ) and dendritic cells (DCs) with high efficiencies (45%-72%) and minimal cell death. The transfection efficiencies and cell death varied depending on the culture duration of the DCs and Mφ. Moreover, the electroporation efficiency was increased when conditioning medium was used for culturing the cells. Furthermore, we demonstrated that measuring the plasmid-encoded secreted proteins is a highly sensitive method for determining the transfection efficiency. In summary, electroporation with plasmid vectors is an efficient method for producing DCs and Mφ with transient expression of immunoregulatory proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Novel hydroxyamides and amides containing D-glucopyranose or D-fructose units: Biological assays in MCF-7 and MDST8 cell lines.

    Science.gov (United States)

    Carreiro, Elisabete P; Costa, Ana R; Cordeiro, Maria M; Martins, Rute; Pires, Tiago O; Saraiva, Mafalda; Antunes, Célia M; Burke, Anthony J

    2016-02-01

    A novel library of 15 compounds, hydroxyamides and amides containing a β-D-glucopyranose (D-Gluc) or a β-D-fructose (D-Fruc) units was designed and synthesized for antiproliferative assays in breast (MCF-7) and colon (MDST8) cancer cell lines. Twelve of them were hydroxyamides and were successfully synthesized from β-D-glucuronic acid (D-GluA). Six of these hydroxyamides which were acetylated hydroxy-β-D-glucopyranuronamide 2a-2f (1st Family) and the other six were their respective isomers, that is, hydroxy-β-D-fructuronamide 3a-3f (2nd Family), obtained by acid-base catalyzed isomerization. These compounds have the general structure, D-Gluc-C=ONH-CHR-(CH2)n-OH and D-Fruc-C=ONH-CHR-(CH2)n-OH, where R=an aromatic, alkyl or a hydrogen substituent, with n=0 or 1. Eight of these contained a chiral aminoalcohol group. Three compounds were amides containing a D-glucopyranose unit (3rd Family). SAR studies were conducted with these compounds. Antiproliferative studies showed that compound 4a, the bromo-amide containing the β-D-glucopyranose ring, potently inhibits the proliferation of the MDST8 cells. Five compounds (2e, 2f, 3d, 3e, and 3f) were shown to potently selectively inhibit the proliferation of the MCF-7 cells. Compound 4b was the only one showing inhibition in both cell lines. In general, the more active compounds were the amides and hydroxyamides containing the β-D-fructose moiety, and containing an alkyl group or hydrogen. Half-inhibitory concentrations (IC50) of between 0.01 and 10 μM, were observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Molecular studies of fibroblasts transfected with hepatitis B virus DNA

    International Nuclear Information System (INIS)

    Chen, M.L.; Hood, A.; Thung, S.N.; Gerber, M.A.

    1987-01-01

    Two subclones (D7 and F8) derived from an NIH 3T3 mouse fibroblast cell line after transfection with hepatitis B virus (HBV) genomes, secreted significantly different amounts of HBsAg and HBeAg. DNA extracted from the subclones revealed only integrated and no extrachromosomal HBV DNA sequences as determined by the Southern blot technique with a /sup 32/P-labeled full length HBV DNA probe. The amount and integration sites of HBV sequences were significantly different in the two subclones. HBV DNA sequences coding for HBsAg and HBcAg were detected by alkaline phosphatase-conjugated, single-stranded synthetic gene-specific oligonucleotide probes revealing a larger number of copies in D7 DNA than in F8 DNA. Using a biotinylated probe for in situ hybridization, HBV DNA was found in the nuclei of all D7 cells with predominant localization to a single chromsome, but only in 10-20% of F8 cells. These observations demonstrate different integration patterns of HBV and DNA in two subclones derived from a transfected cell line and suggest that the amount of integrated HBV DNA is proportional to the amount of HBV antigens produced

  10. Enhanced transfection efficiency and reduced cytotoxicity of novel lipid-polymer hybrid nanoplexes

    DEFF Research Database (Denmark)

    Jain, Sanyog; Kumar, Sandeep; Agrawal, Ashish Kumar

    2013-01-01

    The present study reports the development, characterization, and evaluation of novel polyelectrolytes stabilized lipoplexes as a nonviral vector for gene delivery. In order to achieve the advantage of both DOTAP (1,2-dioleoyl-3-trimethylammonium propane) and PEI (high transfection efficiency...... uptake and nuclear colocalization in comparison with DOTAP/PC, DOTAP/DOPE lipoplexes, and PEI polyplexes. Nanoplexes also exhibited 50-80, 11-12, 6-7, and 5-6 fold higher transfection efficiency in comparison with DOTAP/PC-lipoplexes, DOTAP/DOPE-lipoplexes, PEI-polyplexes, and lipofectamine, respectively......, and significantly lower toxicity in comparison with DOTAP/PC, DOTAP/DOPE lipoplexes, PEI polyplexes, and commercial lipofectamine....

  11. Cytotoxic activity of isolated constituents from leaves of Premna serratifolia on MCF-7 and HT-29 cell lines

    Directory of Open Access Journals (Sweden)

    Mahesh Biradi

    2015-03-01

    Full Text Available Premna serratifolia (Syn: Premna integrifolia is an important medicinal herb known as “Agnimantha” in Ayurveda and traditionally used for anticancer activity. The objective of present study was to isolate the cytotoxic phytoconstituents from the n-hexane soluble fraction of P. serratifolia leaf extract. Unsaponifiable portion of n-hexane soluble fraction was subjected to silica based column chromatography. The major constituents present in all the sub-fractions were identified by TLC and phytochemical tests. Two constituents were isolated and they were purified. Sub-fractions with isolates were tested for cytotoxic effect by BSL bioassay. Two isolates were found to be active and which were tested on cancer cell lines MCF-7 and HT-29 for their cytotoxicity. Among two isolates, one compound has shown significant cytotoxicity. From the results we conclude that the plant isolates showed cytotoxicity against selected human cancer cell lines.

  12. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro.

    Science.gov (United States)

    Kneuer, C; Sameti, M; Bakowsky, U; Schiestel, T; Schirra, H; Schmidt, H; Lehr, C M

    2000-01-01

    Diverse polycationic polymers have been used as nonviral transfection agents. Here we report the ability of colloidal silica particles with covalently attached cationic surface modifications to transfect plasmid DNA in vitro and make an attempt to describe the structure of the resulting transfection complexes. In analogy to the terms lipoplex and polyplex, we propose to describe the nanoparticle-DNA complexes by the term "nanoplex". Three batches, Si10E, Si100E, and Si26H, sized between 10 and 100 nm and with zeta potentials ranging from +7 to +31 mV at pH 7.4 were evaluated. The galactosidase expression plasmid DNA pCMVbeta was immobilized on the particle surface and efficiently transfected Cos-1 cells. The transfection activity was accompanied by very low cytotoxicity, with LD(50) values in the milligrams per milliliter range. The most active batch, Si26H, was produced by modification of commercially available silica particles with N-(6-aminohexyl)-3-aminopropyltrimethoxysilane, yielding spherical nanoparticles with a mean diameter of 26 nm and a zeta potential of +31 mV at pH 7.4. Complexes of Si26H and pCMVbeta plasmid DNA formed at w/w ratios of 10 were most effective in promoting transfection of Cos-1 cells in the absence of serum. At this ratio, >90% of the DNA was associated with the particles, yielding nanoplexes with a net negative surface charge. When the transfection medium was supplemented with 10% serum, maximum gene expression was observed at a w/w ratio of 30, at which the resulting particle-DNA complexes possessed a positive surface charge. Transfection was strongly increased in the presence of 100 microM chloroquine in the incubation medium and reached approximately 30% of the efficiency of a 60 kDa polyethylenimine. In contrast to polyethylenimine, no toxicity was observed at the concentrations required. Atomic force microscopy of Si26H-DNA complexes revealed a spaghetti-meatball-like structure. The surface of complexes prepared at a w/w ratio of

  13. Design, Synthesis and Docking Studies of Flavokawain B Type Chalcones and Their Cytotoxic Effects on MCF-7 and MDA-MB-231 Cell Lines

    Directory of Open Access Journals (Sweden)

    Addila Abu Bakar

    2018-03-01

    Full Text Available Flavokawain B (1 is a natural chalcone extracted from the roots of Piper methysticum, and has been proven to be a potential cytotoxic compound. Using the partial structure of flavokawain B (FKB, about 23 analogs have been synthesized. Among them, compounds 8, 13 and 23 were found in new FKB derivatives. All compounds were evaluated for their cytotoxic properties against two breast cancer cell lines, MCF-7 and MDA-MB-231, thus establishing the structure–activity relationship. The FKB derivatives 16 (IC50 = 6.50 ± 0.40 and 4.12 ± 0.20 μg/mL, 15 (IC50 = 5.50 ± 0.35 and 6.50 ± 1.40 μg/mL and 13 (IC50 = 7.12 ± 0.80 and 4.04 ± 0.30 μg/mL exhibited potential cytotoxic effects on the MCF-7 and MDA-MB-231 cell lines. However, the methoxy group substituted in position three and four in compound 2 (IC50 = 8.90 ± 0.60 and 6.80 ± 0.35 μg/mL and 22 (IC50 = 8.80 ± 0.35 and 14.16 ± 1.10 μg/mL exhibited good cytotoxicity. The lead compound FKB (1 showed potential cytotoxicity (IC50 = 7.70 ± 0.30 and 5.90 ± 0.30 μg/mL against two proposed breast cancer cell lines. It is evident that the FKB skeleton is unique for anticancer agents, additionally, the presence of halogens (Cl and F in position 2 and 3 also improved the cytotoxicity in FKB series. These findings could help to improve the future drug discovery process to treat breast cancer. A molecular dynamics study of active compounds revealed stable interactions within the active site of Janus kinase. The structures of all compounds were determined by 1H-NMR, EI-MS, IR and UV and X-ray crystallographic spectroscopy techniques.

  14. Ultrasonic destruction of albumin microbubbles enhances gene transfection and expression in cardiac myocytes.

    Science.gov (United States)

    Wang, Guo-zhong; Liu, Jing-hua; Lü, Shu-zheng; Lü, Yun; Guo, Cheng-jun; Zhao, Dong-hui; Fang, Dong-ping; He, Dong-fang; Zhou, Yuan; Ge, Chang-jiang

    2011-05-01

    It has been proven that ultrasonic destruction of microbubbles can enhance gene transfection efficiency into the noncardiac cells, but there are few reports about cardiac myocytes. Moreover, the exact mechanisms are not yet clear; whether the characteristic of microbubbles can affect the gene transfection efficiency or not is still controversial. This study was designed to investigate whether the ultrasound destruction of gene-loaded microbubbles could enhance the plasmids carried reporter gene transfection in primary cultured myocardial cell, and evaluate the effects of microbubbles characteristics on the transgene expression in cardiac myocytes. The β-galactosidase plasmids attached to the two types of microbubbles, air-contained sonicated dextrose albumin (ASDA) and perfluoropropane-exposed sonicated dextrose albumin (PESDA) were prepared. The gene transfection into cardiac myocytes was performed in vitro by naked plasmids, ultrasound exposure, ultrasonic destruction of gene-loaded microbubbles and calcium phosphate precipitation, and then the gene expression and cell viability were analyzed. The ultrasonic destruction of gene-loaded microbubbles enhanced gene expression in cardiac myocytes compared with naked plasmid transfection ((51.95 ± 2.41) U/g or (29.28 ± 3.65) U/g vs. (0.84 ± 0.21) U/g, P ASDA ((51.95 ± 2.41) U/g vs. (29.28 ± 3.65) U/g, P < 0.05). Ultrasonic destruction of microbubbles during calcium phosphate precipitation gene transfection enhanced β-galactosidase activity nearly 8-fold compared with calcium phosphate precipitation gene transfection alone ((111.35 ± 11.21) U/g protein vs. (14.13 ± 2.58) U/g protein, P < 0.01). Even 6 hours after calcium phosphate precipitation gene transfection, ultrasound-mediated microbubbles destruction resulted in more intense gene expression ((35.63 ± 7.65) U/g vs. (14.13 ± 2.58) U/g, P < 0.05). Ultrasonic destruction of microbubbles might be a promising method for the delivery of non-viral DNA into

  15. Uptake of DNA by cancer cells without a transfection reagent

    Directory of Open Access Journals (Sweden)

    Yanping Kong

    Full Text Available Abstract Background Cancer cells exhibit elevated levels of glucose uptake and may obtain pre-formed, diet-derived fatty acids from the bloodstream to boost their rapid growth; they may also use nucleic acid from their microenvironment. The study of processing nucleic acid by cancer cells will help improve the understanding of the metabolism of cancer. DNA is commonly packaged into a viral or lipid particle to be transferred into cells; this process is called transfection in laboratory. Cancer cells are known for having gene mutations and the evolving ability of endocytosis. Their uptake of DNAs might be different from normal cells; they may take in DNAs directly from the environment. In this report, we studied the uptake of DNAs in cancer cells without a transfection reagent. Methods A group of DNA fragments were prepared with PCR and labeled with isotope phosphorous-32 to test their uptake by Huh 7 (liver cancer and THLE3 (normal liver cells after incubation overnight by counting radioactivity of the cells’ genomic DNA. Multiple cell lines including breast cancer and lung cancer were tested with the same method. DNA molecules were also labeled with fluorescence to test the location in the cells using a kit of “label it fluorescence in situ hybridization (FISH” from Mirus (USA. Results The data demonstrated that hepatocellular carcinoma cells possess the ability to take in large DNA fragments directly without a transfection reagent whereas normal liver cells cannot. Huh7 and MDA-MB231 cells displayed a significantly higher Rhodamine density in the cytoplasmic phagosomes and this suggests that the mechanism of uptake of large DNA by cancer cells is likely endocytosis. The efficacy of uptake is related to the DNA’s size. Some cell lines of lung cancer and breast cancer also showed similar uptake of DNA. Conclusions In the present study, we have revealed the evidence that some cancer cells, but not nontumorigenic cells, can take DNA

  16. MCF-10A-NeoST: A New Cell System for Studying Cell-ECM and Cell-Cell Interactions in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zantek, Nicole Dodge; Walker-Daniels, Jennifer; Stewart, Jane; Hansen, Rhonda K.; Robinson, Daniel; Miao, Hui; Wang, Bingcheng; Kung, Hsing-Jien; Bissell, Mina J.; Kinch, Michael S.

    2001-08-22

    There is a continuing need for genetically matched cell systems to model cellular behaviors that are frequently observed in aggressive breast cancers. We report here the isolation and initial characterization of a spontaneously arising variant of MCF-10A cells, NeoST, which provides a new model to study cell adhesion and signal transduction in breast cancer. NeoST cells recapitulate important biological and biochemical features of metastatic breast cancer, including anchorage-independent growth, invasiveness in threedimensional reconstituted membranes, loss of E-cadherin expression, and increased tyrosine kinase activity. A comprehensive analysis of tyrosine kinase expression revealed overexpression or functional activation of the Axl, FAK, and EphA2 tyrosine kinases in transformed MCF-10A cells. MCF-10A and these new derivatives provide a genetically matched model to study defects in cell adhesion and signaling that are relevant to cellular behaviors that often typify aggressive breast cancer cells.

  17. Additive estrogenic effects of mixtures of frequently used UV filters on pS2-gene transcription in MCF-7 cells

    International Nuclear Information System (INIS)

    Heneweer, Marjoke; Muusse, Martine; Berg, Martin van den; Sanderson, J. Thomas

    2005-01-01

    In order to protect consumers from ultraviolet (UV) radiation and enhance light stability of the product, three to eight UV filters are usually added to consumer sunscreen products. High lipophilicity of the UV filters has been shown to cause bioaccumulation in fish and humans, leading to environmental levels of UV filters that are similar to those of PCBs and DDT. In this paper, estrogen-regulated pS2 gene transcription in the human mammary tumor cell line MCF-7 was used as a measure of estrogenicity of four individual UV filters. Since humans are exposed to more than one UV filter at a time, an equipotent binary mixture of 2-hydroxy-4-methoxy-benzophenone (BP-3) and its metabolite 2,4-dihydroxy benzophenone (BP-1), as well as an equipotent multi-component mixture of BP-1, BP-3, octyl methoxy cinnamate (OMC) and 3-(4-methylbenzylidene) camphor (4-MBC), were also evaluated for their ability to induce pS2 gene transcription in order to examine additivity. An estrogen receptor-mediated mechanism of action was expected for all UV filters. Therefore, our null-hypothesis was that combined estrogenic responses, measured as increased pS2 gene transcription in MCF-7 cells after exposure to mixtures of UV filters, are additive, according to a concentration-addition model. Not all UV filters produced a full concentration-response curve within the concentration range tested (100 nM-1 μM). Therefore, instead of using EC 50 values for comparison, the concentration at which each compound caused a 50% increase of basal pS2 gene transcription was defined as the C50 value for that compound and used to calculate relative potencies. For comparison, the EC 50 value of a compound is the concentration at which the compound elicits an effect that is 50% of its maximal effect. Individual UV filters increased pS2 gene transcription concentration-dependently with C50 values of 0.12 μM, 0.5 μM, 1.9 μM, and 1.0 μM for BP-1, BP-3, 4-MBC and OMC, respectively. Estradiol (E2) had a C50

  18. Assessment of the Nucleus-to-Cytoplasmic Ratio in MCF-7 Cells Using Ultra-high Frequency Ultrasound and Photoacoustics

    Science.gov (United States)

    Moore, M. J.; Strohm, E. M.; Kolios, M. C.

    2016-12-01

    The nucleus-to-cytoplasmic (N:C) ratio of a cell is often used when assessing histology for the presence of malignant disease. In this proof of concept study, we present a new, non-optical method for determination of the N:C ratio using ultra-high Frequency ultrasound (US) and photoacoustics (PA). When using transducers in the 100 MHz-500 MHz range, backscattered US pulses and emitted PA waves are encoded with information pertaining to the dimension and morphology of micron-sized objects. If biological cells are interrogated, the diameter of the scattering or absorbing structure can be assessed by fitting the power spectra of the measured US or PA signals to theoretical models for US backscatter and PA emission from a fluid sphere. In this study, the cell and nucleus diameters of 9 MCF-7 breast cancer cells were determined using a new simplified model that calculates the theoretical values of the location of the power spectra minima for both US and PA signals. These diameters were then used to calculate the N:C ratio of the measured cells. The average cell diameter determined by US pulses from a transducer with a central frequency of 375 MHz was found to be 15.5 μ m± 1.8 μ m. The PA waves emitted by the cell nuclei were used to determine an average nuclear diameter of 12.0 μ m± 1.3 μ m. The N:C ratio for these cells was calculated to be 1.9± 1.0, which agrees well with previously reported N:C values for this cell type.

  19. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake.

    Science.gov (United States)

    Azevedo, Cláudia; Correia-Branco, Ana; Araújo, João R; Guimarães, João T; Keating, Elisa; Martel, Fátima

    2015-01-01

    Our aim was to investigate the effect of several dietary polyphenols on glucose uptake by breast cancer cells. Uptake of (3)H-deoxy-D-glucose ((3)H-DG) by MCF-7 cells was time-dependent, saturable, and inhibited by cytochalasin B plus phloridzin. In the short-term (26 min), myricetin, chrysin, genistein, resveratrol, kaempferol, and xanthohumol (10-100 µM) inhibited (3)H-DG uptake. Kaempferol was found to be the most potent inhibitor of (3)H-DG uptake [IC50 of 4 µM (1.6-9.8)], behaving as a mixed-type inhibitor. In the long-term (24 h), kaempferol (30 µM) was also able to inhibit (3)H-DG uptake, associated with a 40% decrease in GLUT1 mRNA levels. Interestingly enough, kaempferol (100 µM) revealed antiproliferative (sulforhodamine B and (3)H-thymidine incorporation assays) and cytotoxic (extracellular lactate dehydrogenase activity determination) properties, which were mimicked by low extracellular (1 mM) glucose conditions and reversed by high extracellular (20 mM) glucose conditions. Finally, exposure of cells to kaempferol (30 µM) induced an increase in extracellular lactate levels over time (to 731 ± 32% of control after a 24 h exposure), due to inhibition of MCT1-mediated lactate cellular uptake. In conclusion, kaempferol potently inhibits glucose uptake by MCF-7 cells, apparently by decreasing GLUT1-mediated glucose uptake. The antiproliferative and cytotoxic effect of kaempferol in these cells appears to be dependent on this effect.

  20. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes—A model

    Science.gov (United States)

    Kanani, S.; Pumir, A.; Krinsky, V.

    2008-01-01

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler Reuter model, as well as with the elaborate dynamic Luo Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I channels is low enough. At too high an expression level of I channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I channels observed in ventricular myocytes, both in the Beeler Reuter and in the dynamic Luo Rudy models are too high to allow to observe oscillations. With expression levels below ˜1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  1. Transfection of bovine spermatogonial stem cells in vitro.

    Science.gov (United States)

    Tajik, P; Hoseini Pajooh, Kh; Fazle Elahi, Z; Javdani Shahedin, G; Ghasemzadeh-Nava, H

    2017-01-01

    Spermatogonial stem cells (SSCs) are the only stem cells in adults that can transfer genetic information to the future generations. Considering the fact that a single SSC gives rise to a vast number of spermatozoa, genetic manipulation of these cells is a potential novel technology with feasible application to various animal species. The aim of this study was to evaluate enhanced green fluorescent protein (EGFP) gene transfection into bovine SSCs via liposome carrier and assess the best incubation day in uptake exogenous gene by SSCs. Transfection efficiency of EGFP gene with lipofectamine 2000 was determined in days following each three day of transfection (day 4, 6 and 8 of the culture) by fluorescent microscope. Results showed that the transfected cells through lipofection increased significantly (Ptransfection in comparison with those of the control groups. The transfected SSCs were higher in comparison with those of the free exogenous gene carrier groups (Ptransfection proceeds at day four. It was concluded that lipofectamine can be used safely for direct loading exogenous DNA to SSCs particularly during the fourth day of culture.

  2. Inhibition of the MAPK pathway alone is insufficient to account for all of the cytotoxic effects of naringenin in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Lauren Eanes

    2016-12-01

    Full Text Available Estrogen receptor (ER antagonists such as tamoxifen (Tam have been used successfully to treat ER+ breast cancers for more than 30 years. Unfortunately, long term use of Tam can result in resistance. Tam resistance is associated with the activation of growth factor signaling pathways that promote cell proliferation and survival. The mitogen-activated protein kinase (MAPK, is up-regulated in Tam resistant (Tam-R cells. Previous studies have reported that the flavanone, naringenin (Nar can inhibit cell proliferation and induce apoptosis in ER+ breast cancer cells. Furthermore, Nar has been shown to inhibit the MAPK signaling pathways in MCF-7 cells. In this report we investigated whether inhibition of MAPK alone is mediating the effects of Nar on cell proliferation and viability. These studies will determine the mechanism of action of Nar. Tam-R MCF-7 breast cancer cells were treated with Nar or U0126, a MAPK kinase inhibitor. Our studies show that while both U0126 and Nar impaired cell proliferation and viability the combination of U0126 and Nar resulted in greater inhibition of cell viability than either compound alone. It has been previously reported that Nar can bind the ER. Our lab has also shown that Nar localizes ERα to a peri-nuclear region of the cell. Confocal microscopy revealed that in U0126 treated cells ERα displayed an even distribution across the cytoplasm as seen in untreated Tam-R cells. These studies suggest that MAPK is not the only target of Nar.

  3. An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7

    Directory of Open Access Journals (Sweden)

    R.R. Remya

    2015-12-01

    Full Text Available A single step protocol to produce biofunctionalized silver nanoparticles (AgNPs using the aqueous extract of Cassia fistula flower as “natural factory” was investigated. The reaction between silver ions and aqueous flower extract after the bioreduction process has resulted in the formation of reddish brown color colloidal solution. XRD pattern showed the face centered cubic crystalline structure of AgNPs and exhibited spherical morphology as characterized by FE-SEM. FTIR studies identified different functional groups involved in effective capping of AgNPs. The zeta potential affirmed the phytoreduced AgNPs possess good stability and the size of the particle was measured by DLS. The synthesized AgNPs displayed effective cytotoxic potential against MCF7 and the inhibitory concentration (IC50 was recorded at 7.19 μg/mL. The apoptotic effects of the AgNPs were also confirmed by AO/EB staining. The investigation presents preliminary evidence that biosynthesized AgNPs can be used in the development of novel anticancer drugs.

  4. Functional inhibition of Ubiquitin conjugating Enzyme (UBE2C) reduces proliferation and sensitizes cervical and breast cancer cells to radiation, doxorubicin, tamoxifen and letrozole

    International Nuclear Information System (INIS)

    Bose, Mayil Vahanan; Rawat, Akhilesh; Gopisetty, Gopal; Thangarajan, Rajkumar; Ganesharaja, Selvaluxmy

    2014-01-01

    Cervical cancer is the second most common cancer in women, worldwide. About 80% of cervical cancer cases occur in developing countries. Breast cancer has overtaken cervical cancer in most of the urban centers in India. In recent years, interest in the role of Ubiquitin conjugating Enzyme E2C (UBE2C) in cancer has shown a dramatic increase. Several studies have reported UBE2C as a potential oncogene and therapeutic target. The objective of the study was to elucidate radiation and chemo-sensitivity in response to functional inhibition of UBE2C in cervical and breast cancer cell lines. Taqman Real time PCR was performed to measure UBE2C levels in cervical and breast cancer cell lines. A dominant negative form of UBE2C (DN-UBE2C) was used to functionally inhibit wild type UBE2C. Cell proliferation and anchorage independent growth were measured by colorimetric assay and soft agar assay respectively. Radiation and chemo response of cell lines were assessed by colorimetric assay and clonogenic assay. Difference in sensitivity to radiation was observed among the cervical cancer cell lines studied. The growth rate of SiHa and HeLa transfected with DN- UBE2C was significantly reduced compared to vector control. Further, DN-UBE2C mediated radio-sensitivity was correlated with a significant decrease in resistance to radiation by SiHa and HeLa cells after transfection when compared to control cultures. Similarly, both the growth rate and the anchorage independent growth of MCF7 and MDAMB231 cells transfected with DN-UBE2C were significantly reduced compared to cells transfected with vector alone. MCF7 and MDAMB231 cells expressing DN-UBE2C were significantly more sensitive to different doses of radiation and doxorubicin compared to controls. In addition, DN-UBE2C transfected MCF7 cells were more sensitive to inhibition by tamoxifen and letrozole compared to vector controls. These results suggest that UBE2C can be used as a potential therapeutic target for cervical and breast

  5. Relationship between autophagy and apoptosis of MCF-7 cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Qi Yali; Zhang Zhenyu; Wang Hongyan; Li Jinhua; Gong Shouliang

    2009-01-01

    Objective: To detect the inhibitory effects of ionizing radiation combined with autophagy and apoptosis inhibitors and inducers on the proliferation of human breast cancer cell line. Methods: MTT and flow cytometry (FCM) were used to detect the surviving and proliferation of MCF-7 cells, which were under 0, 2, 4, 8 and 10 Gy X-ray radiation and different dealing methods 4 Gy, 4 Gy + 3-MA, 4 Gy + rapamycin, 4 Gy + z-VAD-fmk, and the relationship of dose-effects and time-effects was analyzed. Results: With the increase of irradiation doses (4, 8 and 10 Gy) and the elongation of irradiation time (48 and 72 h), the inhibitory rates of the proliferation of breast cancer cells were increased, there were significant differences between various groups (P<0.05 or P<0.01). The inhibitory rates of the proliferation of breast cancer cells in 4 Gy+3-MA or 4 Gy+ z-VAD-fmk groups were significantly different from those in 4Gy+rapamycin group (P<0.05 or P<0.01), and there were significant differences after treated for 24, 48 and 72 h between various groups (P<0.05 or P<0.01). Conclusion: Ionizing radiation in combination with autophagy inducer could induced the autophagy in human breast cancer cells and promote the apoptosis; the ionizing radiation in combination with autophagy inhibitor or apoptosis inhibitor could inhibit the apoptosis. Thus, ionizing radiation can induce the autophagy in human breast cancer cells, and promote the apoptosis. (authors)

  6. Optical transfection using an endoscope-like system.

    Science.gov (United States)

    Ma, Nan; Gunn-Moore, Frank; Dholakia, Kishan

    2011-02-01

    Optical transfection is a powerful method for targeted delivery of therapeutic agents to biological cells. A tightly focused pulsed laser beam may transiently change the permeability of a cell membrane to facilitate the delivery of foreign genetic material into cells. We report the first realization of an endoscope-like integrated system for optical transfection. An imaging fiber (coherent optical fiber bundle) with ∼ 6000 cores (pixels) embedded in a fiber cladding of ∼ 300 μm in diameter, produces an image circle (area) of ∼ 270 μm diam. This imaging fiber, with an ordered axicon lens array chemically etched at its exit face, is used for the delivery of a femtosecond laser to the cell membrane for optical transfection along with subcellular resolution imaging. A microcapillary-based microfluidic system for localized drug delivery was also combined in this miniature, flexible system. Using this novel system, a plasmid transfection efficiency up to ∼ 72% was obtained for CHO-K1 cells. This endoscope-like system opens a range of exciting applications, in particular, in the targeted in vivo optical microsurgery area.

  7. Studies on Multifunctional Effect of All-Trans Retinoic Acid (ATRA on Matrix Metalloproteinase-2 (MMP-2 and Its Regulatory Molecules in Human Breast Cancer Cells (MCF-7

    Directory of Open Access Journals (Sweden)

    Anindita Dutta

    2009-01-01

    Full Text Available Background. Vitamin A derivative all-trans retinoic acid (ATRA is considered as a potent chemotherapeutic drug for its capability of regulating cell growth and differentiation. We studied the effect of ATRA on MMP-2 in MCF-7, human breast cancer cells, and the probable signaling pathways which are affected by ATRA on regulating pro-MMP-2 activity and expression. Methods. Gelatin zymography, RT-PCR, ELISA, Western blot, Immunoprecipitation, and Cell adhesion assay are used. Results. Gelatin zymography showed that ATRA caused a dose-dependent inhibition of pro-MMP-2 activity. ATRA treatment downregulates the expression of MT1-MMP, EMMPRIN, FAK, NF-kB, and p-ERK. However, expression of E-cadherin, RAR, and CRABP increased upon ATRA treatment. Binding of cells to extra cellular matrix (ECM protein fibronectin reduced significantly after ATRA treatment. Conclusions. The experimental findings clearly showed the inhibition of MMP-2 activity upon ATRA treatment. This inhibitory effect of ATRA on MMP-2 activity in human breast cancer cells (MCF-7 may result due to its inhibitory effect on MT1-MMP, EMMPRIN, and upregulation of TIMP-2. This study is focused on the effect of ATRA on MMP, MMP-integrin-E-cadherin interrelationship, and also the effect of the drug on different signaling molecules which may involve in the progression of malignant tumor development.

  8. Effects of Microbubble Size on Ultrasound-Mediated Gene Transfection in Auditory Cells

    Directory of Open Access Journals (Sweden)

    Ai-Ho Liao

    2014-01-01

    Full Text Available Gene therapy for sensorineural hearing loss has recently been used to insert genes encoding functional proteins to preserve, protect, or even regenerate hair cells in the inner ear. Our previous study demonstrated a microbubble- (MB-facilitated ultrasound (US technique for delivering therapeutic medication to the inner ear. The present study investigated whether MB-US techniques help to enhance the efficiency of gene transfection by means of cationic liposomes on HEI-OC1 auditory cells and whether MBs of different sizes affect such efficiency. Our results demonstrated that the size of MBs was proportional to the concentration of albumin or dextrose. At a constant US power density, using 0.66, 1.32, and 2.83 μm albumin-shelled MBs increased the transfection rate as compared to the control by 30.6%, 54.1%, and 84.7%, respectively; likewise, using 1.39, 2.12, and 3.47 μm albumin-dextrose-shelled MBs increased the transfection rates by 15.9%, 34.3%, and 82.7%, respectively. The results indicate that MB-US is an effective technique to facilitate gene transfer on auditory cells in vitro. Such size-dependent MB oscillation behavior in the presence of US plays a role in enhancing gene transfer, and by manipulating the concentration of albumin or dextrose, MBs of different sizes can be produced.

  9. Infectious alphavirus production from a simple plasmid transfection+

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2011-07-01

    Full Text Available Abstract We have developed a new method for producing infectious double subgenomic alphaviruses from plasmids transfected into mammalian cells. A double subgenomic Sindbis virus (TE3'2J was transcribed from a cytomegalovirus PolII promoter, which results in the production of infectious virus. Transfection of as little as 125 ng of plasmid is able to produce 1 × 108 plaque forming units/ml (PFU/ml of infectious virus 48 hours post-transfection. This system represents a more efficient method for producing recombinant Sindbis viruses.

  10. Study on a Haptic Sensor Using MCF (Magnetic Compound Fluid) Electric Conductive Rubber

    Science.gov (United States)

    Zheng, Yaoyang; Shimada, Kunio

    To provide a new composite material having a high degree of sensitivity regarding both electrical conduction and temperature for the field of robotics or sensing, we have developed magnetic rubber that contains a network-like magnetic cluster. We compared the temperature response of MCF rubber with others rubbers made under various experimental conditions, allowing us to find an optimum condition for making MCF rubber. The temperature response was obtained by an experimental equation. We also compared the electric conductivity of MCF rubber with that of ordinary electric conductive rubber and found that its electric sensitivity was lower at a small deformation, but increased at larger deformations. Therefore, MCF rubber has proven itself effective as a switching sensor when a small deformation is applied.

  11. Overcoming drug resistance of MCF-7/ADR cells by altering intracellular distribution of doxorubicin via MVP knockdown with a novel siRNA polyamidoamine-hyaluronic acid complex.

    Science.gov (United States)

    Han, Min; Lv, Qing; Tang, Xin-Jiang; Hu, Yu-Lan; Xu, Dong-Hang; Li, Fan-Zhu; Liang, Wen-Quan; Gao, Jian-Qing

    2012-10-28

    Drug resistance is one of the critical reasons leading to failure in chemotherapy. Enormous studies have been focused on increasing intracellular drug accumulation through inhibiting P-glycoprotein (Pgp). Meanwhile, we found that major vault protein (MVP) may be also involved in drug resistance of human breast cancer MCF-7/ADR cells by transporting doxorubicin (DOX) from the action target (i.e. nucleus) to cytoplasma. Herein polyamidoamine (PAMAM) dendrimers was functionalized by a polysaccharide hyaluronic acid (HA) to effectively deliver DOX as well as MVP targeted small-interfering RNA (MVP-siRNA) to down regulate MVP expression and improve DOX chemotherapy in MCF-7/ADR cells. In comparison with DOX solution (IC50=48.5 μM), an enhanced cytotoxicity could be observed for DOX PAMAM-HA (IC50=11.3 μM) as well as enhanced tumor target, higher intracellular accumulation, increased blood circulating time and less in vivo toxicity. Furthermore, codelivery of siRNA and DOX by PAMAM-HA exhibited satisfactory gene silencing effect as well as enhanced stability and efficient intracellular delivery of siRNA, which allowed DOX access to nucleus and induced subsequent much more cytotoxicity than siRNA absent case as a result of MVP knockdown. This observation highlights a promising application of novel nanocarrier PAMAM-HA, which could co-deliver anticancer drug and siRNA, in reversing drug resistance by altering intracellular drug distribution. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Pig BMSCs Transfected with Human TFPI Combat Species Incompatibility and Regulate the Human TF Pathway in Vitro and in a Rodent Model

    Directory of Open Access Journals (Sweden)

    Hongchen Ji

    2015-05-01

    Full Text Available Background: The activation of tissue factor (TF is one of the major reasons for coagulation dysregulation after pig-to-primate xenotransplantation. Tissue factor pathway inhibitor (TFPI is the most important inhibitor of TF. Studies have demonstrated species incompatibility between pig TFPI and human TF. Methods: A pig-to-macaque heterotopic auxiliary liver transplantation model was established to determine the origin of activated TF. Chimeric proteins of human and pig TFPI were constructed to assess the role of Kunitz domains in species incompatibility. Immortalised pig bone marrow mesenchymal stem cells transfected with human TFPI were tested for their ability to inhibit clotting in vitro. Results: TF from recipient was activated early after liver xenotransplantation. Pig TFPI Kunitz domain 2 bound human FXa, but Kunitz domain 1 did not effectively inhibit human TF/FVIIa. Immortalised pig bone marrow mesenchymal cells (BMSCs transfected with human TFPI showed a prolonged recalcification time in vitro and in a rodent model. Conclusion: Recipient TF is relevant to dysregulated coagulation after xenotransplantation. Kunitz domain 1 plays the most important role in species incompatibility between pig TFPI and human TF, and clotting can be inhibited by human TFPI-transfected pig BMSCs. Our study shows a possible way to resolve the incompatibility of pig TFPI.

  13. Anchoring cationic amphiphiles for nucleotide delivery: significance of DNA release from cationic liposomes for transfection.

    Science.gov (United States)

    Hirashima, Naohide; Minatani, Kazuhiro; Hattori, Yoshifumi; Ohwada, Tomohiko; Nakanishi, Mamoru

    2007-06-01

    We have designed and synthesized lithocholic acid-based cationic amphiphile molecules as components of cationic liposomes for gene transfection (lipofection). To study the relationship between the molecular structures of those amphiphilic molecules, particularly the extended hydrophobic appendant (anchor) at the 3-hydroxyl group, and transfection efficiency, we synthesized several lithocholic and isolithocholic acid derivatives, and examined their transfection efficiency. We also compared the physico-chemical properties of cationic liposomes prepared from these derivatives. We found that isolithocholic acid derivatives exhibit higher transfection efficiency than the corresponding lithocholic acid derivatives. This result indicates that the orientation and extension of hydrophobic regions influence the gene transfection process. Isolithocholic acid derivatives showed a high ability to encapsulate DNA in a compact liposome-DNA complex and to protect it from enzymatic degradation. Isolithocholic acid derivatives also facilitated the release of DNA from the liposome-DNA complex, which is a crucial step for DNA entry into the nucleus. Our results show that the transfection efficiency is directly influenced by the ability of the liposome complex to release DNA, rather than by the DNA-encapsulating ability. Molecular modeling revealed that isolithocholic acid derivatives take relatively extended conformations, while the lithocholic acid derivatives take folded structures. Thus, the efficiency of release of DNA from cationic liposomes in the cytoplasm, which contributes to high transfection efficiency, appears to be dependent upon the molecular shape of the cationic amphiphiles.

  14. TIMP1 overexpression mediates resistance of MCF-7 human breast cancer cells to fulvestrant and down-regulates progesterone receptor expression

    DEFF Research Database (Denmark)

    Bjerre, Christina; Vinther, Lena; Belling, Kirstine C.

    2013-01-01

    is associated with endocrine sensitivity. We established a panel of 11 MCF-7 subclones with a wide range of TIMP1 mRNA and protein expression levels. Cells with high expression of TIMP1 versus low TIMP1 displayed significantly reduced sensitivity to the antiestrogen fulvestrant (ICI 182,780, Faslodex®), while......, the effects of fulvestrant, 4-hydroxytamoxifen, or estrogen on estrogen receptor expression were not associated with TIMP1 levels. Gene expression analyses revealed associations between expression of TIMP1 and genes involved in metabolic pathways, epidermal growth factor receptor 1/cancer signaling pathways......, and cell cycle. Gene and protein expression analyses showed no general defects in estrogen receptor signaling except from lack of progesterone receptor expression and estrogen inducibility in clones with high TIMP1. The present study suggests a relation between high expression level of TIMP1 and loss...

  15. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite

    KAUST Repository

    Zhang, G.

    2015-06-25

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in ‘double transfections’, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments.

  16. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite

    KAUST Repository

    Zhang, G.; He, L.-S.; Wong, Y. H.; Yu, L.; Qian, P.-Y.

    2015-01-01

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in ‘double transfections’, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments.

  17. Role of nuclear factor kappa B and reactive oxygen species in the tumor necrosis factor-a-induced epithelial-mesenchymal transition of MCF-7 cells

    Directory of Open Access Journals (Sweden)

    R. Dong

    2007-08-01

    Full Text Available The microenvironment of the tumor plays an important role in facilitating cancer progression and activating dormant cancer cells. Most tumors are infiltrated with inflammatory cells which secrete cytokines such as tumor necrosis factor-a (TNF-a. To evaluate the role of TNF-a in the development of cancer we studied its effects on cell migration with a migration assay. The migrating cell number in TNF-a -treated group is about 2-fold of that of the control group. Accordingly, the expression of E-cadherin was decreased and the expression of vimentin was increased upon TNF-a treatment. These results showed that TNF-a can promote epithelial-mesenchymal transition (EMT of MCF-7 cells. Further, we found that the expression of Snail, an important transcription factor in EMT, was increased in this process, which is inhibited by the nuclear factor kappa B (NFkB inhibitor aspirin while not affected by the reactive oxygen species (ROS scavenger N-acetyl cysteine. Consistently, specific inhibition of NFkB by the mutant IkBa also blocked the TNF-a-induced upregulation of Snail promoter activity. Thus, the activation of NFkB, which causes an increase in the expression of the transcription factor Snail is essential in the TNF-a-induced EMT. ROS caused by TNF-a seemed to play a minor role in the TNF-a-induced EMT of MCF-7 cells, though ROS per se can promote EMT. These findings suggest that different mechanisms might be responsible for TNF-a - and ROS-induced EMT, indicating the need for different strategies for the prevention of tumor metastasis induced by different stimuli.

  18. Synergistic effect of the combination of triethylene-glycol modified Fe{sub 3}O{sub 4} nanoparticles and ultrasound wave on MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi Fard, Ali, E-mail: a.ebrahimi2008@yahoo.com [Department of Medical Physics, Isfahan University of Medical Science, Isfahan 81746-73461 (Iran, Islamic Republic of); Zarepour, Atefeh [Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Zarrabi, Ali, E-mail: a.zarrabi@ast.ui.ac.ir [Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Shanei, Ahmad [Department of Medical Physics, Isfahan University of Medical Science, Isfahan 81746-73461 (Iran, Islamic Republic of); Salehi, Hossein [Department of Anatomy, Isfahan University of Medical Science, Isfahan 81746-73461 (Iran, Islamic Republic of)

    2015-11-15

    Cancer is a group of disease characterized by uncontrolled growth and spread of abnormal cells in the body. The clinical treatments for cancer include surgery, chemotherapy and radiotherapy. Currently, employing new approaches for treatment has attracted more attentions. One of these approaches is sonodynamic therapy, which is an analogous approach based on the synergistic effect of ultrasound and a chemical component referred to as sonosensitizer. Recent years applications of nanotechnology have witnessed a tremendous expansion of research in medicine especially in treatment of cancers. The combination of sonodynamic therapy and nanotechnology can introduce a new way for cancer therapy. In this study, we used therapeutic ultrasonic waves with intensity of 1 MHz and different concentrations of Fe{sub 3}O{sub 4} nanoparticles, as sonosensitizer, to investigate their combination effect on MCF-7 cell line. Briefly, we divided cells into four different groups; control, cells which got in touch with nanoparticles, cells that with exposure to ultrasound waves and cells which were influenced with combination of nanoparticles and ultrasonic waves. Finally, cell viability assay was used for detection of cytotoxicity effects. Experimental results revealed a significant decrease in viability of cells, which were affected by the combined action of ultrasound field and Fe{sub 3}O{sub 4} nanoparticles, compared to the separate exposure of Fe{sub 3}O{sub 4} nanoparticles or ultrasonic field. The synergic effect of ultrasound waves and Fe ions might be due to the production of toxic free radicals. - Highlights: • We examined the combination effect of Fe{sub 3}O{sub 4} nanoparticles and ultrasound wave on MCF7. • The combination effect featured significant cytotoxic effects. • The cytotoxic effect is due to the production of reactive oxygen species.

  19. Short-hairpin RNA-mediated Heat shock protein 90 gene silencing inhibits human breast cancer cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Zuo, Keqiang; Li, Dan; Pulli, Benjamin; Yu, Fei; Cai, Haidong; Yuan, Xueyu; Zhang, Xiaoping; Lv, Zhongwei

    2012-01-01

    Highlights: ► Hsp90 is over-expressed in human breast cancer. ► The shRNA-mediated gene silencing of Hsp90 resulted in inhibition of cell growth. ► Akt and NF-kB were down-regulation after transfection due to Hsp90 silencing. ► The tumor growth ratio was decline due to Hsp90 silencing. ► The PCNA expression was down-regulation due to Hsp90 silencing. -- Abstract: Hsp90 interacts with proteins that mediate signaling pathways involved in the regulation of essential processes such as proliferation, cell cycle control, angiogenesis and apoptosis. Hsp90 inhibition is therefore an attractive strategy for blocking abnormal pathways that are crucial for cancer cell growth. In the present study, the role of Hsp90 in human breast cancer MCF-7 cells was examined by stably silencing Hsp90 gene expression with an Hsp90-silencing vector (Hsp90-shRNA). RT-PCR and Western blot analyses showed that Hsp90-shRNA specifically and markedly down-regulated Hsp90 mRNA and protein expression. NF-kB and Akt protein levels were down-regulated in Hsp90-shRNA transfected cells, indicating that Hsp90 knockout caused a reduction of survival factors and induced apoptosis. Treatment with Hsp90-shRNA significantly increased apoptotic cell death and caused cell cycle arrest in the G1/S phase in MCF-7 cells, as shown by flow cytometry. Silencing of Hsp90 also reduced cell viability, as determined by MTT assay. In vivo experiments showed that MCF-7 cells stably transfected with Hsp90-shRNA grew slowly in nude mice as compared with control groups. In summary, the Hsp90-shRNA specifically silenced the Hsp90 gene, and inhibited MCF-7 cell growth in vitro and in vivo. Possible molecular mechanisms underlying the effects of Hsp90-shRNA include the degradation of Hsp90 breast cancer-related client proteins, the inhibition of survival signals and the upregulation of apoptotic pathways. shRNA-mediated interference may have potential therapeutic utility in human breast cancer.

  20. Cationic lipids: molecular structure/ transfection activity relationships and interactions with biomembranes.

    Science.gov (United States)

    Koynova, Rumiana; Tenchov, Boris

    2010-01-01

    Abstract Synthetic cationic lipids, which form complexes (lipoplexes) with polyanionic DNA, are presently the most widely used constituents of nonviral gene carriers. A large number of cationic amphiphiles have been synthesized and tested in transfection studies. However, due to the complexity of the transfection pathway, no general schemes have emerged for correlating the cationic lipid chemistry with their transfection efficacy and the approaches for optimizing their molecular structures are still largely empirical. Here we summarize data on the relationships between transfection activity and cationic lipid molecular structure and demonstrate that the transfection activity depends in a systematic way on the lipid hydrocarbon chain structure. A number of examples, including a large series of cationic phosphatidylcholine derivatives, show that optimum transfection is displayed by lipids with chain length of approximately 14 carbon atoms and that the transfection efficiency strongly increases with increase of chain unsaturation, specifically upon replacement of saturated with monounsaturated chains.

  1. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy.

    Science.gov (United States)

    Gao, Shiqian; Tian, Huayu; Guo, Ye; Li, Yuce; Guo, Zhaopei; Zhu, Xiaojuan; Chen, Xuesi

    2015-10-01

    MicroRNA-21 (miR-21) inhibition is a promising biological strategy for breast cancer therapy. However its application is limited by the lack of efficient miRNA inhibitor delivery systems. As a cationic polymer transfection material for nucleic acids, the poly (l-lysine)-modified polyethylenimine (PEI-PLL) copolymer combines the high transfection efficiency of polyethylenimine (PEI) and the good biodegradability of polyllysine (PLL). In this work, PEI-PLL was successfully synthesized and confirmed to transfect plasmid and oligonucleotide more effectively than PEI in MCF-7 cells (human breast cancer cells). In this regard, two kinds of miR-21 inhibitors, miR-21 sponge plasmid DNA (Sponge) and anti-miR-21 oligonucleotide (AMO), were transported into MCF-7 cells by PEI-PLL respectively. The miR-21 expression and the cellular physiology were determined post transfection. Compared with the negative control, PEI-PLL/Sponge or PEI-PLL/AMO groups exhibited lower miR-21 expression and cell viability. The anti-tumor mechanism of PEI-PLL/miR-21 inhibitors was further studied by cell cycle and western blot analyses. The results indicated that the miR-21 inhibition could induce the cell cycle arrest in G1 phase, upregulate the expression of Programmed Cell Death Protein 4 (PDCD4) and thus active the caspase-3 apoptosis pathway. Interestingly, the PEI-PLL/Sponge and PEI-PLL/AMO also sensitized the MCF-7 cells to anti-tumor drugs, doxorubicin (DOX) and cisplatin (CDDP). These results demonstrated that PEI-PLL/Sponge and PEI-PLL/AMO complexes would be two novel and promising gene delivery systems for breast cancer gene therapy based on miR-21 inhibition. This work was a combination of the high transfection efficiency of polyethylenimine (PEI), the good biodegradability of polyllysine (PLL) and the breast cancer-killing effect of miR-21 inhibitors. The poly (l-lysine)-modified polyethylenimine (PEI-PLL) copolymer was employed as the vector of miR-21 sponge plasmid DNA (Sponge) or

  2. Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down.

    Directory of Open Access Journals (Sweden)

    Dag Heinemann

    Full Text Available Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.

  3. Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down.

    Science.gov (United States)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Murua Escobar, Hugo; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.

  4. Gold Nanoparticle Mediated Laser Transfection for Efficient siRNA Mediated Gene Knock Down

    Science.gov (United States)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Escobar, Hugo Murua; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types. PMID:23536802

  5. A cyclic peptide derived from alpha-fetoprotein inhibits the proliferative effects of the epidermal growth factor and estradiol in MCF7 cells.

    Science.gov (United States)

    Torres, Cristian; Antileo, Elmer; Epuñán, Maráa José; Pino, Ana María; Valladares, Luis Emilio; Sierralta, Walter Daniel

    2008-06-01

    A cyclic peptide derived from the active domain of alpha-fetoprotein (AFP) significantly inhibited the proliferation of MCF7 cells stimulated with the epidermal growth factor (EGF) or estradiol (E2). The action of these three agents on cell growth was independent of the presence of calf serum in the culture medium. Our results demonstrated that the cyclic peptide interfered markedly with the regulation of MAPK by activated c-erbB2. The cyclic peptide showed no effect on the E2-stimulated release of matrix metalloproteinases 2 and 9 nor on the shedding of heparin-binding EGF into the culture medium. We propose that the AFP-derived cyclic peptide represents a valuable novel antiproliferative agent for treating breast cancer.

  6. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes-A model

    Energy Technology Data Exchange (ETDEWEB)

    Kanani, S. [Institut Genomique Fonctionelle, 141 Rue de la Cardonille, 34396 Montpellier (France); Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Pumir, A. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Laboratoire J.A. Dieudonne, CNRS and Universite de Nice, Parc Valrose, 06108 Nice (France)], E-mail: alain.pumir@unice.fr; Krinsky, V. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France)

    2008-01-07

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler-Reuter model, as well as with the elaborate dynamic Luo-Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin-Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I{sub K1} channels is low enough. At too high an expression level of I{sub K1} channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I{sub K1} channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I{sub K1} channels observed in ventricular myocytes, both in the Beeler-Reuter and in the dynamic Luo-Rudy models are too high to allow to observe oscillations. With expression levels below {approx}1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I{sub K1} has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  7. Gene Transfection Method Using Atmospheric Pressure Dielectric-Barrier Discharge Plasmas

    Science.gov (United States)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2013-09-01

    Gene transfection which is the process of deliberately introducing nucleic acids into cells is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure dielectric-barrier discharge (AP-DBD) plasmas. AP-DBD He plasmas are irradiated to the living cell covered with genes. Preliminarily, we use fluorescent dye YOYO-1 instead of the genes and use LIVE/DEAD Stain for cell viability test, and we analyze the transfection efficiency and cell viability under the various conditions. It is clarified that the transfection efficiency is strongly dependence on the plasma irradiation time and cell viability rates is high rates (>90%) regardless of long plasma irradiation time. These results suggest that ROS (Reactive Oxygen Species) and electric field generated by the plasma affect the gene transfection. In addition to this (the plasma irradiation time) dependency, we now investigate the effect of the plasma irradiation under the various conditions.

  8. Unexpected transcellular protein crossover occurs during canonical DNA transfection.

    Science.gov (United States)

    Arsenault, Jason; Cuijpers, Sabine A G; Niranjan, Dhevahi; Davletov, Bazbek

    2014-12-01

    Transfection of DNA has been invaluable for biological sciences, yet the effects upon membrane homeostasis are far from negligible. Here, we demonstrate that Neuro2A cells transfected using Lipofectamine LTX with the fluorescently coupled Botulinum serotype A holoenzyme (EGFP-LcA) cDNA express this SNAP25 protease that can, once translated, escape the transfected host cytosol and become endocytosed into untransfected cells, without its innate binding and translocation domains. Fluorescent readouts revealed moderate transfection rates (30-50%) while immunoblotting revealed a surprisingly total enzymatic cleavage of SNAP25; the transgenic protein acted beyond the confines of its host cell. Using intracellular dyes, no important cytotoxic effects were observed from reagent treatment alone, which excluded the possibility of membrane ruptures, though noticeably, intracellular acidic organelles were redistributed towards the plasma membrane. This drastic, yet frequently unobserved, change in protein permeability and endosomal trafficking following reagent treatment highlights important concerns for all studies using transient transfection. © 2014 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  9. MiRNA Transcriptome Profiling of Spheroid-Enriched Cells with Cancer Stem Cell Properties in Human Breast MCF-7 Cell Line

    Science.gov (United States)

    Boo, Lily; Ho, Wan Yong; Ali, Norlaily Mohd; Yeap, Swee Keong; Ky, Huynh; Chan, Kok Gan; Yin, Wai Fong; Satharasinghe, Dilan Amila; Liew, Woan Charn; Tan, Sheau Wei; Ong, Han Kiat; Cheong, Soon Keng

    2016-01-01

    Breast cancer is the second leading cause of cancer-related mortality worldwide as most patients often suffer cancer relapse. The reason is often attributed to the presence of cancer stem cells (CSCs). Recent studies revealed that dysregulation of microRNA (miRNA) are closely linked to breast cancer recurrence and metastasis. However, no specific study has comprehensively characterised the CSC characteristic and miRNA transcriptome in spheroid-enriched breast cells. This study described the generation of spheroid MCF-7 cell in serum-free condition and the comprehensive characterisation for their CSC properties. Subsequently, miRNA expression differences between the spheroid-enriched CSC cells and their parental cells were evaluated using next generation sequencing (NGS). Our results showed that the MCF-7 spheroid cells were enriched with CSCs properties, indicated by the ability to self-renew, increased expression of CSCs markers, and increased resistance to chemotherapeutic drugs. Additionally, spheroid-enriched CSCs possessed greater cell proliferation, migration, invasion, and wound healing ability. A total of 134 significantly (p<0.05) differentially expressed miRNAs were identified between spheroids and parental cells using miRNA-NGS. MiRNA-NGS analysis revealed 25 up-regulated and 109 down-regulated miRNAs which includes some miRNAs previously reported in the regulation of breast CSCs. A number of miRNAs (miR-4492, miR-4532, miR-381, miR-4508, miR-4448, miR-1296, and miR-365a) which have not been previously reported in breast cancer were found to show potential association with breast cancer chemoresistance and self-renewal capability. The gene ontology (GO) analysis showed that the predicted genes were enriched in the regulation of metabolic processes, gene expression, DNA binding, and hormone receptor binding. The corresponding pathway analyses inferred from the GO results were closely related to the function of signalling pathway, self

  10. Synthesis and Characterization of Silver Nanoparticles Using Cannonball Leaves and Their Cytotoxic Activity against MCF-7 Cell Line

    International Nuclear Information System (INIS)

    Devaraj, P.; Kumari, P.; Aarti, Ch.; Renganathan, A.

    2013-01-01

    Cannonball (Couroupita guianensis) is a tree belonging to the family Lecythidaceae. Various parts of the tree have been reported to contain oils, keto steroids, glycosides, couroupitine, indirubin, isatin, and phenolic substances. We report here the synthesis of silver nanoparticles (AgNPs) using cannonball leaves. Green synthesized nanoparticles have been characterized by UV-Vis spectroscopy, SEM, TEM, and FTIR. Cannonball leaf broth as a reducing agent converts silver ions to AgNPs in a rapid and eco friendly manner. The UV-Vis spectra gave surface plasmon resonance peak at 434 nm. TEM image shows well-dispersed silver nanoparticles with an average particle size of 28.4 nm. FTIR showed the structure and respective bands of the synthesized nanoparticles and the stretch of bonds. Green synthesized silver nanoparticles by cannonball leaf extract show cytotoxicity to human breast cancer cell line (MCF-7). Overall, this environmentally friendly method of biological silver nanoparticles production provides rates of synthesis faster than or comparable to those of chemical methods and can potentially be used in various human contacting areas such as cosmetics, foods, and medical applications.

  11. KAEMPFEROL, A FLAVONOID COMPOUND FROM GYNURA MEDICA INDUCED APOPTOSIS AND GROWTH INHIBITION IN MCF-7 BREAST CANCER CELL.

    Science.gov (United States)

    Yi, Xiaofang; Zuo, Jiangcheng; Tan, Chao; Xian, Sheng; Luo, Chunhua; Chen, Sai; Yu, Liangfang; Luo, Yucheng

    2016-01-01

    Kaempferol, a natural flavonoid, has been shown to induce cancer cell apoptosis and cell growth inhibition in several tumors. Previously we have conducted a full investigation on the chemical constituents of Gynura medica , kaempferol and its glycosides are the major constituents of G. medica . Here we investigated the growth inhibition and apoptosis induction effect of kaempferol extracted from G. medica . The inhibition effects of kaempferol were evaluated by MTS assay and soft agar colony formation assay. Fluorescence staining and western blotting were be used to study the apoptosis. The structure was identified by 1 H- NMR), 13 C-NMR and ESI-MS analyses. Our results showed that kaempferol's inhibition of MCF-7 breast cancer cell growth may through inducing apoptosis and downregulation of Bcl2 expression. Kaempferol is a promising cancer preventive and therapeutic agent for breast cancer. List of non-standard abbreviations: MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, HPLC: High-performance liquid chromatography, NMR: Nuclear Magnetic Resonance, ESI-MS Electrospray Ionization Mass Spectral, PARP: Poly ADP-ribose polymerase.

  12. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering.

    Science.gov (United States)

    O'Brien, Paul J; Elahipanah, Sina; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-24

    The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types

  13. Enhanced delivery of PEAL nanoparticles with ultrasound targeted microbubble destruction mediated siRNA transfection in human MCF-7/S and MCF-7/ADR cells in vitro

    Directory of Open Access Journals (Sweden)

    Teng Y

    2015-08-01

    Full Text Available Yanwei Teng,1,2,* Min Bai,3,* Ying Sun,2 Qi Wang,1,2 Fan Li,3 Jinfang Xing,3 Lianfang Du,3 Tao Gong,1 Yourong Duan2 1Key Laboratory of Drug Targeting and Novel Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 2State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China; 3Department of Ultrasound, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: The gene knockdown activity of small interfering RNA (siRNA has led to their use as potential therapeutics for a variety of diseases. However, successful gene therapy requires safe and efficient delivery systems. In this study, we choose mPEG-PLGA-PLL nanoparticles (PEAL NPs with ultrasound targeted microbubble destruction (UTMD to efficiently deliver siRNA into cells. An emulsification-solvent evaporation method was used to prepare siRNA-loaded PEAL NPs. The NPs possessed an average size of 132.6±10.3 nm (n=5, with a uniform spherical shape, and had an encapsulation efficiency (EE of more than 98%. As demonstrated by MTT assay, neither PEAL NPs nor siRNA-loaded PEAL NPs showed cytotoxicity even at high concentrations. The results of cellular uptake showed, with the assistance of UTMD, the siRNA-loaded PEAL NPs can be effectively internalized and can subsequently release siRNA in cells. Taken together, PEAL NPs with UTMD may be highly promising for siRNA delivery, making it possible to fully exploit the potential of siRNA-based therapeutics. Keywords: gene delivery, mPEG-PLGA-PLL, UTMD, emulsification-solvent evaporation method, orthogonal design

  14. Phenotypic and microRNA transcriptomic profiling of the MDA-MB-231 spheroid-enriched CSCs with comparison of MCF-7 microRNA profiling dataset

    Directory of Open Access Journals (Sweden)

    Lily Boo

    2017-07-01

    Full Text Available Breast cancer spheroids have been widely used as in vitro models of cancer stem cells (CSCs, yet little is known about their phenotypic characteristics and microRNAs (miRNAs expression profiles. The objectives of this research were to evaluate the phenotypic characteristics of MDA-MB-231 spheroid-enriched cells for their CSCs properties and also to determine their miRNAs expression profile. Similar to our previously published MCF-7 spheroid, MDA-MB-231 spheroid also showed typical CSCs characteristics namely self-renewability, expression of putative CSCs-related surface markers and enhancement of drug resistance. From the miRNA profile, miR-15b, miR-34a, miR-148a, miR-628 and miR-196b were shown to be involved in CSCs-associated signalling pathways in both models of spheroids, which highlights the involvement of these miRNAs in maintaining the CSCs features. In addition, unique clusters of miRNAs namely miR-205, miR-181a and miR-204 were found in basal-like spheroid whereas miR-125, miR-760, miR-30c and miR-136 were identified in luminal-like spheroid. Our results highlight the roles of miRNAs as well as novel perspectives of the relevant pathways underlying spheroid-enriched CSCs in breast cancer.

  15. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers.

    Science.gov (United States)

    Leonhardt, Carolin; Schwake, Gerlinde; Stögbauer, Tobias R; Rappl, Susanne; Kuhr, Jan-Timm; Ligon, Thomas S; Rädler, Joachim O

    2014-05-01

    In artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and predictable in terms of mathematical modeling. We measured the single-cell expression time-courses and levels of enhanced green fluorescent protein (eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby the dose-response relation. Our results establish a statistical framework for mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs. This team of authors established a statistical framework for mRNA transfection by using a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby their dose-response relation. This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Raymond; Matthews, Jason, E-mail: jason.matthews@utoronto.ca

    2013-07-15

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 and HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.

  17. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Lo, Raymond; Matthews, Jason

    2013-01-01

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 and HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.

  18. CXCL7-Mediated Stimulation of Lymphangiogenic Factors VEGF-C, VEGF-D in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Minghuan Yu

    2010-01-01

    Full Text Available Increased expression of lymphangiogenesis factors VEGF-C/D and heparanase has been correlated with the invasion of cancer. Furthermore, chemokines may modify matrix to facilitate metastasis, and they are associated with VEGF-C and heparanase. The chemokine CXCL7 binds heparin and the G-protein-linked receptor CXCR2. We investigated the effect of CXCR2 blockade on the expression of VEGF-C/D, heparanase, and on invasion. CXCL7 siRNA and a specific antagonist of CXCR2 (SB225002 were used to treat CXCL7 stably transfected MCF10AT cells. Matrigel invasion assays were performed. VEGF-C/D expression and secretion were determined by real-time PCR and ELISA assay, and heparanase activity was quantified by ELISA. SB225002 blocked VEGF-C/D expression and secretion (P<.01. CXCL7 siRNA knockdown decreased heparanase (P<.01. Both SB225002 and CXCL7 siRNA reduced the Matrigel invasion (P<.01. The MAP kinase signaling pathway was not involved. The CXCL7/CXCR2 axis is important for cell invasion and the expression of VEGF-C/D and heparanase, all linked to invasion.

  19. Real time monitoring and quantification of reactive oxygen species in breast cancer cell line MCF-7 by 2',7'-dichlorofluorescin diacetate (DCFDA) assay.

    Science.gov (United States)

    Figueroa, Daniela; Asaduzzaman, Mohammad; Young, Fiona

    2018-04-07

    The detection of reactive oxygen species (ROS) using 2',7'-dichlorofluorescin diacetate (DCFDA) is commonly performed by a single measurement of fluorescence but this fails to capture a profile of ROS generation over time. This study aimed to develop a real-time monitoring method to increase the utility of the assay, to incorporate cytotoxicity screening and to describe the combined effects of DCFDA and the ROS generator, Ter-butyl hydrogen peroxide (TBHP). Breast cancer MCF-7 cells were loaded with DCFDA (0-50 μM) for 45 min, and then exposed to TBHP (0-50 μM). Fluorescence was recorded according to three different schedules: every hour for 6 h, or once after 6 h or 24 h. Viability was assessed in a crystal violet assay and cell morphology was examined by microscopy. TBHP caused a time and dose-dependent increase in ROS and the magnitude of the fluorescent signal was affected by the loading concentration of DCFDA. Reading the fluorescence every hour for 6 h did not diminish the emission signal. The most sensitive and reliable combination for this ROS assay was 10 μM DCFDA with 25 μM TBHP; since higher concentrations of DCFDA compromised cell viability. In conclusion we adapted a single point ROS assay to enable production of a profile of ROS generation over an extended 6 h period, and related this to cell viability and morphology. Published by Elsevier Inc.

  20. The platinum (II) complex [Pt(O,O'-acac)(γ-acac)(DMS)] alters the intracellular calcium homeostasis in MCF-7 breast cancer cells.

    Science.gov (United States)

    Muscella, Antonella; Calabriso, Nadia; Vetrugno, Carla; Fanizzi, Francesco Paolo; De Pascali, Sandra Angelica; Storelli, Carlo; Marsigliante, Santo

    2011-01-01

    It was previously demonstrated that [Pt(O,O'-acac)(γ-acac)(DMS)] exerted toxic effects at high doses, whilst sub-cytotoxic concentrations induced anoikis and decreased cell migration. Aim of this study was to investigate the hypothesis that [Pt(O,O'-acac)(γ-acac)(DMS)] alters the [Ca(2+)](i) and that this is linked to its ability to trigger rapid apoptosis in MCF-7 cells. Thus, cells were treated with [Pt(O,O'-acac)(γ-acac)(DMS)] and its effects on some of the systems regulating Ca(2+) homeostasis were studied, also in cells dealing with the complex changes occurring during the Ca(2+) signalling evoked by extracellular stimuli. [Pt(O,O'-acac)(γ-acac)(DMS)] caused the decrease of PMCA activity (but not SERCA or SPCA) and Ca(2+) membrane permeability. These two opposite effects on [Ca(2+)](i) resulted in its overall increase from 102±12nM to 250±24nM after 15min incubation. The effects of [Pt(O,O'-acac)(γ-acac)(DMS)] were also evident when cells were stimulated with ATP: the changes in Ca(2+) levels caused by purinergic stimulation resulted altered due to decreased PMCA activity and to the closure of Ca(2+) channels opened by purinergic receptor. Conversely, [Pt(O,O'-acac)(γ-acac)(DMS)] did not affect the store-operated Ca(2+) channels opened by thapsigargin or by ATP. [Pt(O,O'-acac)(γ-acac)(DMS)] provoked the activation of PKC-α and the production of ROS that were responsible for the Ca(2+) permeability and PMCA activity decrease, respectively. The overall effect of [Pt(O,O'-acac)(γ-acac)(DMS)] is to increase the [Ca(2+)](i), an effect that is likely to be linked to its ability to trigger rapid apoptosis in MCF-7 cells. These data reinforce the notion that [Pt(O,O'-acac)(γ-acac)(DMS)] would be a promising drug in cancer treatment. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Hydrophobically modified chitosan/gold nanoparticles for DNA delivery

    International Nuclear Information System (INIS)

    Bhattarai, Shanta Raj; Remant Bahadur, K.C.; Aryal, Santosh; Bhattarai, Narayan; Kim, Sun Young; Yi, Ho Keun; Hwang, Pyoung Han; Kim, Hak Yong

    2008-01-01

    Present study dealt an application of modified chitosan gold nanoparticles (Nac-6-Au) for the immobilization of necked plasmid DNA. Gold nanoparticles stabilized with N-acylated chitosan were prepared by graft-onto approach. The stabilized gold nanoparticles were characterized by different physico-chemical techniques such as UV-vis, TEM, ELS and DLS. MTT assay was used for in vitro cytotoxicity of the nanoparticles into three different cell lines (NIH 3T3, CT-26 and MCF-7). The formulation of plasmid DNA with the nanoparticles corresponds to the complex forming capacity and in-vitro/in-vivo transfection efficiency was studied via gel electrophoresis and transfection methods, respectively. Results showed the modified chitosan gold nanoparticles were well-dispersed and spherical in shape with average size around 10∼12 nm in triple distilled water at pH 7.4, and showed relatively no cytotoxicity at low concentration. Addition of plasmid DNA on the aqueous solution of the nanoparticles markedly reduced surface potential (50.0∼66.6%) as well as resulted in a 13.33% increase in hydrodynamic diameters of the formulated nanoparticles. Transfection efficiency of Nac-6-Au/DNA was dependent on cell type, and higher β-galactosidase activity was observed on MCF-7 breast cancer cell. Typically, this activity was 5 times higher in 4.5 mg/ml nanoparticles concentration than that achieved by the nanoparticles of other concentrations (and/or control). However, this activity was lower in in-vitro and dramatically higher in in-vivo than that of commercially available transfection kit (Lipofectin (registered) ) and DNA. From these results, it can be expected to develop alternative new vectors for gene delivery

  2. Human 3α-hydroxysteroid dehydrogenase type 3: structural clues of 5α-DHT reverse binding and enzyme down-regulation decreasing MCF7 cell growth.

    Science.gov (United States)

    Zhang, Bo; Hu, Xiao-Jian; Wang, Xiao-Qiang; Thériault, Jean-François; Zhu, Dao-Wei; Shang, Peng; Labrie, Fernand; Lin, Sheng-Xiang

    2016-04-15

    Human 3α-HSD3 (3α-hydroxysteroid dehydrogenase type 3) plays an essential role in the inactivation of the most potent androgen 5α-DHT (5α-dihydrotestosterone). The present study attempts to obtain the important structure of 3α-HSD3 in complex with 5α-DHT and to investigate the role of 3α-HSD3 in breast cancer cells. We report the crystal structure of human 3α-HSD3·NADP(+)·A-dione (5α-androstane-3,17-dione)/epi-ADT (epiandrosterone) complex, which was obtained by co-crystallization with 5α-DHT in the presence of NADP(+) Although 5α-DHT was introduced during the crystallization, oxidoreduction of 5α-DHT occurred. The locations of A-dione and epi-ADT were identified in the steroid-binding sites of two 3α-HSD3 molecules per crystal asymmetric unit. An overlay showed that A-dione and epi-ADT were oriented upside-down and flipped relative to each other, providing structural clues for 5α-DHT reverse binding in the enzyme with the generation of different products. Moreover, we report the crystal structure of the 3α-HSD3·NADP(+)·4-dione (4-androstene-3,17-dione) complex. When a specific siRNA (100 nM) was used to suppress 3α-HSD3 expression without interfering with 3α-HSD4, which shares a highly homologous active site, the 5α-DHT concentration increased, whereas MCF7 cell growth was suppressed. The present study provides structural clues for 5α-DHT reverse binding within 3α-HSD3, and demonstrates for the first time that down-regulation of 3α-HSD3 decreases MCF7 breast cancer cell growth. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    Spink, Barbara C.; Bennett, James A.; Pentecost, Brian T.; Lostritto, Nicole; Englert, Neal A.; Benn, Geoffrey K.; Goodenough, Angela K.; Turesky, Robert J.; Spink, David C.

    2009-01-01

    The cumulative exposure to estrogens is an important determinant in the risk of breast cancer, yet the full range of mechanisms involving estrogens in the genesis and progression of breast cancer remains a subject of debate. Interactions of estrogens and environmental toxicants have received attention as putative factors contributing to carcinogenesis. Mechanistic studies have demonstrated interactions between estrogen receptor α (ERα) and the aryl hydrocarbon receptor (AhR), with consequences on the genes that they regulate. Many studies of ERα and AhR-mediated effects and crosstalk between them have focused on the initial molecular events. In this study, we investigated ERα- and AhR-mediated effects in long-term estrogen exposed (LTEE) MCF-7 human breast cancer cells, which were obtained by continuous culturing for at least 12 weeks in medium supplemented with 1 nM of 17β-estradiol (E 2 ). With these LTEE cells and with parallel control cells cultured without E 2 supplementation, we performed an extensive study of cytochrome P450 (CYP) induction, carcinogen bioactivation, global gene expression, and tumorigenicity in immunocompromised mice. We found that LTEE cells, in comparison with control cells, had higher levels of AhR mRNA and protein, greater responsiveness for AhR-regulated CYP1A1 and CYP1B1 induction, a 6-fold higher initial level of benzo(a)pyrene-DNA adducts as determined by liquid chromatography tandem mass spectrometry, marked differences in the expression of numerous genes, and a higher rate of E 2 -dependent tumor growth as xenografts. These studies indicate that LTEE causes adaptive responses in MCF-7 cells, which may reflect processes that contribute to the overall carcinogenic effect of E 2 .

  4. Sublethal concentrations of the platinum(II) complex [Pt(O,O'-acac)(gamma-acac)(DMS)] alter the motility and induce anoikis in MCF-7 cells.

    Science.gov (United States)

    Muscella, Antonella; Calabriso, Nadia; Vetrugno, Carla; Urso, Loredana; Fanizzi, Francesco Paolo; De Pascali, Sandra Angelica; Marsigliante, Santo

    2010-07-01

    We showed previously that a new Pt(II) complex ([Pt(O,O'-acac)(gamma-acac)(DMS)]) exerted high and fast apoptotic processes in MCF-7 cells. The objective of this study was to investigate the hypothesis that [Pt(O,O'-acac)(gamma-acac)(DMS)] is also able to exert anoikis and alter the migration ability of MCF-7 cells, and to show some of the signalling events leading to these alterations. Cells were treated with sublethal doses of [Pt(O,O'-acac)(gamma-acac)(DMS)], and the efficiency of colony initiation and anchorage-independent growth was assayed; cell migration was examined by in vitro culture wounding assay. Gelatin zymography for MMP-2 and -9 activities, Western blottings of MMPs, MAPKs, Src, PKC-epsilon and FAK, after [Pt(O,O'-acac)(gamma-acac)(DMS)] treatment, were also performed. Sub-cytotoxic drug concentrations decreased the: (i) anchorage-dependent and -independent growth; (ii) migration ability; and (iii) expression and activity of MMP-2 and MMP-9. [Pt(O,O'-acac)(gamma-acac)(DMS)] provoked the generation of reactive oxygen species (ROS), and the activation of p38MAPK, Src and PKC-epsilon. p38MAPK phosphorylation, cell anoikis and migration due to [Pt(O,O'-acac)(gamma-acac)(DMS)] were blocked by PKC-epsilon inhibition. Furthermore, Src inhibition blocked the [Pt(O,O'-acac)(gamma-acac)(DMS)]-provoked activation of PKC-epsilon, while ROS generation blockage inhibited the activation of Src, and also the decrement of phosphorylated FAK observed in detached [Pt(O,O'-acac)(gamma-acac)(DMS)]-treated cells. Sublethal concentrations of [Pt(O,O'-acac)(gamma-acac)(DMS)] induced anoikis and prevented events leading to metastasis via alterations in cell migration, anchorage independency, stromal interactions and MMP activity. Hence, [Pt(O,O'-acac)(gamma-acac)(DMS)] may be a promising therapeutic agent for preventing growth and metastasis of breast cancer.

  5. Thiolated Chitosan Masked Polymeric Microspheres with Incorporated Mesocellular Silica Foam (MCF for Intranasal Delivery of Paliperidone

    Directory of Open Access Journals (Sweden)

    Stavroula Nanaki

    2017-11-01

    Full Text Available In this study, mesocellular silica foam (MCF was used to encapsulate paliperidone, an antipsychotic drug used in patients suffering from bipolar disorder. MCF with the drug adsorbed was further encapsulated into poly(lactic acid (PLA and poly(lactide-co-glycolide (PLGA 75/25 w/w microspheres and these have been coated with thiolated chitosan. As found by TEM analysis, thiolated chitosan formed a thin layer on the polymeric microspheres’ surface and was used in order to enhance their mucoadhesiveness. These microspheres aimed at the intranasal delivery of paliperidone. The DSC and XRD studies showed that paliperidone was encapsulated in amorphous form inside the MCF silica and for this reason its dissolution profile was enhanced compared to the neat drug. In coated microspheres, thiolated chitosan reduced the initial burst effect of the paliperidone dissolution profile and in all cases sustained release formulations have been prepared. The release mechanism was also theoretically studied and three kinetic models were proposed and successfully fitted for a dissolution profile of prepared formulations to be found.

  6. Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7).

    Science.gov (United States)

    Jinu, U; Gomathi, M; Saiqa, I; Geetha, N; Benelli, G; Venkatachalam, P

    2017-04-01

    This research focused on green engineering and characterization of silver (PcAgNPs) and copper nanoparticles (PcCuNPs) using Prosopis cineraria (Pc) leaf extract prepared by using microwave irradiation. We studied their enhanced antimicrobial activity on human pathogens as well as cytotoxicity on breast cancer cells (MCF-7). Biofabricated silver and copper nanoparticles exhibited UV-Visible absorbance peaks at 420 nm and 575 nm, confirming the bioreduction and stabilization of nanoparticles. Nanoparticles were characterized by FTIR, XRD, FESEM, and EDX analysis. FTIR results indicated the presence of alcohols, alkanes, aromatics, phenols, ethers, benzene, amines and amides that were possibly involved in the reduction and capping of silver and copper ions. XRD analysis was performed to confirm the crystalline nature of the silver and copper nanoparticles. FESEM analysis suggested that the nanoparticles were hexagonal or spherical in shape with size ranging from 20 to 44.49 nm and 18.9-32.09 nm for AgNPs and CuNPs, respectively. EDX analysis confirmed the presence of silver and copper elemental signals in the nanoparticles. The bioengineered silver and copper nanohybrids showed enhanced antimicrobial activity against Gram-positive and Gram-negative MDR human pathogens. MTT assay results indicated that CuNPs show potential cytotoxic effect followed by AgNPs against MCF-7 cancer cell line. IC 50 were 65.27 μg/ml, 37.02 μg/ml and 197.3 μg/ml for PcAgNPs, PcCuNPs and P. cineraria leaf extracts, respectively, treated MCF-7 cells. The present investigation highlighted an effective protocol for microwave-assisted synthesis of biomolecule-loaded silver and copper nanoparticles with enhanced antibacterial and anticancer activity. Results strongly suggested that bioengineered AgNPs and CuNPs could be used as potential tools against microbial pathogens and cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Artonin E induces p53-independent G1 cell cycle arrest and apoptosis through ROS-mediated mitochondrial pathway and livin suppression in MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Etti IC

    2017-03-01

    Full Text Available Imaobong Christopher Etti,1,2 Abdullah Rasedee,3 Najihah Mohd Hashim,4 Ahmad Bustamam Abdul,5 Arifah Kadir,6 Swee Keong Yeap,7 Peter Waziri,5 Ibrahim Malami,5 Kian Lam Lim,8 Christopher J Etti9 1Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia; 2Department of Pharmacology and Toxicology, University of Uyo, Uyo, Nigeria; 3Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia; 4Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 5MAKNA-Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia; 6Department of Veterinary Preclinical Science, Universiti Putra Malaysia, Serdang, Malaysia; 7Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia; 8Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Selangor, Malaysia; 9Department of Agricultural and Food Engineering, University of Uyo, Uyo, Nigeria Abstract: Artonin E is a prenylated flavonoid compound isolated from the stem bark of Artocarpus elasticus. This phytochemical has been previously reported to be drug-like with full compliance to Lipinski’s rule of five and good physicochemical properties when compared with 95% of orally available drugs. It has also been shown to possess unique medicinal properties that can be utilized in view of alleviating most human disease conditions. In this study, we investigated the cytotoxic mechanism of Artonin E in MCF-7 breast cancer cells, which has so far not been reported. In this context, Artonin E significantly suppressed the breast cancer cell’s viability while inducing apoptosis in a dose-dependent manner. This apoptosis induction was caspase dependent, and it is mediated mainly through the intrinsic pathway with the elevation of total reactive oxygen species

  8. Study of morphological changes in breast cancer cells MCF-7 under the action of pro-apoptotic agents with laser modulation interference microscope MIM-340

    Science.gov (United States)

    Nebogatikov, V.; Nikitiuk, A.; Konysheva, A.; Ignatyev, P.; Grishko, V.; Naimark, O.

    2017-09-01

    Quantitative phase microscopy is a new method to measure and evaluate the microlevel processes characterized by the high resolution and providing ample opportunities to quantitatively analyze various parameters, including specimens from biological matter. In this study, a laser interference microscope was used to evaluate the state of cancer cells (living and apoptotic). Apoptotic cancer cells were obtained by treatment of MCF-7 cells with the use of betulin-based α-bromomethyl ketone (BMK) derivative. When using the microscope, the main differences in the morphometric parameters of living and apoptotic cells such as height, diameter, perimeter, area and volume were appraised. The criteria that can be used as markers of apoptosis activation were identified.

  9. Transfection of brain capillary endothelial cells in primary culture with defined blood-brain barrier properties.

    Science.gov (United States)

    Burkhart, Annette; Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Lichota, Jacek; Fazakas, Csilla; Krizbai, István; Moos, Torben

    2015-08-07

    Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood-brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells' integrity. Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly

  10. Structure-activity correlation in transfection promoted by pyridinium cationic lipids.

    Science.gov (United States)

    Parvizi-Bahktar, P; Mendez-Campos, J; Raju, L; Khalique, N A; Jubeli, E; Larsen, H; Nicholson, D; Pungente, M D; Fyles, T M

    2016-03-21

    The efficiency of the transfection of a plasmid DNA encoding a galactosidase promoted by a series of pyridinium lipids in mixtures with other cationic lipids and neutral lipids was assessed in CHO-K1 cells. We identify key molecular parameters of the lipids in the mixture - clog P, lipid length, partial molar volume - to predict the morphology of the lipid-DNA lipoplex and then correlate these same parameters with transfection efficiency in an in vitro assay. We define a Transfection Index that provides a linear correlation with normalized transfection efficiency over a series of 90 different lipoplex compositions. We also explore the influence of the same set of molecular parameters on the cytotoxicity of the formulations.

  11. Sulfamic and succinic acid derivatives of 25-OH-PPD and their activities to MCF-7, A-549, HCT-116, and BGC-823 cell lines.

    Science.gov (United States)

    Zhou, Wu-Xi; Cao, Jia-Qing; Wang, Xu-De; Guo, Jun-Hui; Zhao, Yu-Qing

    2017-02-15

    In the search for new anti-tumor agents with higher potency than our previously identified compound 1 (25-OH-PPD, 25-hydroxyprotopanaxadiol), 12 novel sulfamic and succinic acid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 1, compounds 2, 3, and 7 exhibited higher cytotoxic activity on A-549 and BGC-823 cell lines, together with lower toxicity in the normal cell. In particular, compound 2 exhibited the best anti-tumor activity in the in vitro assays, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. MicroRNA-122 mimic transfection contributes to apoptosis in HepG2 cells.

    Science.gov (United States)

    Huang, Hongyan; Zhu, Yueyong; Li, Shaoyang

    2015-11-01

    There is currently a requirement for effective treatment strategies for human hepatocellular carcinoma (HCC), a leading cause of cancer‑associated mortality. MicroRNA-122 (miR-122), a repressor of the endogenous apoptosis regulator Bcl‑w, is frequently downregulated in HCC. Thus, it is hypothesized that the activation of miR‑122 may induce selective hepatocellular apoptosis via caspase activation in a model of HCC. In the present study, an miR‑122 mimic transfection was performed in HepG2 cells, and used to investigate the role and therapeutic potential of miR‑122 in the regulation of HCC‑derived cell lines. The apoptotic rates of HepG2 cells were significantly increased following miR‑122 mimic transfection. Reverse transcription‑polymerase chain reaction analysis revealed that Bcl‑w mRNA was significantly reduced, while the mRNA levels of caspase‑9 and caspase‑3 were markedly increased. The immunocytochemistry results supported the mRNA trends. Collectively, the present results suggest that endogenous miR‑122 contributes to HepG2 apoptosis and that transfection of mimic miR‑122 normalizes apoptotic levels in a model of HCC.

  13. Knockdown of TFIIS by RNA silencing inhibits cancer cell proliferation and induces apoptosis

    International Nuclear Information System (INIS)

    Hubbard, Kyle; Catalano, Jennifer; Puri, Raj K; Gnatt, Averell

    2008-01-01

    A common element among cancer cells is the presence of improperly controlled transcription. In these cells, the degree of specific activation of some genes is abnormal, and altering the aberrant transcription may therefore directly target cancer. TFIIS is a transcription elongation factor, which directly binds the transcription motor, RNA Polymerase II and allows it to read through various transcription arrest sites. We report on RNA interference of TFIIS, a transcription elongation factor, and its affect on proliferation of cancer cells in culture. RNA interference was performed by transfecting siRNA to specifically knock down TFIIS expression in MCF7, MCF10A, PL45 and A549 cells. Levels of TFIIS expression were determined by the Quantigene method, and relative protein levels of TFIIS, c-myc and p53 were determined by C-ELISA. Induction of apoptosis was determined by an enzymatic Caspase 3/7 assay, as well as a non-enzymatic assay detecting cytoplasmic mono- and oligonucleosomes. A gene array analysis was conducted for effects of TFIIS siRNA on MCF7 and MCF10A cell lines. Knockdown of TFIIS reduced cancer cell proliferation in breast, lung and pancreatic cancer cell lines. More specifically, TFIIS knockdown in the MCF7 breast cancer cell line induced cancer cell death and increased c-myc and p53 expression whereas TFIIS knockdown in the non-cancerous breast cell line MCF10A was less affected. Differential effects of TFIIS knockdown in MCF7 and MCF10A cells included the estrogenic, c-myc and p53 pathways, as observed by C-ELISA and gene array, and were likely involved in MCF7 cell-death. Although transcription is a fundamental process, targeting select core transcription factors may provide for a new and potent avenue for cancer therapeutics. In the present study, knockdown of TFIIS inhibited cancer cell proliferation, suggesting that TFIIS could be studied as a potential cancer target within the transcription machinery

  14. Isolation of quercetin from the methanolic extract of Lagerstroemia speciosa by HPLC technique, its cytotoxicity against MCF-7 cells and photocatalytic activity.

    Science.gov (United States)

    Sai Saraswathi, V; Saravanan, D; Santhakumar, K

    2017-06-01

    The flavonoids present in the leaves of Lagerstroemia speciosa were extracted, characterized by spectral methods and studied for its cytotoxicity activity against MCF-cell lines and photocatalytic activity against azo dye. Direct and sequential soxhlet extraction was performed and its concentrated crude extract was subjected to high performance liquid chromatography. The yield obtained by the isolated compound (MEI-quercetin) from leaves of L. speciosa was found to be 1.8g from the methanolic extract. The phytochemical analysis and the Rf value of the isolated flavonoid was found to be 3.59. The isolated compound was characterized by Infrared Spectroscopy, NMR and Mass. Based on the characterization, the structure was elucidated as quercetin - a flavonoid. The isolated compound showed the significant in vitro cytotoxicity activity against MCF-7 cell lines at 500μg/ml when compared to the crude extract. Among the various concentrations (25, 50, 100, 250, and 500μg/ml), at higher concentration the cell viability was pronounced and also compared with that of the control. It was first time to report that the isolated flavonoid showed photocatalytic against azo dye-methyl orange. The dye degradation was monitored by UV-Vis spectrophotometry. The isolated compound showed dye degradation of 91.66% with the crude extract 82.47% at 160min. Hence in the present findings, the photocatalytic degradation of MO dye under UV irradiation was investigated over isolated compound of L. speciosa. Hence we expect that this can be used to treat the waste water in near future based on the photocatalytic technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Involvement of miR-30c in resistance to doxorubicin by regulating YWHAZ in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Y. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Shen, H. [Department of Oncology, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Cao, Y. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Li, H. [Department of Central Laboratory, The Fourth Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Qin, R. [Department of Oncology, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Chen, Q. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Long, L. [Department of Oncology, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Zhu, X.L. [Department of Central Laboratory, The Fourth Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Xie, C.J. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Xu, W.L. [Department of Central Laboratory, The Fourth Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China)

    2014-01-10

    MicroRNAs (miRNAs) are small RNA molecules that modulate gene expression implicated in cancer, which play crucial roles in diverse biological processes, such as development, differentiation, apoptosis, and proliferation. The aim of this study was to investigate whether miR-30c mediated the resistance of breast cancer cells to the chemotherapeutic agent doxorubicin (ADR) by targeting tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ). miR-30c was downregulated in the doxorubicin-resistant human breast cancer cell lines MCF-7/ADR and MDA-MB-231/ADR compared with their parental MCF-7 and MDA-MB-231 cell lines, respectively. Furthermore, we observed that transfection of an miR-30c mimic significantly suppressed the ability of MCF-7/ADR to resist doxorubicin. Moreover, the anti-apoptotic gene YWHAZ was confirmed as a target of miR-30c by luciferase reporter assay, and further studies indicated that the mechanism for miR-30c on the sensitivity of breast cancer cells involved YWHAZ and its downstream p38 mitogen-activated protein kinase (p38MAPK) pathway. Together, our findings provided evidence that miR-30c was one of the important miRNAs in doxorubicin resistance by regulating YWHAZ in the breast cancer cell line MCF-7/ADR.

  16. Triiodothyronine (T3) induces HIF1A and TGFA expression in MCF7 cells by activating PI3K.

    Science.gov (United States)

    Moretto, Fernanda Cristina Fontes; De Sibio, Maria Teresa; Luvizon, Aline Carbonera; Olimpio, Regiane Marques Castro; de Oliveira, Miriane; Alves, Carlos Augusto Barnabe; Conde, Sandro José; Nogueira, Célia Regina

    2016-06-01

    High expression levels of hypoxia inducing factor 1 alpha are related to mammary carcinogenesis. In previous studies, we demonstrated that expression of transforming growth factor alpha increases upon treatment with triiodothyronine, but this expression does not occur in cellular models that do not express the estrogen receptor, or when cells are co-treated with the anti-estrogen, tamoxifen. The aim of this study was to determine the effect of the hormone triiodothyronine on the expression of the genes HIF1A and TGFA in the breast cancer cell line MCF7. The cell line was subjected to treatment with triiodothyronine at the supraphysiological dose of 10(-8)M for 10min, 30min, 1h, and 4h in the presence or absence of actinomycin D, the gene expression inhibitor, cycloheximide, the protein synthesis inhibitor, and LY294002, the phosphoinositide 3 kinase inhibitor. HIF1A and TGFA mRNA expression was analyzed by reverse transcription polymerase chain reaction. For data analysis, we used analysis of variance complemented by Tukey test and an adopted minimum of 5% significance. We found that HIF1A and TGFA expression increased in the presence of triiodothyronine at all times studied. HIF1A expression decreased in triiodothyronine-treated cells when gene transcription was also inhibited; however, TGFA expression decreased after 10 and 30min of treatment even when transcription was not inhibited. We found that activation of PI3K was necessary for triiodothyronine to modulate HIF1A and TGFA expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Data-based mathematical modeling of vectorial transport across double-transfected polarized cells.

    Science.gov (United States)

    Bartholomé, Kilian; Rius, Maria; Letschert, Katrin; Keller, Daniela; Timmer, Jens; Keppler, Dietrich

    2007-09-01

    Vectorial transport of endogenous small molecules, toxins, and drugs across polarized epithelial cells contributes to their half-life in the organism and to detoxification. To study vectorial transport in a quantitative manner, an in vitro model was used that includes polarized MDCKII cells stably expressing the recombinant human uptake transporter OATP1B3 in their basolateral membrane and the recombinant ATP-driven efflux pump ABCC2 in their apical membrane. These double-transfected cells enabled mathematical modeling of the vectorial transport of the anionic prototype substance bromosulfophthalein (BSP) that has frequently been used to examine hepatobiliary transport. Time-dependent analyses of (3)H-labeled BSP in the basolateral, intracellular, and apical compartments of cells cultured on filter membranes and efflux experiments in cells preloaded with BSP were performed. A mathematical model was fitted to the experimental data. Data-based modeling was optimized by including endogenous transport processes in addition to the recombinant transport proteins. The predominant contributions to the overall vectorial transport of BSP were mediated by OATP1B3 (44%) and ABCC2 (28%). Model comparison predicted a previously unrecognized endogenous basolateral efflux process as a negative contribution to total vectorial transport, amounting to 19%, which is in line with the detection of the basolateral efflux pump Abcc4 in MDCKII cells. Rate-determining steps in the vectorial transport were identified by calculating control coefficients. Data-based mathematical modeling of vectorial transport of BSP as a model substance resulted in a quantitative description of this process and its components. The same systems biology approach may be applied to other cellular systems and to different substances.

  18. Protein-free transfection of CHO host cells with an IgG-fusion protein: selection and characterization of stable high producers and comparison to conventionally transfected clones.

    Science.gov (United States)

    Lattenmayer, Christine; Loeschel, Martina; Schriebl, Kornelia; Steinfellner, Willibald; Sterovsky, Thomas; Trummer, Evelyn; Vorauer-Uhl, Karola; Müller, Dethardt; Katinger, Hermann; Kunert, Renate

    2007-04-15

    In order to improve the current techniques of cell cultivation in the absence of serum, we have developed a protein-free transfection protocol for CHO cells, based on the Nucleofector technology. After starting with a heterogeneous pool of primary transfectants which express the fusion protein EpoFc, we isolated single clones and compared them with parallel clones generated by lipofection in serum-dependent cultivation. Our intensive characterization program was based on determination of specific productivity (q(p)) and analysis of genetic parameters. In two nucleofection experiments, transfection with 5 microg of DNA resulted in best productivities of the primary cell pools. After subcloning, the q(p) could be raised up to 27 pg x cells(-1) x day(-1). While the serum-dependent transfectants exhibited specific productivities up to 57 pg x cells(-1) x day(-1) in serum-dependent cultivation, a significant decrease that resulted in the range of q(p) of the protein-free transfectants was observed after switching to protein-free conditions. Investigation of genetic parameters revealed higher mRNA levels and gene copy numbers (GCN) for the protein-free adapted serum-dependent transfectants. Therefore, we assume that problems during protein-free adaptation (PFA) lead to a less efficient translation machinery after serum deprivation. We describe the generation of stable-producing recombinant CHO clones by protein-free transfection of a protein-free adapted host cell line, which reduces the risk of adverse clonal changes after PFA. The main advantage of this approach is the earlier predictability of clone behavior, which makes the generation of production clones by protein-free transfection, a viable and highly efficient strategy for recombinant cell line development. (c) 2006 Wiley Periodicals, Inc.

  19. Involvement of 1,25D{sub 3}-MARRS (membrane associated, rapid response steroid-binding), a novel vitamin D receptor, in growth inhibition of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Richard, Cynthia L. [Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada); Farach-Carson, Mary C.; Rohe, Ben [Department of Biological Sciences, University of Delaware, Newark, DE 19716 (United States); Nemere, Ilka [Department of Nutrition and Food Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT 84322 8700 (United States); Meckling, Kelly A., E-mail: kmecklin@uoguelph.ca [Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada)

    2010-03-10

    In addition to classical roles in calcium homeostasis and bone development, 1,25 dihydroxyvitamin D{sub 3} [1,25(OH){sub 2}D{sub 3}] inhibits the growth of several cancer types, including breast cancer. Although cellular effects of 1,25(OH){sub 2}D{sub 3} traditionally have been attributed to activation of a nuclear vitamin D receptor (VDR), a novel receptor for 1,25(OH){sub 2}D{sub 3} called 1,25D{sub 3}-MARRS (membrane-associated, rapid response steroid-binding) protein was identified recently. The purpose of this study was to determine if the level of 1,25D{sub 3}-MARRS expression modulates 1,25(OH){sub 2}D{sub 3} activity in breast cancer cells. Relative levels of 1,25D{sub 3}-MARRS protein in MCF-7, MDA MB 231, and MCF-10A cells were estimated by real-time RT-PCR and Western blotting. To determine if 1,25D{sub 3}-MARRS receptor was involved in the growth inhibitory effects of 1,25(OH){sub 2}D{sub 3} in MCF-7 cells, a ribozyme construct designed to knock down 1,25D{sub 3}-MARRS mRNA was stably transfected into MCF-7 cells. MCF-7 clones in which 1,25D{sub 3}-MARRS receptor expression was reduced showed increased sensitivity to 1,25(OH){sub 2}D{sub 3} ( IC{sub 50} 56 {+-} 24 nM) compared to controls (319 {+-} 181 nM; P < 0.05). Reduction in 1,25D{sub 3}-MARRS receptor lengthened the doubling time in transfectants treated with 1,25(OH){sub 2}D{sub 3}. Knockdown of 1,25D{sub 3}-MARRS receptor also increased the sensitivity of MCF-7 cells to the vitamin D analogs KH1060 and MC903, but not to unrelated agents (all-trans retinoic acid, paclitaxel, serum/glucose starvation, or the isoflavone, pomiferin). These results suggest that 1,25D{sub 3}-MARRS receptor expression interferes with the growth inhibitory activity of 1,25(OH){sub 2}D{sub 3} in breast cancer cells, possibly through the nuclear VDR. Further research should examine the potential for pharmacological or natural agents that modify 1,25D{sub 3}-MARRS expression or activity as anticancer agents.

  20. PHARMACOLOGICAL IN VITRO MODELS IN PRE-CLINICAL DRUG TESTING - EXAMPLE OF hSERT TRANSFECTED HUMAN EMBRYONIC KIDNEY CELLS

    Directory of Open Access Journals (Sweden)

    Mihajlo Jakovljević

    2012-06-01

    Full Text Available Preclinical drug testing should be considered an important stage during examinations of its efficiency and safety in any likely indication observed. Purpose of the process is acquisition of substantial amount of particular drug-related data before approaching clinical trials in humans. Historical preclinical testing relied on available testing in microbe cultures and animal models. During recent decades laboratory techniques of human cell lines cultivation have been developed and improved. These provide unique possibility of drug acting mechanism testing in a simplified environment lacking basic homeostatic mechanisms. Some examples of these are measuring drug impact to biochemical transport, signaling or anabolic processes. Humane cell lines of embrional kidney 293 are an example of easy-to-grow and disseminate and quite endurable cell line. This methodological article notices some of the details of HEK293 cells cultivation and breading. We took transfection as an example of in vitro model creation for drug testing. Transfection refers to gene introduction into HEK293 cellular genome in order to achieve membrane expression of coded protein. In our case it would be human serotonin transporter. Article contains description of one particular methodological approach in measuring human serotonin transporter expression. The role and importance of serotonin pump in affective disorders genesis was already widely recognized. Aim of the paper was to emphasize feasibility of cell cultivation and its advantages in comparison with alternative traditional methods.

  1. Phorbol ester induced phosphorylation of the estrogen receptor in intact MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    Knabbe, C.; Lippman, M.E.; Greene, G.L.; Dickson, R.B.

    1986-01-01

    Recent studies with a variety of cellular receptors have shown that phorbol ester induced phosphorylation modulates ligand binding and function. In this study the authors present direct evidence that the estrogen receptor in MCF-7 human breast cancer cells is a phosphoprotein whose phosphorylation state can be enhanced specifically by phorbol-12-myristate-13-acetate (PMA). Cells were cultured to 6h in the presence of [ 32 P]-orthophosphate. Whole cell extracts were immunoprecipitated with a monoclonal antibody (D58) against the estrogen receptor and subjected to SDS-polyacrylamide electrophoresis. Autoradiography showed a specific band in the region of 60-62 kDa which was significantly increased in preparations from PMA treated cells. Phospho-amino acid analysis demonstrated specific phosphorylation of serine and threonine residues. Cholera toxin or forskolin did not change the phosphorylation state of this protein. In a parallel binding analysis PMA led to a rapid decrease of estrogen binding sites. The estrogen induction of both progesterone receptors and growth in semisolid medium was blocked by PMA, whereas the estrogen induction of the 8kDa protein corresponding to the ps2 gene product and of the 52 kDa protein was not affected. In conclusion, phorbol esters can induce phosphorylation of the estrogen receptor. This process may be associated with the inactivation of certain receptor functions

  2. Role of CEACAM1, ECM, and Mesenchymal Stem Cells in an Ortho topic Model of Human Breast Cancer

    International Nuclear Information System (INIS)

    Samineni, S.; Samineni, S.; Shively, J.E.; Glackin, C.

    2011-01-01

    Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) is a morphogens in an in vitro model for lumen formation and plays a similar role in breast epithelial cells implanted in humanized mammary fat pads in NOD-SCID mice. Although extra cellular matrix alone is sufficient to stimulate lumen formation in CEACAM1 transfected MCF-7 cells grown in 3D culture, there is an additional requirement for stromal or mesenchymal cells (MSCs) for these cells to form xenografts with glandular structures in an ortho topic site. We demonstrate that optimal in vitro conditions include both Matrigel and MSCs and that the inclusion of collagen I inhibits xenograft differentiation. Additionally, there is no need to remove the nascent murine mammary gland. The previously observed difference in gland development between the long and short cytoplasmic domain isoforms of CEACAM1 is no longer observed in pregnant NOD/SCID mice suggesting that stimulation of the mammary fat pad by pregnancy critically affects xenograft differentiation.

  3. The presence of a membrane-bound progesterone receptor sensitizes the estradiol-induced effect on the proliferation of human breast cancer cells.

    Science.gov (United States)

    Neubauer, Hans; Yang, Yang; Seeger, Harald; Fehm, Tanja; Cahill, Michael A; Tong, Xiaowen; Ruan, Xiangyan; Mueck, Alfred O

    2011-08-01

    Breast cancer risk is still an important topic regarding hormone therapy as well as oral contraception. Evidence that progestogens may play a crucial role is accumulating. Progesterone receptor membrane component 1 (PGRMC1) expressed in breast cancer may be important in tumorigenesis and thus may increase breast cancer risk. The aim of this project was to investigate the influence of different estradiol (E2) concentrations and the addition of two progestogens on MCF-7 breast cancer cells overexpressing PGRMC1. MCF-7 cells were stably transfected with PGRMC1 expression plasmid (MCF-7/PGRMC1-3HA [WT-12]). To test the effects of E2 and progestogens on cell proliferation, MCF-7 and WT-12 cells were stimulated with different concentrations of E2 (10 and 10 M) alone and in combination with progesterone and medroxyprogesterone acetate (each 10 M). E2 elicited a concentration-dependent proliferative effect on both cell lines, which was much more pronounced in WT-12 cells (50% vs 200%). This effect could be completely abrogated by the addition of the E2 antagonist fulvestrant. Addition of progesterone had no influence on the E2-induced effect, whereas medroxy-progesterone acetate enhanced the E2-induced effect at a low E2 concentration, which was, again, more pronounced in the WT-12 cells. The figures were between 20% and 40% in MCF-7 and between 60% and 250% in WT-12 cells. Overexpression of PGRMC1 sensitizes the proliferative response of the MCF-7 breast cancer cell line to estradiol. The effect of progestogens on breast cancer tumorigenesis may depend on the specific progestogen used for hormone therapy or oral contraception.

  4. Transfection in perfused microfluidic cell culture devices: A case study.

    Science.gov (United States)

    Raimes, William; Rubi, Mathieu; Super, Alexandre; Marques, Marco P C; Veraitch, Farlan; Szita, Nicolas

    2017-08-01

    Automated microfluidic devices are a promising route towards a point-of-care autologous cell therapy. The initial steps of induced pluripotent stem cell (iPSC) derivation involve transfection and long term cell culture. Integration of these steps would help reduce the cost and footprint of micro-scale devices with applications in cell reprogramming or gene correction. Current examples of transfection integration focus on maximising efficiency rather than viable long-term culture. Here we look for whole process compatibility by integrating automated transfection with a perfused microfluidic device designed for homogeneous culture conditions. The injection process was characterised using fluorescein to establish a LabVIEW-based routine for user-defined automation. Proof-of-concept is demonstrated by chemically transfecting a GFP plasmid into mouse embryonic stem cells (mESCs). Cells transfected in the device showed an improvement in efficiency (34%, n = 3) compared with standard protocols (17.2%, n = 3). This represents a first step towards microfluidic processing systems for cell reprogramming or gene therapy.

  5. p53 inactivation decreases dependence on estrogen/ERK signalling for proliferation but promotes EMT and susceptility to 3-bromopyruvate in ERα+ breast cancer MCF-7 cells.

    Science.gov (United States)

    Rieber, Manuel; Strasberg-Rieber, Mary

    2014-03-15

    Most breast cancers express the estrogen receptor alpha (ERα(+)), harbor wt TP53, depend on estrogen/ERK signalling for proliferation, and respond to anti-estrogens. However, concomittant activation of the epidermal growth factor receptor (EGFR)/MEK pathway promotes resistance by decreasing estrogen dependence. Previously, we showed that retroviral transduction of mutant p53 R175H into wt TP53 ERα(+) MCF-7 cells induces epidermal growth factor (EGF)-independent proliferation, activation of the EGF receptor (p-EGFR) and some characteristics of epithelial-mesenchymal transition (EMT). To investigate whether p53 inactivation augments ERα(+) cell proliferation in response to restrictive estradiol, chemical MEK inhibition or metabolic inhibitors. Introduction of mutant p53 R175H lowered expression of p53-dependent PUMA and p21WAF1, decreased E-cadherin and cytokeratin 18 associated with EMT, but increased the % of proliferating ERα(+)/Ki67 cells, diminishing estrogen dependence. These cells also exhibited higher proliferation in the presence of MEK-inhibitor UO126, reciprocally correlating with preferential susceptibility to the pyruvate analog 3-bromopyruvate (3-BrPA) without a comparable response to 2-deoxyglucose. p53 siRNA silencing by electroporation in wt TP53 MCF-7 cells also decreased estrogen dependence and response to MEK inhibition, while also conferring susceptibility to 3-BrPA. (a) ERα(+) breast cancer cells dysfunctional for TP53 which proliferate irrespective of low estrogen and chemical MEK inhibition are likely to increase metabolic consumption becoming increasingly susceptible to 3-BrPA; (b) targeting the pyruvate pathway may improve response to endocrine therapy in ERα(+) breast cancer with p53 dysfunction. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Silver Nanoparticles Biosynthesized Using Achillea biebersteinii Flower Extract: Apoptosis Induction in MCF-7 Cells via Caspase Activation and Regulation of Bax and Bcl-2 Gene Expression

    Directory of Open Access Journals (Sweden)

    Javad Baharara

    2015-02-01

    Full Text Available Silver nanoparticles (Ag-NPs, the most popular nanoparticles, possess unique properties. Achillea biebersteinii is a plant of the Asteraceae family rich in active antitumor components. The aim of this research was the characterization and investigation of the cytotoxic properties of Ag-NPs synthesized using A. biebersteinii flower extract, on a human breast cancer cell line. The Ag-NPs were synthesized after approximately 180 min of reaction at 40 °C, then they were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM and dynamic light scattering (DLS. The anti-apoptosis effect of Ag-NPs on the MCF-7 cell line was investigated by MTT assay, DAPI and acridine orange staining and caspase activity. The transcriptional expression of bax, bcl-2, caspase-3, -8 and -9 were also evaluated by RT-PCR. The TEM images revealed that the Ag-NPs morphology had a different shape. The DLS indicated that the average hydrodynamic diameter of the biosynthesized Ag-NPs was around 12 nm. By UV-visible spectroscopy the strongest absorbance peak was observed at 460 nm. The FTIR results also showed interaction between the plant extract and Ag-NPs due to the similarity in the peak patterns. The EDS results showed that Ag-NPs display an absorption peak at 3 keV, indicating the presence of the element silver. The Ag-NPs caused a dose-dependent decrease in cell viability, fragmentation in nucleic acid, inhibited the proliferation and induction of apoptosis on MCF-7 by suppressing specific cell cycle genes, and simulation programmed cell dead genes. Further investigation is required to establish the potential of this novel and promising approach in cancer therapy.

  7. Transfection of the IHH gene into rabbit BMSCs in a simulated microgravity environment promotes chondrogenic differentiation and inhibits cartilage aging.

    Science.gov (United States)

    Liu, Peng-Cheng; Liu, Kuan; Liu, Jun-Feng; Xia, Kuo; Chen, Li-Yang; Wu, Xing

    2016-09-27

    The effect of overexpressing the Indian hedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (BMSCs) was investigated in a simulated microgravity environment. An adenovirus plasmid encoding the rabbit IHH gene was constructed in vitro and transfected into rabbit BMSCs. Two large groups were used: conventional cell culture and induction model group and simulated microgravity environment group. Each large group was further divided into blank control group, GFP transfection group, and IHH transfection group. During differentiation induction, the expression levels of cartilage-related and cartilage hypertrophy-related genes and proteins in each group were determined. In the conventional model, the IHH transfection group expressed high levels of cartilage-related factors (Coll2 and ANCN) at the early stage of differentiation induction and expressed high levels of cartilage hypertrophy-related factors (Coll10, annexin 5, and ALP) at the late stage. Under the simulated microgravity environment, the IHH transfection group expressed high levels of cartilage-related factors and low levels of cartilage hypertrophy-related factors at all stages of differentiation induction. Under the simulated microgravity environment, transfection of the IHH gene into BMSCs effectively promoted the generation of cartilage and inhibited cartilage aging and osteogenesis. Therefore, this technique is suitable for cartilage tissue engineering.

  8. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    Science.gov (United States)

    K. S., Uma Suganya; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D.; Arulvasu, C.; Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan

    2016-05-01

    Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G0/G1 to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  9. Membrane fusion inducers, chloroquine and spermidine increase lipoplex-mediated gene transfection

    International Nuclear Information System (INIS)

    Wong-Baeza, Carlos; Bustos, Israel; Serna, Manuel; Tescucano, Alonso; Alcantara-Farfan, Veronica; Ibanez, Miguel; Montanez, Cecilia; Wong, Carlos; Baeza, Isabel

    2010-01-01

    Gene transfection into mammalian cells can be achieved with viral and non-viral vectors. Non-viral vectors, such as cationic lipids that form lipoplexes with DNA, are safer and more stable than viral vectors, but their transfection efficiencies are lower. Here we describe that the simultaneous treatment with a membrane fusion inducer (chlorpromazine or procainamide) plus the lysosomotropic agent chloroquine increases lipoplex-mediated gene transfection in human (HEK293 and C-33 A) and rat (PC12) cell lines (up to 9.2-fold), as well as in situ in BALB/c mice spleens and livers (up to 6-fold); and that the polyamine spermidine increases lipoplex-mediated gene transfection and expression in cell cultures. The use of these four drugs provides a novel, safe and relatively inexpensive way to considerably increase lipoplex-mediated gene transfection efficiency.

  10. Effects of molecular size and chemical factor on plasma gene transfection

    Science.gov (United States)

    Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Jinno, Masafumi

    2016-07-01

    In order to clarify the mechanism of plasma gene transfection, the relationship between transfection efficiency and transferred molecular size was investigated. Molecules with low molecular mass (less than 50 kDa; dye or dye-labeled oligonucleotide) and high molecular mass (more than 1 MDa; plasmid DNA or fragment of plasmid DNA) were transferred to L-929 cells. It was found that the transfection efficiency decreases with increasing in transferred molecular size and also depends on the tertiary structure of transferred molecules. Moreover, it was suggested the transfection mechanism is different between the molecules with low (less than 50 kDa) and high molecular mass (higher than 1 MDa). For the amount of gene transfection after plasma irradiation, which is comparable to that during plasma irradiation, it is shown that H2O2 molecules are the main contributor. The transfection efficiency decreased to 0.40 ± 0.22 upon scavenging the H2O2 generated by plasma irradiation using the catalase. On the other hand, when the H2O2 solution is dropped into the cell suspension without plasma irradiation, the transfection efficiency is almost 0%. In these results, it is also suggested that there is a synergetic effect of H2O2 with electrical factors or other reactive species generated by plasma irradiation.

  11. Cyclin D1 overexpression, cell cycle progression and radiosensitivity in MBP cells

    International Nuclear Information System (INIS)

    Wu Lijun; Yu Zengliang

    2000-11-01

    Clones that exhibited a minimum of 7-8 fold cyclin D1 level above the parent cell lines or the vector control were obtained after transfected with the entire coding sequence of human 1.1 kb cyclin D1 cDNA. Studies showed that there was no significant difference in Radiosensitivity between over-expressing cyclin D1 and control cultures from either mouse or human origin. Using flow cytometry to access cell cycle distribution in the exponentially growth cultures of MCF10F-D1-21 and MCF10F-V-3, it was found that there was a 50 percent increase in the proportion of G2/M phase cells and 5.3 percent decrease in the proportion of G0/G1 phase cells in MCF10F-D1-21 comparing with MCF10F-V-3, though they were with the same proportion of cells in S phase

  12. Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection.

    Science.gov (United States)

    Magro, Massimiliano; Martinello, Tiziana; Bonaiuto, Emanuela; Gomiero, Chiara; Baratella, Davide; Zoppellaro, Giorgio; Cozza, Giorgio; Patruno, Marco; Zboril, Radek; Vianello, Fabio

    2017-11-01

    Conversely to common coated iron oxide nanoparticles, novel naked surface active maghemite nanoparticles (SAMNs) can covalently bind DNA. Plasmid (pDNA) harboring the coding gene for GFP was directly chemisorbed onto SAMNs, leading to a novel DNA nanovector (SAMN@pDNA). The spontaneous internalization of SAMN@pDNA into cells was compared with an extensively studied fluorescent SAMN derivative (SAMN@RITC). Moreover, the transfection efficiency of SAMN@pDNA was evaluated and explained by computational model. SAMN@pDNA was prepared and characterized by spectroscopic and computational methods, and molecular dynamic simulation. The size and hydrodynamic properties of SAMN@pDNA and SAMN@RITC were studied by electron transmission microscopy, light scattering and zeta-potential. The two nanomaterials were tested by confocal scanning microscopy on equine peripheral blood-derived mesenchymal stem cells (ePB-MSCs) and GFP expression by SAMN@pDNA was determined. Nanomaterials characterized by similar hydrodynamic properties were successfully internalized and stored into mesenchymal stem cells. Transfection by SAMN@pDNA occurred and GFP expression was higher than lipofectamine procedure, even in the absence of an external magnetic field. A computational model clarified that transfection efficiency can be ascribed to DNA availability inside cells. Direct covalent binding of DNA on naked magnetic nanoparticles led to an extremely robust gene delivery tool. Hydrodynamic and chemical-physical properties of SAMN@pDNA were responsible of the successful uptake by cells and of the efficiency of GFP gene transfection. SAMNs are characterized by colloidal stability, excellent cell uptake, persistence in the host cells, low toxicity and are proposed as novel intelligent DNA nanovectors for efficient cell transfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Obtusifoliol related steroids from Euphorbia sogdiana with cell growth inhibitory activity and apoptotic effects on breast cancer cells (MCF-7 and MDA-MB231).

    Science.gov (United States)

    Aghaei, Mahmoud; Yazdiniapour, Zeinab; Ghanadian, Mustafa; Zolfaghari, Behzad; Lanzotti, Virginia; Mirsafaee, Vahid

    2016-11-01

    From the aerial parts of Euphorbia sogdiana Popov, obtusifoliol (1) and two related steroids (2-3) have been isolated and characterized along with a known cycloartane derivative (4). The chemical structure of the obtusifoliol-related compounds, obtained by 1D and 2D NMR, and MS measurements, have been determined as: 3β,7α-dihydroxy-4α,14α-dimethyl-5α-ergosta-8,24(28)-diene-11-one (2) and 3β-hydroxy-4α,14α-dimethyl-5α-ergosta-8,24(28)-diene-1-one (3). Compound 2 has been previously isolated from Euphorbia chamaesyce while compound 3 was never reported before. The isolated compounds 1-4 were subjected to cytotoxic tests on the breast cancer cells, MCF-7 and MDA-MB231. Further pharmacological tests on the more active compounds 2 and 3 indicated their action to be related to cell growth inhibitory activity and apoptotic effects on the tested cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Juanjuan, E-mail: jwu32@emory.edu [Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Suite 4211 WMB, Atlanta, GA 30322 (United States); Williams, Devin [Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310 (United States); Walter, Grant A. [Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Suite 4211 WMB, Atlanta, GA 30322 (United States); Thompson, Winston E. [Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310 (United States); Sidell, Neil [Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Suite 4211 WMB, Atlanta, GA 30322 (United States)

    2014-11-01

    The actions of the transcription factor Nuclear factor erythroid 2-related factor (Nrf2) in breast cancer have been shown to include both pro-oncogenic and anti-oncogenic activities which is influenced, at least in part, by the hormonal environment. However, direct regulation of Nrf2 by steroid hormones (estrogen and progesterone) has received only scant attention. Nrf2 is known to be regulated by its cytosolic binding protein, Kelch-like ECH-associated protein 1 (Keap1), and by a Keap1-independent mechanism involving a series of phosphorylation steps mediated by phosphatidylinositol 3-kinase (PI3K) and glycogen synthase kinase 3 beta (GSK3β). Here, we report that estrogen (E2) increases Nrf2 activity in MCF7 breast cancer cells through activation of the PI3K/GSK3β pathway. Utilizing antioxidant response element (ARE)-containing luciferase reporter constructs as read-outs for Nrf2 activity, our data indicated that E2 increased ARE activity >14-fold and enhanced the action of the Nrf2 activators, tertiary butylhydroquinone (tBHQ) and sulforaphane (Sul) 4 to 9 fold compared with cells treated with tBHQ or Sul as single agents. This activity was shown to be an estrogen receptor-mediated phenomenon and was antagonized by progesterone. In addition to its action on the reporter constructs, mRNA and protein levels of heme oxygenase 1, an endogenous target gene of Nrf2, was markedly upregulated by E2 both alone and in combination with tBHQ. Importantly, E2-induced Nrf2 activation was completely suppressed by the PI3K inhibitors LY294002 and Wortmannin while the GSK3β inhibitor CT99021 upregulated Nrf2 activity. Confirmation that E2 was, at least partly, acting through the PI3K/GSK3β pathway was indicated by our finding that E2 increased the phosphorylation status of both GSK3β and Akt, a well-characterized downstream target of PI3K. Together, these results demonstrate a novel mechanism by which E2 can regulate Nrf2 activity in estrogen receptor-positive breast cancer

  15. mRNA transfection of mouse and human neural stem cell cultures.

    Directory of Open Access Journals (Sweden)

    Samuel McLenachan

    Full Text Available The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  16. mRNA Transfection of Mouse and Human Neural Stem Cell Cultures

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J.; Chen, Fred K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages. PMID:24386231

  17. mRNA transfection of mouse and human neural stem cell cultures.

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J; Chen, Fred K

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  18. Cysteine and aspartic proteases cathepsins B and D determine the invasiveness of MCF10A neoT cells

    International Nuclear Information System (INIS)

    Premzl, J.; Kos, J.

    2003-01-01

    Background. Lysosomal cathepsins B and D have been reported to play a role in various processes leading to progression of malignant disease. In ras-transformed MCF10A neoT cells both enzymes show similar vesicular distribution in perinuclear and peripheral cytoplasmic regions. Results. The co-localization of cathepsins B and D in some vesicles as defined by confocal microscopy supports their co-ordinate activity in the proteolytic cascade. On the other hand, we showed that stefin A, an endogenous intracellular inhibitor of cysteine proteases, did not co-localize with cathepsin B and is presumably not involved in regulation of its enzymatic activity within the vesicles. Intracellular localization of both enzymes was confined to similar vesicles as the fluorescent degradation products of DQ-collagen IV either in individual cells or cell spheroids. The capability of these two enzymes to degrade collagen and other components of extracellular matrix is further supported by the results of Matrigel invasion assay. We showed that specific intracellular (CA-074 Me) and extracellular (CA-074) inhibitors of cathepsin B and pepstatin A, an inhibitor of cathepsin D, significantly reduced invasion of MCF10A neoT cells. Our results also show that in contrast to some other studies the activation peptide of pro-cathepsin D exhibited no mitogenic effect on MCF10A neoT, MCF-7 or HEK-293 cells. Conclusion. We conclude that lysosomal cysteine proteases cathepsins B and D predominantly participate in degradation of extracellular matrix and facilitate invasion of tumour cells. (author)

  19. Lipofection: A Highly Efficient, Lipid-Mediated DNA-Transfection Procedure

    Science.gov (United States)

    Felgner, Philip L.; Gadek, Thomas R.; Holm, Marilyn; Roman, Richard; Chan, Hardy W.; Wenz, Michael; Northrop, Jeffrey P.; Ringold, Gordon M.; Danielsen, Mark

    1987-11-01

    A DNA-transfection protocol has been developed that makes use of a synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA). Small unilamellar liposomes containing DOTMA interact spontaneously with DNA to form lipid-DNA complexes with 100% entrapment of the DNA. DOTMA facilitates fusion of the complex with the plasma membrane of tissue culture cells, resulting in both uptake and expression of the DNA. The technique is simple, highly reproducible, and effective for both transient and stable expression of transfected DNA. Depending upon the cell line, lipofection is from 5- to >100-fold more effective than either the calcium phosphate or the DEAE-dextran transfection technique.

  20. 131I-recombinant human EGF has antitumor effects against MCF-7 human breast cancer xenografts with low levels of EGFR

    International Nuclear Information System (INIS)

    Li Y.-C.; Xu, W.-Y.; Tan, T.-Z.; He Sheng

    2004-01-01

    This study investigated the inhibitory action of 131 I-recombinant human EGF ( 131 I-rhEGF) on MCF-7 human breast cancer tumor development in nude mice. The activity and tumor uptake of 131 I-rhEGF was measured by tissue distribution assay, and its effect on tumor growth was measured by monitoring tumor size after treatment with 131 I-rhEGF. Changes in tumor cell ultrastructure were observed by transmission electron microscopy (TEM), and pathological changes in tumor tissue were observed by light microscopy. The tissue distribution assay revealed that 131 I-rhEGF was markedly absorbed by the tumor and reached its maximal uptake rate (16.73%ID · g -1 ) at 120 hours at which point the drug concentration in the tumor was 11.1-fold, 8.1-fold, and 6.6-fold higher than that in blood, liver, and kidneys, respectively. Tumor size measurements showed that tumor development was significantly inhibited by intravenously and intratumorally injected 131 I-rhEGF. Tumor inhibition rates (82.0% and 80.7%, respectively) were significantly higher than those of tumors treated with 131 I (7.49%) and 131 I-HSA (6.91%; P 131 I-rhEGF could significantly damage and ultimately kill tumor cells. Our results suggest that 131 I-rhEGF suppresses development of xenografted breast cancer cells in nude mice, providing a novel candidate for receptor-mediated targeted radiotherapy

  1. In-vitro Anticancer and Antioxidant Activity of Gold Nanoparticles Conjugate with Tabernaemontana divaricata flower SMs Against MCF -7 Breast Cancer Cells

    International Nuclear Information System (INIS)

    Preetam, Raj J. P.; Purushothaman, M; Khusro, Ameer; Panicker, Shirly George

    2016-01-01

    Biologically stabilized gold nanoparticles were synthesized from the flower aqueous extract of T. divaricata. The synthesized nanoparticles were characterized by UV-Vis spectrophotometer, Zeta sizer, FTIR and TEM analysis. T. divaricata reduced gold nanoparticles having particle size and potential of 106.532 nm and -10.2 mV, respectively, with a characteristic peak of 550 nm in UV-visible spectrophotometer. FTIR graph after comparison between the crude flower extract and gold nanoparticles showed three major shifts in the functional groups. The morphology and size of the gold nanoparticles were examined by HRTEM analysis, which showed that most of the nanoparticles were nearly spherical with size of 100 nm. The gold nanoparticles synthesized demonstrated potent anticancer activity against MCF-7 cell line. The findings conclude that the antioxidant molecule present in T. divaricata may be responsible for both reduction and capping of gold nanoparticles which possess potential applications in medicine and pharmaceutical fields

  2. In-vitro Anticancer and Antioxidant Activity of Gold Nanoparticles Conjugate with Tabernaemontana divaricata flower SMs Against MCF -7 Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Preetam, Raj J. P.; Purushothaman, M; Khusro, Ameer; Panicker, Shirly George [PG Biotechnology, Tamil Nadu (India)

    2016-02-15

    Biologically stabilized gold nanoparticles were synthesized from the flower aqueous extract of T. divaricata. The synthesized nanoparticles were characterized by UV-Vis spectrophotometer, Zeta sizer, FTIR and TEM analysis. T. divaricata reduced gold nanoparticles having particle size and potential of 106.532 nm and -10.2 mV, respectively, with a characteristic peak of 550 nm in UV-visible spectrophotometer. FTIR graph after comparison between the crude flower extract and gold nanoparticles showed three major shifts in the functional groups. The morphology and size of the gold nanoparticles were examined by HRTEM analysis, which showed that most of the nanoparticles were nearly spherical with size of 100 nm. The gold nanoparticles synthesized demonstrated potent anticancer activity against MCF-7 cell line. The findings conclude that the antioxidant molecule present in T. divaricata may be responsible for both reduction and capping of gold nanoparticles which possess potential applications in medicine and pharmaceutical fields.

  3. Ultrasound-mediated interferon β gene transfection inhibits growth of malignant melanoma

    International Nuclear Information System (INIS)

    Yamaguchi, Kazuki; Feril, Loreto B.; Tachibana, Katsuro; Takahashi, Akira; Matsuo, Miki; Endo, Hitomi; Harada, Yoshimi; Nakayama, Juichiro

    2011-01-01

    Highlights: → Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-β genes both in vitro and in vivo. → Ultrasound-mediated IFN-β transfection inhibited proliferation of melanoma cells in vitro. → Ultrasound-mediated IFN-β transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon β (IFN-β) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-β in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-β genes mixed with microbubbles. Successful sonotransfection with IFN-β gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-β gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  4. Ligand-induced internalization of neurotensin in transfected COS-7 cells: differential intracellular trafficking of ligand and receptor.

    Science.gov (United States)

    Vandenbulcke, F; Nouel, D; Vincent, J P; Mazella, J; Beaudet, A

    2000-09-01

    The neuropeptide neurotensin (NT) is known to be internalized in a receptor-mediated fashion into its target cells. To gain insight into the mechanisms underlying this process, we monitored in parallel the migration of the NT1 neurotensin receptor subtype and a fluorescent analog of NT (fluo-NT) in COS-7 cells transfected with a tagged NT1 construct. Fluo-NT internalization was prevented by hypertonic sucrose, potassium depletion and cytosol acidification, demonstrating that it proceeded via clathrin-coated pits. Within 0-30 minutes, fluo-NT accumulated together with its receptor in Acridine Orange-positive, acidic organelles. These organelles concentrated transferrin and immunostained positively for rab 5A, therefore they were early endosomes. After 30-45 minutes, the ligand and its receptor no longer colocalized. Fluo-NT was first found in rab 7-positive late endosomes and later in a nonacidic juxtanuclear compartment identified as the Trans-Golgi Network (TGN) by virtue of its staining for syntaxin 6. This juxtanuclear compartment also stained positively for rab 7 and for the TGN/pericentriolar recycling endosome marker rab 11, suggesting that the ligand could have been recruited to the TGN from either late or recycling endosomes. By that time, internalized receptors were detected in Lamp-1-immunoreactive lysosomes. These results demonstrate that neurotensin/NT1 receptor complexes follow a recycling cycle that is unique among the G protein-coupled receptors studied to date, and provide the first evidence for the targeting of a nonendogenous protein from endosomes to the TGN.

  5. Enhanced transfection by antioxidative polymeric gene carrier that reduces polyplex-mediated cellular oxidative stress.

    Science.gov (United States)

    Lee, Min Sang; Kim, Nak Won; Lee, Kyuri; Kim, Hongtae; Jeong, Ji Hoon

    2013-06-01

    To test the hypothesis in which polyplex-induced oxidative stress may affect overall transfection efficiency, an antioxidative transfection system minimizing cellular oxidative stress was designed for enhanced transfection. An amphiphilic copolymer (PEI-PLGA) was synthesized and used as a micelle-type gene carrier containing hydrophobic antioxidant, α-tocopherol. Cellular oxidative stress and the change of mitochondrial membrane potential after transfection was measured by using a fluorescent probe (H₂DCFDA) and lipophilic cationic probe (JC-1), respectively. Transfection efficiency was determined by measuring a reporter gene (luciferase) expression level. The initial transfection study with conventional PEI/plasmid DNA polyplex showed significant generation of reactive oxygen species (ROS). The PEI-PLGA copolymer successfully carried out the simultaneous delivery of α-tocopherol and plasmid DNA (PEI-PLGA/Toco/pDNA polyplex) into cells, resulting in a significant reduction in cellular ROS generation after transfection and helped to maintain the mitochondrial membrane potential (ΔΨ). In addition, the transfection efficiency was dramatically increased using the antioxidative transfection system. This work showed that oxidative stress would be one of the important factors that should be considered in designing non-viral gene carriers and suggested a possible way to reduce the carrier-mediated oxidative stress, which consequently leads to enhanced transfection.

  6. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Shinji [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan)]. E-mail: shinjit@fmsrsa.fukui-med.ac.jp; Furukawa, Takako [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Mori, Tetsuya [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Yonekura, Yoshiharu [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan)

    2005-11-01

    The transplantation of functional cells such as dopaminergic cells into damaged tissue is now clinically ongoing, but at present the population of surviving cells at the transplantation site mostly cannot be noninvasively examined. To visualize surviving transplanted functional cells using a noninvasive method, we chose the estrogen receptor ligand binding domain (ERL) as a reporter molecule and 16{alpha}-[{sup 18}F]-fluoro-17{beta}-estradiol (FES) for its ligand. We used a mouse embryonic stem (ES) cell line for recipient cells as a model. To obtain ES cells that constitutively or inducibly express ERL, we transfected two types of expression vectors into EB5 parental ES cell line using the lipofection method and obtained about 30 clones for each of the two types of transfectants. Then, to examine the expression level of ERL, we performed Western blotting analysis. Ligand uptake experiments were carried out using [{sup 3}H]-estradiol with or without excessive unlabeled estradiol for control cells and ERL transfectants. Each selected clone was also used for in vivo positron emission tomography (PET) imaging studies involving FES in nude mice transplanted with control cells and ERL transfectants. In some of the clones transfected with the inducible-type ERL gene, protein was expressed much higher than in the controls. However, constitutive-type ERL gene-transfected ES cells showed no protein production in spite of their gene expression activity being considerably high. All clones also expressed equal levels of the Oct-3/4 gene, a marker of pluripotency, in comparison with the parental cells. Also, the specific uptake of [{sup 3}H]-estradiol was over 30 times higher in inducer-treated ERL-expressing ES cells compared to untreated control cells. Finally, by performing dynamic PET imaging, we successfully visualized ERL-expressing teratomas using FES.

  7. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene

    International Nuclear Information System (INIS)

    Takamatsu, Shinji; Furukawa, Takako; Mori, Tetsuya; Yonekura, Yoshiharu; Fujibayashi, Yasuhisa

    2005-01-01

    The transplantation of functional cells such as dopaminergic cells into damaged tissue is now clinically ongoing, but at present the population of surviving cells at the transplantation site mostly cannot be noninvasively examined. To visualize surviving transplanted functional cells using a noninvasive method, we chose the estrogen receptor ligand binding domain (ERL) as a reporter molecule and 16α-[ 18 F]-fluoro-17β-estradiol (FES) for its ligand. We used a mouse embryonic stem (ES) cell line for recipient cells as a model. To obtain ES cells that constitutively or inducibly express ERL, we transfected two types of expression vectors into EB5 parental ES cell line using the lipofection method and obtained about 30 clones for each of the two types of transfectants. Then, to examine the expression level of ERL, we performed Western blotting analysis. Ligand uptake experiments were carried out using [ 3 H]-estradiol with or without excessive unlabeled estradiol for control cells and ERL transfectants. Each selected clone was also used for in vivo positron emission tomography (PET) imaging studies involving FES in nude mice transplanted with control cells and ERL transfectants. In some of the clones transfected with the inducible-type ERL gene, protein was expressed much higher than in the controls. However, constitutive-type ERL gene-transfected ES cells showed no protein production in spite of their gene expression activity being considerably high. All clones also expressed equal levels of the Oct-3/4 gene, a marker of pluripotency, in comparison with the parental cells. Also, the specific uptake of [ 3 H]-estradiol was over 30 times higher in inducer-treated ERL-expressing ES cells compared to untreated control cells. Finally, by performing dynamic PET imaging, we successfully visualized ERL-expressing teratomas using FES

  8. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiulong, E-mail: songxiulong@hotmail.com; Wei, Zhengxi; Shaikh, Zahir A., E-mail: zshaikh@uri.edu

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1–3 μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. - Highlights: • Low micromolar concentrations of Cd rapidly activate ERK1/2 in MCF-7 cells. • Signal transduction and resulting cell proliferation require EGFR, ERα, and Src. • These findings implicate Cd in promotion of breast cancer.

  9. Symmetric dimeric bisbenzimidazoles DBP(n reduce methylation of RARB and PTEN while significantly increase methylation of rRNA genes in MCF-7 cancer cells.

    Directory of Open Access Journals (Sweden)

    Svetlana V Kostyuk

    Full Text Available Hypermethylation is observed in the promoter regions of suppressor genes in the tumor cancer cells. Reactivation of these genes by demethylation of their promoters is a prospective strategy of the anticancer therapy. Previous experiments have shown that symmetric dimeric bisbenzimidazoles DBP(n are able to block DNA methyltransferase activities. It was also found that DBP(n produces a moderate effect on the activation of total gene expression in HeLa-TI population containing epigenetically repressed avian sarcoma genome.It is shown that DBP(n are able to penetrate the cellular membranes and accumulate in breast carcinoma cell MCF-7, mainly in the mitochondria and in the nucleus, excluding the nucleolus. The DBP(n are non-toxic to the cells and have a weak overall demethylation effect on genomic DNA. DBP(n demethylate the promoter regions of the tumor suppressor genes PTEN and RARB. DBP(n promotes expression of the genes RARB, PTEN, CDKN2A, RUNX3, Apaf-1 and APC "silent" in the MCF-7 because of the hypermethylation of their promoter regions. Simultaneously with the demethylation of the DNA in the nucleus a significant increase in the methylation level of rRNA genes in the nucleolus was detected. Increased rDNA methylation correlated with a reduction of the rRNA amount in the cells by 20-30%. It is assumed that during DNA methyltransferase activity inhibition by the DBP(n in the nucleus, the enzyme is sequestered in the nucleolus and provides additional methylation of the rDNA that are not shielded by DBP(n.It is concluded that DBP (n are able to accumulate in the nucleus (excluding the nucleolus area and in the mitochondria of cancer cells, reducing mitochondrial potential. The DBP (n induce the demethylation of a cancer cell's genome, including the demethylation of the promoters of tumor suppressor genes. DBP (n significantly increase the methylation of ribosomal RNA genes in the nucleoli. Therefore the further study of these compounds is needed

  10. Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells.

    Science.gov (United States)

    Baumgart, Judith; Humbert, Laure; Boulais, Étienne; Lachaine, Rémi; Lebrun, Jean-Jaques; Meunier, Michel

    2012-03-01

    A femtosecond laser based transfection method using off-resonance plasmonic gold nanoparticles is described. For human cancer melanoma cells, the treatment leads to a very high perforation rate of 70%, transfection efficiency three times higher than for conventional lipofection, and very low toxicity (transfection for skin cancer treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Oral DNA Vaccine in Chickens

    Directory of Open Access Journals (Sweden)

    Seyed Davoud Jazayeri

    2012-01-01

    Full Text Available Attenuated Salmonella has been used as a carrier for DNA vaccine. However, in vitro and in vivo studies on the bacteria following transfection of plasmid DNA were poorly studied. In this paper, eukaryotic expression plasmids encoding avian influenza virus (AIV subtype H5N1 genes, pcDNA3.1/HA, NA, and NP, were transfected into an attenuated Salmonella enteric typhimurium SV4089. In vitro stability of the transfected plasmids into Salmonella were over 90% after 100 generations. The attenuated Salmonella were able to invade MCF-7 (1.2% and MCF-10A (0.5% human breast cancer cells. Newly hatched specific-pathogen-free (SPF chicks were inoculated once by oral gavage with 109 colony-forming unit (CFU of the attenuated Salmonella. No abnormal clinical signs or deaths were recorded after inoculation. Viable bacteria were detected 3 days after inoculation by plating from spleen, liver, and cecum. Fluorescent in situ hybridization (FISH and polymerase chain reaction (PCR were carried out for confirmation. Salmonella was not detected in blood cultures although serum antibody immune responses to Salmonella O antiserum group D1 factor 1, 9, and 12 antigens were observed in all the inoculated chickens after 7 days up to 35 days. Our results showed that live attenuated S. typhimurium SV4089 harboring pcDNA3.1/HA, NA, and NP may provide a unique alternative as a carrier for DNA oral vaccine in chickens.

  12. Hormone resistance in two MCF-7 breast cancer cell lines is associated with reduced mTOR signaling, decreased glycolysis and increased sensitivity to cytotoxic drugs

    Directory of Open Access Journals (Sweden)

    Euphemia Yee Leung

    2014-09-01

    Full Text Available The mTOR pathway is a key regulator of multiple cellular signaling pathways and is a potential target for therapy. We have previously developed two hormone-resistant sub-lines of the MCF-7 human breast cancer line, designated TamC3 and TamR3, which were characterized by reduced mTOR signaling, reduced cell volume and resistance to mTOR inhibition. Here we show that these lines exhibit increased sensitivity to carboplatin, oxaliplatin, 5-fluorouracil, camptothecin, doxorubicin, paclitaxel, docetaxel and hydrogen peroxide. The mechanisms underlying these changes have not yet been characterized but may include a shift from glycolysis to mitochondrial respiration. If this phenotype is found in clinical hormone-resistant breast cancers, conventional cytotoxic therapy may be a preferred option for treatment.

  13. PLGA encapsulation and radioiodination of indole-3-carbinol: investigation of anticancerogenic effects against MCF7, Caco2 and PC3 cells by in vitro assays

    International Nuclear Information System (INIS)

    Gorkem Yildiz; Ayfer Yurt Kilcar; Medine, E.I.; Volkan Tekin; Ozge Kozgus Guldu; Zumrut Biber Muftuler, F.

    2017-01-01

    Encapsulation with PLGA of I3C and radioiodination have been performed. Anticancerogenic effects of I3C and I3C-PLGA have been investigated utilizing in vitro methods on breast adenocarcinoma epithelial (MCF7), colon adenocarcinoma epithelial (Caco2), prostate carcinoma epithelial (PC3) cells. Characterization of I3C-PLGA have been performed with DLS method and SEM analysis. I3C and I3C-PLGA compounds have been radiolabeled in high yields with "1"3"1I which is widely used for diagnosis and treatment in Nuclear Medicine. All experimental results demonstrated that radioiodinated compounds are promising in order to be used in Nuclear Medicine as well as present study contributed previously reported studies. (author)

  14. Photoenhanced gene transfection by a curcumin loaded CS-g-PZLL micelle.

    Science.gov (United States)

    Lin, Jian-Tao; Pan, Wen-Jia; Zhang, Jun-Ai; Wang, Wei; Zhong, Jia; Su, Jia-Min; Li, Tong; Zou, Ying; Wang, Guan-Hai

    2017-09-01

    The codelivery of drug and gene is a promising method for cancer treatment. In our previous works, we prepared a cationic micelles based on chitosan and poly-(N-3-carbobenzyloxylysine) (CS-g-PZLL), but transfection ratio of CS-g-PZLL to Hela cell was low. Herein, to improve the transfection efficiency of CS-g-PZLL, curcumin was loaded in the CS-g-PZLL micelle. After irradiation, the obtained curcumin loaded micelle showed a better transfection, and the p53 protein expression in Hela cells was higher. The apoptosis assay showed that the complex could induce a more significant apoptosis to Hela cells than that of curcumin or p53 used alone, and the curcumin loaded micelle inducing apoptosis was best after irradiation. Therefore, CS-g-PZLL is a safe and effective carrier for the codelivery of drug/gene, and curcumin could be used as a photosensitizer to induce a photoenhanced gene transfection, which should be encouraged in improving transfection and tumor therapy. Copyright © 2017. Published by Elsevier B.V.

  15. Scattering of MCF7 cells by heregulin ß-1 depends on the MEK and p38 MAP kinase pathway.

    Directory of Open Access Journals (Sweden)

    Rintaro Okoshi

    Full Text Available Heregulin (HRG β1 signaling promotes scattering of MCF7 cells by inducing breakdown of adherens and tight junctions. Here, we show that stimulation with HRG-β1 causes the F-actin backbone of junctions to destabilize prior to the loss of adherent proteins and scattering of the cells. The adherent proteins dissociate and translocate from cell-cell junctions to the cytosol. Moreover, using inhibitors we show that the MEK1 pathway is required for the disappearance of F-actin from junctions and p38 MAP kinase activity is essential for scattering of the cells. Upon treatment with a p38 MAP kinase inhibitor, adherens junction complexes immediately reassemble, most likely in the cytoplasm, and move to the plasma membrane in cells dissociated by HRG-β1 stimulation. Subsequently, tight junction complexes form, most likely in the cytoplasm, and move to the plasma membrane. Thus, the p38 MAP kinase inhibitor causes a re-aggregation of scattered cells, even in the presence of HRG-β1. These results suggest that p38 MAP kinase signaling to adherens junction proteins regulates cell aggregation, providing a novel understanding of the regulation of cell-cell adhesion.

  16. Cationic Phospholipids Forming Cubic Phases: Lipoplex Structure and Transfection Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana; Wang, Li; MacDonald, Robert C. (NWU)

    2008-10-29

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl-sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl-sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  17. Cationic phospholipids forming cubic phases: lipoplex structure and transfection efficiency.

    Science.gov (United States)

    Koynova, Rumiana; Wang, Li; Macdonald, Robert C

    2008-01-01

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl- sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl- sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 degrees C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 degrees C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl- sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  18. Cloning of cDNA sequences of a progestin-regulated mRNA from MCF7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chalbos, D; Westley, B; Alibert, C; Rochefort, H

    1986-01-24

    A cDNA clone corresponding to an mRNA regulated by the progestin R5020, has been isolated by differential screening of a cDNA library from the MCF7 breast cancer cell line, which contains estrogen and progesterone receptors. This probe hybridized with a single species of poly A + RNA of 8-kb molecular weight as shown by Northern blot analysis and could also be used to total RNA preparation. This recombinant cone hybridized specifically to an mRNA coding for a 250,000 daltons protein when translated in vitro. This protein was identical to the 250 kDa progestin-regulated protein that the authors previously described as shown by immunoprecipitation with specific rabbit polyclonal antibodies. Dose-response curve and specificity studies show that the accumulation of the Pg8 mRNA and that of the 250-kDa protein was increased by 5 to 30-fold following progestin treatment and that this effect was mediated by the progesterone receptor. Time course of induction indicated that the accumulation of mRNA was rapid and preceded that of the protein. This is the first report on a cloned cDNA probe of progestin-regulated mRNA in human cell lines.

  19. A comparison of the effects of tributyltin chloride and triphenyltin chloride on cell proliferation, proapoptotic p53, Bax, and antiapoptotic Bcl-2 protein levels in human breast cancer MCF-7 cell line.

    Science.gov (United States)

    Fickova, Maria; Macho, Ladislav; Brtko, Julius

    2015-06-01

    In recent years it was disclosed, that numerous organotin(IV) derivatives have remarkable cytotoxicity against several types of cancer cells. The property to inhibit cell growth makes these compounds promising for antitumor therapy, as the clinical effectiveness of cisplatin is limited by drug resistance and significant side effects. Tributyltin and triphenyltin are known as endocrine disruptors. Moreover, the compounds exert their toxicity in mammals predominantly through nuclear receptor signaling. Here we present the effects of tributyltin chloride (TBT-Cl) and triphenyltin chloride (TPT-Cl) on cell proliferation, expression of proapoptotic p53, Bax, and antiapoptotic Bcl-2 proteins in human breast cancer MCF-7 cell line. Dose and time dependent (24, 48 and 72 h) cell expositions have demonstrated TBT-Cl as more effective in inhibiting MCF-7 cell proliferation than TPT-Cl. Short time treatment with TBT-Cl displayed marked stimulation of p53 protein expression when compared to TPT-Cl. Both organotin compounds displayed similar mild enhancement of Bax protein expression. The 24h exposition of TPT-Cl induced substantial diminution of Bcl-2 protein expression in comparison with both, untreated cells and TBT-Cl treated cells. Our observations indicate that TBT-Cl and TPT-Cl have different antiproliferative potency and distinct impact on expression of apoptosis marker proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Transfection of HeLa-cells with pEGFP plasmid by impedance power-assisted electroporation

    DEFF Research Database (Denmark)

    Glahder, Jacob; Norrild, Bodil; Persson, Mikael B

    2005-01-01

    Bioimpedance spectrometry was applied to study cell viability and pEGFP plasmid-transfection efficiency in electroporation (EP) of 20,000 HeLa cells with 0.3 microg DNA in 90 microl low conductivity 0.32 M sucrose medium of pH 7.5. Monopolar rectangular pulses, of field strength 75 V/mm, and puls...